WorldWideScience

Sample records for tio2 nanotube rh

  1. Synthesis of Fe2O3/TiO2 nanorod-nanotube arrays by filling TiO2 nanotubes with Fe

    International Nuclear Information System (INIS)

    Mohapatra, Susanta K; Banerjee, Subarna; Misra, Mano

    2008-01-01

    Synthesis of hematite (α-Fe 2 O 3 ) nanostructures on a titania (TiO 2 ) nanotubular template is carried out using a pulsed electrodeposition technique. The TiO 2 nanotubes are prepared by the sonoelectrochemical anodization method and are filled with iron (Fe) by pulsed electrodeposition. The Fe/TiO 2 composite is then annealed in an O 2 atmosphere to convert it to Fe 2 O 3 /TiO 2 nanorod-nanotube arrays. The length of the Fe 2 O 3 inside the TiO 2 nanotubes can be tuned from 50 to 550 nm by changing the deposition time. The composite material is characterized by scanning electron microscopy, transmission electron microscopy and diffuse reflectance ultraviolet-visible studies to confirm the formation of one-dimensional Fe 2 O 3 /TiO 2 nanorod-nanotube arrays. The present approach can be used for designing variable one-dimensional metal oxide heterostructures

  2. Study of TiO2 nanotubes as an implant application

    International Nuclear Information System (INIS)

    Hazan, Roshasnorlyza; Sreekantan, Srimala; Mydin, Rabiatul Basria S. M. N.; Mat, Ishak; Abdullah, Yusof

    2016-01-01

    Vertically aligned TiO 2 nanotubes have become the primary candidates for implant materials that can provide direct control of cell behaviors. In this work, 65 nm inner diameters of TiO 2 nanotubes were successfully prepared by anodization method. The interaction of bone marrow stromal cells (BMSC) in term of cell adhesion and cell morphology on bare titanium and TiO 2 nanotubes is reported. Field emission scanning electron microscopy (FESEM) analysis proved interaction of BMSC on TiO 2 nanotubes structure was better than flat titanium (Ti) surface. Also, significant cell adhesion on TiO 2 nanotubes surface during in vitro study revealed that BMSC prone to attach on TiO 2 nanotubes. From the result, it can be conclude that TiO 2 nanotubes are biocompatible to biological environment and become a new generation for advanced implant materials

  3. Thermal degradation of TiO2 nanotubes on titanium

    Science.gov (United States)

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2014-10-01

    The objective of this research was to study thermal degradation behavior of TiO2 nanotubes on titanium (Ti). TiO2 nanotubes were grown via anodization method on commercially pure Ti (Cp-Ti) discs using two different electrolytes, 1 vol. % HF in deionized (DI) water and 1 vol. % HF + 0.5 wt. % NH4F + 10 vol. % DI water in ethylene glycol, to obtain nanotubes with two different lengths, 300 nm and 950 nm keeping the nanotube diameter constant at 100 ± 20 nm. As grown TiO2 nanotubes were subjected to heat treatment to understand thermal degradation as a function of both temperature and hold time. The signs of degradation were observed mainly when amorphous nanotubes started to crystallize, however the crystallization temperature varied based on TiO2 nanotubes length and anodizing condition. Overall, 300 nm nanotubes were thermally stable at least up to 400 °C for 12 h, while the 950 nm long nanotubes show signs of degradation from 400 °C for 6 h only. Clearly, length of nanotubes, heat treatment temperature as well as hold times show influence toward degradation kinetics of TiO2 nanotubes on titanium.

  4. High pressure synthesis of amorphous TiO2 nanotubes

    Directory of Open Access Journals (Sweden)

    Quanjun Li

    2015-09-01

    Full Text Available Amorphous TiO2 nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO2 nanotubes. The structural phase transitions of anatase TiO2 nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD method. The starting anatase structure is stable up to ∼20GPa, and transforms into a high-density amorphous (HDA form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO2 nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO2 phase was revealed by high-resolution transmission electron microscopy (HRTEM study. In addition, the bulk modulus (B0 = 158 GPa of the anatase TiO2 nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa. We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO2 nanotubes.

  5. Synthesis and photocatalytic activity of Ce-doped TiO2 and TiO2 nanotubes

    International Nuclear Information System (INIS)

    Arruda, L.B.; Pereira, E.A.; Paula, F.R.; Lisboa Filho, P.N.

    2016-01-01

    Full text: One-dimensional nanostructures have been intensively studied, from the point of view of their synthesis and mechanisms of formation, as well as their applications in photonics, solar energy conversion, environmental and photocatalysis, since their properties due high surface area, electrical conductivity and light dispersion effects. Titanium dioxide (TiO2) nanoparticles have been demonstrated to be an effective multifunctional material especially when the particle size is less than 50 nm exhibit photoinduced activities that originate from the semiconductor band gap. TiO2 is semiconductor more used in photocatalysis, for this reason various properties have been thoroughly investigated in order to show that the photocatalytic activity and TiO2 reaction mechanism are influenced by structure, defects and impurities, surface morphology. and interfaces in addition to the concentration of dopants, such as rare-earth elements. Cerium ions, for example, vary between Ce4+ and Ce3 + oxidation state making the cerium oxide appear as CeO2 and Ce2O3 under oxidation and reduction conditions. These different electronic structures of Ce3+ (4f15d0) and Ce4+ (4f05d0) provide different catalytic and optical properties at the TiO2. In this work, samples of Ce-doped TiO2 and TiO2 were synthesized by alkali route, and its photocatalytic activity analyzed in order to create a relationship between the response obtained and the structure and morphology of each sample. Alkali route consists in submitting TiO2 (anatase) powder directly in medium of the NaOH (10M) and maintained at 120°C/20 hours by a glycerin bath with subsequent washed with water and HCl (0.1M) until reaching the desired pH. The synthesized samples were then studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The photocatalytic decomposition of rhodamine B (Rh.B) it was performed under UV irradiation and visible light in air. For the obtained

  6. Synthesis and photocatalytic activity of Ce-doped TiO2 and TiO2 nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Arruda, L.B.; Pereira, E.A.; Paula, F.R.; Lisboa Filho, P.N. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil)

    2016-07-01

    Full text: One-dimensional nanostructures have been intensively studied, from the point of view of their synthesis and mechanisms of formation, as well as their applications in photonics, solar energy conversion, environmental and photocatalysis, since their properties due high surface area, electrical conductivity and light dispersion effects. Titanium dioxide (TiO2) nanoparticles have been demonstrated to be an effective multifunctional material especially when the particle size is less than 50 nm exhibit photoinduced activities that originate from the semiconductor band gap. TiO2 is semiconductor more used in photocatalysis, for this reason various properties have been thoroughly investigated in order to show that the photocatalytic activity and TiO2 reaction mechanism are influenced by structure, defects and impurities, surface morphology. and interfaces in addition to the concentration of dopants, such as rare-earth elements. Cerium ions, for example, vary between Ce4+ and Ce3 + oxidation state making the cerium oxide appear as CeO2 and Ce2O3 under oxidation and reduction conditions. These different electronic structures of Ce3+ (4f15d0) and Ce4+ (4f05d0) provide different catalytic and optical properties at the TiO2. In this work, samples of Ce-doped TiO2 and TiO2 were synthesized by alkali route, and its photocatalytic activity analyzed in order to create a relationship between the response obtained and the structure and morphology of each sample. Alkali route consists in submitting TiO2 (anatase) powder directly in medium of the NaOH (10M) and maintained at 120°C/20 hours by a glycerin bath with subsequent washed with water and HCl (0.1M) until reaching the desired pH. The synthesized samples were then studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The photocatalytic decomposition of rhodamine B (Rh.B) it was performed under UV irradiation and visible light in air. For the obtained

  7. Flow-Regulated Growth of Titanium Dioxide (TiO2 ) Nanotubes in Microfluidics.

    Science.gov (United States)

    Fan, Rong; Chen, Xinye; Wang, Zihao; Custer, David; Wan, Jiandi

    2017-08-01

    Electrochemical anodization of titanium (Ti) in a static, bulk condition is used widely to fabricate self-organized TiO 2 nanotube arrays. Such bulk approaches, however, require extended anodization times to obtain long TiO 2 nanotubes and produce only vertically aligned nanotubes. To date, it remains challenging to develop effective strategies to grow long TiO 2 nanotubes in a short period of time, and to control the nanotube orientation. Here, it is shown that the anodic growth of TiO 2 nanotubes is significantly enhanced (≈16-20 times faster) under flow conditions in microfluidics. Flow not only controls the diameter, length, and crystal orientations of TiO 2 nanotubes, but also regulates the spatial distribution of nanotubes inside microfluidic devices. Strikingly, when a Ti thin film is deposited on silicon substrates and anodized in microfluidics, both vertically and horizontally aligned (relative to the bottom substrate) TiO 2 nanotubes can be produced. The results demonstrate previously unidentified roles of flow in the regulation of growth of TiO 2 nanotubes, and provide powerful approaches to effectively grow long, oriented TiO 2 nanotubes, and construct hierarchical TiO 2 nanotube arrays on silicon-based materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. An innovative approach to synthesize highly-ordered TiO2 nanotubes.

    Science.gov (United States)

    Isimjan, Tayirjan T; Yang, D Q; Rohani, Sohrab; Ray, Ajay K

    2011-02-01

    An innovative route to prepare highly-ordered and dimensionally controlled TiO2 nanotubes has been proposed using a mild sonication method. The nanotube arrays were prepared by the anodization of titanium in an electrolyte containing 3% NH4F and 5% H2O in glycerol. It is demonstrated that the TiO2 nanostructures has two layers: the top layer is TiO2 nanowire and underneath is well-ordered TiO2 nanotubes. The top layer can easily fall off and form nanowires bundles by implementing a mild sonication after a short annealing time. We found that the dimensions of the TiO2 nanotubes were only dependent on the anodizing condition. The proposed technique may be extended to fabricate reproducible well-ordered TiO2 nanotubes with large area on other metals.

  9. Self-assembly graphitic carbon nitride quantum dots anchored on TiO_2 nanotube arrays: An efficient heterojunction for pollutants degradation under solar light

    International Nuclear Information System (INIS)

    Su, Jingyang; Zhu, Lin; Geng, Ping; Chen, Guohua

    2016-01-01

    Highlights: • Carbon nitride quantum dots (CNQDs) were decorated onto TiO_2 nanotube arrays (NTAs). • The CNQDs/TiO_2 NTAs exhibits much improved photoelectrochemical activity. • The heterojunction displays efficient removal efficiencies for RhB and phenol. • Pollutants degradation mechanism over CNQDs/TiO_2 NTAs was clarified. - Abstract: In this study, an efficient heterojunction was constructed by anchoring graphitic carbon nitride quantum dots onto TiO_2 nanotube arrays through hydrothermal reaction strategy. The prepared graphitic carbon nitride quantum dots, which were prepared by solid-thermal reaction and sequential dialysis process, act as a sensitizer to enhance light absorption. Furthermore, it was demonstrated that the charge transfer and separation in the formed heterojunction were significantly improved compared with pristine TiO_2. The prepared heterojunction was used as a photoanode, exhibiting much improved photoelectrochemical capability and excellent photo-stability under solar light illumination. The photoelectrocatalytic activities of prepared heterojunction were demonstrated by degradation of RhB and phenol in aqueous solution. The kinetic constants of RhB and phenol degradation using prepared photoelectrode are 2.4 times and 4.9 times higher than those of pristine TiO_2, respectively. Moreover, hydroxyl radicals are demonstrated to be dominant active radicals during the pollutants degradation.

  10. Fabrication of a TiO2-P25/(TiO2-P25+TiO2 nanotubes junction for dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Nguyen Huy Hao

    2016-08-01

    Full Text Available The dye sensitized solar cell (DSSC, which converts solar light into electric energy, is expected to be a promising renewable energy source for today's world. In this work, dye sensitized solar cells, one containing a single layer and one containing a double layer, were fabricated. In the double layer DSSC structure, the under-layer was TiO2-P25 film, and the top layer consisted of a mixture of TiO2-P25 and TiO2 nanotubes. The results indicated that the efficiency of the DSSC with the double layer structure was a significant improvement in comparison to the DSSC consisting of only a single film layer. The addition of TiO2-P25 in the top layer caused an improvement in the adsorption of dye molecules on the film rather than on the TiO2 nanotubes only. The presence of the TiO2 nanotubes together with TiO2-P25 in the top layer revealed the enhancement in harvesting the incident light and an improvement of electron transport through the film.

  11. Photodegradation of rhodamine B and methyl orange over one-dimensional TiO2 catalysts under simulated solar irradiation

    International Nuclear Information System (INIS)

    Guo Changsheng; Xu Jian; He Yan; Zhang Yuan; Wang Yuqiu

    2011-01-01

    In this paper, two one-dimensional (1D) TiO 2 nanostructures, nanotube and nanowire were synthesized by a hydrothermal method using Degussa P25 TiO 2 as a precursor. The synthesized anatase TiO 2 nanotubes with the diameters of 10-20 nm and length of several hundred nanometers were formed from P25 and NaOH with the hydrothermal treatment temperature at 150 deg. C, and anatase TiO 2 nanowires with the diameters of 10-40 nm and length up to several micrometers were prepared at 180 deg. C. The photocatalytic activity of the two nanostructures was evaluated by degrading rhodamine B (RhB) and methyl orange (MO) in aqueous solutions under simulated solar light irradiation. The results suggested that the TiO 2 nanocatalysts displayed higher degradation activity compared to P25. For RhB, 98.9% and 91.9% of RhB were removed by nanotubes and nanowires, respectively after 60 min irradiation in comparison to the 81.8% removal by P25. Similar trend was observed for MO, with the removal percentage of 95.6%, 88.3% and 74.9%, respectively by TiO 2 nanotubes, nanowires and P25. Meanwhile, RhB and MO showed different photodegradation rates in nanotubes and nanowires suspensions, probably due to the morphology and crystal structure of the TiO 2 nanocatalysts which play important roles in the degradation activity of the catalysts.

  12. Photocatalytic decouloration of malachite green dye by application of TiO2 nanotubes

    International Nuclear Information System (INIS)

    Prado, Alexandre G.S.; Costa, Leonardo L.

    2009-01-01

    The nanotubes of titania were synthesized in a hydrothermal system and characterized by scanning electronic microscopy (SEM), FT-IR, FT-Raman, and surface charge density by surface area analyzer. These nanomaterials were applied to photocatalyse malachite green dye degradation. Photodegradation capacity of TiO 2 nanotubes was compared to TiO 2 anatase photoactivity. Malachite dye was completely degraded in 75 and 105 min of reaction photocatalysed by TiO 2 nanotubes and TiO 2 anatase, respectively. Catalysts displayed high photodegradation activity at pH 4. TiO 2 nanotubes were easily recycled whereas the reuse of TiO 2 anatase was not effective. Nanotubes maintained 80% of their activity after 10 catalytic cycles and TiO 2 anatase presented only 8% of its activity after 10 cycles.

  13. Microstructure and antibacterial property of in situ TiO(2) nanotube layers/titanium biocomposites.

    Science.gov (United States)

    Cui, C X; Gao, X; Qi, Y M; Liu, S J; Sun, J B

    2012-04-01

    The TiO(2) nanotube layer was in situ synthesized on the surface of pure titanium by the electrochemical anodic oxidation. The diameter of nano- TiO(2) nanotubes was about 70~100 nm. The surface morphology and phase compositions of TiO(2) nanotube layers were observed and analyzed using the scanning electron microscope (SEM). The important processing parameters, including anodizing voltage, reaction time, concentration of electrolyte, were optimized in more detail. The photocatalytic activity of the nano- TiO(2) nanotube layers prepared with optimal conditions was evaluated via the photodegradation of methylthionine in aqueous solution. The antibacterial property of TiO(2) nanotube layers prepared with optimal conditions was evaluated by inoculating Streptococcus mutans on the TiO(2) nanotube layers in vitro. The results showed that TiO(2) nanotube layers/Ti biocomposites had very good antibacterial activity to resist Streptococcus mutans. As a dental implant biomaterial, in situ TiO(2) nanotube layer/Ti biocomposite has better and wider application prospects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties.

    Science.gov (United States)

    Guan, Dongsheng; Cai, Chuan; Wang, Ying

    2011-04-01

    We have employed a simple process of anodizing Ti foils to prepare TiO2 nanotube arrays which show enhanced electrochemical properties for applications as Li-ion battery electrode materials. The lengths and pore diameters of TiO2 nanotubes can be finely tuned by varying voltage, electrolyte composition, or anodization time. The as-prepared nanotubes are amorphous and can be converted into anatase nanotubes with heat treatment at 480 degrees C. Rutile crystallites emerge in the anatase nanotube when the annealing temperature is increased to 580 degrees C, resulting in TiO2 nanotubes of mixed phases. The morphological features of nanotubes remain unchanged after annealing. Li-ion insertion performance has been studied for amorphous and crystalline TiO2 nanotube arrays. Amorphous nanotubes with a length of 3.0 microm and an outer diameter of 125 nm deliver a capacity of 91.2 microA h cm(-2) at a current density of 400 microA cm(-2), while those with a length of 25 microm and an outer diameter of 158 nm display a capacity of 533 microA h cm-2. When the 3-microm long nanotubes become crystalline, they deliver lower capacities: the anatase nanotubes and nanotubes of mixed phases show capacities of 53.8 microA h cm-2 and 63.1 microA h cm(-2), respectively at the same current density. The amorphous nanotubes show excellent capacity retention ability over 50 cycles. The cycled nanotubes show little change in morphology compared to the nanotubes before electrochemical cycling. All the TiO2 nanotubes demonstrate higher capacities than amorphous TiO2 compact layer reported in literature. The amorphous TiO2 nanotubes with a length of 1.9 microm exhibit a capacity five times higher than that of TiO2 compact layer even when the nanotube array is cycled at a current density 80 times higher than that for the compact layer. These results suggest that anodic TiO2 nanotube arrays are promising electrode materials for rechargeable Li-ion batteries.

  15. Nanoindentation study of the mechanical behavior of TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Xu, Y. N.; Wang, M. C.; Oloyede, A.; Bell, J. M.; Yan, C.; Liu, M. N.

    2015-01-01

    Titanium dioxide (TiO 2 ) nanotube arrays are attracting increasing attention for use in solar cells, lithium-ion batteries, and biomedical implants. To take full advantage of their unique physical properties, such arrays need to maintain adequate mechanical integrity in applications. However, the mechanical performance of TiO 2 nanotube arrays is not well understood. In this work, we investigate the deformation and failure of TiO 2 nanotube arrays using the nanoindentation technique. We found that the load–displacement response of the arrays strongly depends on the indentation depth and indenter shape. Substrate-independent elastic modulus and hardness can be obtained when the indentation depth is less than 2.5% of the array height. The deformation mechanisms of TiO 2 nanotube arrays by Berkovich and conical indenters are closely associated with the densification of TiO 2 nanotubes under compression. A theoretical model for deformation of the arrays under a large-radius conical indenter is also proposed

  16. Optimization of photoelectrochemical water splitting performance on hierarchical TiO 2 nanotube arrays

    KAUST Repository

    Zhang, Z.

    2012-02-10

    In this paper, we show that by varying the voltages during two-step anodization the morphology of the hierarchical top-layer/bottom-tube TiO 2 (TiO 2 NTs) can be finely tuned between nanoring/nanotube, nanopore/nanotube, and nanohole-nanocave/nanotube morphologies. This allows us to optimize the photoelectrochemical (PEC) water splitting performance on the hierarchical TiO 2 NTs. The optimized photocurrent density and photoconversion efficiency in this study, occurring on the nanopore/nanotube TiO 2 NTs, were 1.59 mA cm -2 at 1.23 V vs. RHE and 0.84% respectively, which are the highest values ever reported on pristine TiO 2 materials under illumination of AM 1.5G. Our findings contribute to further improvement of the energy conversion efficiency of TiO 2-based devices.

  17. Optimization of photoelectrochemical water splitting performance on hierarchical TiO 2 nanotube arrays

    KAUST Repository

    Zhang, Z.; Wang, Peng

    2012-01-01

    In this paper, we show that by varying the voltages during two-step anodization the morphology of the hierarchical top-layer/bottom-tube TiO 2 (TiO 2 NTs) can be finely tuned between nanoring/nanotube, nanopore/nanotube, and nanohole-nanocave/nanotube morphologies. This allows us to optimize the photoelectrochemical (PEC) water splitting performance on the hierarchical TiO 2 NTs. The optimized photocurrent density and photoconversion efficiency in this study, occurring on the nanopore/nanotube TiO 2 NTs, were 1.59 mA cm -2 at 1.23 V vs. RHE and 0.84% respectively, which are the highest values ever reported on pristine TiO 2 materials under illumination of AM 1.5G. Our findings contribute to further improvement of the energy conversion efficiency of TiO 2-based devices.

  18. Incorporation of TiO2 nanotubes in a polycrystalline zirconia: Synthesis of nanotubes, surface characterization, and bond strength.

    Science.gov (United States)

    Dos Santos, Angélica Feltrin; Sandes de Lucena, Fernanda; Sanches Borges, Ana Flávia; Lisboa-Filho, Paulo Noronha; Furuse, Adilson Yoshio

    2018-04-05

    Despite numerous advantages such as high strength, the bond of yttria-stabilized zirconia polycrystal (Y-TZP) to tooth structure requires improvement. The purpose of this in vitro study was to evaluate the incorporation of TiO 2 nanotubes into zirconia surfaces and the bond strength of resin cement to the modified ceramic. TiO 2 nanotubes were produced by alkaline synthesis, mixed with isopropyl alcohol (50 wt%) and applied on presintered zirconia disks. The ceramics were sintered, and the surfaces were characterized by confocal laser microscopy, scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDS) analysis. For bond strength, the following 6 groups (n=16) were evaluated: without TiO 2 and Single Bond Universal; with TiO 2 nanotubes and Single Bond Universal; without TiO 2 nanotubes and Z-prime; with TiO 2 nanotubes and Z-prime; without TiO 2 and Signum Zirconia Bond; with TiO 2 and Signum Zirconia Bond. After sintering, resin cement cylinders, diameter of 1.40 mm and 1 mm in height, were prepared and polymerized for 20 seconds. Specimens were stored in water at 37°C for 30 days and submitted to a shear test. Data were analyzed by 2-way ANOVA and Tukey honest significant difference (α=.05) tests. EDS analysis confirmed that nanoagglomerates were composed of TiO 2 . The shear bond strength showed statistically significant differences among bonding agents (P<.001). No significant differences were found with the application of nanotubes, regardless of the group analyzed (P=.682). The interaction among the bonding agent factors and addition of nanotubes was significant (P=.025). Nanotubes can be incorporated into zirconia surfaces. However, this incorporation did not improve bond strength. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. Ultra-fine structural characterization and bioactivity evaluation of TiO2 nanotube layers.

    Science.gov (United States)

    Jang, JaeMyung; Kwon, TaeYub; Kim, KyoHan

    2008-10-01

    For an application as biomedical materials of high performance with a good biocompatibility, the TiO2 nanotube-type oxide film on Ti substrate has been fabricated by electrochemical method, and the effects of surface characteristics of TiO2 naotube layer have been investigated. The surface morphology of TiO2 nanotube layer depends on factors such as anodizing time, current density, and electrolyte temperature. Moreover, the cell and pore size gradually were increased with the passage of anodizing time. X-ray diffraction (XRD) results indicated that the TiO2 nanotube layer formed in acidic electrolytes was mainly composed of anatase structure containing rutile. From the analysis of chemical states of TiO2 nanotube layer using X-ray photoelectron spectroscopy (XPS), Ti2p, P2p and O1s were observed in the nanotubes layer, which were penetrated from the electrolyte into the oxide layer during anodic process. The incorporated phosphate species were found mostly in the forms of HPO4-, PO4-, and PO3-. From the result of biological evaluation in simulated body fluid (SBF) the TiO2 nanotube layer was effective for bioactive property.

  20. Novel bamboo structured TiO2 nanotubes for energy storage/production applications

    Science.gov (United States)

    Samuel, J. J.; Beh, K. P.; Cheong, Y. L.; Yusuf, W. A. A.; Yam, F. K.

    2018-04-01

    Nanostructured TiO2 received much attention owing to its high surface-to-volume ratio, which can be advantageous in energy storage and production applications. However, the increase in energy consumption at present and possibly the foreseeable future has demanded energy storage and production devices of even higher performance. A direct approach would be manipulating the physical aspects of TiO2 nanostructures, particularly, nanotubes. In this work, dual voltage anodization system has been implemented to fabricate bamboo shaped TiO2 nanotubes, which offers even greater surface area. This unique nanostructure would be used in Dye Sensitized Solar Cell (DSSC) fabrication and its performance will be evaluated and compared along other forms of TiO2 nanotubes. The results showed that bamboo shaped nanotubes indeed are superior morphologically, with an increase of efficiency of 107% at 1.130% efficiency when compared to smooth walled nanotubes at 0.546% efficiency.

  1. Controlled Directional Growth of TiO2 Nanotubes

    DEFF Research Database (Denmark)

    In, Su-il; Hou, Yidong; Abrams, Billie

    2010-01-01

    We demonstrate how the anodization direction and growth rate of vertically aligned, highly ordered TiO2 nanotube (NT) arrays can be controlled and manipulated by the local concentration of O-2 in the electrolyte. This leads to the growth of highly active TiO2 NT arrays directly on nonconducting s...

  2. Hydrogenated TiO2 nanotube photonic crystals for enhanced photoelectrochemical water splitting.

    Science.gov (United States)

    Meng, Ming; Zhou, Sihua; Yang, Lun; Gan, Zhixing; Liu, Kuili; Tian, Fengshou; Zhu, Yu; Li, ChunYang; Liu, Weifeng; Yuan, Honglei; Zhang, Yan

    2018-04-02

    We report the design, fabrication and characterization of novel TiO 2 nanotube photonic crystals with a crystalline core/disordered shell structure as well as substantial oxygen vacancies for photoelectrochemical (PEC) water splitting. The novel TiO 2 nanotube photonic crystals are fabricated by annealing of anodized TiO 2 nanotube photonic crystals in hydrogen atmosphere at various temperatures. The optimized novel TiO 2 nanotube photonic crystals produce a maximal photocurrent density of 2.2 mA cm -2 at 0.22 V versus Ag/AgCl, which is two times higher that of the TiO 2 nanotube photonic crystals annealed in air. Such significant PEC performance improvement can be ascribed to synergistic effects of the disordered surface layer and oxygen vacancies. The reduced band gap owing to the disordered surface layer and localized states induced by oxygen vacancies can enhance the efficient utilization of visible light. In addition, the disordered surface layer and substantial oxygen vacancies can promote the efficiency for separation and transport of the photogenerated carriers. This work may open up new opportunities for the design and construction of the high efficient and low-cost PEC water splitting system.

  3. Improving the Osteoblast Cell Adhesion on Electron Beam Controlled TiO2 Nanotubes

    Directory of Open Access Journals (Sweden)

    Sung Wook Yoon

    2014-01-01

    Full Text Available Here we investigate the osteogenesis and synostosis processes on the surface-modified TiO2 nanotubes via electron beam irradiation. The TiO2 nanotubes studied were synthesized by anodization process under different anodizing voltage. For the anodization voltage of 15, 20, and 25 V, TiO2 nanotubes with diameters of 59, 82, and 105 nm and length of 115, 276, and 310 nm were obtained, respectively. MC3T3-E1 osteoblast cell line was incubated on the TiO2 nanotubes to monitor the change in the cell adhesion before and after the electron beam irradiation. We observe that the electron beam irradiation affects the number of surviving osteoblast cells as well as the cultivation time. In particular, the high adhesion rate of 155% was obtained when the osteoblast cells were cultivated for 2 hours on the TiO2 nanotube, anodized under 20 V, and irradiated with 5,000 kGy of electron beam.

  4. Guided proliferation and bone-forming functionality on highly ordered large diameter TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Zhang, Ruopeng; Wu, Hongliu; Ni, Jiahua; Zhao, Changli; Chen, Yifan; Zheng, Chengjunyi; Zhang, Xiaonong

    2015-01-01

    The significantly enhanced osteoblast adhesion, proliferation and alkaline phosphatase (ALP) activity were observed on TiO 2 nanotube surface in recent studies in which the scale of nanotube diameter was restricted under 100 nm. In this paper, a series of highly ordered TiO 2 nanotube arrays with larger diameters ranging from 150 nm to 470 nm were fabricated via high voltage anodization. The behaviors of MC3T3-E1 cells in response to the diameter-controlled TiO 2 nanotubes were investigated. A contrast between the trend of proliferation and the trend of cell elongation was observed. The highest cell elongation (nearly 10:1) and the lowest cell number were observed on the TiO 2 nanotube arrays with 150 nm diameter. While, the lowest cell elongation and highest cell number were achieved on the TiO 2 nanotube arrays with 470 nm diameter. Furthermore, the ALP activity peaked on the 150 nm diameter TiO 2 nanotube arrays and decreased dramatically with the increase of nanotube diameter. Thus a narrow range of diameter (100–200 nm) that could induce the greatest bone-forming activity is determined. It is expected that more delicate design of orthopedic implant with regional abduction of cell proliferation or bone forming could be achieved by controlling the diameter of TiO 2 nanotubes. - Highlights: • Improved anodization methods leading to more ordered large diameter TiO 2 nanotubes • Significantly enhanced ALP activity was observed on 150 nm diameter TiO 2 nanotubes. • The highest cell density was observed on 470 nm diameter TiO 2 nanotube arrays. • Similar cell response was observed on the amorphous and anatase phased nanotube surface

  5. The effects of nanostructures on the mechanical and tribological properties of TiO2 nanotubes

    Science.gov (United States)

    Yoon, Yeoungchin; Park, Jeongwon

    2018-04-01

    TiO2 nanotubes were prepared by anodization on Ti substrates with a diameter variation of 30-100 nm, and the structure of the nanotubes were studied using x-ray diffraction and Raman spectroscopy, which confirmed the structure changes from the anatase phase to the rutile phase of TiO2 at a diameter below 50 nm. The tribological behaviors of TiO2 nanotubes were investigated with different diameters. The effectiveness of the rutile phase and the diameter size enhanced the frictional performance of TiO2 nanotubes.

  6. Synthesis of highly ordered TiO2 nanotube in malonic acid solution by anodization.

    Science.gov (United States)

    Ryu, Won Hee; Park, Chan Jin; Kwon, Hyuk Sang

    2008-10-01

    We synthesized TiO2 nanotube array by anodizing in a solution of malonic acid (HOOCCH2COOH) and NH4F, and analyzed the morphology of the nanotube using scanning electron microscopy (SEM). The morphology of TiO2 nanotube was largely affected by anodizing time, anodizing voltage, and malonic acid concentration. With increasing the anodizing voltage from 5 V to 20 V, the diameter of TiO2 nanotube was increased from about 20 nm to 110 nm and its length from about 10 nm to 700 nm. In addition, the length of TiO2 nanotube was increased with increasing anodizing time up to 6 h at 20 V. We obtained the longest and the most highly ordered nanotube structure when anodizing Ti in a solution of 0.5 wt% NH4F and 1 M malonic acid at 20 V for 6 h.

  7. Efficient silver modification of TiO2 nanotubes with enhanced photocatalytic activity

    Science.gov (United States)

    Huang, Jing; Ding, Lei; Xi, Yaoning; Shi, Liang; Su, Ge; Gao, Rongjie; Wang, Wei; Dong, Bohua; Cao, Lixin

    2018-06-01

    In this paper, Ag(CH3NH2)2+, Ag(NH3)2+ and Ag+ with different radii have been used as silver sources to find out the distribution of Ag ions on the H-TNT surface, which is critical to the final performance. The influence of this distribution on visible photocatalytic activity is further studied. The results indicate that, when Ag+ used as silver source with low concentration, these small sized silver ions mainly distribute on interlayer spacing of H-TNT. After heat-treatment and photo-reduction, the generated silver nanoparticles uniformly embed in the anatase TiO2 nanotube walls, and bring large interfacial area between Ag particles and TiO2 nanotubes. The separation effect of photogenerated electron-hole pair in TiO2 is enhanced by Ag particles, and achieves the best at 0.15 g/L, much higher than P25, TiO2/0, Ag-N@TiO2 and Ag-C-N@TiO2. This paper provides new ideas for the modification of TiO2 nanotubes.

  8. Formation mechanism of TiO2 nanotubes and their applications in photoelectrochemical water splitting and supercapacitors.

    Science.gov (United States)

    Chen, Bo; Hou, Junbo; Lu, Kathy

    2013-05-14

    Structural observations of the transition of TiO2 nanopores into nanotubes by increasing the OH(-) concentration in the electrolyte challenge the validity of existing formation mechanisms of anodic TiO2 nanotubes. In this study, dehydration of titanium hydroxide in the cell wall is proposed as the mechanism that leads to the separation of neighboring nanotubes. Based on this understanding, bamboo-type TiO2 nanotubes with large surface area and excellent interconnectivity are achieved by cycling high and low applied potentials. After thermal treatment in a H2 atmosphere, the bamboo-type TiO2 nanotubes show large photoelectrochemical water splitting efficiency and supercapacitors performace.

  9. Application of nitrogen-doped TiO2 nano-tubes in dye-sensitized solar cells

    DEFF Research Database (Denmark)

    Tran, Vy Anh; Thinh Troung, Trieu; Pham Phan, Thu Anh

    2017-01-01

    Our research aimed to improve the overall energy conversion efficiency of DSCs by applying nitrogen-doped TiO2 nano-tubes (N-TNT) for the preparation of DSCs photo-anodes. The none-doped TiO2 nano-tubes (TNTs) were synthesized by alkaline hydrothermal treatment of Degussa P25 TiO2 particles in 10...

  10. Enhanced Photocatalytic Properties of Ag-Loaded N-Doped Tio2 Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Gao Dawei

    2018-03-01

    Full Text Available Highly ordered TiO2 nanotube (TiO2 NT arrays were prepared by anodic oxidizing method on the surface of the Ti substrate. Nitrogen-doped TiO2 nanotube (N-TiO2 NT arrays were carried out by ammonia solution immersion, and Ag nanoparticles loaded N-doped TiO2 nanotube (Ag/N-TiO2 NT arrays were obtained by successive ionic layer adsorption and reaction (SILAR technique. The samples were characterized by the X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, field emission scanning electron microscopy (FESEM, high-resolution transmission electron microscopy (HRTEM, photoluminescence (PL emission spectra, ultraviolet–visible (UV–vis diffuse reflectance spectroscopy (DRS. The result indicated that the diameter and wall thickness of the TiO2 NT are 100–120 and 20–30 nm, respectively. Moreover, the morphology and structure of the highly ordered TiO2 NTs were not affected by N-doping. Furthermore, Ag nanoparticles were evenly deposited on the surface of TiO2 NTs in the form of elemental silver. Finally, the photocatalytic activity of Ag/N-TiO2 NTs was evaluated by degradation of methyl orange (MO under visible-light irradiation. The Ag/N-TiO2 NTs exhibited enhanced photocatalytic properties, which could reach 95% after 90-min irradiation.

  11. Investigation on the Photoelectrocatalytic Activity of Well-Aligned TiO2 Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Xiaomeng Wu

    2012-01-01

    Full Text Available Well-aligned TiO2 nanotube arrays were fabricated by anodizing Ti foil in viscous F− containing organic electrolytes, and the crystal structure and morphology of the TiO2 nanotube array were characterized and analyzed by XRD, SEM, and TEM, respectively. The photocatalytic activity of the TiO2 nanotube arrays was evaluated in the photocatalytic (PC and photoelectrocatalytic (PEC degradation of methylene blue (MB dye in different supporting solutions. The excellent performance of ca. 97% for color removal was reached after 90 min in the PEC process compared to that of PC process which indicates that a certain external potential bias favors the promotion of the electrode reaction rate on TiO2 nanotube array when it is under illumination. In addition, it is found that PEC process conducted in supporting solutions with low pH and containing Cl− is also beneficial to accelerate the degradation rate of MB.

  12. Effects of highly ordered TiO2 nanotube substrates on the nucleation of Cu electrodeposits.

    Science.gov (United States)

    Ryu, Won Hee; Park, Chan Jin; Kwon, Hyuk Sang

    2010-05-01

    We investigated the effects of TiO2 nanotube substrates on the nucleation density of Cu during electrodeposition in a solution of CuSO4 and H2SO4 at 50 degrees C compared with those of pure Ti and micro-porous TiO2 substrates. During electrodeposition, the density of Cu nuclei on the TiO2 nanotube substrate increased and the average size of Cu nuclei decreased with increasing anodizing voltage and time for the synthesis of the substrate. In addition, the nucleation density of Cu electrodeposits on the highly ordered TiO2 nanotube substrate was much higher than that on pure Ti and micro-porous TiO2 substrates.

  13. Synthesis of carbon-coated TiO 2 nanotubes for high-power lithium-ion batteries

    Science.gov (United States)

    Park, Sang-Jun; Kim, Young-Jun; Lee, Hyukjae

    Carbon-coated TiO 2 nanotubes are prepared by a simple one-step hydrothermal method with an addition of glucose in the starting powder, and are characterized by morphological analysis and electrochemical measurement. A thin carbon coating on the nanotube surface effectively suppresses severe agglomeration of TiO 2 nanotubes during hydrothermal reaction and post calcination. This action results in better ionic and electronic kinetics when applied to lithium-ion batteries. Consequently, carbon-coated TiO 2 nanotubes deliver a remarkable lithium-ion intercalation/deintercalation performance, such as reversible capacities of 286 and 150 mAh g -1 at 250 and 7500 mA g -1, respectively.

  14. Optical properties of TiO2 nanotube arrays fabricated by the electrochemical anodization method

    International Nuclear Information System (INIS)

    Ly, Ngoc Tai; Nguyen, Van Chien; Dao, Thi Hoa; Hoang To, Le Hong; Pham, Duy Long; Do, Hung Manh; Vu, Dinh Lam; Le, Van Hong

    2014-01-01

    Perpendicularly self-aligned TiO 2 nanotube samples of size of 3 × 5 cm 2 were fabricated by the electrochemical anodization method using a solution containing NH 4 F. Influences of the technological conditions such as NH 4 F concentration and anodization voltage were studied. It was found that NH 4 F concentration in the solution and anodization voltage significantly affect the diameter and length of a TiO 2 nanotube. The diameter and the length of a TiO 2 nanotube were observed and estimated by using scanning electron microscopy. It has shown that the largest diameter and the longest length of about 80 nm and 20 μm, respectively, were obtained for the sample anodized in a solution containing 0.4% of NH 4 F, under a voltage of 48 V. Photoluminescence spectra excited by laser lights having wavelengths of 325 and 442 nm (having energies higher and lower than the band gap energy of TiO 2 ) was recorded at room temperature for the TiO 2 nanotube arrays. An abnormal luminescence result was observed. It is experimental evidence that the manufactured TiO 2 nanotube array is an expected material for hydrogen splitting from water by photochemical effect under sunlight as well as for the nano solar cells. (paper)

  15. Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition

    International Nuclear Information System (INIS)

    Xie Kunpeng; Sun Lan; Wang Chenglin; Lai Yuekun; Wang Mengye; Chen Hongbo; Lin Changjian

    2010-01-01

    A pulse current deposition technique was adopted to construct highly dispersed Ag nanoparticles on TiO 2 nanotube arrays which were prepared by the electrochemical anodization. The morphology, crystallinity, elemental composition, and UV-vis absorption of Ag/TiO 2 nanotube arrays were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and diffuse reflectance spectra (DRS). In particular, the photoelectrochemical properties and photoelectrocatalytic activity under UV light irradiation and the photocatalytic activity under visible light irradiation for newly synthesized Ag/TiO 2 nanotube arrays were investigated. The maximum incident photon to charge carrier efficiency (IPCE) value of Ag/TiO 2 nanotube arrays was 51%, much higher than that of pure TiO 2 nanotube arrays. Ag/TiO 2 nanotube arrays exhibited higher photocatalytic activities than the pure TiO 2 nanotube arrays under both UV and visible light irradiation. The photoelectrocatalytic activity of Ag/TiO 2 nanotube arrays under UV light irradiation was 1.6-fold enhancement compared with pure TiO 2 nanotube arrays. This approach can be used in synthesizing various metal-loaded nanotube arrays materials.

  16. Fabrication of doped TiO2 nanotube array films with enhanced photo-catalytic activity

    Science.gov (United States)

    Peighambardoust, Naeimeh-Sadat; Khameneh-asl, Shahin; Khademi, Adib

    2018-01-01

    In the present work, we investigate the N and Fe-doped TiO2 nanotube array film prepared by treating TiO2 nanotube array film with ammonia solution and anodizing in Fe(NO3)3 solution respectively. This method avoided the use of hazardous ammonia gas, or laborious ion implantation process. N and Fe-doped TiO2 nanotube arrays (TiO2 NTs) were prepared by electrochemical anodization process in 0.5 wt % HF aqueous solution. The anodization was performed at the conditions of 20 V and 20 min, Followed by a wet immersion in NH3.H2O (1M) for N-doping for 2 hr and annealing post-treatment at 450 °C. The morphology and structure of the nanotube films were characterized by field emission scanning electron microscope (FESEM) and EDX. UV-vis. illumination test were done to observe photo-enhanced catalysis. The effect of different annealing temperature on the structure and photo-absorption property of the TiO2-TNTs was investigated. The results showed that N-TNTs nanotubes exhibited higher photocatalytic activity compared whit the Fe-doped and pure TNTs, because doping N promoted the separation of the photogenerated electrons and holes.

  17. Photo-electrocatalytic activity of TiO2 nanotubes prepared with two-step anodization and treated under UV light irradiation

    Directory of Open Access Journals (Sweden)

    Mohamad Mohsen Momeni

    2016-01-01

    Full Text Available To improve the photo-catalytic degradation of salicylic acid, we reported the fabrication of ordered TiO2 nanotube arrays by a simple and effective two-step anodization method and then these TiO2 nanotubes treated in a methanol solution under UV light irradiation. The TiO2 nanotubes prepared in the two-step anodization process showed better photo-catalytic activity than TiO2 nanotubes prepared in one-step anodization process. Also, compared with TiO2 nanotubes without the UV pretreatment, the TiO2 nanotubes pretreated in a methanol solution under UV light irradiation exhibited significant enhancements in both photocurrent and activity. The treated TiO2 nanotubes exhibited a 5-fold enhancement in photocurrent and a 2.5-fold increase in the photo-catalytic degradation of salicylic acid. Also the effect of addition of persulfate and periodate on the photo-catalytic degradation of salicylic acid were investigated. The results showed that the degradation efficiency of salicylic acid increased with increasing persulfate and periodate concentrations. These treated TiO2 nanotubes are promising candidates for practical photochemical reactors.

  18. Visible light photoelectrocatalysis with salicylic acid-modified TiO2 nanotube array electrode for p-nitrophenol degradation

    International Nuclear Information System (INIS)

    Wang Xin; Zhao Huimin; Quan Xie; Zhao Yazhi; Chen Shuo

    2009-01-01

    This research focused on immersion method synthesis of visible light active salicylic acid (SA)-modified TiO 2 nanotube array electrode and its photoelectrocatalytic (PEC) activity. The SA-modified TiO 2 nanotube array electrode was synthesized by immersing in SA solution with an anodized TiO 2 nanotube array electrode. Scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR), UV-vis diffuse reflectance spectrum (DRS), and Surface photovoltage (SPV) were used to characterize this electrode. It was found that SA-modified TiO 2 nanotube array electrode absorbed well into visible region and exhibited enhanced visible light PEC activity on the degradation of p-nitrophenol (PNP). The degradation efficiencies increased from 63 to 100% under UV light, and 79-100% under visible light (λ > 400 nm), compared with TiO 2 nanotube array electrode. The enhanced PEC activity of SA-modified TiO 2 nanotube array electrode was attributed to the amount of surface hydroxyl groups introduced by SA-modification and the extension of absorption wavelength range.

  19. Room temperature alcohol sensing by oxygen vacancy controlled TiO2 nanotube array

    International Nuclear Information System (INIS)

    Hazra, A.; Dutta, K.; Bhowmik, B.; Bhattacharyya, P.; Chattopadhyay, P. P.

    2014-01-01

    Oxygen vacancy (OV) controlled TiO 2 nanotubes, having diameters of 50–70 nm and lengths of 200–250 nm, were synthesized by electrochemical anodization in the mixed electrolyte comprising NH 4 F and ethylene glycol with selective H 2 O content. The structural evolution of TiO 2 nanoforms has been studied by field emission scanning electron microscopy. Variation in the formation of OVs with the variation of the structure of TiO 2 nanoforms has been evaluated by photoluminescence and X-ray photoelectron spectroscopy. The sensor characteristics were correlated to the variation of the amount of induced OVs in the nanotubes. The efficient room temperature sensing achieved by the control of OVs of TiO 2 nanotube array has paved the way for developing fast responding alcohol sensor with corresponding response magnitude of 60.2%, 45.3%, and 36.5% towards methanol, ethanol, and 2-propanol, respectively.

  20. Photoelectrolysis of water using heterostructural composite of TiO2 nanotubes and nanoparticles

    International Nuclear Information System (INIS)

    Das, Prajna P; Mohapatra, Susanta K; Misra, Mano

    2008-01-01

    Efficient photoelectrolysis of water to generate hydrogen (H 2 ) can be carried out by designing photocatalysts with good absorption as well as charge transport properties. One dimensional (1D), self-organized titania (TiO 2 ) nanotubes are known to have excellent charge transport properties and TiO 2 nanoparticles (NPs) are good for better photon absorption. This paper describes the synthesis of a composite photocatalyst combining the above two properties of TiO 2 nanocomposites with different morphologies. TiO 2 NPs (5-9 nm nanocrystals form 500-700 nm clusters) have been synthesized from TiCl 4 precursor on TiO 2 nanotubular arrays (∼80 nm diameter and ∼550 nm length) synthesized by the sonoelectrochemical anodization method. This TiO 2 nanotube-nanoparticle composite photoanode has enabled obtaining of enhanced photocurrent density (2.2 mA cm -2 ) as compared with NTs (0.9 mA cm -2 ) and NPs (0.65 mA cm -2 ) alone.

  1. Electrochemical synthesis of self-organized TiO2 crystalline nanotubes without annealing

    Science.gov (United States)

    Giorgi, Leonardo; Dikonimos, Theodoros; Giorgi, Rossella; Buonocore, Francesco; Faggio, Giuliana; Messina, Giacomo; Lisi, Nicola

    2018-03-01

    This work demonstrates that upon anodic polarization in an aqueous fluoride-containing electrolyte, TiO2 nanotube array films can be formed with a well-defined crystalline phase, rather than an amorphous one. The crystalline phase was obtained avoiding any high temperature annealing. We studied the formation of nanotubes in an HF/H2O medium and the development of crystalline grains on the nanotube wall, and we found a facile way to achieve crystalline TiO2 nanotube arrays through a one-step anodization. The crystallinity of the film was influenced by the synthesis parameters, and the optimization of the electrolyte composition and anodization conditions (applied voltage and time) were carried out. For comparison purposes, crystalline anatase TiO2 nanotubes were also prepared by thermal treatment of amorphous nanotubes grown in an organic bath (ethylene glycol/NH4F/H2O). The morphology and the crystallinity of the nanotubes were studied by field emission gun-scanning electron microscopy (FEG-SEM) and Raman spectroscopy, whereas the electrochemical and semiconducting properties were analyzed by means of linear sweep voltammetry, impedance spectroscopy, and Mott-Schottky plots. X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) allowed us to determine the surface composition and the electronic structure of the samples and to correlate them with the electrochemical data. The optimal conditions to achieve a crystalline phase with high donor concentration are defined.

  2. ELECTROPHORETIC DEPOSITION OF TIO2-MULTI-WALLED CARBON NANOTUBE COMPOSITE COATINGS: MORPHOLOGICAL STUDY

    Directory of Open Access Journals (Sweden)

    M. S. MAHMOUDI JOZEE

    2016-09-01

    Full Text Available A homogenous TiO2 / multi-walled carbon nanotubes(MWCNTs composite film were prepared by electrophoretic co-deposition from organic suspension on a stainless steel substrate.  In this study, MWCNTs was incorporated to the coating because of their long structure and their capability to be functionalized by different inorganic groups on the surface. FTIR spectroscopy showed the existence of carboxylic groups on the modified carbon nanotubes surface. The effect of applied electrical fields, deposition time and concentration of nanoparticulates on coatings morphology were investigated by scanning electron microscopy. It was found that combination of MWCNTs within TiO2 matrix eliminating micro cracks presented on TiO2 coating. Also, by increasing the deposition voltages, micro cracks were increased. SEM observation of the coatings revealed that TiO2/multi-walled carbon nanotubes coatings produced from optimized electric field was uniform and had good adhesive to the substrate.

  3. Influence of anodization parameters on the morphology of TiO 2 nanotube arrays

    Science.gov (United States)

    Omidvar, Hamid; Goodarzi, Saba; Seif, Ahmad; Azadmehr, Amir R.

    2011-07-01

    TiO 2 nanotube arrays can be fabricated by electrochemical anodization in organic and inorganic electrolytes. Morphology of these nanotube arrays changes when anodization parameters such as applied voltage, type of electrolyte, time and temperature are varied. Nanotube arrays fabricated by anodization of commercial titanium in electrolytes containing NH 4F solution and either sulfuric or phosphoric acid were studied at room temperature; time of anodization was kept constant. Applied voltage, fluoride ion concentration, and acid concentrations were varied and their influences on TiO 2 nanotubes were investigated. The current density of anodizing was recorded by computer controlled digital multimeter. The surface morphology (top-view) of nanotube arrays were observed by SEM. The nanotube arrays in this study have inner diameters in range of 40-80 nm.

  4. Self-Assembled TiO2 Nanotube Arrays with U-Shaped Profile by Controlling Anodization Temperature

    Directory of Open Access Journals (Sweden)

    Jingfei Chen

    2010-01-01

    Full Text Available TiO2 nanotube arrays with uniform diameter from top to bottom were fabricated. The synthesizing approach is based on the investigation of the influence of electrolyte temperature on the tube diameter. We found that the inner diameter of the tubes increased with the electrolyte temperature. Accordingly, we improved the tube profile from the general V shape to U shape by raising the electrolyte temperature gradually. This is a simple and fast approach to fabricate uniform TiO2 nanotubes in diameter. The improved TiO2 nanotube arrays may show better properties and have broad potential applications.

  5. Icariin-Loaded TiO2 Nanotubes for Regulation of the Bioactivity of Bone Marrow Cells

    Directory of Open Access Journals (Sweden)

    Yanli Zhang

    2018-01-01

    Full Text Available To explore the effects of icariin on the biocompatibility of dental implants, icariin- (ICA- loaded TiO2 nanotubes were fabricated on Ti substrates via anodic oxidation and physical absorption. The surface characteristics of the specimens were monitored by field emission scanning electron microscopy (FE-SEM, X-ray diffractometry (XRD, contact angle measurements (CA, and high-pressure liquid chromatography. Additionally, the activities of bone marrow cells, such as cytoskeletal, proliferative activities, mineralization, and osteogenesis-related gene expression on the substrates were investigated in detail. The characterization results demonstrated that ICA-loaded TiO2 nanotubes were successfully fabricated and the hydrophilicity of these TiO2 nanotubes was significantly higher than that of the pure Ti groups. The results also showed that ICA-loaded TiO2 nanotubes might not have enhanced effects on cell proliferation and ALP expression. However, it seemed to significantly promote differentiation of bone marrow cells, demonstrated by enhancing the formation of mineralized nodule and the upregulation of the gene expression such as OC, BSP, OPN, and COL-1. The results indicated that ICA-loaded TiO2 nanotubes can modulate bioactivity of bone marrow cells, which is promising for potential applications in the orthopedics field.

  6. Flexible symmetric supercapacitors based on vertical TiO2 and carbon nanotubes

    Science.gov (United States)

    Chien, C. J.; Chang, Pai-Chun; Lu, Jia G.

    2010-03-01

    Highly conducting and porous carbon nanotubes are widely used as electrodes in double-layer-effect supercapacitors. In this presentation, vertical TiO2 nanotube array is fabricated by anodization process and used as supercapacitor electrode utilizing its compact density, high surface area and porous structure. By spin coating carbon nanotube networks on vertical TiO2 nanotube array as electrodes with 1M H2SO4 electrolyte in between, the specific capacitance can be enhanced by 30% compared to using pure carbon nanotube network alone because of the combination of double layer effect and redox reaction from metal oxide materials. Based on cyclic voltammetry and galvanostatic charge-discharge measurements, this type of hybrid electrode has proven to be suitable for high performance supercapacitor application and maintain desirable cycling stability. The electrochemical impedance spectroscopy technique shows that the electrode has good electrical conductivity. Furthermore, we will discuss the prospect of extending this energy storage approach in flexible electronics.

  7. Structure and dye-sensitized solar cell application of TiO2 nanotube arrays fabricated by the anodic oxidation method

    Science.gov (United States)

    Ok, Seon-Yeong; Cho, Kwon-Koo; Kim, Ki-Won; Ryu, Kwang-Sun

    2010-05-01

    Well-ordered TiO2 nanotube arrays were fabricated by the potentiostatic anodic oxidation method using pure Ti foil as a working electrode and ethylene glycol solution as an electrolyte with the small addition of NH4F and H2O. The influence of anodization temperature and time on the morphology and formation of TiO2 nanotube arrays was examined. The TiO2 nanotube arrays were applied as a photoelectrode to dye-sensitized solar cells. Regardless of anodizing temperature and time, the average diameter and wall thickness of TiO2 nanotube arrays show a similar value, whereas the length increases with decreasing reaction temperature. The conversion efficiency is very low, which is due to a morphology breaking of the TiO2 nanotube arrays in the manufacturing process of a photoelectrode.

  8. Crystallization of TiO2 Nanotubes by In Situ Heating TEM

    KAUST Repository

    Casu, Alberto

    2018-01-15

    The thermally-induced crystallization of anodically grown TiO2 amorphous nanotubes has been studied so far under ambient pressure conditions by techniques such as differential scanning calorimetry and in situ X-ray diffraction, then looking at the overall response of several thousands of nanotubes in a carpet arrangement. Here we report a study of this phenomenon based on an in situ transmission electron microscopy approach that uses a twofold strategy. First, a group of some tens of TiO2 amorphous nanotubes was heated looking at their electron diffraction pattern change versus temperature, in order to determine both the initial temperature of crystallization and the corresponding crystalline phases. Second, the experiment was repeated on groups of few nanotubes, imaging their structural evolution in the direct space by spherical aberration-corrected high resolution transmission electron microscopy. These studies showed that, differently from what happens under ambient pressure conditions, under the microscope’s high vacuum (p < 10−5 Pa) the crystallization of TiO2 amorphous nanotubes starts from local small seeds of rutile and brookite, which then grow up with the increasing temperature. Besides, the crystallization started at different temperatures, namely 450 and 380 °C, when the in situ heating was performed irradiating the sample with electron beam energy of 120 or 300 keV, respectively. This difference is due to atomic knock-on effects induced by the electron beam with diverse energy.

  9. Photoelectrochemical oxidation of ibuprofen via Cu_2O-doped TiO_2 nanotube arrays

    International Nuclear Information System (INIS)

    Sun, Qiannan; Peng, Yen-Ping; Chen, Hanlin; Chang, Ken-Lin; Qiu, Yang-Neng; Lai, Shiau-Wu

    2016-01-01

    Highlights: • A p–n junction material was synthesized to enhance photocatalytic ability. • Cu_2O-doped TiO_2 nanotube arrays works as a photoanode in a PEC system. • Recombination of photo-generated holes and electrons were greatly reduced. • Synergetic effect was quantified in PEC degradation. • Recombination of photogenerated holes and electrons was greatly enhanced. - Abstract: A p–n junction based Cu_2O-doped TiO_2 nanotube arrays (Cu_2O-TNAs) were synthesized and used as a working anode in a photoelectrochemical (PEC) system. The results revealed that the Cu_2O-TNAs were dominated by the anatase phase and responded significantly to visible light. XPS analyses indicated that with an amount of 24.79% Cu doping into the structure, the band gap of Cu_2O-TNAs was greatly reduced. SEM images revealed that the supported TiO_2 nanotubes had diameters of approximately 80 nm and lengths of about 2.63 μm. Upon doping with Cu_2O, the TiO_2 nanotubes maintained their structural integrity, exhibiting no significant morphological change, favoring PEC applications. Under illumination, the photocurrent from Cu_2O/TNAs was 2.4 times larger than that from TNAs, implying that doping with Cu_2O significantly improved electron mobility by reducing the rate of recombination of electron-hole pairs. The EIS and Bode plot revealed that the estimated electron lifetimes, τ_e_l, of TNAs and Cu_2O/TNAs were 6.91 and 26.26 ms, respectively. The efficiencies of degradation of Ibuprofen by photoelectrochemical, photocatalytic (PC), electrochemical (EC) and photolytic (P) methods were measured.

  10. Low temperature synthesis of polyaniline-crystalline TiO2-halloysite composite nanotubes with enhanced visible light photocatalytic activity.

    Science.gov (United States)

    Li, Cuiping; Wang, Jie; Guo, Hong; Ding, Shujiang

    2015-11-15

    A series of one-dimensional polyaniline-crystalline TiO2-halloysite composite nanotubes with different mass ratio of polyaniline to TiO2 are facilely prepared by employing the low-temperature synthesis of crystalline TiO2 on halloysite nanotubes. The halloysite nanotubes can adsorb TiO2/polyaniline precursors and induce TiO2 nanocrystals/polyaniline to grow on the support in situ simultaneously. By simply adjusting the acidity of reaction system, PANI-crystalline TiO2-HA composite nanotubes composed of anatase, a mixed phase TiO2 and different PANI redox state are obtained. The XRD and UV-vis results show that the surface polyaniline sensitization has no effect on the crystalline structure of halloysite and TiO2 and the light response of TiO2 is extended to visible-light regions. Photocatalysis test results reveal the photocatalytic activity will be affected by the pH value and the volume ratio of ANI to TTIP. The highest photocatalytic activity is achieved with the composite photocatalysts prepared at pH 0.5 and 1% volume ratio of ANI and TTIP owing to the sensitizing effect of polyaniline and the charge transfer from the photoexcited PANI sensitizer to TiO2. Moreover, the PANI-TiO2-HA composite nanotubes synthesized by one-step at pH 0.5 with 1% volume ratio of ANI to TTIP exhibit higher visible light photocatalytic activity than those synthesized by the two-step. Heterogeneous PANI-TiO2-HA composite nanotubes prepared at pH 0.5 exhibit a higher degradation activity than that prepared at pH 1.5. The redoped experiment proves that the PANI redox state plays the main contribution to the enhanced visible light catalytic degradation efficiency of PANI-TiO2-HA prepared at pH 0.5. Furthermore, the heterogeneous PANI-crystalline TiO2-HA nanotubes have good photocatalytic stability and can be reused four times with only gradual loss of activity under visible light irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Plasma-induced synthesis of Pt nanoparticles supported on TiO2 nanotubes for enhanced methanol electro-oxidation

    Science.gov (United States)

    Su, Nan; Hu, Xiulan; Zhang, Jianbo; Huang, Huihong; Cheng, Jiexu; Yu, Jinchen; Ge, Chao

    2017-03-01

    A Pt/C/TiO2 nanotube composite catalyst was successfully prepared for enhanced methanol electro-oxidation. Pt nanoparticles with a particle size of 2 nm were synthesized by plasma sputtering in water, and anatase TiO2 nanotubes with an inner diameter of approximately 100 nm were prepared by a simple two-step anodization method and annealing process. Field-emission scanning electron microscopy images indicated that the different morphologies of TiO2 synthesized on the surface of Ti foils were dependent on the different anodization parameters. The electrochemical performance of Pt/C/TiO2 catalysts for methanol oxidation showed that TiO2 nanotubes were more suitable for use as Pt nanoparticle support materials than irregular TiO2 short nanorods due to their tubular morphology and better electronic conductivity. X-ray photoelectron spectroscopy characterization showed that the binding energies of the Pt 4f of the Pt/C/TiO2 nanotubes exhibited a slightly positive shift caused by the relatively strong interaction between Pt and the TiO2 nanotubes, which could mitigate the poisoning of the Pt catalyst by COads, and further enhance the electrocatalytic performance. Thus, the as-obtained Pt/C/TiO2 nanotubes composites may become a promising catalyst for methanol electro-oxidation.

  12. Adhesion measurement of highly-ordered TiO2 nanotubes on Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Masoud Sarraf

    2017-12-01

    Full Text Available Self-assembled nanotubular arrays on Ti alloys could be used for more effective implantable devices in various medical approaches. In the present work, the adhesion of TiO2 nanotubes (TiO2 NTs on Ti-6Al-4V (Ti64 was investigated by laser spallation and scratch test techniques. At first, electrochemical anodization was performed in an ammonium fluoride solution dissolved in a 90:10 ethane-1,2-diol (ethylene glycol and water solvent mixture. This process was performed at room temperature (23 °C at a steady potential of 60 V for 1 h. Next, the TiO2 nanotubes layer was heat-treated to improve the adhesion of the coating. The formation of selforganized TiO2 nanotubes as well as the microstructural evolution, are strongly dependent on the processing parameters and subsequent annealing. From microscopic analysis, highly oriented arrays of TiO2 nanotubes were grown by thermal treatment for 90 min at 500 °C. Further heat treatment above 500 °C led to the detachment of the nanotubes and the complete destruction of the nanotubes occurred at temperature above 700 °C. Scratch test analysis over a constant scratch length (1000 µm indicated that the failure point was shifted from 247.4 to 557.9 µm while the adhesion strength was increased from ∼862 to ∼1814 mN after annealing at 500 °C. The adhesion measurement determined by laser spallation technique provided an intrinsic adhesion strength of 51.4 MPa for the TiO2 nanotubes on the Ti64 substrate.

  13. Influence of sterilization methods on cell behavior and functionality of osteoblasts cultured on TiO2 nanotubes

    International Nuclear Information System (INIS)

    Oh, Seunghan; Brammer, Karla S.; Moon, Kyung-Suk; Bae, Ji-Myung; Jin, Sungho

    2011-01-01

    We investigated the adhesion, proliferation and osteogenic functionality of osteoblasts cultured on titanium dioxide (TiO 2 ) nanotubes in response to different sterilization methods (dry autoclaving vs. wet autoclaving). We prepared various sizes (30-100 nm diameter) of TiO 2 nanotubes on titanium substrates by anodization, sterilized nanotubes by different conditions, and seeded osteoblast cells onto the nanotube surfaces with two different cell seeding densities (10,000 vs. 50,000 cells/well in 12-culture well). The result of this study indicates that the adhesion, proliferation and alkaline phosphatase activity of osteoblasts cultured on only the larger 70 and 100 nm TiO 2 nanotube arrays were dramatically changed by the different sterilization conditions at a low cell seeding density. However, with a higher cell seeding density (50,000 cells/well in 12-cell culture well), the results revealed no significant difference among altered nanotube geometry, 30-100 nm diameters, nor sterilization methods. Next, it was revealed that the nanofeatures of proteins adhered on nanotubular TiO 2 morphology are altered by the sterilization method. It was determined that this protein adhesion effect, in combination with the cell density of osteoblasts seeded onto such TiO 2 nanotube surfaces, has profound effects on cell behavior. This study clearly shows that these are some of the important in vitro culture factors that need to be taken into consideration, as well as TiO 2 nanotube diameters which play an important role in the improvement of cell behavior and functionality.

  14. An Alternative to Annealing TiO2 Nanotubes for Morphology Preservation: Atmospheric Pressure Plasma Jet Treatment.

    Science.gov (United States)

    Seo, Sang-Hee; Uhm, Soo-Hyuk; Kwon, Jae-Sung; Choi, Eun Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2015-03-01

    Titanium oxide nanotube layer formed by plasma electrolytic oxidation (PEO) is known to be excellent in biomaterial applications. However, the annealing process which is commonly performed on the TiO2 nanotubes cause defects in the nanotubular structure. The purpose of this work was to apply a non-thermal atmospheric pressure plasma jet on diameter-controlled TiO2 nanotubes to mimic the effects of annealing while maintaining the tubular structure for use as biomaterial. Diameter-controlled nanotube samples fabricated by plasma electrolytic oxidation were dried and prepared under three different conditions: untreated, annealed at 450 °C for 1 h in air with a heating rate of 10 °C/min, and treated with an air-based non-thermal atmospheric pressure plasma jet for 5 minutes. The contact angle measurement was investigated to confirm the enhanced hydrophilicity of the TiO2 nanotubes. The chemical composition of the surface was studied using X-ray photoelectron spectroscopy, and the morphology of TiO2 nanotubes was examined by field emission scanning electron microscopy. For the viability of the cell, the attachment of the osteoblastic cell line MC3T3-E1 was determined using the water-soluble tetrazolium salt assay. We found that there are no morphological changes in the TiO2 nanotubular structure after the plasma treatment. Also, we investigated a change in the chemical composition and enhanced hydrophilicity which result in improved cell behavior. The results of this study indicated that the non-thermal atmospheric pressure plasma jet results in osteoblast functionality that is comparable to annealed samples while maintaining the tubular structure of the TiO2 nanotubes. Therefore, this study concluded that the use of a non-thermal atmospheric pressure plasma jet on nanotube surfaces may replace the annealing process following plasma electrolytic oxidation.

  15. Bacterial adhesion and inactivation on Ag decorated TiO2-nanotubes under visible light: Effect of the nanotubes geometry on the photocatalytic activity.

    Science.gov (United States)

    Hajjaji, A; Elabidi, M; Trabelsi, K; Assadi, A A; Bessais, B; Rtimi, S

    2018-06-05

    This study investigates the effect of the diameter of TiO 2 nanotubes and silver decorated nanotubes on optical properties and photocatalytic inactivation of Escherichia coli under visible light. The TiO 2 nanotubes (TiO 2 -NTs) were prepared using the electrochemical method varying the anodization potential starting from 20 V until 70 V. The Ag nanoparticles were carried out using the photoreduction process under the same experimental conditions. The diameter size was determined using the scanning electronic microscopy (SEM). TiO 2 -NTs diameter reached ∼100 nm at 70 V. Transmission electronic microscopy (TEM) imaging confirmed the TiO 2 -NTs surface decoration by silver nanoparticles. The Ag-NPs average size was found to be equal to 8 nm. The X-Ray diffraction (XRD) analysis confirm that all TiO 2 -NTs crystallize in the anatase phases regardless the used anodization potential. The decrease of the photoluminescence (PL) intensity of Ag NPs decorated TiO 2 -NTs indicates the decrease of the specific area when the nanotubes diameter increases. The UV-vis absorbance show that the absorption edges was bleu shifted with the increasing of nanotubes diameter, which can be explained by the increase of the crystallites average size. The bacterial adhesion and inactivation tests were carried in the dark and under light. Bacteria were seen to adhere on TiO 2 -NTs in the dark; however, under light the bacteria were killed before they establish a strong contact with the TiO 2 -NTs and Ag/TiO 2 -NTs surfaces. Bacterial inactivation kinetics were faster when the anodizing potential of the NTs-preparation increases. A total bacterial inactivation was obtained on ∼100 nm nanotubes diameter within 90 min. This result was attributed to the enhancement of the TNTs crystallinity leading to reduced surface defects. Redox catalysis was seen to occur under light on the TiO 2 -NTs and Ag/TiO 2 -NTs. the photo-induced antibacterial activity on the AgO/Ag 2 O decorated TiO

  16. Synthesis and Characterization of Hierarchical Structured TiO2 Nanotubes and Their Photocatalytic Performance on Methyl Orange

    Directory of Open Access Journals (Sweden)

    Kai Liu

    2015-01-01

    Full Text Available Hierarchical structured TiO2 nanotubes were prepared by mechanical ball milling of highly ordered TiO2 nanotube arrays grown by electrochemical anodization of titanium foil. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, specific surface area analysis, UV-visible absorption spectroscopy, photocurrent measurement, photoluminescence spectra, electrochemical impedance spectra, and photocatalytic degradation test were applied to characterize the nanocomposites. Surface area increased as the milling time extended. After 5 h ball milling, TiO2 hierarchical nanotubes exhibited a corn-like shape and exhibited enhanced photoelectrochemical activity in comparison to commercial P25. The superior photocatalytic activity is suggested to be due to the combined advantages of high surface area of nanoparticles and rapid electron transfer as well as collection of the nanotubes in the hierarchical structure. The hierarchical structured TiO2 nanotubes could be applied into flexible applications on solar cells, sensors, and other photoelectrochemical devices.

  17. Effect of TiO2 nanotube length and lateral tubular spacing on ...

    Indian Academy of Sciences (India)

    Abstract. The main objective of this study is to show the effect of TiO2 nanotube length, diameter and intertubular ... formation of nanotube arrays spread uniformly over a large area. ... 36, 48 and 72 h at an applied voltage of 40 V. The anodized ... and phase analysis for the obtained nanotubes were done .... Using an extra-.

  18. TiO2 micro-flowers composed of nanotubes and their application to dye-sensitized solar cells

    Science.gov (United States)

    Kim, Woong-Rae; Park, Hun; Choi, Won-Youl

    2014-02-01

    TiO2 micro-flowers were made to bloom on Ti foil by the anodic oxidation of Ti-protruding dots with a cylindrical shape. Arrays of the Ti-protruding dots were prepared by photolithography, which consisted of coating the photoresists, attaching a patterned mask, illuminating with UV light, etching the Ti surface by reactive ion etching (RIE), and stripping the photoresist on the Ti foil. The procedure for the blooming of the TiO2 micro-flowers was analyzed by field emission scanning electron microscopy (FESEM) as the anodizing time was increased. Photoelectrodes of dye-sensitized solar cells (DSCs) were fabricated using TiO2 micro-flowers. Bare TiO2 nanotube arrays were used for reference samples. The short-circuit current ( J sc) and the power conversion efficiency of the DSCs based on the TiO2 micro-flowers were 4.340 mA/cm2 and 1.517%, respectively. These values of DSCs based on TiO2 micro-flowers were higher than those of bare samples. The TiO2 micro-flowers had a larger surface area for dye adsorption compared to bare TiO2 nanotube arrays, resulting in improved J sc characteristics. The structure of the TiO2 micro-flowers allowed it to adsorb dyes very effectively, also demonstrating the potential to achieve higher power conversion efficiency levels for DSCs compared to a bare TiO2 nanotube array structure and the conventional TiO2 nanoparticle structure.

  19. MoSe2 modified TiO2 nanotube arrays with superior photoelectrochemical performance

    Science.gov (United States)

    Zhang, Yaping; Zhu, Haifeng; Yu, Lianqing; He, Jiandong; Huang, Chengxing

    2018-04-01

    TiO2 nanotube arrays (TNTs) are first prepared by anodization Ti foils in ethylene glycol electrolyte. Then, MoSe2 deposites electrochemically on TNTs. The as-synthesized MoSe2/TiO2 composite has a much higher photocurrent density of 1.07 mA cm‑2 at 0 V than pure TNTs of 0.38 mA cm‑2, which suggests that the MoSe2/TiO2 composite film has optimum photoelectrocatalysis properties. The electron transport resistances of the MoSe2/TiO2 decreases to half of pure TiO2, at 295.6 ohm/cm2. Both photocurrent-time and Mott-Schottky plots indicate MoSe2 a p-type semiconductor characteristics. MoSe2/TiO2 composite can achieve a maximum 5 orders of magnitude enhancement in carrier density (4.650 × 1027 cm‑3) than that of pure TiO2 arrays. It can be attributed to p-n heterojunction formed between MoSe2 and TiO2, and the composite can be potentially applied in photoelectrochemical, photocatalysis fields.

  20. Photocathodic Protection of 304 Stainless Steel by Bi2S3/TiO2 Nanotube Films Under Visible Light.

    Science.gov (United States)

    Li, Hong; Wang, Xiutong; Wei, Qinyi; Hou, Baorong

    2017-12-01

    We report the preparation of TiO 2 nanotubes coupled with a narrow bandgap semiconductor, i.e., Bi 2 S 3 , to improve the photocathodic protection property of TiO 2 for metals under visible light. Bi 2 S 3 /TiO 2 nanotube films were successfully synthesized using the successive ionic layer adsorption and reaction (SILAR) method. The morphology and structure of the composite films were studied by scanning electron microscopy and X-ray diffraction, respectively. UV-visible diffuse reflectance spectra were recorded to analyze the optical absorption property of the composite films. In addition, the influence of Bi 2 S 3 deposition cycles on the photoelectrochemical and photocathodic protection properties of the composite films was also studied. Results revealed that the heterostructure comprised crystalline anatase TiO 2 and orthorhombic Bi 2 S 3 and exhibited a high visible light response. The photocurrent density of Bi 2 S 3 /TiO 2 was significantly higher than that of pure TiO 2 under visible light. The sensitization of Bi 2 S 3 enhanced the separation efficiency of the photogenerated charges and photocathodic protection properties of TiO 2 . The Bi 2 S 3 /TiO 2 nanotubes prepared by SILAR deposition with 20 cycles exhibited the optimal photogenerated cathodic protection performance on the 304 stainless steel under visible light.

  1. Photocathodic Protection of 304 Stainless Steel by Bi2S3/TiO2 Nanotube Films Under Visible Light

    Science.gov (United States)

    Li, Hong; Wang, Xiutong; Wei, Qinyi; Hou, Baorong

    2017-01-01

    We report the preparation of TiO2 nanotubes coupled with a narrow bandgap semiconductor, i.e., Bi2S3, to improve the photocathodic protection property of TiO2 for metals under visible light. Bi2S3/TiO2 nanotube films were successfully synthesized using the successive ionic layer adsorption and reaction (SILAR) method. The morphology and structure of the composite films were studied by scanning electron microscopy and X-ray diffraction, respectively. UV-visible diffuse reflectance spectra were recorded to analyze the optical absorption property of the composite films. In addition, the influence of Bi2S3 deposition cycles on the photoelectrochemical and photocathodic protection properties of the composite films was also studied. Results revealed that the heterostructure comprised crystalline anatase TiO2 and orthorhombic Bi2S3 and exhibited a high visible light response. The photocurrent density of Bi2S3/TiO2 was significantly higher than that of pure TiO2 under visible light. The sensitization of Bi2S3 enhanced the separation efficiency of the photogenerated charges and photocathodic protection properties of TiO2. The Bi2S3/TiO2 nanotubes prepared by SILAR deposition with 20 cycles exhibited the optimal photogenerated cathodic protection performance on the 304 stainless steel under visible light.

  2. Dye-sensitized solar cells based on Cr-doped TiO2 nanotube photoanodes

    Institute of Scientific and Technical Information of China (English)

    M.M.Momeni

    2017-01-01

    The effect of chromium doping on the photovoltaic efficiency of dye-sensitized solar cells (DSSCs) with anodized TiO2 nanotubes followed by an annealing process was investigated.Cr-doped TiO2 nanotubes (CrTNs) with different amounts of chromium were obtained by anodizing of titanium foils in a single-step process using potassium chromate as the chromium source.Film features were investigated by scanning electron microscopy (SEM),X-ray diffraction (XRD),energy-dispersive X-ray spectroscopy (EDX),and ultraviolet-visible (UV-Vis) spectroscopy.It is clearly seen that highly ordered TiO2 nanotubes are formed in an anodizing solution free of potassium chromate,and with a gradual increase in the potassium chromate concentration,these nanotube structures change to nanoporous and compact films without porosity.The photovoltaic efficiencies of fabricated DSSCs were characterized by a solar cell measurement system via the photocurrent-voltage (Ⅰ-Ⅴ) curves.It is found that the photovoltaic efficiency of DSSCs with CrTNsl sample is improved by more than three times compared to that of DSSCs with undoped TNs.The energy conversion efficiency increases from 1.05 % to 3.89 % by doping of chromium.

  3. Scanning electron microscopy of heat treated TiO2 nanotubes arrays obtained by anodic oxidation

    Science.gov (United States)

    Naranjo, D. I.; García-Vergara, S. J.; Blanco, S.

    2017-12-01

    Scanning electron microscopy was used to investigate the anatase-rutile transformation of self-organized TiO2 nanotubes obtained on titanium foil by anodizing and subsequent heat treatment. The anodizing was carried out at 20V in an 1% v/v HF acid and ethylene glycol:water (50:50) electrolyte at room temperature. The anodized samples were initially pre-heat treated at 450°C for 4 hours to modify the amorphous structure of TiO2 nanotubes into anatase structure. Then, the samples were heated between 600 to 800°C for different times, in order to promote the transformation to rutile structure. The formation of TiO2 nanotubes is evident by SEM images. Notably, when the samples are treated at high temperature, the formation of rutile crystals starts to become evident at the nanotubes located on the originally grain boundaries of the titanium. Thus, the anatase - rutile transformation has a close relationship with the microstructure of the titanium, more exactly with grain boundaries.

  4. Fast fabrication of long TiO2 nanotube array with high photoelectrochemical property on flexible stainless steel.

    Science.gov (United States)

    Tao, Jie; Wu, Tao; Gao, Peng

    2012-03-01

    Oriented highly ordered long TiO2 nanotube array films with nanopore structure and high photoelectrochemical property were fabricated on flexible stainless steel substrate (50 microm) by anodization treatment of titanium thin films in a short time. The samples were characterized by means of field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and photoelectrochemical methods, respectively. The results showed that Ti films deposited at the condition of 0.7 Pa Ar pressure and 96 W sputtering power at room temperature was uniform and dense with good homogeneity and high crystallinity. The voltage and the anodization time both played significant roles in the formation of TiO2 nanopore-nanotube array film. The optimal voltage was 60 V and the anodization time is less than 30 min by anodizing Ti films in ethylene glycerol containing 0.5% (w) NH4F and 3% (w) H2O. The growth rate of TiO2 nanotube array was as high as 340 nm/min. Moreover, the photocurrent-potential curves, photocurrent response curves and electrochemical impedance spectra results indicated that the TiO2 nanotube array film with the nanoporous structure exhibited a better photo-response ability and photoelectrochemical performance than the ordinary TiO2 nanotube array film. The reason is that the nanoporous structure on the surface of the nanotube array can separate the photo electron-hole pairs more efficiently and completely than the tubular structure.

  5. Polyoxometalate-modified TiO2 nanotube arrays photoanode materials for enhanced dye-sensitized solar cells

    Science.gov (United States)

    Liu, Ran; Sun, Zhixia; Zhang, Yuzhuo; Xu, Lin; Li, Na

    2017-10-01

    In this work, we prepared for the first time the TiO2 nanotube arrays (TNAs) photoanode with polyoxometalate(POMs)-modified TiO2 electron-transport layer for improving the performance of zinc phthalocyanine(ZnPc)-sensitized solar cells. The as-prepared POMs/TNAs/ZnPc composite photoanode exhibited higher photovoltaic performances than the TNAs/ZnPc photoanode, so that the power conversion efficiency of the solar cell device based on the POMs/TNAs/ZnPc photoanode displayed a notable improvement of 45%. These results indicated that the POMs play a key role in reducing charge recombination in phthalocyanine-sensitized solar cells, together with TiO2 nanotube arrays being helpful for electron transport. The mechanism of the performance improvement was demonstrated by the measurements of electrochemical impedance spectra and open-circuit voltage decay curves. Although the resulting performance is still below that of the state-of-the-art dye-sensitized solar cells, this study presents a new insight into improving the power conversion efficiency of phthalocyanine-sensitized solar cells via polyoxometalate-modified TiO2 nanotube arrays photoanode.

  6. Synthesis of stable TiO2 nanotubes: effect of hydrothermal treatment, acid washing and annealing temperature.

    Science.gov (United States)

    López Zavala, Miguel Ángel; Lozano Morales, Samuel Alejandro; Ávila-Santos, Manuel

    2017-11-01

    Effect of hydrothermal treatment, acid washing and annealing temperature on the structure and morphology of TiO 2 nanotubes during the formation process was assessed. X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy analysis were conducted to describe the formation and characterization of the structure and morphology of nanotubes. Hydrothermal treatment of TiO 2 precursor nanoparticles and acid washing are fundamental to form and define the nanotubes structure. Hydrothermal treatment causes a change in the crystallinity of the precursor nanoparticles from anatase phase to a monoclinic phase, which characterizes the TiO 2 nanosheets structure. The acid washing promotes the formation of high purity nanotubes due to Na + is exchanged from the titanate structure to the hydrochloric acid (HCl) solution. The annealing temperature affects the dimensions, structure and the morphology of the nanotubes. Annealing temperatures in the range of 400 °C and 600 °C are optimum to maintain a highly stable tubular morphology of nanotubes. Additionally, nanotubes conserve the physicochemical properties of the precursor Degussa P25 nanoparticles. Temperatures greater than 600 °C alter the morphology of nanotubes from tubular to an irregular structure of nanoparticles, which are bigger than those of the precursor material, i.e., the crystallinity turn from anatase phase to rutile phase inducing the collapse of the nanotubes.

  7. Assembly, characterization, and photocatalytic activities of TiO2 nanotubes/CdS quantum dots nanocomposites

    International Nuclear Information System (INIS)

    Zhou Qiang; Fu Minglai; Yuan Baoling; Cui Haojie; Shi Jianwen

    2011-01-01

    The semiconductor quantum dots (QDs) can be very efficient to tune the response of photocatalyst of TiO 2 to visible light. In this study, CdS QDs formed in situ with about 8 nm have been successfully deposited onto the surfaces of TiO 2 nanotubes (TNTs) to form TNTs/CdS QDs nanocomposites by use of a simple bifunctional organic linker, thiolactic acid. The diffuse reflectance spectroscopy (DRS) spectra of as prepared samples showed that the absorption edge of the TNTs/CdS composite is extended to visible range, with absorption edge at 530 nm. The photocatalytic activity and stability of TNTs/CdS were also evaluated for the photodegradation of rhodamine B. The results showed that when TNTs/CdS QDs was used, photocatalytic degradation of RhB under visible light irradiation reached 91.6%, higher than 45.4 and 30.5% for P25 and TNTs, respectively. This study indicated that the TNTs/CdS QDs nanocomposites were superior catalysts for photodegradation under visible light irradiation compared with TNTs and P25 samples, which may find wide application as a powerful photocatalyst in environmental field.

  8. High quantum yield graphene quantum dots decorated TiO_2 nanotubes for enhancing photocatalytic activity

    International Nuclear Information System (INIS)

    Qu, Ailan; Xie, Haolong; Xu, Xinmei; Zhang, Yangyu; Wen, Shengwu; Cui, Yifan

    2016-01-01

    Highlights: • High concentration yellow GQDs and TiO_2 nanotubes were achieved by a simple and green method. • High quantum yield GQDs enhanced the photodegradation capacity of TiO_2 nanotube. • The catalytic performance of GQDs/TiO_2 depends on the GQDs loading. • The improved photocatalytic activity of GQDs/TiO_2 was attributed to three aspects. - Abstract: Graphene quantum dots (GQDs) with high quantum yield (about 23.6% at an excitation wavelength of 320 nm) and GQDs/TiO_2 nanotubes (GQDs/TiO_2 NTs) composites were achieved by a simple hydrothermal method at low temperature. Photoluminescence characterization showed that the GQDs exhibited the down-conversion PL features at excitation from 300 to 420 nm and up-conversion photoluminescence in the range of 600–800 nm. The photocatalytic activity of prepared GQDs/TiO_2 NTs composites on the degradation of methyl orange (MO) was significantly enhanced compared with that of pure TiO_2 nanotubes (TiO_2 NTs). For the composites coupling with 1.5%, 2.5% and 3.5% GQDs, the degradation of MO after 20 min irradiation under UV–vis light irradiation (λ = 380–780 nm) were 80.52%, 94.64% and 51.91%, respectively, which are much higher than that of pure TiO_2 NTs (35.41%). It was inferred from the results of characterization that the improved photocatalytic activity of the GQDs/TiO_2 NTs composites was attributed to the synergetic effect of up-conversion properties of the GQDs, enhanced visible light absorption and efficient separation of photogenerated electron-holes of the GQDs/TiO_2 composite.

  9. Biomimetic Approach to Solar Cells Based on TiO2 Nanotubes

    National Research Council Canada - National Science Library

    Allen, Jan L; Lee, Ivan C; Wolfenstine, Jeff

    2008-01-01

    The goal of this research was to explore the use of nanotube titanium dioxide (TiO2) as an electrode material in dye-sensitized solar cells in order to further the development of solar cell technology...

  10. TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties

    Directory of Open Access Journals (Sweden)

    Giorgio Sberveglieri

    2013-10-01

    Full Text Available Synthesis—particularly by electrochemical anodization-, growth mechanism and chemical sensing properties of pure, doped and mixed titania tubular arrays are reviewed. The first part deals on how anodization parameters affect the size, shape and morphology of titania nanotubes. In the second part fabrication of sensing devices based on titania nanotubes is presented, together with their most notable gas sensing performances. Doping largely improves conductivity and enhances gas sensing performances of TiO2 nanotubes

  11. Enhanced Photocatalytic Activity of La3+-Doped TiO2 Nanotubes with Full Wave-Band Absorption

    Science.gov (United States)

    Xia, Minghao; Huang, Lingling; Zhang, Yubo; Wang, Yongqian

    2018-06-01

    TiO2 nanotubes doped with La3+ were synthesized by anodic oxidation method and the photocatalytic activity was detected by photodegrading methylene blue. As-prepared samples improved the absorption of both ultraviolet light and visible light and have a great enhancement on the photocatalytic activity while contrasting with the pristine TiO2 nanotubes. A tentative mechanism for the enhancement of photocatalytic activity with full wave-band absorption is proposed.

  12. Facile fabrication of Si-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical hydrogen generation

    Science.gov (United States)

    Dong, Zhenbiao; Ding, Dongyan; Li, Ting; Ning, Congqin

    2018-04-01

    Photoelectrochemical (PEC) water splitting based doping modified one dimensional (1D) titanium dioxide (TiO2) nanostructures provide an efficient method for hydrogen generation. Here we first successfully fabricated 1D Si-doped TiO2 (Ti-Si-O) nanotube arrays through anodizing Ti-Si alloys with different Si amount, and reported the PEC properties for water splitting. The Ti-Si-O nanotube arrays fabricated on Ti-5 wt.% Si alloy and annealed at 600 °C possess higher PEC activity, yielding a higher photocurrent density of 0.83 mA/cm2 at 0 V vs. Ag/AgCl. The maximum photoconversion efficiency was 0.54%, which was 2.7 times the photoconversion efficiency of undoped TiO2.

  13. Self-organized TiO2 nanotubes grown on Ti substrates with different crystallographic preferential orientations: Local structure of TiO2 nanotubes vs. photo-electrochemical response

    Czech Academy of Sciences Publication Activity Database

    Krbal, M.; Sopha, H.; Pohl, D.; Beneš, L.; Damm, C.; Rellinghaus, B.; Kupčík, Jaroslav; Bezdička, Petr; Šubrt, Jan; Macák, J. M.

    2018-01-01

    Roč. 264, FEB (2018), s. 393-399 ISSN 0013-4686 Institutional support: RVO:61388980 Keywords : Anatase * Anodization * Photo-current * Stoichiometry * TiO nanotubes 2 Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 4.798, year: 2016

  14. Asymmetric photoelectric property of transparent TiO2 nanotube films loaded with Au nanoparticles

    International Nuclear Information System (INIS)

    Wang, Hui; Liang, Wei; Liu, Yiming; Zhang, Wanggang; Zhou, Diaoyu; Wen, Jing

    2016-01-01

    Highlights: • Highly transparent films of TiO 2 nanotube arrays were directly fabricated on FTO glasses. • Semitransparent TNT-Au composite films were obtained and exhibited excellent photoelectrocatalytic ability. • Back-side of TNT-Au composite films was firstly irradiated and tested to compare with front-side of films. - Abstract: Semitransparent composite films of Au loaded TiO 2 nanotubes (TNT-Au) were prepared by sputtering Au nanoparticles on highly transparent TiO 2 nanotubes films, which were fabricated directly on FTO glasses by anodizing the Ti film sputtered on the FTO glasses. Compared with pure TNT films, the prepared TNT-Au films possessed excellent absorption ability and high photocurrent response and improved photocatalytic activity under visible-light irradiation. It could be concluded that Au nanoparticles played important roles in improving the photoelectrochemical performance of TNT-Au films. Moreover, in this work, both sides of TNT-Au films were researched and compared owing to theirs semitransparency. It was firstly found that the photoelectric activity of TNT-Au composite films with back-side illumination was obviously superior to front-side illumination.

  15. Effect of RGD Peptide-Coated TiO2 Nanotubes on the Attachment, Proliferation, and Functionality of Bone-Related Cells

    Directory of Open Access Journals (Sweden)

    Seunghan Oh

    2013-01-01

    Full Text Available The purpose of this research was to characterize an Arg-Gly-Asp (RGD peptide immobilized on TiO2 nanotubes. In addition, we investigated the effects of the RGD peptide-coated TiO2 nanotubes on the cellular response, proliferation, and functionality of osteogenic-induced human mesenchymal stem cells (hMSCs, which are osteoclasts that have been induced by bone marrow macrophages. The RGD peptide was grafted covalently onto the surface of TiO2 nanotubes based on the results of SEM, FT-IR, and XPS. Furthermore, the RGD peptide promoted the initial attachment and proliferation of the hMSCs, regardless of the size of the TiO2 nanotubes. However, the RGD peptide did not prominently affect the osteogenic functionality of the hMSCs because the peptide suppressed hMSC motility associated with osteogenic differentiation. The result of an in vitro osteoclast test showed that the RGD peptide accelerated the initial attachment of preosteoclasts and the formation of mature osteoclasts, which could resorb the bone matrix. Therefore, we believe that an RGD coating on TiO2 nanotubes synthesized on Ti implants might not offer significant acceleration of bone formation in vivo because osteoblasts and osteoclasts reside in the same compartment.

  16. A visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots

    Directory of Open Access Journals (Sweden)

    Donald K. L. Chan

    2014-05-01

    Full Text Available TiO2 nanotube arrays are well-known efficient UV-driven photocatalysts. The incorporation of graphene quantum dots could extend the photo-response of the nanotubes to the visible-light range. Graphene quantum dot-sensitized TiO2 nanotube arrays were synthesized by covalently coupling these two materials. The product was characterized by Fourier-transform infrared spectrometry (FTIR, scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, thermogravimetric analysis (TGA and UV–vis absorption spectroscopy. The product exhibited high photocatalytic performance in the photodegradation of methylene blue and enhanced photocurrent under visible light irradiation.

  17. Hydrothermal transformation of titanate nanotubes into single-crystalline TiO2 nanomaterials with controlled phase composition and morphology

    International Nuclear Information System (INIS)

    Xu, Yuanmei; Fang, Xiaoming; Xiong, Jian; Zhang, Zhengguo

    2010-01-01

    Single-crystalline TiO 2 nanomaterials were synthesized by hydrothermally treating suspensions of H-titanate nanotubes and characterized by XRD, TEM, and HRTEM. The effects of the pH values of the suspensions and the hydrothermal temperatures on the phase composition and morphology of the obtained TiO 2 nanomaterials were systematically investigated. The H-titanate nanotubes were predominately transformed into anatase nanoparticle with rhombic shape when the pH value was greater than or equal to 1.0, whereas primarily turned into rutile nanorod with two pyramidal ends at the pH value less than or equal to 0.5. We propose a possible mechanism for hydrothermal transformation of H-titanate nanotubes into single-crystalline TiO 2 nanomaterials. While the H-titanate nanotubes transform into tiny anatase nanocrystallites of ca. 3 nm in size, the formed nanocrystallites as an intermediate grow into the TiO 2 nanomaterials with controlled phase composition and morphology. This growth process involves the steps of protonation, oriented attachment, and Ostwald ripening.

  18. Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Xie Yi

    2009-01-01

    Full Text Available Abstract A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs is presented. Anatase TiO2 nanoparticles (NPs with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV–visible irradiation. The samples showed not only good optical absorption in visible range, but also great adsorption capacity for methyl orange (MO dye molecules. These properties facilitated the great enhancement of photocatalytic activity of TiO2 NPs-coated CNTs photocatalysts. The TiO2 NPs-coated CNTs exhibited 2.45 times higher photocatalytic activity for MO degradation than that of pure TiO2.

  19. Study on photocatalysis of TiO2 nanotubes prepared by methanol ...

    Indian Academy of Sciences (India)

    TiO2 nanotubes were synthesized by the solvothermal process at low temperature in a highly alkaline water–methanol mixed solution. Their characteristics were identified by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), specific surface area (BET), Fourier transform infrared spectroscopy (FTIR) ...

  20. Efficient suppression of nanograss during porous anodic TiO2 nanotubes growth

    Science.gov (United States)

    Gui, Qunfang; Yu, Dongliang; Li, Dongdong; Song, Ye; Zhu, Xufei; Cao, Liu; Zhang, Shaoyu; Ma, Weihua; You, Shiyu

    2014-09-01

    When Ti foil was anodized in fluoride-containing electrolyte for a long time, undesired etching-induced "nanograss" would inevitably generate on the top of porous anodic TiO2 nanotubes (PATNTs). The nanograss will hinder the ions transport and in turn yield depressed (photo) electrochemical performance. In order to obtain nanograss-free nanotubes, a modified three-step anodization and two-layer nanostructure of PATNTs were designed to avoid the nanograss. The first layer (L1) nanotubes were obtained by the conventional two-step anodization. After washing and drying processes, the third-step anodization was carried out with the presence of L1 nanotubes. The L1 nanotubes, serving as a sacrificed layer, was etched and transformed into nanograss, while the ultralong nanotubes (L2) were maintained underneath the L1. The bi-layer nanostructure of the nanograss/nanotubes (L1/L2) was then ultrasonically rinsed in deionized water to remove the nanograss (L1 layer). Then much longer nanotubes (L2 layer) with intact nanotube mouths could be obtained. Using this novel approach, the ultralong nanotubes without nanograss can be rationally controlled by adjusting the anodizing times of two layers.

  1. Synthesis and enhanced photoelectrocatalytic activity of p–n junction Co3O4/TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Dai Gaopeng; Liu Suqin; Liang Ying; Luo Tianxiong

    2013-01-01

    Highlights: ► Co 3 O 4 /TiO 2 nanotube arrays (NTs) were prepared by an impregnating–deposition–decompostion method treatment. ► Co 3 O 4 /TiO 2 NTs exhibit high photoelectrocatalytic (PEC) activity. ► The high PEC activity was attribute to the formation of p–n junction between Co 3 O 4 and TiO 2 . - Abstract: Co 3 O 4 /TiO 2 nanotube arrays (NTs) were prepared by depositing Co 3 O 4 nanoparticles (NPs) on the tube wall of the self-organized TiO 2 NTs using an impregnating–deposition–decompostion method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV–vis absorption spectroscopy. The photoelectrocatalytic (PEC) activity is evaluated by degradation of methyl orange (MO) aqueous solution. The prepared Co 3 O 4 /TiO 2 NTs exhibit much higher PEC activity than TiO 2 NTs due to the p–n junction formed between Co 3 O 4 and TiO 2 .

  2. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries.

    Science.gov (United States)

    Han, Hyungkyu; Song, Taeseup; Lee, Eung-Kwan; Devadoss, Anitha; Jeon, Yeryung; Ha, Jaehwan; Chung, Yong-Chae; Choi, Young-Min; Jung, Yeon-Gil; Paik, Ungyu

    2012-09-25

    Titanium dioxide (TiO(2)) is one of the most promising anode materials for lithium ion batteries due to low cost and structural stability during Li insertion/extraction. However, its poor rate capability limits its practical use. Although various approaches have been explored to overcome this problem, previous reports have mainly focused on the enhancement of both the electronic conductivity and the kinetic associated with lithium in the composite film of active material/conducting agent/binder. Here, we systematically explore the effect of the contact resistance between a current collector and a composite film of active material/conducting agent/binder on the rate capability of a TiO(2)-based electrode. The vertically aligned TiO(2) nanotubes arrays, directly grown on the current collector, with sealed cap and unsealed cap, and conventional randomly oriented TiO(2) nanotubes electrodes were prepared for this study. The vertically aligned TiO(2) nanotubes array electrode with unsealed cap showed superior performance with six times higher capacity at 10 C rate compared to conventional randomly oriented TiO(2) nanotubes electrode with 10 wt % conducting agent. On the basis of the detailed experimental results and associated theoretical analysis, we demonstrate that the reduction of the contact resistance between electrode and current collector plays an important role in improving the electronic conductivity of the overall electrode system.

  3. 1 composite mixture of TiO2 nanoparticles and nanotubes in dye

    Indian Academy of Sciences (India)

    Administrator

    Abstract. TiO2-based nanotubes (NTs), nanoparticles (NPs) and composite structural film (50% NP + 50% ... of faster electron injection ratio compared with other .... exist in this system. .... the open circuit voltage, Im the maximum current and.

  4. High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach

    International Nuclear Information System (INIS)

    Wu, Hui; Li, Dongdong; Zhu, Xufei; Yang, Chunyan; Liu, Dongfang; Chen, Xiaoyuan; Song, Ye; Lu, Linfeng

    2014-01-01

    Although one-dimensional anodic TiO 2 nanotube arrays have shown promise as supercapacitor electrode materials, their poor electronic conductivity embarrasses the practical applications. Here, we develop a simple electrochemical doping method to significantly improve the electronic conductivity and the electrochemical performances of TiO 2 nanotube electrodes. These TiO 2 nanotube electrodes treated by the electrochemical hydrogenation doping (TiO 2 -H) exhibit a very high average specific capacitance of 20.08 mF cm −2 at a current density of 0.05 mA cm −2 , ∼20 times more than the pristine TiO 2 nanotube electrodes. The improved electrochemical performances can be attributed to ultrahigh conductivity of TiO 2 -H due to the introduction of interstitial hydrogen ions and oxygen vacancies by the doping. The supercapacitor device assembled by the doped electrodes delivers a specific capacitance of 5.42 mF cm −2 and power density of 27.66 mW cm −2 , on average, at the current density of 0.05 mA cm −2 . The device also shows an outstanding rate capability with 60% specific capacitance retained when the current density increases from 0.05 to 4.00 mA cm −2 . More interestingly, the electrochemical performances of the supercapacitor after cycling can be recovered by the same doping process. This strategy boosts the performances of the supercapacitor, especially cycling stability

  5. Study of the highly ordered TiO2 nanotubes physical properties prepared with two-step anodization

    Science.gov (United States)

    Pishkar, Negin; Ghoranneviss, Mahmood; Ghorannevis, Zohreh; Akbari, Hossein

    2018-06-01

    Highly ordered hexagonal closely packed titanium dioxide nanotubes (TiO2 NTs) were successfully grown by a two-step anodization process. The TiO2 NTs were synthesized by electrochemical anodization of titanium foils in an ethylene glycol based electrolyte solution containing 0.3 wt% NH4F and 2 vol% deionized (DI) water at constant potential (50 V) for 1 h at room temperature. Physical properties of the TiO2 NTs, which were prepared via one and two-step anodization, were investigated. Atomic Force Microscopy (AFM) analysis revealed that anodization and subsequently peeled off the TiO2 NTs caused to the periodic pattern on the Ti surface. In order To study the nanotubes morphology, Field Emission Scanning Electron Microscopy (FESEM) was used, which was revealed that the two-step anodization resulted highly ordered hexagonal TiO2 NTs. Crystal structures of the TiO2 NTs were mainly anatase, determined by X-ray diffraction analysis. Optical studies were performed by Diffuse Reflection Spectra (DRS) and Photoluminescence (PL) analysis showed that the band gap of TiO2 NTs prepared via two-step anodization was lower than the band gap of samples prepared by one-step anodization process.

  6. Modification of TiO(2) nanotube surfaces by electro-spray deposition of amoxicillin combined with PLGA for bactericidal effects at surgical implantation sites.

    Science.gov (United States)

    Lee, Jung-Hwan; Moon, Seung-Kyun; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2013-01-01

    To fabricate the antibiotic-releasing coatings on TiO(2) nanotube surfaces for wide applications of implant and bone plate in medical and dental surgery, the optimal deposition time of amoxicillin/PLGA solution simultaneously performing non-toxicity and a high bactericidal effect for preventing early implant failures was found. FE-SEM, ESD and FT-IR were used for confirming deposition of amoxicillin/PLGA on the TiO(2) surface. Also, the elution of amoxicillin/PLGA in a TiO(2) nanotube surface was measured by a UV-VIS spectrophotometer. The bactericidal effect of amoxicillin on the TiO(2) nanotube surface was evaluated by using Staphylococcus aureus (S. aureus). The cytotoxicity and cell proliferation were observed by WST assay using MC3T3-E1 osteoblast cells. The results indicated that the TiO(2) nanotube surface controlled by electro-spray deposition time with amoxicillin/PLGA solution could provide a high bactericidal effect against S. aureus by the bactericidal effect of amoxicillin, as well as good osteoblast cell proliferation at the TiO(2) nanotube surface without toxicity. This study used electro-spray deposition (ESD) methodology to obtain amoxicillin deposition in nanotube structures of TiO(2) and found the optimal deposition time of amoxicillin/PLGA solution simultaneously performing non-toxicity and a high bactericidal effect for preventing early implant failures.

  7. Optimizing TiO2 nanotube top geometry for use in dye-sensitized solar cells.

    Science.gov (United States)

    Mir, Nooshin; Lee, Kiyoung; Paramasivam, Indhumati; Schmuki, Patrik

    2012-09-17

    Recombination dynamics: For TiO(2) nanotube-based dye-sensitized solar cells, the efficiency can be drastically enhanced by a synergetic effect that occurs when using nanowire-ended nanotubes in combination with an adequate nanoparticle decoration (see figure). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. TiO2 nanotube-based dye solar cell research in South Africa

    CSIR Research Space (South Africa)

    Cummings, F

    2009-10-01

    Full Text Available Vertically orientated titanium dioxide (TiO2) nanotubes hold great potential for application in dye-sensitized solar cells (DSCs) as they provide an unscathed, one-dimensional transport route for photo-generated charge carriers, thereby increasing...

  9. Tantalum coating on TiO2 nanotubes induces superior rate of matrix mineralization and osteofunctionality in human osteoblasts

    International Nuclear Information System (INIS)

    Frandsen, Christine J.; Brammer, Karla S.; Noh, Kunbae; Johnston, Gary; Jin, Sungho

    2014-01-01

    Nanostructured surface geometries have been the focus of a multitude of recent biomaterial research, and exciting findings have been published. However, only a few publications have directly compared nanostructures of various surface chemistries. The work herein directly compares the response of human osteoblast cells to surfaces of identical nanotube geometries with two well-known orthopedic biomaterials: titanium oxide (TiO 2 ) and tantalum (Ta). The results reveal that the Ta surface chemistry on the nanotube architecture enhances alkaline phosphatase activity, and promotes a ∼ 30% faster rate of matrix mineralization and bone-nodule formation when compared to results on bare TiO 2 nanotubes. This study implies that unique combinations of surface chemistry and nanostructure may influence cell behavior due to distinctive physico-chemical properties. These findings are of paramount importance to the orthopedics field for understanding cell behavior in response to subtle alterations in nanostructure and surface chemistry, and will enable further insight into the complex manipulation of biomaterial surfaces. With increased focus in the field of orthopedic materials research on nanostructured surfaces, this study emphasizes the need for careful and systematic review of variations in surface chemistry in concurrence with nanotopographical changes. - Highlights: • A TiO 2 nanotube surface structure was coated with tantalum. • Osteoblast cell response was compared between the tantalum coated and as-formed TiO 2 nanotube surface. • We observed superior rates of bone matrix mineralization and osteoblast maturation on the tantalum coated nanotube surface

  10. Multistep structural transition of hydrogen trititanate nanotubes into TiO2-B nanotubes: a comparison study between nanostructured and bulk materials

    International Nuclear Information System (INIS)

    Morgado, Edisson Jr; Jardim, P M; Marinkovic, Bojan A; Rizzo, Fernando C; Abreu, Marco A S de; Zotin, Jose L; Araujo, Antonio S

    2007-01-01

    H-trititanate nanotubes obtained by alkali hydrothermal treatment of TiO 2 followed by proton exchange were compared to their bulk H 2 Ti 3 O 7 counterpart with respect to their thermally induced structural transformation paths. As-synthesized and heat-treated samples were characterized by XRD, TEM/SAED, DSC and spectroscopy techniques, indicating that H 2 Ti 3 O 7 nanotubes showed the same sequence of structural transformations as their bulk counterpart obtained by conventional solid state reaction. Nanostructured H 2 Ti 3 O 7 converts into TiO 2 (B) via multistep transformation without losing its nanotubular morphology. The transformation occurs between 120 and 400 deg. C through topotactic mechanisms with the intermediate formation of nanostructured H 2 Ti 6 O 13 and H 2 Ti 12 O 25 , which are more condensed layered titanates eventually rearranging to TiO 2 (B). Our results suggest that the intermediate tunnel structure H 2 Ti 12 O 25 is the final layered intermediate phase, on which TiO 2 (B) nucleates and grows. The conversion of nanostructured TiO 2 (B) into anatase is completed at a much lower temperature than its bulk counterpart and is accompanied by loss of the nanotubular morphology

  11. Multistep structural transition of hydrogen trititanate nanotubes into TiO2-B nanotubes: a comparison study between nanostructured and bulk materials.

    Science.gov (United States)

    Morgado, Edisson; Jardim, P M; Marinkovic, Bojan A; Rizzo, Fernando C; de Abreu, Marco A S; Zotin, José L; Araújo, Antonio S

    2007-12-12

    H-trititanate nanotubes obtained by alkali hydrothermal treatment of TiO(2) followed by proton exchange were compared to their bulk H(2)Ti(3)O(7) counterpart with respect to their thermally induced structural transformation paths. As-synthesized and heat-treated samples were characterized by XRD, TEM/SAED, DSC and spectroscopy techniques, indicating that H(2)Ti(3)O(7) nanotubes showed the same sequence of structural transformations as their bulk counterpart obtained by conventional solid state reaction. Nanostructured H(2)Ti(3)O(7) converts into TiO(2)(B) via multistep transformation without losing its nanotubular morphology. The transformation occurs between 120 and 400 degrees C through topotactic mechanisms with the intermediate formation of nanostructured H(2)Ti(6)O(13) and H(2)Ti(12)O(25), which are more condensed layered titanates eventually rearranging to TiO(2)(B). Our results suggest that the intermediate tunnel structure H(2)Ti(12)O(25) is the final layered intermediate phase, on which TiO(2)(B) nucleates and grows. The conversion of nanostructured TiO(2)(B) into anatase is completed at a much lower temperature than its bulk counterpart and is accompanied by loss of the nanotubular morphology.

  12. Multistep structural transition of hydrogen trititanate nanotubes into TiO2-B nanotubes: a comparison study between nanostructured and bulk materials

    Science.gov (United States)

    Morgado, Edisson, Jr.; Jardim, P. M.; Marinkovic, Bojan A.; Rizzo, Fernando C.; de Abreu, Marco A. S.; Zotin, José L.; Araújo, Antonio S.

    2007-12-01

    H-trititanate nanotubes obtained by alkali hydrothermal treatment of TiO2 followed by proton exchange were compared to their bulk H2Ti3O7 counterpart with respect to their thermally induced structural transformation paths. As-synthesized and heat-treated samples were characterized by XRD, TEM/SAED, DSC and spectroscopy techniques, indicating that H2Ti3O7 nanotubes showed the same sequence of structural transformations as their bulk counterpart obtained by conventional solid state reaction. Nanostructured H2Ti3O7 converts into TiO2(B) via multistep transformation without losing its nanotubular morphology. The transformation occurs between 120 and 400 °C through topotactic mechanisms with the intermediate formation of nanostructured H2Ti6O13 and H2Ti12O25, which are more condensed layered titanates eventually rearranging to TiO2(B). Our results suggest that the intermediate tunnel structure H2Ti12O25 is the final layered intermediate phase, on which TiO2(B) nucleates and grows. The conversion of nanostructured TiO2(B) into anatase is completed at a much lower temperature than its bulk counterpart and is accompanied by loss of the nanotubular morphology.

  13. Synergistic effects between TiO2 and carbon nanotubes (CNTs) in a TiO2/CNTs system under visible light irradiation.

    Science.gov (United States)

    Wu, Chung-Hsin; Kuo, Chao-Yin; Chen, Shih-Ting

    2013-01-01

    This study synthesized a TiO2/carbon nanotubes (CNTs) composite via the sol-gel method. The surface characteristics of the TiO2/CNTs composite were determined by X-ray diffraction, transmission electron microscopy, specific surface area analyser, ultraviolent (UV)-vis spectroscopy, X-ray photoelectron spectroscopy and Raman spectrometer. The photocatalytic activity ofthe TiO2/CNTs composite was evaluated by decolourizing C.I. Reactive Red 2 (RR2) under visible light irradiation. Furthermore, the effects of calcination temperature, pH, RR2 concentration, and the TiO2/CNTs composite dosage on RR2 decolourization were determined simultaneously. The optimal calcination temperature to generate TiO2 and the TiO2/CNTs composite was 673 K, as the percentage of anatase crystallization at this temperature was highest. The specific surface area of the TiO2/CNTs composite and TiO2 were 45 and 42 m2/g, respectively. The band gap of TiO2 and the TiO2/CNTs composite was 2.97 and 2.71 eV by UV-vis measurements, respectively. Experimental data indicate that the Ti-O-C bond formed in the TiO2/CNTs composite. The RR2 decolourization rates can be approximated by pseudo-first-order kinetics; moreover, only the TiO2/CNTs composite had photocatalytic activity under visible light irradiation. At pH 7, the RR2 decolourization rate constant of 0.5, 1 and 2 g/L TiO2/CNTs addition was 0.005, 0.0015, and 0.0047 min(-1), respectively. Decolourization rate increased as pH and the RR2 concentration decreased. The CNTs functioned as electron acceptors, promoting separation of photoinduced electron-hole pairs to retard their recombination; thus, photocatalytic activity of the TiO2/CNTs composite exceeded that of TiO2.

  14. Investigation of anodic TiO2 nanotube composition with high spatial resolution AES and ToF SIMS

    Science.gov (United States)

    Dronov, Alexey; Gavrilin, Ilya; Kirilenko, Elena; Dronova, Daria; Gavrilov, Sergey

    2018-03-01

    High resolution Scanning Auger Electron Spectroscopy (AES) and Time-of-Flight Secondary Ion Mass-Spectrometry (ToF SIMS) were used to investigate structure and elemental composition variation of both across an array of TiO2 nanotubes (NTs) and single tube of an array. The TiO2 NT array was grown by anodic oxidation of Ti foil in fluorine-containing ethylene glycol electrolyte. It was found that the studied anodic TiO2 nanotubes have a layered structure with rather sharp interfaces. The differences in AES depth profiling results of a single tube with the focused primary electron beam (point analysis) and over an area of 75 μm in diameter of a nanotube array with the defocused primary electron beam are discussed. Depth profiling by ToF SIMS was carried out over approximately the same size of a nanotube array to determine possible ionic fragments in the structure. The analysis results show that the combination of both mentioned methods is useful for a detailed analysis of nanostructures with complex morphology and multi-layered nature.

  15. Photocatalytic methane decomposition over vertically aligned transparent TiO2 nanotube arrays

    DEFF Research Database (Denmark)

    In, Su-il; Nielsen, Morten Godtfred; Vesborg, Peter Christian Kjærgaard

    2011-01-01

    Vertically aligned transparent TiO2 nanotube arrays grown by the one-step anodic oxidation technique (on non-conductive supports such as Pyrex) and their photocatalytic performance for methane decomposition in a single-pass micro-fabricated reactor under UV light....

  16. Incorporating TiO2 nanotubes with a peptide of D-amino K122-4 (D) for enhanced mechanical and photocatalytic properties

    Science.gov (United States)

    Guo, L. Q.; Hu, Y. W.; Yu, B.; Davis, E.; Irvin, R.; Yan, X. G.; Li, D. Y.

    2016-02-01

    Titanium dioxide (TiO2) nanotubes are promising for a wide variety of potential applications in energy, biomedical and environmental sectors. However, their low mechanical strength and wide band gap limit their widespread technological use. This article reports our recent efforts to increase the mechanical strength of TiO2 nanotubes with lowered band gap by immobilizing a peptide of D-amino K122-4 (D) onto the nanotubes. Topographies and chemical compositions of the peptide-coated and uncoated TiO2 nanotubular arrays were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy (XPS). Properties of the peptide-coated and uncoated TiO2 nanotubular arrays, including hardness, elastic modulus, electron work function and photocurrent, were evaluated using micromechanical probe, Kelvin Probe and electrochemical system. Effect of the peptide on surface conductivity was also investigated through current mapping and I-V curve analysis with conductive atomic force microscopy. It is demonstrated that the peptide coating simultaneously enhances the mechanical strength, photocatalytic and electrical properties of TiO2 nanotubes.

  17. Synthesis of gold nanoclusters: a fluorescent marker for water-soluble TiO2 nanotubes

    International Nuclear Information System (INIS)

    Ratanatawanate, Chalita; Yu Jing; Zhou Chen; Zheng Jie; Balkus, Kenneth J Jr

    2011-01-01

    The first example of a water-soluble wrapped titania nanotube (TNT) decorated with fluorescent gold nanoparticles has been prepared. Gold nanoparticles ∼ 1.6 nm in diameter were grown on the TiO 2 nanotubes using a thiolactic acid linker to control the size. The gold clusters emit at 660 nm in water and were imaged using confocal microscopy. The gold decorated TNTs were suspended in water by wrapping the nanotubes with poly-L-arginine.

  18. Gold nanoparticles-immobilized, hierarchically ordered, porous TiO2 nanotubes for biosensing of glutathione

    Directory of Open Access Journals (Sweden)

    Sheen Mers SV

    2015-10-01

    Full Text Available SV Sheen Mers,1,2 Elumalai Thambuswamy Deva Kumar,1 V Ganesh1,2 1Electrodics and Electrocatalysis (EEC Division, Council of Scientific and Industrial Research–Central Electrochemical Research Institute (CSIR–CECRI, Karaikudi, Tamil Nadu, India; 2Academy of Scientific and Innovative Research (AcSIR, New Delhi, India Abstract: Glutathione (GSH is vital for several functions of our human body such as neutralization of free radicals and reactive oxygen compounds, maintaining the active forms of vitamin C and E, regulation of nitric oxide cycle, iron metabolism, etc. It is also an endogenous antioxidant in most of the biological reactions. Given the importance of GSH, a simple strategy is proposed in this work to develop a biosensor for quantitative detection of GSH. This particular biosensor comprises of gold nanoparticles (Au NPs-immobilized, hierarchically ordered titanium dioxide (TiO2 porous nanotubes. Hexagonally arranged, honeycomb-like nanoporous tubular TiO2 electrodes are prepared by using a simple electrochemical anodization process by applying a constant potential of 30 V for 24 hours using ethylene glycol consisting of ammonium fluoride as an electrolytic medium. Structural morphology and crystalline nature of such TiO2 nanotubes are analyzed using field emission scanning electron microscope (FESEM and X-ray diffraction (XRD. Interestingly, nanocomposites of TiO2 with Au NPs is prepared in an effort to alter the intrinsic properties of TiO2, especially tuning of its band gap. Au NPs are prepared by a well-known Brust and Schiffrin method and are immobilized onto TiO2 electrodes which act as a perfect electrochemical sensing platform for GSH detection. Structural characterization and analysis of these modified electrodes are performed using FESEM, XRD, and UV-visible spectroscopic studies. GSH binding events on Au NPs-immobilized porous TiO2 electrodes are monitored by electrochemical techniques, namely, cyclic voltammetry (CV and

  19. A Facile Method for Loading CeO2 Nanoparticles on Anodic TiO2 Nanotube Arrays.

    Science.gov (United States)

    Liao, Yulong; Yuan, Botao; Zhang, Dainan; Wang, Xiaoyi; Li, Yuanxun; Wen, Qiye; Zhang, Huaiwu; Zhong, Zhiyong

    2018-04-03

    In this paper, a facile method was proposed to load CeO 2 nanoparticles (NPs) on anodic TiO 2 nanotube (NT) arrays, which leads to a formation of CeO 2 /TiO 2 heterojunctions. Highly ordered anatase phase TiO 2 NT arrays were fabricated by using anodic oxidation method, then these individual TiO 2 NTs were used as tiny "nano-containers" to load a small amount of Ce(NO 3 ) 3 solutions. The loaded anodic TiO 2 NTs were baked and heated to a high temperature of 450 °C, under which the Ce(NO 3 ) 3 would be thermally decomposed inside those nano-containers. After the thermal decomposition of Ce(NO 3 ) 3 , cubic crystal CeO 2 NPs were obtained and successfully loaded into the anodic TiO 2 NT arrays. The prepared CeO 2 /TiO 2 heterojunction structures were characterized by a variety of analytical technologies, including XRD, SEM, and Raman spectra. This study provides a facile approach to prepare CeO 2 /TiO 2 films, which could be very useful for environmental and energy-related areas.

  20. Carbon nanotube TiO2 hybrid films for detecting traces of O2

    Science.gov (United States)

    Llobet, E.; Espinosa, E. H.; Sotter, E.; Ionescu, R.; Vilanova, X.; Torres, J.; Felten, A.; Pireaux, J. J.; Ke, X.; Van Tendeloo, G.; Renaux, F.; Paint, Y.; Hecq, M.; Bittencourt, C.

    2008-09-01

    Hybrid titania films have been prepared using an adapted sol-gel method for obtaining well-dispersed hydrogen plasma-treated multiwall carbon nanotubes in either pure titania or Nb-doped titania. The drop-coating method has been used to fabricate resistive oxygen sensors based on titania or on titania and carbon nanotube hybrids. Morphology and composition studies have revealed that the dispersion of low amounts of carbon nanotubes within the titania matrix does not significantly alter its crystallization behaviour. The gas sensitivity studies performed on the different samples have shown that the hybrid layers based on titania and carbon nanotubes possess an unprecedented responsiveness towards oxygen (i.e. more than four times higher than that shown by optimized Nb-doped TiO2 films). Furthermore, hybrid sensors containing carbon nanotubes respond at significantly lower operating temperatures than their non-hybrid counterparts. These new hybrid sensors show a strong potential for monitoring traces of oxygen (i.e. beverage industry.

  1. Nanoscale Optimization and Statistical Modeling of Photoelectrochemical Water Splitting Efficiency of N-Doped TiO2 Nanotubes

    KAUST Repository

    Isimjan, Tayirjan T.

    2014-12-19

    Highly ordered nitrogen-doped titanium dioxide (N-doped TiO2) nanotube array films with enhanced photo-electrochemical water splitting efficiency (PCE) for hydrogen generation were fabricated by electrochemical anodization, followed by annealing in a nitrogen atmosphere. Morphology, structure and composition of the N-doped TiO2 nanotube array films were investigated by FE-SEM, XPS, UV-Vis and XRD. The effect of annealing temperature, heating rate and annealing time on the morphology, structure, and photo-electrochemical property of the N-doped TiO2 nanotube array films were investigated. A design of experiments method was applied in order to minimize the number of experiments and obtain a statistical model for this system. From the modelling results, optimum values for the influential factors were obtained in order to achieve the maximum PCE. The optimized experiment resulted in 7.42 % PCE which was within 95 % confidence interval of the predicted value by the model. © 2014 Springer Science+Business Media.

  2. Morphological evolution of TiO2 nanotube arrays with lotus-root-shaped nanostructure

    Science.gov (United States)

    Yu, Dongliang; Song, Ye; Zhu, Xufei; Yang, Ruiquan; Han, Aijun

    2013-07-01

    TiO2 nanotube arrays (TNAs) with lotus-root-shaped nanostructure have been fabricated by a modified two-step electrochemical anodization method. In the present work, different morphologies formed under different anodizing voltages are investigated in detail by field-emission scanning electron microscope. The results show that the concaves left by the first-step anodization can guide the uniform growth of TNAs in some degree as the second-step anodizing voltage is the same with that in the first step, however, when lower voltages are adopted in the second-step anodization, no guidance can be achieved, and different morphological TNAs with lotus-root-shaped nanostructure are fabricated. And we find that the nanotube diameters are directly proportional to the applied voltage in the second-step anodization. Furthermore, a possible mechanism for the growth of the TiO2 nanotubes with the special morphology is proposed for the first time, which depends on both the oxygen bubble mold and the viscous flow of the barrier oxide from the pore base to the pore wall.

  3. Synthesis of TiO2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility

    Science.gov (United States)

    Liu, Wenwen; Su, Penglei; Chen, Su; Wang, Na; Ma, Yuanping; Liu, Yiran; Wang, Jinshu; Zhang, Zhenting; Li, Hongyi; Webster, Thomas J.

    2014-07-01

    To endow titanium (Ti) with antibacterial properties, different concentrations of zinc oxide (ZnO) nanoparticles were decorated on anodized titanium dioxide (TiO2) nanotubes by a simple hydrothermal treatment method. The particle sizes of ZnO, which were evenly distributed and tightly adherent to the walls of the Ti nanotubes, ranged from 20-50 nm. Results from this study showed that Zn was released from the TiO2 nanotubes in a constant, slow, and biologically inspired manner. Importantly, the results showed that the ZnO decorated TiO2 nanotubular samples inhibited Streptococcus mutants and Porphyromonas gingivalis growth compared to control unmodified Ti samples. Specifically, S. mutants and P. gingivalis growth were both reduced 45-85% on the ZnO decorated Ti samples compared to Ti controls after 7 days of culture. When examining the mechanism of action, it has been further found for the first time that the ZnO decorated Ti samples inhibited the expression of Streptococcus mutans bacterial adhesion genes. Lastly, the results showed that the same samples which decreased bacterial growth the most (0.015 M precursor Zn(NO3)2 samples) did not inhibit mesenchymal stem cell growth compared to Ti controls for up to 7 days. In summary, results from this study showed that compared to plain TiO2 nanotubes, TiO2 decorated with 0.015 M ZnO provided unprecedented antibacterial properties while maintaining the stem cell proliferation capacity necessary for enhancing the use of Ti in numerous medical applications, particularly in dentistry.

  4. Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface

    International Nuclear Information System (INIS)

    Alves, Sofia A.; Patel, Sweetu B.; Sukotjo, Cortino; Mathew, Mathew T.; Filho, Paulo N.; Celis, Jean-Pierre

    2017-01-01

    Highlights: • A new surface modification methodology for bio-functionalization of TiO2 NTs is addressed • Bone-like structured TiO2 nanotubular surfaces containing Ca and P were synthesized. • Ca/P-doped TiO2 NTs enhanced adhesion and proliferation of osteoblastic-like cells. • The bio-functionalization granted improved bio-electrochemical stability to TiO2 NTs. - Abstract: The modification of surface features such as nano-morphology/topography and chemistry have been employed in the attempt to design titanium oxide surfaces able to overcome the current dental implants failures. The main goal of this study is the synthesis of bone-like structured titanium dioxide (TiO 2 ) nanotubes enriched with Calcium (Ca) and Phosphorous (P) able to enhance osteoblastic cell functions and, simultaneously, display an improved corrosion behavior. To achieve the main goal, TiO 2 nanotubes were synthetized and doped with Ca and P by means of a novel methodology which relied, firstly, on the synthesis of TiO 2 nanotubes by anodization of titanium in an organic electrolyte followed by reverse polarization and/or anodization, in an aqueous electrolyte. Results show that hydrophilic bone-like structured TiO 2 nanotubes were successfully synthesized presenting a highly ordered nano-morphology characterized by non-uniform diameters. The chemical analysis of such nanotubes confirmed the presence of CaCO 3 , Ca 3 (PO 4 ) 2 , CaHPO 4 and CaO compounds. The nanotube surfaces submitted to reverse polarization, presented an improved cell adhesion and proliferation compared to smooth titanium. Furthermore, these surfaces displayed a significantly lower passive current in artificial saliva, and so, potential to minimize their bio-degradation through corrosion processes. This study addresses a very simple and promising multidisciplinary approach bringing new insights for the development of novel methodologies to improve the outcome of osseointegrated implants.

  5. Influence of surface treatment on preparing nanosized TiO2 supported on carbon nanotubes

    International Nuclear Information System (INIS)

    Wang Shuo; Ji Lijun; Wu Bin; Gong Qianming; Zhu Yuefeng; Liang Ji

    2008-01-01

    In this paper, nanosize titanium dioxide (TiO 2 ) deposited on pristine and acid treated carbon nanotubes (CNTs) were prepared by a modified sol-gel method. The nanoscale materials were extensively characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and Raman spectra. The results indicated that about 6.8 nm TiO 2 nanoparticles were successfully deposited on acid-treated CNTs surface homogeneously and densely, which was smaller than TiO 2 coated on pristine CNTs. The surface state of CNTs was a critical factor in obtaining a homogeneous distribution of nanoscale TiO 2 particles. Acid oxidization could etch the surface of CNTs and introduce functional groups, which were beneficial to controllable homogeneous deposition. The TiO 2 coated on acid-treated CNTs was used as photocatalyst for Reactive Brilliant Red X-3B dye degradation under UV irradiation, which showed higher efficiency than that of TiO 2 coated on pristine CNTs and commercial photocatalyst P25.

  6. Biofilm formation on a TiO2 nanotube with controlled pore diameter and surface wettability

    International Nuclear Information System (INIS)

    Anitha, V C; Narayan Banerjee, Arghya; Woo Joo, Sang; Lee, Jin-Hyung; Lee, Jintae; Ki Min, Bong

    2015-01-01

    Titania (TiO 2 ) nanotube arrays (TNAs) with different pore diameters (140 − 20 nm) are fabricated via anodization using hydrofluoric acid (HF) containing ethylene glycol (EG) by changing the HF-to-EG volume ratio and the anodization voltage. To evaluate the effects of different pore diameters of TiO 2 nanotubes on bacterial biofilm formation, Shewanella oneidensis (S. oneidensis) MR-1 cells and a crystal-violet biofilm assay are used. The surface roughness and wettability of the TNA surfaces as a function of pore diameter, measured via the contact angle and AFM techniques, are correlated with the controlled biofilm formation. Biofilm formation increases with the decreasing nanotube pore diameter, and a 20 nm TiO 2 nanotube shows the maximum biofilm formation. The measurements revealed that 20 nm surfaces have the least hydrophilicity with the highest surface roughness of ∼17 nm and that they show almost a 90% increase in the effective surface area relative to the 140 nm TNAs, which stimulate the cells more effectively to produce the pili to attach to the surface for more biofilm formation. The results demonstrate that bacterial cell adhesion (and hence, biofilm formation) can effectively be controlled by tuning the roughness and wettability of TNAs via controlling the pore diameters of TNA surfaces. This biofilm formation as a function of the surface properties of TNAs can be a potential candidate for both medical applications and as electrodes in microbial fuel cells. (paper)

  7. TiO2 nanotubes supported NiW hydrodesulphurization catalysts: Characterization and activity

    International Nuclear Information System (INIS)

    Palcheva, R.; Dimitrov, L.; Tyuliev, G.; Spojakina, A.; Jiratova, K.

    2013-01-01

    Highlights: ► NiW catalysts supported on TiO 2 nanotubes, titania and alumina. ► The best results are obtained with NiW/TiO 2 nanotubes in hydrodesulfurization (HDS) of thiophene. ► Active phase is Ni-WO x S y . ► Electronic promotion of W by Ti. - Abstract: High surface area TiO 2 nanotubes (Ti-NT) synthesized by alkali hydrothermal method were used as a support for NiW hydrodesulphurization catalyst. Nickel salt of 12-tungstophosphoric acid – Ni 3/2 PW 12 O 40 was applied as oxide precursor of the active components. The catalyst was characterized by S BET , XRD, UV–vis DRS, Raman spectroscopy, XPS, TPR and HRTEM. The results obtained were compared with those for the NiW catalysts prepared over high surface area titania and alumina supports. A polytungstate phase evidenced by Raman spectroscopy was observed indicating the destruction of the initial heteropolyanion. The catalytic experiments revealed two times higher thiophene conversion on NiW catalyst supported on Ti-NT than those of catalysts supported on alumina and titania. Increased HDS activity of the NiW catalyst supported on Ti-NT could be related to a higher amount of W oxysulfide entities interacting with Ni sulfide particles as consequence of the electronic effects of the Ti-NT observed with XPS analysis.

  8. A mechanistic study on templated electrodeposition of one-dimensional TiO2 nanorods and nanotubes using TiOSO4 as a precursor

    KAUST Repository

    Teo, Gladys Y.

    2014-10-01

    One-dimensional (1D) TiO2 nanorods and nanotubes have been successfully synthesized by templated electrodeposition within an anodic aluminium oxide membrane (AAM) using an aqueous precursor containing TiOSO 4. The deposition voltages were found to influence the resultant nanostructure of TiO2. Using a precursor of aqueous TiOSO4 at pH 3 maintained at 10 °C, TiO2 nanorods were electrodeposited in the AAM between applied voltages of - 1.4 V to - 1.0 V (vs. Ag/AgCl), while TiO2 nanotubes were obtained at less negative voltages of - 1.0 V to - 0.3 V (vs. Ag/AgCl). Cyclic voltammetry (CV) revealed that nitrate reduction in the voltage range of - 0.3 V to - 1.4 V played an essential role in the formation of TiO2. The mechanism for TiO2 nanotube formation has been elucidated, paving the way for the future tailoring of metal oxide nanostructures by templated electrodeposition. © 2014 Elsevier B.V.

  9. A mechanistic study on templated electrodeposition of one-dimensional TiO2 nanorods and nanotubes using TiOSO4 as a precursor

    KAUST Repository

    Teo, Gladys Y.; Ryan, Mary P.; Riley, D. Jason

    2014-01-01

    One-dimensional (1D) TiO2 nanorods and nanotubes have been successfully synthesized by templated electrodeposition within an anodic aluminium oxide membrane (AAM) using an aqueous precursor containing TiOSO 4. The deposition voltages were found to influence the resultant nanostructure of TiO2. Using a precursor of aqueous TiOSO4 at pH 3 maintained at 10 °C, TiO2 nanorods were electrodeposited in the AAM between applied voltages of - 1.4 V to - 1.0 V (vs. Ag/AgCl), while TiO2 nanotubes were obtained at less negative voltages of - 1.0 V to - 0.3 V (vs. Ag/AgCl). Cyclic voltammetry (CV) revealed that nitrate reduction in the voltage range of - 0.3 V to - 1.4 V played an essential role in the formation of TiO2. The mechanism for TiO2 nanotube formation has been elucidated, paving the way for the future tailoring of metal oxide nanostructures by templated electrodeposition. © 2014 Elsevier B.V.

  10. Understanding the effect of morphology on the photocatalytic activity of TiO2 nanotube array electrodes

    International Nuclear Information System (INIS)

    Adán, C.; Marugán, J.; Sánchez, E.; Pablos, C.; Grieken, R. van

    2016-01-01

    A comprehensive report on the correlation between the morphology and the photocatalytic (PC) and photoelectrocatalytic (PEC) activity of TiO 2 nanotubes (NTs) electrodes is presented. New insights are provided to support the effect of the anodization conditions on the photon-to-current efficiency of the electrodes based on the dimensional characteristics of the TiO 2 -NTs. Electrodes with promising properties based on the characterization data were scaled-up to test their activity on the PC and PEC oxidation of methanol. Results indicate that the length of the nanotubes significantly influences the photodegradation efficiency. The enhancement achieved in both PC and PEC processes with longer nanotubes can be explained by the higher surface area in contact with the electrolyte and the increase in the light absorption as the TiO 2 layer becomes thicker. However, as the length of the nanotubes increases, a reduction in the enhancement achieved by the application of a potential bias is observed. Kinetic constants of both reactions (PC and PEC) tend to get closer and the charge separation effect diminishes. In relative terms, the effect of the electric potential is more pronounced for electrodes with the shorter NTs. The reason is that once the TiO 2 layer is thick enough to absorb the available radiation, a further increase in the NTs length increases the resistance of the electrons to reach the back contact and the diffusional restrictions to the mass transport of the reactants/products along the tubes. Consequently, the existence of a compromise between reactivity and transport properties lead to the existence of an optimal NTs length.

  11. Sustained release of melatonin from TiO2 nanotubes for modulating osteogenic differentiation of mesenchymal stem cells in vitro.

    Science.gov (United States)

    Lai, Min; Jin, Ziyang; Tang, Qiang; Lu, Min

    2017-10-01

    To control the sustained release of melatonin and modulate the osteogenic differentiation of mesenchymal stem cells (MSCs), melatonin was firstly loaded onto TiO 2 nanotubes by direct dropping method, and then a multilayered film was coated by a spin-assisted layer-by-layer technique, which was composed of chitosan (Chi) and gelatin (Gel). Successful fabrication was characterized by field emission scanning electron microscopy, atomic force microscope, X-ray photoelectron spectroscopy and contact angle measurement, respectively. The efficient sustained release of melatonin was measured by UV-visible-spectrophotometer. After 2 days of culture, well-spread morphology was observed in MSCs grown on the Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates as compared to different groups. After 4, 7, 14 and 21 days of culture, the multilayered-coated melatonin-loaded TiO 2 nanotube substrates increased cell proliferation, increased alkaline phosphatase (ALP) and mineralization, increased expression of mRNA levels for runt-related transcription factor 2 (Runx2), ALP, osteopontin (OPN) and osteocalcin (OC), indicative of osteoblastic differentiation. These results demonstrated that Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates promoted cell adhesion, spreading, proliferation and differentiation and could provide an alternative fabrication method for titanium-based implants to enhance the osteointegration between bone tissues and implant surfaces.

  12. Preparation of TiO2-based nanotubes/nanoparticles composite thin film electrodes for their electron transport properties

    International Nuclear Information System (INIS)

    Zhao, Wanyu; Fu, Wuyou; Chen, Jingkuo; Li, Huayang; Bala, Hari; Wang, Xiaodong; Sun, Guang; Cao, Jianliang; Zhang, Zhanying

    2015-01-01

    The composite thin film electrodes were prepared with one-dimensional (1D) TiO 2 -B nanotubes (NTs) and zero-dimensional TiO 2 nanoparticles (NPs) based on different weight ratios. The electron transport properties of the NTs/NPs composite thin film electrodes applied for dye-sensitized solar cells had been investigated systematically. The results indicated that although the amount of dye adsorption decreased slightly, the devices with the NTs/NPs composite thin film electrodes could obtain higher open-circuit voltage and overall conversion efficiency compared to devices with pure TiO 2 NPs electrodes by rational tuning the weight ratio of TiO 2 -B NTs and TiO 2 NPs. When the weight ratio of TiO 2 -B NTs in the NTs/NPs composite thin film electrodes increased, the density of states and recombination rate decreased. The 1D structure of TiO 2 -B NTs can provide direct paths for electron transport, resulting in higher electron lifetime, electron diffusion coefficient and electron diffusion length. The composite thin film electrodes possess the merits of the rapid electron transport of TiO 2 -B NTs and the high surface area of TiO 2 NPs, which has great applied potential in the field of photovoltaic devices. - Highlights: • The composite thin film electrodes (CTFEs) were prepared with nanotubes and nanoparticles. • The CTFEs possess the rapid electron transport and high surface area. • The CTFEs exhibit lower recombination rate and longer electron life time. • The CTFEs have great applied potential in the field of photovoltaic devices

  13. Structure reconstruction of TiO2-based multi-wall nanotubes: first-principles calculations.

    Science.gov (United States)

    Bandura, A V; Evarestov, R A; Lukyanov, S I

    2014-07-28

    A new method of theoretical modelling of polyhedral single-walled nanotubes based on the consolidation of walls in the rolled-up multi-walled nanotubes is proposed. Molecular mechanics and ab initio quantum mechanics methods are applied to investigate the merging of walls in nanotubes constructed from the different phases of titania. The combination of two methods allows us to simulate the structures which are difficult to find only by ab initio calculations. For nanotube folding we have used (1) the 3-plane fluorite TiO2 layer; (2) the anatase (101) 6-plane layer; (3) the rutile (110) 6-plane layer; and (4) the 6-plane layer with lepidocrocite morphology. The symmetry of the resulting single-walled nanotubes is significantly lower than the symmetry of initial coaxial cylindrical double- or triple-walled nanotubes. These merged nanotubes acquire higher stability in comparison with the initial multi-walled nanotubes. The wall thickness of the merged nanotubes exceeds 1 nm and approaches the corresponding parameter of the experimental patterns. The present investigation demonstrates that the merged nanotubes can integrate the two different crystalline phases in one and the same wall structure.

  14. TiO2 Nanotubes on Transparent Substrates: Control of Film Microstructure and Photoelectrochemical Water Splitting Performance

    Directory of Open Access Journals (Sweden)

    Matus Zelny

    2018-01-01

    Full Text Available Transfer of semiconductor thin films on transparent and or flexible substrates is a highly desirable process to enable photonic, catalytic, and sensing technologies. A promising approach to fabricate nanostructured TiO2 films on transparent substrates is self-ordering by anodizing of thin metal films on fluorine-doped tin oxide (FTO. Here, we report pulsed direct current (DC magnetron sputtering for the deposition of titanium thin films on conductive glass substrates at temperatures ranging from room temperature to 450 °C. We describe in detail the influence that deposition temperature has on mechanical, adhesion and microstructural properties of titanium film, as well as on the corresponding TiO2 nanotube array obtained after anodization and annealing. Finally, we measure the photoelectrochemical water splitting activity of different TiO2 nanotube samples showing that the film deposited at 150 °C has much higher activity correlating well with the lower crystallite size and the higher degree of self-organization observed in comparison with the nanotubes obtained at different temperatures. Importantly, the film showing higher water splitting activity does not have the best adhesion on glass substrate, highlighting an important trade-off for future optimization.

  15. On Multiple Zagreb Indices of TiO2 Nanotubes.

    Science.gov (United States)

    Malik, Mehar Ali; Imran, Muhammad

    2015-01-01

    The First and Second Zagreb indices were first introduced by I. Gutman and N. Trinajstic in 1972. It is reported that these indices are useful in the study of anti-inflammatory activities of certain chemical instances, and in elsewhere. Recently, the first and second multiple Zagreb indices of a graph were introduced by Ghorbani and Azimi in 2012. In this paper, we calculate the Zagreb indices and the multiplicative versions of the Zagreb indices of an infinite class of Titania nanotubes TiO(2)[m,n].

  16. Preparation of Sb2S3 nanocrystals modified TiO2 dendritic structure with nanotubes for hybrid solar cell

    Science.gov (United States)

    Li, Yingpin; Wei, Yanan; Feng, Kangning; Hao, Yanzhong; Pei, Juan; Sun, Bao

    2018-06-01

    Array of TiO2 dendritic structure with nanotubes was constructed on transparent conductive fluorine-doped tin oxide glass (FTO) with titanium potassium oxalate as titanium source. Sb2S3 nanocrystals were successfully deposited on the TiO2 substrate via spin-coating method. Furthermore, TiO2/Sb2S3/P3HT/PEDOT:PSS composite film was prepared by successively spin-coating P3HT and PEDOT:PSS on TiO2/Sb2S3. It was demonstrated that the modification of TiO2 dendritic structure with Sb2S3 could enhance the light absorption in the visible region. The champion hybrid solar cell assembled by TiO2/Sb2S3/P3HT/PEDOT:PSS composite film achieved a power conversion efficiency (PCE) of 1.56%.

  17. Investigation on the influence of pH on structure and photoelectrochemical properties of CdSe electrolytically deposited into TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Xue, Jinbo; Shen, Qianqian; Yang, Fei; Liang, Wei; Liu, Xuguang

    2014-01-01

    Highlights: • There-dimensional CdSe-TiO 2 multijunction was fabricated by electrochemical method. • CdSe nanoparticles had a good bonding with the walls of TiO 2 nanotube. • pH value played an important role in the quality of CdSe-TiO 2 interfaces. - Abstract: In this work, we fabricated CdSe/TiO 2 nanotube arrays (NTAs) by electrochemical method. In electrodeposition, the pH value of the electrolyte played an important role in formation of CdSe nanoparticles. As the pH value decreased, more CdSe deposited on TiO 2 NTAs. Scanning electron microscopy and transmission electron microscopy characterization shows that the CdSe nanoparticles were uniformly deposited on and into TiO 2 nanotubes when the pH value was 3, and this structure fully utilized the three-dimensional (3D) space of TiO 2 nanotubes to form 3D multijunction heterostructures. According to the photoelectrochemical test, the CdSe/TiO 2 NTAs sample prepared at pH = 3 exhibited maximum photocurrent and open circuit potential. This is because that the deposited CdSe nanoparticles had better bond with the walls of TiO 2 nanotube than the samples deposited at other pH values, which facilitated the propagation and kinetic separation of photogenerated charges

  18. Preparation of Fe-Doped TiO2 Nanotubes and Their Photocatalytic Activities under Visible Light

    Directory of Open Access Journals (Sweden)

    Honghui Teng

    2013-01-01

    Full Text Available Fe-doped TiO2 nanotubes (Fe-TNTs have been prepared by ultrasonic-assisted hydrothermal method. The structure and composition of the as-prepared TiO2 nanotubes were characterized by transmission electron microscopy, X-ray diffraction, and UV-Visible absorption spectroscopy. Their photocatalytic activities were evaluated by the degradation of MO under visible light. The UV-visible absorption spectra of the Fe-TNT showed a red shift and an enhancement of the absorption in the visible region compared to the pure TNT. The Fe-TNTs were provided with good photocatalytic activities and photostability and under visible light irradiation, and the optimum molar ratio of Ti : Fe was found to be 100 : 1 in our experiments.

  19. Synthesis of LaVO4/TiO2 heterojunction nanotubes by sol-gel coupled with hydrothermal method for photocatalytic air purification.

    Science.gov (United States)

    Zou, Xuejun; Li, Xinyong; Zhao, Qidong; Liu, Shaomin

    2012-10-01

    With the aim of improving the effective utilization of visible light, the LaVO(4)/TiO(2) heterojunction nanotubes were fabricated by sol-gel coupled with hydrothermal method. The photocatalytic ability was demonstrated through catalytic removal of gaseous toluene species. The nanotube samples were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), surface photovoltage (SPV), Raman spectra and N(2) adsorption-desorption measurements. The characterization results showed that the samples with high specific surface areas were of typical nanotubular morphology, which would lead to the high separation and transfer efficiency of photo induced electron-hole pairs. The as-prepared nanotubes exhibited high photocatalytic activity in decomposing toluene species under visible light irradiation with fine photochemical stability. The enhanced photocatalytic performance of LaVO(4)/TiO(2) nanotubes might be attributed to the matching band potentials, the interconnected heterojunction of LaVO(4) versus TiO(2), and the large specific surface areas of nanotubes. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Investigation of energy band alignments and interfacial properties of rutile NMO2/TiO2 (NM = Ru, Rh, Os, and Ir) by first-principles calculations.

    Science.gov (United States)

    Yang, Chen; Zhao, Zong-Yan

    2017-11-08

    In the field of photocatalysis, constructing hetero-structures is an efficient strategy to improve quantum efficiency. However, a lattice mismatch often induces unfavorable interfacial states that can act as recombination centers for photo-generated electron-hole pairs. If the hetero-structure's components have the same crystal structure, this disadvantage can be easily avoided. Conversely, in the process of loading a noble metal co-catalyst onto the TiO 2 surface, a transition layer of noble metal oxides is often formed between the TiO 2 layer and the noble metal layer. In this article, interfacial properties of hetero-structures composed of a noble metal dioxide and TiO 2 with a rutile crystal structure have been systematically investigated using first-principles calculations. In particular, the Schottky barrier height, band bending, and energy band alignments are studied to provide evidence for practical applications. In all cases, no interfacial states exist in the forbidden band of TiO 2 , and the interfacial formation energy is very small. A strong internal electric field generated by interfacial electron transfer leads to an efficient separation of photo-generated carriers and band bending. Because of the differences in the atomic properties of the components, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures demonstrate band dividing, while RhO 2 /TiO 2 and IrO 2 /TiO 2 hetero-structures have a pseudo-gap near the Fermi energy level. Furthermore, NMO 2 /TiO 2 hetero-structures show upward band bending. Conversely, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures present a relatively strong infrared light absorption, while RhO 2 /TiO 2 and IrO 2 /TiO 2 hetero-structures show an obvious absorption edge in the visible light region. Overall, considering all aspects of their properties, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures are more suitable than others for improving the photocatalytic performance of TiO 2 . These findings will provide useful information

  1. Ternary composite of TiO2 nanotubes/Ti plates modified by g-C3N4 and SnO2 with enhanced photocatalytic activity for enhancing antibacterial and photocatalytic activity.

    Science.gov (United States)

    Faraji, Masoud; Mohaghegh, Neda; Abedini, Amir

    2018-01-01

    A series of g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plates were fabricated via simple dipping of TiO 2 nanotubes/Ti in a solution containing SnCl 2 and g-C 3 N 4 nanosheets and finally annealing of the plates. Synthesized plates were characterized by various techniques. The SEM analysis revealed that the g-C 3 N 4 -SnO 2 nanosheets with high physical stability have been successfully deposited onto the surface of TiO 2 nanotubes/Ti plate. Photocatalytic activity was investigated using two probe chemical reactions: oxidative decomposition of acetic acid and oxidation of 2-propanol under irradiation. Antibacterial activities for Escherichia coli (E. coli) bacteria were also investigated in dark and under UV/Vis illuminations. Detailed characterization and results of photocatalytic and antibacterial activity tests revealed that semiconductor coupling significantly affected the photocatalyst properties synthesized and hence their photocatalytic and antibacterial activities. Modification of TiO 2 nanotubes/Ti plates with g-C 3 N 4 -SnO 2 deposits resulted in enhanced photocatalytic activities in both chemical and microbial systems. The g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plate exhibited the highest photocatalytic and antibacterial activity, probably due to the heterojunction between g-C 3 N 4 -SnO 2 and TiO 2 nanotubes/Ti in the ternary composite plate and thus lower electron/hole recombination rate. Based on the obtained results, a photocatalytic and an antibacterial mechanism for the degradation of E. coli bacteria and chemical pollutants over g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plate were proposed and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Electrical characterization of TiO2 nanotubes synthesized through electrochemical anodizing method

    Science.gov (United States)

    Manescu Paltanea, Veronica; Paltanea, Gheorghe; Popovici, Dorina; Jiga, Gabriel

    2016-05-01

    In the present paper, the electrochemical anodizing method was used for the obtaining of TiO2 nanotube layers, developed on titanium surface. Self-organized titanium nanotubes were obtained when an aqueous solution of 49.5 wt % H2O - 49.5 wt % glycerol - 1 wt % HF was used as electrolyte, the anodizing time being equal to 8 hours and the applied voltage to 25 V. Scanning electron microscopy shows that the one-dimensional nanostructure has a tubular configuration with an inner diameter of approximately 60 nm and an outer diameter of approximately 100 nm. The electrical properties of these materials were analyzed through dielectric spectroscopy method.

  3. Enhanced photoelectrocatalytic performance for degradation of diclofenac and mechanism with TiO2 nano-particles decorated TiO2 nano-tubes arrays photoelectrode

    International Nuclear Information System (INIS)

    Cheng, Xiuwen; Liu, Huiling; Chen, Qinghua; Li, Junjing; Wang, Pu

    2013-01-01

    In this study, TiO 2 nano-particles decorated TiO 2 nano-tubes arrays (TiO 2 NPs/TiO 2 NTAs) photoelectrodes have been successfully prepared through anodization, combined with ultrasonic strategy, followed by annealing post-treatment. The morphology and structure of the as-prepared TiO 2 NPs/TiO 2 NTAs photoelectrodes were characterized by scanning electrons microscopy (SEM), N 2 adsorption/desorption isotherms, X-ray diffraction (XRD) and UV–visible light diffuse reflection spectroscopy (DRS). In addition, the generation of hydroxyl radicals (·OH) was detected by a photoluminescence (PL) spectra using terephthalic acid (TA) as a probe molecule. Furthermore, the photoelectrochemical (PECH) properties of TiO 2 NPs/TiO 2 NTAs photoanode were investigated through transient open circuit potential (OCP), photocurrent response (PCR) and electrochemical impedance spectroscopy (EIS). It was found that TiO 2 NPs/TiO 2 NTAs photoelectrode exhibited a distinct decrease of OCP of −0.219 mV cm −2 and PCR of 0.049 mA cm −2 , while a significantly enhanced photoelectrocatalytic (PEC) efficiency of 63.6% (0.4 V vs. SCE) for the degradation of diclofenac. Moreover, the enhanced PEC mechanism of TiO 2 NPs/TiO 2 NTAs photoanode was proposed. The high PEC performance could be attributed to the decoration of TiO 2 NPs, which could improve the mobility and separation efficiency of photoinduced charge carriers under external potential

  4. Synthesis and magnetotransport studies of CrO2 films grown on TiO2 nanotube arrays by chemical vapor deposition

    Science.gov (United States)

    Wang, Xiaoling; Zhang, Caiping; Wang, Lu; Lin, Tao; Wen, Gehui

    2018-04-01

    The CrO2 films have been prepared on the TiO2 nanotube array template via atmospheric pressure chemical vapor deposition method. And the growth procedure was studied. In the beginning of the deposition process, the CrO2 grows on the cross section of the TiO2 nanotubes wall, forms a nanonet-like layer. And the grain size of CrO2 is very small. With the increase of the deposition time, the grain size of CrO2 also increases, and the nanonet-like layer changes into porous film. With the further increase of the deposition time, all the nanotubes are covered by CrO2 grains and the surface structure becomes polycrystalline film. The average grain size on the surface of the CrO2 films deposited for 1 h, 2 h and 5 h is about 190 nm, 300 nm and 470 nm. The X-ray diffraction pattern reveals that the rutile CrO2 film has been synthesized on the TiO2 nanotube array template. The CrO2 films show large magnetoresistance (MR) at low temperature, which should originate from spin-dependent tunneling through grain boundaries between CrO2 grains. And the tunneling mechanism of the CrO2 films can be well described by the fluctuation-induced tunneling (FIT) model. The CrO2 film deposited for 2 h shows insulator behavior from 5 k to 300 K, but the CrO2 film deposited for 5 h shows insulator-metal transition around 140 K. The reason is briefly discussed.

  5. Ag and CdS nanoparticles co-sensitized TiO2 nanotubes for enhancing visible photoelectrochemical performance

    International Nuclear Information System (INIS)

    Wang Qingyao; Yang Xiuchun; Liu Dan; Chi Lina; Hou Junwei

    2012-01-01

    Highlights: ► Ag and CdS nanoparticles co-sensitized TiO 2 nanotubes were fabricated by the SILAR method. ► The co-sensitization expands the photoresponse range of TiO 2 NTs to 668.7 nm. ► Visible light photocurrents and photocatalytic activities of CdS–Ag/TiO 2 NTs were studied. ► The electron transfer mechanism of CdS–Ag/TiO 2 NTs was proposed. - Abstract: The Ag and CdS nanoparticles co-sensitization of TiO 2 nanotubes (CdS–Ag/TiO 2 NTs) were prepared by successive ionic layer adsorption and reaction (SILAR) technique. The phase composition, morphology and optical property were characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV–vis diffusion reflection spectroscopy (DRS). The co-modification of Ag and CdS nanoparticles expanded the photoresponse range of TiO 2 NTs from ultraviolet region to 668.7 nm, and the CdS–Ag/TiO 2 NTs prepared by SILAR deposition of 5 cycles exhibited higher visible photocurrent and stability against photocorrosion. The detailed electrons transfer mechanism of CdS–Ag/TiO 2 NTs was proposed, and photocatalytic activity toward degradation of methyl orange (MO) under visible-light irradiation was also investigated.

  6. Three-dimensional hot electron photovoltaic device with vertically aligned TiO2 nanotubes.

    Science.gov (United States)

    Goddeti, Kalyan C; Lee, Changhwan; Lee, Young Keun; Park, Jeong Young

    2018-05-09

    Titanium dioxide (TiO 2 ) nanotubes with vertically aligned array structures show substantial advantages in solar cells as an electron transport material that offers a large surface area where charges travel linearly along the nanotubes. Integrating this one-dimensional semiconductor material with plasmonic metals to create a three-dimensional plasmonic nanodiode can influence solar energy conversion by utilizing the generated hot electrons. Here, we devised plasmonic Au/TiO 2 and Ag/TiO 2 nanodiode architectures composed of TiO 2 nanotube arrays for enhanced photon absorption, and for the subsequent generation and capture of hot carriers. The photocurrents and incident photon to current conversion efficiencies (IPCE) were obtained as a function of photon energy for hot electron detection. We observed enhanced photocurrents and IPCE using the Ag/TiO 2 nanodiode. The strong plasmonic peaks of the Au and Ag from the IPCE clearly indicate an enhancement of the hot electron flux resulting from the presence of surface plasmons. The calculated electric fields and the corresponding absorbances of the nanodiode using finite-difference time-domain simulation methods are also in good agreement with the experimental results. These results show a unique strategy of combining a hot electron photovoltaic device with a three-dimensional architecture, which has the clear advantages of maximizing light absorption and a metal-semiconductor interface area.

  7. Photoelectrocatalytic degradation of atrazine by boron-fluorine co-doped TiO2 nanotube arrays.

    Science.gov (United States)

    Wang, He-Xuan; Zhu, Li-Nan; Guo, Fu-Qiao

    2018-06-23

    Atrazine, one of the most widespread herbicides in the world, is considered as an environmental estrogen and has potential carcinogenicity. In this study, atrazine was degraded on boron-fluorine co-doped TiO 2 nanotube arrays (B, F-TiO 2 NTAs), which had similar morphology with the pristine TiO 2 NTAs. The structure and morphology of TiO 2 nanotube samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-visible diffuse reflectance spectroscopy (DRS). It showed that the decoration of fluorine and boron made both the absorption in the visible region enhanced and the band edge absorption shifted. The efficiency of atrazine degradation by B, F-TiO 2 NTAs through photoelectrocatalysis was investigated by current, solution pH, and electrolyte concentration, respectively. The atrazine removal rate reached 76% through photoelectrocatalytic reaction by B, F-TiO 2 NTAs, which was 46% higher than that under the photocatalysis process. Moreover, the maximum degradation rate was achieved at pH of 6 in 0.01 M of Na 2 SO 4 electrolyte solution under a current of 0.02 A and visible light for 2 h in the presence of B, F-TiO 2 NTAs. These results showed that B, F-TiO 2 NTAs exhibit remarkable photoelectrocatalytic activity in degradation of atrazine.

  8. Dye-sensitized solar cells based on anatase TiO2/multi-walled carbon nanotubes composite nanofibers photoanode

    International Nuclear Information System (INIS)

    Du, Pingfan; Song, Lixin; Xiong, Jie; Li, Ni; Wang, Lijun; Xi, Zhenqiang; Wang, Naiyan; Gao, Linhui; Zhu, Hongliang

    2013-01-01

    Highlights: ► TiO 2 /multi-walled carbon nanotubes (MWCNTs) hybrid nanofibers are prepared via electrospinning. ► Dye-sensitized solar cells (DSSCs) are assembled using TiO 2 /MWCNTs nanofibers film as photoanode. ► Energy conversion efficiency of DSSCs is greatly dependent on the content of MWCNTs. ► Moderate MWCNTs incorporation can substantially enhance the performance of DSSCs. - Abstract: Anatase TiO 2 /multi-walled carbon nanotubes (TiO 2 /MWCNTs) hybrid nanofibers (NFs) film was prepared via a facile electrospinning method. Dye-sensitized solar cells (DSSCs) based on TiO 2 /MWCNTs composite NFs photoanodes with different contents of MWCNTs (0, 0.1, 0.3, 0.5, 1 wt.%) were assembled using N719 dye as sensitizer. Field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), and Raman spectrometer were used to characterize the TiO 2 /MWCNTs electrode films. The photocurrent–voltage (I–V) characteristic, incident photo-to-current conversion efficiency (IPCE) spectrum, and electrochemical impedance spectroscopy (EIS) measurements were carried out to evaluate the photoelectric properties of the DSSCs. The results reveal that the energy conversion efficiency is greatly dependent on the content of MWCNTs in the composite NFs film, and a moderate incorporation of MWCNTs can substantially enhance the performance of DSSCs. When the electrode contains 0.3 wt.% MWCNTs, the corresponding solar cell yield the highest efficiency of 5.63%. This efficiency value is approximately 26% larger than that of the unmodified counterpart.

  9. Electrochemically synthesized visible light absorbing vertically aligned N-doped TiO2 nanotube array films

    International Nuclear Information System (INIS)

    Antony, Rajini P.; Mathews, Tom; Ajikumar, P.K.; Krishna, D. Nandagopala; Dash, S.; Tyagi, A.K.

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► Single step electrochemical synthesis of N-doped TiO 2 nanotube array films. ► Effective substitutional N-doping achieved. ► Different N-concentrations were achieved by varying the N-precursor concentration in the electrolyte. ► Visible light absorption observed at high N-doping. -- Abstract: Visible light absorbing vertically aligned N-doped anatase nanotube array thin films were synthesized by anodizing Ti foils in ethylene glycol + NH 4 F + water mixture containing urea as nitrogen source. Different nitrogen concentrations were achieved by varying the urea content in the electrolyte. The structure, morphology, composition and optical band gap of the nanotube arrays were determined by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy (XPS) and diffuse reflectance spectroscopy, respectively. The substitution of O 2− ions by N 3− ions in the anion sublattice as well as the formulae of the doped samples was confirmed from the results of XPS. The optical band gap of the nanotube arrays was found to decrease with N-concentration. The sample with the highest concentration corresponding to the formula TiO 1.83 N 0.14 showed two regions in the Tauc's plot indicating the presence of interband states.

  10. Low temperature RF plasma nitriding of self-organized TiO2 nanotubes for effective bandgap reduction

    Science.gov (United States)

    Bonelli, Thiago Scremin; Pereyra, Inés

    2018-06-01

    Titanium dioxide is a widely studied semiconductor material found in many nanostructured forms, presenting very interesting properties for several applications, particularly photocatalysis. TiO2 nanotubes have a high surface-to-volume ratio and functional electronic properties for light harvesting. Despite these manifold advantages, TiO2 photocatalytic activity is limited to UV radiation due to its large band gap. In this work, TiO2 nanotubes produced by electrochemical anodization were submitted to plasma nitriding processes in a PECVD reactor. The plasma parameters were evaluated to find the best conditions for gap reduction, in order to increase their photocatalytic activity. The pressure and RF power density were varied from 0.66 to 2.66 mbar and 0.22 to 3.51 W/cm2 respectively. The best gap reduction, to 2.80 eV, was achieved using a pressure of 1.33 mbar and 1.75 W/cm2 RF power at 320 °C, during a 2-h process. This leads to a 14% reduction in the band gap value and an increase of 25.3% in methylene blue reduction, doubling the range of solar photons absorption from 5 to 10% of the solar spectrum.

  11. Photocatalytic degradation of RhB over MgFe2O4/TiO2 composite materials

    International Nuclear Information System (INIS)

    Zhang Lei; He, Yiming; Wu Ying; Wu Tinghua

    2011-01-01

    Highlights: → Novel composite MgFe 2 O 4 /TiO 2 as catalyst. → Higher activity for the photodegradation of RhB under visible light irradiation. → Calcination temperature of catalyst has effect on photocatalytic activity. → Different photocatalysis mechanism under UV and visible light irradiation. - Abstract: MgFe 2 O 4 /TiO 2 (MFO/TiO 2 ) composite photocatalysts were successfully synthesized using a mixing-annealing method. The synthesized composites exhibited significantly higher photocatalytic activity than a naked semiconductor in the photodegradation of Rhodamine B. Under UV and visible light irradiation, the optimal percentages of doped MgFe 2 O 4 (MFO) were 2 wt.% and 3 wt.%, respectively. The effects of calcination temperature on photocatalytic activity were also investigated. The origin of the high level of activity was discussed based on the results of X-ray diffraction, UV-vis diffuse reflection spectroscopy, scanning electron microscopy, transmission electron microscopy, and nitrogen physical adsorption. The enhanced activity of the catalysts was mainly attributed to the synergetic effect between the two semiconductors, the band potential of which matched suitably.

  12. Influence of Different Defects in Vertically Aligned Carbon Nanotubes on TiO2 Nanoparticle Formation through Atomic Layer Deposition.

    Science.gov (United States)

    Acauan, Luiz; Dias, Anna C; Pereira, Marcelo B; Horowitz, Flavio; Bergmann, Carlos P

    2016-06-29

    The chemical inertness of carbon nanotubes (CNT) requires some degree of "defect engineering" for controlled deposition of metal oxides through atomic layer deposition (ALD). The type, quantity, and distribution of such defects rules the deposition rate and defines the growth behavior. In this work, we employed ALD to grow titanium oxide (TiO2) on vertically aligned carbon nanotubes (VACNT). The effects of nitrogen doping and oxygen plasma pretreatment of the CNT on the morphology and total amount of TiO2 were systematically studied using transmission electron microscopy, Raman spectroscopy, and thermogravimetric analysis. The induced chemical changes for each functionalization route were identified by X-ray photoelectron and Raman spectroscopies. The TiO2 mass fraction deposited with the same number of cycles for the pristine CNT, nitrogen-doped CNT, and plasma-treated CNT were 8, 47, and 80%, respectively. We demonstrate that TiO2 nucleation is dependent mainly on surface incorporation of heteroatoms and their distribution rather than structural defects that govern the growth behavior. Therefore, selecting the best way to functionalize CNT will allow us to tailor TiO2 distribution and hence fabricate complex heterostructures.

  13. Synthesis and characterization of Ag-doped TiO2 nanotubes on Ti-6Al-4V and Ti-6Al-7Nb alloy

    Science.gov (United States)

    Ulfah, Ika Maria; Bachtiar, Boy M.; Murnandityas, Arnita Rut; Slamet

    2018-05-01

    The present paper is focused on comparative behavior of nanotubes growth on Ti-6Al-4V and Ti-6Al-7Nb alloy using electrochemical anodization method. These alloys were anodized in electrolytes solution containing glycerol, water and 0.5wt.% of NH4F. Silver-doped TiO2 nanotubes were synthesized using photo-assisted deposition (PAD) at various Ag loading concentration in 0.05 M, 0.10 M, and 0.15 M. The phase composition and morphological characteristics were investigated by XRD and FESEM/EDX, respectively. The surface wettability was measured by contact angle meter. The results showed that TiO2 nanotubes can be grown on these surface alloys. XRD profiles revealed crystal formation of anatase, rutile and Ag on these surface alloys. According to FESEM images, the average nanotube diameter of Ti-6Al-4V alloy and Ti-6Al-7Nb alloy are 134 nm and 120 nm, respectively. EDX-Mapping analysis showed that Ag desposited over surface of TiO2 nanotubes. The surface wettability indicated hydrophilicity properties on Ti-4Al-4V alloy and Ti-6Al-7Nb alloy surface. This study may contribute to the development of silver-doped TiO2 nanotubes on Ti-6Al-4V alloy and Ti-6Al-7Nb alloy can be considered in various photocatalytic applications such as biomedical devicesdue to photocatalytic mechanism and antibacterial ability.

  14. Porous TiO2 Conformal Coating on Carbon Nanotubes as Energy Storage Materials

    International Nuclear Information System (INIS)

    Yan, Litao; Xu, Yun; Zhou, Meng; Chen, Gen; Deng, Shuguang; Smirnov, Sergei; Luo, Hongmei; Zou, Guifu

    2015-01-01

    The controllable synthesis of strongly coupled inorganic materials/carbon nanotubes (CNTs) hybrids represents a long-standing challenge for developing advanced catalysts and energy-storage materials. Here we report a simple sol-gel method for facile synthesis of TiO 2 /CNTs hybrid. The porous anatase TiO 2 nanoparticles are uniformly coated on the CNTs conducting network, which leads to remarkably improved electrochemical performances such as exceptional cycling stability, good high rate durability, and reduced resistance. This hybrid exhibits a reversible capacity as high as 200 mA·h g −1 at a current density of 0.1 A g −1 as an anode in lithium-ion battery (LIB). As a supercapacitor (SC), it shows a specific supercapacitance of 145 F g −1 in 0.5 M H 2 SO 4 electrolyte, higher than that of the previously reported TiO 2 based supercapacitors. Moreover, this hybrid also exhibits excellent durability after 1000 cycles for both LIBs and SCs. Such superior performance and cycling durability demonstrate the reinforced synergistic effects between the porous TiO 2 and interweaved CNTs network, indicating a great application potential for such hybrid materials in high power LIBs and SCs

  15. Amine functionalized TiO2-carbon nanotube composite: synthesis, characterization and application to glucose biosensing

    Science.gov (United States)

    Tasviri, Mahboubeh; Rafiee-Pour, Hossain-Ali; Ghourchian, Hedayatollah; Gholami, Mohammad Reza

    2011-12-01

    The synthesis of amine functionalized TiO2-coated multiwalled carbon nanotubes (NH2-TiO2-CNTs) using sol-gel method was investigated. The synthesized nanocomposite was characterized with XRD, FTIR spectroscopy, BET test and SEM imaging. The results demonstrated a unique nanostructure with no destruction of the CNTs' shape. In addition, the presence of amine groups on the composite surface was confirmed by FTIR. This nanocomposite was used for one-step immobilization of glucose oxidase (GOx) to sense glucose. The result of cyclic voltammetry showed a pair of well-defined and quasi-reversible peaks for direct electron transfer of GOx in the absence of glucose. Also, the result of electrochemical impedance spectroscopy indicated that GOx was successfully immobilized on the surface of NH2-TiO2-CNTs. Furthermore, good amperometric response showed that immobilized GOx on the NH2-TiO2-CNTs exhibits exceptional bioelectrocatalytic activity toward glucose oxidation.

  16. Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/TiO2 heterostructured nanotube arrays.

    Science.gov (United States)

    Jiao, Zhengbo; Chen, Tao; Xiong, Jinyan; Wang, Teng; Lu, Gongxuan; Ye, Jinhua; Bi, Yingpu

    2013-01-01

    Well-aligned TiO2 nanotube arrays have become of increasing significance because of their unique highly ordered array structure, high specific surface area, unidirectional charge transfer and transportation features. However, their poor visible light utilization as well as the high recombination rate of photoexcited electron-hole pairs greatly limited their practical applications. Herein, we demonstrate the fabrication of visible-light-responsive heterostructured Cr-doped SrTiO3/TiO2 nanotube arrays by a simple hydrothermal method, which facilitate efficient charge separation and thus improve the photoelectrochemical as well as photocatalytic performances.

  17. Enhancement in photo-electrochemical efficiency by reducing recombination rate in branched TiO2 nanotube array on functionalizing with ZnO micro crystals

    Science.gov (United States)

    Boda, Muzaffar Ahmad; Ashraf Shah, Mohammad

    2018-06-01

    In this study, branched TiO2 nanotube array were fabricated through electrochemical anodization process at constant voltage using third generation electrolyte. On account of morphological advantage, these nanotubes shows significant enhancement in photo-electrochemical property than compact or conventional titania nanotube array. However, their photo-electrochemical efficiency intensifies on coating with ZnO micro-crystals. ZnO coated branched TiO2 nanotube array shows a photocurrent density of 27.8 mA cm‑2 which is 1.55 times the photocurrent density (17.2 mA cm‑2) shown by bare branched titania nanotubes. The significant enhancement in photocurrent density shown by the resulting ZnO/TiO2 hybrid structure is attributed to suppression in electron–hole recombination phenomenon by offering smooth pathway to photo generated excitons on account of staggered band edge positions in individual semiconductors.

  18. TiO2 nanotube formation by Ti film anodization and their transport properties for dye-sensitized solar cells

    NARCIS (Netherlands)

    Iraj, M.; Kolahdouz, M.; Asl-Soleimani, E.; Esmaeili, E.; Kolahdouz Esfahani, Z.

    2016-01-01

    In this paper, we present the synthesis of TiO2 nanotube (NT) arrays formed by anodization of Ti film deposited on a fluorine-doped tin oxide-coated glass substrate by direct current magnetron sputtering. NH4F/ethylene glycol electrolyte was used to demonstrate the growth of stable nanotubes at room

  19. Au Nanoparticles Decorated TiO2 Nanotube Arrays as a Recyclable Sensor for Photoenhanced Electrochemical Detection of Bisphenol A.

    Science.gov (United States)

    Hu, Liangsheng; Fong, Chi-Chun; Zhang, Xuming; Chan, Leo Lai; Lam, Paul K S; Chu, Paul K; Wong, Kwok-Yin; Yang, Mengsu

    2016-04-19

    A photorefreshable and photoenhanced electrochemical sensing platform for bisphenol A (BPA) detection based on Au nanoparticles (NPs) decorated carbon doped TiO2 nanotube arrays (TiO2/Au NTAs) is described. The TiO2/Au NTAs were prepared by quick annealing of anodized nanotubes in argon, followed by controllable electrodeposition of Au NPs. The decoration of Au NPs not only improved photoelectrochemical behavior but also enhanced electrocatalytic activities of the resulted hybrid NTAs. Meanwhile, the high photocatalytic activity of the NTAs allowed the electrode to be readily renewed without damaging the microstructures and surface states after a short UV treatment. The electrochemical detection of BPA on TiO2/Au NTAs electrode was significantly improved under UV irradiation as the electrode could provide fresh reaction surface continuously and the further increased photocurrent resulting from the improved separation efficiency of the photogenerated electron-hole pairs derived from the consumption of holes by BPA. The results showed that the refreshable TiO2/Au NTAs electrode is a promising sensor for long-term BPA monitoring with the detection limit (S/N = 3) of 6.2 nM and the sensitivity of 2.8 μA·μM(-1)·cm(-2).

  20. The directed preparation of TiO2 nanotubes film on FTO substrate via hydrothermal method for gas sensing application

    Directory of Open Access Journals (Sweden)

    Pham Van Viet

    2016-04-01

    Full Text Available In this research, we directly synthesized TiO2 nanotubes film on Fluorine doped Tin oxide (FTO substrate via hydrothermal method from commercial TiO2 in NaOH solution at 135 ℃ for 24 hours. The samples were characterized by X-ray diffraction (XRD pattern, field emission scanning electron microscopy (FESEM and transmitting electron microscopy (TEM. The average diameter of TiO2 nanotubes (TNTs is about 10–12 nm and their length is about a few hundred nanometers. The sensitivity ability of TNTs increases as the gas concentration increases and developing to the highest sensitivity of TNTs is 2.4 at 700 ppm of the ethanol concentration. The same as the gas concentration, the sensitivity of TNTs increases when the temperature increases. Besides, the sensitivity of samples at 250 ℃ is doubled compared to samples determined at 100 ℃.

  1. CdTe and graphene co-sensitized TiO2 nanotube array photoanodes for protection of 304SS under visible light

    International Nuclear Information System (INIS)

    Li, Hong; Wang, Xiutong; Hou, Baorong; Zhang, Liang

    2015-01-01

    CdTe/graphene/TiO 2 films that served as photoanodes for cathodic protection application were prepared by an electrochemical deposition method. The deposition of graphene and CdTe nanoparticles (NPs) on the surface of the TiO 2 nanotubes was confirmed by scanning electron microscope and transmission electron microscopy. The composites exhibited high light absorption in both the UV and visible light region. The results indicated that TiO 2 nanotube photoelectrodes sensitized by 20-cycle graphene and 30-cycle CdTe NPs exhibited effective photocathodic protection properties for 304 stainless steel (304SS) under the visible-light illumination, with an photopotential of −750 mV versus saturated calomel electrode and a current density of 560 μA cm −2 . Due to the efficient photogenerated charge separation, the three-component CdTe/graphene/TiO 2 showed stronger photoresponse than pure TiO 2 under visible-light illumination. In summary, the CdTe/graphene could improve the photocathodic protection properties of TiO 2 films. (paper)

  2. Distinguishing between deep trapping transients of electrons and holes in TiO2 nanotube arrays using planar microwave resonator sensor.

    Science.gov (United States)

    Zarifi, Mohammad H; Wiltshire, Benjamin Daniel; Mahdi, Najia; Shankar, Karthik; Daneshmand, Mojgan

    2018-05-16

    A large signal DC bias and a small signal microwave bias were simultaneously applied to TiO2 nanotube membranes mounted on a planar microwave resonator. The DC bias modulated the electron concentration in the TiO2 nanotubes, and was varied between 0 and 120 V in this study. Transients immediately following the application and removal of DC bias were measured by monitoring the S-parameters of the resonator as a function of time. The DC bias stimulated Poole-Frenkel type trap-mediated electrical injection of excess carriers into TiO2 nanotubes which resulted in a near constant resonant frequency but a pronounced decrease in the microwave amplitude due to free electron absorption. When ultraviolet illumination and DC bias were both present and then step-wise removed, the resonant frequency shifted due to trapping -mediated change in the dielectric constant of the nanotube membranes. Characteristic lifetimes of 60-80 s, 300-800 s and ~3000 s were present regardless of whether light or bias was applied and are also observed in the presence of a hole scavenger, which we attribute to oxygen adsorption and deep electron traps while another characteristic lifetime > 9000 s was only present when illumination was applied, and is attributed to the presence of hole traps.

  3. Nanoscale Optimization and Statistical Modeling of Photoelectrochemical Water Splitting Efficiency of N-Doped TiO2 Nanotubes

    KAUST Repository

    Isimjan, Tayirjan T.; Trifkovic, Milana; Abdullahi, Inusa; Rohani, Sohrab M F; Ray, Ajay

    2014-01-01

    Highly ordered nitrogen-doped titanium dioxide (N-doped TiO2) nanotube array films with enhanced photo-electrochemical water splitting efficiency (PCE) for hydrogen generation were fabricated by electrochemical anodization, followed by annealing

  4. Formation and Morphology Evolution of Anodic TiO2 Nanotubes under Negative Pressure

    International Nuclear Information System (INIS)

    Lu, Hongyan; Fan, Haowen; Jin, Rong; Chong, Bin; Shen, Xiaoping; Yan, Shuo; Zhu, Xufei

    2016-01-01

    Highlights: • Nernst equation is applied to explain electrochemical reactions during anodization. • Longer nanotubes were obtained under 0.02 MPa, as compared to atmospheric conditions. • The total anodizing current was separated into ionic current and electronic current. • Explanation for the particularity of nanotubes obtained under 0.02 MPa is presented. - Abstract: Anodic TiO 2 nanotubes (ATNTs) have attracted extensive interest in the past decade. ATNTs are generally fabricated by anodization of Ti foils under atmospheric conditions (0.1 MPa). To date, the growth kinetics of ATNTs remains unclear. Herein anodizations of Ti foils under negative pressure are designed to overcome this challenge. Longer nanotubes were fabricated under negative pressure, as compared to atmospheric conditions. Variations of the nanotube length and surface morphology of ATNTs provide evidences for oxygen bubble mould, in which the ionic current contributes to nanotube growth while the electronic current gives rise to the oxygen evolution. Nernst equation was firstly applied to simulate variations of electronic current and ionic current during anodization. The in-depth analysis of the morphology variations could help elucidate the formation mechanism, thus paving the way for the optimization of the synthesis process of ATNTs.

  5. Three-dimensional observation of TiO2 nanostructures by electron tomography

    KAUST Repository

    Suh, Young Joon

    2013-03-01

    Three-dimensional nanostructures of TiO2 related materials including nanotubes, electron acceptor materials in hybrid polymer solar cells, and working electrodes of dye sensitized solar cells (DSSCs) were visualized by electron tomography as well as TEM micrographs. The regions on the wall of TiO2 nanotubes where the streptavidins were attached were elucidated by electron tomogram analysis. The coverage of TiO2 nanotubes by streptavidin was also investigated. The TiO2 nanostructures in hybrid polymer solar cells made by sol-gel and atomic layer deposition (ALD) methods and the morphologies of pores between TiO2 particles in DSSCs were also observed by reconstructed three-dimensional images made by electron tomography. © 2012 Elsevier Ltd.

  6. The influence of CdS intermediate layer on CdSe/CdS co-sensitized free-standing TiO2 nanotube solar cells

    Science.gov (United States)

    Ren, Xuefeng; Yu, Libo; Li, Zhen; Song, Hai; Wang, Qingyun

    2018-01-01

    We build CdSe quantum dots (QDs) sensitized TiO2 NT solar cells (CdSe/TiO2 solar cells) by successive ionic layer adsorption reaction (SILAR) method on free-standing translucent TiO2 nanotube (NT) film. The best power conversion efficiency (PCE) 0.74% is obtained with CdSe/TiO2 NT solar cells, however, it is very low. Hence, we introduced the CdS QDs layer located between CdSe QDs and TiO2 NT to achieve an enhanced photovoltaic performance. The J-V test results indicated that the insert of CdS intermediate layer yield a significant improvement of PCE to 2.52%. Combining experimental and theoretical analysis, we find that the effects caused by a translucent TiO2 nanotube film, a better lattices match between CdS and TiO2, and a new formed stepwise band edges structure not only improve the light harvesting efficiency but also increase the driving force of electrons, leading to the improvement of photovoltaic performance.

  7. Properties of Sn-doped TiO2 nanotubes fabricated by anodization of co-sputtered Ti–Sn thin films

    International Nuclear Information System (INIS)

    Kyeremateng, Nana Amponsah; Hornebecq, Virginie; Knauth, Philippe; Djenizian, Thierry

    2012-01-01

    Self-organized Sn-doped TiO 2 nanotubes (nts) were fabricated for the first time, by anodization of co-sputtered Ti and Sn thin films. This nanostructured material was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, UV–vis spectroscopy and transmission electron microscopy. Due to their remarkable properties, Sn-doped TiO 2 nts can find potential applications in Li-ion microbatteries, photovoltaics, and catalysis. Particularly, the electrochemical performance as an anode material for Li-ion microbatteries was evaluated in Li test cells. With current density of 70 μA cm −2 (1 C) and cut-off potential of 1 V, Sn-doped TiO 2 nts showed improved performance compared to simple TiO 2 nts, and differential capacity plots revealed that the material undergoes full electrochemical reaction as a Rutile-type TiO 2 .

  8. Osseointegration of Implants Surface-Treated with Various Diameters of TiO2 Nanotubes in Rabbit

    Directory of Open Access Journals (Sweden)

    Cheul-Goo Kang

    2015-01-01

    Full Text Available The aim of this study was to evaluate the osseointegration of implants which were surface-treated with various diameters of TiO2 nanotubes (30 nm, 70 nm, and 100 nm in rabbit. Resorbable blast media (RBM surfaced implants (Osstem, Busan, Korea 3.5 mm in diameter and 8.5 mm in length were designated as the control group and the implants surface-treated with various diameters of nanotubes (30 nm, 70 nm, and 100 nm with the same shapes were designated as the experimental groups. The implants were maintained unloaded for 4 and 12 weeks. After this period, the animals were sacrificed and micro-CT analysis, histomorphometric analysis (bone to implant contact (BIC, bone volume (BV, and removal torque test were performed. Micro-CT analysis, histomorphometric analysis, and removal torque test results all showed the similar pattern, showing that 70 nm experimental group had the highest value at 4 weeks while 30 nm experimental group had the highest value at 12 weeks. Therefore, on the basis of the results above, it can be concluded that 30 nm and 70 nm TiO2 nanotubes may have positive effects on osteogenesis and osseointegration depending on the healing time.

  9. Multiwalled carbon nanotubes decorated with nitrogen, palladium co-doped TiO2 (MWCNT/N, Pd co-doped TiO2) for visible light photocatalytic degradation of Eosin Yellow in water

    Science.gov (United States)

    Kuvarega, Alex T.; Krause, Rui W. M.; Mamba, Bhekie B.

    2012-03-01

    Multiwalled carbon nanotube (MWCNT/N), Pd co-doped TiO2 nanocomposites were prepared by calcining the hydrolysis products of the reaction of titanium isopropoxide, Ti(OC3H7)4 containing multiwalled carbon nanotubes with aqueous ammonia. The prepared samples were characterised by Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, diffuse reflectance UV-Vis spectrophotometry (DRUV-Vis), XRD, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). DRUV-Vis analysis confirmed the red shift in the absorption edge at lower MWCNT percentages. SEM and TEM images showed the complete coverage of the MWCNTs with clusters of anatase TiO2 at low MWCNT percentages. Higher MWCNT levels led to their aggregation and consequently poor coverage by N, Pd co-doped TiO2. The photocatalytic activities of the nanocomposites were monitored by photodegradation of Eosin Yellow under simulated solar and visible light irradiation (λ > 450 nm). Irradiation with simulated solar radiation gave higher dye-degradation rates compared to visible radiation. The optimum MWCNT weight percentage in the composites was found to be 0.5. High degradation-rate constants of 3.42 × 10-2 and 5.18 × 10-3 min-1 were realised for the 0.5% MWCNT/N, Pd co-doped TiO2 composite, using simulated solar light and visible light, respectively.

  10. Electrochemically conductive treatment of TiO2 nanotube arrays in AlCl3 aqueous solution for supercapacitors

    Science.gov (United States)

    Zhong, Wenjie; Sang, Shangbin; Liu, Yingying; Wu, Qiumei; Liu, Kaiyu; Liu, Hongtao

    2015-10-01

    Highly ordered TiO2 nanotube arrays (NTAs) with excellent stability and large specific surface area make them competitive using as supercapacitor materials. Improving the conductivity of TiO2 is of great concern for the construction of high-performance supercapacitors. In this work, we developed a novel approach to improve the performance of TiO2 materials, involving the fabrication of Al-doped TiO2 NTAs by a simple electrochemical cathodic polarization treatment in AlCl3 aqueous solution. The prepared Al-doped TiO2 NTAs exhibited excellent electrochemical performances, attributing to the remarkably improved electrical conductivity (i.e., from approx. 10 kΩ to 20 Ω). Further analysis showed that Al3+ ions rather than H+ protons doped into TiO2 lattice cause this high conductivity. A MnO2/Al-TiO2 composite was evaluated by cyclic voltammetry, and achieved the specific capacitance of 544 F g-1, and the Ragone plot of the sample showed a high power density but less reduction of energy density. These results indicate that the MnO2/Al-TiO2 NTAs sample could be served as a promising electrode material for high -performance supercapacitors.

  11. Photoelectrochemical properties of TiO2 Nanotube Arrays Modified with BiOCl nanosheets

    International Nuclear Information System (INIS)

    Liu, Haipeng; Xu, Guangqing; Wang, Jinwen; Lv, Jun; Zheng, Zhixiang; Wu, Yucheng

    2014-01-01

    Highlights: • BiOCl were deposited on TiO2 NTAs by sequential chemical bath deposition. • BiOCl can decrease background photocurrent and increase current response. • High sensitivity BiOCl/TiO2 is due to the direct oxidation of organics on BiOCl. - Abstract: BiOCl nanosheets were deposited on anodized TiO 2 nanotube arrays (NTAs) by sequential chemical bath deposition method to get BiOCl/TiO 2 NTAs for photoelectrochemical detection of organic compounds (represented by glucose). The structures, elemental components and morphologies of TiO 2 and BiOCl/TiO 2 NTAs were characterized by using X-ray diffraction diffractometer, scanning electron microscope and transmission electron microscope. The photoelectrochemical behaviors of TiO 2 and BiOCl/TiO 2 NTAs in the buffer and glucose solutions were measured by cyclic votammetry and amperometry with different optical powers. The modification of BiOCl nanosheets on TiO 2 NTAs decreases the photocurrents of TiO 2 NTAs in the buffer solution and increases the current response to glucose. Both of the background photocurrent decrease and current response increase are benefit for photoelectrochemical detection of organic compounds. When glucose was used as the target organic compound, the optimized BiOCl/TiO 2 NTAs sensor achieved a sensitivity of 0.327 μA/μM (0.417 μA·cm −2 ·μM −1 ), linear range from 0 to 1300 μM and calculated detection limit of 5.7 μM. Mechanisms of BiOCl modification were studied by measuring the optical absorption and hydroxyl radical HO· productivity. The transfer of holes from TiO 2 to BiOCl and the direct oxidation of organic compounds on BiOCl nanosheets led to the decrease of background photocurrent (lower reaction rate of water splitting on BiOCl nanosheets) and the increase of current response to organic compounds (higher reaction rate of direct oxidation of organic compounds)

  12. TiO2/Cu2O composite based on TiO2 NTPC photoanode for photoelectrochemical (PEC) water splitting under visible light

    KAUST Repository

    Shi, Le

    2015-05-01

    Water splitting through photoelectrochemical reaction is widely regarded as a major method to generate H2 , a promising source of renewable energy to deal with the energy crisis faced up to human being. Efficient exploitation of visible light in practice of water splitting with pure TiO2 material, one of the most popular semiconductor material used for photoelectrochemical water splitting, is still challenging. One dimensional TiO2 nanotubes is highly desired with its less recombination with the short distance for charge carrier diffusion and light-scattering properties. This work is based on TiO2 NTPC electrode by the optimized two-step anodization method from our group. A highly crystalized p-type Cu2O layer was deposited by optimized pulse potentiostatic electrochemical deposition onto TiO2 nanotubes to enhance the visible light absorption of a pure p-type TiO2 substrate and to build a p-n junction at the interface to improve the PEC performance. However, because of the real photocurrent of Cu2O is far away from its theoretical limit and also poor stability in the aqueous environment, a design of rGO medium layer was added between TiO2 nanotube and Cu2O layer to enhance the photogenerated electrons and holes separation, extend charge carrier diffusion length (in comparison with those of conventional pure TiO2 or Cu2O materials) which could significantly increase photocurrent to 0.65 mA/cm2 under visible light illumination (>420 nm) and also largely improve the stability of Cu2O layer, finally lead to an enhancement of water splitting performance.

  13. TiO2/Cu2O composite based on TiO2 NTPC photoanode for photoelectrochemical (PEC) water splitting under visible light

    KAUST Repository

    Shi, Le

    2015-01-01

    in practice of water splitting with pure TiO2 material, one of the most popular semiconductor material used for photoelectrochemical water splitting, is still challenging. One dimensional TiO2 nanotubes is highly desired with its less recombination

  14. Interface architecture determined electrocatalytic activity of Pt on vertically oriented TiO(2) nanotubes.

    Science.gov (United States)

    Rettew, Robert E; Allam, Nageh K; Alamgir, Faisal M

    2011-02-01

    The surface atomic structure and chemical state of Pt is consequential in a variety of surface-intensive devices. Herein we present the direct interrelationship between the growth scheme of Pt films, the resulting atomic and electronic structure of Pt species, and the consequent activity for methanol electro-oxidation in Pt/TiO(2) nanotube hybrid electrodes. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) measurements were performed to relate the observed electrocatalytic activity to the oxidation state and the atomic structure of the deposited Pt species. The atomic structure as well as the oxidation state of the deposited Pt was found to depend on the pretreatment of the TiO(2) nanotube surfaces with electrodeposited Cu. Pt growth through Cu replacement increases Pt dispersion, and a separation of surface Pt atoms beyond a threshold distance from the TiO(2) substrate renders them metallic, rather than cationic. The increased dispersion and the metallic character of Pt results in strongly enhanced electrocatalytic activity toward methanol oxidation. This study points to a general phenomenon whereby the growth scheme and the substrate-to-surface-Pt distance dictates the chemical state of the surface Pt atoms, and thereby, the performance of Pt-based surface-intensive devices.

  15. Fabrication of transparent TiO2 nanotube-based photoanodes for CdS/CdTe quantum co-sensitized solar cells

    Science.gov (United States)

    Gualdrón-Reyes, A. F.; Cárdenas-Arenas, A.; Martínez, C. A.; Kouznetsov, V. V.; Meléndez, A. M.

    2017-01-01

    In order to fabricate a solar cell, ordered TiO2 nanotube (TNT) arrays were prepared by double anodization. TNT arrays with variable lengths were obtained by changing the duration of the anodizing process of up to 3h. TNT membranes were transferred to indium tin oxide substrates and attached with a B-TiO2 sol. TNT photoanode with the best photoelectrochemical performance was sensitized with CdS by SILAR method. On other hand, CdTe quantum dots prepared via colloidal synthesis were deposited on TNT photoanodes for 2h, 4h and 6h. In addition, TNT/CdS was loaded with CdTe quantum dots for 4 h. Morphology and chemical modification of TiO2 were characterized by FESEM and XPS, while their photoelectrochemical performance was measured by open-circuit photopotential and photovoltammetry under visible light. TiO2 nanotubes grown during 2.5h showed the highest photocurrent due to presence of Ti3+ donor states by N and F co-doping, increasing the number of photogenerated electrons transported to back collector. TNT/CdS/CdTe photoanode reach the highest conversion efficiency under AM 1.5G simulated solar illumination.

  16. Synthesis and Characterization of TiO2(B Nanotubes Prepared by Hydrothermal Method Using [Ti8O12(H2O24]Cl8.HCl.7H2O as Precursor

    Directory of Open Access Journals (Sweden)

    Hari Sutrisno

    2010-04-01

    Full Text Available Low-dimension TiO2-related material has been synthesized by hydrothermal treatment of [Ti8O12(H2O24]Cl8.HCl.7H2O crystal as precursor in a 10 M NaOh aqueous solution at 150 C for 24 h. Characterization of the obtained product was carried out by a range of techniques including X-ray diffraction (XRD, high resolution scanning electron microscopy (HRSEM, high resolution transmission electron microscopy (HRTEM, Raman spectroscopy and nitrogen adsorption-desorption isotherm (Brunauer-Emmett-Teller (BET-Barret-Joyner-Halender (BJH. From HRTEM, XRD and Raman spectra showed that the obtained product has a TiO2(B structure. According to HRTEM observations, it was found that TiO2(B has nanotubular structure with approximately 5-8 nm in outer and 3-6 nm in inner diameter. The BET surface area of TiO2(B nanotubes is quiet large, values of 418.3163 m2/g being obtained. Pore structure analyisis by the BJH method showed that the average pore diameter of TiO2(B nanotubes has 5.5781 nm.

  17. Fabrication and Characteristics of Macroporous TiO2 Photocatalyst

    Directory of Open Access Journals (Sweden)

    Guiyun Yi

    2014-01-01

    Full Text Available Macroporous TiO2 photocatalyst was synthesized by a facile nanocasting method using polystyrene (PS spherical particles as the hard template. The synthesized photocatalyst was characterized by transmission electron microscope (TEM, scanning electron microscopy (SEM, thermogravimetry-differential thermogravimetry (TG-DTG, X-ray diffraction (XRD, and N2-sorption. TEM, SEM, and XRD characterizations confirmed that the macroporous TiO2 photocatalyst is composed of anatase phase. The high specific surface area of 87.85 m2/g can be achieved according to the N2-sorption analysis. Rhodamine B (RhB was chosen as probe molecule to evaluate the photocatalytic activity of the TiO2 catalysts. Compared with the TiO2 materials synthesized in the absence of PS spherical template, the macroporous TiO2 photocatalyst sintered at 500°C exhibits much higher activity on the degradation of RhB under the UV irradiation, which can be assigned to the well-structured macroporosity. The macroporous TiO2 material presents great potential in the fields of environmental remediation and energy conversion and storage.

  18. Hydrothermal solid-gas route to TiO2 nanoparticles/nanotube arrays for high-performance supercapacitors

    Science.gov (United States)

    Fan, Haowen; Zhang, He; Luo, Xiaolei; Liao, Maoying; Zhu, Xufei; Ma, Jing; Song, Ye

    2017-07-01

    Although TiO2 nanotube arrays (TNTAs) have shown great promise as supercapacitor materials, their specific capacitances are still not comparable with some typical materials. Here, TiO2 nanoparticles (NPs)/TNTAs hybrid structure has been derived from the anodized TNTAs by a facile hydrothermal solid-gas method (HSGM), which can avoid cracking or curling of the TNTAs from Ti substrate. The obtained NPs/TNTAs hybrid structure can exhibit a ∼4.90 times increase in surface area and a ∼5.49 times increase in areal specific capacitance compared to the TNTAs without HSGM treatment. Besides, the argon-atmosphere annealing can offer improved areal capacitance and cycling stability relative to the air-atmosphere annealing. The hydrothermal vapor pressure is a key factor for controlling microscopic morphologies of TNTAs, the morphology transformations of TNTAs during the HSGM treatment can be accelerated under enhanced vapor pressures. The highest areal capacitance of HSGM-treated TNTAs is up to 76.12 mF cm-2 at 0.5 mA cm-2, well above that of any TiO2 materials reported to date.

  19. Enhanced photoelectrocatalytic degradation of 2,4-dichlorophenoxyacetic acid by CuInS2 nanoparticles deposition onto TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Liu Ronghua; Liu Yutang; Liu Chengbin; Luo Shenglian; Teng Yarong; Yang Lixia; Yang Renbin; Cai Qingyun

    2011-01-01

    Research highlights: → The photocatalytic application of CuInS 2 with a direct band gap of about 1.5 eV and a high absorption coefficient remains unknown. → We describe an impulse electrodeposition approach to deposit CuInS 2 nanoparticles in uniform size of about 20 nm onto the top surface of the highly oriented TiO 2 NT arrays while minimizing the clogging of the tube entrances. → The novel photocatalyst exhibits a highly visible-light photocatalytic degradation activity for the target organic pollutant. → Moreover, the stability of the modified TiO 2 NT is good. → Therefore, CuInS 2 nanoparticles modified TiO 2 NT photocatalysts have potential utility in practical purification of organic wastewater. - Abstract: Surface modification of TiO 2 nanotube (NT) arrays with CuInS 2 nanoparticles (NPs) for photocatalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was reported. A pulse electrodeposition technique was used to prepare the CuInS 2 NPs, and the resulted CuInS 2 NPs, with a uniform size of about 20 nm, were found to deposit on the top surface of the highly oriented TiO 2 NT while without clogging the tube entrances. Compared with the unmodified TiO 2 NT, the CuInS 2 NPs modified TiO 2 NT (CuInS 2 -TiO 2 NT) showed significantly enhanced photocatalytic activity towards 2,4-D under visible light. After 160 min irradiation, the removal rate of 2,4-D is 100% by using CuInS 2 -TiO 2 NT, much higher than 65.2% by using the unmodified TiO 2 NT in photoelectrocatalytic process. The increased photodegradation efficiency mainly results from the improved photocurrent density as results of enhanced visible-light absorption and decreased hole-electron recombination due to the presence of narrow-band-gap p-type semiconductor CuInS 2 .

  20. Mesoporous TiO2 Micro-Nanometer Composite Structure: Synthesis, Optoelectric Properties, and Photocatalytic Selectivity

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2012-01-01

    Full Text Available Mesoporous anatase TiO2 micro-nanometer composite structure was synthesized by solvothermal method at 180°C, followed by calcination at 400°C for 2 h. The as-prepared TiO2 was characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM, and Fourier transform infrared spectrum (FT-IR. The specific surface area and pore size distribution were obtained from N2 adsorption-desorption isotherm, and the optoelectric property of the mesoporous TiO2 was studied by UV-Vis absorption spectrum and surface photovoltage spectra (SPS. The photocatalytic activity was evaluated by photodegradation of sole rhodamine B (RhB and sole phenol aqueous solutions under simulated sunlight irradiation and compared with that of Degussa P-25 (P25 under the same conditions. The photodegradation preference of this mesoporous TiO2 was also investigated for an RhB-phenol mixed solution. The results show that the TiO2 composite structure consists of microspheres (∼0.5–2 μm in diameter and irregular aggregates (several hundred nanometers with rough surfaces and the average primary particle size is 10.2 nm. The photodegradation activities of this mesoporous TiO2 on both RhB and phenol solutions are higher than those of P25. Moreover, this as-prepared TiO2 exhibits photodegradation preference on RhB in the RhB-phenol mixture solution.

  1. Low Pt content of carbon supported Pt-Ni-TiO2 nanotube electrocatalysts for direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Q.Z; Wu, X.; Ma, Z.F. [Shanghai Jiao Tong Univ., Shanghai, (China). Dept. of Chemical Engineering

    2008-07-01

    Interest in titanium oxide (TiO2) nanomaterial is growing due to their special characteristics for optics, catalysis, and photoelectricity conversion. In this study, the anatase/rutile crystalline of TiO2 nanoparticles was synthesized by co-deposition. TiO2 nanotubes were then obtained by microwave irradiations. This paper described the mechanism to fabricate TiO2 nanotubes. The conditions for preparing TiO2 nanotubes by microwave irradiation were optimized. Electrocatalysts were then prepared on the basis of the synthesized TiO2 nanotube. Their performances were investigated by the electro-oxidation of methanol. When Pt electrocatalysts were doped with a certain content of TiO2 nanotubes, they had more electrocatalytic activity for methanol electro-oxidation, particularly if the second transition metal, such as Ni, was added into the electrocatalyst. The electrocatalysts contained 5 and 10 wt per cent of Pt and Ni respectively. The 10 wt per cent TiO2 nanotubes showed better activities than any other catalysts for methanol electro-oxidation. According to XRD and TEM results, the size of nanoparticles of Pt became smaller after adding TiO2 nanotubes into the catalysts. It was concluded that here might be some interactions between Pt, Ni, and TiO2 nanotubes.

  2. Effects of Hydroxylation on PbS Quantum Dot Sensitized TiO2 Nanotube Array Photoelectrodes

    International Nuclear Information System (INIS)

    Liu, Zhongqing; Wang, Bin; Wu, Jianchun; Dong, Qiang; Zhang, Xiaoming; Xu, He

    2016-01-01

    ABSTRACT: The contact state at the heterojunction interfaces greatly influences the interfacial kinetics of the photoinduced charge carriers. In this study, we used a facile NaOH pretreatment to replenish the hydroxyl groups lost during the heat treatment for crystallization of TiO 2 nanotube arrays (TNAs) prepared via anodic oxidization. By reacting the carboxylic acid groups of thioglycolic acid (TGA) with the TiO 2 surface hydroxyl groups, TGA molecules were covalently linked to the TiO 2 surface and then PbS quantum dots (QDs) were anchored onto the TNAs via the successive ionic layer adsorption and reaction (SILAR) method. The sample microstructure and photoelectrochemical properties were analyzed with X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM),current–voltage characteristics (J–V), electrochemical impedance spectroscopy (EIS), transient photovoltage plots and Mott-Schottky curves. The contact state and electrostatic potential distribution between TiO 2 {1 0 1} and PbS {1 1 1} planes were estimated by using first principle simulation. It was found that the NaOH pretreatment could enhance the crystallization degree of PbS QDs, decrease the crystal face mismatch, dangling bond density and the interfacial resistance between PbS QDs and TiO 2 , and accelerate the interfacial separation and transfer of photoinduced charge carriers. The first principle calculations demonstrated that the PbS QDs and TiO 2 interfacial contact was strengthened, and the built-in electric field was induced from TiO 2 {1 0 1} towards PbS {1 1 1}. These combined effects apparently improved the device photoelectrochemical performance. Compared to the sample without pretreatment, the specimen pretreated with NaOH demonstrated 19.96% and 29.93% increases in peak photoconversion efficiency after five and ten cycles of SILAR deposition, respectively.

  3. Synthesis of highly-ordered TiO2 nanotube arrays with tunable sizes

    Science.gov (United States)

    Wang, Xian; Zha, Chenyang; Ji, Cheng; Zhang, Xiaoyan; Shen, Liming; Wang, Yifeng; Gupta, Arunava; Yoriya, Sorachon; Bao, Ningzhong

    2014-09-01

    Vertically-oriented one-dimensional TiO2 nanotube (TNT) arrays have been fabricated by anodic oxidation using different electrolyte solvents, including ethylene glycol (EG), diethylene glycol (DEG), and dimethyl sulfoxide (DMSO), in the presence of hydrofluoric acid (HF) or ammonium fluoride (NH4F). The influence of synthetic conditions, including the nature of the electrolyte and anodization voltage, on nanotube microstructure has been systematically investigated. Highly-ordered TNTs with tube length of ˜0.5-26.7 μm, inner diameter of ˜13-201 nm, and outer diameter of ˜28-250 nm have been obtained. The conversion of as-prepared TNT arrays from amorphous phase to crystalline structure has been achieved by a post-synthetic annealing at 500 °C for 3 h in oxygen ambient. The TNT arrays with tunable sizes and structures are attractive for use as electrode materials in fabrication of thin film solar cells and highly active photocatalysts.

  4. Synthesis of highly-ordered TiO2 nanotube arrays with tunable sizes

    International Nuclear Information System (INIS)

    Wang, Xian; Zha, Chenyang; Ji, Cheng; Zhang, Xiaoyan; Shen, Liming; Wang, Yifeng; Bao, Ningzhong; Gupta, Arunava; Yoriya, Sorachon

    2014-01-01

    Vertically-oriented one-dimensional TiO 2 nanotube (TNT) arrays have been fabricated by anodic oxidation using different electrolyte solvents, including ethylene glycol (EG), diethylene glycol (DEG), and dimethyl sulfoxide (DMSO), in the presence of hydrofluoric acid (HF) or ammonium fluoride (NH 4 F). The influence of synthetic conditions, including the nature of the electrolyte and anodization voltage, on nanotube microstructure has been systematically investigated. Highly-ordered TNTs with tube length of ∼0.5–26.7 μm, inner diameter of ∼13–201 nm, and outer diameter of ∼28–250 nm have been obtained. The conversion of as-prepared TNT arrays from amorphous phase to crystalline structure has been achieved by a post-synthetic annealing at 500 °C for 3 h in oxygen ambient. The TNT arrays with tunable sizes and structures are attractive for use as electrode materials in fabrication of thin film solar cells and highly active photocatalysts. (paper)

  5. Effects of incorporation of 2.5 and 5 wt% TiO2 nanotubes on fracture toughness, flexural strength, and microhardness of denture base poly methyl methacrylate (PMMA).

    Science.gov (United States)

    Abdulrazzaq Naji, Sahar; Behroozibakhsh, Marjan; Jafarzadeh Kashi, Tahereh Sadat; Eslami, Hossein; Masaeli, Reza; Mahgoli, Hosseinali; Tahriri, Mohammadreza; Ghavvami Lahiji, Mehrsima; Rakhshan, Vahid

    2018-04-01

    The aim of this preliminary study was to investigate, for the first time, the effects of addition of titania nanotubes (n-TiO 2 ) to poly methyl methacrylate (PMMA) on mechanical properties of PMMA denture base. TiO 2 nanotubes were prepared using alkaline hydrothermal process. Obtained nanotubes were assessed using FESEM-EDX, XRD, and FT-IR. For 3 experiments of this study (fracture toughness, three-point bending flexural strength, and Vickers microhardness), 135 specimens were prepared according to ISO 20795-1:2013 (n of each experiment=45). For each experiment, PMMA was mixed with 0% (control), 2.5 wt%, and 5 wt% nanotubes. From each TiO 2 :PMMA ratio, 15 specimens were fabricated for each experiment. Effects of n-TiO 2 addition on 3 mechanical properties were assessed using Pearson, ANOVA, and Tukey tests. SEM images of n-TiO 2 exhibited the presence of elongated tubular structures. The XRD pattern of synthesized n-TiO 2 represented the anatase crystal phase of TiO 2 . Moderate to very strong significant positive correlations were observed between the concentration of n-TiO 2 and each of the 3 physicomechanical properties of PMMA (Pearson's P value ≤.001, correlation coefficient ranging between 0.5 and 0.9). Flexural strength and hardness values of specimens modified with both 2.5 and 5 wt% n-TiO 2 were significantly higher than those of control ( P ≤.001). Fracture toughness of samples reinforced with 5 wt% n-TiO 2 (but not those of 2.5% n-TiO 2 ) was higher than control ( P =.002). Titania nanotubes were successfully introduced for the first time as a means of enhancing the hardness, flexural strength, and fracture toughness of denture base PMMA.

  6. Water Adsorption on Clean and Defective Anatase TiO2 (001) Nanotube Surfaces: A Surface Science Approach.

    Science.gov (United States)

    Kenmoe, Stephane; Lisovski, Oleg; Piskunov, Sergei; Bocharov, Dmitry; Zhukovskii, Yuri F; Spohr, Eckhard

    2018-04-11

    We use ab initio molecular dynamics simulations to study the adsorption of thin water films with 1 and 2 ML coverage on anatase TiO 2 (001) nanotubes. The nanotubes are modeled as 2D slabs, which consist of partially constrained and partially relaxed structural motifs from nanotubes. The effect of anion doping on the adsorption is investigated by substituting O atoms with N and S impurities on the nanotube slab surface. Due to strain-induced curvature effects, water adsorbs molecularly on defect-free surfaces via weak bonds on Ti sites and H bonds to surface oxygens. While the introduction of an S atom weakens the interaction of the surface with water, which adsorbs molecularly, the presence of an N impurity renders the surface more reactive to water, with a proton transfer from the water film and the formation of an NH group at the N site. At 2 ML coverage, a further surface-assisted proton transfer takes place in the water film, resulting in the formation of an OH - group and an NH 2 + cationic site on the surface.

  7. Antibacterial activity and inflammation inhibition of ZnO nanoparticles embedded TiO2 nanotubes

    Science.gov (United States)

    Yao, Shenglian; Feng, Xujia; Lu, Jiaju; Zheng, Yudong; Wang, Xiumei; Volinsky, Alex A.; Wang, Lu-Ning

    2018-06-01

    Titanium (Ti) with nanoscale structure on the surface exhibits excellent biocompatibility and bone integration. Once implanted, the surgical implantation may lead to bacterial infection and inflammatory reaction, which cause the implant failure. In this work, irregular and nanorod-shaped ZnO nanoparticles were doped into TiO2 nanotubes (TNTs) with inner diameter of about 50 nm by electro-deposition. The antibacterial properties of ZnO incorporated into TiO2 nanotubes (TNTs/ZnO) were evaluated using Staphylococcus aureus (S. aureus). Zn ions released from the nanoparticles and the morphology could work together, improving antibacterial effectiveness up to 99.3% compared with the TNTs. Macrophages were cultured on the samples to determine their respective anti-inflammatory properties. The proliferation and viability of macrophages were evaluated by the CCK-8 method and Live&Dead stain, and the morphology of the cells was observed by scanning electron microscopy. Results indicated that TNTs/ZnO has a significant inhibitory effect on the proliferation and adhesion of macrophages, which could be used to prevent chronic inflammation and control the inflammatory reaction. Besides, the release of Zn ions from the ZnO nanoparticles is a long-term process, which could be beneficial for bone integration. Results demonstrate that ZnO deposited into TNTs improved the antibacterial effectiveness and weakened the inflammatory reaction of titanium-based implants, which is a promising approach to enhance their bioactivity.

  8. Interaction of gold with a pinwheel TiO similar to .sub.1,2./sub. film formed on Rh(111) facet: STM and DFT studies

    Czech Academy of Sciences Publication Activity Database

    Mutombo, Pingo; Gubo, R.; Berkó, A.

    2016-01-01

    Roč. 120, č. 23 (2016), s. 12917-12923 ISSN 1932-7447 Institutional support: RVO:68378271 Keywords : DFT * wheel-TiO ~1.2 ultrathin film * template * TiO 2 (110) * Rh(111) * Au * STM Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.536, year: 2016

  9. Quantitative Measurements of Photocatalytic CO-Oxidation as a Function of Light Intensity and Wavelength over TiO2 Nanotube Thin Films in mu-Reactors

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; In, Su-il; Olsen, Jacob L.

    2010-01-01

    Gas-phase photooxidation of CO over TiO2 catalysts (P25 and TiO2 nanotubes) in mu-reactors with quantitative product detection was used to study turnover as a function of illumination intensity over 4 orders of magnitude. Turnover was found to be of order 0.84 in illumination intensity. A CO phot...

  10. Hierarchical top-porous/bottom-tubular TiO 2 nanostructures decorated with Pd nanoparticles for efficient photoelectrocatalytic decomposition of synergistic pollutants

    KAUST Repository

    Zhang, Zhonghai

    2012-02-22

    In this paper, top-porous and bottom-tubular TiO 2 nanotubes (TiO 2 NTs) loaded with palladium nanoparticles (Pd/TiO 2 NTs) were fabricated as an electrode for an enhanced photoelectrocatalytic (PEC) activity toward organic dye decomposition. TiO 2 NTs with a unique hierarchical top-porous and bottom-tubular structure were prepared by a facile two-step anodization method and Pd nanoparticles were decorated onto the TiO 2 NTs via a photoreduction process. The PEC activity of Pd/TiO 2 NTs was investigated by decomposition of methylene blue (MB) and Rhodamine B (RhB). Because of formation Schottky junctions between TiO 2 and Pd, which significantly promoted the electron transfer and reduced the recombination of photogenerated electrons and holes, the Pd/TiO 2 NT electrode showed significantly higher PEC activities than TiO 2 NTs. Interestingly, an obvious synergy between two dyes was observed and corresponding mechanism based on facilitated transfer of electrons and holes as a result of a suitable energy level alignment was suggested. The findings of this work provide a fundamental insight not only into the fabrication but also utility of Schottky junctions for enhanced environmental remediation processes. © 2012 American Chemical Society.

  11. Hydroxyapatite/gelatin functionalized graphene oxide composite coatings deposited on TiO2 nanotube by electrochemical deposition for biomedical applications

    International Nuclear Information System (INIS)

    Yan, Yajing; Zhang, Xuejiao; Mao, Huanhuan; Huang, Yong; Ding, Qiongqiong; Pang, Xiaofeng

    2015-01-01

    Highlights: • Graphene oxide cross-linked gelatin was firstly employed as reinforcement fillers in hydroxyapatite coatings by electrochemical deposition process on TiO 2 nanotube arrays. • Gelatin functionalized graphene oxide induced the formation of hydroxyapatite coatings. • The success of gelatin and graphene oxide incorporation was evidenced with FTIR and XPS. • The synthesized composite coatings showed good biocompatibility and no adverse effect in cell culture tests. - Abstract: Graphene oxide cross-linked gelatin was employed as reinforcement fillers in hydroxyapatite coatings by electrochemical deposition process on TiO 2 nanotube arrays (TNs). The TNs were grown on titanium by electrochemical anodization in hydrofluoric electrolyte using constant voltage. Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Field emission scanning electron microscopy equipped with energy dispersive X-ray analysis and biological studies were used to characterize the coatings. The corrosion resistance of the coatings was also investigated by electrochemical method in simulated body fluid solution

  12. Influence of controlled-charge anodization processes on the morphology of TiO2 nanotubes and their efficiency in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Vaenas, Naoum; Stergiopoulos, Thomas; Kontos, Athanassios G.; Likodimos, Vlassis; Falaras, Polycarpos

    2013-01-01

    The effect of the electrochemical anodization growth process on the development of self-organized TiO 2 nanotube (NT) films and their efficiency as photoelectrodes in dye sensitized solar cells (DSCs) has been comparatively investigated, by keeping constant the total anodization charge. Slow and rapid potentiostatic anodization processes were accordingly compared to the galvanostatic one, while a two step potentiostatic–galvanostatic technique was applied for the first time for the growth of TiO 2 NT arrays, as a step forward in relation to the existing potentiostatic–potentiostatic (P–P) technique. Scanning electron microscopy and Raman spectroscopy verified the wide diversity in the morphological and structural characteristics of the TiO 2 NTs obtained by the different anodization modes. The novel approach of galvanostatic tube growth on a potentiostatically patterned Ti foil provided the most uniform TiO 2 nanotubular films with clean top surface exempt of nanograss or cracks over extended areas. Evaluation of the TiO 2 NTs performance as photoelectrodes in DSC devices showed distinct differences of their electrical parameters that reflected finely the underlying structure/morphology variations of the different anodic oxidation conditions. Galvanostatic TiO 2 NT films presented the most favorable (open-ordered) structure for DSC photoelectrodes with superior electrical performance, essentially impaired by a relatively low fill factor that requires improvement by appropriate post-treatment. Furthermore, despite the marked differences in morphology, the TiO 2 NT photoelectrodes exhibited comparable overall performance (of the order of 4%), with only exception the P–P samples which presented slightly lower (about 25%) photovoltaic efficiency. These results indicate that the anodization charge is a critical factor that effectively controls the nanotubes behavior when they are used as photoelectrodes in DSCs

  13. Cross Linking Polymers (PVA & PEG with TiO2 Nanoparticles for Humidity Sensing

    Directory of Open Access Journals (Sweden)

    Monika Joshi

    2009-11-01

    Full Text Available Humidity Sensors of different types are being used for various applications. Resistive Humidity Sensor has advantage over others for being small, low cost, interchangeable and long term stable. This makes them suitable for industrial, commercial and residential applications. In the present investigation humidity sensing behavior of various composite films made of Polyvinyl Alcohol (PVA, Polyethylene glycol (PEG, alkalies and oxide nanoparticles has been studied. It was found that relationship of resistance v/s relative humidity (RH was linear from 40 RH to 60 RH for a composite film made of PVA + PEG+ alkalies .The film can work with reliable efficiency for more than 100 days for the above range of humidity at room temperature. In order to improve the efficiency of composite polymer film TiO2 nanoparticles were added in the film and studied for resistance vs. RH responses. It was found that humidity range expands from 30 RH to 65 RH indicating the proportional decrease in resistance with increase in humidity at both ends as a result of the presence of TiO2 nanoparticles. The composite film with TiO2 nanoparticles can thus be used for wider range of humidity with reasonable stability and consistency. The observed behavior of the film has been attributed to the transportation of charge through TiO2 nanoparticles enhancing the conduction with the cross linked polymers.

  14. Drug release characteristics of quercetin-loaded TiO2 nanotubes coated with chitosan.

    Science.gov (United States)

    Mohan, L; Anandan, C; Rajendran, N

    2016-12-01

    TiO 2 nanotubes formed by anodic oxidation of Ti-6Al-7Nb were loaded with quercetin (TNTQ) and chitosan was coated on the top of the quercetin (TNTQC) to various thicknesses. Field emission scanning electron microscopy (FESEM), 3D and 2D analyses were used to characterize the samples. The drug release studies of TNTQ and TNTQC were studied in Hanks' solution for 192h. The studies showed that the native oxide on the sample is substituted by self assembled nanotube arrays by anodisation. FESEM images of chitosan-loaded TNT samples showed that filling of chitosan takes place in inter-tubular space and pores. Drug release studies revealed that the release of drug into the local environment during that duration was constant. The local concentration of the drug can be controlled and tuned by controlling the thickness of the chitosan (0.6, 1 and 3μm) to fit into an optimal therapeutic window in order to treat postoperative infections, inflammation and for quick healing with better osseointegration of the titanium implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Low-cost transparent solar cells: Potential of TiO2 nanotubes in the improvement of these next generation solar cells

    CSIR Research Space (South Africa)

    Cummings, F

    2010-09-01

    Full Text Available This paper provides a background to photovoltaics, and goes on to discuss dye-sensitised solar cell research and development at the CSIR. An overview of TiO2 nanotube synthesis is given, followed by the discussing the manufacturing process of dye...

  16. Mechanistic formation of TiO 2 nanotubes via anodisation – effect of operating voltage and time

    CSIR Research Space (South Africa)

    Cummings, FR

    2008-07-01

    Full Text Available Titanium dioxide (TiO) nanotubes hold great potential for application in dye-sensitised solar cells for they provide a one-dimensional transport route for generated charge carriers. An investigation is launched into the formation of these structures...

  17. Anodically-grown TiO_2 nanotubes: Effect of the crystallization on the catalytic activity toward the oxygen reduction reaction

    International Nuclear Information System (INIS)

    Sacco, Adriano; Garino, Nadia; Lamberti, Andrea; Pirri, Candido Fabrizio; Quaglio, Marzia

    2017-01-01

    Highlights: • Anodically-grown TiO_2 nanotubes as catalysts for the oxygen reduction reaction. • Amorphous NTs compared to thermal- and vapor-treated crystalline nanostructures. • The selection of the crystallization conditions leads to performance similar to Pt. - Abstract: In this work we investigated the behavior of TiO_2 nanotube (NT) arrays, grown by anodic oxidation of Ti foil, as catalysts for the oxygen reduction reaction (ORR) in alkaline water solution. In particular, as-grown amorphous NTs were compared to crystalline anatase nanostructures, obtained following two different procedures, namely thermal and vapor-induced crystallizations. The catalytic activity of these materials toward the ORR was evaluated by cyclic voltammetry measurements. ORR polarization curves, combined with the rotating disk technique, indicated a predominant four-electrons reduction path, especially for crystalline samples. The effect of the structural characteristics of the investigated materials on the catalytic activity was analyzed in details by electrochemical impedance spectroscopy. The catalytic performance of the crystalline NTs is only slightly lower with respect to the reference material for fuel cell applications, namely platinum, but is in line with other cost-effective catalysts recently proposed in the literature. However, if compared to the larger part of these low-cost catalysts, anodically-grown TiO_2 NTs are characterized by a synthesis route which is highly reproducible and easily up-scalable.

  18. Electrodeposition of Ru in TiO_2 nanotubes: increase of photocatalytical activity and identification of deposition route

    International Nuclear Information System (INIS)

    Castelhano, Douglas Iafrate; Rodrigues, Christiane de Arruda; Bertazzoli, Rodnei

    2014-01-01

    TiO2 nanotubes are semiconductors widely used in heterogeneous photocatalysis processes. It has a band gap energy (E_b_g) of 3,2 eV and an photoactive crystalline structure (anatase). To increase the photocatalytic activity of this oxide, by lowering the Ebg and reduction of charge recombination rate, a modification of oxide crystalline layer was made with ruthenium, using electrochemical deposition at constant potential. TiO_2 layer was made by anodization process at 20V, followed by thermic treatment in 450 deg C and electrodeposition of Ru at constant potential. Voltammetric studies showed that Ru electrodeposition occurs in two stages, and in the second stage is the deposition of metallic Ru. Photocurrent studies showed that the amount of Ru in the oxide layer varies according with the applied potential and a significant increase of semiconductor activity is obtained with the introduction of small quantities of Ru, increasing at least 70% in current values. Morphological and crystallinity analysis were made using SEM and XRD. To identify and quantify Ru in TiO_2 was used WDS. (author)

  19. Recent Progress in Dye-Sensitized Solar Cells for Improving Efficiency: TiO2 Nanotube Arrays in Active Layer

    Directory of Open Access Journals (Sweden)

    Won-Yeop Rho

    2015-01-01

    Full Text Available Dye-sensitized solar cells (DSSCs have been widely studied due to several advantages, such as low cost-to-performance ratio, low cost of fabrication, functionality at wide angles and low intensities of incident light, mechanical robustness, and low weight. This paper summarizes the recent progress in DSSC technology for improving efficiency, focusing on the active layer in the photoanode, with a part of the DSSC consisting of dyes and a TiO2 film layer. In particular, this review highlights a huge pool of studies that report improvements in the efficiency of DSSCs using TiO2 nanotubes, which exhibit better electron transport. Finally, this paper suggests opportunities for future research.

  20. Photoelectrochemical Performances and Potential Applications of TiO2 Nanotube Arrays Modified with Ag and Pt Nanoparticles

    International Nuclear Information System (INIS)

    Xu, Guangqing; Liu, Haipeng; Wang, Jinwen; Lv, Jun; Zheng, Zhixiang; Wu, Yucheng

    2014-01-01

    TiO 2 nanotube arrays (NTAs) modified with Ag (Ag/TiO 2 ) and Pt (Pt/TiO 2 ) nanoparticles were fabricated by anodic oxidation combined with photoreduction and hydrothermal methods, respectively. Structures, element components and morphologies of TiO 2 , Ag/TiO 2 and Pt/TiO 2 NTAs were measured by X-ray diffraction diffractometer, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope. The photoeletrochemical performances of TiO 2 , Pt/TiO 2 and Ag/TiO 2 NTAs were characterized by cyclic voltammetry and amperometry in phosphate buffer solution in absence and presence of glucose. Modifications of Ag and Pt nanoparticles play different roles in the photoelectrochemical process and have different potential applications. Ag nanoparticles decrease the photocurrent in buffer solution but increase the photocurrent response to organic compounds, which is fit for electrochemical detection of organic compounds due to the low background photocurrent and high photocurrent response. Ag/TiO 2 NTAs achieve the best detection performance with sensitivity of 0.152 μA/μM and detection limit of 0.53 μM. On the contrary, Pt nanoparticles can enhance the photocurrent of TiO 2 NTAs in buffer solution but decrease the photocurrent response to organic compounds, which are benefit for photocatalytic water splitting but not for photoelectrochemical detection

  1. Electrochemical & osteoblast adhesion study of engineered TiO2 nanotubular surfaces on titanium alloys

    International Nuclear Information System (INIS)

    Rahman, Zia Ur; Haider, Waseem; Pompa, Luis; Deen, K.M.

    2016-01-01

    TiO 2 nanotubes were grafted on the surface of cpTi, Ti6Al4V and Ti6Al4V-ELI with the aim to provide a new podium for human pre-osteoblast cell (MC3T3) adhesion and proliferation. The surface morphology and chemistry of these alloys were examined with scanning electron microscopy and energy dispersive x-ray spectroscopy. TiO 2 nanotubes were further characterized by cyclic potentiodynamic polarization tests and electrochemical impedance spectroscopy. The vertically aligned nanotubes were subjected to pre-osteoblast cell proliferation in order to better understand cell–material interaction. The study demonstrated that these cells interact differently with nanotubes of different titanium alloys. The significant acceleration in the growth rate of pre-osteoblast cell adhesion and proliferation is also witnessed. Additionally, the cytotoxicity of the leached metal ions was evaluated by using a tetrazolium-based bio-assay, MTS. Each group of data was operated for p < 0.05, concluded one way ANOVA to investigate the significance difference. - Highlights: • TiO 2 nanotubes were grafted on cpTi, Ti6Al4V and Ti6Al4V-ELI via anodization. • MC3T3 cells interact differently with nanotubes of different titanium alloys. • TiO 2 nanotubes have a positive impact on the osteoblast cell viability.

  2. TiO2 Nanotube Arrays Composite Film as Photoanode for High-Efficiency Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Jinghua Hu

    2014-01-01

    Full Text Available A double-layered photoanode made of hierarchical TiO2 nanotube arrays (TNT-arrays as the overlayer and commercial-grade TiO2 nanoparticles (P25 as the underlayer is designed for dye-sensitized solar cells (DSSCs. Crystallized free-standing TNT-arrays films are prepared by two-step anodization process. For photovoltaic applications, DSSCs based on double-layered photoanodes produce a remarkably enhanced power conversion efficiency (PCE of up to 6.32% compared with the DSSCs solely composed of TNT-arrays (5.18% or nanoparticles (3.65% with a similar thickness (24 μm at a constant irradiation of 100 mW cm−2. This is mainly attributed to the fast charge transport paths and superior light-scattering ability of TNT-arrays overlayer and good electronic contact with F-doped tin oxide (FTO glass provided from P25 nanoparticles as a bonding layer.

  3. Photo-electrochemical properties of graphene wrapped hierarchically branched nanostructures obtained through hydrothermally transformed TiO2 nanotubes

    Science.gov (United States)

    Rambabu, Y.; Jaiswal, Manu; Roy, Somnath C.

    2017-10-01

    Hierarchically structured nanomaterials play an important role in both light absorption and separation of photo-generated charges. In the present study, hierarchically branched TiO2 nanostructures (HB-MLNTs) are obtained through hydrothermal transformation of electrochemically anodized TiO2 multi-leg nanotubes (MLNT) arrays. Photo-anodes based on HB-MLNTs demonstrated 5 fold increase in applied bias to photo-conversion efficiency (%ABPE) over that of TiO2 MLNTs without branches. Further, such nanostructures are wrapped with reduced graphene oxide (rGO) films to enhance the charge separation, which resulted in ∼6.5 times enhancement in %ABPE over that of bare MLNTs. We estimated charge transport (η tr) and charge transfer (η ct) efficiencies by analyzing the photo-current data. The ultra-fine nano branches grown on the MLNTs are effective in increasing light absorption through multiple scattering and improving charge transport/transfer efficiencies by enlarging semiconductor/electrolyte interface area. The charge transfer resistance, interfacial capacitance and electron decay time have been estimated through electrochemical impedance measurements which correlate with the results obtained from photocurrent measurements.

  4. Towards TiO2 nanotubes modified by WO3 species: influence of ex situ crystallization of precursor on the photocatalytic activities of WO3/TiO2 composites

    Science.gov (United States)

    Sun, Hui; Dong, Bohua; Su, Ge; Gao, Rongjie; Liu, Wei; Song, Liang; Cao, Lixin

    2015-09-01

    TiO2 nanotubes (TNT) crystallized at different temperatures were loaded with WO3 hydrate through the reaction between (NH4)6W7O24·6H2O and an aqueous solution of HCl. The photocatalytic activities of nanocomposites firstly increase and then decrease as a function of the crystallized temperature of the TNT precursor. The structural, morphologic and optical properties of WO3/TiO2 nanocomposites were also investigated in this study. The samples, initially anatase titania (573 K-773 K), presented phase transition to rutile titania at 873 K. With the crystallized temperature increasing, an evolution of samples morphology changing from nanotube-like structure to nanorod-like structure was observed. Meanwhile, the absorption edge of samples exhibited a red shift, and correspondingly their band gap decreased. Consistent with x-ray diffraction diffractograms, the existence of rutile titania as an impurity in the precursor TNT, crystallized at higher than 873 K, depressed photocatalytic activity evidently. As a result, the degradation rate of methyl orange (MO) increased with the samples crystallinity firstly, and then reduced due to the appearance of rutile titania. In our experimental conditions, the optimal photocatalytic activity was achieved for the sample crystalized at 773 K. Its degradation rate could reach 98.76% after 90 min UV light irradiation.

  5. Towards TiO2 nanotubes modified by WO3 species: influence of ex situ crystallization of precursor on the photocatalytic activities of WO3/TiO2 composites

    International Nuclear Information System (INIS)

    Sun, Hui; Dong, Bohua; Su, Ge; Gao, Rongjie; Liu, Wei; Cao, Lixin; Song, Liang

    2015-01-01

    TiO 2 nanotubes (TNT) crystallized at different temperatures were loaded with WO 3 hydrate through the reaction between (NH 4 ) 6 W 7 O 24 ·6H 2 O and an aqueous solution of HCl. The photocatalytic activities of nanocomposites firstly increase and then decrease as a function of the crystallized temperature of the TNT precursor. The structural, morphologic and optical properties of WO 3 /TiO 2 nanocomposites were also investigated in this study. The samples, initially anatase titania (573 K–773 K), presented phase transition to rutile titania at 873 K. With the crystallized temperature increasing, an evolution of samples morphology changing from nanotube-like structure to nanorod-like structure was observed. Meanwhile, the absorption edge of samples exhibited a red shift, and correspondingly their band gap decreased. Consistent with x-ray diffraction diffractograms, the existence of rutile titania as an impurity in the precursor TNT, crystallized at higher than 873 K, depressed photocatalytic activity evidently. As a result, the degradation rate of methyl orange (MO) increased with the samples crystallinity firstly, and then reduced due to the appearance of rutile titania. In our experimental conditions, the optimal photocatalytic activity was achieved for the sample crystalized at 773 K. Its degradation rate could reach 98.76% after 90 min UV light irradiation. (paper)

  6. Rapid charge-discharge property of Li4Ti5O12-TiO2 nanosheet and nanotube composites as anode material for power lithium-ion batteries.

    Science.gov (United States)

    Yi, Ting-Feng; Fang, Zi-Kui; Xie, Ying; Zhu, Yan-Rong; Yang, Shuang-Yuan

    2014-11-26

    Well-defined Li4Ti5O12-TiO2 nanosheet and nanotube composites have been synthesized by a solvothermal process. The combination of in situ generated rutile-TiO2 in Li4Ti5O12 nanosheets or nanotubes is favorable for reducing the electrode polarization, and Li4Ti5O12-TiO2 nanocomposites show faster lithium insertion/extraction kinetics than that of pristine Li4Ti5O12 during cycling. Li4Ti5O12-TiO2 electrodes also display lower charge-transfer resistance and higher lithium diffusion coefficients than pristine Li4Ti5O12. Therefore, Li4Ti5O12-TiO2 electrodes display lower charge-transfer resistance and higher lithium diffusion coefficients. This reveals that the in situ TiO2 modification improves the electronic conductivity and electrochemical activity of the electrode in the local environment, resulting in its relatively higher capacity at high charge-discharge rate. Li4Ti5O12-TiO2 nanocomposite with a Li/Ti ratio of 3.8:5 exhibits the lowest charge-transfer resistance and the highest lithium diffusion coefficient among all samples, and it shows a much improved rate capability and specific capacity in comparison with pristine Li4Ti5O12 when charging and discharging at a 10 C rate. The improved high-rate capability, cycling stability, and fast charge-discharge performance of Li4Ti5O12-TiO2 nanocomposites can be ascribed to the improvement of electrochemical reversibility, lithium ion diffusion, and conductivity by in situ TiO2 modification.

  7. Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications

    Directory of Open Access Journals (Sweden)

    Wang Q

    2016-12-01

    Full Text Available Qun Wang,1,2,* Jian-Ying Huang,2,* Hua-Qiong Li,3,4 Allan Zi-Jian Zhao,4 Yi Wang,4 Ke-Qin Zhang,2,5 Hong-Tao Sun,1 Yue-Kun Lai,2,5 1College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 2National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 3Institute of Biomaterials and Engineering, Wenzhou Medical University, 4Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, 5Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Suzhou, People’s Republic of China *These authors contributed equally to this work Abstract: To address the limitations of traditional drug delivery, TiO2 nanotubes (TNTs are recognized as a promising material for localized drug delivery systems. With regard to the excellent biocompatibility and physicochemical properties, TNTs prepared by a facile electrochemical anodizing process have been used to fabricate new drug-releasing implants for localized drug delivery. This review discusses the development of TNTs applied in localized drug delivery systems, focusing on several approaches to control drug release, including the regulation of the dimensions of TNTs, modification of internal chemical characteristics, adjusting pore openings by biopolymer coatings, and employing polymeric micelles as drug nanocarriers. Furthermore, rational strategies on external conditions-triggered stimuli-responsive drug release for localized drug delivery systems are highlighted. Finally, the review concludes with the recent advances on TNTs for controlled drug delivery and corresponding prospects in the future. Keywords: TiO2 nanotubes, electrochemical anodization, modification, stimulated drug delivery, drug-releasing implant

  8. Evaluate humidity sensing properties of novel TiO2–WO3 composite material

    International Nuclear Information System (INIS)

    Lin, Wang-De; Lai, De-Sheng; Chen, Min-Hung; Wu, Ren-Jang; Chen, Fu-Chou

    2013-01-01

    Graphical abstract: TiO 2 –WO 3 (1:1) showed better humidity sensing properties than others within the range of 12–90% relative humidity (RH), the response and recovery time were about 20 s and 160 s, respectively. Compared to the previous studies, the prepared sensor exhibits higher sensitivity (S = 451) and the low hysteresis value was around 0.13% at 32% RH. - Highlights: • Novel TiO 2 –WO 3 composite material was prepared for humidity sensor. • The sensor exhibits higher sensitivity (S = 451). • Low hysteresis value was around 0.13% at 32% RH. - Abstract: A novel TiO 2 –WO 3 composite material was prepared using a different proportion of TiO 2 and WO 3 to that investigated in previous studies. The obtained mesoporous material was characterized using X-ray diffraction, Fourier transform infrared spectrometry, transmission electron microscopy, energy dispersive X-ray spectroscopy, and N 2 adsorption-desorption techniques. The humidity-sensing properties were measured using an inductance, capacitance and resistance analyzer. The results demonstrated that the TiO 2 –WO 3 sample with a ratio of 1:1 showed better humidity sensing properties. Compared to previous studies, the prepared sensor exhibited higher sensitivity (S = 451) and the lower hysteresis value was around 0.13% at 32% RH. Complex impedance analysis indicated that the enhanced humidity sensitivity was probably due to spherical Brunauer–Emmett–Teller surface area and the hetero-junction between TiO 2 –WO 3 thin films, while the impedance varied about three orders of magnitude. Our results demonstrated the potential application of TiO 2 –WO 3 composite for fabricating high performance humidity sensors

  9. Au Nanoclusters Sensitized Black TiO2-x Nanotubes for Enhanced Photodynamic Therapy Driven by Near-Infrared Light.

    Science.gov (United States)

    Yang, Dan; Gulzar, Arif; Yang, Guixin; Gai, Shili; He, Fei; Dai, Yunlu; Zhong, Chongna; Yang, Piaoping

    2017-12-01

    The low reactive oxygen species production capability and the shallow tissue penetration of excited light (UV) are still two barriers in photodynamic therapy (PDT). Here, Au cluster anchored black anatase TiO 2- x nanotubes (abbreviated as Au 25 /B-TiO 2- x NTs) are synthesized by gaseous reduction of anatase TiO 2 NTs and subsequent deposition of noble metal. The Au 25 /B-TiO 2- x NTs with thickness of about 2 nm exhibit excellent PDT performance. The reduction process increased the density of Ti 3+ on the surface of TiO 2 , which effectively depresses the recombination of electron and hole. Furthermore, after modification of Au 25 nanoclusters, the PDT efficiency is further enhanced owing to the changed electrical distribution in the composite, which forms a shallow potential well on the metal-TiO 2 interface to further hamper the recombination of electron and hole. Especially, the reduction of anatase TiO 2 can expend the light response range (UV) of TiO 2 to the visible and even near infrared (NIR) light region with high tissue penetration depth. When excited by NIR light, the nanoplatform shows markedly improved therapeutic efficacy attributed to the photocatalytic synergistic effect, and promotes separation or restrained recombination of electron and hole, which is verified by experimental results in vitro and in vivo. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Dye-Sensitized Solar Cells Based on TiO_2 Nanotube and Shelled Arrayed Structures

    International Nuclear Information System (INIS)

    Zhang, Jie; Kusumawati, Yuly; Pauporté, Thierry

    2016-01-01

    Anatase TiO_2 nanostructure arrays were synthetized starting from a template made of self-standing ZnO NWs prepared by an electrodeposition technique. By controlling the liquid phase deposition step, the obtained structures could be varied from free-standing nanotube (NT) arrays with controlled morphology to hierarchical spiky radiating core-shell rods. The nanotubes were made of assembled nanocrystals with an average size of 7–8 nm. The structures were investigated as n-type layers in DSSCs. The efficiency was enhanced for the core-shell layer and by starting with longer initial ZnO NW templates. The limitation of the cell efficiency was shown related to the specific surface area and dye loading. The cell functioning was in-depth investigated by electrochemical impedance spectroscopy over a large applied voltage range and compared to a cell based on a nanoparticle TO_2 mesoporous layer. A slow recombination rate was found. The enhancement of electron transport with nanocrystallite size explained the conductivity results. We also found that the prepared structures presented a high charge collection efficiency.

  11. Synthesis of carbon nanotube-TiO2 nanotubular material for reversible hydrogen storage

    International Nuclear Information System (INIS)

    Mishra, Amrita; Banerjee, Subarna; Mohapatra, Susanta K; Graeve, Olivia A; Misra, Mano

    2008-01-01

    A material consisting of multi-walled carbon nanotubes (MWCNTs) and larger titania (TiO 2 ) nanotube arrays has been produced and found to be efficient for reversible hydrogen (H 2 ) storage. The TiO 2 nanotube arrays (diameter ∼60 nm and length ∼2-3 μm) are grown on a Ti substrate, and MWCNTs a few μm in length and ∼30-60 nm in diameter are grown inside these TiO 2 nanotubes using chemical vapor deposition with cobalt as a catalyst. The resulting material has been used in H 2 storage experiments based on a volumetric method using the pressure, composition, and temperature relationship of the storage media. This material can store up to 2.5 wt% of H 2 at 77 K under 25 bar with more than 90% reversibility.

  12. Synthesis of carbon nanotube-TiO(2) nanotubular material for reversible hydrogen storage.

    Science.gov (United States)

    Mishra, Amrita; Banerjee, Subarna; Mohapatra, Susanta K; Graeve, Olivia A; Misra, Mano

    2008-11-05

    A material consisting of multi-walled carbon nanotubes (MWCNTs) and larger titania (TiO(2)) nanotube arrays has been produced and found to be efficient for reversible hydrogen (H(2)) storage. The TiO(2) nanotube arrays (diameter ∼60 nm and length ∼2-3 µm) are grown on a Ti substrate, and MWCNTs a few µm in length and ∼30-60 nm in diameter are grown inside these TiO(2) nanotubes using chemical vapor deposition with cobalt as a catalyst. The resulting material has been used in H(2) storage experiments based on a volumetric method using the pressure, composition, and temperature relationship of the storage media. This material can store up to 2.5 wt% of H(2) at 77 K under 25 bar with more than 90% reversibility.

  13. Heterostructured ZnFe2O4/Fe2TiO5/TiO2 Composite Nanotube Arrays with an Improved Photocatalysis Degradation Efficiency Under Simulated Sunlight Irradiation

    Science.gov (United States)

    Xiong, Kun; Wang, Kunzhou; Chen, Lin; Wang, Xinqing; Fan, Qingbo; Courtois, Jérémie; Liu, Yuliang; Tuo, Xianguo; Yan, Minhao

    2018-03-01

    To improve the visible light absorption and photocatalytic activity of titanium dioxide nanotube arrays (TONTAs), ZnFe2O4 (ZFO) nanocrystals were perfused into pristine TONTA pipelines using a novel bias voltage-assisted perfusion method. ZFO nanocrystals were well anchored on the inner walls of the pristine TONTAs when the ZFO suspensions (0.025 mg mL-1) were kept under a 60 V bias voltage for 1 h. After annealing at 750 °C for 2 h, the heterostructured ZFO/Fe2TiO5 (FTO)/TiO2 composite nanotube arrays were successfully obtained. Furthermore, Fe3+ was reduced to Fe2+ when solid solution reactions occurred at the interface of ZFO and the pristine TONTAs. Introducing ZFO significantly enhanced the visible light absorption of the ZFO/FTO/TONTAs relative to that of the annealed TONTAs. The coexistence of type I and staggered type II band alignment in the ZFO/FTO/TONTAs facilitated the separation of photogenerated electrons and holes, thereby improving the efficiency of the ZFO/FTO/TONTAs for photocatalytic degradation of methylene blue when irradiated with simulated sunlight. [Figure not available: see fulltext.

  14. TiO2 nanoparticles immobilized on carbon nanotubes for enhanced visible-light photo-induced activity

    Directory of Open Access Journals (Sweden)

    Ali Akbar Ashkarran

    2015-04-01

    Full Text Available CNT–TiO2 nanocomposites were prepared through (i simple mixing of as prepared CNTs and TiO2 nanoparticles (NPs, (ii simple mixing of as prepared CNTs and TiO2 NPs followed by heat treatment and (iii simple mixing of as prepared CNTs and TiO2 NPs followed by UV illumination. The synthesis of CNTs and TiO2 NPs were performed individually by arc discharge in water and sol–gel methods, respectively and characterized by X-ray diffraction (XRD, ultra violet and visible spectroscopy (UV–vis, Fourier transform infrared spectroscopy (FT-IR, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The visible-light photocatalytic performance of CNT–TiO2 nanocomposites was successfully demonstrated for the degradation of Rhodamine B (Rh. B as a model dye at room temperature. It is found that CNT–TiO2 nanocomposites extended the light absorption spectrum toward the visible region and considerably improved the photocatalytic efficiency under visible-light irradiation. The visible-light photocatalytic activities of CNT–TiO2 nanocomposites in which CNTs are produced by arc discharge in deionized (DI water at 40, 60 and 80 A arc currents and combined through three different protocols are also investigated. It was found that samples prepared at 80 A arc current and 5 s arc duration followed by UV illumination revealed best photocatalytic activity compared with the same samples prepared under simple mixing and simple mixing followed by heat treatment. The enhancement in the photocatalytic property of CNT–TiO2 nanocomposites prepared at 80 A arc current followed by UV illumination may be ascribed to the quality of CNTs produced at this current, as was reported before.

  15. Effect of Anodizing Time and Annealing Temperature on Photoelectrochemical Properties of Anodized TiO2 Nanotube for Corrosion Prevention Application

    Directory of Open Access Journals (Sweden)

    Misriyani Misriyani

    2017-07-01

    Full Text Available A study on the influence of anodizing time, annealing temperature and photoelectrochemical properties of TiO2 nanotube (TiO2 NT has been investigated. The crystallinity was investigated using X-Ray Diffraction and the anti-corrosion performance of stainless steel 304 (SS 304 coupled with TiO2 NT was evaluated using electrochemical techniques under ultraviolet exposure. The optimum anodizing condition occurs at a voltage of 20 V for 3 h. After anodizing, the TiO2 NT amorf was calcined at 500 °C to obtain anatase crystalline phase. For the photoelectrochemical property, the effects of pH and NaCl concentration on corrosion prevention have been examined. The result showed that the corrosion rate of stainless steel 304 coupled with TiO2 NT can be reduced up to 1.7 times compared to the uncoupled stainless steel 304 (3.05×10-6 to 1.78×10-6 mpy under ultraviolet exposure by shifted the photopotential to the more negative value (-0.302 V to -0.354 V at a pH of 8 and 3% NaCl concentration (-0.264 V to -0.291 V. In conclusion, the TiO2 NT films, which was prepared by anodization and followed by annealing can prevent the corrosion of stainless steel 304.

  16. Synthesis of Nb doped TiO2 nanotube/reduced graphene oxide heterostructure photocatalyst with high visible light photocatalytic activity

    Science.gov (United States)

    Niu, Xiaoyou; Yan, Weijing; Zhao, Hongli; Yang, Jingkai

    2018-05-01

    Limited by the narrowed photoresponse range and unsatisfactory recombination of photoinduced electron-hole pairs, the photocatalytic efficiency of TiO2 is still far below what is expected. Here, we initially doped TiO2 nanotubes (TNTS) by transition metal ion Nb, then it is coupled with reduced graphene oxide (rGO) to construct a heterostructure photocatalyst. The defect state presented in TiO2 leading to the formation of localized midgap states (MS) in the bandgap, which regulating the band structure of TiO2 and extending the optical absorption to visible light region. The internal charge transport and transfer behavior analyzed by electrochemical impedance spectroscopy (EIS) reveal that the coupling of rGO with TNTS results in the formation of electron transport channel in the heterostructure, which makes a great contribution to the photoinduced charge separation. As expected, the Nb-TNTS/rGO exhibits a stable and remarkably enhanced photocatalytic activity in the visible-light irradiation degradation of methylene blue (MB), up to ∼5 times with respect to TNTS, which is attributed to the effective inhibition of charge recombination, the reduction of bandgap and higher redox potential, as well as the great adsorptivity.

  17. A novel photoelectrochemical immunosensor by integration of nanobody and TiO2 nanotubes for sensitive detection of serum cystatin C

    International Nuclear Information System (INIS)

    Mi, Li; Wang, Pingyan; Yan, Junrong; Qian, Jing; Lu, Jusheng; Yu, Jiachao; Wang, Yuzhen; Liu, Hong; Zhu, Min; Wan, Yakun; Liu, Songqin

    2016-01-01

    Cystatin C (CysC) is a sensitive marker for the estimation of the glomerular filtration rate and the clinical diagnosis of different diseases. In this paper, CysC-specific nanobodies (Nbs) were isolated from a phage display nanobody library. A simple and sensitive photoelectrochemical immunosensor based on TiO 2 nanotube arrays (TNAs) was proposed for the sensitive detection of CysC. The TiO 2 nanotube arrays deposited by electrochemical anodization displayed a high and stable photocurrent response under irradiation. After coupling CysC-specific nanobody to TNA (Nb/TNA), the proposed immunosensor for CysC can be utilized for tracking the photocurrent change of Nb/TNA caused by immunoreactions between CysC and the immobilized CysC-specific Nb. This allowed for the determination of CysC with a calibration range from 0.72 pM to 7.19 nM. The variation of the photocurrent was in a linear relationship with the logarithm of the CysC concentration in the range of 0.72 pM–3.6 nM. The immunosensor had a correlation coefficient of 0.97 and a detection limit of 0.14 pM at a signal-to-noise ratio of 3. The proposed immunosensor showed satisfactory intra- and inter-assay accuracy, high selectivity and good stability. As a result, this proposed strategy would offer a novel and simple approach for the detection of immunoreactions, provide new insights in popularizing the diagnosis of CysC, and extend the application of TiO 2 nanotubes. - Highlights: • CysC-specific nanobody to CysC is isolated from phage display nanobody library. • A photoelectrochemical immunosensor for CysC develops by Nb modified TNA. • An excellent sensitivity and good selectivity of CysC sensing was obtained.

  18. Degradation of organic dyes using spray deposited nanocrystalline stratified WO3/TiO2 photoelectrodes under sunlight illumination

    Science.gov (United States)

    Hunge, Y. M.; Yadav, A. A.; Mahadik, M. A.; Bulakhe, R. N.; Shim, J. J.; Mathe, V. L.; Bhosale, C. H.

    2018-02-01

    The need to utilize TiO2 based metal oxide hetero nanostructures for the degradation of environmental pollutants like Rhodamine B and reactive red 152 from the wastewater using stratified WO3/TiO2 catalyst under sunlight illumination. WO3, TiO2 and stratified WO3/TiO2 catalysts were prepared by a spray pyrolysis method. It was found that the stratified WO3/TiO2 heterostructure has high crystallinity, no mixed phase formation occurs, strong optical absorption in the visible region of the solar spectrum, and large surface area. The photocatalytic activity was tested for degradation of Rhodamine B (Rh B) and reactive red 152 in an aqueous medium. TiO2 layer in stratified WO3/TiO2 catalyst helps to extend its absorption spectrum in the solar light region. Rh B and Reactive red 152is eliminated up to 98 and 94% within the 30 and 40 min respectively at optimum experimental condition by stratified WO3/TiO2. Moreover, stratified WO3/TiO2 photoelectrode has good stability and reusability than individual TiO2 and WO3 thin film in the degradation of Rh B and reactive red 152. The photoelectrocatalytic experimental results indicate that stratified WO3/TiO2 photoelectrode is a promising material for dye removal.

  19. Influence of energy band alignment in mixed crystalline TiO2 nanotube arrays: good for photocatalysis, bad for electron transfer

    Science.gov (United States)

    Mohammadpour, Raheleh

    2017-12-01

    Despite the wide application ranges of TiO2, the precise explanation of the charge transport dynamic through a mixed crystal phase of this semiconductor has remained elusive. Here, in this research, mixed-phase TiO2 nanotube arrays (TNTAs) consisting of anatase and 0-15% rutile phases has been formed through various annealing processes and employed as a photoelectrode of a photovoltaic cell. Wide ranges of optoelectronic experiments have been employed to explore the band alignment position, as well as the depth and density of trap states in TNTAs. Short circuit potential, as well as open circuit potential measurements specified that the band alignment of more than 0.2 eV exists between the anatase and rutile phase Fermi levels, with a higher electron affinity for anatase; this can result in a potential barrier in crystallite interfaces and the deterioration of electron mobility through mixed phase structures. Moreover, a higher density of shallow localized trap states below the conduction band with more depth (133 meV in anatase to 247 meV in 15% rutile phase) and also deep oxygen vacancy traps have been explored upon introducing the rutile phase. Based on our results, employing TiO2 nanotubes as just the electron transport medium in mixed crystalline phases can deteriorate the charge transport mechanism, however, in photocatalytic applications when both electrons and holes are present, a robust charge separation in crystalline anatase/rutile interphases will result in better performances.

  20. Fabrication, characterization and photocatalytic properties of Ag nanoparticles modified TiO2 NTs

    International Nuclear Information System (INIS)

    Wang Qingyao; Yang Xiuchun; Liu Dan; Zhao Jianfu

    2012-01-01

    Graphical abstract: The TiO 2 NTs were first treated with bi-functional mercaptoacetic acid linkers (HOOC–R–S). The –OH group on the surface of TiO 2 NT provides a strong affinity with the carboxylate group in the linker molecules. The thiol functional group in the linker molecules facilitates the binding with Ag from AgNO 3 solution. After Ag + ions were reduced by NaBH 4 , Ag nanoparticles formed by nucleation and growth. Highlights: ► Ag nanoparticles with an average diameter of 9.2 nm were filled in the TiO 2 nanotubes by a successive ionic layer adsorption and reaction (SILAR) technique. ► Bi-functional mercaptoacetic acid linkers were used to bind TiO 2 nanotubes with Ag nanoparticles. ► Ag nanoparticles modification of TiO 2 NTs largely enhanced the photocatalytic degradation of methyl orange under ultraviolet light irradiation. - Abstract: Ordered anatase TiO 2 nanotubes (TiO 2 NTs) on Ti substrate were synthesized by electrochemical anodization and subsequently vapor-thermal treatment. Ag nanoparticles were decorated on TiO 2 NTs by successive ionic layer adsorption and reaction (SILAR) technique. Raman spectroscopy, X-ray absorption near edge spectroscopy (XANES), X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for the characterization of surface morphology, phase composition, and microstructure of the original TiO 2 NTs, the vapor-thermally treated TiO 2 NTs and the Ag nanoparticles decorated TiO 2 NTs. The results indicate that vapor-thermal treatment favors to the transformation of amorphous TiO 2 into anatase phase. Increasing the SILAR cycle times favors to increase the loaded amounts of Ag nanoparticles in TiO 2 NTs. Ag nanoparticles are uniformly distributed in the TiO 2 NTs, and the SILAR process does not damage the ordered tubular structure. A possible formation mechanism of Ag/TiO 2 NTs has also been proposed. The

  1. Microwave-assisted self-doping of TiO2 photonic crystals for efficient photoelectrochemical water splitting

    KAUST Repository

    Zhang, Zhonghai; Yang, Xiulin; Hedhili, Mohamed N.; Ahmed, Elaf S.; Shi, Le; Wang, Peng

    2014-01-01

    In this article, we report that the combination of microwave heating and ethylene glycol, a mild reducing agent, can induce Ti3+ self-doping in TiO2. A hierarchical TiO2 nanotube array with the top layer serving as TiO2 photonic crystals (TiO2 NTPCs

  2. Electrocatalytic glucose oxidation via hybrid nanomaterial catalyst of multi-wall TiO2 nanotubes supported Ni(OH)2 nanoparticles: Optimization of the loading level

    International Nuclear Information System (INIS)

    Gu, Yingying; Liu, Yicheng; Yang, Haihong; Li, Benqiang; An, Yarui

    2015-01-01

    Highlights: • Multi-wall TiO 2 nanotube supported Ni(OH) 2 nanoparticles, Ni(OH) 2 /TNTs, was prepared and investigated as anode electro-catalysts for glucose oxidation. • Ni(OH) 2 -24.2%/TNTs obtains the best catalytic activity. • Compared with Ni(OH) 2, the current density of Ni(OH) 2 -24.2%/TNTs increased 5.9 times in 0.1 M NaOH solution. - Abstract: The novel hybrid nanomaterial catalyst of multi-wall TiO 2 nanotube supported Ni(OH) 2 nanoparticles (Ni(OH) 2 /TNTs) was prepared through hydrothermal method and investigated as anode electro-catalysts for glucose oxidation. The nanostructure was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), thermogravimetry-differential thermal analysis (TGA) and nitrogen adsorption-desorption (BET-BJH). The electrochemical performance was measured by a range of electrochemical measurements. Compared with Ni(OH) 2 , the current density of Ni(OH) 2 /TNTs modified GC electrode increased 5.9 times in 0.1 M NaOH solution. The results indicated that the synthesized nanoparticles exhibited good electro-catalytic activity and stability for glucose oxidation. Meanwhile, the hybrid nanomaterial of Ni(OH) 2 /TNTs may be a potential candidate catalyst for direct glucose fuel cell

  3. Influence of different types of nanomaterials on their bioaccumulation in a paddy microcosm: A comparison of TiO2 nanoparticles and nanotubes

    International Nuclear Information System (INIS)

    Yeo, Min-Kyeong; Nam, Dong-Ha

    2013-01-01

    We investigated the environmental fate and bioaccumulation of TiO 2 nanomaterials in a simplified paddy microcosm over a period of 17 days. Two types of TiO 2 nanomaterials, nanoparticles (TiO 2 -NP) and nanotubes (TiO 2 -NT), were synthesized to have a negative surface charge. Ti concentrations in the environmental media (water, soil), crops (quillworts, water dropworts), and some lower and higher trophic organisms (biofilms, algae, plant-parasitic nematodes, white butterfly larva, mud snail, ricefish) were quantified after exposure periods of 0, 7, and 17 days. The titanium levels of the two nanomaterials were the highest in biofilms during the exposure periods. Bioaccumulation factors indicated that TiO 2 -NP and TiO 2 -NT were largely transferred from a prey (e.g., biofilm, water dropwort) to its consumer (e.g., nematodes, mud snail). Considering the potential entries of such TiO 2 nanomaterials in organisms, their bioaccumulation throughout the food chain should be regarded with great concern in terms of the overall health of the ecosystem. -- Highlights: •A high amount of nanomaterial was transferred within low trophic level organisms. •Nanomaterial transfer occurred from water dropwort roots to nematodes and snails. •Nanomaterial transfer occurred from the biofilm-consuming plankton to ricefish. •TiO 2 nanomaterials can accumulate in the organisms of an artificial ecosystem. -- TiO 2 nanomaterials can accumulate in the organisms of an artificial ecosystem

  4. Synthesis of Hydroxyapatite/Ag/TiO2 Nanotubes and Evaluation of Their Anticancer Activity on Breast Cancer Cell Line MCF-7

    Directory of Open Access Journals (Sweden)

    Sara Rahimnejad

    2016-06-01

    Full Text Available In this research, TiO2 nanotubes were synthesized by anodized oxidation method and were covered with a hydroxyapatite-silver nanoparticles using photodeposition and dip coating for loading silver nanoparticles and coated hydroxyapatite (HA. The morphological texture of TiO2 nanotube and Ag-HA nanoparticles on TiO2 nanotubes surface were studied by field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDAX analysis and X-ray diffraction (XRD. The MCF-7 cell lines were treated with concentrations 1, 10 and 100 µg/ml of TiO2 nanotubes and HA/Ag/TiO2 nanotube for 24 and 48h. Finally, the cell viability and IC50% were evaluated using MTT assay. The results show that the HA/Ag/TiO2 has more positive effect on enhancing the cell death compare to TiO2 nanotubes and also exerts a time and concentration-dependent inhibition effect on viability of MCF-7 cells

  5. Photoelectrocatalytic reduction of CO2 into chemicals using Pt-modified reduced graphene oxide combined with Pt-modified TiO2 nanotubes.

    Science.gov (United States)

    Cheng, Jun; Zhang, Meng; Wu, Gai; Wang, Xin; Zhou, Junhu; Cen, Kefa

    2014-06-17

    The photoelectrocatalytic (PEC) reduction of CO2 into high-value chemicals is beneficial in alleviating global warming and advancing a low-carbon economy. In this work, Pt-modified reduced graphene oxide (Pt-RGO) and Pt-modified TiO2 nanotubes (Pt-TNT) were combined as cathode and photoanode catalysts, respectively, to form a PEC reactor for converting CO2 into valuable chemicals. XRD, XPS, TEM, AFM, and SEM were employed to characterize the microstructures of the Pt-RGO and Pt-TNT catalysts. Reduction products, such as C2H5OH and CH3COOH, were obtained from CO2 under band gap illumination and biased voltage. A combined liquid product generation rate (CH3OH, C2H5OH, HCOOH, and CH3COOH) of approximately 600 nmol/(h·cm(2)) was observed. Carbon atom conversion rate reached 1,130 nmol/(h·cm(2)), which were much higher than those achieved using Pt-modified carbon nanotubes and platinum carbon as cathode catalysts.

  6. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Science.gov (United States)

    Parcharoen, Yardnapar; Kajitvichyanukul, Puangrat; Sirivisoot, Sirinrath; Termsuksawad, Preecha

    2014-08-01

    Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO2) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO2 nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH4F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO2 nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO2 nanotubes were found when high viscous electrolyte, NH4F in glycerol, was used. Negative voltage (-4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO2 nanotubes was significantly increased by times. The TiO2 nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO2 nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that growing on titanium plate surface.

  7. Enhancement of the photocatalytic activity of TiO2 nanoparticles by surface-capping DBS groups

    International Nuclear Information System (INIS)

    Wang Baiqi; Jing Liqiang; Qu Yichun; Li Shudan; Jiang Baojiang; Yang Libin; Xin Baifu; Fu Honggang

    2006-01-01

    TiO 2 nanoparticles capped with sodium dodecylbenzenesulfonate (DBS) are synthesized by a sol-hydrothermal process using tetrabutyl titanate and DBS as raw materials. The effects of surface-capping DBS on the surface photovoltage spectroscopy (SPS), photoluminescence (PL) and photocatalytic performance of TiO 2 nanoparticles are principally investigated together with their relationships. The results show that the surface of TiO 2 nanoparticles can be well capped by DBS groups while the pH value and added DBS amount are controlled at 5.0 and 2% of TiO 2 mass weight, respectively, and the linkage between DBS groups and TiO 2 surfaces is mainly by means of quasi-sulphonate bond. The intensities of SPS and PL spectra of TiO 2 obviously decrease after DBS-capping, while the activity can greatly increase during the photocatalytic degradation of Rhodamine B (RhB) solution, which are mainly attributed to the electron-withdrawing character of the DBS groups. Moreover, the enhancement of photocatalytic activity of DBS-capped TiO 2 is also related to the increase in the capability for adsorbing RhB

  8. Mesoporous 1D TiO_2 nanostructures obtained by the hydrothermal method

    International Nuclear Information System (INIS)

    Cabrera, Julieta; Vilchez, Ricardo; Alarcon, Hugo; Rodriguez, Juan; Lopez, Alcides

    2014-01-01

    Mesoporous one dimensional nanostructures (1D) such as nanotubes/nanorods of TiO_2 were synthesized by alkaline hydrothermal treatment of TiO_2 nanoparticles obtained by Sol Gel process (SG-TiO_2). The electronic microscopy images revealed the nanotubes formation of approximately 8 nm in diameter and more than around 400 nm long after hydrothermal treatment of 18 h and 24 h. These tube-like structures were maintained after acid treatment but after annealing at 400 °C during 2 hours these turn into rod-like structures of crystalline TiO_2 corresponding to anatase phase as revealed the diffraction patterns obtained by X-Ray Diffraction (XRD). The conversion of nanoparticles into nanotubes and afterward into rodlike shape was also confirmed by the variations in the BET surface area from 201, 269 and 97 m"2/g around, respectively. The adsorption-desorption isotherms also revealed hysteresis loop typical of mesoporous materials. These qualities are attractive to use these materials for the treatment of pollutants in water, for example. (author)

  9. Polyaniline nanotubes coated with TiO2&γ-Fe2O3@graphene oxide as a novel and effective visible light photocatalyst for removal of rhodamine B from water

    Science.gov (United States)

    Ghavami, Monireh; Kassaee, Mohammad Zaman; Mohammadi, Reza; Koohi, Maryam; Haerizadeh, Bibi Narjes

    2014-12-01

    Synthesis of polyaniline-nanotubes (PANI-NT), in the presence of TiO2 and γ-Fe2O3 functionalized graphene oxide (GO), gives a green and magnetically recyclable photocatalyst, TiO2&γ-Fe2O3@GO/PANI-NT. The later orchestrates 94% photocatalytic efficiency in removal of rhodamine B (RB) from water, under simulated solar light irradiation. This is far higher than the 36% observed in the presence of TiO2&γ-Fe2O3@GO alone, where PANI-NT is excluded from the structure. Morphology, composition, and structural properties of our economically sound photocatalyst are characterized by X-ray diffraction, energy-dispersive X-ray spectroscopy, thermo-gravimetric, transmission electron microscopy, inductively coupled plasma, RAMAN and Fourier-transform infrared spectroscopy.

  10. Visible-light photocatalytic performances of TiO2 nanoparticles modified by trace derivatives of PVA

    Directory of Open Access Journals (Sweden)

    Le SHI

    2016-10-01

    Full Text Available In order to study the visible-light photocatalytic activity and catalysis stability of nanocomposites, a TiO2-based visible-light photocatalyst is prepared by surface-modification of TiO2 nanoparticles using trace conjugated derivatives from polyvinyl alcohol (DPVA via a facile method. The obtained DPVA/TiO2 nanocomposites are characterized by X-ray diffraction (XRD, Fourier transform infrared Spectra (FT-IR, scanning electron microscopy (SEM, UV-vis diffuse reflection spectroscopy (DRS, and X-ray photoelectron spectroscopy (XPS. With Rhodamine B (RhB as a model pollutant, the visible-light photocatalytic activity and stability of DPVA/TiO2 nanocomposites are investigated by evaluating the RhB decomposition under visible light irradiation. The results reveal that the trace conjugated polymers on the TiO2 surface doesn’t change the crystalline and crystal size of TiO2 nanoparticles, but significantly enhances their visible-light absorbance and visible-light photocatalytic activity. The nanocomposite with the PVA and TiO2 mass ratio of 1∶200 exhibits the highest visible-light photocatalytic activity. The investigated nanocomposites exhibit well visible-light photoctatalytic stability. The photogenerated holes are thought as the main active species for the RhB photodegradation in the presence of the DPVA/TiO2 nanocomposites.

  11. Humidity Sensitivity of MgCr2O4-TiO2-LiO2 Ceramics Sensor Prepared by Sol-Gel Routes

    Directory of Open Access Journals (Sweden)

    H. Y. He

    2010-05-01

    Full Text Available 79.5MgCr2O4–19.5TiO2–Li2O porous ceramics were investigated as a humidity sensor. The sensors obtain by a cold isostatic pressing and sintering of the fine MgCr2O4 and TiO2 and LiCO3 powders. The MgCr2O4 and TiO2 powders were respectively synthesized by sol-gel methods. The effects of sintering temperature on the humidity sensitivity of sensors were studied by measuring electrical resistance in different conditions of relative humidity (R.H. at 27 °C. The results indicated that the calcining temperature obviously affected the resistance variation of the sensor in range of 11.3-84.7 % RH. The resistance variation was small at the calcining temperature of 600 oC for 2 h. With increasing calcining temperature, the resistance variation increased to 5.4×104% and 7.0×104 % at 800 oC and 1000 oC for 2 h, but decreased to 3.1×104 % at 1200 oC for 2 h respectively. The response times are 25 s and 35 s respectively for humidity adsorption and humidity desorption between 11.3 %RH and 84.7 %RH.

  12. A Novel of Buton Asphalt and Methylene Blue as Dye-Sensitized Solar Cell using TiO2/Ti Nanotubes Electrode

    Science.gov (United States)

    Nurhidayani; Muzakkar, M. Z.; Maulidiyah; Wibowo, D.; Nurdin, M.

    2017-11-01

    A study of TiO2/Ti nanotubes arrays (NTAs) based on Dye-Sensitized Solar Cell (DSSC) used Asphalt Buton (Asbuton) extract and methylene blue (MB) as a photosensitizer dye has been conducted. The aim of this research is that the Asbuton extract and Methylene Blue (MB) performance as a dye on DSSC solar cells is able to obtain the voltage-currents produced by visible light irradiation. Electrode TiO2/Ti NTAs have been successfully synthesized by anodizing methods, then characterized by using XRD showed that the anatase crystals formed. Subsequently, the morphology showed that the nanotubes formed which has coated by Asbuton extract. The DSSC system was formed by a sandwich structure and tested by using Multimeter Digital with Potentiostat instrument. The characteristics of current (I) and potential (V) versus time indicated that the Asbuton was obtained in a high-performance in 30s of 14,000µV 0.844µA, meanwhile MB dyes were 8,000µV0.573µA. Based on this research, the Asbuton extract from Buton Island-Southeast Sulawesi-Indonesia was potential for natural dyes in DSSC system.

  13. Effect of porphyrin on photocatalytic activity of TiO2 nanoparticles toward Rhodamine B photodegradation.

    Science.gov (United States)

    Ahmed, M A; Abou-Gamra, Z M; Medien, H A A; Hamza, M A

    2017-11-01

    As known, porphyrins have central role in photosynthesis, biological oxidation and reduction and oxygen transport beside to their intensive color which qualify them to be good photosensitizers. Herein, tetra (4-carboxyphenyl) porphyrin (TCPP) was prepared by a simple one-pot synthesis to use as a visible antenna for TiO 2 nanoparticles that were prepared via a simple template-free sol-gel method. Various loading percentages of TCPP (0.05-1%) were incorporated on the surface of TiO 2 as photosensitizer for photocatalytic degradation of Rhodamine B (Rh B) dye as a primary cationic pollutant model. Among them, 0.1% TCPP-TiO 2 was the most reactive sample. It was found that the photoactivity of 0.1% TCPP-TiO 2 sample (0.5g/L) was approximately 1.5 times greater than that of pure TiO 2 (0.5g/L) toward the degradation of Rh B (1×10 -5 M) under UV-A irradiation. Transient fluorescence decay measurements showed that the life time of TiO 2 excited state has doubled after anchoring TCPP, thus the probability of electron-hole recombination has decreased. The samples were characterized by XRD, HR-TEM, DRS and N 2 adsorption-desorption isotherms. The XRD patterns confirmed the successful preparation of TiO 2 nanoparticles with average crystalline size of 25.7nm. Also, XRD patterns suggested the presence of mixed phase TiO 2 nanoparticles of 77% anatase and 23% rutile. DRS showed that the characteristic peaks of TCPP covered the whole visible range 400-700nm. HR-TEM images showed the spheroids shape of TiO 2 nanoparticles and confirmed the presence of anatase and rutile phases as suggested from XRD data. The different parameters affecting the photodegradation of Rh B dye such as catalyst dose, dye concentration and pH were studied to obtain the optimum conditions. Almost complete degradation of Rh B was obtained which confirmed by HPLC and TOC measurements. The effect of scavengers was studied to indicate the most active species. TCPP-TiO 2 gave a good response toward the

  14. 1D TiO2 Nanostructures Prepared from Seeds Presenting Tailored TiO2 Crystalline Phases and Their Photocatalytic Activity for Escherichia coli in Water

    Directory of Open Access Journals (Sweden)

    Julieta Cabrera

    2018-01-01

    Full Text Available TiO2 nanotubes were synthesized by alkaline hydrothermal treatment of TiO2 nanoparticles with a controlled proportion of anatase and rutile. Tailoring of TiO2 phases was achieved by adjusting the pH and type of acid used in the hydrolysis of titanium isopropoxide (first step in the sol-gel synthesis. The anatase proportion in the precursor nanoparticles was in the 3–100% range. Tube-like nanostructures were obtained with an anatase percentage of 18 or higher while flake-like shapes were obtained when rutile was dominant in the seed. After annealing at 400°C for 2 h, a fraction of nanotubes was conserved in all the samples but, depending on the anatase/rutile ratio in the starting material, spherical and rod-shaped structures were also observed. The photocatalytic activity of 1D nanostructures was evaluated by measuring the deactivation of E. coli in stirred water in the dark and under UV-A/B irradiation. Results show that in addition to the bactericidal activity of TiO2 under UV-A illumination, under dark conditions, the decrease in bacteria viability is ascribed to mechanical stress due to stirring.

  15. Are TiO2 nanotubes worth using in photocatalytic purification of air and water?

    Science.gov (United States)

    Pichat, Pierre

    2014-09-19

    Titanium dioxide nanotubes (TNT) have mainly been used in dye sensitized solar cells, essentially because of a higher transport rate of electrons from the adsorbed photo-excited dye to the Ti electrode onto which TNT instead of TiO2 nanoparticles (TNP) are attached. The dimension ranges and the two main synthesis methods of TNT are briefly indicated here. Not surprisingly, the particular and regular texture of TNT was also expected to improve the photocatalytic efficacy for pollutant removal in air and water with respect to TNP. In this short review, the validity of this expectation is checked using the regrettably small number of literature comparisons between TNT and commercialized TNP referring to films of similar thickness and layers or slurries containing an equal TiO2 mass. Although the irradiated geometrical area differed for each study, it was identical for each comparison considered here. For the removal of toluene (methylbenzene) or acetaldehyde (ethanal) in air, the average ratio of the efficacy of TNT over that of TiO2 P25 was about 1.5, and for the removal of dyes in water, it was around 1. This lack of major improvement with TNT compared to TNP could partially be due to TNT texture disorders as seems to be suggested by the better average performance of anodic oxidation-prepared TNT. It could also come from the fact that the properties influencing the efficacy are more numerous, their interrelations more complex and their effects more important for pollutant removal than for dye sensitized solar cells and photoelectrocatalysis where the electron transport rate is the crucial parameter.

  16. Effect of surface ethoxy groups on photoactivity of TiO2 nanocrystals

    International Nuclear Information System (INIS)

    Tian Lihong; Deng Kejian; Ye Liqun; Zan Lin

    2011-01-01

    TiO 2 nanocrystals modified by ethoxy groups were prepared by a facile nonhydrolytic solvothermal method and characterized by XRD, TEM, TG-DTA and XPS, which showed an enhanced visible-light photocatalytic activity on the degradation of Rhodamine B compared with TiO 2 modified by benzyloxy groups and the 'naked' TiO 2 . The adsorption and degradation pathway of Rhodamine B on TiO 2 modified by ethoxy groups were also investigated. The zeta-potential (ζ) results showed that the TiO 2 modified by ethoxy groups had high negative surface charge, which incited the positive -N(Et) 2 group of RhB absorbing on the TiO 2 surface and preferably led the N-dealkylation pathway under visible light irradiation.

  17. Homogeneous growth of TiO2-based nanotubes on nitrogen-doped reduced graphene oxide and its enhanced performance as a Li-ion battery anode

    Science.gov (United States)

    Mehraeen, Shayan; Taşdemir, Adnan; Alkan Gürsel, Selmiye; Yürüm, Alp

    2018-06-01

    The pursuit of a promising replacement candidate for graphite as a Li-ion battery anode, which can satisfy both engineering criteria and market needs has been the target of researchers for more than two decades. In this work, we have investigated the synergistic effect of nitrogen-doped reduced graphene oxide (NrGO) and nanotubular TiO2 to achieve high rate capabilities with high discharge capacities through a simple, one-step and scalable method. First, nanotubes of hydrogen titanate were hydrothermally grown on the surface of NrGO sheets, and then converted to a mixed phase of TiO2-B and anatase (TB) by thermal annealing. Specific surface area, thermal gravimetric, structural and morphological characterizations were performed on the synthesized product. Electrochemical properties were investigated by cyclic voltammetry and cyclic charge/discharge tests. The prepared anode showed high discharge capacity of 150 mAh g‑1 at 1 C current rate after 50 cycles. The promising capacity of synthesized NrGO-TB was attributed to the unique and novel microstructure of NrGO-TB in which long nanotubes of TiO2 have been grown on the surface of NrGO sheets. Such architecture synergistically reduces the solid-state diffusion distance of Li+ and increases the electronic conductivity of the anode.

  18. Homogeneous growth of TiO2-based nanotubes on nitrogen-doped reduced graphene oxide and its enhanced performance as a Li-ion battery anode.

    Science.gov (United States)

    Mehraeen, Shayan; Taşdemir, Adnan; Gürsel, Selmiye Alkan; Yürüm, Alp

    2018-06-22

    The pursuit of a promising replacement candidate for graphite as a Li-ion battery anode, which can satisfy both engineering criteria and market needs has been the target of researchers for more than two decades. In this work, we have investigated the synergistic effect of nitrogen-doped reduced graphene oxide (NrGO) and nanotubular TiO 2 to achieve high rate capabilities with high discharge capacities through a simple, one-step and scalable method. First, nanotubes of hydrogen titanate were hydrothermally grown on the surface of NrGO sheets, and then converted to a mixed phase of TiO 2 -B and anatase (TB) by thermal annealing. Specific surface area, thermal gravimetric, structural and morphological characterizations were performed on the synthesized product. Electrochemical properties were investigated by cyclic voltammetry and cyclic charge/discharge tests. The prepared anode showed high discharge capacity of 150 mAh g -1 at 1 C current rate after 50 cycles. The promising capacity of synthesized NrGO-TB was attributed to the unique and novel microstructure of NrGO-TB in which long nanotubes of TiO 2 have been grown on the surface of NrGO sheets. Such architecture synergistically reduces the solid-state diffusion distance of Li + and increases the electronic conductivity of the anode.

  19. Preparation and characterization of titanate nanotubes/carbon composites

    International Nuclear Information System (INIS)

    Wang Xiaodong; Pan Hui; Xue Xiaoxiao; Qian Junjie; Yu Laigui; Yang Jianjun; Zhang Zhijun

    2011-01-01

    Highlights: → Titanate nanotubes/carbon composites were synthesized from TiO 2 -carbon composites. → The carbon shell of TiO 2 particles obstructed the reaction between TiO 2 and NaOH. → TEM, XRD, and Raman spectra reveal the formation processes of the TNT/CCs. - Abstract: Titanate nanotubes/carbon composites(TNT/CCs) were synthesized by allowing carbon-coated TiO 2 (CCT) powder to react with a dense aqueous solution of NaOH at 120 deg. C for a proper period of time. As-prepared CCT and TNT/CCs were characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectrometry. The processes for formation of titanate nanotubes/carbon composites were discussed. It was found that the TiO 2 particles in TiO 2 -carbon composite were enwrapped by a fine layer of carbon with a thickness of about 4 nm. This carbon layer functioned to inhibit the transformation from anatase TiO 2 to orthorhombic titanate. As a result, the anatase TiO 2 in CCT was incompletely transformed into orthorhombic titanate nanotubes upon 24 h of reaction in the dense and hot NaOH solution. When the carbon layers were gradually peeled off along with the formation of more orthorhombic titanate nanotubes at extended reaction durations (e.g., 72 h), anatase TiO 2 particles in CCT were completely transformed into orthorhombic titanate nanotubes, yielding TNT/CCs whose morphology was highly dependent on the reaction time and temperature.

  20. A comparative study of two techniques for determining photocatalytic activity of nitrogen doped TiO2 nanotubes under visible light irradiation: Photocatalytic reduction of dye and photocatalytic oxidation of organic molecules

    DEFF Research Database (Denmark)

    In, Su-Il; Vesborg, Peter Christian Kjærgaard; Abrams, Billie

    2011-01-01

    Nitrogen-doping (N-doping) is a popular strategy for promoting the absorption of visible light in TiO2 and other photocatalysts. We have grown TiO2 nanotubes onto non-conducting Pyrex in a one step process via single layer titanium films. In an attempt to improve the self-cleaning ability of vert...

  1. A new approach of tailoring wetting properties of TiO2 nanotubular surfaces

    KAUST Repository

    Isimjan, Tayirjan T.

    2012-11-01

    TiO2 nanotube layers were grown on a Ti surface by electrochemical anodization. As prepared, these layers showed a superhydrophilic wetting behavior. Modified with 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PTES), the layers showed a superhydrophobic behavior. We demonstrate how to change the surface characteristics of the TiO2 nanotube layers in order to achieve any desirable degree of hydrophobicity between 100° to 170°. The treated superhydrophobic TiO2 nanotube layers have an advanced contact angle exceeding 165°, a receding angle more than 155°and a slide angle less than 5°. It is found that the surface morphology of the film which depends on anodization time among other variables, has a great influence on the superhydrophobic properties of the surface after PTES treatment. The hydrodynamic properties of the surface are discussed in terms of both Cassie and Wenzel mechanisms. The layers are characterized with dynamic contact angle measurements, SEM, and XPS analyses. © 2012 American Scientific Publishers.

  2. Three-dimensional TiO2/Au nanoparticles for plasmon enhanced photocatalysis

    Science.gov (United States)

    Yu, Jianyu; Zhou, Lin; Wang, Yang; Tan, Yingling; Wang, Zhenlin; Zhu, Shining; Zhu, Jia

    2018-03-01

    The mechanisms of plasmonic nanostructures assisted photocatalytic processes are fundamental and of great importance and interest for decades. Therefore, we adopt a unique porous structure of three-dimensional TiO2/Au nanoparticles to experimentally explore the potential mechanisms of rhodamine B (RhB) based photocatalytic degradation. The highly efficient absorbance measured across the entire ultraviolet and infrared regions shows the broadband light harvesting capability and photocatalytic activity, in which the direct bandgap transition, plasmon sensitization as well as the plasmonic photothermal effect can be beneficial for the photocatalytic reaction. The RhB photocatalytic degradation experiments were conducted systematically under solar irradiance with finely chosen optical filters. Apart from the ultraviolet-driven degradation of TiO2, the plasmon assisted photocatalytic rate of our TiO2/Au structure can be enhanced by >30% as compared to the referenced TiO2 structure (equivalent to 2-4 times promotion with respect to the same quantity of the active material TiO2). Detailed wavelength-dependent analyses have revealed that the visible-driven degradation rate can be enhanced by 10 times because of the plasmon sensitization effect; while infrared-driven degradation rate is enhanced by 4 times as well for the plasmonic photothermal effect, respectively. Our experimental results may provide a clear understanding for the wavelength-dependent plasmon enhanced photocatalytic processes.

  3. Photocatalysis-assisted water filtration: using TiO2-coated vertically aligned multi-walled carbon nanotube array for removal of Escherichia coli O157:H7.

    Science.gov (United States)

    Oza, Goldie; Pandey, Sunil; Gupta, Arvind; Shinde, Sachin; Mewada, Ashmi; Jagadale, Pravin; Sharon, Maheshwar; Sharon, Madhuri

    2013-10-01

    A porous ceramic was coated with vertically aligned multi-walled carbon nanotubes (MWCNTs) by spray pyrolysis. Titanium dioxide (TiO2) nanoparticles were then coated onto this densely aligned MWCNT. The presence of TiO2/MWCNT interfacial arrays was confirmed by X-ray diffraction (XRD), scanning electron microscope-energy dispersive analysis of X-ray (SEM-EDAX) and transmission electron microscope (TEM). This is a novel report in which water loaded with a most dreadful enterohemorrhagic pathogenic strain of Escherichia coli O157:H7 was filtered through TiO2/MWCNT coated porous ceramic filter and then analysed. Bacterial removal performance was found to be significantly lower in control i.e. plain porous ceramic (Paligned MWCNT network. © 2013 Elsevier B.V. All rights reserved.

  4. Dispersions of geometric TiO2 nanomaterials and their toxicity to RPMI 2650 nasal epithelial cells

    Science.gov (United States)

    Tilly, Trevor B.; Kerr, Lei L.; Braydich-Stolle, Laura K.; Schlager, John J.; Hussain, Saber M.

    2014-11-01

    Titanium dioxide (TiO2) based nanofilaments—nanotube, nanowire, nanorod—have gained interest for industrial, electrical, and as of recent, medical applications due to their superior performance over TiO2 nanoparticles. Safety assessment of these nanomaterials is critical to protect workers, patients, and bystanders as these technologies become widely implemented. Additionally, TiO2 based nanofilaments can easily be inhaled by humans and their high aspect ratio, much like asbestos fibers, may make them toxic in the respiratory system. The tendency of TiO2 nanofilaments to aggregate makes evaluating their nanotoxicity difficult and the results controversial, because incomplete dispersion results in larger particle sizes that are no longer in the nano dimensional size range. TiO2 nanofilaments are aggregated and difficult to disperse homogeneously in solution by conventional methods, such as sonication and vortexing. In this study, a microfluidic device was utilized to produce stable, homogeneous dosing solutions necessary for in vitro toxicity evaluation by eliminating any toxicity caused by aggregated TiO2 nanomaterials. The toxicity results could then be directly correlated to the TiO2 nanostructure itself. The toxicity of four TiO2 nanogeometries—nanotube, nanowire, nanorod, and nanoparticle—were assessed in RPMI 2650 human nasal epithelial cells at representative day, week, and month in vitro exposure dosages of 10, 50, 100 μg/ml, respectively. All TiO2 based nanomaterials dispersed by the microfluidic method were nontoxic to RPMI 2650 cells at the concentrations tested, whereas higher concentrations of 100 μg/ml of nanowires and nanotubes dispersed by sonication reduced viability up to 27 %, indicating that in vitro toxicity results may be controlled by the dispersion of dosing solutions.

  5. Structural transformation and enhanced gas sensing characteristics of TiO2 nanostructures induced by annealing

    Science.gov (United States)

    Tshabalala, Zamaswazi P.; Motaung, David E.; Swart, Hendrik C.

    2018-04-01

    The improved sensitivity and selectivity, and admirable stability are fundamental features required for the current age gas sensing devices to appease future humanity and environmental requirements. Therefore, herein, we report on the room temperature gas sensing behaviour of TiO2 nanotubes with significance response and sensitivity towards 60 ppm NO2 gas. Improved sensitivity of 29.44 ppm-1 and admirable selectivity towards NO2, among other gases ensuring adequate safety in monitoring NO2 in automobile and food industries. The improved sensitivity of TiO2 nanotubes was attributed to larger surface area provided by the hollow nanotubes resulting to improved gas adsorption and the relatively high concentration of oxygen vacancies.

  6. Solar Hydrogen Production Coupled with the Degradation of a Dye Pollutant Using TiO2 Modified with Platinum and Nafion

    Directory of Open Access Journals (Sweden)

    Jungwon Kim

    2014-01-01

    Full Text Available The simultaneous production of molecular hydrogen (H2 and degradation of rhodamine B (RhB was successfully achieved using TiO2 modified with platinum and nafion (Pt/TiO2/Nf under visible light (λ>420 nm. Pt/TiO2/Nf exhibited high activity for H2 production in the presence of RhB and EDTA as a photosensitizer (also an organic dye pollutant and an electron donor, respectively. However, the activity of TiO2 modified with either platinum or nafion for H2 production was negligible under the same experimental conditions. The negatively charged nafion layer enhances the adsorption of cationic RhB and pulls protons, a source of hydrogen, to the surface of TiO2 through electrostatic attraction. On the other hand, platinum deposits on TiO2 can act as an electron sink and a temporary electron reservoir for the reduction of protons. With the production of H2, RhB was gradually degraded through N-deethylation, which was confirmed by the spectral blue shift of the maximum absorption wavelength (λmax from 556 to 499 nm (corresponding to the λmax of rhodamine 110. With Pt/TiO2/Nf employed at [RhB]=20 μM (0.6 μmol, approximately 70 μmol of H2 was produced and RhB and its intermediates were completely removed over a 12 h period. A detailed reaction mechanism was discussed.

  7. Engineering of highly ordered TiO2 nanopore arrays by anodization

    Science.gov (United States)

    Wang, Huijie; Huang, Zhennan; Zhang, Li; Ding, Jie; Ma, Zhaoxia; Liu, Yong; Kou, Shengzhong; Yang, Hangsheng

    2016-07-01

    Finite element analysis was used to simulate the current density distributions in the TiO2 barrier layer formed at the initial stage of Ti anodization. The morphology modification of the barrier layer was found to induce current density distribution change. By starting the anodization with proper TiO2 barrier layer morphology, the current density distribution can be adjusted to favor the formation of either nanotube arrays or nanopore arrays of anodic TiO2. We also found that the addition of sodium acetate into the electrolyte suppressed both the field-assisted chemical dissolution of TiO2 and the TiF62- hydrolysis induced TiO2 deposition during anodization, and thus further favored the nanopore formation. Accordingly, highly ordered anodic TiO2 nanopore arrays, similar to anodic aluminum oxide nanopore arrays, were successfully prepared.

  8. Selective microwave sensors exploiting the interaction of analytes with trap states in TiO2 nanotube arrays

    Science.gov (United States)

    Zarifi, M. H.; Farsinezhad, S.; Abdolrazzaghi, M.; Daneshmand, M.; Shankar, K.

    2016-03-01

    Sensing of molecular analytes by probing the effects of their interaction with microwaves is emerging as a cheap, compact, label-free and highly sensitive detection and quantification technique. Microstrip ring-type resonators are particularly favored for this purpose due to their planar sensing geometry, electromagnetic field enhancements in the coupling gap and compatibility with established printed circuit board manufacturing. However, the lack of selectivity in what is essentially a permittivity-sensing method is an impediment to wider adoption and implementation of this sensing platform. By placing a polycrystalline anatase-phase TiO2 nanotube membrane in the coupling gap of a microwave resonator, we engineer selectivity for the detection and differentiation of methanol, ethanol and 2-propanol. The scavenging of reactive trapped holes by aliphatic alcohols adsorbed on TiO2 is responsible for the alcohol-specific detection while the different short chain alcohols are distinguished on the basis of differences in their microwave response. Electrodeless microwave sensors which allow spectral and time-dependent monitoring of the resonance frequency and quality factor provide a wealth of information in comparison with electrode-based resistive sensors for the detection of volatile organic compounds. A high dynamic range (400 ppm-10 000 ppm) is demonstrated for methanol detection.Sensing of molecular analytes by probing the effects of their interaction with microwaves is emerging as a cheap, compact, label-free and highly sensitive detection and quantification technique. Microstrip ring-type resonators are particularly favored for this purpose due to their planar sensing geometry, electromagnetic field enhancements in the coupling gap and compatibility with established printed circuit board manufacturing. However, the lack of selectivity in what is essentially a permittivity-sensing method is an impediment to wider adoption and implementation of this sensing platform

  9. Enhanced photocatalytic degradation of dyes under sunlight using biocompatible TiO2 nanoparticles

    Science.gov (United States)

    Bharati, B.; Sonkar, A. K.; Singh, N.; Dash, D.; Rath, Chandana

    2017-08-01

    As TiO2 is one of the most popular photocatalysts, we have studied here the photocatalytic degradation of the most common dyestuffs like rhodamine B (RhB), congo red (CR) and methylene blue (MB), which mainly come from the textile and photographic industries using nanoparticles of TiO2. Nanoparticles of TiO2 synthesized through a simple and cost effective sol-gel technique crystallizes in the anatase phase, showing a band gap less than that of bulk value. Particles consisting of coherently scattered domains of size 33 nm are found to be agglomerated and polycrystalline in nature. While the degradation rates of MB, CR and RhB after irradiating with a renewable source of energy, i.e. sunlight, show 100% degradation, TiO2 irradiated with UV light of 4.8 eV shows a much slower degradation rate. To use the waste water after photocatalysis, we examine further the biocompatibile nature of the TiO2 nanoparticles by platelet interaction activity, hemolysis effect and MTT assay. It is worth mentioning here that TiO2 nanoparticles are found to be highly hemocompatible, show no platelet aggregation, and the level of intracellular ROS in human platelets does not show significant change in ROS level. We conclude that TiO2 nanoparticles constitute an excellent photocatalyst and biocompatible material, and that after photocatalytic degradation of dye effluents obtained from textile industries, purified water can be used in agriculture and domestic sectors.

  10. Theoretical study of the adsorption of rhodium on a TiO2(1 1 0)-1 × 1 surface

    International Nuclear Information System (INIS)

    Mutombo, P.; Balázs, N.; Majzik, Z.; Berkó, A.; Cháb, V.

    2012-01-01

    Density functional theory (DFT) calculations were used to study the adsorption of rhodium on a TiO 2 (1 1 0)-1 × 1 surface as a function of coverage. It was found that Rh atom prefers the hollow site between a bridging oxygen atom, a threefold oxygen atom and a fivefold coordinated Ti atom, regardless of the coverage used. DFT calculations also suggest that Rh-Rh interaction is attractive along the [0 0 1] direction, implying that the Rh 1D nanostructure should grow preferentially along this direction. Simulated Rh dimer clusters resemble strongly Pd dimers resolved in STM experiments suggesting that both metals occupy the same adsorption site at the TiO 2 (1 1 0) surface.

  11. Optical and Morphological Properties of ZnO- and TiO2-Derived Nanostructures Synthesized via a Microwave-Assisted Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Nosipho Moloto

    2012-01-01

    Full Text Available A microwave-assisted hydrothermal method was used to synthesize ZnO and TiO2 nanostructures. The experimental results show that the method resulted in crystalline monodispersed ZnO nanorods that have pointed tips with hexagonal crystal phase. TiO2 nanotubes were also formed with minimum bundles. The mechanism for the formation of the tubes was validated by HRTEM results. The optical properties of both ZnO and TiO2 nanostructures showed characteristics of strong quantum confinement regime. The photoluminescence spectrum of TiO2 nanotubes shows good improvement from previously reported data.

  12. Heterojunctions of mixed phase TiO2 nanotubes with Cu, CuPt, and Pt nanoparticles: interfacial band alignment and visible light photoelectrochemical activity

    Science.gov (United States)

    Kar, Piyush; Zhang, Yun; Mahdi, Najia; Thakur, Ujwal K.; Wiltshire, Benjamin D.; Kisslinger, Ryan; Shankar, Karthik

    2018-01-01

    Anodically formed, vertically oriented, self-organized cylindrical TiO2 nanotube arrays composed of the anatase phase undergo an interesting morphological and phase transition upon flame annealing to square-shaped nanotubes composed of both anatase and rutile phases. This is the first report on heterojunctions consisting of metal nanoparticles (NPs) deposited on square-shaped TiO2 nanotube arrays (STNAs) with mixed rutile and anatase phase content. A simple photochemical deposition process was used to form Cu, CuPt, and Pt NPs on the STNAs, and an enhancement in the visible light photoelectrochemical water splitting performance for the NP-decorated STNAs was observed over the bare STNAs. Under narrow band illumination by visible photons at 410 nm and 505 nm, Cu NP-decorated STNAs performed the best, producing photocurrents 80% higher and 50 times higher than bare STNAs, respectively. Probing the energy level structure at the NP-STNA interface using ultraviolet photoelectron spectroscopy revealed Schottky barrier formation in the NP-decorated STNAs, which assists in separating the photogenerated charge carriers, as also confirmed by longer charge carrier lifetimes in NP-decorated STNAs. While all the NP-decorated STNAs showed enhanced visible light absorption compared to the bare STNAs, only the Cu NPs exhibited a clear plasmonic behavior with an extinction cross section that peaked at 550 nm.

  13. Hydrothermal synthesis of 1D TiO2 nanostructures for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Tacchini, I.; Ansón-Casaos, A.; Yu, Youhai; Martínez, M.T.; Lira-Cantu, M.

    2012-01-01

    Highlights: ► Hydrothermal synthesis allows the preparation of different 1D TiO 2 nanostructures easily. ► Nanotubular morphology demonstrates the highest photovoltaic efficiencies in dye sensitized cells (DSCs). ► Morphology at the nanoscale level is as decisive for DSC efficiency as it is TiO 2 crystal structure and surface area. - Abstract: Mono-dimensional titanium oxide nanostructures (multi-walled nanotubes and nanorods) were synthesized by the hydrothermal method and applied to the construction of dye sensitized solar cells (DSCs). First, nanotubes (TiNTs) and nanotubes loaded with titanium oxide nanoparticles (TiNT/NPs) were synthesized with specific surface areas of 253 m 2 /g and 304 m 2 /g, respectively. After that, thermal treatment of the nanotubes at 500 °C resulted in their transformation into the corresponding anatase nanorods (TiNT-Δ and TiNT/NPs-Δ samples). X-ray diffraction and Raman spectroscopy data indicated that titanium oxide in the pristine TiNT and TiNT/NP samples was converted into anatase phase TiO 2 during the heating. Additionally, specific surface areas and water adsorption capacities decreased after the heat treatment due to the sample agglomeration and the collapse of the inner nanotube channels. DSCs were fabricated with the nanotube TiNT and TiNT/NP samples and with the anatase nanorod TiNT-Δ and TiNT/NPs-Δ samples as well. The highest power conversion efficiency of η = 3.12% was obtained for the TiNT sample, despite its lower specific surface compared with the corresponding nanoparticle-loaded sample (TiNT/NP).

  14. Template-based fabrication of nanowire-nanotube hybrid arrays

    International Nuclear Information System (INIS)

    Ye Zuxin; Liu Haidong; Schultz, Isabel; Wu Wenhao; Naugle, D G; Lyuksyutov, I

    2008-01-01

    The fabrication and structure characterization of ordered nanowire-nanotube hybrid arrays embedded in porous anodic aluminum oxide (AAO) membranes are reported. Arrays of TiO 2 nanotubes were first deposited into the pores of AAO membranes by a sol-gel technique. Co nanowires were then electrochemically deposited into the TiO 2 nanotubes to form the nanowire-nanotube hybrid arrays. Scanning electron microscopy and transmission electron microscopy measurements showed a high nanowire filling factor and a clean interface between the Co nanowire and the TiO 2 nanotube. Application of these hybrids to the fabrication of ordered nanowire arrays with highly controllable geometric parameters is discussed

  15. Synthesis and characterization of polythiophene-modified TiO2 ...

    Indian Academy of Sciences (India)

    prospects and has attracted much attention for its many advantages such as ... the ground state of the polymer located in the semiconduc- tor energy gap into an .... in figure 1(c) that the polythiophene modified TiO2 nanotube arrays still keep ...

  16. Photo-Catalytic Properties of TiO2 Supported on MWCNTs, SBA-15 and Silica-Coated MWCNTs Nanocomposites.

    Science.gov (United States)

    Ramoraswi, Nteseng O; Ndungu, Patrick G

    2015-12-01

    Mesoporous silica, specifically SBA-15, acid-treated multi-walled carbon nanotubes and a hybrid nanocomposite of SBA-15 coated onto the sidewalls acid-treated multi-walled carbon nanotubes (CNTs) were prepared and used as supports for anatase TiO2. Sol-gel methods were adapted for the synthesis of selected supports and for coating the materials with selected wt% loading of titania. Physical and chemical properties of the supports and catalyst composite materials were investigated by powder X-ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis, scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), UV-vis diffuse reflectance spectroscopy and fluorescence spectroscopy. The photo-activity of the catalyst composites were evaluated on the decolorisation of methylene blue as a model pollutant. Coating CNTs with SBA-15 improved the thermal stability and textural properties of the nanotubes. All supported titania composites had high surface areas (207-301 m(2)/g), altered band gap energies and reduced TiO2 crystallite sizes. The TiO2/SBA-CNT composite showed enhanced photo-catalytic properties and activity than the TiO2/SBA-15 and TiO2/CNT composites. In addition, an interesting observation was noted with the TiO2/SBA-15 nanocomposites, which had a significantly greater photo-catalytic activity than the TiO2/CNT nanocomposites in spite of the high electron-hole recombination phenomena observed with the photoluminescence results. Discussions in terms of morphological, textural and physical-chemical aspects to account for the result are presented.

  17. Bifacial dye-sensitized solar cells based on vertically oriented TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Liu Zhaoyue; Misra, Mano

    2010-01-01

    In this work we describe a novel bifacial design concept for dye-sensitized solar cells (DSCs). Bifacial DSCs are fabricated with ruthenium complex chemisorbed double-sided TiO 2 nanotube arrays on a Ti metal substrate, in combination with two electron-collecting counter electrodes. Our investigation shows that the present bifacial DSCs have similar conversion efficiencies when illuminated from either their front or rear side, and a summated output power when illuminated on both sides. Furthermore, this type of bifacial DSC is also able to summate the output power of each side when working at an 'unsymmetrical' mode, in which much different output powers are generated by the front and rear sides. Therefore, this bifacial design concept exhibits a promising potential to reduce the cost of solar electricity when DSCs are operated at a location where a high albedo radiation is available.

  18. Double Walled Carbon Nanotube/TiO2 Nanocomposites for Photocatalytic Dye Degradation

    Directory of Open Access Journals (Sweden)

    Alex T. Kuvarega

    2016-01-01

    Full Text Available Double walled carbon nanotube (DWCNT/N,Pd codoped TiO2 nanocomposites were prepared by a modified sol-gel method and characterised using FTIR, Raman spectroscopy, TGA, DRUV-Vis, XRD, SEM, and TEM analyses. TEM images showed unique pearl-bead-necklace structured morphologies at higher DWCNT ratios. The nanocomposite materials showed characteristic anatase TiO2 Raman bands in addition to the carbon nanotube D and G bands. Red shifts in the UV-Vis absorption edge were observed at low DWCNT percentages. The photocatalytic activity of DWCNT/N,Pd TiO2 nanocomposite was evaluated by the photocatalytic degradation of eosin yellow under simulated solar light irradiation and the 2% DWCNT/N,Pd TiO2 nanocomposite showed the highest photoactivity while the 20% DWCNT/N,Pd TiO2 hybrid was the least efficient. The photocatalytic enhancement was attributed to the synergistic effects of the supporting and electron channeling role of the DWCNTs as well as the electron trapping effects of the platinum group metal. These phenomena favour the separation of the photogenerated electron-hole pairs, reducing their recombination rate, which consequently lead to significantly enhanced photoactivity.

  19. Formation of chelating agent driven anodized TiO2 nanotubular membrane and its photovoltaic application

    Science.gov (United States)

    Banerjee, Subarna; Misra, Mano; Mohapatra, Susanta K.; Howard, Cameron; Mohapatra, Srikanta K.; Kamilla, Sushanta K.

    2010-04-01

    Titania (TiO2) nanotubular arrays provide an exciting material for dye sensitizing solar cells (DSSC) because of their large surface area, lower recombination losses, and fast charge transport properties along the nanotubes. In this paper, design of a next generation DSSC using a TiO2 nanotubular membrane is discussed. A single step, green process is developed to produce stable large area, free-standing TiO2 nanotubular films (in a short time, 30-60 min) by anodizing Ti using an organic electrolyte, containing disodium salt of ethylene diaminetetraacetic acid (Na2[H2EDTA]) as complexing agent, and subsequent drying. Transparent, crack-free TiO2 films, 20-41 µm thick containing ordered hexagonal TiO2 nanotubes are achieved by this process. Films having a geometrical area up to 16.5 cm2 with pore openings of 182 nm have been obtained. These films have been etched to form membranes which provide an exciting prospect for front side illuminated DSSC with good mass and photon transport properties as well as wettability. A photovoltaic efficiency of 2.7% is achieved using a front side illuminated DSSC compared to 1.77% using back side illumination.

  20. Formation of chelating agent driven anodized TiO(2) nanotubular membrane and its photovoltaic application.

    Science.gov (United States)

    Banerjee, Subarna; Misra, Mano; Mohapatra, Susanta K; Howard, Cameron; Mohapatra, Srikanta K; Kamilla, Sushanta K

    2010-04-09

    Titania (TiO(2)) nanotubular arrays provide an exciting material for dye sensitizing solar cells (DSSC) because of their large surface area, lower recombination losses, and fast charge transport properties along the nanotubes. In this paper, design of a next generation DSSC using a TiO(2) nanotubular membrane is discussed. A single step, green process is developed to produce stable large area, free-standing TiO(2) nanotubular films (in a short time, 30-60 min) by anodizing Ti using an organic electrolyte, containing disodium salt of ethylene diaminetetraacetic acid (Na(2)[H(2)EDTA]) as complexing agent, and subsequent drying. Transparent, crack-free TiO(2) films, 20-41 microm thick containing ordered hexagonal TiO(2) nanotubes are achieved by this process. Films having a geometrical area up to 16.5 cm(2) with pore openings of 182 nm have been obtained. These films have been etched to form membranes which provide an exciting prospect for front side illuminated DSSC with good mass and photon transport properties as well as wettability. A photovoltaic efficiency of 2.7% is achieved using a front side illuminated DSSC compared to 1.77% using back side illumination.

  1. Formation of chelating agent driven anodized TiO2 nanotubular membrane and its photovoltaic application

    International Nuclear Information System (INIS)

    Banerjee, Subarna; Misra, Mano; Mohapatra, Susanta K; Howard, Cameron; Mohapatra, Srikanta K; Kamilla, Sushanta K

    2010-01-01

    Titania (TiO 2 ) nanotubular arrays provide an exciting material for dye sensitizing solar cells (DSSC) because of their large surface area, lower recombination losses, and fast charge transport properties along the nanotubes. In this paper, design of a next generation DSSC using a TiO 2 nanotubular membrane is discussed. A single step, green process is developed to produce stable large area, free-standing TiO 2 nanotubular films (in a short time, 30-60 min) by anodizing Ti using an organic electrolyte, containing disodium salt of ethylene diaminetetraacetic acid (Na 2 [H 2 EDTA]) as complexing agent, and subsequent drying. Transparent, crack-free TiO 2 films, 20-41 μm thick containing ordered hexagonal TiO 2 nanotubes are achieved by this process. Films having a geometrical area up to 16.5 cm 2 with pore openings of 182 nm have been obtained. These films have been etched to form membranes which provide an exciting prospect for front side illuminated DSSC with good mass and photon transport properties as well as wettability. A photovoltaic efficiency of 2.7% is achieved using a front side illuminated DSSC compared to 1.77% using back side illumination.

  2. TiO2 nanotubes with different spacing, Fe2O3 decoration and their evaluation for Li-ion battery application

    Science.gov (United States)

    Ozkan, Selda; Cha, Gihoon; Mazare, Anca; Schmuki, Patrik

    2018-05-01

    In the present work, we report on the use of organized TiO2 nanotube (NT) layers with a regular intertube spacing for the growth of highly defined α-Fe2O3 nano-needles in the interspace. These α-Fe2O3 decorated TiO2 NTs are then explored for Li-ion battery applications and compared to classic close-packed (CP) NTs that are decorated with various amounts of nanoscale α-Fe2O3. We show that NTs with tube-to-tube spacing allow uniform decoration of individual NTs with regular arrangements of hematite nano-needles. The tube spacing also facilitates the electrolyte penetration as well as yielding better ion diffusion. While bare CP NTs show a higher capacitance of 71 μAh cm-2 compared to bare spaced NTs with a capacitance of 54 μAh cm-2, the hierarchical decoration with secondary metal oxide, α-Fe2O3, remarkably enhances the Li-ion battery performance. Namely, spaced NTs with α-Fe2O3 decoration have an areal capacitance of 477 μAh cm-2, i.e. they have nearly ˜8 times higher capacitance. However, the areal capacitance of CP NTs with α-Fe2O3 decoration saturates at 208 μAh cm-2, i.e. is limited to ˜3 times increase.

  3. Hybrid micro/nano-topography of a TiO2 nanotube-coated commercial zirconia femoral knee implant promotes bone cell adhesion in vitro.

    Science.gov (United States)

    Frandsen, Christine J; Noh, Kunbae; Brammer, Karla S; Johnston, Gary; Jin, Sungho

    2013-07-01

    Various approaches have been studied to engineer the implant surface to enhance bone in-growth properties, particularly using micro- and nano-topography. In this study, the behavior of osteoblast (bone) cells was analyzed in response to a titanium oxide (TiO2) nanotube-coated commercial zirconia femoral knee implant consisting of a combined surface structure of a micro-roughened surface with the nanotube coating. The osteoblast cells demonstrated high degrees of adhesion and integration into the surface of the nanotube-coated implant material, indicating preferential cell behavior on this surface when compared to the bare implant. The results of this brief study provide sufficient evidence to encourage future studies. The development of such hierarchical micro- and nano-topographical features, as demonstrated in this work, can provide insightful designs for advanced bone-inducing material coatings on ceramic orthopedic implant surfaces. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Protein Corona Prevents TiO2 Phototoxicity.

    Directory of Open Access Journals (Sweden)

    Maja Garvas

    Full Text Available TiO2 nanoparticles have generally low toxicity in the in vitro systems although some toxicity is expected to originate in the TiO2-associated photo-generated radical production, which can however be modulated by the radical trapping ability of the serum proteins. To explore the role of serum proteins in the phototoxicity of the TiO2 nanoparticles we measure viability of the exposed cells depending on the nanoparticle and serum protein concentrations.Fluorescence and spin trapping EPR spectroscopy reveal that the ratio between the nanoparticle and protein concentrations determines the amount of the nanoparticles' surface which is not covered by the serum proteins and is proportional to the amount of photo-induced radicals. Phototoxicity thus becomes substantial only at the protein concentration being too low to completely coat the nanotubes' surface.These results imply that TiO2 nanoparticles should be applied with ligands such as proteins when phototoxic effects are not desired - for example in cosmetics industry. On the other hand, the nanoparticles should be used in serum free medium or any other ligand free medium, when phototoxic effects are desired - as for efficient photodynamic cancer therapy.

  5. Effects of additives on microstructures of titanate based nanotubes prepared by the hydrothermal process

    International Nuclear Information System (INIS)

    Kubo, Takashi; Sugimoto, Keijiro; Onoki, Takamasa; Nakahira, Atsushi; Yamasaki, Yuki

    2009-01-01

    Silica-containing TiO 2 -derived titanate nanotubes were prepared by the addition of a small amount of tetraethyl orthosilicate (TEOS) to TiO 2 -derived titanate nanotubes prepared by the hydrothermal process and a subsequent heat-treatment at 473 K in air. The microstructure and thermal behavior of synthesized silica containing TiO 2 -derived titanate nanotubes were investigated by various methods such as X-ray diffraction (XRD), X-ray absorption fine structure (XAF), and X-ray photoelectron spectroscopy (XPS). As a result, the addition of a small amount of TEOS leaded to the improvement of the thermal stability for TiO 2 -derived titanate nanotubes. XPS results revealed that Si was combined onto the surface of TiO 2 -derived titanate nanotubes, forming partial Si-O-Ti chemical bonds. Therefore, it was inferred that the thermal stability could be modified by forming partial Si-O-Ti chemical bonds at interface of silica and TiO 2 -derived titanate nanotubes. (author)

  6. High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation

    International Nuclear Information System (INIS)

    Wang Mei; Guo Daojun; Li Hulin

    2005-01-01

    Electro-oxidation of methanol in sulfuric acid solution was studied using palladium well-dispersed on titanium nanotubes, in relation to methanol oxidation processes in the direct oxidation methanol fuel cell. Pd dispersed on titania nanotubes, which leads to high surface area substrates, showed excellent catalytic activities compared to those of pure Pd and Pd-TiO 2 nanoparticles. TEM results show a narrow distribution of TiO 2 nanoparticles whose particle size is about 10nm, and uniform nano-sized TiO 2 nanotubes with 10nm in diameters are seen from HRTEM . A homogeneous structure in the composite nanomaterials is indicated by XRD analysis. The composite electrode activities were measured by cyclic voltammetry (CV) and at 25 deg. C it was found that 3wt% Pd in titania nanotubes had the best activity for methanol oxidation

  7. Three-dimensional observation of TiO2 nanostructures by electron tomography

    KAUST Repository

    Suh, Young Joon; Lu, Ning; Park, Seong Yong; Lee, Tae Hun; Lee, Sang Hoon; Cha, Dong Kyu; Lee, Min Gun; Huang, Jie; Kim, Sung Soo; Sohn, Byeong Hyeok; Kim, Geung Ho; Ko, Min Jae; Kim, Jiyoung; Kim, Moon J.

    2013-01-01

    Three-dimensional nanostructures of TiO2 related materials including nanotubes, electron acceptor materials in hybrid polymer solar cells, and working electrodes of dye sensitized solar cells (DSSCs) were visualized by electron tomography as well

  8. A photoelectrochemical study of CdS modified TiO2 nanotube arrays as photoanodes for cathodic protection of stainless steel

    International Nuclear Information System (INIS)

    L, Jing; Lin Changjian; Li Juntao; Lin Zequan

    2011-01-01

    An electrodeposited CdS nanoparticles-modified highly-ordered TiO 2 nanotube arrays (CdS-TNs) photoelectrode and its performance of photocathodic protection are reported. The self-organized TiO 2 nanotube arrays are fabricated by electrochemical anodization in an organic-inorganic mixed electrolyte and sensitized with CdS nanoparticles by electrodeposition via a single-step direct current. The morphology, crystalline phase, and composition of the CdS-TNs films were characterized systematically by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible (UV-Vis) spectroscopy, respectively. The photoelectrochemical performances of the CdS-TNs film under illumination and dark conditions in 0.5 M NaCl solution were evaluated through the electrochemical measurements. It is indicated that the TNs incorporated by CdS effectively harvest solar light in the UV as well as the visible light (up to 480 nm) region. It is supposed that the high photoelectro-response activity of the CdS-TNs is attributed to the increased efficiency of charge separation and transport of electrons. The electrode potentials of 304 stainless steel coupled with the CdS-TNs is found to be negatively shifted for about 246 mV and 215 mV under UV and white light irradiation, respectively, which can be remained for 24 h even in darkness. It is implied that the CdS-TNs are able to effectively function a photogenerated cathodic protection for metals both under the UV and visible light illumination.

  9. Single-walled carbon nanotube-facilitated dispersion of particulate TiO2 on ZrO2 ceramic membrane filters.

    Science.gov (United States)

    Yao, Yuan; Li, Gonghu; Gray, Kimberly A; Lueptow, Richard M

    2008-07-15

    We report that SWCNTs substantially improve the uniformity and coverage of TiO2 coatings on porous ZrO2 ceramic membrane filters. The ZrO2 filters were dip coated with 100 nm anatase TiO2, TiO2/SWCNT composites, a TiO2+SWCNT mixture, and a TiO2/MWCNT composite at pH 3, 5, and 8. Whereas the TiO2+SWCNT mixture and the TiO2/MWCNT composite promote better coverage and less clumping than TiO2 alone, the TiO2/SWCNT composite forms a complete uniform coating without cracking at pH 5 ( approximately 100% coverage). A combination of chemical and electrostatic effects between TiO2 and SWCNTs forming the composite as well as between the composite and the ZrO2 surface explains these observations.

  10. Solar cells with PbS quantum dot sensitized TiO2-multiwalled carbon nanotube composites, sulfide-titania gel and tin sulfide coated C-fabric.

    Science.gov (United States)

    Kokal, Ramesh K; Deepa, Melepurath; Kalluri, Ankarao; Singh, Shrishti; Macwan, Isaac; Patra, Prabir K; Gilarde, Jeff

    2017-10-04

    Novel approaches to boost quantum dot solar cell (QDSC) efficiencies are in demand. Herein, three strategies are used: (i) a hydrothermally synthesized TiO 2 -multiwalled carbon nanotube (MWCNT) composite instead of conventional TiO 2 , (ii) a counter electrode (CE) that has not been applied to QDSCs until now, namely, tin sulfide (SnS) nanoparticles (NPs) coated over a conductive carbon (C)-fabric, and (iii) a quasi-solid-state gel electrolyte composed of S 2- , an inert polymer and TiO 2 nanoparticles as opposed to a polysulfide solution based hole transport layer. MWCNTs by virtue of their high electrical conductivity and suitably positioned Fermi level (below the conduction bands of TiO 2 and PbS) allow fast photogenerated electron injection into the external circuit, and this is confirmed by a higher efficiency of 6.3% achieved for a TiO 2 -MWCNT/PbS/ZnS based (champion) cell, compared to the corresponding TiO 2 /PbS/ZnS based cell (4.45%). Nanoscale current map analysis of TiO 2 and TiO 2 -MWCNTs reveals the presence of narrowly spaced highly conducting domains in the latter, which equips it with an average current carrying capability greater by a few orders of magnitude. Electron transport and recombination resistances are lower and higher respectively for the TiO 2 -MWCNT/PbS/ZnS cell relative to the TiO 2 /PbS/ZnS cell, thus leading to a high performance cell. The efficacy of SnS/C-fabric as a CE is confirmed from the higher efficiency achieved in cells with this CE compared to the C-fabric based cells. Lower charge transfer and diffusional resistances, slower photovoltage decay, high electrical conductance and lower redox potential impart high catalytic activity to the SnS/C-fabric assembly for sulfide reduction and thus endow the TiO 2 -MWCNT/PbS/ZnS cell with a high open circuit voltage (0.9 V) and a large short circuit current density (∼20 mA cm -2 ). This study attempts to unravel how simple strategies can amplify QDSC performances.

  11. Novel Nanotechnology of TiO2 Improves Physical-Chemical and Biological Properties of Glass Ionomer Cement

    Directory of Open Access Journals (Sweden)

    Daniela Dellosso Cibim

    2017-01-01

    Full Text Available The aim of this study was to assess the performance of glass ionomer cement (GIC added with TiO2 nanotubes. TiO2 nanotubes [3%, 5%, and 7% (w/w] were incorporated into GIC’s (Ketac Molar EasyMix™ powder component, whereas unblended powder was used as control. Physical-chemical-biological analysis included energy dispersive spectroscopy (EDS, surface roughness (SR, Knoop hardness (SH, fluoride-releasing analysis, cytotoxicity, cell morphology, and extracellular matrix (ECM composition. Parametric or nonparametric ANOVA were used for statistical comparisons (α≤0.05. Data analysis revealed that EDS only detected Ti at the 5% and 7% groups and that GIC’s physical-chemical properties were significantly improved by the addition of 5% TiO2 as compared to 3% and GIC alone. Furthermore, regardless of TiO2 concentration, no significant effect was found on SR, whereas GIC-containing 7% TiO2 presented decreased SH values. Fluoride release lasted longer for the 5% and 7% TiO2 groups, and cell morphology/spreading and ECM composition were found to be positively affected by TiO2 at 5%. In conclusion, in the current study, nanotechnology incorporated in GIC affected ECM composition and was important for the superior microhardness and fluoride release, suggesting its potential for higher stress-bearing site restorations.

  12. Photocatalysis-assisted water filtration: Using TiO2-coated vertically aligned multi-walled carbon nanotube array for removal of Escherichia coli O157:H7

    International Nuclear Information System (INIS)

    Oza, Goldie; Pandey, Sunil; Gupta, Arvind; Shinde, Sachin; Mewada, Ashmi; Jagadale, Pravin; Sharon, Maheshwar; Sharon, Madhuri

    2013-01-01

    A porous ceramic was coated with vertically aligned multi-walled carbon nanotubes (MWCNTs) by spray pyrolysis. Titanium dioxide (TiO 2 ) nanoparticles were then coated onto this densely aligned MWCNT. The presence of TiO 2 /MWCNT interfacial arrays was confirmed by X-ray diffraction (XRD), scanning electron microscope–energy dispersive analysis of X-ray (SEM–EDAX) and transmission electron microscope (TEM). This is a novel report in which water loaded with a most dreadful enterohemorrhagic pathogenic strain of Escherichia coli O157:H7 was filtered through TiO 2 /MWCNT coated porous ceramic filter and then analysed. Bacterial removal performance was found to be significantly lower in control i.e. plain porous ceramic (P < 0.05) as compared to TiO 2 /MWCNT coated ceramic. The photocatalytic killing rate constant for TiO 2 -ceramic and MWCNT/TiO 2 -ceramic under fluorescent light was found be 1.45 × 10 −2 min −1 and 2.23 × 10 −2 min −1 respectively. Further, when I–V characteristics were performed for TiO 2 /MWCNT composite, it was corroborated that the current under light irradiation is comparatively higher than that in dark, thus proving it to be photocatalytically efficient system. The enhanced photocatalysis may be a contribution of increased surface area and charge transfer rate as a consequence of aligned MWCNT network. - Highlights: • Coating of vertically aligned MWCNT on ceramic candle filter • Surface orchestration of TiO 2 on MWCNT arrays • I–V characteristic studies are performed under dark and illumination. • Photocatalytic efficiency of TiO 2 /MWCNT arrays is determined using E. coli O157:H7. • Proposed a mechanism of bacterial killing due to free radical formation

  13. Self-organized TiO2 nanotubular arrays for photoelectrochemical hydrogen generation: effect of crystallization and defect structures

    International Nuclear Information System (INIS)

    Mahajan, V K; Misra, M; Raja, K S; Mohapatra, S K

    2008-01-01

    The effect of crystallization and surface chemistry of nanotubular titanium dioxide (TiO 2 ) in connection with the photoelectrochemical process is reported in this investigation. TiO 2 nanotubular arrays were synthesized by a simple anodization process in an acidified fluoride electrolyte at room temperature. The TiO 2 nanotubes were amorphous in as-anodized condition; their transformation to crystalline phases was a function of annealing temperature and gaseous environment. The anatase phase was observed predominantly after annealing in non-oxidizing atmospheres, whereas annealing in an oxygen environment showed a mixture of anatase and rutile phases. X-ray photoelectron spectroscopy was used to determine the chemical environment of the surface, which revealed the presence of phosphate, oxygen vacancies and pentacoordinated Ti in hydrogen annealed samples. Diffuse reflectance photospectrometry of non-oxygen annealed samples showed long absorption tails extending in the visible region. The photoelectrochemical response of the TiO 2 nanotubes annealed in different conditions was investigated. Photoelectrochemical performance under simulated solar light was improved by annealing the nanotubular TiO 2 samples in non-oxidizing environment

  14. Thiourea-Modified TiO2 Nanorods with Enhanced Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Xiaofeng Wu

    2016-02-01

    Full Text Available Semiconductor TiO2 photocatalysis has attracted much attention due to its potential application in solving the problems of environmental pollution. In this paper, thiourea (CH4N2S modified anatase TiO2 nanorods were fabricated by calcination of the mixture of TiO2 nanorods and thiourea at 600 °C for 2 h. It was found that only N element was doped into the lattice of TiO2 nanorods. With increasing the weight ratio of thiourea to TiO2 (R from 0 to 8, the light-harvesting ability of the photocatalyst steady increases. Both the crystallization and photocatalytic activity of TiO2 nanorods increase first and then decrease with increase in R value, and R2 sample showed the highest crystallization and photocatalytic activity in degradation of Brilliant Red X3B (X3B and Rhodamine B (RhB dyes under visible light irradiation (λ > 420 nm. The increased visible-light photocatalytic activity of the prepared N-doped TiO2 nanorods is due to the synergistic effects of the enhanced crystallization, improved light-harvesting ability and reduced recombination rate of photo-generated electron-hole pairs. Note that the enhanced visible photocatalytic activity of N-doped nanorods is not based on the scarification of their UV photocatalytic activity.

  15. Synthesis, characterization, and analysis of enhanced photocatalytic activity of Zr-doped TiO2 nanostructured powders under UV light

    Science.gov (United States)

    Sekhar, M. Chandra; Purusottam Reddy, B.; Mallikarjuna, K.; Shanmugam, Gnanendra; Ahn, Chang-Hoi; Park, Si-Hyun

    2018-01-01

    Zr-doped and pure TiO2 nanoparticles (NPs) were synthesized using a simple inexpensive sol-gel method. X-ray powder diffractometry and Fourier transform infrared spectrometry revealed the presence of anatase-phase TiO2 NPs. Scanning electron microscopy and transmission electron microscopy revealed that the average nanocrystalline size of approximately 15 nm. The photocatalytic activities of these materials were evaluated using Rhodamine B (Rh B) as an organic contaminant. The photocatalytic activity of pure and Zr-doped TiO2 NPs (with at% 4, 8, 12 and 16) was measured in terms of the degradation of Rh B under UV light. The antibacterial activities of pure and Zr-doped (with 8 at%) TiO2 NPs were evaluated against Bacillus subtillis, Escherichia coli, and Pseudomonas aeruginosa. A maximum inhibition zone (19 mm) was observed for pure TiO2 NPs, against Bacillus subtillis and Pseudomonas aeruginosa, while Zr-doped TiO2 (8 at%) exhibited a lesser inhibition zone (18 mm) against the same Bacillus subtillis and Pseudomonas aeruginosa (18 mm). However, Zr-doped TiO2 (8 at%) NPs exhibited a greater inhibition zone against Escherichia coli (17 mm), while the activity of pure TiO2 NPs against Escherichia coli (15 mm) was retarded. Thus, pure TiO2 NPs and Zr-doped TiO2 (8 at%) NPs have competent activities and can be used as antibacterial agents against different bacteria.

  16. Self-ordering anodized nanotubes: Enhancing the performance by surface plasmon for dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Agarwala, S.; Ho, G.W.

    2012-01-01

    In the present work, electrochemical anodization has been used to prepare uniform TiO 2 nanotube array photoelectrode. The average internal diameter, tube length and wall thickness of the optimized morphology is ∼180 nm, 14 μm and 10 nm, respectively. It was found that the tube diameter increases with the anodization voltage. Diffraction data reveals that the nanotubes consist solely of anatase phase. Back illuminated geometry of dye-sensitized solar cell (DSSC), with nanotubes grown at 60 V for 2 h, gave a cell performance of 4.5%. TiO 2 nanotubes are loaded with silver (Ag) nanoparticles synthesized by a hydrothermal route. The Ag particle size is controlled resulting in solar conversion efficiency to increase by 22%. The DSSC based on TiO 2 nanotube with Ag nanoparticles shows power conversion efficiency of 5.5%. Detailed characterization are performed, presented and discussed. - Graphical abstract: Enhanced solar conversion efficiency of dye-sensitized solar cells by decorating TiO 2 nanotube array with Ag nanoparticles. Highlights: ► Uniform array of TiO 2 nanotubes synthesized via electrochemical anodization. ► Back illuminated DSSC gave a cell performance of 4.5%. ► TiO 2 nanotubes are loaded with Ag nanoparticles, which increased the power conversion efficiency to 5.5%.

  17. Stability and Electronic Properties of TiO2 Nanostructures With and Without B and N Doping

    DEFF Research Database (Denmark)

    Mowbray, Duncan; Martinez, Jose Ignacio; García Lastra, Juan Maria

    2009-01-01

    We address one of the main challenges to TiO2 photocatalysis, namely band gap narrowing, by combining nanostructural changes with doping. With this aim we compare TiO2’s electronic properties for small 0D clusters, 1D nanorods and nanotubes, 2D layers, and 3D surface and bulk phases using differe...

  18. A new approach of tailoring wetting properties of TiO2 nanotubular surfaces

    KAUST Repository

    Isimjan, Tayirjan T.; Yan, Zhu; Yang, D. Q.; Rohani, Sohrab M F; Ray, Ajay

    2012-01-01

    TiO2 nanotube layers were grown on a Ti surface by electrochemical anodization. As prepared, these layers showed a superhydrophilic wetting behavior. Modified with 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PTES), the layers showed a

  19. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting

    KAUST Repository

    Zhang, Zhonghai

    2013-01-09

    A visible light responsive plasmonic photocatalytic composite material is designed by rationally selecting Au nanocrystals and assembling them with the TiO2-based photonic crystal substrate. The selection of the Au nanocrystals is so that their surface plasmonic resonance (SPR) wavelength matches the photonic band gap of the photonic crystal and thus that the SPR of the Au receives remarkable assistance from the photonic crystal substrate. The design of the composite material is expected to significantly increase the Au SPR intensity and consequently boost the hot electron injection from the Au nanocrystals into the conduction band of TiO2, leading to a considerably enhanced water splitting performance of the material under visible light. A proof-of-concept example is provided by assembling 20 nm Au nanocrystals, with a SPR peak at 556 nm, onto the photonic crystal which is seamlessly connected on TiO2 nanotube array. Under visible light illumination (>420 nm), the designed material produced a photocurrent density of ∼150 μA cm-2, which is the highest value ever reported in any plasmonic Au/TiO2 system under visible light irradiation due to the photonic crystal-assisted SPR. This work contributes to the rational design of the visible light responsive plasmonic photocatalytic composite material based on wide band gap metal oxides for photoelectrochemical applications. © 2012 American Chemical Society.

  20. Lithiation Confined in One Dimensional Nanospace of TiO2 (Anatase) Nanotube to Enhance the Lithium Storage Property of CuO Nanowires.

    Science.gov (United States)

    Li, Ang; Song, Huaihe; Chen, Xiaohong; Zhou, Jisheng; Ma, Zhaokun

    2015-10-14

    We have fabricated CuO@TiO2 nanocable arrays by a facile method involving in situ thermal oxidation of Cu foil and coating of tetrabutyl titanate solution. The structure of the nanocables has been investigated by various techniques to comfirm that the cores are mainly crystalline monoclinic CuO, and the shells are crystalline tetragonal anatase TiO2. When used as an anode material for lithium-ion batteries, the nanoconfinement effect plays an important role in improving the lithium-ion storage preformance: the lithiation will be confined in one-dimensional space of TiO2 nanotubes to limit the pulverization of CuO, and the phase interface will cause an interfacial adsorption to enrich more lithium ions at some level. Benefiting from the nanoconfinement effect and interfacial adsorption, the reversible capacity does not fade, but rather increases gradually to 725 mAh g(-1) after 400 cycles at a current density of 60 mA g(-1), superior to the theoretical capacity of CuO.

  1. Air-gating and chemical-gating in transistors and sensing devices made from hollow TiO2 semiconductor nanotubes

    Science.gov (United States)

    Alivov, Yahya; Funke, Hans; Nagpal, Prashant

    2015-07-01

    Rapid miniaturization of electronic devices down to the nanoscale, according to Moore’s law, has led to some undesirable effects like high leakage current in transistors, which can offset additional benefits from scaling down. Development of three-dimensional transistors, by spatial extension in the third dimension, has allowed higher contact area with a gate electrode and better control over conductivity in the semiconductor channel. However, these devices do not utilize the large surface area and interfaces for new electronic functionality. Here, we demonstrate air gating and chemical gating in hollow semiconductor nanotube devices and highlight the potential for development of novel transistors that can be modulated using channel bias, gate voltage, chemical composition, and concentration. Using chemical gating, we reversibly altered the conductivity of nanoscaled semiconductor nanotubes (10-500 nm TiO2 nanotubes) by six orders of magnitude, with a tunable rectification factor (ON/OFF ratio) ranging from 1-106. While demonstrated air- and chemical-gating speeds were slow here (˜seconds) due to the mechanical-evacuation rate and size of our chamber, the small nanoscale volume of these hollow semiconductors can enable much higher switching speeds, limited by the rate of adsorption/desorption of molecules at semiconductor interfaces. These chemical-gating effects are completely reversible, additive between different chemical compositions, and can enable semiconductor nanoelectronic devices for ‘chemical transistors’, ‘chemical diodes’, and very high-efficiency sensing applications.

  2. Maturation of osteoblast-like SaoS2 induced by carbon nanotubes

    International Nuclear Information System (INIS)

    Li Xiaoming; Uo, Motohiro; Akasaka, Tsukasa; Abe, Shigeaki; Watari, Fumio; Gao Hong; Sato, Yoshinori; Feng Qingling; Cui Fuzhai

    2009-01-01

    Osteogenic maturation of the osteoblast is crucial for bone formation. In this study, multi-walled carbon nanotubes (MWCNTs) and graphite (GP) were pressed as compacts. The greater ability of carbon nanotubes to adsorb proteins, compared with graphite, was shown. Human osteoblast-like SaoS2 cells were cultured and the cell response to the two kinds of compacts was compared in vitro. Meanwhile, we used cell culture on the culture plate as a control. Assays for osteonectin, osteopontin and osteocalcin gene expression, total protein (TP) amount, alkaline phosphatase activity (ALP) and DNA of cells cultured on the samples were done. During the conventional culture, significantly higher osteonectin, osteopontin and osteocalcin gene expression level, ALP/DNA and TP/DNA on carbon nanotubes were found. To confirm the hypothesis that the larger amount of specific proteins adsorbed on the carbon nanotubes was crucial for this, the compacts were pre-soaked in culture medium having additional recombinant human bone morphogenetic protein-2 (rhBMP-2) before cell culture. Compared with GP, osteonectin, osteopontin and osteocalcin gene expression level, ALP/DNA and TP/DNA of the cells tested increased more on the MWCNTs after the compacts were pre-soaked in the culture medium with rhBMP-2. The results indicated that the carbon nanotubes might induce osteogenic maturation of the osteoblast by adsorbing more specific proteins.

  3. Ternary CNTs@TiO2/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries

    Science.gov (United States)

    Madian, Mahmoud; Ummethala, Raghunandan; Abo El Naga, Ahmed Osama; Ismail, Nahla; Rümmeli, Mark Hermann; Eychmüller, Alexander; Giebeler, Lars

    2017-01-01

    TiO2 nanotubes (NTs) synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li+ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs)@TiO2/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO2/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO2 and TiO2/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li+ ion diffusivity, promoting a strongly favored lithium insertion into the TiO2/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability. PMID:28773032

  4. Ternary CNTs@TiO2/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Mahmoud Madian

    2017-06-01

    Full Text Available TiO2 nanotubes (NTs synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li+ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs@TiO2/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO2/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO2 and TiO2/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li+ ion diffusivity, promoting a strongly favored lithium insertion into the TiO2/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability.

  5. Single-step preparation of TiO2/MWCNT Nanohybrid materials by laser pyrolysis and application to efficient photovoltaic energy conversion.

    Science.gov (United States)

    Wang, Jin; Lin, Yaochen; Pinault, Mathieu; Filoramo, Arianna; Fabert, Marc; Ratier, Bernard; Bouclé, Johann; Herlin-Boime, Nathalie

    2015-01-14

    This paper presents the continuous-flowand single-step synthesis of a TiO2/MWCNT (multiwall carbon nanotubes) nanohybrid material. The synthesis method allows achieving high coverage and intimate interface between the TiO2particles and MWCNTs, together with a highly homogeneous distribution of nanotubes within the oxide. Such materials used as active layer in theporous photoelectrode of solid-state dye-sensitized solar cells leads to a substantial performance improvement (20%) as compared to reference devices.

  6. Rational design of anatase TiO2 architecture with hierarchical nanotubes and hollow microspheres for high-performance dye-sensitized solar cells

    Science.gov (United States)

    Gu, Jiuwang; Khan, Javid; Chai, Zhisheng; Yuan, Yufei; Yu, Xiang; Liu, Pengyi; Wu, Mingmei; Mai, Wenjie

    2016-01-01

    Large surface area, sufficient light-harvesting and superior electron transport property are the major factors for an ideal photoanode of dye-sensitized solar cells (DSSCs), which requires rational design of the nanoarchitectures and smart integration of state-of-the-art technologies. In this work, a 3D anatase TiO2 architecture consisting of vertically aligned 1D hierarchical TiO2 nanotubes (NTs) with ultra-dense branches (HTNTs, bottom layer) and 0D hollow TiO2 microspheres with rough surface (HTS, top layer) is first successfully constructed on transparent conductive fluorine-doped tin oxide glass through a series of facile processes. When used as photoanodes, the DSSCs achieve a very large short-current density of 19.46 mA cm-2 and a high overall power conversion efficiency of 8.38%. The remarkable photovoltaic performance is predominantly ascribed to the enhanced charge transport capacity of the NTs (function as the electron highway), the large surface area of the branches (act as the electron branch lines), the pronounced light harvesting efficiency of the HTS (serve as the light scattering centers), and the engineered intimate interfaces between all of them (minimize the recombination effect). Our work demonstrates a possibility of fabricating superior photoanodes for high-performance DSSCs by rational design of nanoarchitectures and smart integration of multi-functional components.

  7. Hydrothermal synthesis of TiO2 Nanotubes: Microwave heating versus conventional heating

    CSIR Research Space (South Africa)

    Sikhwivhilu, LM

    2010-01-01

    Full Text Available The influence of the method of synthesis in the properties of the tubular structures derived from TiO2 was investigated using XRD, SEM and BET analysis. The use of microwave irradiation resulted in the formation of TiO2 tubes comprising anatase...

  8. Electrochemical performance of mixed crystallographic phase nanotubes and nanosheets of titania and titania-carbon/silver composites for lithium-ion batteries

    International Nuclear Information System (INIS)

    Das, Shyamal K.; Bhattacharyya, Aninda J.

    2011-01-01

    Highlights: → Carbon wired TiO 2 nanotubes as anode for lithium ion batteries. → Mixed phase nanotubes show higher energy and power density than titania nanosheets. → Lithium storage and phase stabilization influenced by morphology of carbon coating. - Abstract: The role of homogeneity in ex situ grown conductive coatings and dimensionality in the lithium storage properties of TiO 2 is discussed here. TiO 2 nanotube and nanosheet comprising of mixed crystallographic phases of anatase and TiO 2 (B) have been synthesized by an optimized hydrothermal method. Surface modifications of TiO 2 nanotube are realized via coating the nanotube with Ag nanoparticles and amorphous carbon. The first discharge cycle capacity (at current rate = 10 mA g -1 ) for TiO 2 nanotube and nanosheet were 355 mAh g -1 and 225 mAh g -1 , respectively. The conductive surface coating stabilized the titania crystallographic structure during lithium insertion-deinsertion processes via reduction in the accessibility of lithium ions to the trapping sites. The irreversible capacity is beneficially minimized from 110 mAh g -1 for TiO 2 nanotubes to 96 mAh g -1 and 57 mAh g -1 respectively for Ag and carbon modified TiO 2 nanotubes. The homogeneously coated amorphous carbon over TiO 2 renders better lithium battery performance than randomly distributed Ag nanoparticles coated TiO 2 due to efficient hopping of electrons.

  9. Dye-sensitized solar cells employing doubly or singly open-ended TiO2 nanotube arrays: structural geometry and charge transport.

    Science.gov (United States)

    Choi, Jongmin; Song, Seulki; Kang, Gyeongho; Park, Taiho

    2014-09-10

    We systematically investigated the charge transport properties of doubly or singly open-ended TiO2 nanotube arrays (DNT and SNT, respectively) for their utility as electrodes in dye-sensitized solar cells (DSCs). The SNT or DNT arrays were transferred in a bottom-up (B-up) or top-up (T-up) configuration onto a fluorine-doped tin oxide (FTO) substrate onto which had been deposited a 2 μm thick TiO2 nanoparticle (NP) interlayer. This process yielded four types of DSCs prepared with SNTs (B-up or T-up) or DNT (B-up or T-up). The photovoltaic performances of these DSCs were analyzed by measuring the dependence of the charge transport on the DSC geometry. High resolution scanning electron microscopy techniques were used to characterize the electrode cross sections, and electrochemical impedance spectroscopy was used to characterize the electrical connection at the interface between the NT array and the TiO2 NP interlayer. We examined the effects of decorating the DNT or SNT arrays with small NPs (sNP@DNT and sNP@SNT, respectively) in an effort to increase the extent of dye loading. The DNT arrays decorated with small NPs performed better than the decorated SNT arrays, most likely because the Ti(OH)4 precursor solution flowed freely into the array through the open ends of the NTs in the DNT case but not in the SNT case. The sNP@DNT-based DSC exhibited a better PCE (10%) compared to the sNP@SNT-based DSCs (6.8%) because the electrolyte solution flow was not restricted, direct electron transport though the NT arrays was possible, the electrical connection at the interface between the NT array and the TiO2 NP interlayer was good, and the array provided efficient light harvesting.

  10. Hierarchical architectures of ZnS–In2S3 solid solution onto TiO2 nanofibers with high visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Liu, Chengbin; Meng, Deshui; Li, Yue; Wang, Longlu; Liu, Yutang; Luo, Shenglian

    2015-01-01

    Graphical abstract: A unique hierarchical architecture of ZnS–In 2 S 3 solid solution onto TiO 2 nanofibers was fabricated. The hierarchical heterostructures exhibit high visible light photocatalytic activity and outstanding recycling performance. - Highlights: • Novel hierarchical heterostructure of TiO 2 @ZnS–In 2 S 3 solid solution. • Efficient inhibition of ZnS–In 2 S 3 solid solution aggregation. • High visible light photocatalytic activity. • Highly stable recycling performance. - Abstract: A unique hierarchical architecture of ZnS–In 2 S 3 solid solution nanostructures onto TiO 2 nanofibers (TiO 2 @ZnS–In 2 S 3 ) has been successfully fabricated by simple hydrothermal method. The ZnS–In 2 S 3 solid solution nanostructures exhibit a diversity of morphologies: nanosheet, nanorod and nanoparticle. The porous TiO 2 nanofiber templates effectively inhibit the aggregation growth of ZnS–In 2 S 3 solid solution. The formation of ZnS–In 2 S 3 solid solution is proved by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) and the intimate contact between TiO 2 nanofibers and ZnS–In 2 S 3 solid solution favors fast transfer of photogenerated electrons. The trinary TiO 2 @ZnS–In 2 S 3 heterostructures exhibit high adsorption capacity and visible light photocatalytic activity for the degradation of rhodamine B dye (RhB), remarkably superior to pure TiO 2 nanofibers or binary structures (ZnS/TiO 2 nanofibers, In 2 S 3 /TiO 2 nanofibers and ZnS–In 2 S 3 solid solution). Under visible light irradiation the RhB photocatalytic degradation rate over TiO 2 @ZnS–In 2 S 3 heterostructures is about 16.7, 12.5, 6.3, 5.9, and 2.2 times that over pure TiO 2 nanofibers, ZnS nanoparticles, In 2 S 3 /TiO 2 nanofibers, ZnS/TiO 2 nanofibers, and ZnS-In 2 S 3 solid solution, respectively. Furthermore, the TiO 2 @ZnS–In 2 S 3 heterostructures show highly stable recycling performance

  11. Visible-Light-Driven, Dye-Sensitized TiO2 Photo-Catalyst for Self-Cleaning Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    Ishaq Ahmad

    2017-11-01

    Full Text Available We report here the photo-catalytic properties of dye-sensitized TiO2-coated cotton fabrics. In this study, visible-light-driven, self-cleaning cotton fabrics were developed by coating the cotton fabrics with dye-sensitized TiO2. TiO2 nano-sol was prepared via the sol-gel method and the cotton fabric was coated with this nano-sol by the dip-pad–dry-cure method. In order to enhance the photo-catalytic properties of this TiO2-coated cotton fabric under visible light irradiation, the TiO2-coated cotton fabric was dyed with a phthalocyanine-based reactive dye, C.I. Reactive Blue 25 (RB-25, as a dye sensitizer for TiO2. The photo-catalytic self-cleaning efficiency of the resulting dye/TiO2-coated cotton fabrics was evaluated by degradation of Rhodamine B (RhB and color co-ordinate measurements. Dye/TiO2-coated cotton fabrics show very good photo-catalytic properties under visible light.

  12. Influence of the Crystal Structure of Titanium Oxide on the Catalytic Activity of Rh/TiO2 in Steam Reforming of Propane at Low Temperature.

    Science.gov (United States)

    Yu, Lin; Sato, Katsutoshi; Toriyama, Takaaki; Yamamoto, Tomokazu; Matsumura, Syo; Nagaoka, Katsutoshi

    2018-05-01

    Solid oxide fuel cells (SOFCs) using liquefied petroleum gas(LPG) reduce CO2 emissions due to their high energy-conversion efficiency. Although SOFCs can convert LPG directly, coking occurs easily by decomposition of hydrocarbons, including C-C bonds on the electrode of fuel cell stacks. It is therefore necessary to develop an active steam pre-reforming catalyst that eliminates the hydrocarbons at low temperature, where waste heat of SOFCs is used. Here we show that the crystal structure of the TiO2 that anchors Rh particles is crucial for catalytic activity of Rh/TiO2 catalysts for propane pre-reforming. Our experimental results revealed that strong metal support interaction (SMSI) induced during H2 pre-reduction were optimized over Rh/TiO2 with a rutile structure; this catalyst catalyzed the reaction much more effectively than conventional Rh/γ-Al2O3. In contrast, the SMSI was too strong for Rh/TiO2 with an anatase structure, and the surface of the Rh particles was therefore covered mostly with partially reduced TiO2. The result was very low activity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Degradation of the ammonia wastewater in aqueous medium with ozone in combination with mesoporous TiO2 catalytic

    Science.gov (United States)

    Liu, Zhiwu; Qiu, Jianping; Zheng, Chaocan; Li, Liqing

    2017-03-01

    TiO2 mesoporous nanomaterials are now widely used in catalytic ozone technology. In this paper, the market P25 as precursor hydrothermal method to prepare TiO2 mesoporous materials, ozone catalyst material characterization by transmission electron microscopy, surface area analyzers, and X-ray diffraction technique and found that nanotubes, nanosheets, nanorods through characterization results, nano-particles of different morphology and anatase and rutile proportion of the ozone catalytic material can be controlled by the calcination temperature and the temperature of hot water to give, and with the hot water temperature and calcination temperature, the catalyst becomes small aperture size larger catalyst crystalline phase from anatase to rutile gradually shift. Catalytic materials have been prepared by the Joint ozone degradation of ammonia wastewater to evaluate mesoporous TiO2 nanomaterials ozone catalytic performance, the results showed that: ammonia wastewater removal efficiency of various catalytic materials relatively separate ozone and markets P25 effects are significantly improved, and TiO2 nanotubes cooperate with ozone degradation ammonia wastewater highest efficiency, in addition, rutile TiO2 catalysts, the more the better the performance of their ozone catalysis.

  14. A strategy to reduce the angular dependence of a dye-sensitized solar cell by coupling to a TiO2 nanotube photonic crystal

    Science.gov (United States)

    Guo, Min; Xie, Keyu; Liu, Xiaolin; Wang, Yu; Zhou, Limin; Huang, Haitao

    2014-10-01

    Almost all types of solar cells suffer from a decreased power output when the incident light is tilted away from normal since the incident intensity generally follows a cosine law of the incident angle. Making use of the blue shift nature of the Bragg position of a TiO2 nanotube photonic crystal (NT PC) under oblique incidence, we demonstrate experimentally that the use of the NT PC can partially compensate the cosine power loss of a dye-sensitized solar cell (DSSC). The strategy used here is to purposely choose the Bragg position of the NT PC to be at the longer wavelength side of the dye absorption peak. When the incident light is tilted, the blue shift of the Bragg position results in more overlap with the dye absorption peak, generating a higher efficiency that partially compensates the reduced photon flux due to light inclination. Moreover, the unique structure of the vertically aligned TiO2 nanotubes contributes an additional scattering effect when the incident light is tilted. As a result, the power output of a DSSC coupled with the NT PC layer shows a much flatter angular dependence than a DSSC without the NT PC. At all the incident angles, the DSSC coupled with the NT PC layer also shows a higher power conversion efficiency than the one without. The concept of using NT PC to mitigate the angular dependence of DSSCs can be easily extended to many other optoelectronic devices that are irradiance sensitive.Almost all types of solar cells suffer from a decreased power output when the incident light is tilted away from normal since the incident intensity generally follows a cosine law of the incident angle. Making use of the blue shift nature of the Bragg position of a TiO2 nanotube photonic crystal (NT PC) under oblique incidence, we demonstrate experimentally that the use of the NT PC can partially compensate the cosine power loss of a dye-sensitized solar cell (DSSC). The strategy used here is to purposely choose the Bragg position of the NT PC to be at the

  15. Chalcogenide Sensitized Carbon Based TiO2 Nanomaterial For Solar Driven Applications

    Science.gov (United States)

    Pathak, Pawan

    The demand for renewable energy is growing because fossils fuels are depleting at a rapid pace. Solar energy an abundant green energy resource. Utilizing this resource in a smart manner can resolve energy-crisis related issues. Sun light can be efficiently harvested using semiconductor based materials by utilizing photo-generated charges for numerous beneficial applications. The main goal of this thesis is to synthesize different nanostructures of TiO2, develop a novel method of coupling and synthesizing chalcogenide nanocrystals with TiO2 and to study the charge transportation effects of the various carbon allotropes in the chalcogenide nanocrystal sensitized TiO2 nanostructure. We have fabricated different nanostructures of TiO2 as solar energy harvesting materials. Effects of the different phases of TiO2 have also been studied. The anatase phase of TiO2 is more photoactive than the rutile phase of TiO2, and the higher dimension of the TiO2 can increase the surface area of the material which can produce higher photocurrent. Since TiO2 only absorbs in the UV range; to increase the absorbance TiO2 should be coupled to visible light absorbing materials. This dissertation presents a simple approach to synthesize and couple chalcogenide nanocrystals with TiO2 nanostructure to form a heterostructured composite. An atmospheric pressure based, single precursor, one-pot approach has been developed and tested to assemble chalcogenide nanocrystal on the TiO2 surface. Surface characterization using microscopy, X-ray diffraction, and elemental analysis indicates the formation of nanocrystals along the nanotube walls and inter-tubular spacing. Optical measurements indicate that the chalcogenide nanocrystals absorb in the visible region and demonstrate an increase in photocurrent in comparison to bare TiO2 nanostructure. The CdS synthesized TiO2 nanostructure produced the highest photocurrent as measured in the three electrode system. We have also assembled the PbS nanocrystal

  16. A Designed TiO2 /Carbon Nanocomposite as a High-Efficiency Lithium-Ion Battery Anode and Photocatalyst.

    Science.gov (United States)

    Peng, Liang; Zhang, Huijuan; Bai, Yuanjuan; Feng, Yangyang; Wang, Yu

    2015-10-12

    Herein, a peapod-like TiO2 /carbon nanocomposite has successfully been synthesized by a rational method for the first time. The novel nanostructure exhibits a distinct feature of TiO2 nanoparticles encapsulated inside and the carbon fiber coating outside. In the synthetic process, H2 Ti3 O7 nanotubes serve as precursors and templates, and glucose molecules act as the green carbon source. With the alliciency of hydrogen bonding between H2 Ti3 O7 and glucose, a thin polymer layer is hydrothermally assembled and subsequently converted into carbon fibers through calcinations under an inert atmosphere. Meanwhile, the precursors of H2 Ti3 O7 nanotubes are transformed into the TiO2 nanoparticles encapsulated in carbon fibers. The achieved unique nanocomposites can be used as excellent anode materials in lithium-ion batteries (LIBs) and photocatalytic reagents in the degradation of rhodamine B. Due to the synergistic effect derived from TiO2 nanoparticles and carbon fibers, the obtained peapod-like TiO2 /carbon cannot only deliver a high specific capacity of 160 mAh g(-1) over 500 cycles in LIBs, but also perform a much faster photodegradation rate than bare TiO2 and P25. Furthermore, owing to the low cost, environmental friendliness as well as abundant source, this novel TiO2 /carbon nanocomposite will have a great potential to be extended to other application fields, such as specific catalysis, gas sensing, and photovoltaics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Evolution of nanomechanical properties and crystallinity of individual titanium dioxide nanotube resonators

    KAUST Repository

    Stassi, Stefano

    2017-12-29

    Herein a complete characterization of single TiO2 nanotube resonator was reported for the first time. The modal vibration response analysis allows a non-invasive indirect evaluation of the mechanical properties of the TiO2 nanotube. The effect of post-grown thermal treatments on nanotube mechanical properties was investigated and carefully correlated to the chemico-physical parameters evolution. The Young\\'s modulus of TiO2 nanotube linearly rises from 57 GPa up to 105 GPa for annealing at 600°C depending on the compositional and crystallographic evolution of the nanostructure. Considering the growing interest in single nanostructure devices, the reported findings allow a deeper understanding of the properties of individual titanium dioxide nanotubes extrapolated from their standard arrayed architecture.

  18. Improving photoelectrochemical performance on quantum dots co-sensitized TiO_2 nanotube arrays using ZnO energy barrier by atomic layer deposition

    International Nuclear Information System (INIS)

    Zeng, Min; Zeng, Xi; Peng, Xiange; Zhu, Zhuo; Liao, Jianjun; Liu, Kai; Wang, Guizhen; Lin, Shiwei

    2016-01-01

    Graphical abstract: - Highlights: • The length of TNTAs has a balance between the charge recombination and the QDs loading. • The introduction of ZnO interlayer by ALD could improve the QDs absorption. • The optimal thickness of ZnO interlayer is 1.5 nm prepared by 10 cycles ALD. - Abstract: PbS and CdS quantum dots (QDs) have been deposited onto TiO_2 nanotube arrays (TNTAs) in turn via a sonication-assisted successive ionic layer adsorption and reaction method. This method could uniformly decorate TNTAs with QDs, avoiding QDs aggregation at the mouth of TiO_2 nanotube. The loading amounts of QDs on TNTAs could be controlled by adjusting the TNTAs length. Under one sun illumination, the QDs co-sensitized TNTAs (TNTAs/QDs) with the length of about 2.4 μm displayed the highest photocurrent of 4.32 mA cm"−"2, which is 27 times higher than that of the bare TNTAs. Introduction of a thin ZnO energy barrier by atomic layer deposition (ALD) between the TNTAs and QDs can further improve the photocurrent of TNTAs/QDs. And the TNTAs/QDs with 10 ALD cycles of ZnO interlayer exhibits the highest photocurrent of 5.24 mA cm"−"2 and best photoconversion efficiency of 4.9%, a more than 20% enhancement over the bare TNTAs/QDs. Such enhanced photoelectrochemical performance may be ascribed to the increased amounts of QDs on the TNTAs due to the introduction of ZnO interlayer. The benefits of ALD layers play a crucial role in development and optimization of high-performance photoelectrodes in the near future.

  19. Free-standing Hierarchical Porous Assemblies of Commercial TiO_2 Nanocrystals and Multi-walled Carbon Nanotubes as High-performance Anode Materials for Sodium Ion Batteries

    International Nuclear Information System (INIS)

    Liu, Xiong; Xu, Guobao; Xiao, Huaping; Wei, Xiaolin; Yang, Liwen

    2017-01-01

    Highlights: • Utilization of commercial nanomaterials to freestanding sodium electrode is demonstrated. • Free-standing electrodes composed of TiO_2 and MWCNTs are hierarchically porous. • Hierarchical porous architecture benefits charge transport and interfacial Na"+ adsorption. • Free-standing hierarchical porous electrodes exhibit superior Na storage performance. - Abstract: Freestanding hierarchical porous assemblies of commercial TiO_2 nanocrystals and multi-wall carbon nanotubes (MWCNTs) as electrode materials for sodium ion batteries (SIBs) are prepared via modified vacuum filtration, free-drying and annealing. Microstructure characterizations reveal that TiO_2 nanocrystals are confined in hierarchically porous, highly electrically conductive and mechanically robust MWCNTs networks with cross-linking of thermally-treated bovine serum albumin. The hierarchical porous architecture not only enables rapid charge transportation and sufficient interaction between electrode and electrolyte, but also guarantees abundant interfacial sites for Na"+ adsorption, which benefits substantial contribution from pseudocapacitive Na storage. When it is used directly as an anode for sodium-ion batteries, the prepared electrode delivers high specific capacity of 100 mA h g"−"1 at a current density of 3000 mA g"−"1, and 150 mA h g"−"1 after 500 cycles at a current density of 500 mA g"−"1. The low-cost TiO_2-based freestanding anode has large potential application in high-performance SIBs for portable, flexible and wearable electronics.

  20. Interfacial Engineered Polyaniline/Sulfur-doped TiO2 Nanotube Arrays for Ultralong Cycle Lifetime Fiber-Shaped, Solid-State Supercapacitors.

    Science.gov (United States)

    Li, Chun; Wang, Zhuanpei; Li, Shengwen; Cheng, Jianli; Zhang, Yanning; Zhou, Jingwen; Yang, Dan; Tong, Dong-Ge; Wang, Bin

    2018-05-04

    Fiber-shaped supercapacitors (FSCs) have great potential in wearable electronics applications. However, the limited specific surface area and inadequate structural stability caused by the weak interfacial interactions of the electrodes result in relatively low specific capacitance and unsatisfactory cycle lifetime. Herein, solid-state FSCs with high energy density and ultralong cycle lifetime based on polyaniline (PANI)/sulfur-doped TiO2 nanotubes array (PANI/S-TiO2) are fabricated by interfacial engineering. The experimental results and ab initio calculations reveal that S doping can effectively promote the conductivity of titania nanotubes and increase the binding energy of PANI anchored on the electrode surface, leading to much stronger binding of PANI on the surface of the electrode and excellent electrode structure stability. As a result, the FSCs using the PANI/S-TiO2 electrodes deliver a high specific capacitance of 91.9 mF cm-2, a capacitance retention of 93.78% after 12,000 charge/discharge cycles, and an areal energy density of 3.2 µWh cm-2, respectively. Meanwhile, the all-solid-state FSC device retains its excellent flexibility and stable electrochemical capacitance even after bending 150 cycles. The enhanced performances of FSCs could be attributed to the large surface area, short ion diffusion path, high electrical conductivity and engineered interfacial interaction of the rationally designed electrodes.

  1. Evolution of nanomechanical properties and crystallinity of individual titanium dioxide nanotube resonators

    KAUST Repository

    Stassi, Stefano; Lamberti, Andrea; Roppolo, Ignazio; Casu, Alberto; Bianco, Stefano; Scaiola, Davide; Falqui, Andrea; Pirri, Candido Fabrizio; Ricciardi, Carlo

    2017-01-01

    Herein a complete characterization of single TiO2 nanotube resonator was reported for the first time. The modal vibration response analysis allows a non-invasive indirect evaluation of the mechanical properties of the TiO2 nanotube. The effect

  2. Photocatalytic properties of P25-doped TiO2 composite film synthesized via sol-gel method on cement substrate.

    Science.gov (United States)

    Guo, Xiang; Rao, Lei; Wang, Peifang; Wang, Chao; Ao, Yanhui; Jiang, Tao; Wang, Wanzhong

    2018-04-01

    TiO 2 films have received increasing attention for the removal of organic pollutants via photocatalysis. To develop a simple and effective method for improving the photodegradation efficiency of pollutants in surface water, we herein examined the preparation of a P25-TiO 2 composite film on a cement substrate via a sol-gel method. In this case, Rhodamine B (RhB) was employed as the target organic pollutant. The self-generated TiO 2 film and the P25-TiO 2 composite film were characterized by X-ray diffraction (XRD), N 2 adsorption/desorption measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and diffuse reflectance spectroscopy (DRS). The photodegradation efficiencies of the two films were studied by RhB removal in water under UV (ultraviolet) irradiation. Over 4day exposure, the P25-TiO 2 composite film exhibited higher photocatalytic performance than the self-generated TiO 2 film. The photodegradation rate indicated that the efficiency of the P25-TiO 2 composite film was enhanced by the addition of the rutile phase Degussa P25 powder. As such, cooperation between the anatase TiO 2 and rutile P25 nanoparticles was beneficial for separation of the photo-induced electrons and holes. In addition, the influence of P25 doping on the P25-TiO 2 composite films was evaluated. We found that up to a certain saturation point, increased doping enhanced the photodegradation ability of the composite film. Thus, we herein demonstrated that the doping of P25 powders is a simple but effective strategy to prepare a P25-TiO 2 composite film on a cement substrate, and the resulting film exhibits excellent removal efficiency in the degradation of organic pollutants. Copyright © 2017. Published by Elsevier B.V.

  3. As-grown vertically aligned amorphous TiO2 nanotube arrays as high-rate Li-based micro-battery anodes with improved long-term performance

    International Nuclear Information System (INIS)

    Lamberti, Andrea; Garino, Nadia; Sacco, Adriano; Bianco, Stefano; Chiodoni, Angelica; Gerbaldi, Claudio

    2015-01-01

    Highlights: • Amorphous TiO 2 nanotube (NT) arrays are fabricated by fast and facile anodic oxidation. • Near-theoretical initial specific capacity and remarkable rate capability. • Very long-term cycling stability (>2000 cycles) at a very high C-rate. • High surface area and improved interfacial characteristics for fast diffusion kinetics. • NTs show promising prospects in storage devices conceived for high power applications. - Abstract: Vertically oriented arrays of high surface area TiO 2 nanotubes (NTs) are fabricated by the fast and facile anodic oxidation of a titanium foil. The formation of well-defined one-dimensional nanotubular carpets is assessed by means of morphological Field Emission Scanning Electron Microscopy characterisation, while X-ray diffraction analysis and Transmission Electron Microscopy imaging confirm the amorphous nature of the samples. The electrochemical response evaluated in lab-scale lithium cells is highly satisfying with near-theoretical initial specific capacity and remarkable rate capability, noteworthy in the absence of binders and conductive agents, which would affect the overall energy density. A specific capacity exceeding 200 mAh g −1 is observed at very high 24 C and approx. 80 mAh g −1 are retained even at very high 96 C rate, thus accounting for the promising prospects in storage devices conceived for high power applications. Moreover, the NTs can perform with good cycling stability and capacity retention approaching 50% of the initial value after very long-term operation along with improved durability (> 2000 cycles)

  4. Electrochemical synthesis of 1D core-shell Si/TiO2 nanotubes for lithium ion batteries

    Science.gov (United States)

    Kowalski, Damian; Mallet, Jeremy; Thomas, Shibin; Nemaga, Abirdu Woreka; Michel, Jean; Guery, Claude; Molinari, Michael; Morcrette, Mathieu

    2017-09-01

    Silicon negative electrode for lithium ion battery was designed in the form of self-organized 1D core-shell nanotubes to overcome shortcomings linked to silicon volume expansion upon lithiation/delithiation typically occurring with Si nanoparticles. The negative electrode was formed on TiO2 nanotubes in two step electrochemical synthesis by means of anodizing of titanium and electrodeposition of silicon using ionic liquid electrolytes. Remarkably, it was found that the silicon grows perpendicularly to the z-axis of nanotube and therefore its thickness can be precisely controlled by the charge passed in the electrochemical protocol. Deposited silicon creates a continuous Si network on TiO2 nanotubes without grain boundaries and particle-particle interfaces, defining its electrochemical characteristics under battery testing. In the core-shell system the titania nanotube play a role of volume expansion stabilizer framework holding the nanostructured silicon upon lithiation/delithiation. The nature of Si shell and presence of titania core determine stable performance as negative electrode tested in half cell of CR2032 coin cell battery.

  5. Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method

    OpenAIRE

    Sun, Hong; Zhao, Peini; Zhang, Fanjun; Liu, Yuliang; Hao, Jingcheng

    2015-01-01

    Ag2S/CdS/TiO2 hybrid nanotube array films (Ag2S/CdS/TNTs) were prepared by selectively depositing a narrow-gap semiconductor—Ag2S (0.9 eV) quantum dots (QDs)—in the local domain of the CdS/TiO2 nanotube array films by spotting sample method (SSM). The improvement of sunlight absorption ability and photocurrent density of titanium dioxide (TiO2) nanotube array films (TNTs) which were obtained by anodic oxidation method was realized because of modifying semiconductor QDs. The CdS/TNTs, Ag2S/TNT...

  6. Enhanced photocatalytic, electrochemical and photoelectrochemical properties of TiO2 nanotubes arrays modified with Cu, AgCu and Bi nanoparticles obtained via radiolytic reduction

    International Nuclear Information System (INIS)

    Nischk, Michał; Mazierski, Paweł; Wei, Zhishun; Siuzdak, Katarzyna; Kouame, Natalie Amoin; Kowalska, Ewa; Remita, Hynd; Zaleska-Medynska, Adriana

    2016-01-01

    Highlights: • TiO 2 nanotubes were modified with Cu, AgCu, Bi nanoparticles via gamma radiolysis. • Excessive amount of deposited metal decreased photocatalytic activity. • AgCu-modified samples were more active than Cu-modified (with the same Cu content). • AgCu nanoparticles exist in a core (Ag) -shell (Cu) form. • Examined photocatalysts were resistant towards photocorrosion processes. - Abstract: TiO 2 nanotubes arrays (NTs), obtained via electrochemical anodization of Ti foil, were modified with monometallic (Cu, Bi) and bimetallic (AgCu) nanoparticles. Different amounts of metals’ precursors were deposited on the surface of NTs by the spin-coating technique, and the reduction of metals was performed via gamma radiolysis. Surface modification of titania was studied by EDS and XPS analysis. The results show that AgCu nanoparticles exist in a Ag core -Cu shell form. Photocatalytic activity was examined under UV irradiation and phenol was used as a model pollutant of water. Over 95% of phenol degradation was achieved after 60 min of irradiation for almost all examined samples, but only slight difference in degradation efficiency (about 3%) between modified and bare NTs was observed. However, the initial phenol degradation rate and TOC removal efficiency was significantly enhanced for the samples modified with 0.31 and 0.63 mol% of Bi as well as for all the samples modified with Cu and AgCu nanoparticles in comparison with bare titania nanotubes. The saturated photocurrent, under the influence of simulated solar light irradiation, for the most active Bi- and AgCu-modified samples, was over two times higher than for pristine NTs. All the examined materials were resistant towards photocorrosion processes that enables their application for long term processes induced by light.

  7. Decoration of TiO_2 nanotube arrays by graphitic-C_3N_4 quantum dots with improved photoelectrocatalytic performance

    International Nuclear Information System (INIS)

    Sun, Bo; Lu, Na; Su, Yan; Yu, Hongtao; Meng, Xiangyu; Gao, Zhanming

    2017-01-01

    Highlights: • TiO_2 nanotube arrays/graphitic-C_3N_4 quantum dots heterojunction was prepared via a facile dipping method. • The optimized dipping duration and concentration of heterojunction were investigated. • The prepared heterojunction extends optical absorption and reduces the recombination of charge carriers. • The photocurrent generated by the optimal g-C_3N_4 QDs/TNTAs photoanode is 4.3 times that of pristine TNTAs. • 98.6% of phenol is degraded in 120 min and the degradation rate is 4.9 times as great as that of pristine TNTAs. - Abstract: In this paper, we present a novel method to improve the photoelectrocatalytic (PEC) property of TiO_2 nanotube arrays (TNTAs) by way of decorating it with visible-light-respond graphitic-C_3N_4 quantum dots (g-C_3N_4 QDs). The g-C_3N_4 QDs/TNTAs heterojunction is successfully prepared using a facile dipping method. The optimal condition of preparing g-C_3N_4 QDs/TNTAs heterojunction is found as 60 min of dipping duration and 0.2 mg mL"−"1 of g-C_3N_4 QDs dipping solution. The fabricated g-C_3N_4 QDs/TNTAs heterojunction shows improved PEC activity comparing to TNTAs due to its better separation capability of photo-generated charges and wider optical absorption. And the photocurrent generated by the optimal g-C_3N_4 QDs/TNTAs photoanode is 4.3 times than that of pristine TNTAs. Besides, the g-C_3N_4 QDs/TNTAs heterojunction also exhibits superior PEC activities in degradation of phenol. 98.6% of phenol is successfully degraded in 120 min and the pseudo-first-order kinetic constant of phenol degradation is 4.9 times as great as that of pristine TNTAs. This work indicates that the g-C_3N_4 QDs/TNTAs heterojunction is expected to be a promising nanomaterial for pollutant degradation and further application in solar energy conversion.

  8. A Humidity Sensor Based on Nb-doped Nanoporous TiO2 Thin Film

    Directory of Open Access Journals (Sweden)

    Mansoor Anbia

    2011-11-01

    Full Text Available The humidity sensing properties of the sensor fabricated from Nb-doped nanoporous TiO2 by screen-printing on the alumina substrate with Ag-Pd interdigital electrodes have been investigated. The nanoporous thin film has been prepared by sol-gel technique. The product has been characterized by X-ray diffraction and scanning electron microscopy to analyze the structure and its morphology. It is found that the impedance of this sensor changes more than four orders of magnitude in the relative humidity (RH range of 11–95 % at 25 °C. The response and recovery time of the sensor are about 19 and 25 s, respectively, during the RH variation from 11 to 95 %. The sensor shows high humidity sensitivity, rapid response and recovery, prominent stability, good repeatability and narrow hysteresis loop. These results indicate that Nb-doped nanoporous TiO2 thin films have a great potential for humidity sensing applications in room temperature operations.

  9. Preparation and solar-light photocatalytic activity of TiO2 composites: TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite

    Science.gov (United States)

    Li, Y.; Li, S. G.; Wang, J.; Li, Y.; Ma, C. H.; Zhang, L.

    2014-12-01

    Three TiO2 loaded composites, TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite, were prepared in order to improve the solar-light photocatalytic activity of TiO2. The results showed that the photocatalytic activity could obviously be enhanced by loading appropriate amount of inorganic mineral materials. Meanwhile, TiO2 content, heat-treatment temperature and heat-treatment time on the photocatalytic activity were reviewed. Otherwise, the effect of solar light irradiation time and dye concentration on the photocatalytic degradation of Acid Red B was investigated. Furthermore, the degradation mechanism and adsorption process were also discussed.

  10. The Electrochemical Properties of Low-crystallinity TiO2(B)-Carbon Composite as an Anode Material in Lithium Ion Battery

    International Nuclear Information System (INIS)

    Furuya, Yasuyuki; Zhao, Wenwen; Unno, Masashi; Noguchi, Hideyuki

    2014-01-01

    Highlights: • TiO 2 (B)-carbon composites was synthesized from Lepidocrocite-type compounds. • Tight adhesion between TiO 2 (B) and CNT in the composite is confirmed. • TiO 2 (B)-carbon composite delivers higher capacity than that of bare TiO 2 (B). • TiO 2 (B)-carbon composite exhibits improved rate performance. - Abstract: We have prepared two types TiO 2 (B)-carbon composites from Lepidocrocite-type compounds (K 0.86 Li 0.26 T i1.72 O 4 ) heated at 700 and 900 °C under presence of carbon nanotube (CNT) and glucose as carbon sources. The XRD data shows that it contains a single phase of TiO 2 (B) and the existence of carbon was confirmed by Raman spectra. TEM image confirms that TiO 2 (B) primary particles and carbon nanotube are scattered randomly and contact tightly in the composite. Carbon content in the composite was found to be 5 - 8% and CNT is the major carbonaceous material. The charge and discharge curves of TiO 2 (B)-carbon composite prepared from precursor heated at 700 °C resemble with that of amorphous TiO 2 . The calculated discharge capacity of the composite is 323 mAh g −1 at a cut off voltage of 0.9 V, which is higher than that of bare TiO 2 (B). It is suggested that the electrochemical performance of this material is strongly influenced by both the operating temperature and cut off voltage. The discharge capacity can reach 198 mAh g −1 at 4.5 C rate at a cut off voltage 1.3 V and the coulombic efficiency is over 99.8% after 10 th cycles

  11. Conventional hydrothermal synthesis of titanate nanotubes: Systematic discussions on structural, optical, thermal and morphological properties

    Directory of Open Access Journals (Sweden)

    S. Muniyappan

    2017-12-01

    Full Text Available Titanate nanotubes were successfully synthesized by hydrothermal technique under acidic-base medium. The anatase and titanate phase of the starting TiO2 and tubular titanate was confirmed by powder XRD technique. The UV–vis-NIR spectroscopy was used to study the absorption nature of titanate nanotubes and the band gap was calculated as 3.3 eV. Infrared technique was employed to detect the presence of all the functional groups in the synthesized titanate nanotube material. Thermal properties of the title material were studied by TG-DTA analyses. The shrinkage of interlayer distance of TiO2 network confirms the nanotube formation. Morphology and size information about the synthesized material were carried out using FESEM and TEM analysis. Titanate nanotubes are having the maximum length of 2.24 µm and the average diameter of 169.73 nm. EDX analysis gives out the elemental composition of the as synthesized product. This report may fetch an efficient way to synthesize TiO2 nanotubes using TiO2 nanoparticles.

  12. Fabrication of CdS/H-TiO2 Nanotube Arrays and Their Application for the Degradation of Methyl Orange in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Xiaosong Zhou

    2014-01-01

    Full Text Available The fabrication and characterization of heterogeneous structures based on CdS and self-doped TiO2 nanotube arrays (H-TNTs are reported for the first time. CdS was conformally deposited onto TiO2 nanotube arrays (TNTs using a simple method of electrochemical atomic layer deposition. The as-prepared samples were characterized by scanning electron microscopy (SEM, X-ray photoelectron spectroscopy (XPS, UV-Vis diffusion reflection spectroscopy (UV-Vis DRS, and photoluminescence spectroscopy (PL techniques. Compared with pure TNTs, CdS/H-TNTs exhibit enhanced photoelectrochemical properties and photocatalytic activity under visible light. Self-doping introduces oxygen vacancies and Ti3+ species, and the electrochemical deposition technique promotes the deposition of CdS onto TiO2 nanotube walls, forming a heterojunction compact structure and resulting in decrease in photocatalytic activity under visible light.

  13. Sensing and electrical properties of TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Usman, M.

    2011-01-01

    The purpose of this work was to synthesize TiO 2 nanoparticles using Coprecipitation method. 2 different samples were synthesized, one with a modifier and other without using a modifier. After synthesis, newly formed nanoparticles were characterized b different techniques to find various properties of these nanoparticles. Scanning electron Microscopy (SEM) was used to study structure and morphology of Cu nanoparticles and for compositional analysis Energy dispersive spectroscopy (EDS) was used. X-Ray Diffraction (XRD) Studies were also carried out to find phase an average particle Size. To find the band gap of our nanoparticles, UV-Visible Spectroscopy was also done. Non-Modified nanoparticles were as small as 12nm reported by SEM images which were synthesized using a modifier were as small as 10nm. Modified TiO 2 nanoparticles were used in humidity sensing devices and it properties as a humidity sensor were examined by doing Impedance spectroscopy, D measurements and Dielectric measurements. Our TiO 2 humidity sensor showed sensitivity for humidity at low and mid-range frequencies while its response time was 4 seconds when we changed RH% to 90 from 40% and measured the impedance. (author)

  14. Synthesis of efficient silica supported TiO_2/Ag_2O heterostructured catalyst with enhanced photocatalytic performance

    International Nuclear Information System (INIS)

    Zelekew, Osman Ahmed; Kuo, Dong-Hau; Yassin, Jemal Mohammed; Ahmed, Kedir Ebrahim; Abdullah, Hairus

    2017-01-01

    Graphical abstract: Proposed charge separation mechanism and degradation of dye with photocatalyst under light irradiation. - Highlights: • n-type TiO_2 inside and p-type Ag_2O outside was designed. • The p–n junction formation built in an electric field. • The p–n junction facilitates the electrons and holes separation. • The degradation of dye becomes more effective with Ag_2O/TiO_2 catalyst. - Abstract: We develop the n-type TiO_2 coated on SiO_2 support abbreviated as SiO_2/TiO_2 (ST) followed by deposition of p-type Ag_2O nanoparticles outside for the purpose of photocatalytic degradation of organic pollutants. Different composite catalysts were prepared with changing the amount AgNO_3 (such as 0%, 5%, 10%, 20%, and 30%) and the composites were abbreviated as ST, STA-5, STA-10, STA-20, and STA-30, respectively. The composite catalysts were characterized with different techniques and tested for Rhodamine B (RhB) dye degradation under UV and visible light. Among the composite catalysts, the degradation efficiency of STA-20 was the highest and it degraded about 99% within 40 min under UV light-irradiation. However, the ST, STA-5, STA-10, and STA-30 composite catalysts could degrade about 21%, 47%, 58%, and 75% of the dye, respectively. Furthermore, the STA-5, STA-10, STA-20, and STA-30 composites were also tested and about 39%, 47%, 57%, and 42% of the dye, respectively, was degraded under visible light source. Hence, the formation of p–n junction heterostructure between n-type TiO_2 and p-type Ag_2O could enhance the degradation of RhB in both UV and visible light irradiation. It could be also potentially applicable photocatalyst for environmental remediation.

  15. Study of Optical Humidity Sensing Properties of Sol-Gel Processed TiO2 and MgO Films

    Directory of Open Access Journals (Sweden)

    B. C. Yadav

    2007-04-01

    Full Text Available Paper reports a comparative study of humidity sensing properties of TiO2 and MgO films fabricated by Sol-gel technique using optical method. One sensing element of the optical humidity sensor presented here consists of rutile structured two-layered TiO2 thin film deposited on the base of an isosceles glass prism. The other sensing element consists of a film of MgO deposited by same technique on base of the prism. Light from He-Ne laser enters prism from one of refracting faces of the prism and gets reflected from the glass-film interface, before emerging out from its other isosceles face. This emergent beam is allowed to pass through an optical fiber. Light coming out from the optical fiber is measured with an optical power meter. Variations in the intensity of light caused by changes in humidity lying in the range 5%RH to 95%RH have been recorded. MgO film shows better sensitivity than TiO2 film.

  16. Carbon nanotube-TiO(2) hybrid films for detecting traces of O(2).

    Science.gov (United States)

    Llobet, E; Espinosa, E H; Sotter, E; Ionescu, R; Vilanova, X; Torres, J; Felten, A; Pireaux, J J; Ke, X; Van Tendeloo, G; Renaux, F; Paint, Y; Hecq, M; Bittencourt, C

    2008-09-17

    Hybrid titania films have been prepared using an adapted sol-gel method for obtaining well-dispersed hydrogen plasma-treated multiwall carbon nanotubes in either pure titania or Nb-doped titania. The drop-coating method has been used to fabricate resistive oxygen sensors based on titania or on titania and carbon nanotube hybrids. Morphology and composition studies have revealed that the dispersion of low amounts of carbon nanotubes within the titania matrix does not significantly alter its crystallization behaviour. The gas sensitivity studies performed on the different samples have shown that the hybrid layers based on titania and carbon nanotubes possess an unprecedented responsiveness towards oxygen (i.e. more than four times higher than that shown by optimized Nb-doped TiO(2) films). Furthermore, hybrid sensors containing carbon nanotubes respond at significantly lower operating temperatures than their non-hybrid counterparts. These new hybrid sensors show a strong potential for monitoring traces of oxygen (i.e. ≤10 ppm) in a flow of CO(2), which is of interest for the beverage industry.

  17. Carbon nanotube-TiO2 hybrid films for detecting traces of O2

    International Nuclear Information System (INIS)

    Llobet, E; Espinosa, E H; Sotter, E; Ionescu, R; Vilanova, X; Torres, J; Felten, A; Pireaux, J J; Ke, X; Tendeloo, G Van; Renaux, F; Paint, Y; Hecq, M; Bittencourt, C

    2008-01-01

    Hybrid titania films have been prepared using an adapted sol-gel method for obtaining well-dispersed hydrogen plasma-treated multiwall carbon nanotubes in either pure titania or Nb-doped titania. The drop-coating method has been used to fabricate resistive oxygen sensors based on titania or on titania and carbon nanotube hybrids. Morphology and composition studies have revealed that the dispersion of low amounts of carbon nanotubes within the titania matrix does not significantly alter its crystallization behaviour. The gas sensitivity studies performed on the different samples have shown that the hybrid layers based on titania and carbon nanotubes possess an unprecedented responsiveness towards oxygen (i.e. more than four times higher than that shown by optimized Nb-doped TiO 2 films). Furthermore, hybrid sensors containing carbon nanotubes respond at significantly lower operating temperatures than their non-hybrid counterparts. These new hybrid sensors show a strong potential for monitoring traces of oxygen (i.e. ≤10 ppm) in a flow of CO 2 , which is of interest for the beverage industry

  18. Heterogeneous reaction of HO2 with airborne TiO2 particles and its implication for climate change mitigation strategies

    Science.gov (United States)

    Moon, Daniel R.; Taverna, Giorgio S.; Anduix-Canto, Clara; Ingham, Trevor; Chipperfield, Martyn P.; Seakins, Paul W.; Baeza-Romero, Maria-Teresa; Heard, Dwayne E.

    2018-01-01

    One geoengineering mitigation strategy for global temperature rises resulting from the increased concentrations of greenhouse gases is to inject particles into the stratosphere to scatter solar radiation back to space, with TiO2 particles emerging as a possible candidate. Uptake coefficients of HO2, γ(HO2), onto sub-micrometre TiO2 particles were measured at room temperature and different relative humidities (RHs) using an atmospheric pressure aerosol flow tube coupled to a sensitive HO2 detector. Values of γ(HO2) increased from 0.021 ± 0.001 to 0.036 ± 0.007 as the RH was increased from 11 to 66 %, and the increase in γ(HO2) correlated with the number of monolayers of water surrounding the TiO2 particles. The impact of the uptake of HO2 onto TiO2 particles on stratospheric concentrations of HO2 and O3 was simulated using the TOMCAT three-dimensional chemical transport model. The model showed that, when injecting the amount of TiO2 required to achieve the same cooling effect as the Mt Pinatubo eruption, heterogeneous reactions between HO2 and TiO2 would have a negligible effect on stratospheric concentrations of HO2 and O3.

  19. LCAO calculations of SrTiO3 nanotubes

    International Nuclear Information System (INIS)

    Evarestov, Robert; Bandura, Andrei

    2011-01-01

    The large-scale first-principles simulation of the structure and stability of SrTiO 3 nanotubes is performed for the first time using the periodic PBE0 LCAO method. The initial structures of the nanotubes have been obtained by the rolling up of the stoichiometric SrTiO 3 slabs consisting of two or four alternating (001) SrO and TiO 2 atomic planes. Nanotubes (NTs) with chiralities (n,0) and (n,n) have been studied. Two different NTs were constructed for each chirality: (I) with SrO outer shell, and (II) with TiO 2 outer shell. Positions of all atoms have been optimized to obtain the most stable NT structure . In the majority of considered cases the inner or outer TiO 2 shells of NT undergo a considerable reconstruction due to shrinkage or stretching of interatomic distances in the initial cubic perovskite structure. There were found two types of surface reconstruction: (1) breaking of Ti-O bonds with creating of Ti = O titanyl groups in outer surface; (2) inner surface folding due to Ti-O-Ti bending. Based on strain energy calculations the largest stability was found for (n,0) NTs with TiO 2 outer shell.

  20. Corrosion protection of AISI 1018 steel using Co-doped TiO_2/polypyrrole nanocomposites in 3.5% NaCl solution

    International Nuclear Information System (INIS)

    Ladan, Magaji; Basirun, Wan Jeffrey; Kazi, Salim Newaz; Rahman, Fariza Abdul

    2017-01-01

    A polypyrrole nanocomposites (PPy NTCs) have been effectively synthesized in the presence of TiO_2 and Co-doped TiO_2 nanoparticles (NPs) by an in situ chemical oxidative polymerization. Field Emission Scanning Electron Microscopy and Transmission Electron Microscopy revealed a tube shape structure of the PPy. The TEM results confirmed that the nanocomposite size of Co-doped TiO_2/PPy NTCs was smaller than TiO_2/PPy NTCs thereby increasing the interaction between the PPy nanotube and the AISI steel surface. The corrosion performance of the coatings was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements in 3.5% NaCl solution. The EIS results show that the log |Z| of AISI 1018 coated with Co-doped TiO_2/PPy NTCs and TiO_2/PPy NTCs reached about 8.2 and 6.0 respectively after 30 days of exposure in 3.5% NaCl solution. This is likely due to the increased surface area of the PPy synthesized in the presence of Co-doped TiO_2 NPs. The EIS results are confirmed by the potentiodynamic polarization and open circuit potential values of the Co-doped TiO_2/PPy which indicated little changes between 1 and 30 days of exposure which confirms the protection ability of this coating. . It is evident that the presence of Co-doped TiO_2 NPs can enhance the resistance against corrosion at the steel/electrolyte interface. - Highlights: • Polymerization of pyrrole monomer in the presence of Co-doped TiO_2 decreases the size of the polypyrrole nanotube (PPy NT). • The corrosion protection increases with the increase in PPy NT dispersion. • The corrosion resistance of steel coated with Co-doped TiO_2/PPy NTCs is considerably higher. • TiO_2/PPy with Co doping reduces the charge transfer across the electrolyte/AISI 1018 steel interface.

  1. CdSxSe1−x alloyed quantum dots-sensitized solar cells based on different architectures of anodic oxidation TiO2 film

    International Nuclear Information System (INIS)

    Li, Zhen; Yu, Libo; Liu, Yingbo; Sun, Shuqing

    2014-01-01

    Nanostructured TiO 2 translucent films with different architectures including TiO 2 nanotube (NT), TiO 2 nanowire (NW), and TiO 2 nanowire/nanotube (NW/NT) have been produced by second electrochemical oxidization of TiO 2 NT with diameter around 90–110 nm via modulation of applied voltage. These TiO 2 architectures are sensitized with CdS x Se 1−x alloyed quantum dots (QDs) in sizes of around 3–5 nm aiming to tune the response of the photoelectrochemical properties in the visible region. One-step hydrothermal method facilitates the deposition of CdS x Se 1−x QDs onto TiO 2 films. These CdS x Se 1−x QDs exhibit a tunable range of light absorption with changing the feed molar ratio of S:Se in precursor solution, and inject electrons into TiO 2 films upon excitation with visible light, enabling their application as photosensitizers in sensitized solar cells. Power conversion efficiency (PCE) of 2.00, 1.72, and 1.06 % are achieved with CdS x Se 1−x (obtained with S:Se = 0:4) alloyed QDs sensitized solar cells based on TiO 2 NW/NT, TiO 2 NW, and TiO 2 NT architectures, respectively. The significant enhancement of power conversion efficiency obtained with the CdS x Se 1−x /TiO 2 NW/NT solar cell can be attributed to the extended absorption of light region tuned by CdS x Se 1−x alloyed QDs and enlarged deposition of QDs and efficient electrons transport provided by TiO 2 NW/NT architecture

  2. Hydrothermal synthesis of Ti oxide nanostructures and TiO2:SnO2 heterostructures applied to the photodegradation of rhodamine B

    International Nuclear Information System (INIS)

    Mourão, Henrique A.J.L.; Junior, Waldir Avansi; Ribeiro, Caue

    2012-01-01

    The present study describes the synthesis, characterization and testing of the photocatalytic potential of TiO 2 nanoparticles (NPs), TiO 2 :SnO 2 heterostructures and potassium titanate nanotubes (TNTs) obtained by the alkaline hydrothermal method. The materials were characterized by X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, surface area estimated from the N 2 physisorption isotherm (BET), X-ray absorption near-edge structure (XANES) spectroscopy, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM) and Fourier transform near-infrared (FT-NIR) spectroscopy, among other methods. Photocatalytic potential was assessed by rhodamine B dye photodegradation under UVC radiation. The properties of the materials were shown to depend on the KOH concentration. Potassium TNTs with high surface area were obtained only in 5 mol L −1 KOH. The material composed of TiO 2 anatase phase, which was obtained in KOH solution ranging from 10 −4 to 1 mol L −1 , showed higher photocatalytic activity than the TNTs, despite the lower surface area and lower density of hydroxyl groups on the anatase. In the heterostructure syntheses, SnO 2 NPs were identified attached to TiO 2 when 10 −4 and 10 −2 mol L −1 KOH were used, whereas at [KOH] = 1 and 5 mol L −1 , Sn remained in solution during the synthetic process and only the respective TiO 2 phase was identified. The TiO 2 :SnO 2 heterostructures were more active than the material without SnO 2 prepared at the same KOH concentrations. Highlights: ► The formation of the materials depends on the [KOH] used during syntheses. ► The heterostructures were obtained with the lower [KOH]. ► Photoactivity of the heterostructures was higher than the respective TiO 2 nanostructures. ► Titanate nanotubes showed high concentration of OH groups but low photoactivity.

  3. Transparent conducting oxide nanotubes

    Science.gov (United States)

    Alivov, Yahya; Singh, Vivek; Ding, Yuchen; Nagpal, Prashant

    2014-09-01

    Thin film or porous membranes made of hollow, transparent, conducting oxide (TCO) nanotubes, with high chemical stability, functionalized surfaces and large surface areas, can provide an excellent platform for a wide variety of nanostructured photovoltaic, photodetector, photoelectrochemical and photocatalytic devices. While large-bandgap oxide semiconductors offer transparency for incident light (below their nominal bandgap), their low carrier concentration and poor conductivity makes them unsuitable for charge conduction. Moreover, materials with high conductivity have nominally low bandgaps and hence poor light transmittance. Here, we demonstrate thin films and membranes made from TiO2 nanotubes heavily-doped with shallow Niobium (Nb) donors (up to 10%, without phase segregation), using a modified electrochemical anodization process, to fabricate transparent conducting hollow nanotubes. Temperature dependent current-voltage characteristics revealed that TiO2 TCO nanotubes, doped with 10% Nb, show metal-like behavior with resistivity decreasing from 6.5 × 10-4 Ωcm at T = 300 K (compared to 6.5 × 10-1 Ωcm for nominally undoped nanotubes) to 2.2 × 10-4 Ωcm at T = 20 K. Optical properties, studied by reflectance measurements, showed light transmittance up to 90%, within wavelength range 400 nm-1000 nm. Nb doping also improves the field emission properties of TCO nanotubes demonstrating an order of magnitude increase in field-emitter current, compared to undoped samples.

  4. Carbon and TiO_2 synergistic effect on methylene blue adsorption

    International Nuclear Information System (INIS)

    Simonetti, Evelyn Alves Nunes; Simone Cividanes, Luciana de; Campos, Tiago Moreira Bastos; Rossi Canuto de Menezes, Beatriz; Brito, Felipe Sales; Thim, Gilmar Patrocínio

    2016-01-01

    Due to its high efficiency, low cost and a simple operation, the adsorption process is an important and widely used technique for industrial wastewater treatment. Recent studies on the removal of artificial dyes by adsorption include a large number of adsorbents, such as: activated carbon, silicates, carbon nanotube, graphene, fibers, titanates and doped titanates. The carbon insertion in the TiO_2 structure promotes a synergistic effect on the adsorbent composite, improving the adsorption and the charge-transfer efficiency rates. However, there are few studies regarding the adsorption capacity of TiO_2/Carbon composites with the carbon concentration. This study evaluates the effect of carbon (resorcinol/formaldehyde) insertion on TiO_2 structure through the adsorption process. Adsorbents were prepared by varying the carbon weight percentages using the sol-gel method. The physicochemical properties of the catalysts prepared, such as crystallinity, particle size, surface morphology, specific surface area and pore volume were investigated. The kinetic study, adsorption isotherm, pH effect and thermodynamic study were examined in batch experiments using methylene blue as organic molecule. In addition, the effect of carbon phase on the adsorption capacity of TiO_2-carbon composite was deeply investigated. SEM micrographs showed that TiO_2 phase grows along the carbon phase and FT-IR results showed the presence of Ti−O−C chemical bonding. The experiments indicate that the carbon phase acted as a nucleation agent for the growth of TiO_2 during the sol-gel step, with a TiO_2 structure suitable for blue methylene adsorption, resulting in a material with large surface area and slit-like or wedge-shaped pores. Further experiments will show the best carbon concentration for methylene blue adsorption using a TiO_2 based material. - Highlights: • This article deals with the adsorption of methylene blue onto TiO_2-Carbon composite. • The sol-gel synthesis was efficient

  5. Microwave-assisted self-doping of TiO2 photonic crystals for efficient photoelectrochemical water splitting

    KAUST Repository

    Zhang, Zhonghai

    2014-01-08

    In this article, we report that the combination of microwave heating and ethylene glycol, a mild reducing agent, can induce Ti3+ self-doping in TiO2. A hierarchical TiO2 nanotube array with the top layer serving as TiO2 photonic crystals (TiO2 NTPCs) was selected as the base photoelectrode. The self-doped TiO2 NTPCs demonstrated a 10-fold increase in visible-light photocurrent density compared to the nondoped one, and the optimized saturation photocurrent density under simulated AM 1.5G illumination was identified to be 2.5 mA cm-2 at 1.23 V versus reversible hydrogen electrode, which is comparable to the highest values ever reported for TiO2-based photoelectrodes. The significant enhancement of photoelectrochemical performance can be ascribed to the rational coupling of morphological and electronic features of the self-doped TiO 2 NTPCs: (1) the periodically morphological structure of the photonic crystal layer traps broadband visible light, (2) the electronic interband state induced from self-doping of Ti3+ can be excited in the visible-light region, and (3) the captured light by the photonic crystal layer is absorbed by the self-doped interbands. © 2013 American Chemical Society.

  6. N-doped TiO2 photo-catalyst for the degradation of 1,2-dichloroethane under fluorescent light

    International Nuclear Information System (INIS)

    Lin, Yi-Hsing; Chiu, Tang-Chun; Hsueh, Hsin-Ta; Chu, Hsin

    2011-01-01

    The photo-catalytic degradation of 1,2-dichloroethane (1, 2-DCE) using nitrogen-doped TiO 2 photo-catalysts under fluorescent light irradiation was investigated. Highly pure TiO 2 and nitrogen-doped TiO 2 were prepared by a sol-gel method and characterized by thermo-gravimetric/differential-thermal analysis (TG/DTA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. The results indicate that the photo-catalysts were mainly nano-size with an anatase-phase structure. The degradation reaction of 1,2-DCE was operated under visible-light irradiation, and the photo-catalytic oxidation was conducted in a batch photo-reactor with various nitrogen doping ratios (N/Ti = 0-25 mol%). The relative humidity (RH) was controlled at 0-20% and the oxygen concentration was controlled at 0-21%. The photo-degradation with nitrogen-doped TiO 2 showed superior photo-catalytic activity compared to that for pure TiO 2 . TiO 2 doped with 15 mol% nitrogen exhibited the best photo-catalytic efficiency under the tested conditions. The products from the 1,2-DCE photo-catalytic oxidation were CO 2 and water; the by-products included dichloromethane, methyl chloride, ethyl chloride, carbon monoxide, and hydrogen chloride. The reaction pathway of 1,2-DCE indicates that oxygen molecules are the major factor that causes the degradation of 1,2-DCE in the gas phase.

  7. Characterization and Comparison of Photocatalytic Activity Silver Ion doped on TiO2(TiO2/Ag+) and Silver Ion doped on Black TiO2(Black TiO2/Ag+)

    Science.gov (United States)

    Kim, Jin Yi; Sim, Ho Hyung; Song, Sinae; Noh, Yeoung Ah; Lee, Hong Woon; Taik Kim, Hee

    2018-03-01

    Titanium dioxide (TiO2) is one of the representative ceramic materials containing photocatalyst, optic and antibacterial activity. The hydroxyl radical in TiO2 applies to the intensive oxidizing agent, hence TiO2 is suitable to use photocatalytic materials. Black TiO2was prepared through reduction of amorphous TiO2 conducting under H2 which leads to color changes. Its black color is proven that absorbs 100% light across the whole-visible light, drawing enhancement of photocatalytic property. In this study, we aimed to compare the photocatalytic activity of silver ion doped on TiO2(TiO2/Ag+) and silver ion doped on black TiO2(black TiO2/Ag+) under visible light range. TiO2/Ag+ was fabricated following steps. 1) TiO2 was synthesized by a sol-gel method from Titanium tetraisopropoxide (TTIP). 2) Then AgNO3 was added during an aging process step for silver ion doping on the surface of TiO2. Moreover, Black TiO2/Ag+ was obtained same as TiO2/Ag+ except for calcination under H2. The samples were characterized X-ray diffraction (XRD), UV-visible reflectance (UV-vis DRS), and Methylene Blue degradation test. XRD analysis confirmed morphology of TiO2. The band gap of black TiO2/Ag+ was confirmed (2.6 eV) through UV-vis DRS, which was lower than TiO2/Ag+ (2.9 eV). The photocatalytic effect was conducted by methylene blue degradation test. It demonstrated that black TiO2/Ag+ had a photocatalytic effect under UV light also visible light.

  8. TiS2 and ZrS2 single- and double-wall nanotubes: first-principles study.

    Science.gov (United States)

    Bandura, Andrei V; Evarestov, Robert A

    2014-02-15

    Hybrid density functional theory has been applied for investigations of the electronic and atomic structure of bulk phases, nanolayers, and nanotubes based on titanium and zirconium disulfides. Calculations have been performed on the basis of the localized atomic functions by means of the CRYSTAL-2009 computer code. The full optimization of all atomic positions in the regarded systems has been made to study the atomic relaxation and to determine the most favorable structures. The different layered and isotropic bulk phases have been considered as the possible precursors of the nanotubes. Calculations on single-walled TiS2 and ZrS2 nanotubes confirmed that the nanotubes obtained by rolling up the hexagonal crystalline layers with octahedral 1T morphology are the most stable. The strain energy of TiS2 and ZrS2 nanotubes is small, does not depend on the tube chirality, and approximately obeys to D(-2) law (D is nanotube diameter) of the classical elasticity theory. It is greater than the strain energy of the similar TiO2 and ZrO2 nanotubes; however, the formation energy of the disulfide nanotubes is considerably less than the formation energy of the dioxide nanotubes. The distance and interaction energy between the single-wall components of the double-wall nanotubes is proved to be close to the distance and interaction energy between layers in the layered crystals. Analysis of the relaxed nanotube shape using radial coordinate of the metal atoms demonstrates a small but noticeable deviation from completely cylindrical cross-section of the external walls in the armchair-like double-wall nanotubes. Copyright © 2013 Wiley Periodicals, Inc.

  9. A Facile Method for Synthesizing TiO2 Sea-Urchin-Like Structures and Their Applications in Solar Energy Harvesting

    International Nuclear Information System (INIS)

    Wang Wen-Hui; Xu Hong-Xing; Wang Wen-Zhong

    2011-01-01

    We present a new method to prepare TiO 2 sea-urchin-like structures, which involves the initial formation of tubular nanostructures and subsequent self-assembly of the nanotubes into micrometer-scale sea-urchin-like structures. We also investigate the important role of alkali aqueous conditions in the preparation of TiO 2 sea-urchin-like structures. This facile and cost-effective approach provides a new route for the preparation of self-assembled TiO 2 structures. In addition, the performance of the as-synthesized TiO 2 sea-urchin-like structures as the active layer of an efficient solar energy harvester is also studied and discussed. (cross-disciplinary physics and related areas of science and technology)

  10. Structural and morphological transformations of TiO2 nanotube arrays induced by excimer laser treatment

    International Nuclear Information System (INIS)

    Hsu, Ming-Yi; Thang, Nguyen Van; Wang Chih; Leu Jihperng

    2012-01-01

    The structural and morphological transformations of TiO 2 nanotube arrays (TNAs) treated by excimer laser annealing (ELA) were investigated as a function of the laser fluence using parallel and tilted modes. Results showed that the crystallinity of the ELA-treated TNAs reached only about 50% relative to that of TNAs treated by furnace anneal at 400 °C for 1 h. The phase transformation starts from the top surface of the TNAs with surface damage resulting from short penetration depth and limited one-dimensional heat transport from the surface to the bottom under extremely short pulse duration (25 ns) of the excimer laser. When a tilted mode was used, the crystallinity of TNAs treated by ELA at 85° was increased to 90% relative to that by the furnace anneal. This can be attributed to the increased area of the laser energy interaction zone and better heat conduction to both ends of the TNAs. - Highlights: ► We examined the morphology and microstructure of TNAs treated by ELA. ► Crystallinity of parallel ELA-treated TNAs reached ∼50% of furnace anneal. ► Tilted ELA at 85o enhanced the degree of crystallization in TNAs to 90%.

  11. Heterogeneous reaction of HO2 with airborne TiO2 particles and its implication for climate change mitigation strategies

    Directory of Open Access Journals (Sweden)

    D. R. Moon

    2018-01-01

    Full Text Available One geoengineering mitigation strategy for global temperature rises resulting from the increased concentrations of greenhouse gases is to inject particles into the stratosphere to scatter solar radiation back to space, with TiO2 particles emerging as a possible candidate. Uptake coefficients of HO2, γ(HO2, onto sub-micrometre TiO2 particles were measured at room temperature and different relative humidities (RHs using an atmospheric pressure aerosol flow tube coupled to a sensitive HO2 detector. Values of γ(HO2 increased from 0.021 ± 0.001 to 0.036 ± 0.007 as the RH was increased from 11 to 66 %, and the increase in γ(HO2 correlated with the number of monolayers of water surrounding the TiO2 particles. The impact of the uptake of HO2 onto TiO2 particles on stratospheric concentrations of HO2 and O3 was simulated using the TOMCAT three-dimensional chemical transport model. The model showed that, when injecting the amount of TiO2 required to achieve the same cooling effect as the Mt Pinatubo eruption, heterogeneous reactions between HO2 and TiO2 would have a negligible effect on stratospheric concentrations of HO2 and O3.

  12. Fabrication and photoelectrochemical properties of ZnS/Au/TiO2 nanotube array films.

    Science.gov (United States)

    Zhu, Yan-Feng; Zhang, Juan; Xu, Lu; Guo, Ya; Wang, Xiao-Ping; Du, Rong-Gui; Lin, Chang-Jian

    2013-03-21

    A highly ordered TiO(2) nanotube array film was fabricated by an anodic oxidation method. The film was modified by Au nanoparticles (NPs) formed by a deposition-precipitation technique and was covered with a thin ZnS shell prepared by a successive ionic layer adsorption and reaction (SILAR) method. The photoelectrochemical properties of the prepared ZnS/Au/TiO(2) composite film were evaluated by incident photon-to-current conversion efficiency (IPCE), and photopotential and electrochemical impedance spectroscopy (EIS) measurements under white light illumination. The results indicated that the Au NPs could expand the light sensitivity range of the film and suppress the electron-hole recombination, and the ZnS shell could inhibit the leakage of photogenerated electrons from the surface of Au NPs to the ZnS/electrolyte interface. When the 403 stainless steel in a 0.5 M NaCl solution was coupled to the ZnS/Au/TiO(2) nanotube film photoanode under illumination, its potential decreased by 400 mV, showing that the composite film had a better photocathodic protection effect on the steel than that of a pure TiO(2) nanotube film.

  13. Phenol degradation by TiO2 photocatalysts combined with different pulsed discharge systems.

    Science.gov (United States)

    Zhang, Yi; Lu, Jiani; Wang, Xiaoping; Xin, Qing; Cong, Yanqing; Wang, Qi; Li, Chunjuan

    2013-11-01

    Films of TiO2 nanotubes distributed over the inner surface of a discharge reactor cylinder (CTD) or adhered to a stainless steel electrode surface (PTD) in a discharge reactor were compared with a single-discharge (SD) system to investigate their efficiencies in phenol degradation. Morphology studies indicated that the TiO2 film was destroyed in the PTD system, but that there was no change in the CTD system after discharge. X-ray diffraction results revealed that the anatase phase of the original sample was preserved in the CTD system, but that an anatase-to-rutile phase transformation occurred in the PTD system after discharge. The highest efficiencies of phenol degradation and total organic carbon (TOC) mineralization were observed in the CTD system, and there was no decrease in phenol degradation efficiency upon reuse of a TiO2 film, indicating high catalysis activity and stability of the TiO2 photocatalysts in the combined treatment. TiO2 photocatalysts favored the formation of hydrogen peroxide and disfavored the formation of ozone. A greater degree of oxidation of intermediates and higher energy efficiency in phenol oxidation were observed with the TiO2-plasma systems, especially in the CTD system, compared to those with the SD system. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Study on photocatalysis of TiO2 nanotubes prepared by methanol ...

    Indian Academy of Sciences (India)

    Titanate nanotubes were synthesized in methanol–water volume ratios of 10:90, 20:80 and 30:70 which still .... atmospheric pressure. .... pore volume of the largest titania nanotubes were observed ... affect phase structure and microstructure of titanate nanotubes .... Left inset in figure 7 is an enlarged picture of a tube wall.

  15. TiO2/carbon nanotube hybrid nanostructures: Solvothermal synthesis and their visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Tian Lihong; Ye Liqun; Deng Kejian; Zan Ling

    2011-01-01

    MWCNT/TiO 2 hybrid nanostructures were prepared via solvothermal synthesis and sol-gel method with benzyl alcohol as a surfactant. As-prepared hybrid materials were characterized by X-ray diffraction, transmission electron microscopy, UV-vis diffuse reflectance spectra and X-ray photoelectron spectroscopy. The results showed that MWCNTs were uniformly decorated with anatase nanocrystals in solvothermal condition, but MWCNTs were embedded in a majority of TiO 2 nanoparticles by sol-gel method. When the weight ratio of MWCNTs to TiO 2 was 20%, MWCNT/TiO 2 hybrid nanostructures prepared by solvothermal synthesis exhibited higher visible-light-driven photocatalytic activity than that prepared by sol-gel method. Post-annealing of MWCNT/TiO 2 nanostructures at 400 deg. C resulted in the formation of the carbonaceous Ti-C bonds on the interface between TiO 2 and MWCNTs, which enhanced the photoabsorbance of the hybrid materials in the visible light region and improved the visible-light degradation efficiency of methylene blue. - Graphical abstract: MWCNT/TiO 2 nanostructures have been prepared by solvothermal method, which exhibited higher visible-light-driven photocatalytic activity than that prepared by sol-gel method. The carbonaceous Ti-C bonds on the interface between TiO 2 and MWCNTs enhanced the photoabsorbance of the hybrid materials in the visible light region. Highlights: → Anatase TiO 2 nanoparticles were anchored on CNTs surface uniformly via solvothermal method → The morphology facilitated the electron transfer between CNTs and TiO 2 → Ti-C bonds extended the absorption of MWCNT/TiO 2 to the whole visible light region. → The hybrid nanostructures showed enhanced visible-light induced photocatalytic activity.

  16. M-Polynomials and Topological Indices of Titania Nanotubes

    Directory of Open Access Journals (Sweden)

    Mobeen Munir

    2016-10-01

    Full Text Available Titania is one of the most comprehensively studied nanostructures due to their widespread applications in the production of catalytic, gas sensing, and corrosion-resistant materials. M-polynomial of nanotubes has been vastly investigated, as it produces many degree-based topological indices, which are numerical parameters capturing structural and chemical properties. These indices are used in the development of quantitative structure-activity relationships (QSARs in which the biological activity and other properties of molecules, such as boiling point, stability, strain energy, etc., are correlated with their structure. In this report, we provide M-polynomials of single-walled titania (SW TiO2 nanotubes and recover important topological degree-based indices to theoretically judge these nanotubes. We also plot surfaces associated to single-walled titania (SW TiO2 nanotubes.

  17. Fabrication and photocatalytic activity of high-efficiency visible-light-responsive photocatalyst ZnTe/TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Liu Yutang; Zhang Xilin; Liu Ronghua; Yang Renbin; Liu Chengbin; Cai Qingyun

    2011-01-01

    A new ZnTe modified TiO 2 nanotube (NT) array catalyst was prepared by pulse potential electrodeposition of ZnTe nanoparticles (NPs) onto TiO 2 NT arrays, and its application for photocatalytic degradation of anthracene-9-carboxylic acid (9-AnCOOH) was investigated. The even distribution of ZnTe NPs was well-proportionately grown on the top surface of the TiO 2 NT while without clogging the tube entrances. Compared with the unmodified TiO 2 NT, the ZnTe modified TiO 2 NT (ZnTe/TiO 2 NT) showed significantly enhanced photocatalytic activity towards 9-AnCOOH under simulated solar light. After 70 min of irradiation, 9-AnCOOH was degraded with the removal ratio of 45% on the bare TiO 2 NT, much lower than 80%, 90%, and 100% on the ZnTe/TiO 2 NT with the ZnTe NPs prepared under the pulsed 'on' potentials of -0.8, -1.0, and -2.0 V, respectively. The increased photodegradation efficiency mainly results from the improved photocurrent density as results of enhanced visible-light absorption and decreased hole-electron recombination due to the presence of narrow-band-gap p-type semiconductor ZnTe. -- Graphical abstract: Surface-view SEM images of ZnTe/TiO 2 NT prepared under -2.0 V, and the inset is the corresponding enlarged drawings. Display Omitted Research highlights: → A new method to deposit chalcogenides of transition metals on the TiO 2 nanotubes. → The even distribution of ZnTe nanoparticles was well-proportionedly grown onto TiO 2 NT arrays. → ZnTe/TiO 2 NT showed remarkably increased photocurrent density. → ZnTe/TiO 2 NT showed good photocatalytic performance. → The prepared new catalyst has a promising application in practical systems.

  18. Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2

    International Nuclear Information System (INIS)

    Khan, Gulzar; Kim, Young Kwang; Choi, Sung Kyu; Han, Dong Suk; Abdelwahab, Ahmed; Park, Hyunwoong

    2013-01-01

    TiO 2 composites with seven different carbon materials (activated carbons, graphite, carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene oxides, and reduced graphene oxides) that are virgin or treated with nitric acid are prepared through an evaporation method. The photocatalytic activities of the as-prepared samples are evaluated in terms of H 2 production from aqueous methanol solution (photo-catalytic reduction: PCR) and degradation of aqueous pollutants (phenol, methylene blue, and rhodamine B) (photocatalytic oxidation: PCO) under AM 1.5-light irradiation. Despite varying effects depending on the kinds of carbon materials and their surface treatment, composites typically show enhanced PCR activity with maximum 50 times higher H 2 production as compared to bare TiO 2 . Conversely, the carbon-induced synergy effects on PCO activities are insignificant for all three substrates. Colorimetric quantification of hydroxyl radicals supports the absence of carbon effects. However, platinum deposition on the binary composites displays the enhanced effect on both PCR and PCO reactions. These differing effects of carbon materials on PCR and PCO reactions of TiO 2 are discussed in terms of physicochemical properties of carbon materials, coupling states of TiO 2 /carbon composites, interfacial charge transfers. Various surface characterizations of composites (UV-Vis diffuse reflectance, SEM, FTIR, surface area, electrical conductivity, and photoluminescence) are performed to gain insight on their photocatalytic redox behaviors

  19. Liquid phase deposition of WO3/TiO2 heterojunction films with high photoelectrocatalytic activity under visible light irradiation

    International Nuclear Information System (INIS)

    Zhang, Man; Yang, Changzhu; Pu, Wenhong; Tan, Yuanbin; Yang, Kun; Zhang, Jingdong

    2014-01-01

    Highlights: • Liquid phase deposition is developed for preparing WO 3 /TiO 2 heterojunction films. • TiO 2 film provides an excellent platform for WO 3 deposition. • WO 3 expands the absorption band edge of TiO 2 film to visible light region. • WO 3 /TiO 2 heterojunction film shows high photoelectrocatalytic activity. - ABSTRACT: The heterojunction films of WO 3 /TiO 2 were prepared by liquid phase deposition (LPD) method via two-step processes. The scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopic analysis indicated that flower-like WO 3 film was successfully deposited on TiO 2 film with the LPD processes. The TiO 2 film provided an excellent platform for WO 3 deposition while WO 3 obviously expanded the absorption of TiO 2 film to visible light. As the result, the heterojunction film of WO 3 /TiO 2 exhibited higher photocurrent response to visible light illumination than pure TiO 2 or WO 3 film. The photoelectrocatalytic (PEC) activity of WO 3 /TiO 2 film was evaluated by degrading Rhodamin B (RhB) and 4-chlorophenol (4-CP) under visible light irradiation. The results showed that the LPD WO 3 /TiO 2 film possessed high PEC activity for efficient removal of various refractory organic pollutants

  20. Fabrication and characterization of uniform TiO2 nanotube arrays by ...

    Indian Academy of Sciences (India)

    Titanium dioxide (TiO2) has been widely investigated as a key material for ... photonic crystals, catalysis, photocatalysis (Livraghi et al. 2005) and ... As a catalyst and/or catalyst support, .... of XRD analysis is supported by the Raman spectra of.

  1. Optical and electrical characterizations of nanocomposite film of titania adsorbed onto oxidized multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Feng Wei; Feng Yiyu; Wu Zigang; Fujii, Akihiko; Ozaki, Masanori; Yoshino, Katsumi

    2005-01-01

    Composite film containing titania electrostatically linked to oxidized multiwalled carbon nanotubes (TiO 2 -s-MWNTs) was prepared from a suspension of TiO 2 nanoparticles in soluble carbon nanotubes. The structure of the film was analysed principally by Fourier transform infrared spectroscopy, scanning electron micrography and x-ray diffraction. The optical and electrical characterizations of the film were investigated by UV-vis spectrum, photoluminescence and photoconductivity. The enhancement of photocurrent in the TiO 2 -s-MWNT film is discussed by taking the photoinduced charge transfer between the MWNT and TiO 2 into consideration

  2. Synthesis of Ag-loaded SrTiO_3/TiO_2 heterostructure nanotube arrays for enhanced photocatalytic performances

    International Nuclear Information System (INIS)

    Hu, Zijun; Chen, Da; Zhan, Xiaqiang; Wang, Fang; Qin, Laishun; Huang, Yuexiang

    2017-01-01

    In this work, the effect of loading Ag nanoparticles on the photocatalytic activity of SrTiO_3/TiO_2 nanotube arrays (TNTAs) was investigated. TNTAs were partially transformed to SrTiO_3 through a hydrothermal treatment, which could preserve the tubular structure of TNTAs, and then, Ag nanoparticles were well deposited on the surface of SrTiO_3/TNTAs heterostructure by a chemical reduction process. Compared to the TNTAs sample, the Ag-loaded SrTiO_3/TNTAs sample showed significantly enhanced photocatalytic activities for photodegradation of rhodamine B. The enhanced photocatalytic activity of Ag-loaded SrTiO_3/TNTAs could be attributed to the increased optical absorption as well as the efficient charge transfer and separation of photogenerated electron-hole pairs induced by the SrTiO_3/TNTAs heterojunction and the Schottky barrier between metallic Ag and SrTiO_3/TNTAs. On the basis of the trapping experiments, the possible photocatalytic mechanism was also discussed. (orig.)

  3. Evidence of iridescence in TiO2 nanostructures. A probably photonic effect

    Science.gov (United States)

    Rey-Gonzalez, Rafael; Quiroz, Heiddy P.; Barrera-Patiño, Claudia; Dussan, Anderson; Grupo de Optica e Informacion Cuantica Collaboration; Grupo de Materiales Nanoestructutrados y sus Aplicaciones Collaboration

    In this work, we present a study of optical properties of titanium dioxide nanotubes (TiO2). Nanotubes were obtained by electrochemical anodization method, using ethylene glycol solutions containing different amounts of water and fluoride. A complex structure is observed between nanotubes and Ti foils on surface when nanotubes are released from the sheet. These forms can be associated with replicas or marks in surface of the Ti foil. The optical response of replicas is studied by Uv-Vis spectrophotometry using white light and varying the angle of the incident light. Absorbance measurements reveal that these replicas exhibit a shift towards lower values of lambda when the angle of the incident light increases of 200 to 600. These changes may be associated with iridescent effects in this material. The concavity of the replicas in association with air could be generating photonic-like effects. Using a 2D model of replicas - air system, the photonic band structures are found through a plane wave approach. Correlations between photonic properties and iridescent effects are explored. Grupo de Optica e Informacion Cuantica.

  4. Low temperature synthesis of N-doped TiO_2 with rice-like morphology through peroxo assisted hydrothermal route: Materials characterization and photocatalytic properties

    International Nuclear Information System (INIS)

    Bakar, Shahzad Abu; Ribeiro, Caue

    2016-01-01

    Highlights: • The N:TiO_2 nanorice were prepared using facile peroxo-assisted hydrothermal method at low temperature. • The N:TiO_2 exhibited rice-like morphology. • The nitrogen doping favoured UV/visible light photocatalytic activity. • The RhB and Atrazine were chosen as model pollutants. - Abstract: Nanorice-shaped N:TiO_2 photocatalysts have been prepared by the peroxo assisted hydrothermal method using stabilized titanium complex as a precursor and urea as a N source. The N:TiO_2 nanorices were characterised by XRD, FE-SEM, HRTEM, XPS, UV–vis spectroscopy, Raman spectroscopy and measurements of photocatalytic degradation of organic molecules (atrazine and RhB dye) under the UV and visible-light irradiation. XRD analyses showed that pristine TiO_2 crystallizes into anatase polymorph and that the N-doping process at 5% introduced a degree of disorder on the TiO_2 crystalline structure. XPS study revealed the successful incorporation of the nitrogen atoms at the interstitial sites of the TiO_2 crystal lattice. Microscopy studies revealed that the particle size was in the range 50–80 nm for the pristine TiO_2. The photocatalysts were assembled in the form of nanorices with a high surface area (102 m"2 g"−"1). The successful incorporation of nitrogen atoms into the TiO_2 crystal lattice is expected to be responsible for enhanced photocatalytic activity of the as-prepared samples for the degradation of pollutants (RhB and atrazine) under UV and visible light irradiation. The rate of ·OH radicals formation under visible-light irradiation was examined and found to be correlated with the photocatalytic activity per unit surface area. The N:TiO_2 particles with nanorice morphology was efficient photocatalysts for decomposition of organic dyes under UV and visible-light exposure while pristine TiO_2 photocatalyst did not show any significant photocatalytic activity when stimulated by visible-light. The 3% doped N:TiO_2 sample exhibited the highest

  5. Interface role in the enhanced photocatalytic activity of TiO2-Na0.9Mg0.45Ti3.55O8 nanoheterojunction

    Directory of Open Access Journals (Sweden)

    Ze-Qing Guo

    2017-02-01

    Full Text Available TiO2-Na0.9Mg0.45Ti3.55O8 (TiO2-NMTO nanocomposites were synthesized via a simple hydrothermal method. TiO2 nanoparticles were loaded on NMTO nanosheets with well matched lattices. The TiO2-NMTO nanoheterojunctions enjoyed high photodegradative ability for a RhB pollutant. The photoinduced electron-hole pairs were separated effectively by the TiO2-NMTO nanoheterojunctions, which were directly observed by surface potential measurements with a scanning Kelvin probe microscopy. The photogenerated electrons accumulate at interface due to the high density of interface states, and holes remain TiO2 and NMTO particles, other than they migrate from one part to another in heterojunctions by comparing the surface potentials under illumination with different wavelengths.

  6. Enhanced conversion efficiency of dye-sensitized solar cells using a CNT-incorporated TiO2 slurry-based photoanode

    Directory of Open Access Journals (Sweden)

    Jiaoping Cai

    2015-02-01

    Full Text Available A new titanium dioxide (TiO2 slurry formulation is herein reported for the fabrication of TiO2 photoanode for use in dye-sensitized solar cells (DSSCs. The prepared TiO2 photoanode featured a highly uniform mesoporous structure with well-dispersed TiO2 nanoparticles. The energy conversion efficiency of the resulting TiO2 slurry-based DSSC was ∼63% higher than that achieved by a DSSC prepared using a commercial TiO2 slurry. Subsequently, the incorporation of acid-treated multi-walled carbon nanotubes (CNTs into the TiO2 slurry was examined. More specifically, the effect of varying the concentration of the CNTs in this slurry on the performance of the resulting DSSCs was studied. The chemical state of the CNTs-incorporated TiO2 photoanode was investigated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. A high energy conversion efficiency of 6.23% was obtained at an optimum CNT concentration of ∼0.06 wt.%. The obtained efficiency corresponds to a 63% enhancement when compared with that obtained from a DSSC based on a commercial TiO2 slurry. The higher efficiency was attributed to the improvement in the collection and transport of excited electrons in the presence of the CNTs.

  7. Enhanced conversion efficiency of dye-sensitized solar cells using a CNT-incorporated TiO2 slurry-based photoanode

    Science.gov (United States)

    Cai, Jiaoping; Chen, Zexiang; Li, Jun; Wang, Yan; Xiang, Dong; Zhang, Jijun; Li, Hai

    2015-02-01

    A new titanium dioxide (TiO2) slurry formulation is herein reported for the fabrication of TiO2 photoanode for use in dye-sensitized solar cells (DSSCs). The prepared TiO2 photoanode featured a highly uniform mesoporous structure with well-dispersed TiO2 nanoparticles. The energy conversion efficiency of the resulting TiO2 slurry-based DSSC was ˜63% higher than that achieved by a DSSC prepared using a commercial TiO2 slurry. Subsequently, the incorporation of acid-treated multi-walled carbon nanotubes (CNTs) into the TiO2 slurry was examined. More specifically, the effect of varying the concentration of the CNTs in this slurry on the performance of the resulting DSSCs was studied. The chemical state of the CNTs-incorporated TiO2 photoanode was investigated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. A high energy conversion efficiency of 6.23% was obtained at an optimum CNT concentration of ˜0.06 wt.%. The obtained efficiency corresponds to a 63% enhancement when compared with that obtained from a DSSC based on a commercial TiO2 slurry. The higher efficiency was attributed to the improvement in the collection and transport of excited electrons in the presence of the CNTs.

  8. Pd-MnO2 nanoparticles/TiO2 nanotube arrays (NTAs) photo-electrodes photo-catalytic properties and their ability of degrading Rhodamine B under visible light.

    Science.gov (United States)

    Thabit, Mohamed; Liu, Huiling; Zhang, Jian; Wang, Bing

    2017-10-01

    Pd-MnO 2 /TiO 2 nanotube arrays (NTAs) photo-electrodes were successfully fabricated via anodization and electro deposition subsequently; the obtained Pd-MnO 2 /TiO 2 NTAs photo electrodes were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and characterized accordingly. Moreover, the light harvesting and absorption properties were investigated via ultraviolet-visible diffuse reflectance spectrum (DRS); photo degradation efficiency was investigated via analyzing the photo catalytic degradation of Rhodamine B under visible illumination (xenon light). The performed analyses illustrated that Pd-MnO 2 codoped particles were successfully deposited onto the surface of the TiO 2 nanotube arrays; DRS results showed significant improvement in visible light absorption which was between 400 and 700nm. Finally, the photo catalytic degradation efficiency results of the designated organic pollutant (Rhodamine B) illustrated a superior photocatalytic (PC) efficiency of approximately 95% compared to the bare TiO 2 NTAs, which only exhibited a photo catalytic degradation efficiency of approximately 61%, thus it indicated the significant enhancement of the light absorption properties of fabricated photo electrodes and their yield of OH radicals. Copyright © 2017. Published by Elsevier B.V.

  9. Double-side illuminated titania nanotubes for high volume hydrogen generation by water splitting

    Science.gov (United States)

    Mohapatra, Susanta K.; Mahajan, Vishal K.; Misra, Mano

    2007-11-01

    A sonoelectrochemical anodization method is proposed to synthesize TiO2 nanotubular arrays on both sides of a titanium foil (TiO2/Ti/TiO2). Highly ordered TiO2 nanotubular arrays of 16 cm2 area with uniform surface distribution can be obtained using this anodization procedure. These double-sided TiO2/Ti/TiO2 materials are used as both photoanode (carbon-doped titania nanotubes) and cathode (Pt nanoparticles dispersed on TiO2 nanotubes; PtTiO2/Ti/PtTiO2) in a specially designed photoelectrochemical cell to generate hydrogen by water splitting at a rate of 38 ml h-1. The nanomaterials are characterized by FESEM, HRTEM, STEM, EDS, FFT, SAED and XPS techniques. The present approach can be used for large-scale hydrogen generation using renewable energy sources.

  10. TiO2-NT electrodes modified with Ag and diamond like carbon (DLC) for hydrogen production by alkaline water electrolysis

    Science.gov (United States)

    Baran, Evrim; Baz, Zeynep; Esen, Ramazan; Yazici Devrim, Birgül

    2017-10-01

    In present work, the two-step anodization technique was applied for synthesis of TiO2 nanotube (NT). Silver and diamond like carbon (DLC) were coated on the surface of as prepared TiO2-NT using chemical reduction method and MW ECR plasma system. The morphology, composition and structure of the electrodes were examined by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results showed that Ag nanoparticles, having size in the range of 48-115 nm, are evenly distributed on the top, inside and outside surface of TiO2-NT and when DLC was coated on the surface of TiO2-NT and TiO2-NT-Ag, the top of nanotubes were partially open and the pore diameter of hexagonal structure decreased from 165 nm to of 38-80 nm. On the other hand, the microhardness test and contact angle measurements revealed that additions of Ag and diamond like carbon have a positive effect on the mechanical properties of TiO2-NT film. The electrocatalytic properties of the electrodes towards the hydrogen evolution reaction (HER) were investigated by the electrochemical measurements recorded in 1 M KOH solution. In addition, long-term durability of electrodes towards HER and the energy consumption of alkaline electrolysis were investigated. The energy requirement showed that while the deposition of silver provides approximately 14.95% savings of the energy consumption, the DLC coating causes increase in energy consumption.

  11. Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium.

    Science.gov (United States)

    Nemati, Sima Hashemi; Hadjizadeh, Afra

    2017-08-01

    Titanium (Ti)-based materials is the most appropriate choices for the applications as orthopedic and dental implants. In this regard, ultrafine-grained (UFG) titanium with an enhanced mechanical properties and surface energy has attracted more attention. Titanium dioxide (TiO 2 ) nanotubes grown on the titanium could enhance bone bonding, cellular response and are good reservoirs for loading drugs and antibacterial agents. This article investigates gentamicin loading into and release from the TiO 2 nanotubes, grown on the UFG compared to coarse-grained (CG) titanium substrate surfaces. Equal Channel Angular Pressing (ECAP) was employed to produce the UFG structure titanium. TiO 2 nanotubes were grown by the anodizing technique on both UFG and CG titanium substrate surfaces. Scanning electron microscopy (SEM) imaging confirmed TiO 2 nanotube growth on the surface. The UV-vis spectroscopy analysis results show that the amount of gentamicin load-release in the anodized UFG titanium sample is higher than that of CG one which can be explained in terms of thicker TiO 2 nanotube arrays layer formed on UFG sample. Moreover, the anodized UFG titanium samples released the drug in a longer time than CG (1 day for the UFG titanium vs. 3 h for the CG one). Regarding wettability analysis, anodized UFG titanium sample showed more enhanced hydrophilicity than CG counterpart. Therefore, the significantly smaller grain size of pure titanium provided by the ECAP technique coupled with appropriate subsequent anodization treatment not only offers a good combination of biocompatibility and adequate mechanical properties but also it provides a delayed release condition for gentamicin.

  12. TiO2 Nanotubes Supported NiW Hydrodesulphurization Catalysts: Characterization and Activity

    Czech Academy of Sciences Publication Activity Database

    Palcheva, R.; Dimitrov, L.; Tyuliev, G.; Spojakina, A.; Jirátová, Květa

    2013-01-01

    Roč. 265, JAN 15 (2013), s. 309-313 ISSN 0169-4332 Institutional support: RVO:67985858 Keywords : nano-structured TiO2 * NiW catalysts * XPS Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.538, year: 2013

  13. Atomic Layer Deposition of Pd Nanoparticles on TiO₂ Nanotubes for Ethanol Electrooxidation: Synthesis and Electrochemical Properties.

    Science.gov (United States)

    Assaud, Loïc; Brazeau, Nicolas; Barr, Maïssa K S; Hanbücken, Margrit; Ntais, Spyridon; Baranova, Elena A; Santinacci, Lionel

    2015-11-11

    Palladium nanoparticles are grown on TiO2 nanotubes by atomic layer deposition (ALD), and the resulting three-dimensional nanostructured catalysts are studied for ethanol electrooxidation in alkaline media. The morphology, the crystal structure, and the chemical composition of the Pd particles are fully characterized using scanning and transmission electron microscopies, X-ray diffraction, and X-ray photoelectron spectroscopy. The characterization revealed that the deposition proceeds onto the entire surface of the TiO2 nanotubes leading to the formation of well-defined and highly dispersed Pd nanoparticles. The electrooxidation of ethanol on Pd clusters deposited on TiO2 nanotubes shows not only a direct correlation between the catalytic activity and the particle size but also a steep increase of the response due to the enhancement of the metal-support interaction when the crystal structure of the TiO2 nanotubes is modified by annealing at 450 °C in air.

  14. Self-Assembly of TiO2/CdS Mesoporous Microspheres with Enhanced Photocatalytic Activity via Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Sujing Yu

    2014-01-01

    Full Text Available Self assembly of TiO2/CdS mesoporous microspheres was synthesized via hydrothermal method. The samples were characterized by X-ray powder diffraction (XRD, ultraviolet-visible diffuse reflectance spectroscopy (DRS, transmission electron microscopy (TEM, energy-dispersive spectroscopy analysis (EDS, high-resolution transmission electron microscopy (HRTEM, Brunauer-Emmett-Teller (BET, X-ray photoelectron spectroscopy (XPS, and photoluminescence spectra (PL. The as-synthesized TiO2/CdS mesoporous microspheres showed superior photocatalytic activity for the degradation of RhB under either visible light or simulated sunlight irradiation; the 10 wt% TiO2/CdS sample showed the best performance. Moreover, this catalyst showed improved stability, and the activity did not decrease significantly after four recycles. The heterojunction between TiO2 and CdS may be favorable for the transport of photoinduced electrons from CdS to TiO2. In addition, the mesoporous structure could increase the utilization of light energy and facilitate the diffusion of reactants and products during the photocatalytic reaction.

  15. The influence of geometrical characteristics on the photocatalytic activity of TiO2 nanotube arrays for degradation of refractory organic pollutants in wastewater.

    Science.gov (United States)

    Noeiaghaei, T; Yun, J-H; Nam, S W; Zoh, K D; Gomes, V G; Kim, J O; Chae, S R

    2015-01-01

    The effects of geometrical characteristics such as surface area (SA) and porosity of TiO2 nanotube arrays (TNAs) on its photocatalytic activity were investigated by applying variable voltages and reaction times for the anodization of Ti substrates. While larger SA of nanotubes was observed under higher applied potential, the porosity of TNAs decreased by increasing anodizing voltage. Under applied potential of 80 V, the SA of TNAs increased from 0.164 to 0.471 m2/g as anodization time increased from 1 to 5 hours, respectively. However, no significant effect on the porosity of TNAs was observed. On the other hand, both SA and porosity of TNAs, synthesized at 60 V, increased by augmenting the anodization time from 1 to 3 hours. But further increasing of anodization time to 5 hours resulted in a decreased SA of TNAs with no effect on their porosity. Accordingly, the TNAs with SA of 0.368 m2/g and porosity of 47% showed the highest photocatalytic activity for degradation of 4-chlorobenzoic acid (4CBA). Finally, the degradation of refractory model compounds such as carbamazepine and bisphenol-A was tested and more than 50% of both compounds could be degraded under UV-A irradiation (λmax=365 nm).

  16. Preparation and Use of Photocatalytically Active Segmented Ag|ZnO and Coaxial TiO2-Ag Nanowires Made by Templated Electrodeposition

    Science.gov (United States)

    Maijenburg, A. Wouter; Rodijk, Eddy J.B.; Maas, Michiel G.; ten Elshof, Johan E.

    2014-01-01

    Photocatalytically active nanostructures require a large specific surface area with the presence of many catalytically active sites for the oxidation and reduction half reactions, and fast electron (hole) diffusion and charge separation. Nanowires present suitable architectures to meet these requirements. Axially segmented Ag|ZnO and radially segmented (coaxial) TiO2-Ag nanowires with a diameter of 200 nm and a length of 6-20 µm were made by templated electrodeposition within the pores of polycarbonate track-etched (PCTE) or anodized aluminum oxide (AAO) membranes, respectively. In the photocatalytic experiments, the ZnO and TiO2 phases acted as photoanodes, and Ag as cathode. No external circuit is needed to connect both electrodes, which is a key advantage over conventional photo-electrochemical cells. For making segmented Ag|ZnO nanowires, the Ag salt electrolyte was replaced after formation of the Ag segment to form a ZnO segment attached to the Ag segment. For making coaxial TiO2-Ag nanowires, a TiO2 gel was first formed by the electrochemically induced sol-gel method. Drying and thermal annealing of the as-formed TiO2 gel resulted in the formation of crystalline TiO2 nanotubes. A subsequent Ag electrodeposition step inside the TiO2 nanotubes resulted in formation of coaxial TiO2-Ag nanowires. Due to the combination of an n-type semiconductor (ZnO or TiO2) and a metal (Ag) within the same nanowire, a Schottky barrier was created at the interface between the phases. To demonstrate the photocatalytic activity of these nanowires, the Ag|ZnO nanowires were used in a photocatalytic experiment in which H2 gas was detected upon UV illumination of the nanowires dispersed in a methanol/water mixture. After 17 min of illumination, approximately 0.2 vol% H2 gas was detected from a suspension of ~0.1 g of Ag|ZnO nanowires in a 50 ml 80 vol% aqueous methanol solution. PMID:24837535

  17. Deposition of copper indium sulfide on TiO2 nanotube arrays and its application for photocatalytic decomposition of gaseous IPA

    Directory of Open Access Journals (Sweden)

    Young Ku

    2016-09-01

    Full Text Available TiO2 nanotube arrays (TNTs were modified with copper indium sulfide (Cu/In/S by successive ionic layer adsorption and reaction (SILAR method. The field-emission scanning electron microscopy and X-ray photoelectron spectroscopy analysis demonstrated the presence of copper indium sulfide nanoparticles on the surface of the modified TNTs. The Cu/In/S-modified TNTs exhibited higher photocurrent density and photocatalytic activity than plain TNTs. The concentration of sulfur precursor was found to be an important factor on the composition of modified Cu/In/S films by SILAR. Some composition deviations were observed on the stoichiometry of the Cu/In/S-modified TNTs, which evidently affected the electrochemical characteristics of the modified TNTs. Experiments using the modified TNTs of composition close to the stoichiometric ratio of CuInS2 usually delivered higher photocatalytic decomposition of gaseous isopropyl alcohol in air streams and exhibited better stability during operation.

  18. Synthesis of calcium-phosphorous doped TiO{sub 2} nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Sofia A., E-mail: sofiafonso@msn.com [CMEMS – Center of MicroElectroMechanical Systems, Department of Mechanical Engineering, University of Minho, 4800-058 Guimarães (Portugal); IBTN/US – American Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UIC College of Dentistry, 60612 Chicago, IL (United States); Patel, Sweetu B. [IBTN/US – American Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UIC College of Dentistry, 60612 Chicago, IL (United States); Department of Mechanical Engineering, Michigan Technological University, 49931 Houghton, MI (United States); Sukotjo, Cortino [IBTN/US – American Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UIC College of Dentistry, 60612 Chicago, IL (United States); Departmenmt of Restorative Dentistry, University of Illinois at Chicago, 60612 Chicago, IL (United States); Mathew, Mathew T. [IBTN/US – American Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UIC College of Dentistry, 60612 Chicago, IL (United States); Department of Orthopedic Surgery, Rush University Medical Center, 60612 Chicago, IL (United States); Department of Biomedical Science, UIC School of Medicine at Rockford, 61107 Rockford, IL (United States); Filho, Paulo N. [IBTN/Br – Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UNESP – Universidade Estadual Paulista, Faculdade de Ciências, 17033-360 Bauru, São Paulo (Brazil); Faculdade de Ciências, Departamento de Física, UNESP - Universidade Estadual Paulista, 17033-360 Bauru, São Paulo (Brazil); Celis, Jean-Pierre [Department of Materials Engineering, KU Leuven, 3001 Leuven (Belgium); and others

    2017-03-31

    Highlights: • A new surface modification methodology for bio-functionalization of TiO2 NTs is addressed • Bone-like structured TiO2 nanotubular surfaces containing Ca and P were synthesized. • Ca/P-doped TiO2 NTs enhanced adhesion and proliferation of osteoblastic-like cells. • The bio-functionalization granted improved bio-electrochemical stability to TiO2 NTs. - Abstract: The modification of surface features such as nano-morphology/topography and chemistry have been employed in the attempt to design titanium oxide surfaces able to overcome the current dental implants failures. The main goal of this study is the synthesis of bone-like structured titanium dioxide (TiO{sub 2}) nanotubes enriched with Calcium (Ca) and Phosphorous (P) able to enhance osteoblastic cell functions and, simultaneously, display an improved corrosion behavior. To achieve the main goal, TiO{sub 2} nanotubes were synthetized and doped with Ca and P by means of a novel methodology which relied, firstly, on the synthesis of TiO{sub 2} nanotubes by anodization of titanium in an organic electrolyte followed by reverse polarization and/or anodization, in an aqueous electrolyte. Results show that hydrophilic bone-like structured TiO{sub 2} nanotubes were successfully synthesized presenting a highly ordered nano-morphology characterized by non-uniform diameters. The chemical analysis of such nanotubes confirmed the presence of CaCO{sub 3}, Ca{sub 3}(PO{sub 4}){sub 2}, CaHPO{sub 4} and CaO compounds. The nanotube surfaces submitted to reverse polarization, presented an improved cell adhesion and proliferation compared to smooth titanium. Furthermore, these surfaces displayed a significantly lower passive current in artificial saliva, and so, potential to minimize their bio-degradation through corrosion processes. This study addresses a very simple and promising multidisciplinary approach bringing new insights for the development of novel methodologies to improve the outcome of osseointegrated

  19. Solvothermal synthesis of stable nanoporous polymeric bases-crystalline TiO2 nanocomposites: visible light active and efficient photocatalysts for water treatment.

    Science.gov (United States)

    Liu, Fujian; Kong, Weiping; Wang, Liang; Noshadi, Iman; Zhang, Zhonghua; Qi, Chenze

    2015-02-27

    Visible light active and stable nanoporous polymeric base-crystalline TiO2 nanocomposites were solvothermally synthesized from in situ copolymerization of divinylbenzene (DVB) with 1-vinylimidazolate (VI) or 4-vinylpyridine (Py) in the presence of tetrabutyl titanate without the use of any other additives (PDVB-VI-TiO2-x, PDVB-Py-TiO2-x, where x stands for the molar ratio of TiO2 to VI or Py), which showed excellent activity with respect to catalyzing the degradation of organic pollutants of p-nitrophenol (PNP) and rhodamine-B (RhB). TEM and SEM images show that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x have abundant nanopores, and TiO2 nanocrystals with a high degree of crystallinity were homogeneously embedded in the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x, forming a stable 'brick-and-mortar' nanostructure. PDVB-VI and PDVB-Py supports act as the glue linking TiO2 nanocrystals to form nanopores and constraining the agglomeration of TiO2 nanocrystals. XPS spectra show evidence of unique interactions between TiO2 and basic sites in these samples. UV diffuse reflectance shows that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x exhibit a unique response to visible light. Catalytic tests show that the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were active in catalyzing the degradation of PNP and RhB organic pollutants under visible light irradiation. The enhanced activities of the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were ascribed to synergistic effects between abundant nanopores and the unique optical adsorption of visible light in the samples.

  20. Solvothermal synthesis of stable nanoporous polymeric bases-crystalline TiO2 nanocomposites: visible light active and efficient photocatalysts for water treatment

    Science.gov (United States)

    Liu, Fujian; Kong, Weiping; Wang, Liang; Noshadi, Iman; Zhang, Zhonghua; Qi, Chenze

    2015-02-01

    Visible light active and stable nanoporous polymeric base-crystalline TiO2 nanocomposites were solvothermally synthesized from in situ copolymerization of divinylbenzene (DVB) with 1-vinylimidazolate (VI) or 4-vinylpyridine (Py) in the presence of tetrabutyl titanate without the use of any other additives (PDVB-VI-TiO2-x, PDVB-Py-TiO2-x, where x stands for the molar ratio of TiO2 to VI or Py), which showed excellent activity with respect to catalyzing the degradation of organic pollutants of p-nitrophenol (PNP) and rhodamine-B (RhB). TEM and SEM images show that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x have abundant nanopores, and TiO2 nanocrystals with a high degree of crystallinity were homogeneously embedded in the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x, forming a stable ‘brick-and-mortar’ nanostructure. PDVB-VI and PDVB-Py supports act as the glue linking TiO2 nanocrystals to form nanopores and constraining the agglomeration of TiO2 nanocrystals. XPS spectra show evidence of unique interactions between TiO2 and basic sites in these samples. UV diffuse reflectance shows that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x exhibit a unique response to visible light. Catalytic tests show that the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were active in catalyzing the degradation of PNP and RhB organic pollutants under visible light irradiation. The enhanced activities of the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were ascribed to synergistic effects between abundant nanopores and the unique optical adsorption of visible light in the samples.

  1. Enhanced TiO2 Photocatalytic Processing of Organic Wastes for Green Space Exploration

    Science.gov (United States)

    Udom, I.; Goswami, D. Y.; Ram, M. K.; Stefanakos, E. K.; Heep, A. F.; Kulis, M. J.; McNatt, J. S.; Jaworske, D. A.; Jones, C. A.

    2013-01-01

    The effect of transition metal co-catalysts on the photocatalytic properties of TiO2 was investigated. Ruthenium (Ru), palladium, platinum, copper, silver, and gold, were loaded onto TiO2 powders (anatase and mixed-phase P25) and screened for the decomposition of rhodamine B (RhB) under broad-band irradiation. The morphology and estimated chemical composition of photocatalysts were determined by scanning electron microscopy and energy dispersive spectroscopy, respectively. Brunhauer, Emmett and Teller (BET) analysis measured mass-specific surface area(s). X-ray diffraction analysis was performed to confirm the identity of titania phase(s) present. The BET surface area of anatase TiO2/Ru 1% (9.2 sq m/gm) was one of the highest measured of all photocatalysts prepared in our laboratory. Photolyses conducted under air-saturated and nitrogen-saturated conditions revealed photodegradation efficiencies of 85 and 2 percent, respectively, after 60 min compared to 58 percent with no catalyst. The cause of low photocatalytic activity under an inert atmosphere is discussed. TiO2/Ru 1% showed a superior photocatalytic activity relative to P25-TiO2 under broad-band irradiation. A potential deployment of photocatalytic technologies on a mission could be a reactor with modest enhancement in solar intensity brought about by a trough-style reactor, with reactants and catalyst flowing along the axis of the trough and therefore being illuminated for a controlled duration based on the flow rate.

  2. Ultra-Sensitive Humidity Sensor Based on Optical Properties of Graphene Oxide and Nano-Anatase TiO2.

    Science.gov (United States)

    Ghadiry, Mahdiar; Gholami, Mehrdad; Lai, C K; Ahmad, Harith; Chong, W Y

    2016-01-01

    Generally, in a waveguide-based humidity sensors, increasing the relative humidity (RH) causes the cladding refractive index (RI) to increase due to cladding water absorption. However, if graphene oxide (GO) is used, a reverse phenomenon is seen due to a gap increase in graphene layers. In this paper, this interesting property is applied in order to fabricate differential humidity sensor using the difference between RI of reduced GO (rGO) and nano-anatase TiO2 in a chip. First, a new approach is proposed to prepare high quality nano-anatase TiO2 in solution form making the fabrication process simple and straightforward. Then, the resulted solutions (TiO2 and GO) are effortlessly drop casted and reduced on SU8 two channels waveguide and extensively examined against several humid conditions. Investigating the sensitivity and performance (response time) of the device, reveals a great linearity in a wide range of RH (35% to 98%) and a variation of more than 30 dB in transmitted optical power with a response time of only ~0.7 sec. The effect of coating concentration and UV treatment are studied on the performance and repeatability of the sensor and the attributed mechanisms explained. In addition, we report that using the current approach, devices with high sensitivity and very low response time of only 0.3 sec can be fabricated. Also, the proposed device was comprehensively compared with other state of the art proposed sensors in the literature and the results were promising. Since high sensitivity ~0.47dB/%RH and high dynamic performances were demonstrated, this sensor is a proper choice for biomedical applications.

  3. Ultra-Sensitive Humidity Sensor Based on Optical Properties of Graphene Oxide and Nano-Anatase TiO2.

    Directory of Open Access Journals (Sweden)

    Mahdiar Ghadiry

    Full Text Available Generally, in a waveguide-based humidity sensors, increasing the relative humidity (RH causes the cladding refractive index (RI to increase due to cladding water absorption. However, if graphene oxide (GO is used, a reverse phenomenon is seen due to a gap increase in graphene layers. In this paper, this interesting property is applied in order to fabricate differential humidity sensor using the difference between RI of reduced GO (rGO and nano-anatase TiO2 in a chip. First, a new approach is proposed to prepare high quality nano-anatase TiO2 in solution form making the fabrication process simple and straightforward. Then, the resulted solutions (TiO2 and GO are effortlessly drop casted and reduced on SU8 two channels waveguide and extensively examined against several humid conditions. Investigating the sensitivity and performance (response time of the device, reveals a great linearity in a wide range of RH (35% to 98% and a variation of more than 30 dB in transmitted optical power with a response time of only ~0.7 sec. The effect of coating concentration and UV treatment are studied on the performance and repeatability of the sensor and the attributed mechanisms explained. In addition, we report that using the current approach, devices with high sensitivity and very low response time of only 0.3 sec can be fabricated. Also, the proposed device was comprehensively compared with other state of the art proposed sensors in the literature and the results were promising. Since high sensitivity ~0.47dB/%RH and high dynamic performances were demonstrated, this sensor is a proper choice for biomedical applications.

  4. Nanocrystalline SnO2-TiO2 thin film deposited on base of equilateral prism as an opto-electronic humidity sensor

    Science.gov (United States)

    Yadav, B. C.; Verma, Nidhi; Singh, Satyendra

    2012-09-01

    Present paper reports the synthesis of SnO2-TiO2 nanocomposite, its characterization and performance as opto-electronic humidity sensor. Nanocrystalline SnO2-TiO2 film was deposited on the base of an equilateral prism using a photo resist spinner and the as prepared film was annealed at 200 °C for 2 h. The crystal structure of the prepared film was investigated using X-ray diffraction (XRD). Minimum crystallite size of the material was found 7 nm. Surface morphology of the film was investigated by Scanning electron microscope (SEM LEO-0430, Cambridge). SEM image shows that the film is porous. Differential scanning calorimetry (DSC) of as synthesized material shows two exothermic peaks at about 40 and 110 °C, respectively which are due to the evaporation of chemical impurities and water. Further the prepared film was investigated through the exposure of humidity and relative humidity (%RH) was measured directly in terms of modulation in the intensity of light recorded on a digital power meter. The maximum sensitivity of sensor was found 4.14 μW/%RH, which is quite significant for sensor fabrication purposes.

  5. Core/Shell Structure of TiO2-Coated MWCNTs for Thermal Protection for High-Temperature Processing of Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    Laura Angélica Ardila Rodriguez

    2018-01-01

    Full Text Available The production of metal matrix composites with elevated mechanical properties depends largely on the reinforcing phase properties. Due to the poor oxidation resistance of multiwalled carbon nanotubes (MWCNTs as well as their high reactivity with molten metal, the processing conditions for the production of MWCNT-reinforced metal matrix composites may be an obstacle to their successful use as reinforcement. Coating MWCNTs with a ceramic material that acts as a thermal protection would be an alternative to improve oxidation stability. In this work, MWCNTs previously functionalized were coated with titanium dioxide (TiO2 layers of different thicknesses, producing a core-shell structure. Heat treatments at three different temperatures (500°C, 750°C, and 1000°C were performed on coated nanotubes in order to form a stable metal oxide structure. The MWCNT/TiO2 hybrids produced were evaluated in terms of thermal stability. Thermogravimetric analysis (TGA, X-ray diffraction (XRD, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, Raman spectroscopy (RS, and X-ray photoelectron spectroscopy (XPS were performed in order to investigate TiO2-coated MWCNT structure and thermal stability under oxidative atmosphere. It was found that the thermal stability of the TiO2-coated MWCNTs was dependent of the TiO2 layer morphology that in turn depends on the heat treatment temperature.

  6. Electrospinning direct preparation of SnO2/Fe2O3 heterojunction nanotubes as an efficient visible-light photocatalyst

    International Nuclear Information System (INIS)

    Zhu, Chengquan; Li, Yuren; Su, Qing; Lu, Bingan; Pan, Jiaqi; Zhang, Jiawang; Xie, Erqing; Lan, Wei

    2013-01-01

    Highlights: •SnO 2 /Fe 2 O 3 nano-heterojunction-tubes are prepared by a facile electrospinning technique. •The formation mechanism of heterojunction tubes is proposed for self-polymer-templates action. •SnO 2 /Fe 2 O 3 nano-heterojunction-tubes show high photocatalytic activity under visible light irradiation. •The reasons for the high photocatalytic activity are investigated in detail. -- Abstract: Herein SnO 2 /Fe 2 O 3 heterojunction nanotubes are prepared by a facile electrospinning technique. The heterojunction nanotubes with a diameter of about 200 nm uniformly distribute SnO 2 and Fe 2 O 3 nanocrystals and present the obvious interfaces between them, which form perfect SnO 2 /Fe 2 O 3 nano-heterojunctions. A possible mechanism based on self-polymer-templates is proposed to explain the formation of SnO 2 /Fe 2 O 3 heterojunction nanotubes. The heterojunction nanotubes show high photocatalytic activity for the degradation of RhB dye under visible light irradiation. The prepared SnO 2 /Fe 2 O 3 heterojunction nanotubes can also be applied to other fields such as sensor, lithium-ion batteries

  7. Charge transport in anodic TiO.sub.2./sub. nanotubes studied by terahertz spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Krbal, M.; Kuchařík, Jiří; Sopha, H.; Němec, Hynek; Macák, J. M.

    2016-01-01

    Roč. 10, č. 9 (2016), s. 691-695 ISSN 1862-6254 R&D Projects: GA ČR GA13-12386S Institutional support: RVO:68378271 Keywords : terahertz spectroscopy * charge transport * TiO2 nanotubes Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.032, year: 2016

  8. Titanium-dioxide nanotube p-n homojunction diode

    Science.gov (United States)

    Alivov, Yahya; Ding, Yuchen; Singh, Vivek; Nagpal, Prashant

    2014-12-01

    Application of semiconductors in functional optoelectronic devices requires precise control over their doping and formation of junction between p- and n-doped semiconductors. While doped thin films have led to several semiconductor devices, need for high-surface area nanostructured devices for photovoltaic, photoelectrochemical, and photocatalytic applications has been hindered by lack of desired doping in nanostructures. Here, we show titanium-dioxide (TiO2) nanotubes doped with nitrogen (N) and niobium (Nb) as acceptors and donors, respectively, and formation of TiO2 nanotubes p-n homojunction. This TiO2:N/TiO2:Nb homojunction showed distinct diode-like behaviour with rectification ratio of 1115 at ±5 V and exhibited good photoresponse for ultraviolet light (λ = 365 nm) with sensitivity of 0.19 A/W at reverse bias of -5 V. These results can have important implications for development of nanostructured metal-oxide solar-cells, photodiodes, LED's, photocatalysts, and photoelectrochemical devices.

  9. Electrochemically Obtained TiO2/CuxOy Nanotube Arrays Presenting a Photocatalytic Response in Processes of Pollutants Degradation and Bacteria Inactivation in Aqueous Phase

    Directory of Open Access Journals (Sweden)

    Magda Kozak

    2018-06-01

    Full Text Available TiO2/CuxOy nanotube (NT arrays were synthesized using the anodization method in the presence of ethylene glycol and different parameters applied. The presence, morphology, and chemical character of the obtained structures was characterized using a variety of methods—SEM (scanning electron microscopy, XPS (X-ray photoelectron spectroscopy, XRD (X-ray crystallography, PL (photoluminescence, and EDX (energy-dispersive X-ray spectroscopy. A p-n mixed oxide heterojunction of Ti-Cu was created with a proved response to the visible light range and the stable form that were in contact with Ti. TiO2/CuxOy NTs presented the appearance of both Cu2O (mainly and CuO components influencing the dimensions of the NTs (1.1–1.3 µm. Additionally, changes in voltage have been proven to affect the NTs’ length, which reached a value of 3.5 µm for Ti90Cu10_50V. Degradation of phenol in the aqueous phase was observed in 16% of Ti85Cu15_30V after 1 h of visible light irradiation (λ > 420 nm. Scavenger tests for phenol degradation process in presence of NT samples exposed the responsibility of superoxide radicals for degradation of organic compounds in Vis light region. Inactivation of bacteria strains Escherichia coli (E. coli, Bacillus subtilis (B. subtilis, and Clostridium sp. in presence of obtained TiO2/CuxOy NT photocatalysts, and Vis light has been studied showing a great improvement in inactivation efficiency with a response rate of 97% inactivation for E. coli and 98% for Clostridium sp. in 60 min. Evidently, TEM (transmission electron microscopy images confirmed the bacteria cells’ damage.

  10. Facile synthesis and characterization of N-doped TiO2/C nanocomposites with enhanced visible-light photocatalytic performance

    Science.gov (United States)

    Jia, Tiekun; Fu, Fang; Yu, Dongsheng; Cao, Jianliang; Sun, Guang

    2018-02-01

    Ultrafine anatase N-doped TiO2 nanocrystals modified with carbon (denoted as N-doped TiO2/C) were successfully prepared via a facile and low-cost approach, using titanium tetrachloride, aqueous ammonia and urea as starting materials. The phase composition, surface chemical composition, morphological structure, electronic and optical properties of the as-prepared photocatalysts were well characterized and analyzed. On the basis of Raman spectral characterization combining with the results of X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM), it could be concluded that N dopant ions were successfully introduced into TiO2 crystal lattice and carbon species were modified on the surface or between the nanoparticles to form N-doped TiO2/C nanocomposites. Compared with that of bare TiO2, the adsorption band edge of N-doped TiO2/C nanocomposites were found to have an evident red-shift toward visible light region, implying that the bandgap of N-doped TiO2/C nanocomposites is narrowed and the visible light absorption capacity is significantly enhanced due to N doping and carbon modification. The photoactivity of the as-prepared photocatalytsts was tested by the degradation of Rhodamine B (RhB) under visible light (λ > 420 nm), and the results showed that the N-doped TiO2/C nanocomposites exhibited much higher photodegradation rate than pure TiO2 and N-doped TiO2, which was mainly attributed to the synergistic effect of the enhanced light harvesting, augmented catalytic active sites and efficient separation of photogenerated electron-hole pairs.

  11. Synthesis and characterization of titania nanotubes by anodizing of titanium in fluoride containing electrolytes

    Science.gov (United States)

    Ahmad, Akhlaq; Haq, Ehsan Ul; Akhtar, Waseem; Arshad, Muhammad; Ahmad, Zubair

    2017-11-01

    Titania nanotubular structure was prepared by anodizing titanium metal in the fluoride containing electrolytes and studied for hydrogen reduction using photo electrochemical cell. Potentiodynamic scan was performed before actual anodizing to optimize the anodizing conditions. The morphology of the TiO2 nanotubes was investigated by SEM and the presence of TiO2 nanotubes was confirmed. Raman spectroscopy was done to confirm the different phases present. Hydrogen generation capability was revealed by electrochemical testing in three-electrode system in dark and in visible light at 200 W power using Gamry Potentiostat. The corrosion potential of TiO2 nanotubes produced was found to be more active side in potassium hydroxide solution under visible light than in the dark condition. Cathodic polarization behavior of specimens in the presence of light showed more activity towards hydrogen generation than in dark condition. In comparison, the hydrogen generation capability of specimen anodized in 2H15 electrolyte was higher than specimens anodized in other electrolytes. Electrochemical impedance spectroscopy was used to study the charge transfer resistance of the nanotubes produced. The results showed that TiO2 nanotubular structure is a promising material for photoelectrochemical cell. Low-charge transfer resistance also depicts that it can be efficiently used to harvest solar energy.

  12. Gallium-containing Heusler phases ScRh{sub 2}Ga, ScPd{sub 2}Ga, TmRh{sub 2}Ga and LuRh{sub 2}Ga. Magnetic and solid state NMR-spectroscopic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Heletta, Lukas; Seidel, Stefan; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Benndorf, Christopher [Leipzig Univ. (Germany). Inst. fuer Mineralogie, Kristallographie und Materialwissenschaften; Eckert, Hellmut [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Sao Paulo Univ., Sao Carlos (Brazil). Inst. of Physics

    2017-10-01

    The gallium-containing Heusler phases ScRh{sub 2}Ga, ScPd{sub 2}Ga, TmRh{sub 2}Ga and LuRh{sub 2}Ga have been synthesized by arc-melting of the elements followed by different annealing sequences to improve phase purity. The samples have been studied by powder X-ray diffraction. The structures of Lu{sub 0.97}Rh{sub 2}Ga{sub 1.03} (Fm3m, a=632.94(5) pm, wR2=0.0590, 46 F{sup 2} values, seven variables) and Sc{sub 0.88}Rh{sub 2}Ga{sub 1.12} (a=618.91(4) pm, wR2=0.0284, 44 F{sup 2} values, six variables) have been refined from single crystal X-ray diffractometer data. Both gallides show structural disorder through Lu/Ga and Sc/Ga mixing. Temperature dependent magnetic susceptibility measurements showed Pauli paramagnetism for ScRh{sub 2}Ga, ScPd{sub 2}Ga, and LuRh{sub 2}Ga and Curie-Weiss paramagnetism for TmRh{sub 2}Ga. {sup 45}Sc and {sup 71}Ga solid state MAS NMR spectroscopic investigations of the Sc containing compounds confirmed the site mixing effects typically observed for Heusler phases. The data indicate that the effect of mixed Sc/Ga occupancy is significantly stronger in ScRh{sub 2}Ga than in ScPd{sub 2}Ga.

  13. Preparation and structure of TiO2 nanotubes

    Czech Academy of Sciences Publication Activity Database

    Pavlova, Ewa; Lapčíková, Monika; Šlouf, Miroslav; Kužel, R.

    2006-01-01

    Roč. 13, č. 3 (2006), s. 156-157 ISSN 1211-5894. [Czech and Slovak Crystallographic Colloquium. 22.06.2006-24.06.2006, Grenoble] R&D Projects: GA ČR GA203/04/0688 Keywords : nanotubes * X-ray diffraction * electron microscopy Subject RIV: CF - Physical ; Theoretical Chemistry http://www. xray .cz/ms/default.htm

  14. Electrochemical Performance of a Carbon Nanotube/La-Doped TiO2 Nanocomposite and its Use for Preparation of an Electrochemical Nicotinic Acid Sensor

    Directory of Open Access Journals (Sweden)

    Hanxing Liu

    2008-11-01

    Full Text Available A carbon nanotube/La-doped TiO2 (La-TiO2 nanocomposite (CLTN was prepared by a procedure similar to a complex/adsorption process. Scanning electron microscopy (SEM images show that the La-TiO2 distributes on the carbon nanotube walls. The CLTN was mixed with paraffin to form a CLTN paste for the CLTN paste electrode (CLTNPE. The electrochemical characteristics of CLTNPE were compared with that of conventional carbon electrodes such as the carbon paste electrode (CPE and glass carbon electrode (GC. The CLTNPE exhibits electrochemical activity and was used to investigate the electrochemistry of nicotinic acid (NA. The modified electrode has a strong electrocatalytic effect on the redox of NA. The cyclic voltammetry (CV redox potential of NA at the CLTNPE is 320 mV. The oxidation process of NA on the CLTNPE is pH dependent. A sensitive chronoamperometric response for NA was obtained covering a linear range from 1.0×10-6 mol·L-1 to 1.2×10-4 mol·L-1, with a detection limit of 2.7×10-7 mol·L-1. The NA sensor displays a remarkable sensitivity and stability. The mean recovery of NA in the human urine is 101.8%, with a mean variation coefficient (RSD of 2.6%.

  15. Preparation and characterization of a novel PVDF ultrafiltration membrane by blending with TiO_2-HNTs nanocomposites

    International Nuclear Information System (INIS)

    Zeng, Guangyong; He, Yi; Yu, Zongxue; Zhan, Yingqing; Ma, Lan; Zhang, Lei

    2016-01-01

    Highlights: • A novel TiO_2-HNTs/PVDF ultrafiltration membrane was prepared. • TiO_2 dispersed well in membrane matrix by loading on the surface of HNTs. • The hydrophilicity of membrane was improved with the addition of TiO_2-HNTs. • TiO_2-HNTs/PVDF membranes showed good antifouling performance. - Abstract: Novel polyvinylidene fluoride (PVDF) ultrafiltration membranes were prepared by blending with different contents of titanium dioxide-halloysite nanotubes (TiO_2-HNTs) composites into the PVDF matrix. The effects of TiO_2-HNTs content on the membrane performances, such as hydrophilicity, rejection ratio and antifouling properties were investigated in detail. X-ray diffraction (XRD), thermo-gravimetric analyzer (TGA) and scanning electron microscope (SEM) analyses showed that TiO_2 was loaded on the surface of HNTs successfully and homogeneously by sol-gel method. The morphologies and microstructure of the membranes were characterized by SEM and atomic force microscopy (AFM). The contact angle (CA) tests indicated that the hydrophilicity of membranes was significantly increased with the addition of TiO_2-HNTs. The pure water flux of 3%TiO_2-HNTs/PVDF was increased by 264.8% and 35.6%, respectively, compared with pure PVDF membrane and 3%TiO_2/PVDF membrane, although the rejection of bovine serum albumin (BSA) was slightly decreased. More importantly, TiO_2-HNTs/PVDF membrane exhibited an excellent anti-fouling performance, which was attributed to the hydrophobic contaminants being resisted by hydrophilic nanoparticles. It can be expected that this work may provide some references to solve the dispersion of nanoparticle in the membrane and improve the anti-fouling performance of membrane in the field of wastewater treatment.

  16. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials.

    Science.gov (United States)

    Jang, Seon-Min; Yang, Su Chul

    2018-06-08

    Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO 3 nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO 2 epitaxial growth and BaTiO 3 conversion. Through the TiO 2 epitaxial growth on FTO substrate, (001) oriented TiO 2 nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six. In particular, chemical etching of the TiO 2 NBA was conducted to enlarge the surface area for effective Ba 2+ ion diffusion during the perovskite conversion process from TiO 2 to BaTiO 3 . The final structure of perovskite BaTiO 3 NBA was found to exhibit a feasible piezoelectric response of 3.56 nm with a clear phase change of 180° from the single BaTiO 3 bundle, by point piezoelectric forced microscopy (PFM) analysis. Consequently, highly piezoelectric NBA could be a promising nanostructure for various nanoscale electronic devices.

  17. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials

    Science.gov (United States)

    Jang, Seon-Min; Yang, Su Chul

    2018-06-01

    Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO 3 nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO2 epitaxial growth and BaTiO3 conversion. Through the TiO2 epitaxial growth on FTO substrate, (001) oriented TiO2 nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six. In particular, chemical etching of the TiO2 NBA was conducted to enlarge the surface area for effective Ba2+ ion diffusion during the perovskite conversion process from TiO2 to BaTiO3. The final structure of perovskite BaTiO3 NBA was found to exhibit a feasible piezoelectric response of 3.56 nm with a clear phase change of 180° from the single BaTiO3 bundle, by point piezoelectric forced microscopy (PFM) analysis. Consequently, highly piezoelectric NBA could be a promising nanostructure for various nanoscale electronic devices.

  18. Core-shell titanium dioxide-titanium nitride nanotube arrays with near-infrared plasmon resonances

    Science.gov (United States)

    Farsinezhad, Samira; Shanavas, Thariq; Mahdi, Najia; Askar, Abdelrahman M.; Kar, Piyush; Sharma, Himani; Shankar, Karthik

    2018-04-01

    Titanium nitride (TiN) is a ceramic with high electrical conductivity which in nanoparticle form, exhibits localized surface plasmon resonances (LSPRs) in the visible region of the solar spectrum. The ceramic nature of TiN coupled with its dielectric loss factor being comparable to that of gold, render it attractive for CMOS polarizers, refractory plasmonics, surface-enhanced Raman scattering and a whole host of sensing applications. We report core-shell TiO2-TiN nanotube arrays exhibiting LSPR peaks in the range 775-830 nm achieved by a simple, solution-based, low cost, large area-compatible fabrication route that does not involve laser-writing or lithography. Self-organized, highly ordered TiO2 nanotube arrays were grown by electrochemical anodization of Ti thin films on fluorine-doped tin oxide-coated glass substrates and then conformally coated with a thin layer of TiN using atomic layer deposition. The effects of varying the TiN layer thickness and thermal annealing on the LSPR profiles were also investigated. Modeling the TiO2-TiN core-shell nanotube structure using two different approaches, one employing effective medium approximations coupled with Fresnel coefficients, resulted in calculated optical spectra that closely matched the experimentally measured spectra. Modeling provided the insight that the observed near-infrared resonance was not collective in nature, and was mainly attributable to the longitudinal resonance of annular nanotube-like TiN particles redshifted due to the presence of the higher permittivity TiO2 matrix. The resulting TiO2-TiN core-shell nanotube structures also function as visible light responsive photocatalysts, as evidenced by their photoelectrochemical water-splitting performance under light emitting diode illumination using 400, 430 and 500 nm photons.

  19. Study on isopropanol degradation by UV/TiO2 nanotube

    Science.gov (United States)

    Cheng, Hsiu-Yueh; Chang, Kai-Chau; Lin, Kae-Long; Ma, Chih-Ming

    2018-04-01

    When a semiconductor molecule absorbs photons with energy equal to or greater than its band-gap, electrons in the valence band can be excited and jump up into the conduction band and thus charge carriers are generated. When these charge carriers successfully migrate to the solid surface without recombining, the electrons and holes may undergo electron-transfer processes with adsorbates of suitable redox potentials. The photogenerated holes react with the water to produce hydroxyl radicals, while the photogenerated electrons react with molecular oxygen to give superoxide radical anions. These radicals so produced are highly reactive and they work together to completely oxidize the organic species. In this study, TiO2 nanotube has been prepared and was to be used to control acetone. In this work, mesoporous nanotubes by hydrothermal treatment in aqueous sodium hydroxide solution have been synthesized. Direct hydrothermal synthesis method is easy and efficient to synthesize titanate nanotubes. Using sodium hydroxide, the considerable decrease in reaction time and reaction temperature was achieved.

  20. Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes

    KAUST Repository

    Zhang, Zhonghai

    2013-01-01

    Hetero-element doping (e.g., N, F, C) of TiO2 is inevitably accompanied by significantly increased structural defects due to the dopants\\' nature being foreign impurities. Very recently, in situ self-doping with homo-species (e.g., Ti3+) has been emerging as a rational solution to enhance TiO2 photoactivity within both UV and visible light regions. Herein we demonstrate that conventional electrochemical reduction is indeed a facile and effective strategy to induce in situ self-doping of Ti3+ into TiO2 and the self-doped TiO2 photoelectrodes showed remarkably improved and very stable water splitting performance. In this study, hierarchical TiO2 nanotube arrays (TiO2 NTs) were chosen as TiO2 substrates and then electrochemically reduced under varying conditions to produce Ti3+ self-doped TiO2 NTs (ECR-TiO2 NTs). The optimized saturation photocurrent density and photoconversion efficiency on the ECR-TiO2 NTs under simulated AM 1.5G illumination were identified to be 2.8 mA cm-2 at 1.23 V vs. RHE and 1.27% respectively, which are the highest values ever reported for TiO 2 based photoelectrodes. The electrochemical impedance spectra measurement confirms that the electrochemical induced Ti3+ self-doping improved the electrical conductivity of the ECR-TiO2 NTs. The versatility and effectiveness of the electrochemical reduction method for Ti3+ self-doping in P25 based TiO2 was also examined and confirmed. This journal is © 2013 the Owner Societies.

  1. Novel ternary composites: Preparation, performance and application of ZnFe2O4/TiO2/polyaniline

    Science.gov (United States)

    Li, Juanbi; Xiao, Qiushi; Li, Liangchao; Shen, Junhai; Hu, Diqiong

    2015-03-01

    A series of ZnFe2O4/TiO2/polyaniline ternary composites with excellent photocatalytic activity were successfully synthesized by chemical method. The phase composition, morphology, conductivity, electrical and magnetic performances of the as-samples were characterized by means of modern measurement technology. And the photocatalytic degradation activity tests for the samples were estimated using rhodamine B (RhB) and methyl orange (MO) as targeted pollutants. The results indicated that there existed some interactions between each component in the ternary composites, and the electrical conductivities and photocatalytic degradation activities of the ternary composites were improved due to the coating of polyaniline. Moreover, when the mass fraction of aniline was up to 50%, the ternary composite exhibited a great decontaminating (including photocatalytic degradation and adsorption) activity of on both MO and RhB and displayed an excellent reusability.

  2. Synthesis and photoelectrical performance of nanoscale PbS and Bi2S3 co-sensitized on Ti02 nanotube arrays

    Institute of Scientific and Technical Information of China (English)

    Fanggong Cai; Min Pan; Yong Feng; Guo Yan; Yong Zhang; Yong Zhao

    2017-01-01

    TiO2 films have been widely applied in photovoltaic conversion techniques.TiO2 nanotube arrays (TiO2 NAs) can be grown directly on the surface of metal Ti by the anodic oxidation method.Bi2S3 and PbS nanoparticles (NPs) were firstly co-sensitized on TiO2 NAs (denoted as PbS/Bi2S3(n)/TiO2 NAs) by a two-step process containing hydrothermal and sonication-assisted SILAR method.When the concentration of Bi3+ is 5 mmol/L,the best photoelectrical performance was obtained under simulated solar irradiation.The short-circuit photocurrent (Jsc) and photoconversion efficiency (η) of PbS/Bi2S3(5)/TiO2 NAs electrode were 4.70 mA/cm and 1.13 %,respectively.

  3. Photocatalytic degradation of some organic dyes under solar light irradiation using TiO2 and ZnO nanoparticles

    Directory of Open Access Journals (Sweden)

    Mojtaba Amini

    2016-01-01

    Full Text Available Nanoparticles of the ZnO and TiO2 were synthesized and the physicochemical properties of the compounds were characterized by IR, X-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The XRD patterns of the ZnO and TiO2 nanoparticles could be indexed to hexagonal and rutile phase, respectively. Aggregated nanoparticles of ZnO and TiO2 with spherical-like shapes were observed with particle diameter in the range of 80-100 nm. These nanoparticles were used for photocatalytic degradation of various dyes, Rhodamine B (RhB, Methylene blue (MB and Acridine orange (AO under solar light irradiation at room temperature. Effect of the amount of catalyst on the rate of photodegradation was investigated. In general, because ZnO is unstable, due to incongruous dissolution to yield Zn(OH2 on the ZnO particle surfaces and thus leading to catalyst inactivation,the catalytic activity of the system for photodegradation of dyes decreased dramatically when TiO2 was replaced by ZnO.

  4. The correlation between structural properties, geometrical features, and photoactivity of freestanding TiO2 nanotubes in comparative degradation of 2,4-dichlorophenol and methylene blue

    Science.gov (United States)

    Vahabzadeh Pasikhani, Javad; Gilani, Neda; Ebrahimian Pirbazari, Azadeh

    2018-02-01

    Freestanding TiO2 nanotubes (FSNTs) with various physical dimensions were fabricated by two-step anodization process with different voltages and anodization times. The detachment method employed in this study involved voltage reduction at the end of the second step and ultrasonic chemical treatment. The results demonstrated that this detachment method is a beneficial technique to create thin open-mouthed and closed-end FSNTs (with lengths of 6-14 μm). Moreover, the influences of anodization conditions on photocatalytic activity, structural properties and geometrical features of FSNTs in comparative degradation of two non-colored (2,4-dichlorophenol) and colored (methylene blue) pollutants were investigated. Findings revealed that the quantity of the photocatalyst utilized is an effective parameter and using the optimum weight (10 mg/100 ml of 2,4-dichlorophenol) could increase the efficiency of the process up to 21%. Further, the results demonstrated that if equal optimum weights of FSNTs are chosen, decreases in voltage and anodization time significantly influence the structural properties, geometrical features, and photodegradation efficiency. The enhancement achieved in the degradation of both 2,4-dichlorophenol and methylene blue using the nanotubes with the shortest diameter (54 nm) and length (6.5 μm), which possess the lowest porosity (0.5) and also the highest surface area (0.53 m2 g-1), nanotubes’ density (19 cm2 cm-2) and wall thickness to length ratio (2). In addition, the results obtained indicated that the degradation reactions follow first-order kinetics in the degradation of the both pollutants. The apparent degradation rate constant of methylene blue was approximately 1.2 times greater than of the 2,4-dichlorophenol due to the negative charge of the nanotubes’ surface and electrostatic adsorptions.

  5. Adsorption of methyl orange by synthesized and functionalized-CNTs with 3-aminopropyltriethoxysilane loaded TiO2 nanocomposites.

    Science.gov (United States)

    Ahmad, Amirah; Razali, Mohd Hasmizam; Mamat, Mazidah; Mehamod, Faizatul Shimal Binti; Anuar Mat Amin, Khairul

    2017-02-01

    This study aims to develop a highly efficient adsorbent material. CNTs are prepared using a chemical vapor deposition method with acetylene and synthesized mesoporous Ni-MCM41 as the carbon source and catalyst, respectively, and are then functionalized using 3-aminopropyltriethoxysilane (APTES) through the co-condensation method and loaded with commercial TiO 2 . Results of X-ray powder diffraction (XRD), Raman spectra, and Fourier transform infrared spectroscopy (FTIR) confirm that the synthesized CNTs grown are multi-walled carbon nanotubes (MWNTs). Transmission electron microscopy shows good dispersion of TiO 2 nanoparticles onto functionalized-CNTs loaded TiO 2 , with the diameter of a hair-like structure measuring between 3 and 8 nm. The functionalized-CNTs loaded TiO 2 are tested as an adsorbent for removal of methyl orange (MO) in aqueous solution, and results show that 94% of MO is removed after 10 min of reaction, and 100% after 30 min. The adsorption kinetic model of functionalized-CNTs loaded TiO 2 follows a pseudo-second order with a maximum adsorption capacity of 42.85 mg/g. This study shows that functionalized-CNTs loaded TiO 2 has considerable potential as an adsorbent material due to the short adsorption time required to achieve equilibrium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Síntese, caracterização e atividade fotocatalítica de catalisadores nanoestruturados de TiO2 dopados com metais Synthesis, characterization and photocatalytic activity of nanostructured TiO2 catalysts doped with metals

    Directory of Open Access Journals (Sweden)

    William Leonardo da Silva

    2013-01-01

    Full Text Available Titanium dioxide nanostructured catalysts (nanotubes doped with different metals (silver, gold, copper, palladium and zinc were synthesized by the hydrothermal method in order to promote an increase in their photocatalytic activity under visible light. The catalysts were characterized by X-ray diffraction, diffuse reflectance spectroscopy, transmission electron microscopy and specific area and pore volume determination. The materials' photocatalytic activity was evaluated by rhodamine B decomposition in a glass batch reactor. Under UV radiation, only nanotubes doped with palladium were more active than the TiO2 P25, but the samples doped with silver, palladium and gold exhibited better results than the undoped samples under visible light.

  7. Toxicological consequences of TiO2, SiC nanoparticles and multi-walled carbon nanotubes exposure in several mammalian cell types: an in vitro study

    International Nuclear Information System (INIS)

    Barillet, Sabrina; Simon-Deckers, Angelique; Herlin-Boime, Nathalie; Mayne-L'Hermite, Martine; Reynaud, Cecile; Cassio, Doris; Gouget, Barbara; Carriere, Marie

    2010-01-01

    The development of nanotechnologies may lead to dissemination of potentially toxic nanoparticles in the environment. Toxicology of these nano-sized particles is thus attracting attention of public and governments worldwide. Our research is focused on the in vitro response of eukaryotic cells to nanoparticles exposure. For this purpose, we used cellular models of primary target organs (lung: A549 alveolar epithelial cells), or secondary target organs (liver: WIF-B9, Can-10 and kidneys: NRK-52E, LLC-PK1 proximal cells), i.e., organs exposed if nanoparticles are translocated through epithelial barriers. These cells were exposed to TiO 2 , SiC nanoparticles or multi-walled carbon nanotubes (MWCNT). The influence of nanoparticles physico-chemical characteristics on various toxicological endpoints (cytotoxicity, reactive oxygen species generation, genotoxicity) was specified. Our data demonstrate that nanoparticles toxicity depend on their size, morphology, and chemical composition, the finest, spherical shaped, and anatase TiO 2 nanoparticles being the more cytotoxic to NRK-52E cells, while SiC nanoparticles exert almost no cytotoxicity. MWCNT cytotoxicity neither depended on their length, nor on the presence of metal impurities. Nanoparticles cytotoxicity also depended on the exposed cell line. All the tested nanoparticles were uptaken by cells and caused intracellular reactive oxygen species generation. Relative to genotoxic effects, DNA strand breaks were detected in NRK-52E cells via the alkaline comet assay after exposure of cells to TiO 2 nanoparticles and to a lesser extent after exposure to MWCNT, but no double strand breaks were detected. The originality of this study lies on the panel of nanomaterials which were tested on a variety of cell lines. All these data may lead to a better understanding of nanomaterial toxicity and hazards for health.

  8. Photocatalytic activity of porous multiwalled carbon nanotube-TiO2 composite layers for pollutant degradation

    Czech Academy of Sciences Publication Activity Database

    Žouželka, Radek; Kusumawati, Y.; Remzová, Monika; Rathouský, Jiří; Pauporté, T.

    2016-01-01

    Roč. 317, MAY 2016 (2016), s. 52-59 ISSN 0304-3894 R&D Projects: GA MŠk LM2015073; GA MŠk(CZ) 7AMB14FR048 Institutional support: RVO:61388955 Keywords : TiO2 * carbon nanotubes * 4-chlorophenol Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.065, year: 2016

  9. PtNi alloy nanoparticles supported on carbon-doped TiO2 nanotube arrays for photo-assisted methanol oxidation

    International Nuclear Information System (INIS)

    He, Huichao; Xiao, Peng; Zhou, Ming; Liu, Feila; Yu, Shujuan; Qiao, Lei; Zhang, Yunhuai

    2013-01-01

    To develop anode catalysts for photo-assisted direct methanol fuel cell (PDMFC), carbon-doped TiO 2 nanotube arrays-supported PtNi alloy nanoparticles with different Pt/Ni atomic ratio (PtNi/C-TiO 2 NTs) prepared by pulsed electrodeposition method are evaluated as catalysts for photo-assisted methanol oxidation. The cyclic voltammetry (CV) and chronoamperometry results show that the PtNi/C-TiO 2 NTs prepared at t onPt :t onNi : = 10:7 (t on is the current-on time) with a Pt:Ni atomic ratio of 6.1:5.7 presents the highest catalytic activity for methanol oxidation both in the dark and under illumination. In addition, according to the results obtained from the CO stripping voltammetry and electrochemical impedance spectroscopy (EIS) tests, it was found that the light play an accelerative role in the oxidation of methanol on PtNi/C-TiO 2 NTs under illumination. The effect of illumination which enhancing the catalytic activity of PtNi/C-TiO 2 NTs are attributed to (1) methanol and the intermediates be oxidized directly on C-TiO 2 NTs for the light-induced catalytic effect; (2) more abundant oxygen-donating species be produced on C-TiO 2 NTs in the presence of light; (3) less CO ads adsorbing on catalysts due to the presence of stronger metal–support interactions between PtNi alloy nanoparticles and C-TiO 2 NTs under illumination

  10. Effect of hydrophilicity of carbon nanotube arrays on the release rate and activity of recombinant human bone morphogenetic protein-2

    Energy Technology Data Exchange (ETDEWEB)

    Han Zhaojun; Ostrikov, Kostya [Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, Lindfield, New South Wales 2070 (Australia); Tan, Cher Ming; Tay, Beng Kang [School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 (Singapore); Peel, Sean A F, E-mail: zhaojun.han@csiro.au [Department of Dentistry, University of Toronto, Toronto, ON, M5G 1G6 (Canada)

    2011-07-22

    Novel nanostructures such as vertically aligned carbon nanotube (CNT) arrays have received increasing interest as drug delivery carriers. In the present study, two CNT arrays with extreme surface wettabilities are fabricated and their effects on the release of recombinant human bone morphogenetic protein-2 (rhBMP-2) are investigated. It is found that the superhydrophilic arrays retained a larger amount of rhBMP-2 than the superhydrophobic ones. Further use of a poloxamer diffusion layer delayed the initial burst and resulted in a greater total amount of rhBMP-2 released from both surfaces. In addition, rhBMP-2 bound to the superhydrophilic CNT arrays remained bioactive while they denatured on the superhydrophobic surfaces. These results are related to the combined effects of rhBMP-2 molecules interacting with poloxamer and the surface, which could be essential in the development of advanced carriers with tailored surface functionalities.

  11. Porous TiO_2 nanofibers decorated CdS nanoparticles by SILAR method for enhanced visible-light-driven photocatalytic activity

    International Nuclear Information System (INIS)

    Tian, Fengyu; Hou, Dongfang; Hu, Fuchao; Xie, Kui; Qiao, Xiuqing; Li, Dongsheng

    2017-01-01

    Graphical abstract: A heterojunction photocatalyst with CdS Nanoparticles self-assembled via SILAR Method at surfaces of electrospun TiO2 nanofibers shows enhanced visible-light photocatalytic activities. - Highlights: • Combined electrospinning and successive ionic layer adsorption and reaction process. • Pouous TiO_2 nanofibers decorated CdS nanoparticles. • Synergetic effect of photosensitization and heterojunction. - Abstract: 1D porous CdS nanoparticles/TiO_2 nanofibers heterostructure has been fabricated via simple electrospinning and a successive ionic layer adsorption and reaction (SILAR) process. The morphology, composition, and optical properties of the resulting CdS/TiO_2 heterostructures can be rationally tailored through changing the SILAR cycles. The photocatalytic hydrogen evolution and decomposition of rhodamine B (RhB) of the as-synthesized heterostructured photocatalysts were investigated under visible light irradiation. Compared to TiO_2 nanofibers,the as-obtained CdS/TiO_2 heterostructures exhibit enhanced photocatalytic activity for hydrogen production and decomposition of RhB under visible-light irradiation. The heterojunction system performs best with H_2 generation rates of 678.61 μmol h"−"1 g"−"1 under visible light irradiation which benefits from the two effects: (a) the 1D porous nanofibrous morphology contributes to not only more active sites but also more efficient transfer of the photogenerated charges (b) the synergetic effect of heterojunction and photosensitization reducing the recombination of photogenerated electrons and holes.

  12. Characteristics of N-doped TiO{sub 2} nanotube arrays by N{sub 2}-plasma for visible light-driven photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xu [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Liu Zhongqing, E-mail: 301zql@vip.sina.com [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Zheng Jian; Yan Xin; Li Dandan; Chen Si [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Chu Wei, E-mail: chuwei1965_scu@yahoo.com [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China)

    2011-10-13

    Highlights: > A new pathway is provided to prepare N-doped TiO2 nanotube arrays using N{sub 2}-plasma treatment. > N{sub 2}-plasma treatment did not wreck the structure of nanotube arrays. > Nitrogen doping promoted the phase transition to rutile phase at low annealing temperatures > Nitrogen doping narrow band gap of TiO{sub 2} and improve the photocatalytic activity of samples. - Abstract: N-doped TiO{sub 2} nanotube arrays were prepared by electrochemical anode oxidation of Ti foil followed by treatment with N{sub 2}-plasma and subsequent annealed under Ar atmosphere. The morphologies, composition and optical properties of N-doped TiO{sub 2} nanotube arrays were characterized using field-emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction spectrometer (XRD), Photoluminescence (PL) and UV-vis diffusion reflection spectroscopy (UV-vis DRS). Methylene blue (MB) solution was utilized as the degradation model to evaluate the photocatalytic activity of the samples under visible light irradiation. The results suggested N{sub 2}-plasma treatment created doping of nitrogen onto the surface of photoelectrodes successfully and the N-doped TiO{sub 2} nanotube arrays display a significantly enhancement of the photocatalytic activity comparing with the pure TiO{sub 2} nanotube arrays under the visible light irradiation.

  13. TiO2-TiO2 composite resistive humidity sensor: ethanol crosssensitivity

    International Nuclear Information System (INIS)

    Ghalamboran, Milad; Saedi, Yasin

    2016-01-01

    The fabrication method and characterization results of a TiO 2 -TiO 2 composite bead used for humidity sensing along with its negative cross-sensitivity to ethanol vapor are reported. The bead shaped resistive sample sensors are fabricated by the drop-casting of a TiO 2 slurry on two Pt wire segments. The dried bead is pre-fired at 750°C and subsequently impregnated with a Ti-based sol. The sample is ready for characterization after a thermal annealing at 600°C in air. Structurally, the bead is a composite of the micron-sized TiO 2 crystallites embedded in a matrix of nanometric TiO 2 particle aggregates. The performance of the beads as resistive humidity sensors is recorded at room temperature in standard humidity level chambers. Results evince the wide dynamic range of the sensors fabricated in the low relative humidity range. While the sensor conductance is not sensitive to ethanol vapor in dry air, in humid air, sensor's responses are negatively affected by the contaminant. (paper)

  14. Amorphous TiO2 doped with carbon for visible light photodegradation of rhodamine B and 4-chlorophenol

    International Nuclear Information System (INIS)

    Shao, Penghui; Tian, Jiayu; Zhao, Zhiwei; Shi, Wenxin; Gao, Shanshan; Cui, Fuyi

    2015-01-01

    Graphical abstract: - Highlights: • Amorphous TiO 2 doped with carbon is prepared as a visible photocatalyst. • RhB and 4-chlorophenol are decomposed effectively by carbon-doped amorphous TiO 2 . • The mechanism for visible light photocatalysis is discussed detailedly. - Abstract: Visible light photocatalytic activity of amorphous TiO 2 doped with carbon is prepared by a facile sol-gel route for the first time. The most active sample with mesostructure of amorphous phase, high surface area (273 m 2 g −1 ) and large pore volume (0.33 cm 3 g −1 ) is identified by X-ray diffractometer, Raman spectrometer, transmission electron microscope and N 2 adsorption–desorption isotherms. In addition, the most active sample is characterized by Fourier transform-infrared spectrometer, X-ray photoelectron spectrometer, UV–vis diffuse reflectance spectrometer and luminescence spectrometer. The results show that the most active sample with oxygenic groups has a narrower bandgap and lower recombination of electron–hole, due to the carbon doping and phase of amorphous. Effective photodegradation capability and stability of rhodamine B and colorless 4-chlorophenol are verified by photocatalytic tests under visible light irradiation. A possible mechanism of amorphous TiO 2 doped with carbon for visible light photocatalysis is proposed. The findings of this paper will provide new insights to design visible light-induced photocatalyst based on amorphous TiO 2 for organic removal

  15. A bamboo-inspired hierarchical nanoarchitecture of Ag/CuO/TiO_2 nanotube array for highly photocatalytic degradation of 2,4-dinitrophenol

    International Nuclear Information System (INIS)

    Zhang, Xuhong; Wang, Longlu; Liu, Chengbin; Ding, Yangbin; Zhang, Shuqu; Zeng, Yunxiong; Liu, Yutang; Luo, Shenglian

    2016-01-01

    Highlights: • Bamboo-like architecture of ternary photocatalyst. • High simulated solar light photocatalytic activity. • Integration of p-n heterojunction and Schottky junction. • Excellent stable recycling performance. - Abstract: The optimized geometrical configuration of muitiple active materials into hierarchical nanoarchitecture is essential for the creation of photocatalytic degradation system that can mimic natural photosynthesis. A bamboo-like architecture, CuO nanosheets and Ag nanoparticles co-decorated TiO_2 nanotube arrays (Ag/CuO/TiO_2), was fabricated by using simple solution-immersion and electrodeposition process. Under simulated solar light irradiation, the 2,4-dinitrophenol (2,4-DNP) photocatalytic degradation rate over Ag/CuO/TiO_2 was about 2.0, 1.5 and 1.2 times that over TiO_2 nanotubes, CuO/TiO_2 and Ag/TiO_2, respectively. The enhanced photocatalytic activity of ternary Ag/CuO/TiO_2 photocatalyst was ascribed to improved light absorption, reduced carrier recombination and more exposed active sites. Moreover, the excellent stability and reliability of the Ag/CuO/TiO_2 photocatalyst demonstrated a promising application for organic pollutant removal from water.

  16. Facile synthesis of gold-capped TiO2 nanocomposites for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Han, Di; Huang, Hao; Du, Deyang; Lang, Xianzhong; Long, Kailin; Hao, Qi; Qiu, Teng

    2015-01-01

    A convenient technique was developed to fabricate gold-capped TiO 2 nanocomposites as robust, cost-efficient and recyclable surface-enhanced Raman scattering (SERS) substrates. The morphologies of obtained nanocomposites exhibit nanotube, nanolace, and nanopore nanostructures by adjusting TiO 2 anodization parameters. As an illustration, dramatic enhancement is achieved using Rhodamine 6G as a molecular probe. Owing to activation by the incident laser beam, the localized electromagnetic field on the nanocomposite surface can be enhanced subsequently amplifying the Raman signal. The topography can be further tuned to optimize the enhancement factor by adjusting the time of gold evaporation. Finite-difference time-domain calculations indicate the nanopore structure may possess excellent SERS characteristic due to the high density of hot spots. In addition, the substrate can be self-cleaned under ultraviolet irradiation due to the superior photocatalytic capacity of the Au–TiO 2 nanocomposites. Our Au–TiO 2 nanocomposites with highly SERS-active properties and recyclability shows promising applications in the detection and treatment of pollutants. - Highlights: • Au–TiO 2 nanocomposites with different morphologies were fabricated. • Au–TiO 2 nanopore shows pronounced SERS compared with nanotube and nanolace. • The size of the gold nanocaps on Au–TiO 2 nanopore was tailored to optimize the SERS. • FDTD simulations indicate excellent SERS attributes to the high density of hot spots. • Au–TiO 2 nanocomposites prove to be recyclable substrates for SERS detection

  17. Fabrication of PANI/C-TiO2 Composite Nanotube Arrays Electrode for Supercapacitor

    Directory of Open Access Journals (Sweden)

    Chengcheng Zhang

    2015-01-01

    Full Text Available Polyaniline/carbon doped TiO2 composite nanotube arrays (PANI/C-TiO2 NTAs have been prepared successfully by electrodepositing PANI in C-TiO2 NTAs which were prepared by directly annealing the as-anodized TiO2 NTAs under Ar atmosphere. The organic residual in the TiO2 NTAs during the process of anodization acts as carbon source and is carbonized in Ar atmosphere to manufacture the C-TiO2 NTAs. The specific capacitance of the PANI/C-TiO2 electrode is 120.8 mF cm−2 at a current density of 0.1 mA cm−2 and remains 104.3 mF cm−2 at a current density of 2 mA cm−2 with the calculated rate performance of 86.3%. After 5000 times of charge-discharge cycling at a current density of 0.2 mA cm−2, the specific capacitance retains 88.7% compared to the first cycle. All these outstanding performances of the as-prepared PANI/C-TiO2 NTAs indicate it will be a promising electrode for supercapacitor.

  18. Preparation and evaluation of self-microemulsions for improved bioavailability of ginsenoside-Rh1 and Rh2.

    Science.gov (United States)

    Yang, Feifei; Zhou, Jing; Hu, Xiao; Yu, Stephanie Kyoungchun; Liu, Chunyu; Pan, Ruile; Chang, Qi; Liu, Xinmin; Liao, Yonghong

    2017-10-01

    Due to intestinal cytochrome P450 (CYP450)-mediated metabolism and P-glycoprotein (P-gp) efflux, poor oral bioavailability hinders ginsenoside-Rh1 (Rh1) and ginsenoside-Rh2 (Rh2) from clinical application. In this study, Rh1 and Rh2 were incorporated into two self-microemulsions (SME-1 and SME-2) to improve oral bioavailability. SME-1 contained both CYP450 and P-gp inhibitory excipients while SME-2 only consisted of P-gp inhibitory excipients. Results for release, cellular uptake, transport, and lymph node distribution demonstrated no significant difference between either self-microemulsions in vivo, but were elevated significantly in comparison to the free drug. The pharmaceutical profiles in vivo showed that the bioavailability of Rh1 in SME-1 (33.25%) was significantly higher than that in either SME-2 (21.28%) or free drug (12.92%). There was no significant difference in bioavailability for Rh2 between SME-1 (48.69%) or SME-2 (41.73%), although they both had remarkable increase in comparison to free drug (15.02%). We confirmed that SME containing CYP450 and P-gp inhibitory excipient could distinctively improve the oral availabilities of Rh1 compared to free drug or SME containing P-gp inhibitory excipient. No notable increase was observed between either SME for Rh2, suggesting that Rh2 undergoes P-gp-mediated efflux, but may not undergo distinct CYP450-mediated metabolism.

  19. In situ growth of lamellar ZnTiO3 nanosheets on TiO2 tubular array with enhanced photocatalytic activity.

    Science.gov (United States)

    Cai, Yunyu; Ye, Yixing; Tian, Zhenfei; Liu, Jun; Liu, Yishu; Liang, Changhao

    2013-12-14

    We report a self-sacrificed in situ growth design toward preparation of ZnTiO3-TiO2 heterojunction structure. Highly reactive zinc oxide colloidal particles derived by laser ablation in liquids can react with TiO2 nanotubes to form a lamellar ZnTiO3 nanosheet structure in a hydrothermal-treatment process. Such hybrid structural product was characterized by X-ray diffraction, scanning and transmission electron microscopy, UV-vis diffuse reflection spectroscopy and X-ray photoelectron spectroscopy. The enhanced photocatalytic activity of the hybrid structure toward degradation of methyl orange (MO) and pentachlorophenol (PCP) molecules was demonstrated and compared with single phase TiO2, as a result of the efficient separation of light excited electrons and holes at the hetero-interfaces in the two semiconductors.

  20. Multiwalled Carbon Nanotube-TiO2 Nanocomposite for Visible-Light-Induced Photocatalytic Hydrogen Evolution

    Directory of Open Access Journals (Sweden)

    Ke Dai

    2014-01-01

    Full Text Available Multiwalled carbon nanotube- (MWCNT- TiO2 nanocomposite was synthesized via hydrothermal process and characterized by X-ray diffraction, UV-vis diffuse reflectance spectroscopy, field emission scanning electron microscope, thermogravimetry analysis, and N2 adsorption-desorption isotherms. Appropriate pretreatment on MWCNTs could generate oxygen-containing groups, which is beneficial for forming intimate contact between MWCNTs and TiO2 and leads to a higher thermal stability of MWCNT-TiO2 nanocomposite. Modification with MWCNTs can extend the visible-light absorption of TiO2. 5 wt% MWCNT-TiO2 derived from hydrothermal treatment at 140°C exhibiting the highest hydrogen generation rate of 15.1 μmol·h−1 under visible-light irradiation and a wide photoresponse range from 350 to 475 nm with moderate quantum efficiency (4.4% at 420 nm and 3.7% at 475 nm. The above experimental results indicate that the MWCNT-TiO2 nanocomposite is a promising photocatalyst with good stability and visible-light-induced photoactivity.

  1. Preliminary study towards photoactivity enhancement using a biocompatible titanium dioxide/carbon nanotubes composite

    International Nuclear Information System (INIS)

    Cendrowski, Krzysztof; Jedrzejczak, Malgorzata; Peruzynska, Magdalena; Dybus, Andrzej; Drozdzik, Marek; Mijowska, Ewa

    2014-01-01

    Graphical abstract: Scheme demonstrating the experimental steps toward the formation of titania/multiwalled carbon nanotubes (TiO 2 -MWCNTs) from multiwalled carbon nanotubes (MWCNT). - Highlights: • Easy and efficient method of impregnation carbon nanotubes with titania. • High photoactivity. • Correlation between the interaction of carbon nanotubes with titania on the photocatalytic properties. • High biocompatibility of the nanotubes. - Abstract: Recent research is focused on the enhancement in photoactivity of titanium dioxide/carbon nanotubes through formation of novel nanocomposites that exhibit a high specific surface area, remarkable electron transfer and biocompatibility. Here, we explore a new synthesis route in the system composed of nanocrystalline titanium dioxide supported on external walls and inner space of multiwalled carbon nanotubes (MWCNT). The advantages of this method are: its simplicity, direct fusion of titanium dioxide particles on the carbon material, and formation of chemical bond Ti–O–C between TiO 2 and MWCNT. Photocatalytic performance of this system has been compared to a commercial catalyst (Degussa P25) in a model reaction of phenol decomposition in/under UV light. The efficiency of the process increased by the factor of 2.5 when the TiO 2 –MWCNT photocatalyst was utilized. Further, the photoactive nanocomposite was analysed towards its biocompatibility in order to establish a safe dose of the catalyst. Its influence on the cells viability was studied on mouse fibroblasts and human liver tissue cells, in the range from 0 to 100 μg/mL. This has revealed that the composite in concentrations up to 25 μg/mL exerted low toxicity, which allowed for finding a compromise between the highest safe dose and acceptable photoactivity of the catalyst

  2. Formation of titanium dioxide nanotubes on Ti–30Nb–xTa alloys by anodizing

    International Nuclear Information System (INIS)

    Kim, Eun-Sil; Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2013-01-01

    The goal of this study was to investigate the formation of titanium dioxide nanotubes on the surface of cast Ti–30Nb–xTa alloys by anodizing. The anodization technique for creating the nanotubes utilized a potentiostat and an electrolyte containing 1 M H 3 PO 4 with 0.8 wt.% NaF. The grain size of the Ti–30Nb–xTa alloys increased as the Ta content increased. Using X-ray diffraction, for the Ti–30Nb alloy the main peaks were identified as α″ martensite with strong peaks of β phase. The phases in the Ti–30Nb–xTa alloys changed from a duplex (α″ + β) microstructure to solely β phase with increasing Ta content. The nanotubes that formed on the surface of the Ti–30Nb–xTa alloys were amorphous TiO 2 without an evidence of the crystalline anatase or rutile forms of TiO 2 . Scanning electron microscopy revealed that the average diameters of the small and large nanotubes on the Ti–30Nb alloy not containing Ta were approximately 100 nm and 400 nm, respectively, whereas the small and large nanotubes on the alloy had diameters of approximately 85 nm and 300 nm, respectively. As the Ta content increased from 0 to 15 wt.%, the average lengths of the nanotubes increased from 2 μm to 3.5 μm. Energy-dispersive X-ray spectroscopy indicated that the nanotubes were principally composed of Ti, Nb, Ta, O and F. Contact angle measurements showed that the nanotube surface had good wettability by water droplets. - Highlights: • TiO 2 nanotube layers on anodized Ti-30Nb-xTa alloys have been investigated. • Nanotube surface had an amorphous structure without heat treatment. • Nanotube diameter of Ti-30Nb-xTa decreased, whereas tube layer increased with Ta content. • The nanotube surface exhibited the low contact angle and good wettability

  3. Off-label use of rhBMP-2 as bone regeneration strategies in mandibular ameloblastoma unicystic.

    Science.gov (United States)

    Silva, Henrique Celestino Lima E; Cheim, Adonai Peixoto; Moreno, Roberto; Miranda, Sérgio Luis de

    2017-01-01

    Jawbone reconstruction after tumor resection is one of the most challenging clinical tasks for maxillofacial surgeons. Osteogenic, osteoinductive, osteoconductive and non-antigenic properties of autogenous bone place this bone as the gold standard for solving problems of bone availability. However, the need for a second surgical site to harvest the bone graft increases significantly both the cost and the morbidity associated with the reconstructive procedures. Bone grafting gained an important tool with the discovery of bone morphogenetic proteins in 1960. Benefit of obtaining functional and real bone matrix without need of second surgical site seems to be the great advantage of use bone morphogenetic proteins. This study analyzed the use of rhBMP-2 in unicystic ameloblastoma of the mandible, detailing its structure, mechanisms of cell signaling and biological efficacy, in addition to present possible advantages and disadvantages of clinical use of rhBMP-2 as bone regeneration strategy. RESUMO A reconstrução óssea dos maxilares após ressecções tumorais é uma das tarefas mais difíceis para o cirurgião maxilofacial. As propriedades osteogênicas, osteoindutoras, osteocondutoras e não antigênicas do osso autógeno o colocam como o padrão-ouro para a solução de problemas de disponibilidade óssea. Entretanto a coleta do enxerto ósseo necessita de um segundo sítio cirúrgico, aumentando significativamente o custo e a morbidade associados ao procedimento reconstrutivo. A enxertia óssea ganhou uma excelente ferramenta com a descoberta das proteínas ósseas morfogenéticas na década de 1960. O benefício da obtenção de matriz óssea verdadeira e funcional, sem a necessidade de um segundo sítio cirúrgico, parece ser a grande vantagem do uso das proteínas ósseas morfogenéticas. Neste contexto, o objetivo deste estudo foi analisar a utilização da rhBMP-2 na regeneração óssea de ameloblastoma mandibular unicístico, detalhando sua estrutura, seus

  4. An Overview: Recent Development of Titanium Oxide Nanotubes as Photocatalyst for Dye Degradation

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2014-01-01

    Full Text Available Today, organic dyes are one of the largest groups of pollutants release into environment especially from textile industry. It is highly toxic and hazardous to the living organism; thus, the removal of these dyes prior to discharge into the environment is essential. Varieties of techniques have been employed to degrade organic dyes and heterogeneous photocatalysis involving titanium dioxide (TiO2 appears to be the most promising technology. In recent years, TiO2 nanotubes have attracted much attention due to their high surface area and extraordinary characteristics. This paper presents a critical review of recent achievements in the modification of TiO2 nanotubes for dye degradation. The photocatalytic activity on dye degradation can be further enhanced by doping with cationic or anionic dopant.

  5. Biocompatibility assessment of graphene oxide-hydroxyapatite coating applied on TiO2 nanotubes by ultrasound-assisted pulse electrodeposition.

    Science.gov (United States)

    Fathyunes, Leila; Khalil-Allafi, Jafar; Sheykholeslami, Seyed Omid Reza; Moosavifar, Maryam

    2018-06-01

    In this study, the ultrasound-assisted pulse electrodeposition was introduced to fabricate the graphene oxide (GO)-hydroxyapatite (HA) coating on TiO 2 nanotubes. The results of the X-ray diffraction (XRD), Fourier Transform Infrared spectroscope (FTIR), Transmission Electron Microscope (TEM) and micro-Raman spectroscopy showed the successful synthesis of GO. The Scanning Electron Microscope (SEM) images revealed that in the presence of ultrasonic waves and GO sheets a more compact HA-based coating with refined microstructure could be formed on the pretreated titanium. The results of micro-Raman analysis confirmed the successful incorporation of the reinforcement filler of GO into the coating electrodeposited by the ultrasound-assisted method. The FTIR analysis showed that the GO-HA coating was consisted predominantly of the B-type carbonated HA (CHA) phase. The pretreatment of the substrate and incorporation of the GO sheets into the HA coating had a significant effect on improving the bonding strength at the coating-substrate interface. Moreover, the results of the fibroblast cell culture and 3‑(4,5‑dimethylthiazolyl‑2)‑2, 5‑diphenyltetrazolium bromide (MTT) assay after 2 days demonstrated a higher percentage of cell activity for the GO-HA coated sample. Finally, the 7-day exposure to simulated body fluid (SBF) showed a faster rate of apatite precipitation on the GO-HA coating, as compared to the HA coating and pretreated titanium. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light.

    Science.gov (United States)

    Ananpattarachai, Jirapat; Seraphin, Supapan; Kajitvichyanukul, Puangrat

    2016-02-01

    This work reports on synthesis, characterization, adsorption ability, formation rate of hydroxyl radicals (OH(•)), photocatalytic oxidation kinetics, and mineralization ability of C-doped titanium dioxide (TiO2), N-doped TiO2, and C,N co-doped TiO2 prepared by the sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy were used to analyze the titania. The rate of formation of OH(•) for each type of titania was determined, and the OH-index was calculated. The kinetics of as-synthesized TiO2 catalysts in photocatalytic oxidation of 2-chlorophenol (2-CP) under visible light irradiation were evaluated. Results revealed that nitrogen was incorporated into the lattice of titania with the structure of O-Ti-N linkages in N-doped TiO2 and C,N co-doped TiO2. Carbon was joined to the Ti-O-C bond in the C-doped TiO2 and C,N co-doped TiO2. The 2-CP adsorption ability of C,N co-doped TiO2 and C-doped TiO2 originated from a layer composed of a complex carbonaceous mixture at the surface of TiO2. C,N co-doped TiO2 had highest formation rate of OH(•) and photocatalytic activity due to a synergistic effect of carbon and nitrogen co-doping. The order of photocatalytic activity per unit surface area was the same as that of the formation rate of OH(•) unit surface area in the following order: C,N co-doped TiO2 > C-doped TiO2 > N-doped TiO2 > undoped TiO2.

  7. Facile synthesis of hierarchical Ag3PO4/TiO2 nanofiber heterostructures with highly enhanced visible light photocatalytic properties

    Science.gov (United States)

    Xie, Jinlei; Yang, Yefeng; He, Haiping; Cheng, Ding; Mao, Minmin; Jiang, Qinxu; Song, Lixin; Xiong, Jie

    2015-11-01

    Heterostructured semiconductor nanostructures have provoked great interest in the areas of energy, environment and catalysis. Herein, we report a novel hierarchical Ag3PO4/TiO2 heterostructure consisting of nearly spherical Ag3PO4 particles firmly coupled on the surface of TiO2 nanofibers (NFs). The construction of Ag3PO4/TiO2 heterostructure with tailored morphologies, compositions and optical properties was simply achieved via a facile and green synthetic strategy involving the electrospinning and solution-based processes. Owing to the synergetic effects of the components, the resulting hybrid heterostructures exhibited much improved visible light photocatalytic performance, which could degrade the RhB dye completely in 7.5 min. In addition, the coupling of Ag3PO4 particles with UV-light-sensitive TiO2 NFs enabled full utilization of solar energy and less consumption of noble metals, significantly appealing for their practical use in new energy sources and environmental issues. The developed synthetic strategy was considered to be applicable for the rational design and construction of other heterostructured catalysts.

  8. Synthesis of optimized indium phosphide/zinc sulfide core/shell nanocrystals and titanium dioxide nanotubes for quantum dot sensitized solar cells

    Science.gov (United States)

    Lee, Seungyong

    Synthesis of InP/ZnS core/shell nanocrystals and TiO 2 nanotubes and the optimization study to couple them together were explored for quantum dot sensitized solar cells. Its intrinsic nontoxicity makes the direct band gap InP/ZnS core/shell be one of the most promising semiconductor nanocrystals for optoelectric applications, with the advantage of tuning the optical absorption range in the desired solar spectrum region. Highly luminescent and monodisperse InP/ZnS nanocrystals were synthesized in a non-coordinating solvent. By varying the synthesis scheme, different size InP/ZnS nanocrystals with emission peaks ranging from 520 nm to 620 nm were grown. For the purpose of ensuring air stability, a ZnS shell was grown. The ZnS shell improves the chemical stability in terms of oxidation prevention. Transmission electron microscopy (TEM) image shows that the nanocrystals are highly crystalline and monodisperse. Free-standing TiO2 nanotubes were produced by an anodization method using ammonium fluoride. The free-standing nanotubes were formed under the condition that the chemical dissolution speed associated with fluoride concentration was faster than the speed of Ti oxidation. Highly ordered free-standing anatase form TiO2 nanotubes, which are transformed by annealing at the optimized temperature, are expected to be ideal for coupling with the prepared InP/ZnS nanocrystals. Electrophoretic deposition was carried out to couple the InP/ZnS nanocrystals with the TiO2 nanotubes. Under the adjusted applied voltage condition, the current during the electrophoretic deposition decreased continuously with time. The amount of the deposited nanocrystals was estimated by calculation and the evenly deposited nanocrystals on the TiO2 nanotubes were observed by TEM.

  9. Free-standing and bendable carbon nanotubes/TiO2 nanofibres composite electrodes for flexible lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Peng; Qiu, Jingxia; Zheng, Zhanfeng; Liu, Gao; Ling, Min; Martens, Wayde; Wang, Haihui; Zhao, Huijun; Zhang, Shanqing

    2013-01-01

    Carbon nanotube (CNT) and TiO 2 nanofibre composite films are prepared and used as anode materials for lithium ion batteries (LIBs) without the use of binders and conventional copper current collector. The preliminary experimental results from X-ray diffraction, scanning electron microscopy and transmission electron microscopy suggest that the TiO 2 nanofibres were well-dispersed and interwoven by the CNTs, forming freestanding, bendable and light weighted composite. In comparison with TiO 2 nanofibre based LIBs, the CNTs could significantly improve the battery performance due to their high conductivity property and 3D network morphology. In both 1–3 V and 0.01–3 V testing voltage ranges, the as-prepared composites show excellent reversible capacity and capacity retention. The superior lithium storage capacity of the CNT/TiO 2 composite was mainly attributed to dual functions of the CNTs – the CNTs not only provide conductive networks to assist the electron transfer but also facilitate lithium ion diffusion between the electrolyte and the TiO 2 active materials by preventing agglomeration of TiO 2 nanofibres. This work demonstrates that the CNT–TiO 2 composite film could be one type of potential electrode material for large-scale LIB applications

  10. Synthesis and Characterization of CNT/TiO2/ZnO Composites with High Photocatalytic Performance

    Directory of Open Access Journals (Sweden)

    Yanzhen Huang

    2018-04-01

    Full Text Available Novel carbon nanotubes (CNTs/titanium dioxide (TiO2/zinc oxide (ZnO composites have been successfully synthesized via a two-step solution method using titanyl sulfate as the titanium precursor. Its structural performances were researched by various characterization methods, such as X-ray powder diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM and UV-vis diffuse reflectance spectroscopy (UV-vis DRS. The performance of the composites was tested by degrading rhodamine B (RhB under UV-vis illumination and found to strongly rely on the content of ZnO. The experimental results showed that the CNT/TiO2/ZnO-90 wt % expressed more outstanding photocatalytic performance compared to the corresponding binary composites and the CNT/TiO2/ZnO-85 wt %, CNT/TiO2/ZnO-95 wt % materials. The improved photocatalytic activity was attributed to synergistic effect of CNT, TiO2 and ZnO, in which ZnO can absorb photons to produce electrons and holes, whereas TiO2 and CNT can reduce the electron-hole recombination.

  11. On the relationship between rutile/anatase ratio and the nature of defect states in sub-100 nm TiO2 nanostructures: experimental insights

    KAUST Repository

    Soliman, Moamen M.

    2018-02-02

    Black TiO2 is being widely investigated due to its superior optical activity and potential applications in photocatalytic hydrogen generation. Herein, the limitations of the hydrogenation process of TiO2 nanostructures are unraveled by exploiting the fundamental tradeoffs affecting the overall efficiency of the water splitting process. To control the nature and concentration of defect states, different reduction rates are applied to sub-100 nm TiO2 nanotubes, chosen primarily for their superiority over their long counterparts. X-Ray Photoelectron Spectroscopy disclosed changes in the stoichiometry of TiO2 with the reduction rate. UV-vis and Raman spectra showed that high reduction rates promote the formation of the rutile phase in TiO2, which is inactive towards water splitting. Furthermore, electrochemical analysis revealed that such high rates induce a higher concentration of localized electronic defect states that hinder the water splitting performance. Finally, incident photon-to-current conversion efficiency (IPCE) highlighted the optimum reduction rate that attains a relatively lower defect concentration as well as lower rutile content, thereby achieving the highest conversion efficiency.

  12. Functionalized TiO2 nanoparticle containing isocyanate groups

    International Nuclear Information System (INIS)

    Ou, Baoli; Li, Duxin; Liu, Qingquan; Zhou, Zhihua; Liao, Bo

    2012-01-01

    Functionalized TiO 2 nanoparticle containing isocyanate groups can extend the TiO 2 nanoparticle chemistry, and may promote their many potential applications such as in polymer composites and coatings. This paper describes a facile method to prepare functionalized TiO 2 nanoparticle with highly reactive isocyanate groups on its surface, via the reaction between toluene-2, 4-diisocyanate (TDI) and hydroxyl on TiO 2 nanoparticle surface. The main effect factors on the reaction of TiO 2 with TDI were studied by determining the reaction extent of hydroxyl groups on TiO 2 surface. Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) confirmed that reactive isocyanate groups were covalently attached to the TiO 2 nanoparticle surface. The dispersion of the TDI-functionalized TiO 2 nanoparticle was studied by transmission electron microscopy (TEM). Owing to the TDI molecules covalently bonded on TiO 2 nanoparticle surface, it was established that the TiO 2 nanoparticle can be uniformly dispersed in toluene, thus indicating that this functionalization method can prevent TiO 2 nanoparticle from agglomerating. -- Highlights: ► TiO 2 nanoparticle was functionalized with toluene-2, 4-diisocyanate. ► Functionalized TiO 2 nanoparticle can be uniformly dispersed in xylene. ► Compatibility of TiO 2 nanoparticle and organic solvent is significantly improved. ► TiO 2 containing isocyanate groups can extend the TiO 2 nanoparticle chemistry.

  13. Fabrication of photocatalytic composite of multi-walled carbon nanotubes/TiO2 and its application for desulfurization of diesel

    International Nuclear Information System (INIS)

    Vu, Thu Ha Thi; Nguyen, Thu Trang Thi; Nguyen, Phuong Hoa Thi; Do, Manh Hung; Au, Hang Thi; Nguyen, Thanh Binh; Nguyen, Dinh Lam; Park, Jun Seo

    2012-01-01

    Highlights: ► MWNTs and TiO 2 were mixed well, forming uniform microstructure in MWNTs/TiO 2 composites. ► The combination of MWNTs and TiO 2 contribute to improving photocatalytic activity of TiO 2 . ► MWNTs/TiO 2 composite is an effective photo-catalyst for the removal of sulfur from commercial diesel. -- Abstract: Composite of multi-walled carbon nanotubes (MWNTs) and titanium (IV) oxide (TiO 2 ) were prepared by a heterogeneous gelation method. The activities of the MWNTs/TiO 2 composites were evaluated by photocatalytic oxidative desulfurization using dibenzothiophene (DBT), 4,6-dimethyl dibenzothiophene (4,6-DMDBT), n-tetradecane, and commercial diesel under irradiation using a high-pressure Hg lamp. The microstructures of MWNTs/TiO 2 composites were characterized by N 2 adsorption, scanning electron microscopy, transmission electron microscope, and X-ray diffraction. It was found that more than 98% of sulfur compounds in commercial diesel were oxidized and removed by the use of the MWNTs/TiO 2 composite as a photocatalyst.

  14. Rigid, non-porous and tunable hybrid p-aminobenzoate/TiO2 materials: Toward a fine structural determination of the immobilized RhCl(Ph3)3 complex

    KAUST Repository

    Espinas, Jeff

    2015-05-01

    By exchange of ligands, Wilkinson complex RhCl(PPh3)3 are immobilized on p-aminobenzoate/TiO2 with different organic loading (6, 11 and 16%). This new hybrid material exhibit a linear correlation between the ligand content of the starting TiO2 and the rhodium loading, showing the accessibility of all surfaces amines fonctions on the non-porous parent materials. 1H, 13C, and 1D, 2D INAQUEDATE refocused and J-resolved 31P solid-state NMR confirm the well-defined structure [(≡TiO)2(n{right tail}2-O2C-C6H4-NH2)RhCl-cis-(PPh3)2]. New immobilized catalysts show interesting activity in cyclohexene hydroformylation.

  15. Rigid, non-porous and tunable hybrid p-aminobenzoate/TiO2 materials: Toward a fine structural determination of the immobilized RhCl(Ph3)3 complex

    KAUST Repository

    Espinas, Jeff; Rahal, Raed; Abou-Hamad, Edy; El Eter, Mohamad; Basset, Jean-Marie

    2015-01-01

    By exchange of ligands, Wilkinson complex RhCl(PPh3)3 are immobilized on p-aminobenzoate/TiO2 with different organic loading (6, 11 and 16%). This new hybrid material exhibit a linear correlation between the ligand content of the starting TiO2 and the rhodium loading, showing the accessibility of all surfaces amines fonctions on the non-porous parent materials. 1H, 13C, and 1D, 2D INAQUEDATE refocused and J-resolved 31P solid-state NMR confirm the well-defined structure [(≡TiO)2(n{right tail}2-O2C-C6H4-NH2)RhCl-cis-(PPh3)2]. New immobilized catalysts show interesting activity in cyclohexene hydroformylation.

  16. First-principles modeling of hafnia-based nanotubes.

    Science.gov (United States)

    Evarestov, Robert A; Bandura, Andrei V; Porsev, Vitaly V; Kovalenko, Alexey V

    2017-09-15

    Hybrid density functional theory calculations were performed for the first time on structure, stability, phonon frequencies, and thermodynamic functions of hafnia-based single-wall nanotubes. The nanotubes were rolled up from the thin free layers of cubic and tetragonal phases of HfO 2 . It was shown that the most stable HfO 2 single-wall nanotubes can be obtained from hexagonal (111) layer of the cubic phase. Phonon frequencies have been calculated for different HfO 2 nanolayers and nanotubes to prove the local stability and to find the thermal contributions to their thermodynamic functions. The role of phonons in stability of nanotubes seems to be negligible for the internal energy and noticeable for the Helmholtz free energy. Zone folding approach has been applied to estimate the connection between phonon modes of the layer and nanotubes and to approximate the nanotube thermodynamic properties. It is found that the zone-folding approximation is sufficiently accurate for heat capacity, but less accurate for entropy. The comparison has been done between the properties of TiO 2 , ZrO 2 , and HfO 2 . © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Noble Metal Decoration and Presulfation on TiO2: Increased Photocatalytic Activity and Efficient Esterification of n-Butanol with Citric Acid

    Directory of Open Access Journals (Sweden)

    Yu Niu

    2016-01-01

    Full Text Available TiO2 has been widely used as a key catalyst in photocatalytic reactions; it also shows good catalytic activity for esterification reactions. Different sulfated M-TiO2 nanoparticles (M = Ag, Au, Rh, and Pt were prepared by photodeposition and ultrasonic methods. The results show that the noble metal nanoparticles, which were loaded onto a TiO2 surface, slightly affected the crystal phase and particle size of TiO2. Among all the catalysts, SO42-/Au-TiO2 exhibited the best catalytic activity in the esterification reaction for the synthesis of citric acid n-butyl acetate and in the decomposition of methyl orange, as confirmed by a high conversion rate of up to 98.2% and 100% degradation rate, respectively. This can be attributed to an increase in the Lewis acidity of the catalyst and increased separation efficiency of electron-hole pairs. This superior catalyst has great potential applications in esterification reactions and wastewater treatments.

  18. Structure of a Rh/TiO2 catalyst in the strong metal-support interaction state as determined by EXAFS

    International Nuclear Information System (INIS)

    Koningsberger, D.C.; Martens, J.H.A.; Prins, R.; Short, D.R.; Sayers, D.E.

    1986-01-01

    Reduction of a highly dispersed 2.85 wt% Rh/TiO 2 catalyst at 473 K after previous calcination at 623 K resulted in EXAFS whose primary contributions are due to nearest rhodium (average coordination number of 3.1 and distance of 2.67 A) and oxygen neighbors (coordination 2.5 and distance 2.71 A). These oxygen neighbors originated at the metal-support interface. The average rhodium-rhodium coordination number did not change in the SMSI state produced by reducing the catalyst at 673 K. However, the average coordination distance contracted by 0.04 A with an accompanying decrease of the Debye-Waller factor of the Rh-Rh bond of 0.0012 A 2 . This is due to the fact that in the SMSI state the surface of the metal particles is not covered with chemisorbed hydrogen. The SMSI state leads to a structural reorganization of the support in the vicinity of the rhodium metal particles. This can be concluded from the appearance of a Rh-Ti bond at 3.42 A in the SMSI state coupled with the fact that the average coordination number of the rhodium-support oxygen bonds does not increase. Other types of rhodium-oxygen bonds could not be detected with EXAFS in this state. Thus, these results provide no evidence for coverage of the metal particle by a suboxide of TiO 2 in the SMSI state

  19. Enhancing the photocatalytic properties of TiO2 by coupling with carbon nanotubes and supporting gold

    International Nuclear Information System (INIS)

    Wang, Huihu; Dong, Shijie; Chang, Ying; Faria, Joaquim L.

    2012-01-01

    Highlights: ► Au–CNT–TiO 2 composites were synthesized by coupling CNT and Au to TiO 2 . ► The activity of Au–CNT–TiO 2 materials is higher than that of CNT–TiO 2 and Au–TiO 2 . ► The Au–CNT–TiO 2 composites possess both advantages of CNTs and Au. ► The Au–CNT–TiO 2 composites also overcome the disadvantages of surplus CNTs addition. - Abstract: The photodegradation of methylene blue in aqueous solutions is studied using various photocatalysts, including neat TiO 2 , CNT–TiO 2 , Au–TiO 2 , and Au–CNT–TiO 2 composites MB. Materials were synthesized and extensively characterized by XRD, TEM, DRFIT spectroscopy, N 2 adsorption–desorption isotherms, as well as diffuse reflectance UV–vis spectroscopy. By using CNT–TiO 2 composite as catalysts, it was found that CNT act as adsorbent and photosensitizer to improve the photoactivity of neat TiO 2 . Among the CNT–TiO 2 composites with different CNT weight ratio (0.2–20%), the 2%CNT–TiO 2 shows the best photoactivity. When CNT content is larger than 2%, the surplus CNT may absorb and scatter light photons. Combined with the decrease of TiO 2 amount in composite, the photoactivity is reduced. To further improve the photoactivity of 2%CNT–TiO 2 , different Au loads varying from 0.25% to 1% were introduced by the deposition–precipitation method. The 0.25%Au–2%CNT–TiO 2 composite had the highest photoactivity. The increase in activity was explained by the surface plasmon resonance of Au that makes the composite to absorb more photons than the 2%CNT–TiO 2 , thus overcoming the disadvantages of surplus CNT addition. On the other hand, 0.25%Au–2%CNT–TiO 2 composite also presents higher activity than 0.25%Au–TiO 2 due to higher adsorption capacity provided by CNT introduction. The addition of CNT and Au simultaneously has a much stronger synergic role than when each of them is introduced individually.

  20. Effect of annealing ambience on the formation of surface/bulk oxygen vacancies in TiO2 for photocatalytic hydrogen evolution

    Science.gov (United States)

    Hou, Lili; Zhang, Min; Guan, Zhongjie; Li, Qiuye; Yang, Jianjun

    2018-01-01

    The surface and bulk oxygen vacancy have a prominent effect on the photocatalytic performance of TiO2. In this study, TiO2 possessing different types and concentration of oxygen vacancies were prepared by annealing nanotube titanic acid (NTA) at various temperatures in air or vacuum atmosphere. TiO2 with the unitary bulk single-electron-trapped oxygen vacancies (SETOVs) formed when NTA were calcined in air. Whereas, TiO2 with both bulk and surface oxygen vacancies were obtained when NTA were annealed in vacuum. The series of TiO2 with different oxygen vacancies were systematically characterized by TEM, XRD, PL, XPS, ESR, and TGA. The PL and ESR analysis verified that surface oxygen vacancies and more bulk oxygen vacancies could form in vacuum atmosphere. Surface oxygen vacancies can trap electron and hinder the recombination of photo-generated charges, while bulk SETOVs act as the recombination center. The surface or bulk oxygen vacancies attributed different roles on the photo-absorbance and activity, leading that the sample of NTA-A400 displayed higher hydrogen evolution rate under UV light, whereas NTA-V400 displayed higher hydrogen evolution rate under visible light because bulk SETOVs can improve visible light absorption because sub-band formed by bulk SETOVs prompted the secondary transition of electron excited.

  1. Electronic structure of Rh-based CuRh0.9Mg0.1O2 oxide thermoelectrics

    Science.gov (United States)

    Vilmercati, P.; Martin, E.; Cheney, C. Parks; Bondino, F.; Magnano, E.; Parmigiani, F.; Sasagawa, T.; Mannella, N.

    2013-03-01

    The electronic structure of the Rh-based CuRh0.9Mg0.1O2 oxide thermoelectric compound has been studied with a multitechnique approach consisting of photoemission, x-ray absorption, and x-ray emission spectroscopies. The data indicate that the region of the valence band in the proximity of the Fermi level is dominated by Rh-derived states. These findings outline the importance of the electronic structure of the Rh ions for the large thermoelectric power in CuRh0.9Mg0.1O2 at high temperature.

  2. Determination of phthalate esters from environmental water samples by micro-solid-phase extraction using TiO2 nanotube arrays before high-performance liquid chromatography.

    Science.gov (United States)

    Zhou, Qingxiang; Fang, Zhi; Liao, Xiangkun

    2015-07-01

    We describe a highly sensitive micro-solid-phase extraction method for the pre-concentration of six phthalate esters utilizing a TiO2 nanotube array coupled to high-performance liquid chromatography with a variable-wavelength ultraviolet visible detector. The selected phthalate esters included dimethyl phthalate, diethyl phthalate, dibutyl phthalate, butyl benzyl phthalate, bis(2-ethylhexyl)phthalate and dioctyl phthalate. The factors that would affect the enrichment, such as desorption solvent, sample pH, salting-out effect, extraction time and desorption time, were optimized. Under the optimum conditions, the linear range of the proposed method was 0.3-200 μg/L. The limits of detection were 0.04-0.2 μg/L (S/N = 3). The proposed method was successfully applied to the determination of six phthalate esters in water samples and satisfied spiked recoveries were achieved. These results indicated that the proposed method was appropriate for the determination of trace phthalate esters in environmental water samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Tunable TiO2 Nanotube Arrays for Flexible Bio-Sensitized Solar Cells

    Science.gov (United States)

    2012-08-01

    microid extender followed by a colloidal silica /wetted imperial cloth. The foil was then cut into 1- × 2-cm samples. Then, the substrates were...17. Lei, B.; Liao, J.; Wang, R. J.; Su, C.; Kuang, D. Ordered Crystalline Ti02 Nanotube Arrays on Transparent FTO Glass for Efficient Dye...combined with a transparent , Indium Tin Dioxide coated PET film are attractive candidates for efficient, flexible DSSC’s. Flexible solar cells offer

  4. Preparation of environment-friendly 3D eggshell membrane-supported anatase TiO2 as a reusable photocatalyst for degradation of organic dyes

    Science.gov (United States)

    Li, Yaling; Zhou, Ji; Fan, Yunde; Ye, Yong; Tang, Bin

    2017-12-01

    We fabricated a low-cost and efficient composite photocatalyst material, combining eggshell membrane (ESM) and titanium dioxide (TiO2) nanoparticles, through self-assembly method. ESM with 3D porous structures provide scaffolds for TiO2 nanoparticles. Polyethyleneimine (PEI) was used to modify ESM by grafting amine groups. The microstructure and property of the fabricated composites were studied by various characterization methods. The composite was used for the photodegradation of Rhodamine B (RhB). The results demonstrate that the composite catalyst possesses good photocatalytic performance for dye degradation under sunlight irradiation simulated by a xenon lamp. Functionalization based on nanomaterials may promote the applications of ESM.

  5. Influence of electrical parameters on morphology of nanostructured TiO2 layers developed by electrochemical anodization

    Directory of Open Access Journals (Sweden)

    Strnad Gabriela

    2017-01-01

    Full Text Available Ti6Al4V alloy micro rough surfaces with TiO2 self-organized nanostructured layers were synthesized using electrochemical anodization in phosphate/fluoride electrolyte, at different end potentials (5V, 10V, 15V, and 20 V. The current – time characteristics were recorded, and the link between current evolution and the morphology of developing oxide layers was investigated. On flat surfaces of Ti6Al4V alloy we developed TiO2 layers with different morphologies (random pores, nanopores of 25…50 nm, and highly organized nanotubes of 50…100 nm in diameter depending on electrical parameters of anodization process. In our anodization cell, in optimized conditions, we are able to superimpose nanostructured oxide layers (nanotubular or nanoporous over micro structured surfaces of titanium based materials used for biomedical implants.

  6. Catalytic oxidation of 1,2-DCBz over V2O5/TiO2-CNTs: effect of CNT diameter and surface functional groups.

    Science.gov (United States)

    Du, Cuicui; Wang, Qiulin; Peng, Yaqi; Lu, Shengyong; Ji, Longjie; Ni, Mingjiang

    2017-02-01

    A series of V 2 O 5 /TiO 2 -carbon nanotube (CNT) catalysts were prepared and tested to decompose gaseous 1,2-dichlorobenzene (1,2-DCBz). Several physicochemical methods, including nitrogen adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and H 2 temperature-programmed reduction (TPR) were employed to characterise their physicochemical properties. To better understand the effect of CNT properties on the reactivity of V 2 O 5 /TiO 2 -CNT catalysts, the 1,2-DCBz residue remaining in the off-gas and on the catalyst surface were both collected and analysed. The results indicate that the outer diameter and the surface functional groups (hydroxide radical and carboxyl) of CNTs significantly influence upon the catalytic activity of CNT-containing V 2 O 5 /TiO 2 catalysts: the CNT outer diameter mainly affects the aggregation of CNTs and the π-π interaction between the benzene ring and CNTs, while the introduction of -OH and -COOH groups by acid treatment can further enlarge specific surface area (SSA) and contribute to a higher average oxidation state of vanadium (V aos ) and supplemental surface chemisorbed oxygen (O ads ). In addition, the enhanced mobility of lattice oxygen (O latt) also improves the oxidation ability of the catalysts.

  7. Protecting of Marble Stone Facades of Historic Buildings Using Multifunctional TiO2 Nanocoatings

    Directory of Open Access Journals (Sweden)

    Mohammad A. Aldoasri

    2017-11-01

    Full Text Available Stone surfaces and façades of historic buildings, due to their predominately outdoor location, suffer from many deterioration factors, including air pollution, soluble salts, relative humidity (RH/temperature, and biodeterioration, which are the main causes of decay. In particular, the façades of the buildings deteriorate with direct exposure to these factors; deformation and disfiguration of superficial decoration and formation of black crusts are often observed on the stones. The development and application of self-cleaning and protection treatments on historical and architectural stone surfaces could be a significant improvement in the conservation, protection and maintenance of Cultural Heritage. A titanium dioxide nanoparticle has become a promising photocatalytic material, owing to its ability to catalyze the complete degradation of many organic contaminants and environmental factors. In this study, TiO2 nanoparticles, dispersed in an aqueous colloidal suspension, were applied directly to historic marble stone surfaces, by spray-coating, in order to obtain a nanometric film over the stone surface. The study started with an investigation of some properties of TiO2 nanoparticles, to assess the feasibility of the use of TiO2 on historic stone and architectural surfaces. Scanning electron microscopy (SEM was, coupled with energy dispersive X-ray (EDX microanalysis, (SEM-EDX, in order to obtain information on coating homogeneity and surface morphology, before and after artificial aging; the activity of the coated surface was evaluated through UV-light exposure, to evaluate photo-induced effects. The changes of molecular structure occurring in treated samples were spectroscopically studied by attenuated total reflection infrared spectroscopy (ATR-FTIR; activity of the hydrophobic property of the coated surface was evaluated by Sterio microscopy, model Zeiss 2010 from Munich, Germany, equipped with photo camera S23 under 80X magnification. The

  8. Polypyrrole/titanium oxide nanotube arrays composites as an active material for supercapacitors.

    Science.gov (United States)

    Kim, Min Seok; Park, Jong Hyeok

    2011-05-01

    The authors present the first reported use of vertically oriented titanium oxide nanotube/polypyrrole (PPy) nanocomposites to increase the specific capacitance of TiO2 based energy storage devices. To increase their electrical storage capacity, titanium oxide nanotubes were coated with PPy and their morphologies were characterized. The incorporation of PPy increased the specific capacitance of the titanium oxide nanotube based supercapacitor system, due to their increased surface area and additional pseudo-capacitance.

  9. A weak-light-responsive TiO2/g-C3N4 composite film: photocatalytic activity under low-intensity light irradiation.

    Science.gov (United States)

    Wang, Peifang; Guo, Xiang; Rao, Lei; Wang, Chao; Guo, Yong; Zhang, Lixin

    2018-05-10

    A TiO 2 /g-C 3 N 4 composite photocatalytic film was prepared by in situ synthesis method and its photocatalytic capability under weak-visible-light condition was studied. The co-precursor with different ratio of melamine and TiO 2 sol-gel precursor were treated using ultrasonic mixing, physical deposition, and co-sintering method to form the smooth, white-yellow, and compact TiO 2 /g-C 3 N 4 composite films. The prepared TiO 2 /g-C 3 N 4 materials were characterized by SEM, TEM, EDS, XRD, BET, VBXPS, and UV-vis diffuse reflectance spectra. The results of composite showed that TiO 2 and g-C 3 N 4 have close interfacial connections which are favorable to charge transfer between these two semiconductors with suitable band structure, g-C 3 N 4 retard the anatase-to-rutile phase transition of TiO 2 significantly, the specific surface area were increased with g-C 3 N 4 ratio raised. Under weak-light irradiation, composite films photocatalytic experiments exhibited RhB removal efficiency approaching 90% after three recycles. Powders suspension degradation experiments revealed the removal efficiency of TiO 2 /g-C 3 N 4 (90.8%) was higher than pure TiO 2 (52.1%) and slightly lower than pure g-C 3 N 4 (96.6%). By control experiment, the enhanced photocatalysis is ascribed to the combination of TiO 2 and g-C 3 N 4 , which not only produced thin films with greater stability but also formed heterojunctions that can be favorable to charge transfer between these two semiconductors with suitable band structure. This study presents the potential application of photocatalytic film in the wastewater treatment under weak-light situation.

  10. High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization

    Science.gov (United States)

    Yuan, Xiaoliang; Zheng, Maojun; Ma, Li; Shen, Wenzhong

    2010-10-01

    Highly ordered TiO2 nanotubular arrays have been prepared by two-step anodization under high field. The high anodizing current densities lead to a high-speed film growth (0.40-1.00 µm min - 1), which is nearly 16 times faster than traditional fabrication of TiO2 at low field. It was found that an annealing process of Ti foil is an effective approach to get a monodisperse and double-pass TiO2 nanotubular layer with a gradient pore diameter and ultrathin tube wall (nearly 10 nm). A higher anodic voltage and longer anodization time are beneficial to the formation of ultrathin tube walls. This approach is simple and cost-effective in fabricating high-quality ordered TiO2 nanotubular arrays for practical applications.

  11. Sol-gel synthesis of TiO2 nanoparticles and photocatalytic degradation of methyl orange in aqueous TiO2 suspensions

    International Nuclear Information System (INIS)

    Yang Huaming; Zhang Ke; Shi Rongrong; Li Xianwei; Dong Xiaodan; Yu Yongmei

    2006-01-01

    Anatase TiO 2 nanoparticles of about 16 nm in crystal size have been successfully synthesized via a sol-gel method. Thermal treatment of the precursor at 500-600 deg. C results in the formation of different TiO 2 phase compositions. The samples were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Effects of the pH value of the solution, H 2 O 2 addition, TiO 2 phase composition and recycled TiO 2 on the photocatalytic degradation of methyl orange (MeO) in TiO 2 suspensions under ultraviolet (UV) illumination were primarily investigated. The results indicate that a low pH value, proper amount of H 2 O 2 and pure anatase TiO 2 will facilitate the photocatalytic oxidation of the MeO solution. The photodegradation degree decreases with increasing the pH value of the solution and varies with different amounts of H 2 O 2 . Pure anatase TiO 2 shows better photocatalytic activity for MeO decolorization than biphase TiO 2 . The photocatalytic mechanism of the as-synthesized TiO 2 nanoparticles was discussed

  12. Photoconductive, dielectric and percolation properties of anodic TiO.sub.2./sub. nanotubes studied by terahertz spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Kuchařík, Jiří; Sopha, H.; Krbal, M.; Rychetský, Ivan; Kužel, Petr; Macák, J. M.; Němec, Hynek

    2018-01-01

    Roč. 51, č. 1 (2018), s. 1-9, č. článku 014004. ISSN 0022-3727 R&D Projects: GA ČR GA17-03662S Institutional support: RVO:68378271 Keywords : anodic TiO 2 nanotubes * terahertz spectroscopy * charge transport * dielectric properties Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics , supercond.) Impact factor: 2.588, year: 2016

  13. Crystallization of TiO2 Nanotubes by In Situ Heating TEM

    KAUST Repository

    Casu, Alberto; Lamberti, Andrea; Stassi, Stefano; Falqui, Andrea

    2018-01-01

    nanotubes was heated looking at their electron diffraction pattern change versus temperature, in order to determine both the initial temperature of crystallization and the corresponding crystalline phases. Second, the experiment was repeated on groups of few

  14. Growth of anatase titanium dioxide nanotubes via anodization

    Directory of Open Access Journals (Sweden)

    Ed Adrian Dilla

    2012-06-01

    Full Text Available In this work, titanium dioxide nanotubes were grown via anodization of sputtered titanium thin films using different anodization parameters in order to formulate a method of producing long anatase titanium dioxide nanotubes intended for solar cell applications. The morphological features of the nanotubes grown via anodization were explored using a Philips XL30 Field Emission Scanning Electron Microscope. Furthermore, the grown nanotubes were also subjected to X-ray diffraction and Raman spectroscopy in order to investigate the effect of the predominant crystal orientation of the parent titanium thin film on the crystal phase of the nanotubes. After optimizing the anodization parameters, nanotubes with anatase TiO2 crystal phase and tube length more than 2 microns was produced from parent titanium thin films with predominant Ti(010 crystal orientation and using ammonium fluoride in ethylene glycol as an electrolyte with a working voltage equal to 60V during 1-hour anodization runs.

  15. Effect of TiO2 on the Gas Sensing Features of TiO2/PANi Nanocomposites

    Directory of Open Access Journals (Sweden)

    Duong Ngoc Huyen

    2011-02-01

    Full Text Available A nanocomposite of titanium dioxide (TiO2 and polyaniline (PANi was synthesized by in-situ chemical polymerization using aniline (ANi monomer and TiCl4 as precursors. SEM pictures show that the nanocomposite was created in the form of long PANi chains decorated with TiO2 nanoparticles. FTIR, Raman and UV-Vis spectra reveal that the PANi component undergoes an electronic structure modification as a result of the TiO2 and PANi interaction. The electrical resistor of the nanocomposite is highly sensitive to oxygen and NH3 gas, accounting for the physical adsorption of these gases. A nanocomposite with around 55% TiO2 shows an oxygen sensitivity of 600–700%, 20–25 times higher than that of neat PANi. The n-p contacts between TiO2 nanoparticles and PANi matrix give rise to variety of shallow donors and acceptor levels in the PANi band gap which enhance the physical adsorption of gas molecules.

  16. Highly uniform bipolar resistive switching characteristics in TiO2/BaTiO3/TiO2 multilayer

    International Nuclear Information System (INIS)

    Ma, W. J.; Zhang, X. Y.; Wang, Ying; Zheng, Yue; Lin, S. P.; Luo, J. M.; Wang, B.; Li, Z. X.

    2013-01-01

    Nanoscale multilayer structure TiO 2 /BaTiO 3 /TiO 2 has been fabricated on Pt/Ti/SiO 2 /Si substrate by chemical solution deposition method. Highly uniform bipolar resistive switching (BRS) characteristics have been observed in Pt/TiO 2 /BaTiO 3 /TiO 2 /Pt cells. Analysis of the current-voltage relationship demonstrates that the space-charge-limited current conduction controlled by the localized oxygen vacancies should be important to the resistive switching behavior. X-ray photoelectron spectroscopy results indicated that oxygen vacancies in TiO 2 play a crucial role in the resistive switching phenomenon and the introduced TiO 2 /BaTiO 3 interfaces result in the high uniformity of bipolar resistive switching characteristics

  17. TiO2-ITO and TiO2-ZnO nanocomposites: application on water treatment

    Directory of Open Access Journals (Sweden)

    Bessais B.

    2012-06-01

    Full Text Available One of the most promising ideas to enhance the photocatalytic efficiency of the TiO2 is to couple this photocatalyst with other semiconductors. In this work, we report on the development of photo-catalytic properties of two types of composites based on TiO2 – ITO (Indium Tin Oxide and TiO2 – ZnO deposited on conventional ceramic substrates. The samples were characterized by X-ray diffraction (XRD and transmission Electron Microscopy (TEM. The photo-catalytic test was carried out under UV light in order to reduce/oxidize a typical textile dye (Cibacron Yellow. The experiment was carried out in a bench scale reactor using a solution having a known initial dye concentration. After optimization, we found that both nanocomposites exhibit better photocatalytic activity compared to the standard photocatalyst P25 TiO2.

  18. Metal octacarboxyphthalocyanine / multi-walled carbon nanotube hybrid for the development of dye solar cells

    CSIR Research Space (South Africa)

    Mphahlele, N

    2013-09-01

    Full Text Available overall efficiencies even though it was lower than unexpected. Nevertheless, the TiO2/ZnOCPc/MWCNT performed better with the efficiency of about 0.1% than TiO2/SiOCPc/MWCNT and TiO2/GaOCPc/MWCNT. These findings open up avenues for improving... Conditions 50 3.3 FUNCTIONALISATION OF MULTI-WALLED CARBON NANOTUBES 51 3.4 PURIFICATION AND OXIDATION OF MWCNT 51 3.4.1 Amine-Functionalised MWCNT 52 3.5 SYTHESIS OF METAL 2,3,9,10,16,17,23,24 OCTACARBOXYPHTHALOCYANINES 52 3.5.1 Synthesis...

  19. TiO2/Halloysite Composites Codoped with Carbon and Nitrogen from Melamine and Their Enhanced Solar-Light-Driven Photocatalytic Performance

    Directory of Open Access Journals (Sweden)

    Pengcheng Yao

    2015-01-01

    Full Text Available Carbon (C and nitrogen (N codoped anatase TiO2/amorphous halloysite nanotubes (C+N-TiO2/HNTs were fabricated using melamine as C and N source. The samples prepared by different weight ratios of melamine and TiO2 were investigated by X-ray diffraction (XRD and UV-vis diffuse reflectance spectrometer. It is shown that the doping amounts of C and N could influence the photocatalytic performance of as-prepared composites. When the weight ratio of melamine/TiO2 is 4.5, the C+N-TiO2/HNTs exhibited the best photocatalytic degradation efficiency of methyl blue (MB under solar light irradiation. The obtained C+N-TiO2/HNTs were characterized by transmission electron microscopy (TEM, N2 adsorption-desorption isotherm (BET, X-ray photoelectron spectroscopy (XPS, and Fourier transform infrared spectrum (FT-IR. The results showed that the aggregation was effectively reduced, and TiO2 nanoparticles could be uniformly deposited on the surface of HNTs. This leads to an increase of their specific surface area. XPS and FT-IR analyses indicated TiO2 particles were doped successfully with C and N via the linkage of the Ti–O–N, O–Ti–N, and Ti–O–C. Photocatalytic experiments showed that C+N-TiO2/HNTs had higher degradation efficiency of MB than TiO2/HNTs. This makes the composite a potential candidate for the photocatalytic wastewater treatment.

  20. Facile fabrication of organic/inorganic nanotube heterojunction arrays for enhanced photoelectrochemical water splitting

    Science.gov (United States)

    Chen, Yingzhi; Li, Aoxiang; Yue, Xiaoqi; Wang, Lu-Ning; Huang, Zheng-Hong; Kang, Feiyu; Volinsky, Alex A.

    2016-07-01

    Organic/inorganic heterojunction photoanodes are appealing for making concurrent use of the highly photoactive organic semiconductors, and the efficient dielectric screening provided by their inorganic counterparts. In the present work, organic/inorganic nanotube heterojunction arrays composed of TiO2 nanotube arrays and a semiconducting N,N-(dicyclohexyl) perylene-3,4,9,10-tetracarboxylic diimide (PDi) layer were fabricated for photoelectrochemical water splitting. In this arrayed architecture, a PDi layer with a tunable thickness was coated on anodic TiO2 nanotube arrays by physical vapor deposition, which is advantageous for the formation of a uniform layer and an adequate interface contact between PDi and TiO2. The obtained PDi/TiO2 junction exhibited broadened visible light absorption, and an effective interface for enhanced photogenerated electron-hole separation, which is supported by the reduced charge transfer resistance and prolonged excitation lifetime via impedance spectroscopy analysis and fluorescence emission decay investigations. Consequently, such a heterojunction photoanode was photoresponsive to a wide visible light region of 400-600 nm, and thus demonstrated a highly enhanced photocurrent density at 1.23 V vs. a reversible hydrogen electrode. Additionally, the durability of such a photoanode can be guaranteed after long-time illumination because of the geometrical restraint imposed by the PDi aggregates. These results pave the way to discover new organic/inorganic assemblies for high-performance photoelectric applications and device integration.Organic/inorganic heterojunction photoanodes are appealing for making concurrent use of the highly photoactive organic semiconductors, and the efficient dielectric screening provided by their inorganic counterparts. In the present work, organic/inorganic nanotube heterojunction arrays composed of TiO2 nanotube arrays and a semiconducting N,N-(dicyclohexyl) perylene-3,4,9,10-tetracarboxylic diimide (PDi

  1. TiO2 beads and TiO2-chitosan beads for urease immobilization

    International Nuclear Information System (INIS)

    Ispirli Doğaç, Yasemin; Deveci, İlyas; Teke, Mustafa; Mercimek, Bedrettin

    2014-01-01

    The aim of the present study is to synthesize TiO 2 beads for urease immobilization. Two different strategies were used to immobilize the urease on TiO 2 beads. In the first method (A), urease enzyme was immobilized onto TiO 2 beads by adsorption and then crosslinking. In the second method (B), TiO 2 beads were coated with chitosan-urease mixture. To determine optimum conditions of immobilization, different parameters were investigated. The parameters of optimization were initial enzyme concentration (0.5; 1; 1.5; 2 mg/ml), alginate concentration (1; 2; 3%), glutaraldehyde concentration (1; 2; 3% v/v) and chitosan concentration (2; 3; 4 mg/ml). The optimum enzyme concentrations were determined as 1.5 mg/ml for A and 1.0 mg/ml for B. The other optimum conditions were found 2.0% (w/v) for alginate concentration (both A and B); 3.0 mg/ml for chitosan concentration (B) and 2.0% (v/v) for glutaraldehyde concentration (A). The optimum temperature (20-60 °C), optimum pH (3.0-10.0), kinetic parameters, thermal stability (4–70 °C), pH stability (4.0-9.0), operational stability (0-230 min) and reusability (20 times) were investigated for characterization. The optimum temperatures were 30 °C (A), 40 °C (B) and 35 °C (soluble). The temperature profiles of the immobilized ureases were spread over a large area. The optimum pH values for the soluble urease and immobilized urease prepared by using methods (A) and (B) were found to be 7.5, 7.0, 7.0, respectively. The thermal stabilities of immobilized enzyme sets were studied and they maintained 50% activity at 65 °C. However, at this temperature free urease protected only 15% activity. - Highlights: • TiO 2 and TiO 2 -chitosan beads for urease immobilization have been prepared and characterized. • The beads used in this work are good matrices for the immobilization of urease. • The immobilized urease was shown to have good properties and stabilities (pH and thermal stability, operational stability). • The 50

  2. Photocatalytic activity of TiO2/Nb2O5/PANI and TiO2/Nb2O5/RGO as new nanocomposites for degradation of organic pollutants.

    Science.gov (United States)

    Zarrin, Saviz; Heshmatpour, Felora

    2018-06-05

    In this study, highly active titanium dioxide modified by niobium oxide (Nb 2 O 5 ), polymer (PANI) and reduced graphene oxide (RGO) were successfully prepared. The morphology, structure, surface area and light absorption properties of the present nanocomposites for removal of methylene blue (MB) and methyl orange (MO) were investigated and compared with those of TiO 2 /Nb 2 O 5 and TiO 2 nanoparticles. The characterization techniques such as XRD, FT-IR, UV-vis, SEM, EDX, BET and TEM were employed in order to identify the nanocomposites. Also, photocatalytic properties of TiO 2 /Nb 2 O 5 /PANI and TiO 2 /Nb 2 O 5 /RGO nanocomposites under visible light irradiation were studied. In this way, the obtained results were compared to each other and also compared to TiO 2 /Nb 2 O 5 and TiO 2 nanoparticles. In this context, the chemical oxygen demand (COD) removal follows the photodegradation in observed performance. The results indicate that reduced TiO 2 /Nb 2 O 5 nanocomposite is effectively modified by graphene oxide to give TiO 2 /Nb 2 O 5 /RGO composite. The TiO 2 /Nb 2 O 5 /RGO exhibits significantly higher photocatalytic activity in degradation of organic dyes under visible light rather than that of TiO 2 /Nb 2 O 5 /PANI, TiO 2 /Nb 2 O 5 and pure TiO 2 . Copyright © 2018 Elsevier B.V. All rights reserved.

  3. The Effects of Anchor Groups on (1) TiO2-Catalyzed Photooxidation and (2) Linker-Assisted Assembly on TiO2

    Science.gov (United States)

    Anderson, Ian Mark

    Quantum dot-sensitized solar cells (QDSSCs) are a popular target for research due to their potential for highly efficient, easily tuned absorption. Typically, light is absorbed by quantum dots attached to a semiconductor substrate, such as TiO2, via bifunctional linker molecules. This research aims to create a patterned monolayer of linker molecules on a TiO2 film, which would in turn allow the attachment of a patterned layer of quantum dots. One method for the creation of a patterned monolayer is the functionalization of a TiO2 film with a linker molecule, followed by illumination with a laser at 355 nm. This initiates a TiO 2-catalyzed oxidation reaction, causing loss of surface coverage. A second linker molecule can then be adsorbed onto the TiO2 surface in the illuminated area. Towards that end, the behaviors of carboxylic and phosphonic acids adsorbed on TiO2 have been studied. TiO2 films were functionalized by immersion in solutions a single adsorbate and surface coverage was determined by IR spectroscopy. It is shown that phosphonic acids attain higher surface coverage than carboxylic acids, and will displace them from TiO2 when in a polar solvent. Alkyl chain lengths, which can influence stabilities of monolayers, are shown not to have an effect on this relationship. Equilibrium binding data for the adsorption of n-hexadecanoic acid to TiO2 from a THF solution are presented. It is shown that solvent polarity can affect monolayer stability; carboxylates and phosphonates undergo more desorption into polar solvents than nonpolar. Through illumination, it was possible to remove nearly all adsorbed linkers from TiO2. However, the illuminated areas were found not to be receptive to attachment by a second adsorbate. A possible reason for this behavior is presented. I also report on the synthesis and characterization of a straight-chain, thiol-terminated phosphonic acid. Initial experiments involving monolayer formation and quantum dot attachment are presented

  4. Standard enthalpies of formation of selected Rh2YZ Heusler compounds

    International Nuclear Information System (INIS)

    Yin, Ming; Nash, Philip

    2015-01-01

    The standard enthalpies of formation (Δ f H°) of selected ternary Rh-based Rh 2 YZ (Y = Cu, Fe, Mn, Ni, Ru, Ti, V; Z = Al, Ga, In, Si, Ge, Sn) compounds were measured using high temperature direct reaction calorimetry. The measured standard enthalpies of formation (in kJ/mol of atoms) are, for the Heusler compound Rh 2 MnSn (−40.1 ± 3.6), for the B2-structured compounds: Rh 2 FeAl (−48.5 ± 2.9); Rh 2 MnAl (−72.4 ± 2.7); Rh 2 MnGa (−55.3 ± 2.0); Rh 2 MnIn (−35.3 ± 1.9), for the tetragonal compounds: Rh 2 FeSn (−28.9 ± 1.3); Rh 2 TiAl (−97.6 ± 2.2); Rh 2 TiGa (−79.0 ± 1.8); Rh 2 TiSn (−74.7 ± 3.1). Values are compared with those from first principles calculations in published papers and the Open Quantum Materials Database (OQMD). Lattice parameters of these compounds are determined using X-ray diffraction analysis (XRD). Microstructures were characterized using scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). - Highlights: • Standard enthalpies of formation of Rh 2 YZ were measured using a drop calorimeter. • Measured enthalpies agree with first principles data in general. • Lattice parameters and related phase relationships were consistent with literature data. • Rh 2 TiSn of tI8 structure were reported for the first time.

  5. Síntese, caracterização e atividade fotocatalítica de catalisadores nanoestruturados de TiO2 dopados com metais

    Directory of Open Access Journals (Sweden)

    William Leonardo da Silva

    2013-01-01

    Full Text Available Titanium dioxide nanostructured catalysts (nanotubes doped with different metals (silver, gold, copper, palladium and zinc were synthesized by the hydrothermal method in order to promote an increase in their photocatalytic activity under visible light. The catalysts were characterized by X-ray diffraction, diffuse reflectance spectroscopy, transmission electron microscopy and specific area and pore volume determination. The materials' photocatalytic activity was evaluated by rhodamine B decomposition in a glass batch reactor. Under UV radiation, only nanotubes doped with palladium were more active than the TiO2 P25, but the samples doped with silver, palladium and gold exhibited better results than the undoped samples under visible light.

  6. Ontogenic and sexual differences in pituitary GnRH receptors and intracellular Ca2+ mobilization induced by GnRH.

    Science.gov (United States)

    Lacau-Mengido, I M; González Iglesias, A; Lux-Lantos, V; Libertun, C; Becú-Villalobos, D

    1998-04-01

    The present experiments were designed in order to elucidate the participation of the developing hypophysis in determining the changing sensitivity of gonadotrophins to gonadotropin-releasing hormone (GnRH) during ontogeny in the rat. To that end, we chose two well defined developmental ages that differ markedly in sexual and ontogenic characteristics of hypophyseal sensitivity to GnRH, 15 and 30 d. In order to study sex differences and the role of early sexual organization of the hypothalamus, experiments were carried out in males, females, and neonatally androgenized females (TP females). We evaluated (1) the characteristics of pituitary GnRH receptors, and (2) associated changes in GnRH-induced mobilization of intracellular Ca2+ (a second messenger involved in gonadotropins exocytosis). We measured binding characteristics of the GnRH analog D-Ser(TBu)6-des-Gly10-GnRH ethylamide in pituitary homogenates. We found that Kds did not vary among the different sex groups. Total number and concentration of receptors decreased in the female rat from 15-30 d of age, whereas in the male and TP female, receptors/pituitary increased, and the concentration/mg tissue did not change. Also, at 30 days of age, males presented higher content and concentration of receptors than females, and higher content than TP females. In order to evaluate if developmental and sexual differences in pituitary sensitivity to GnRH might be expressed through variations in the intracellular Ca2+ signal, we studied the mobilization of intracellular Ca2+ induced by GnRH (1 x 10(-8) to 1 x 10(-11) M) in a suspension of dispersed pituitary cells in the six groups. In cells from 15-d-old females, Ca2+ response was greater than in 30-d-old females at the doses of 10(-8) to 10(-10) M, indicating that in the infantile female rat activation of highly concentrated GnRH receptors is reflected in an increase in signal transduction mediated by Ca2+. In males and in female rats androgenized at birth, there was also

  7. Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure.

    Science.gov (United States)

    Larue, Camille; Castillo-Michel, Hiram; Sobanska, Sophie; Trcera, Nicolas; Sorieul, Stéphanie; Cécillon, Lauric; Ouerdane, Laurent; Legros, Samuel; Sarret, Géraldine

    2014-05-30

    Engineered TiO2 nanoparticles (TiO2-NPs) are present in a large variety of consumer products, and are produced in largest amount. The building industry is a major sector using TiO2-NPs, especially in paints. The fate of NPs after their release in the environment is still largely unknown, and their possible transfer in plants and subsequent impacts have not been studied in detail. The foliar transfer pathway is even less understood than the root pathway. In this study, lettuces were exposed to pristine TiO2-NPs and aged paint leachate containing TiO2-NPs and microparticles (TiO2-MPs). Internalization and in situ speciation of Ti were investigated by a combination of microscopic and spectroscopic techniques. Not only TiO2-NPs pristine and from aged paints, but also TiO2-MPs were internalized in lettuce leaves, and observed in all types of tissues. No change in speciation was noticed, but an organic coating of TiO2-NPs is likely. Phytotoxicity markers were tested for plants exposed to pristine TiO2-NPs. No acute phytotoxicity was observed; variations were only observed in glutathione and phytochelatin levels but remained low as compared to typical values. These results obtained on the foliar uptake mechanisms of nano- and microparticles are important in the perspective of risk assessment of atmospheric contaminations. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Preparation and Performance of TiO2-ZnO/CNT Hetero-Nanostructures Applied to Photodegradation of Organic Dye

    OpenAIRE

    Da Dalt,Silvana; Alves,Annelise Kopp; Bergmann,Carlos Pérez

    2016-01-01

    Water pollution by organic compounds is one of the major challenges faced by industries that use dyeing processes. Thus, some methods were developed for degrading dyes in wastewaters, including heterogeneous photocatalysis by semiconductor oxides. However, these oxides have limited photocatalytic activity due to the fast recombination of photogenerated electron-hole pairs. The aim of this study is the use of a carbon nanotube (CNT) and TiO2-ZnO oxide junction from modified sol-gel method to p...

  9. Favorable recycling photocatalyst TiO2/CFA: Effects of loading percent of TiO2 on the structural property and photocatalytic activity

    International Nuclear Information System (INIS)

    Shi Jianwen; Chen Shaohua; Ye Zhilong; Wang Shumei; Wu Peng

    2010-01-01

    A series of photocatalysts TiO 2 /CFA were prepared using coal fly ash (CFA), waste discharged from coal-fired power plant, as substrate, and then these photocatalysts were characterized by scanning electron microscope, X-ray diffraction analysis, nitrogen adsorption test and ultraviolet-visible absorption analysis. The effects of loading percent of TiO 2 on the photocatalytic activity and re-use property of TiO 2 /CFA were evaluated by the photocatalytic decoloration and mineralization of methyl orange solution. The results show that the pore volume and the specific surface area of the TiO 2 /CFA both increased with the increase in the loading percent of TiO 2 , which improved the photocatalytic activity of TiO 2 /CFA. However, when the loading percent of TiO 2 was too high (up to 54.51%), superfluous TiO 2 was easy to break away from CFA in the course of water treatment, which was disadvantaged to the recycling property of TiO 2 /CFA. In this study, the optimal loading percent of TiO 2 was 49.97%, and the efficiencies of photocatalytic decoloration and mineralization could be maintained above 99% and 90%, respectively, when the photocatalyst was used repeatedly, without any decline, even at the sixth cycle.

  10. Influence of Heat Treatment and UV Irradiation on the Wettability of Ti35Nb10Ta Nanotubes

    Directory of Open Access Journals (Sweden)

    Joan Lario

    2018-01-01

    Full Text Available The implant osseointegration rate depends on the surface’s topography and chemical composition. There is a growing interest in the anodic oxidation process to obtain an oxide layer with a nanotube morphology on beta titanium alloys. This surface treatment presents large surface area, nanoscale rugosity and electrochemical properties that may increase the biocompatibility and osseointegration rate in titanium implants. In this work, an anodic oxidation process was used to modify the surface on the Ti35Nb10Ta alloy to obtain a titanium nanotubes topography. The work focused on analyzing the influence of some variables (voltage, heat treatment and ultraviolet irradiation on the wettability performance of a titanium alloy. The morphology of the nanotubes surfaces was studied by Field Emission Scanning Electron Microscopy (FESEM, and surface composition was analyzed by Energy Dispersive Spectroscopy (EDS. The measurement of contact angle for the TiO2 nanotube surfaces was measured by a video contact angle system. The surface with the non photoinduced nanotubes presented the largest contact angles. The post-heat treatment lowered the F/Ti ratio in the nanotubes and decreased the contact angle. Ultraviolet (UV irradiation of the TiO2 nanotubes decrease the water contact angle.

  11. Synthesis of titanate, TiO2 (B), and anatase TiO2 nanofibers from natural rutile sand

    International Nuclear Information System (INIS)

    Pavasupree, Sorapong; Suzuki, Yoshikazu; Yoshikawa, Susumu; Kawahata, Ryoji

    2005-01-01

    Titanate nanofibers were synthesized by hydrothermal method (150 deg. C for 72 h) using natural rutile sand as the starting materials. TiO 2 (B) and anatase TiO 2 (high crystallinity) nanofibers with the diameters of 20-100 nm and the lengths of 10-100 μm were obtained by calcined titanate nanofibers for 4 h at 400 and 700 deg. C (in air), respectively. The samples characterized by XRD, SEM, TEM, SAED, HRTEM, and BET surface area. This synthesis method provides a simple route to fabricate one-dimensional nanostructured TiO 2 from low cost material. -- Graphical abstract: Titanate nanofibers (b) were synthesized by hydrothermal method (150 deg. C for 72 h) using natural rutile sand (a) as the starting materials. TiO 2 (B) (c) and anatase TiO 2 (d) nanofibers with the diameters of 20-50 nm and the lengths of 10-100 μm were obtained by calcined titanate nanofibers for 4 h at 400 deg. C and 700 deg. C (in air), respectively

  12. A first principle simulation of competitive adsorption of SF6 decomposition components on nitrogen-doped anatase TiO2 (101) surface

    Science.gov (United States)

    Dong, Xingchen; Zhang, Xiaoxing; Cui, Hao; Zhang, Jun

    2017-11-01

    Gas insulated switchgear has been widely used in modern electric systems due to its significantly excellent performances such as compact structure and low land occupation as well as the security stability. However, inside defects caused during manufacture process can lead to partial discharge which might develop into serious insulation failure. Online monitoring method on basis of gas sensors is considered a promising way of detecting partial discharge for alarm ahead of time. Research has found that TiO2 nanotubes sensors show good response to SO2, SOF2, SO2F2, the decomposition components as a result of partial discharge. In order to investigate the gas-sensing mechanism of nitrogen-doped TiO2 prepared via plasma treatment methods to SO2, SOF2, and SO2F2, the adsorption structures of both three gas molecules and anatase TiO2 (101) surface were built, and DFT calculations were then carried out for calculation and analysis of adsorption parameters. Adsorption property comparison of anatase TiO2 (101) surface after nitrogen doping with Au doping and without doping shows that nitrogen doping can obviously enhance the adsorption energy for SO2 and SOF2 adsorption and no charge transfer for SO2F2 adsorption, further explaining the adsorption mechanism and doping influence of different doping elements.

  13. Thermo-stable carbon nanotube-TiO_2 nanocompsite as electron highways in dye-sensitized solar cell produced by bio-nano-process

    International Nuclear Information System (INIS)

    Inoue, Ippei; Yasueda, Hisashi; Yamauchi, Hirofumi; Okamoto, Naofumi; Toyoda, Kenichi; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu; Yamashita, Ichiro

    2015-01-01

    We produced a thermostable TiO_2-(anatase)-coated multi-walled-carbon-nanotube (MWNT) nanocomposite for use in dye-sensitized solar cells (DSSCs) using biological supuramolecules as catalysts. We synthesized two different sizes of iron oxide nanoparticles (NPs) and arrayed the NPs on a silicon substrate utilizing two kinds of genetically modified cage-shaped proteins with silicon-binding peptide aptamers on their outer surfaces. Chemical vapor deposition (CVD) with the vapor–liquid-solid phase (VLS) method was applied to the substrate, and thermostable MWNTs with a diameter of 6 ± 1 nm were produced. Using a genetically modified cage-shaped protein with carbon-nanomaterials binding and Ti-mineralizing peptides as a catalyst, we were able to mineralize a titanium compound around the surface of the MWNT. The products were sintered, and thin TiO_2-layer-coated MWNTs nanocomoposites were successfully produced. Addition of a 0.2 wt% TiO_2-coated MWNT nanocomposite to a DSSC photoelectrode improved current density by 11% and decreased electric resistance by 20% compared to MWNT-free reference DSSCs. These results indicate that a nanoscale TiO_2-layer-coated thermostable MWNT structure produced by our mutant proteins works as a superior electron transfer highway within TiO_2 photoelectrodes. (paper)

  14. Multi-Walled Carbon Nanotube Coating on Alkali Treated TiO2 Nanotubes Surface for Improvement of Biocompatibility

    Directory of Open Access Journals (Sweden)

    Jung-Eun Park

    2018-04-01

    Full Text Available The aim of this study is to enhance the bioactivity of pure titanium using multiple surface treatments for the application of the implant. To form the biofunctional multilayer coating on pure titanium, anodization was conducted to make titanium dioxide nanotubes, then multi-walled carbon nanotubes were coated using a dipping method after an alkali treatment. The surface characteristics at each step were analyzed using a field emission scanning electron microscope and X-ray diffractometer. The effect of the multilayer coating on the biocompatibility was identified using immersion and cytotoxicity tests. Better hydroxyapatite formation was observed on the surface of multilayer-coated pure titanium compared to non-treated pure titanium after immersion in the simulated body fluid. Improvement of biocompatibility by multiple surface treatments was identified through various cytotoxicity tests using osteoblast cells.

  15. Properties of phases in HfO2-TiO2 system

    International Nuclear Information System (INIS)

    Red'ko, V.P.; Terekhovskij, P.B.; Majster, I.M.; Shevchenko, A.V.; Lopato, L.M.; Dvernyakova, A.A.

    1990-01-01

    A study was made on axial and linear coefficients of thermal expansion (CTE) of HfO 2 -TiO 2 system samples in concentration range of 25-50 mol% TiO 2 . Samples, containing 35 and 37 mol% TiO 2 , are characterized by the lowest values of linear CTE. Dispersion of the basic substances doesn't affect CTE value. Correlation with axial and linear CTE of samples in ZrO 2 -TiO 2 system was conducted. Presence of anisotropy of change of lattice parameters was supported for samples, containing 37.5 and 40 mol% TiO 2 . Polymorphous transformations for hafnium titanate were not revealed

  16. Complex impedance study on nano-CeO2 coating TiO2

    International Nuclear Information System (INIS)

    Zhang Mei; Wang Honglian; Wang Xidong; Li Wenchao

    2006-01-01

    Titanium dioxide (TiO 2 ) nanoparticles and cerium dioxide (CeO 2 ) nanoparticles coated titanium dioxide (TiO 2 ) nanoparticles (CeO 2 -TiO 2 nanoparticles) have been successfully synthesized by sol-gel method. The complex impedance of the materials was investigated. The grain resistance, boundary resistance and activation energy of the nanoparticles were calculated according to Arrhenius equation. According to calculating results, the active capacity of pure TiO 2 nanoparticles has been improved because of nano-CeO 2 coating. An optimal CeO 2 content of 4.9 mol% was achieved. The high resolution electron microscopy images of CeO 2 -TiO 2 nanoparticles showed that TiO 2 nanoparticles, as a core, were covered by CeO 2 nanoparticles. The average size of CeO 2 coating TiO 2 nanoparticles was about 70 nm. Scanning electron microscopy observation indicted that CeO 2 nanoparticle coating improved the separation, insulation, and stability the CeO 2 -TiO 2 nanoparticles, which was benefit to the activity of materials

  17. Pure rotational spectra of TiO and TiO2 in VY Canis Majoris

    Science.gov (United States)

    Kamiński, T.; Gottlieb, C. A.; Menten, K. M.; Patel, N. A.; Young, K. H.; Brünken, S.; Müller, H. S. P.; McCarthy, M. C.; Winters, J. M.; Decin, L.

    2013-03-01

    We report the first detection of pure rotational transitions of TiO and TiO2 at (sub-)millimeter wavelengths towards the red supergiant VY CMa. A rotational temperature, Trot, of about 250 K was derived for TiO2. Although Trot was not well constrained for TiO, it is likely somewhat higher than that of TiO2. The detection of the Ti oxides confirms that they are formed in the circumstellar envelopes of cool oxygen-rich stars and may be the "seeds" of inorganic-dust formation, but alternative explanations for our observation of TiO and TiO2 in the cooler regions of the envelope cannot be ruled out at this time. The observations suggest that a significant fraction of the oxides is not converted to dust, but instead remains in the gas phase throughout the outflow. Based on observations carried out with the Submillimeter Array and IRAM Plateau de Bure Interferometer.Plateau de Bure data (FITS file) is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A113

  18. OXIDACIÓN DE p -NITROFENOL USANDO TiO 2 -ADENOSINA MONOFOSFATO I OXIDATION OF p -NITROPHENOL USING TiO 2 -ADENOSIN MONOPHOSPHATE

    Directory of Open Access Journals (Sweden)

    Carlos F. Rivas

    2018-04-01

    Full Text Available The surface of TiO2 was modified with the nucleotides adenosine 3’-monophosphate (AMP’3 and Adenosine 5’-monophosphate (AMP’5. The adsorption of nucleotides was adjusted to Langmuir ́s adsorption model, determining that the optimal condition for TiO 2 modification was at neutral pH. UV-Visible Diffuse Reflectance and IR Attenuated Total Reflectance spectra show that the chemisorption of nucleotides take placed on TiO 2 anatase. The new catalysts (TiO 2 -nucleotide improved the photodegradation of p -nitrophenol in a wide range of pH as compared with the titanium dioxide precursor. Most photoactivity was generated by using the new photocatalytic in the degradation of p -nitrophenol at pH = 6, obtaining high values for the pseudo first order kinetic constant (0.0254 min -1 and 0.0244 min -1 for TiO 2 -AMP’3 and TiO 2 -AMP’5, respectively. For all pH, the trend obtained for the photodegradation was: TiO 2 -AMP ́3 @ TiO 2 -AMP’5 > TiO 2 . Langmuir-Hinshelwood kinetics shows that the contribution of the surface reac tion rate governs the oxidation of the contaminant.

  19. High-resolution photoelectron spectroscopy of TiO3H2-: Probing the TiO2- + H2O dissociative adduct

    Science.gov (United States)

    DeVine, Jessalyn A.; Abou Taka, Ali; Babin, Mark C.; Weichman, Marissa L.; Hratchian, Hrant P.; Neumark, Daniel M.

    2018-06-01

    Slow electron velocity-map imaging spectroscopy of cryogenically cooled TiO3H2- anions is used to probe the simplest titania/water reaction, TiO20/- + H2O. The resultant spectra show vibrationally resolved structure assigned to detachment from the cis-dihydroxide TiO(OH)2- geometry based on density functional theory calculations, demonstrating that for the reaction of the anionic TiO2- monomer with a single water molecule, the dissociative adduct (where the water is split) is energetically preferred over a molecularly adsorbed geometry. This work represents a significant improvement in resolution over previous measurements, yielding an electron affinity of 1.2529(4) eV as well as several vibrational frequencies for neutral TiO(OH)2. The energy resolution of the current results combined with photoelectron angular distributions reveals Herzberg-Teller coupling-induced transitions to Franck-Condon forbidden vibrational levels of the neutral ground state. A comparison to the previously measured spectrum of bare TiO2- indicates that reaction with water stabilizes neutral TiO2 more than the anion, providing insight into the fundamental chemical interactions between titania and water.

  20. Enhanced visible-light activity of titania via confinement inside carbon nanotubes

    KAUST Repository

    Chen, Wei

    2011-09-28

    Titania confined inside carbon nanotubes (CNTs) was synthesized using a restrained hydrolysis method. Raman spectra and magnetic measurements using a SQUID magnetometer suggested the formation of remarkable oxygen vacancies over the encapsulated TiO 2 in comparison with nanoparticles dispersed on the outer surface of CNTs, extending the photoresponse of TiO 2 from the UV to the visible-light region. The CNT-confined TiO 2 exhibited improved visible-light activity in the degradation of methylene blue (MB) relative to the outside titania and commercial P25, which is attributed to the modification of the electronic structure of TiO 2 induced by the unique confinement inside CNTs. These results provide further insight into the effect of confinement within CNTs, and the composites are expected to be promising for applications in visible-light photocatalysis. © 2011 American Chemical Society.

  1. Lead titanate nanotubes synthesized via ion-exchange method: Characteristics and formation mechanism

    International Nuclear Information System (INIS)

    Song Liang; Cao Lixin; Li Jingyu; Liu Wei; Zhang Fen; Zhu Lin; Su Ge

    2011-01-01

    Highlights: → Lead titanate nanotubes PbTi 3 O 7 were firstly synthesized by ion-exchange method. → Sodium titanate nanotubes have ion exchangeability. → Lead titanate nanotubes show a distinct red shift on absorption edge. - Abstract: A two-step method is presented for the synthesis of one dimensional lead titanate (PbTi 3 O 7 ) nanotubes. Firstly, titanate nanotubes were prepared by an alkaline hydrothermal process with TiO 2 nanopowder as precursor, and then lead titanate nanotubes were formed through an ion-exchange reaction. We found that sodium titanate nanotubes have ion exchangeability with lead ions, while protonated titanate nanotubes have not. For the first time, we distinguished the difference between sodium titanate nanotubes and protonated titanate nanotubes in the ion-exchange process, which reveals a layer space effect of nanotubes in the ion-exchange reaction. In comparison with sodium titanate, the synthesized lead titanate nanotubes show a narrowed bandgap.

  2. EFFECT OF THE REDUCTION TEMPERATURE INTO CATALYTIC ACTIVITY OF Ni SUPPORTED BY TiO2, AL2O2 AND TiO2/AL2O3 FOR CONVERSION CO2 INTO METHANE

    Directory of Open Access Journals (Sweden)

    Hery Haerudin

    2010-06-01

    Full Text Available Nickel catalysts, containing 6% (w/w of nickel, have been prepared using TiO2, Al2O3 and mixture of TiO2-Al2O3 (1:9. The catalysts were used for CO2 conversion into methane. The characteristics of catalysts were studied by determination of its specific surface area, temperature programmed reaction technique and X-ray diffraction. The specific surface area were varied slightly by different temperature of reduction, namely after reduction at 300°C it was 39, 120 and 113 m2/g and after reduction at 400°C it was 42, 135  and 120 m2/g for 6% nickel catalysts supported on TiO2, Al2O3 and mixture of TiO2-Al2O3 (1:9 respectively. Temperature program reaction studies (TPO and TPR showed that NiTiOx species were possibly formed during the pretreatments which has shown by the shift of its peak to the lower temperature on Ni catalyst, that supported on mixture of TiO2-Al2O3 compared with catalysts supported on individual TiO2 or Al2O3. The nickel species on reduced Ni catalysts supported on TiO2 and on mixture of TiO2-Al2O3 could be detected by X-ray diffraction. The catalyst's activities toward CH4 formation were affected by the reduction temperature. Activity for CH4 formation was decreased in the following order: Ni/ TiO2 > Ni/ TiO2: Al2O3 > Ni/ Al2O3 and Ni/ TiO2: Al2O3 > Ni/ TiO2> Ni/ Al2O3, when catalysts were reduced at 300°C or 400°C respectively. The CO2 conversion was decreased in the following order: Ni/ Al2O3 > Ni/ TiO2: Al2O3 > Ni/ TiO2 when catalysts were reduced at 300°C or 400°C respectively.   Keywords: nickel catalyst, carbondioxide, methane

  3. Photocatalytic effects for the TiO2-coated phosphor materials

    International Nuclear Information System (INIS)

    Yoon, Jin-Ho; Jung, Sang-Chul; Kim, Jung-Sik

    2011-01-01

    Research highlights: → The photocatalytic behavior of the coupling of TiO 2 with phosphorescent materials. → The photobleaching of an MB aqueous solution under visible light irradiation. → The ALD TiO 2 -coated phosphor composite showed much higher photocatalytic reactivity. → The light emitted from the phosphors contributed to the photo-generation. - Abstract: This study investigated the photocatalytic behavior of the coupling of TiO 2 with phosphorescent materials. A TiO 2 thin film was deposited on CaAl 2 O 4 :Eu 2+ ,Nd 3+ phosphor particles by using atomic layer deposition (ALD), and its photocatalytic reaction was investigated by the photobleaching of an aqueous solution of methylene-blue (MB) under visible light irradiation. To clarify the mechanism of the TiO 2 -phosphorescent materials, two different samples of TiO 2 -coated phosphor and TiO 2 -Al 2 O 3 -coated phosphor particles were prepared. The photocatalytic mechanisms of the ALD TiO 2 -coated phosphor powders were different from those of the pure TiO 2 and TiO 2 -Al 2 O 3 -coated phosphor. The absorbance in a solution of the ALD TiO 2 -coated phosphor decreased much faster than that of pure TiO 2 under visible irradiation. In addition, the ALD TiO 2 -coated phosphor showed moderately higher photocatalytic degradation of MB solution than the TiO 2 -Al 2 O 3 -coated phosphor did. The TiO 2 -coated phosphorescent materials were characterized by transmission electron microscopy (TEM), Auger electron spectroscopy (AES) and X-ray photon spectroscopy (XPS).

  4. Growth, Structure, and Photocatalytic Properties of Hierarchical V2O5–TiO2 Nanotube Arrays Obtained from the One-step Anodic Oxidation of Ti–V Alloys

    Directory of Open Access Journals (Sweden)

    María C. Nevárez-Martínez

    2017-04-01

    Full Text Available V2O5-TiO2 mixed oxide nanotube (NT layers were successfully prepared via the one-step anodization of Ti-V alloys. The obtained samples were characterized by scanning electron microscopy (SEM, UV-Vis absorption, photoluminescence spectroscopy, energy-dispersive X-ray spectroscopy (EDX, X-ray diffraction (DRX, and micro-Raman spectroscopy. The effect of the applied voltage (30–50 V, vanadium content (5–15 wt % in the alloy, and water content (2–10 vol % in an ethylene glycol-based electrolyte was studied systematically to determine their influence on the morphology, and for the first-time, on the photocatalytic properties of these nanomaterials. The morphology of the samples varied from sponge-like to highly-organized nanotubular structures. The vanadium content in the alloy was found to have the highest influence on the morphology and the sample with the lowest vanadium content (5 wt % exhibited the best auto-alignment and self-organization (length = 1 μm, diameter = 86 nm and wall thickness = 11 nm. Additionally, a probable growth mechanism of V2O5-TiO2 nanotubes (NTs over the Ti-V alloys was presented. Toluene, in the gas phase, was effectively removed through photodegradation under visible light (LEDs, λmax = 465 nm in the presence of the modified TiO2 nanostructures. The highest degradation value was 35% after 60 min of irradiation. V2O5 species were ascribed as the main structures responsible for the generation of photoactive e− and h+ under Vis light and a possible excitation mechanism was proposed.

  5. Titanium dioxide nanotube membranes for solar energy conversion: effect of deep and shallow dopants.

    Science.gov (United States)

    Ding, Yuchen; Nagpal, Prashant

    2017-04-12

    Nanostructured titanium dioxide (TiO 2 ) has been intensively investigated as a material of choice for solar energy conversion in photocatalytic, photoelectrochemical, photovoltaic, and other photosensitized devices for converting light into chemical feedstocks or electricity. Towards management of light absorption in TiO 2 , while the nanotubular structure improves light absorption and simultaneous charge transfer to mitigate problems due to the indirect bandgap of the semiconductor, typically dopants are used to improve light absorption of incident solar irradiation in the wide bandgap of TiO 2 . While these dopants can be critical to the success of these solar energy conversion devices, their effect on photophysical and photoelectrochemical properties and detailed photokinetics are relatively under-studied. Here, we show the effect of deep and shallow metal dopants on the kinetics of photogenerated charged carriers in TiO 2 and the resulting effect on photocatalytic and photoelectrochemical processes using these nanotube membranes. We performed a detailed optical, electronic, voltammetry and electrochemical impedance study to understand the effect of shallow and deep metal dopants (using undoped and niobium- and copper-doped TiO 2 nanotubes) on light absorption, charge transport and charge transfer processes. Using wireless photocatalytic methylene blue degradation and carbon dioxide reduction, and wired photoelectrochemical device measurements, we elucidate the effect of different dopants on solar-to-fuel conversion efficiency and simultaneously describe the photokinetics using a model, to help design better energy conversion devices.

  6. Weavable dye sensitized solar cells exploiting carbon nanotube yarns

    Science.gov (United States)

    Velten, Josef; Kuanyshbekova, Zharkynay; Göktepe, Özer; Göktepe, Fatma; Zakhidov, Anvar

    2013-05-01

    Weavable Dye Sensitized Solar Cells (DSSC) made with flexible yarns of conductive multiwalled carbon nanotubes (MWNTs) were produced having a power conversion efficiency above 3%. This was achieved with a specific design and careful consideration of the yarn function in the DSSC. Fermat yarns of MWNTs individually coated with mesoporous TiO2 layer were twisted together and coated with more mesoporous TiO2 to create a 3 dimensional photo electrode to overcome electron diffusion length issues. Archimedian yarns of MWNTs coated with a thin layer of platinum worked as a counter electrode to complete the architecture used in this DSSC.

  7. Standard enthalpies of formation of selected Rh{sub 2}YZ Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ming, E-mail: myin1@hawk.iit.edu; Nash, Philip

    2015-11-25

    The standard enthalpies of formation (Δ{sub f}H°) of selected ternary Rh-based Rh{sub 2}YZ (Y = Cu, Fe, Mn, Ni, Ru, Ti, V; Z = Al, Ga, In, Si, Ge, Sn) compounds were measured using high temperature direct reaction calorimetry. The measured standard enthalpies of formation (in kJ/mol of atoms) are, for the Heusler compound Rh{sub 2}MnSn (−40.1 ± 3.6), for the B2-structured compounds: Rh{sub 2}FeAl (−48.5 ± 2.9); Rh{sub 2}MnAl (−72.4 ± 2.7); Rh{sub 2}MnGa (−55.3 ± 2.0); Rh{sub 2}MnIn (−35.3 ± 1.9), for the tetragonal compounds: Rh{sub 2}FeSn (−28.9 ± 1.3); Rh{sub 2}TiAl (−97.6 ± 2.2); Rh{sub 2}TiGa (−79.0 ± 1.8); Rh{sub 2}TiSn (−74.7 ± 3.1). Values are compared with those from first principles calculations in published papers and the Open Quantum Materials Database (OQMD). Lattice parameters of these compounds are determined using X-ray diffraction analysis (XRD). Microstructures were characterized using scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). - Highlights: • Standard enthalpies of formation of Rh{sub 2}YZ were measured using a drop calorimeter. • Measured enthalpies agree with first principles data in general. • Lattice parameters and related phase relationships were consistent with literature data. • Rh{sub 2}TiSn of tI8 structure were reported for the first time.

  8. Thermally Stable TiO2 - and SiO2 -Shell-Isolated Au Nanoparticles for In Situ Plasmon-Enhanced Raman Spectroscopy of Hydrogenation Catalysts.

    Science.gov (United States)

    Hartman, Thomas; Weckhuysen, Bert M

    2018-03-12

    Raman spectroscopy is known as a powerful technique for solid catalyst characterization as it provides vibrational fingerprints of (metal) oxides, reactants, and products. It can even become a strong surface-sensitive technique by implementing shell-isolated surface-enhanced Raman spectroscopy (SHINERS). Au@TiO 2 and Au@SiO 2 shell-isolated nanoparticles (SHINs) of various sizes were therefore prepared for the purpose of studying heterogeneous catalysis and the effect of metal oxide coating. Both SiO 2 - and TiO 2 -SHINs are effective SHINERS substrates and thermally stable up to 400 °C. Nano-sized Ru and Rh hydrogenation catalysts were assembled over the SHINs by wet impregnation of aqueous RuCl 3 and RhCl 3 . The substrates were implemented to study CO adsorption and hydrogenation under in situ conditions at various temperatures to illustrate the differences between catalysts and shell materials with SHINERS. This work demonstrates the potential of SHINS for in situ characterization studies in a wide range of catalytic reactions. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Exchange of TiO2 nanoparticles between streams and streambeds.

    Science.gov (United States)

    Boncagni, Natalia Ticiana; Otaegui, Justo Manuel; Warner, Evelyn; Curran, Trisha; Ren, Jianhong; de Cortalezzi, Maria Marta Fidalgo

    2009-10-15

    The expanding use of manufactured nanoparticles has increased the potential for their release into the natural environment. Particularly, TiO2 nanoparticles pose significant exposure risk to humans and other living species due to their extensive use in a wide range of fields. To better understand the environmental and health risks associated with the release of TiO2 nanoparticles, knowledge on their fate and transport is needed. This study evaluates the transport of two different TiO2 nanoparticles: one commercially available (P25 TiO2 and the other synthesized at a lab scale (synthesized TiO2). Laboratory flume, column, and batch experiments were conducted to investigate the processes dominating the transport of TiO2 nanoparticles between streams and streambeds and to characterize the properties of these nanoparticles under different physicochemical conditions. Results show that the synthesized TiO2 was more stable compared to the P25 TiO2, which underwent significant aggregation under the same experimental conditions. As a result, P25 TiO2 deposited at a faster rate than the synthesized TiO2 in the streambed. Both types of TiO2 nanoparticles deposited in the streambed were easily released when the stream velocity was increased. The aggregation and deposition of P25 TiO2 were highly dependent on pH. A process-based colloid exchange model was applied to interpret the observed transport behavior of the TiO2 nanoparticles.

  10. Film Levitation of Droplet Impact on Heated Nanotube Surfaces

    Science.gov (United States)

    Duan, Fei; Tong, Wei; Qiu, Lu

    2017-11-01

    Contact boiling of an impacting droplet impacting on a heated surface can be observed when the surface temperature is able to activate the nucleation and growth of vapor bubbles, the phenomena are related to nature and industrial application. The dynamic boiling patterns us is investigated when a single falling water droplet impacts on a heated titanium (Ti) surface covered with titanium oxide (TiO2) nanotubes. In the experiments, the droplets were generated from a flat-tipped needle connected to a syringe mounted on a syringe pump. The droplet diameter and velocity before impacting on the heated surface are measured by a high-speed camera with the Weber number is varied from 45 to 220. The dynamic wetting length, spreading diameter, levitation distance, and the associated parameter are measured. Interesting film levitation on titanium (Ti) surface has been revealed. The comparison of the phase diagrams on the nanotube surface and bare Ti surface suggests that the dynamic Leidenfrost point of the surface with the TiO2 nanotubes has been significantly delayed as compared to that on a bare Ti surface. The delay is inferred to result from the increase in the surface wettability and the capillary effect by the nanoscale tube structure. The further relation is discussed.

  11. Lithium storage study on MoO3-grafted TiO2 nanotube arrays

    Directory of Open Access Journals (Sweden)

    Tauseef Anwar

    2016-03-01

    Full Text Available Abstract Titanium dioxide nanotube arrays (TNAs were fabricated via anodic ionization. Porous MoO3 was grafted on TNAs with the help of hydrothermal method. Scanning electron microscopy and X-ray powder diffraction was utilized for the confirmation of one dimensional morphology and phase identification. The porous MoO3 nanoflake-grafted TNAs (MoO3/TNAs electrode was used as anode material in lithium ion battery (LIB and it was found that the areal specific capacity of MoO3/TNAs (~797 µAh cm−2 was three times higher than those of anatase TNAs (~287 µAh cm−2 and porous MoO3 (~234 µAh cm−2 at 50 µA cm−2.

  12. Engineering the TiO2 -graphene interface to enhance photocatalytic H2 production.

    Science.gov (United States)

    Liu, Lichen; Liu, Zhe; Liu, Annai; Gu, Xianrui; Ge, Chengyan; Gao, Fei; Dong, Lin

    2014-02-01

    In this work, TiO2 -graphene nanocomposites are synthesized with tunable TiO2 crystal facets ({100}, {101}, and {001} facets) through an anion-assisted method. These three TiO2 -graphene nanocomposites have similar particle sizes and surface areas; the only difference between them is the crystal facet exposed in TiO2 nanocrystals. UV/Vis spectra show that band structures of TiO2 nanocrystals and TiO2 -graphene nanocomposites are dependent on the crystal facets. Time-resolved photoluminescence spectra suggest that the charge-transfer rate between {100} facets and graphene is approximately 1.4 times of that between {001} facets and graphene. Photoelectrochemical measurements also confirm that the charge-separation efficiency between TiO2 and graphene is greatly dependent on the crystal facets. X-ray photoelectron spectroscopy reveals that Ti-C bonds are formed between {100} facets and graphene, while {101} facets and {001} facets are connected with graphene mainly through Ti-O-C bonds. With Ti-C bonds between TiO2 and graphene, TiO2 -100-G shows the fastest charge-transfer rate, leading to higher activity in photocatalytic H2 production from methanol solution. TiO2 -101-G with more reductive electrons and medium interfacial charge-transfer rate also shows good H2 evolution rate. As a result of its disadvantageous electronic structure and interfacial connections, TiO2 -001-G shows the lowest H2 evolution rate. These results suggest that engineering the structures of the TiO2 -graphene interface can be an effective strategy to achieve excellent photocatalytic performances. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Doping of wide-bandgap titanium-dioxide nanotubes: optical, electronic and magnetic properties

    Science.gov (United States)

    Alivov, Yahya; Singh, Vivek; Ding, Yuchen; Cerkovnik, Logan Jerome; Nagpal, Prashant

    2014-08-01

    Doping semiconductors is an important step for their technological application. While doping bulk semiconductors can be easily achieved, incorporating dopants in semiconductor nanostructures has proven difficult. Here, we report a facile synthesis method for doping titanium-dioxide (TiO2) nanotubes that was enabled by a new electrochemical cell design. A variety of optical, electronic and magnetic dopants were incorporated into the hollow nanotubes, and from detailed studies it is shown that the doping level can be easily tuned from low to heavily-doped semiconductors. Using desired dopants - electronic (p- or n-doped), optical (ultraviolet bandgap to infrared absorption in co-doped nanotubes), and magnetic (from paramagnetic to ferromagnetic) properties can be tailored, and these technologically important nanotubes can be useful for a variety of applications in photovoltaics, display technologies, photocatalysis, and spintronic applications.Doping semiconductors is an important step for their technological application. While doping bulk semiconductors can be easily achieved, incorporating dopants in semiconductor nanostructures has proven difficult. Here, we report a facile synthesis method for doping titanium-dioxide (TiO2) nanotubes that was enabled by a new electrochemical cell design. A variety of optical, electronic and magnetic dopants were incorporated into the hollow nanotubes, and from detailed studies it is shown that the doping level can be easily tuned from low to heavily-doped semiconductors. Using desired dopants - electronic (p- or n-doped), optical (ultraviolet bandgap to infrared absorption in co-doped nanotubes), and magnetic (from paramagnetic to ferromagnetic) properties can be tailored, and these technologically important nanotubes can be useful for a variety of applications in photovoltaics, display technologies, photocatalysis, and spintronic applications. Electronic supplementary information (ESI) available: See DOI: 10.1039/c4nr02417f

  14. Silicon-substituted hydroxyapatite coating with Si content on the nanotube-formed Ti–Nb–Zr alloy using electron beam-physical vapor deposition

    International Nuclear Information System (INIS)

    Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2013-01-01

    The purpose of this study was to investigate the electrochemical characteristics of silicon-substituted hydroxyapatite coatings on the nanotube-formed Ti–35Nb–10Zr alloy. The silicon-substituted hydroxyapatite (Si–HA) coatings on the nanotube structure were deposited by electron beam-physical vapor deposition and anodization methods, and biodegradation properties were analyzed by potentiodynamic polarization and electrochemical impedance spectroscopy measurement. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD). The Si–HA layers were deposited with rough features having highly ordered nanotube structures on the titanium alloy substrate. The thickness of the Si–HA coating was less than that of the HA coating. The XRD results confirmed that the Si–HA coating on the nanotube structure consisted of TiO 2 anatase, TiO 2 rutile, hydroxyapatite, and calcium phosphate silicate. The Si–HA coating surface exhibited lower I corr than the HA coating, and the polarization resistance was increased by substitution of silicon in hydroxyapatite. - Highlights: • Silicon substituted hydroxyapatite (Si–HA) was coated on nanotubular titanium alloy. • The Si–HA coating thickness was less than single hydroxyapatite (HA) coating. • Si–HA coatings consisted of TiO 2 , HA, and Ca 5 (PO 4 ) 2 SiO 4 . • Polarization resistance of the coating was increased by Si substitution in HA

  15. Charge transfer between biogenic jarosite derived Fe3+and TiO2 enhances visible light photocatalytic activity of TiO2.

    Science.gov (United States)

    Chowdhury, Mahabubur; Shoko, Sipiwe; Cummings, Fransciuos; Fester, Veruscha; Ojumu, Tunde Victor

    2017-04-01

    In this work, we have shown that mining waste derived Fe 3+ can be used to enhance the photocatalytic activity of TiO 2 . This will allow us to harness a waste product from the mines, and utilize it to enhance TiO 2 photocatalytic waste water treatment efficiency. An organic linker mediated route was utilized to create a composite of TiO 2 and biogenic jarosite. Evidence of FeOTi bonding in the TiO 2 /jarosite composite was apparent from the FTIR, EFTEM, EELS and ELNEFS analysis. The as prepared material showed enhanced photocatalytic activity compared to pristine TiO 2 , biogenic jarosite and mechanically mixed sample of jarosite and TiO 2 under both simulated and natural solar irradiation. The prepared material can reduce the electrical energy consumption by 4 times compared to pristine P25 for degradation of organic pollutant in water. The material also showed good recyclability. Results obtained from sedimentation experiments showed that the larger sized jarosite material provided the surface to TiO 2 nanoparticles, which increases the settling rate of the materials. This allowed simple and efficient recovery of the catalyst from the reaction system after completion of photocatalysis. Enhanced photocatalytic activity of the composite material was due to effective charge transfer between TiO 2 and jarosite derived Fe 3+ as was shown from the EELS and ELNEFS. Generation of OH was supported by photoluminesence (PL) experiments. Copyright © 2016. Published by Elsevier B.V.

  16. Ultrafast carrier dynamics of titanic acid nanotubes investigated by transient absorption spectroscopy.

    Science.gov (United States)

    Wang, Li; Zhao, Hui; Pan, Lin Yun; Weng, Yu Xiang; Nakato, Yoshihiro; Tamai, Naoto

    2010-12-01

    Carrier dynamics of titanic acid nanotubes (phase of H2Ti2O5.H2O) deposited on a quartz plate was examined by visible/near-IR transient absorption spectroscopy with an ultraviolet excitation. The carrier dynamics of titanic acid nanotubes follows the fast trapping process which attributed to the intrinsic tubular structure, the relaxation of shallow trapped carriers and the recombination as a second-order kinetic process. Transient absorption of titanic acid nanotubes was dominated by the absorption of surface-trapped holes in visible region around 500 nm, which was proved by the faster decay dynamics in the presence of polyvinyl alcohol as a hole-scavenger. However, the slow relaxation of free carriers was much more pronounced in the TiO2 single crystals, as compared with the transient absorption spectra of titanic acid nanotubes under the similar excitation.

  17. Ternary gallides RE_4Rh_9Ga_5, RE_5Rh_1_2Ga_7 and RE_7Rh_1_8Ga_1_1 (RE=Y, La-Nd, Sm, Gd, Tb). Intergrowth structures with MgCu_2 and CaCu_5 related slabs

    International Nuclear Information System (INIS)

    Seidel, Stefan; Rodewald, Ute C.; Poettgen, Rainer; Janka, Oliver

    2017-01-01

    Fourteen ternary gallides RE_4Rh_9Ga_5, RE_5Rh_1_2Ga_7 and RE_7Rh_1_8Ga_1_1 (RE=Y, La-Nd, Sm, Gd, Tb) were synthesized from the elements by arc-melting, followed by different annealing sequences either in muffle or induction furnaces. The samples were characterized through Guinier powder patterns and the crystal structures of Ce_4Rh_9Ga_5, Ce_5Rh_1_2Ga_7, Ce_7Rh_1_8Ga_1_1, Nd_5Rh_1_0_._4_4_(_4_)Ga_8_._5_6_(_4_), Nd_4Rh_9Ga_5 and Gd_4Rh_9Ga_5 were refined from single crystal X-ray diffractometer data. The new gallides are the n=2, 3 and 5 members of the RE_2_+_n Rh_3_+_3_n Ga_1_+_2_n structure series in the Parthe intergrowth concept. The slabs of these intergrowth structures derive from the cubic Laves phase MgCu_2 (Mg_2Ni_3Si as ternary variant) and CaCu_5 (CeCo_3B_2 as ternary variant). Only the Nd_5Rh_1_0_._4_4_(_4_)Ga_8_._5_6_(_4_) crystal shows Rh/Ga mixing within the Laves type slabs. Magnetic susceptibility measurements reveal Pauli paramagnetism for Y_4Rh_9Ga_5 and Curie-Weiss paramagnetism for Gd_4Rh_9Ga_5 and Tb_4Rh_9Ga_5. Low-temperature data show ferromagnetic ordering at T_C=78.1 (Gd_4Rh_9Ga_5) and 55.8 K (Tb_4Rh_9Ga_5).

  18. High pressure structural phase transitions of TiO2 nanomaterials

    International Nuclear Information System (INIS)

    Li Quan-Jun; Liu Bing-Bing

    2016-01-01

    Recently, the high pressure study on the TiO 2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO 2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO 2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO 2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO 2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets, and nanoporous materials, and pressure-induced amorphization (PIA) and polyamorphism in ultrafine nanoparticles and TiO 2 -B nanoribbons. Various TiO 2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO 2 nanoribbons, α -PbO 2 -type TiO 2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO 2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO 2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications. (topical review)

  19. Cell saver filtering of extravasated rhBMP-2 after degenerative scoliosis reconstruction

    Directory of Open Access Journals (Sweden)

    Gabriel Liu, MBBCh, MSc, FRCS, FAMS (Orth

    2015-06-01

    Full Text Available RhBMP-2 is a bone fusion enhancer commonly used in scoliosis reconstruction surgery. It is delivered via an absorbable collagen sponge but has been known to migrate away from its delivery site. RhBMP-2 extravasation in surgical drainage has been noted during first two days post-surgery. Cell savers are widely used in scoliosis reconstruction to limit transfusion requirements and are commonly deployed in cases where rhBMP-2 is used for fusion augmentation. It is not known whether rhBMP-2 is present in salvaged blood or filtered away during cell saver recycling. Through this case series of four patients who underwent scoliosis reconstruction, we assess cell saver efficacy in filtering rhBMP-2 molecules by quantifying the amount of rhBMP-2 present in salvaged blood obtained after postoperative drainage recycling by OrthoPAT® cell saver and comparing it to rhBMP-2 leakage in postoperative drainage without cell saver recycling. We report an almost 10-fold reduction of rhBMP-2 concentration in salvaged blood obtained after cell saver recycling of postoperative drainage, suggesting cell saver effectiveness in filtering rhBMP-2 molecules.

  20. TiO2 nanofiber solid-state dye sensitized solar cells with thin TiO2 hole blocking layer prepared by atomic layer deposition

    International Nuclear Information System (INIS)

    Li, Jinwei; Chen, Xi; Xu, Weihe; Nam, Chang-Yong; Shi, Yong

    2013-01-01

    We incorporated a thin but structurally dense TiO 2 layer prepared by atomic layer deposition (ALD) as an efficient hole blocking layer in the TiO 2 nanofiber based solid-state dye sensitized solar cell (ss-DSSC). The nanofiber ss-DSSCs having ALD TiO 2 layers displayed increased open circuit voltage, short circuit current density, and power conversion efficiency compared to control devices with blocking layers prepared by spin-coating liquid TiO 2 precursor. We attribute the improved photovoltaic device performance to the structural integrity of ALD-coated TiO 2 layer and consequently enhanced hole blocking effect that results in reduced dark leakage current and increased charge carrier lifetime. - Highlights: • TiO 2 blocking locking layer prepared by atomic layer deposition (ALD) method. • ALD-coated TiO 2 layer enhanced hole blocking effect. • ALD blocking layer improved the voltage, current and efficiency. • ALD blocking layer reduced dark leakage current and increased electron lifetime

  1. Microporous TiO2-WO3/TiO2 films with visible-light photocatalytic activity synthesized by micro arc oxidation and DC magnetron sputtering

    International Nuclear Information System (INIS)

    Wu, Kee-Rong; Hung, Chung-Hsuang; Yeh, Chung-Wei; Wu, Jiing-Kae

    2012-01-01

    Highlights: ► A simple MAO is used to prepare porous WO 3 /TiO 2 layer on Ti sheet as a visible-light enabled catalyst. ► The photocatalytic activity of the WO 3 /TiO 2 is enhanced by sputtering over an N,C-TiO 2 layer. ► This is ascribed to the synergetic effect of hybrid sample prepared by two-step method. - Abstract: This study reports the preparation of microporous TiO 2 -WO 3 /TiO 2 films with a high surface area using a two-step approach. A porous WO 3 /TiO 2 template was synthesized by oxidizing a titanium sheet using a micro arc oxidation (MAO) process. This sheet was subsequently overlaid with a visible light (Vis)-enabled TiO 2 (N,C-TiO 2 ) film, which was deposited by codoping nitrogen (N) and carbon (C) ions into a TiO 2 lattice using direct current magnetron sputtering. The resulting microporous TiO 2 -WO 3 /TiO 2 film with a 0.38-μm-thick N,C-TiO 2 top-layer exhibited high photocatalytic activity in methylene blue (MB) degradation among samples under ultraviolet (UV) and Vis irradiation. This is attributable to the synergetic effect of two-step preparation method, which provides a highly porous microstructure and the well-crystallized N,C-TiO 2 top-layer. This is because a higher surface area with high crystallinity favors the adsorption of more MB molecules and more photocatalytic active areas. Thus, the microporous TiO 2 -WO 3 /TiO 2 film has promising applications in the photocatalytic degradation of dye solution under UV and Vis irradiation. These results imply that the microporous WO 3 /TiO 2 can be used as a template of hybrid electrode because it enables rapid fabrication.

  2. Photocatalytic degradation of paracetamol on TiO2 nanoparticles and TiO2/cellulosic fiber under UV and sunlight irradiation

    Directory of Open Access Journals (Sweden)

    Nabil Jallouli

    2017-05-01

    Full Text Available In the present study, photocatalytic degradation of acetaminophen ((N-(4-hydroxyphe-nylacetamide, an analgesic drug has been investigated in a batch reactor using TiO2 P25 as a photocatalyst in slurry and under UV light. Using TiO2 P25 nanoparticles, much faster photodegradation of paracetamol and effective mineralization occurred, more than 90% of 2.65 × 10−4 M paracetamol was degraded under UV irradiation. Changes in pH values affected the adsorption and the photodegradation of paracetamol. pH 9.0 is found to be the optimum for the photodegradation of paracetamol. HPLC detected hydroquinone, benzoquinone, p-nitrophenol, and 1,2,4-trihydroxybenzene during the TiO2-assisted photodegradation of paracetamol among which some pathway products are disclosed for the first time. The results showed that TiO2 suspension/UV system is more efficient than the TiO2/cellulosic fiber mode combined to solar light for the photocatalytic degradation of paracetamol. Nerveless the immobilization of TiO2 showed many advantages over slurry system because it can enhance adsorption properties while allowing easy separation of the photocatalyst from the treated solution with improved reusable performance.

  3. Quasi-two-dimensional Fermi-liquid state in Sr2RhO4-δ

    International Nuclear Information System (INIS)

    Nagai, Ichiro; Shirakawa, Naoki; Umeyama, Norio; Ikeda, Shin-ichi

    2010-01-01

    Single crystals of layered perovskite Sr 2 RhO 4-δ (δ=0.0 and 0.1) are successfully grown by the floating-zone method. Stoichiometric single crystals (Sr 2 RhO 4.0 ) are obtained by O 2 -annealing the as-grown crystals (Sr 2 RhO 3.9 ). Sr 2 RhO 4.0 and Sr 2 RhO 3.9 show quasi-two-dimensional Fermi-liquid behavior at low temperatures, whereas there are large differences in the anisotropy of electrical resistivity ρ c (3 K)/ρ ab (3 K) and Wilson ratio R w between Sr 2 RhO 4.0 and Sr 2 RhO 3.9 : ρ c (3 K)/ρ ab (3 K)=2400 (19000) and R w =3.8 (6.4) for Sr 2 RhO 4.0 (Sr 2 RhO 3.9 ). The differences observed between the temperature dependence of the in-plane electrical resistivity (T 2 RhO 4.0 and Sr 2 RhO 3.9 are mainly derived from those between the density of states and band structure near the corresponding Fermi level. This indicates that the changes in these physical properties, which are accompanied by oxygen defects in the Sr 2 RhO 4-δ system, can be explained by the rigid band model. Moreover, these results suggest that t 2g band-filling can be controlled by adjusting the oxygen defect content δ in the Sr 2 RhO 4-δ system. Although many similarities are observed in this study between the physical properties of Sr 2 RhO 4.0 and Sr 2 RuO 4 . Sr 2 RhO 4.0 does not exhibit superconductivity down to 36 mK. (author)

  4. SiO2@TiO2 Coating: Synthesis, Physical Characterization and Photocatalytic Evaluation

    Directory of Open Access Journals (Sweden)

    A. Rosales

    2018-03-01

    Full Text Available Use of silicon dioxide (SiO2 and titanium dioxide (TiO2 have been widely investigated individually in coatings technology, but their combined properties promote compatibility for different innovative applications. For example, the photocatalytic properties of TiO2 coatings, when exposed to UV light, have interesting environmental applications, such as air purification, self-cleaning and antibacterial properties. However, as reported in different pilot projects, serious durability problems, associated with the adhesion between the substrate and TiO2, have been evidenced. Thus, the aim of this work is to synthesize SiO2 together with TiO2 to increase the durability of the photocatalytic coating without affecting its photocatalytic potential. Therefore, synthesis using sonochemistry, synthesis without sonochemistry, physical characterization, photocatalytic evaluation, and durability of the SiO2, SiO2@TiO2 and TiO2 coatings are presented. Results indicate that using SiO2 improved the durability of the TiO2 coating without affecting its photocatalytic properties. Thus, this novel SiO2@TiO2 coating shows potential for developing long-lasting, self-cleaning and air-purifying construction materials.

  5. Semi-transparent ordered TiO_2 nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate

    International Nuclear Information System (INIS)

    Szkoda, Mariusz; Lisowska-Oleksiak, Anna; Grochowska, Katarzyna; Skowroński, Łukasz; Karczewski, Jakub; Siuzdak, Katarzyna

    2016-01-01

    Highlights: • High quality titanium coatings were doposited using industrial magnetron sputtering equipment. • Semi-transparent TiO_2 were prepared via anodization realized in various conditions. • Depending on electrolyte type, ordered tubular or porous TiO_2 layers were obtained. • Prepared material can act as semiconducting layer in photovoltaic cells. - Abstract: In a significant amount of cases, the highly ordered TiO_2 nanotube arrays grow through anodic oxidation of a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practical applications, e.g. solar cells or electrochromic windows, the semi-transparent TiO_2 formed directly on the transparent, conductive substrate is very much desired. This work shows that high-quality Ti coating could be formed at room temperature using an industrial magnetron sputtering system within 50 min. Under optimized conditions, the anodization process was performed on 2 μm titanium films deposited onto the FTO (fluorine-tin-oxide) support. Depending on the electrolyte type, highly ordered tubular or porous titania layers were obtained. The fabricated samples, after their thermal annealing, were investigated using scanning electron microscopy, Raman spectroscopy and UV–vis spectroscopy in order to investigate their morphology, crystallinity and absorbance ability. The photocurrent response curves indicate that materials are resistant to the photocorrosion process and their activity is strongly connected to optical properties. The most transparent TiO_2 films were fabricated when Ti was anodized in water electrolyte, whereas the highest photocurrent densities (12 μA cm"−"2) were registered for titania received after Ti anodization in ethylene glycol solution. The obtained results are of significant importance in the production of thin, semi-transparent titania nanostructures on a commercial scale.

  6. Improvement of light harvesting and device performance of dye-sensitized solar cells using rod-like nanocrystal TiO2 overlay coating on TiO2 nanoparticle working electrode

    International Nuclear Information System (INIS)

    Liu, Xueyang; Fang, Jian; Gao, Mei; Wang, Hongxia; Yang, Weidong; Lin, Tong

    2015-01-01

    Novel TiO 2 single crystalline nanorods were synthesized by electrospinning and hydrothermal treatment. The role of the TiO 2 nanorods on TiO 2 nanoparticle electrode in improvement of light harvesting and photovoltaic properties of dye-sensitized solar cells (DSSCs) was examined. Although the TiO 2 nanorods had lower dye loading than TiO 2 nanoparticle, they showed higher light utilization behaviour. Electron transfer in TiO 2 nanorods received less resistance than that in TiO 2 nanoparticle aggregation. By just applying a thin layer of TiO 2 nanorods on TiO 2 nanoparticle working electrode, the DSSC device light harvesting ability and energy conversion efficiency were improved significantly. The thickness of the nanorod layer in the working electrode played an important role in determining the photovoltaic property of DSSCs. An energy conversion efficiency as high as 6.6% was found on a DSSC device with the working electrode consisting of a 12 μm think TiO 2 nanoparticle layer covered with 3 μm thick TiO 2 nanorods. The results obtained from this study may benefit further design of highly efficient DSSCs. - Highlights: • Single crystalline TiO 2 nanorods were prepared for DSSC application. • TiO 2 nanorods show effective light scattering performance. • TiO 2 nanorods have higher electron transfer efficiency than TiO 2 nanoparticles. • TiO 2 nanorods on TiO 2 nanoparticle electrode improve DSSC efficiency

  7. The synthesis of aqueous-dispersible anatase TiO2 nanoplatelets

    International Nuclear Information System (INIS)

    Shan Guobin; Demopoulos, George P

    2010-01-01

    Aqueous well-dispersed and phase-pure anatase TiO 2 truncated octahedron nanoplatelets (NPLs) were prepared via controlled hydrolysis of titanium tetrachloride (TiCl 4 ) in ethylene glycol at 240 deg. C. Two shapes, square and hexagon, were observed by microscopy, exactly corresponding to the truncated octahedron NPLs. Ethylene glycol was found to produce water in situ that reacts with TiCl 4 to produce TiO 2 and HCl-the latter promoting TiO 2 colloid peptization. TiO 2 truncated octahedron NPLs are formed under the stabilizing action of ethylene glycol thermolysis derivatives, such as aldehydes. Crystal growth of the TiO 2 NPLs was affected by the reaction temperature that determines the water production rate and HCl-assisted peptization. TGA and FT-IR results showed ∼1.2% ethylene glycol thermolysis derivatives are attached to the surface of the TiO 2 NPLs, which prevents their agglomeration, hence making them easily dispersible in aqueous media. HR-TEM and SAED results showed that the TiO 2 NPLs are well crystallized and that the SAED patterns of the single TiO 2 NPL changes with its size and shape. XRD patterns showed that the TiO 2 NPLs are phase-pure anatase and the percentage of the {101} plane in the TiO 2 NPLs to be only 18%-a structural feature that renders the TiO 2 NPLs with enhanced UV absorption and reactivity properties.

  8. Titanium Dioxide (TiO2) Dye-Sensitized Solar Cells

    Science.gov (United States)

    Alseadi, Anwar Abdulaziz

    With the increasing global energy consumption and diminishing fossil fuels, various renewable and sustainable energies have been harvested in past decades and related devices have been fabricated. Dye-sensitized solar cells (DSSCs) are the most efficient third-generation solar cells to harvest solar energy into electricity directly. Titanium dioxide (TiO2) based DSSCs were invented in 1988 and have attracted more and more attention since then because of low-cost and high efficiency. TiO2 nanoparticles are one kind of popular anode materials of DSSC because of stability, abundance, environment safety, non-toxicity, and excellent photovoltaic properties. In the project, TiO2 nanoparticles with different crystallographic sizes were produced by ball-milling. Physical properties of the produced TiO 2 nanoparticles were characterized by X-ray powder diffraction, UV-visible spectroscopy, and Raman scattering. TiO2-based DSSCs were fabricated and their photovoltaic performances were tested. The effects of TiO2 layer thickness, crystallographic size, and microsphere fillings were investigated. The project enriched our understanding of TiO2-based DSSCs.

  9. Graphene-enhanced Raman imaging of TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Naumenko, Denys; Snitka, Valentinas; Snopok, Boris; Arpiainen, Sanna; Lipsanen, Harri

    2012-01-01

    The interaction of anatase titanium dioxide (TiO 2 ) nanoparticles with chemical vapour deposited graphene sheets transferred on glass substrates is investigated by using atomic force microscopy, Raman spectroscopy and imaging. Significant electronic interactions between the nanoparticles of TiO 2 and graphene were found. The changes in the graphene Raman peak positions and intensity ratios indicate that charge transfer between graphene and TiO 2 nanoparticles occurred, increasing the Raman signal of the TiO 2 nanoparticles up to five times. The normalized Raman intensity of TiO 2 nanoparticles per their volume increased with the disorder of the graphene structure. The complementary reason for the observed enhancement is that due to the higher density of states in the defect sites of graphene, a higher electron transfer occurs from the graphene to the anatase TiO 2 nanoparticles. (paper)

  10. Ultra-fine structures of Pd-Ag-HAp nanoparticle deposition on protruded TiO2 barrier layer for dental implant

    Science.gov (United States)

    Jang, Jae-Myung; Kim, Seung-Dai; Park, Tae-Eon; Choe, Han-Cheol

    2018-02-01

    The biocompatibility structure of an implant surface is of great importance to the formation of new bone tissue around the dental implant and also has a significant chemical reaction in the osseointegration process. Thus, ultra-fine Pd-Ag-HAp nanoparticles have been electrodeposited on protruded TiO2 barrier layer in mixed electrolyte solutions. Unusual protrusions patterns, which are assigned to Pd-Ag-HAp nanoparticles, can be clearly differentiated from a TiO2 nanotube oxide layer formed by an anodizing process. In the chemical bonding state, the surface characteristics of Pd/Ag/HAp compounds have been investigated by FE-SEM, EDS mapping analysis, and XPS analysis. The mapping dots of the elements including Ti, Ca, Pd, Ag, and P showed a homogeneous distribution throughout the entire surface when deposited onto the protruded TiO2 barrier layer. The XPS spectra of Ti-2p, O-1S, Pd-3d, and Ag-3d have been investigated, with the major XPS peak indicating Pd-3d. The Ag-3d level was clearly observed with further scanning of the Ca-2p region. Based on the results of the chemical states, the structural properties of the protrusion patterns were also examined after being deposited onto the barrier oxide film, resulting in the representative protrusion patterns being mainly composed of Pd-Ag-HAp compounds. The results of the soaking evaluation showed that the protrusion patterns and the protruded TiO2 barrier layer were all effective in regards to biocompatibility.

  11. Enhanced photocatalytic activity of nano titanium dioxide coated on ethanol-soluble carbon nanotubes

    International Nuclear Information System (INIS)

    Fu, Xiaofei; Yang, Hanpei; He, Kuanyan; Zhang, Yingchao; Wu, Junming

    2013-01-01

    Graphical abstract: Homogenous and dense spreading of TiO 2 on surface modified CNTs and improved photocatalytic performance of TiO 2 was achieved by coupling TiO 2 with ethanol-soluble CNTs. Display Omitted Highlights: ► Ethanol-soluble CNTs were acquired by surface modification. ► Enhanced photoactivity of TiO 2 coated on modified CNTs was obtained. ► Improved activity of TiO 2 is attributed to the intimate contact between TiO 2 and CNTs. ► Dense heterojunctions through Ti–O–CNTs at the interface is proposed. -- Abstract: Surface functionalized carbon nanotubes (CNTs) with ethanol solubility were synthesized and the CNTs–TiO 2 nanocomposites were prepared by coupling of TiO 2 with modified CNTs through a sol–gel method. The as-prepared CNTs and composites were characterized and the composite samples were evaluated for their photocatalytic activity toward the degradation of aqueous methyl orange. It is showed that the acid oxidation of CNTs leads to the embedding of oxygenated functional groups, and as a result, the acid-treated CNTs in turn may serve as chemical reactors for subsequent covalent grafting of octadecylamine. Improved photocatalytic performance of CNTs–TiO 2 composites was obtained, which is mainly attributed to the high dispersion of TiO 2 on ethanol-soluble CNTs and the intimate contact between TiO 2 and CNTs resulted from the dense heterojunctions through the Ti-O-C structure at the interface between TiO 2 and CNTs.

  12. Pouous TiO2 nanofibers decorated CdS nanoparticles by SILAR method for enhanced visible-light-driven photocatalytic activity

    Science.gov (United States)

    Tian, Fengyu; Hou, Dongfang; Hu, Fuchao; Xie, Kui; Qiao, Xiuqing; Li, Dongsheng

    2017-01-01

    1D porous CdS nanoparticles/TiO2 nanofibers heterostructure has been fabricated via simple electrospinning and a successive ionic layer adsorption and reaction (SILAR) process. The morphology, composition, and optical properties of the resulting CdS/TiO2 heterostructures can be rationally tailored through changing the SILAR cycles. The photocatalytic hydrogen evolution and decomposition of rhodamine B (RhB) of the as-synthesized heterostructured photocatalysts were investigated under visible light irradiation. Compared to TiO2 nanofibers,the as-obtained CdS/TiO2 heterostructures exhibit enhanced photocatalytic activity for hydrogen production and decomposition of RhB under visible-light irradiation. The heterojunction system performs best with H2 generation rates of 678.61 μmol h-1 g-1 under visible light irradiation which benefits from the two effects: (a) the 1D porous nanofibrous morphology contributes to not only more active sites but also more efficient transfer of the photogenerated charges (b) the synergetic effect of heterojunction and photosensitization reducing the recombination of photogenerated electrons and holes.

  13. Fabrication of titanium dioxide nanotube arrays using organic electrolytes

    Science.gov (United States)

    Yoriya, Sorachon

    This dissertation focuses on fabrication and improvement of morphological features of TiO2 nanotube arrays in the selected organic electrolytes including dimethyl sulfoxide (DMSO; see Chapter 4) and diethylene glycol (DEG; see Chapter 5). Using a polar dimethyl sulfoxide containing hydrofluoric acid, the vertically oriented TiO2 nanotube arrays with well controlled morphologies, i.e. tube lengths ranging from few microns up to 101 microm, pore diameters from 100 nm to 150 nm, and wall thicknesses from 15 nm to 50 nm were achieved. Various anodization variables including fluoride ion concentration, voltage, anodization time, water content, and reuse of the anodized electrolyte could be manipulated under proper conditions to control the nanotube array morphology. Anodization current behaviors associated with evolution of nanotube length were analyzed in order to clarify and better understand the formation mechanism of nanotubes grown in the organic electrolytes. Typically observed for DMSO electrolyte, the behavior that anodization current density gradually decreases with time is a reflection of a constant growth rate of nanotube arrays. Large fluctuation of anodization current was significantly observed probably due to the large change in electrolyte properties during anodization, when anodizing in high conductivity electrolytes such as using high HF concentration and reusing the anodized electrolyte as a second time. It is believed that the electrolyte properties such as conductivity and polarity play important role in affecting ion solvation and interactions in the solution consequently determining the formation of oxide film. Fabrication of the TiO2 nanotube array films was extended to study in the more viscous diethylene glycol (DEG) electrolyte. The arrayed nanotubes achieved from DEG electrolytes containing either HF or NH4 F are fully separated, freely self-standing structure with open pores and a wide variation of tube-to-tube spacing ranging from

  14. New organometallic salts as precursors for the functionalization of carbon nanotubes with metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Nunez, G., E-mail: galonso@cnyn.unam.mx; Garza, L. Morales de la; Rogel-Hernandez, E.; Reynoso, E. [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia (Mexico); Licea-Claverie, A.; Felix-Navarro, R. M. [Instituto Tecnologico de Tijuana, Centro de Graduados e Investigacion (Mexico); Berhault, G. [UMR 5256 CNRS-Universite de Lyon, Institut de Recherches sur la Catalyse et l' Environnement de Lyon (France); Paraguay-Delgado, F. [Centro de Investigacion en Materiales Avanzados S. C. (Mexico)

    2011-09-15

    New organometallic salts were synthesized in aqueous solution and were used as precursors for the functionalization of carbon nanotubes (CNT) by metallic nanoparticles. The precursors were obtained by reaction between HAuCl{sub 4}, (NH{sub 4}){sub 2}PtCl{sub 6}, (NH{sub 4}){sub 2}PdCl{sub 6}, or (NH{sub 4}){sub 3}RhCl{sub 6} with cetyltrimethylammonium bromide (CTAB). The as-obtained (CTA){sub n}Me{sub x}Cl{sub y} salts (with Me = Au, Pt, Pd, Rh) were characterized by Fourier-transform infra-red (FTIR) spectroscopy, {sup 1}H nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetric analysis. These precursors were then used to synthesize metallic nanoparticles of Au, Pt, Pd, and Rh over multiwalled carbon nanotubes (MWCNT). Characterization by scanning transmission electron microscopy (STEM) and thermogravimetric analysis under air reveals that the CNT-supported catalysts exhibit high loading and good dispersion of the metallic nanoparticles with small average particle sizes. The present preparation procedure therefore allows obtaining high densities of small metallic nanoparticles at the surface of MWCNT.

  15. Anodic Fabrication of Ti-Nb-Zr-O Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2014-01-01

    Full Text Available Highly ordered Ti-Nb-Zr-O nanotube arrays were fabricated through pulse anodic oxidation of Ti-Nb-Zr alloy in 1 M NaH2PO4 containing 0.5 wt% HF electrolytes. The effect of anodization parameters and Zr content on the microstructure and composition of Ti-Nb-Zr-O nanotubes was investigated using a scanning electron microscope equipped with energy dispersive X-ray analysis. It was found that length of the Ti-Nb-Zr-O nanotubes increased with increase of Zr contents. The diameter and the length of Ti-Nb-Zr-O nanotubes could be controlled by pulse voltage. XRD analysis of Ti-Nb-Zr-O samples annealed at 500°C in air indicated that the (101 diffraction peaks shifted from 25.78° to 25.05° for annealed Ti-Nb-Zr-O samples with different Zr contents because of larger lattice parameter of Ti-Nb-Zr-O compared to that of undoped TiO2.

  16. ADSORCIÓN DE ALDEHÍDOS INSATURADOS SOBRE TiO2

    Directory of Open Access Journals (Sweden)

    Natalia Ortega

    2012-01-01

    Full Text Available En el presente trabajo se estudió la adsorción de aldehídos insaturados sobre la superficie del TiO2. Para evaluar su eficiencia como catalizador, se realizaron experimentos de fotocatálisis heterogénea de p-nitrofenol (PNF y una muestra proveniente de efluentes industriales. Se empleó un simulador solar y cuatro sistemas de TiO2: el TiO2-sólo (sin modificar y los sistemas TiO2-dienal constituidos por la adsorción química de 2,4 hexadienal, 2,4 heptadienal y el trans-cinamaldehído sobre la superficie del TiO2. La adsorción de los aldehídos insaturados sobre el TiO2 se cuantificó empleando los modelos de adsorción de Langmuir y Freundlich. Se evaluó la influencia del pH en los sistemas TiO2-dienal y su efecto en la degradación fotocatalítica del PNF. En condiciones básicas, la constante de velocidad del PNF es mayor al emplear los sistemas TiO2-dienal en comparación con el TiO2-sólo, mientras que en condiciones ácidas se encontró la tendencia opuesta. El sistema TiO2-cina resultó ser el fotocatalizador de mayor eficiencia.

  17. Hydrogen isotope behavior on Li2TiO3

    International Nuclear Information System (INIS)

    Olivares, Ryan; Oda, Takuji; Tanaka, Satoru; Oya, Yasuhisa; Tsuchiya, Kunihiko

    2004-01-01

    The surface nature of Li 2 TiO 3 and the adsorption behavior of water on Li 2 TiO 3 surface were studied by XPS/UPS and FT/IR. Preliminary experiments by Ar ion sputtering, heating and water exposure were conducted, and the following results were obtained. (1) By Ar sputtering, Li deficient surface was made, and Ti was reduced from Ti 4+ to Ti 3+ . (2) By heating sputtered samples over 573-673 K, Li emerged on the surface and Ti was re-oxidized to Ti 4+ . The surface -OH was removed. The valence band of Li 2 TiO 3 became similar to that of TiO 2 . (3) By water exposure at 623 K, H 2 O could be adsorbed dissociatively on the surface. LiOH was not formed. (4) The nature of Li 2 TiO 3 surface resembles that of TiO 2 , rather than Li 2 O. (author)

  18. Plasmonic gold nanoparticles modified titania nanotubes for antibacterial application

    International Nuclear Information System (INIS)

    Li, Jinhua; Zhou, Huaijuan; Qian, Shi; Liu, Ziwei; Feng, Jingwei; Jin, Ping; Liu, Xuanyong

    2014-01-01

    Close-packed TiO 2 nanotube arrays are prepared on metallic Ti surface by electrochemical anodization. Subsequently, by magnetron sputtering, Au nanoparticles are coated onto the top sidewall and tube inwall. The Au@TiO 2 systems can effectively kill Staphylococcus aureus and Escherichia coli in darkness due to the existence of Au nanoparticles. On the basis of classical optical theories, the antibacterial mechanism is proposed from the perspective of localized surface plasmon resonance. Respiratory electrons of bacterial membrane transfer to Au nanoparticles and then to TiO 2 , which makes bacteria steadily lose electrons until death. This work provides insights for the better understanding and designing of noble metal nanoparticles-based plasmonic heterostructures for antibacterial application.

  19. Low-Temperature Catalytic Decomposition of 130 Tetra- to Octa-PCDD/Fs Congeners over CuOX and MnOX Modified V2O5/TiO2-CNTs with the Assistance of O3.

    Science.gov (United States)

    Zhao, Rixiao; Jin, Dongdong; Yang, Hangsheng; Lu, Shengyong; Potter, Phillip M; Du, Cuicui; Peng, Yaqi; Li, Xiaodong; Yan, Jianhua

    2016-10-07

    In this study, a reliable and steady PCDD/F generation system was utilized to investigate the performance of catalysts, in which 130 congeners of tetra- to octapolychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) vapors were studied under simulated flue gas with/without O 3 . TiO 2 and carbon nanotubes (CNTs) supported vanadium oxides (VO X /TiO 2 -CNTs) modified with MnO X and CuO X , which were reported to be beneficial to the decomposition of model molecules, were found to have a negative effect on the removal of real PCDD/Fs in the simulated flue gas without O 3 . Moreover, the addition of MnO X presented different effects depending on whether CuO X existed in catalysts or not, which was also contrary to its effects on the degradation of model molecules. In an O 3 -containing atmosphere, low chlorination level PCDD/Fs congeners were removed well over VO X -MnO X /TiO 2 -CNTs, while high chlorination level PCDD/Fs congeners were removed well over VO X -CuO X /TiO 2 -CNTs. Fortunately, all PCDD/Fs congeners decomposed well over VO X -MnO X -CuO X /TiO 2 -CNTs. Finally, the effects of tetra- to octachlorination level for the adsorption and degradation behaviors of PCDD/Fs congeners were also investigated.

  20. RhNAC2 and RhEXPA4 Are Involved in the Regulation of Dehydration Tolerance during the Expansion of Rose Petals1[C][W][OA

    Science.gov (United States)

    Dai, Fanwei; Zhang, Changqing; Jiang, Xinqiang; Kang, Mei; Yin, Xia; Lü, Peitao; Zhang, Xiao; Zheng, Yi; Gao, Junping

    2012-01-01

    Dehydration inhibits petal expansion resulting in abnormal flower opening and results in quality loss during the marketing of cut flowers. We constructed a suppression subtractive hybridization library from rose (Rosa hybrida) flowers containing 3,513 unique expressed sequence tags and analyzed their expression profiles during cycles of dehydration. We found that 54 genes were up-regulated by the first dehydration, restored or even down-regulated by rehydration, and once again up-regulated by the second dehydration. Among them, we identified a putative NAC family transcription factor (RhNAC2). With transactivation activity of its carboxyl-terminal domain in yeast (Saccharomyces cerevisiae) cell and Arabidopsis (Arabidopsis thaliana) protoplast, RhNAC2 belongs to the NAC transcription factor clade related to plant development in Arabidopsis. A putative expansin gene named RhEXPA4 was also dramatically up-regulated by dehydration. Silencing RhNAC2 or RhEXPA4 in rose petals by virus-induced gene silencing significantly decreased the recovery of intact petals and petal discs during rehydration. Overexpression of RhNAC2 or RhEXPA4 in Arabidopsis conferred strong drought tolerance in the transgenic plants. RhEXPA4 expression was repressed in RhNAC2-silenced rose petals, and the amino-terminal binding domain of RhNAC2 bound to the RhEXPA4 promoter. Twenty cell wall-related genes, including seven expansin family members, were up-regulated in Arabidopsis plants overexpressing RhNAC2. These data indicate that RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals and that RhEXPA4 expression may be regulated by RhNAC2. PMID:23093360

  1. RH-TRU Waste Content Codes (RH TRUCON)

    International Nuclear Information System (INIS)

    2007-01-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: (1) A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. (2) A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is ''3''. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR

  2. Lattice dynamic properties of Rh2XAl (X=Fe and Y) alloys

    Science.gov (United States)

    Al, Selgin; Arikan, Nihat; Demir, Süleyman; Iyigör, Ahmet

    2018-02-01

    The electronic band structure, elastic and vibrational spectra of Rh2FeAl and Rh2YAl alloys were computed in detail by employing an ab-initio pseudopotential method and a linear-response technique based on the density-functional theory (DFT) scheme within a generalized gradient approximation (GGA). Computed lattice constants, bulk modulus and elastic constants were compared. Rh2YAl exhibited higher ability to resist volume change than Rh2FeAl. The elastic constants, shear modulus, Young modulus, Poisson's ratio, B/G ratio electronic band structure, total and partial density of states, and total magnetic moment of alloys were also presented. Rh2FeAl showed spin up and spin down states whereas Rh2YAl showed none due to being non-magnetic. The calculated total densities of states for both materials suggest that both alloys are metallic in nature. Full phonon spectra of Rh2FeAl and Rh2YA1 alloys in the L21 phase were collected using the ab-initio linear response method. The obtained phonon frequencies were in the positive region indicating that both alloys are dynamically stable.

  3. Liposome-based delivery systems for ginsenoside Rh2: in vitro and in vivo comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Linqiang [China Pharmaceutical University, Department of Pharmaceutics, State Key Laboratory of Natural Medicines (China); Yu, Hua [University of Macao, Institute of Chinese Medical Sciences (China); Yin, Shaoping; Zhang, Ruixia; Zhou, Yudan; Li, Juan, E-mail: lijuancpu@163.com [China Pharmaceutical University, Department of Pharmaceutics, State Key Laboratory of Natural Medicines (China)

    2015-10-15

    The Ginsenoside Rh2 (Rh2) has been shown to possess anti-cancer properties both in vitro and in vivo. However, the poor bioavailability and fast plasma elimination limit the further clinical applications of Rh2 for cancer treatments. In the present study, three types of Rh2-loaded liposomes including Rh2-loaded normal liposome (Rh2-LP), Rh2-loaded cationic liposome (Rh2-CLP), and Rh2-loaded Methoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) liposome (Rh2-PLP) have been optimized and prepared with mean particle size of 80–125 nm. Compared to Rh2-LP, surface modifications with mPEG or octadecylamine significantly improve the physicochemical and biological properties both in vitro and in vivo. Moreover, PLP presented better tumor accumulation of the fluorescent cyanine dye, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine iodide (DiR) in HepG2-xenografted nude mice than CLP (1.3-fold) or LP (1.6-fold) and prolong the resident time of DiR in tumor and organs (more than 24 h). The in vivo anti-cancer efficacy assessments indicate that Rh2-PLP presents the most activity on suppressing tumor growth in HepG2-xenografted mice than Rh2-LP and Rh2-CLP and without any significant toxicity. Our results indicate that mPEG-PLA modified liposome should be a potential and promising strategy to enhance the therapeutic index for anti-cancer agents.

  4. The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO2 nanostructures of different shapes

    Science.gov (United States)

    Grover, Inderpreet Singh; Singh, Satnam; Pal, Bonamali

    2013-09-01

    Titania based nanocatalysts such as sodium titanates of different morphology having superior surface properties are getting wide importance in photocatalysis research. Despite having sodium (Na) contents and its high temperature synthesis (that generally deteriorate the photoreactivity), these Na-titanates often exhibit better photoactivity than P25-TiO2 catalyst. Hence, this work demonstrated the influence of crystal structure, BET surface area, surface charge, zeta potential (ζ) and metal loading on the photocatalytic activity of as-prepared sodium titanate nanotube (TNT) and titania nanorod (TNR). Straw like hollow orthorhombic-TNT (Na2Ti2O5·H2O) particles (W = 9-12 nm and L = 82-115 nm) and rice like pure anatase-TNR particles (W = 8-13 nm and L = 81-134 nm) are obtained by the hydrothermal treatment of P25-TiO2 with NaOH, which in fact, altered the net surface charge of TNT and TNR particles. The observed ζ = -2.82 (P25-TiO2), -13.5 (TNT) and -22.5 mV (TNR) are significantly altered by the Ag and Cu deposition. It has been found here that TNT displayed best photocatalytic activity for the imidacloprid insecticide (C9H10ClN5O2) degradation to CO2 formation under UV irradiation because of its largest surface area 176 m2 g-1 among the catalysts studied.

  5. Interface actions between TiO2 and porous diatomite on the structure and photocatalytic activity of TiO2-diatomite

    International Nuclear Information System (INIS)

    Xia, Yue; Li, Fangfei; Jiang, Yinshan; Xia, Maosheng; Xue, Bing; Li, Yanjuan

    2014-01-01

    TiO 2 -diatomite photocatalysts were prepared by sol–gel process with various pre-modified diatomite. In order to obtain diatomite with different surface characteristics, two modification approaches including calcination and phosphoric acid treatment on the micro-structure of diatomite are introduced. The photocatalysts were characterized by XRD, XPS, nitrogen adsorption–desorption isotherms and micromorphology analysis. The results indicate that, compared with pure TiO 2 , the anatase-to-rutile phase transition temperature of TiO 2 loaded on diatomite carrier is significantly increased to nearly 900 °C, depending on the different pretreatment method of diatomite. The photocatalytic activities of different samples were evaluated by their degradation rate of methyl orange (MO) dye under UV and visible-light irradiation. The samples prepared by phosphoric acid pretreatment method exhibit the highest photocatalytic activity. After 90 min of UV irradiation, about 90% of MO is decomposed by the best effective photocatalyst. And after 8 h visible-light irradiation, nearly 60% of MO is decomposed by the same sample. Further mechanism investigation reveals that the H 3 PO 4 pretreatment process can obviously change the surface features of diatomite carrier, cause the formation of Si–O–Ti bond, increase the binding strength between TiO 2 and diatomite, restrain crystal growth of loaded TiO 2 , and thus form thermal-stable mesoporous structure at the granular spaces. It helps to build micro-, meso- and macro-porous hierarchical porous structure in TiO 2 -diatomite, and improves the charge and mass transfer efficiency during catalyzing process, resulting in the significantly increased photocatalytic activity of TiO 2 -diatomite pretreated by phosphoric acid.

  6. Interface actions between TiO2 and porous diatomite on the structure and photocatalytic activity of TiO2-diatomite

    Science.gov (United States)

    Xia, Yue; Li, Fangfei; Jiang, Yinshan; Xia, Maosheng; Xue, Bing; Li, Yanjuan

    2014-06-01

    TiO2-diatomite photocatalysts were prepared by sol-gel process with various pre-modified diatomite. In order to obtain diatomite with different surface characteristics, two modification approaches including calcination and phosphoric acid treatment on the micro-structure of diatomite are introduced. The photocatalysts were characterized by XRD, XPS, nitrogen adsorption-desorption isotherms and micromorphology analysis. The results indicate that, compared with pure TiO2, the anatase-to-rutile phase transition temperature of TiO2 loaded on diatomite carrier is significantly increased to nearly 900 °C, depending on the different pretreatment method of diatomite. The photocatalytic activities of different samples were evaluated by their degradation rate of methyl orange (MO) dye under UV and visible-light irradiation. The samples prepared by phosphoric acid pretreatment method exhibit the highest photocatalytic activity. After 90 min of UV irradiation, about 90% of MO is decomposed by the best effective photocatalyst. And after 8 h visible-light irradiation, nearly 60% of MO is decomposed by the same sample. Further mechanism investigation reveals that the H3PO4 pretreatment process can obviously change the surface features of diatomite carrier, cause the formation of Si-O-Ti bond, increase the binding strength between TiO2 and diatomite, restrain crystal growth of loaded TiO2, and thus form thermal-stable mesoporous structure at the granular spaces. It helps to build micro-, meso- and macro-porous hierarchical porous structure in TiO2-diatomite, and improves the charge and mass transfer efficiency during catalyzing process, resulting in the significantly increased photocatalytic activity of TiO2-diatomite pretreated by phosphoric acid.

  7. Part I: A Comparative Thermal Aging Study on the Regenerability of Rh/Al2O3 and Rh/CexOy-ZrO2 as Model Catalysts for Automotive Three Way Catalysts

    Directory of Open Access Journals (Sweden)

    Qinghe Zheng

    2015-10-01

    Full Text Available The rhodium (Rh component in automotive three way catalysts (TWC experiences severe thermal deactivation during fuel shutoff, an engine mode (e.g., at downhill coasting used for enhancing fuel economy. In a subsequent switch to a slightly fuel rich condition, in situ catalyst regeneration is accomplished by reduction with H2 generated through steam reforming catalyzed by Rh0 sites. The present work reports the effects of the two processes on the activity and properties of 0.5% Rh/Al2O3 and 0.5% Rh/CexOy-ZrO2 (CZO as model catalysts for Rh-TWC. A very brief introduction of three way catalysts and system considerations is also given. During simulated fuel shutoff, catalyst deactivation is accelerated with increasing aging temperature from 800 °C to 1050 °C. Rh on a CZO support experiences less deactivation and faster regeneration than Rh on Al2O3. Catalyst characterization techniques including BET surface area, CO chemisorption, TPR, and XPS measurements were applied to examine the roles of metal-support interactions in each catalyst system. For Rh/Al2O3, strong metal-support interactions with the formation of stable rhodium aluminate (Rh(AlO2y complex dominates in fuel shutoff, leading to more difficult catalyst regeneration. For Rh/CZO, Rh sites were partially oxidized to Rh2O3 and were relatively easy to be reduced to active Rh0 during regeneration.

  8. Superconductivity induced by doping Rh in CaFe2-xRhxAs2

    International Nuclear Information System (INIS)

    Qi Yanpeng; Wang Lei; Gao Zhaoshun; Wang Dongliang; Zhang Xianping; Wang Chunlei; Yao Chao; Ma Yanwei

    2011-01-01

    In this paper, we report the synthesis of iron-based superconductors CaFe 2-x Rh x As 2 using a one-step solid state reaction method that crystallizes in the ThCr 2 Si 2 -type structure with a space group I4/mmm. The systematic evolution of the lattice constants demonstrates that the Fe ions are successfully replaced by the Rh. By increasing the doping content of Rh, the spin-density-wave (SDW) transition in the parent compound is suppressed and superconductivity emerges. The maximum superconducting transition temperature is found at 18.5 K with a doping level of x=0.15. The temperature dependence of dc magnetization confirms superconducting transitions at around 15 K. The general phase diagram was obtained and found to be similar to the case of the Rh-doping Sr122 system. Our results explicitly demonstrate the feasibility of inducing superconductivity in Ca122 compounds by higher d-orbital electron doping; however, different Rh-doping effects between FeAs122 compounds and FeAs1111 systems still remains an open question.

  9. Dose reduction of bone morphogenetic protein-2 for bone regeneration using a delivery system based on lyophilization with trehalose

    Directory of Open Access Journals (Sweden)

    Zhang X

    2018-01-01

    Full Text Available Xiaochen Zhang,1,* Quan Yu,2,* Yan-an Wang,1 Jun Zhao2 1Department of Oral and Maxillofacial-Head and Neck Oncology, 2Department of Orthodontics, College of Stomatology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China *These authors contributed equally to this work Introduction: To induce sufficient new bone formation, high doses of bone morphogenetic protein-2 (BMP-2 are applied in regenerative medicine that often induce serious side effects. Therefore, improved treatment strategies are required. Here, we investigate whether the delivery of BMP-2 lyophilized in the presence of trehalose reduced the dose of BMP-2 required for bone regeneration. Materials and methods: A new growth factor delivery system was fabricated using BMP-2-loaded TiO2 nanotubes by lyophilization with trehalose (TiO2-Lyo-Tre-BMP-2. We measured BMP-2 release characteristics, bioactivity, and stability, and determined the effects on the osteogenic differentiation of bone marrow stromal cells in vitro. Additionally, we evaluated the ability of this formulation to regenerate new bone around implants in rat femur defects by micro-computed tomography (micro-CT, sequential fluorescent labelling, and histological analysis. Results: Compared with absorbed BMP-2-loaded TiO2 nanotubes (TiO2-BMP-2, TiO2-Lyo-Tre-BMP-2 exhibited sustained release, consistent bioactivity, and higher stability of BMP-2, and resulted in greater osteogenic differentiation of BMSCs. Eight weeks post-operation, TiO2-Lyo-Tre-BMP-2 nanotubes, with various dosages of BMP-2, regenerated larger amounts of new bone than TiO2-BMP-2 nanotubes. Conclusion: Our findings indicate that delivery of BMP-2 lyophilized with trehalose may be a promising method to reduce the dose of BMP-2 and avoid the associated side effects. Keywords: bone morphogenetic protein-2, dose reduction, delivery system, trehalose, lyophilization, TiO2 nanotubes, BMP-2, regenerative medicine, surface

  10. Color vision of the coelacanth (Latimeria chalumnae) and adaptive evolution of rhodopsin (RH1) and rhodopsin-like (RH2) pigments.

    Science.gov (United States)

    Yokoyama, S

    2000-01-01

    The coelacanth, a "living fossil," lives at a depth of about 200 m near the coast of the Comoros archipelago in the Indian Ocean and receives only a narrow range of light at about 480 nm. To see the entire range of "color" the Comoran coelacanth appears to use only rod-specific RH1 and cone-specific RH2 visual pigments, with the optimum light sensitivities (lambda max) at 478 nm and 485 nm, respectively. These blue-shifted lambda max values of RH1 and RH2 pigments are fully explained by independent double amino acid replacements E122Q/A292S and E122Q/M207L, respectively. More generally, currently available mutagenesis experiments identify only 10 amino acid changes that shift the lambda max values of visual pigments more than 5 nm. Among these, D83N, E1220, M207L, and A292S are associated strongly with the adaptive blue shifts in the lambda max values of RH1 and RH2 pigments in vertebrates.

  11. Photocatalytic properties of porous TiO2/Ag thin films

    International Nuclear Information System (INIS)

    Chang, C.-C.; Chen, J.-Y.; Hsu, T.-L.; Lin, C.-K.; Chan, C.-C.

    2008-01-01

    In this study, nanocrystalline TiO 2 /Ag composite thin films were prepared by a sol-gel spin-coating technique. By introducing polystyrene (PS) spheres into the precursor solution, porous TiO 2 /Ag thin films were prepared after calcination at a temperature of 500 deg. C for 4 h. Three different sizes (50, 200, and 400 nm) of PS spheres were used to prepare porous TiO 2 films. The as-prepared TiO 2 and TiO 2 /Ag thin films were characterized by X-ray diffractometry (XRD) and by scanning electron microscopy to reveal structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation. When PS spheres of different sizes were introduced after calcination, the as-prepared TiO 2 films exhibited different porous structures. XRD results showed that all TiO 2 /Ag films exhibited a major anatase phase. The photodegradation of porous TiO 2 thin films prepared with 200 nm PS spheres and doped with 1 mol% Ag exhibited the best photocatalytic efficiency where ∼ 100% methylene blue was decomposed within 8 h under UV exposure

  12. Photodecomposition of volatile organic compounds using TiO2 nanoparticles.

    Science.gov (United States)

    Jwo, Ching-Song; Chang, Ho; Kao, Mu-Jnug; Lin, Chi-Hsiang

    2007-06-01

    This study examined the photodecomposition of volatile organic compounds (VOCs) using TiO2 catalyst fabricated by the Submerged Arc Nanoparticle Synthesis System (SANSS). TiO2 catalyst was employed to decompose volatile organic compounds and compare with Degussa-P25 TiO2 in terms of decomposition efficiency. In the electric discharge manufacturing process, a Ti bar, applied as the electrode, was melted and vaporized under high temperature. The vaporized Ti powders were then rapidly quenched under low-temperature and low-pressure conditions in deionized water, thus nucleating and forming nanocrystalline powders uniformly dispersed in the base solvent. The average diameter of the TiO2 nanoparticles was 20 nm. X-ray diffraction analysis confirmed that the nanoparticles in the deionized water were Anatase type TiO2. It was found that gaseous toluene exposed to UV irradiation produced intermediates that were even harder to decompose. After 60-min photocomposition, Degussa-P25 TiO2 reduced the concentration of gaseous toluene to 8.18% while the concentration after decomposition by SANSS TiO2 catalyst dropped to 0.35%. Under UV irradiation at 253.7 +/- 184.9 nm, TiO2 prepared by SANSS can produce strong chemical debonding energy, thus showing great efficiency, superior to that of Degussa-P25 TiO2, in decomposing gaseous toluene and its intermediates.

  13. Design of titania nanotube structures by focused laser beam direct writing

    International Nuclear Information System (INIS)

    Enachi, Mihai; Stevens-Kalceff, Marion A.; Sarua, Andrei; Ursaki, Veaceslav; Tiginyanu, Ion

    2013-01-01

    In this work, we report on electrochemical fabrication of titania films consisting of nanotubes (NTs) and their treatment by focused laser beam. The results of sample characterization by optical and scanning electron microscopy, cathodoluminescence imaging, and Raman scattering scanning spectroscopy are compared to those inherent to specimens subjected to thermal treatment in a furnace. The obtained data demonstrate possibilities for controlling crystallographic structure of TiO 2 NTs by focused laser beam direct writing. These findings open new prospects for the design and fabrication of spatial architectures based on titania nanotubes

  14. Anti-fish bacterial pathogen effect of visible light responsive Fe3O4@TiO2 nanoparticles immobilized on glass using TiO2 sol–gel

    International Nuclear Information System (INIS)

    Yeh, N.; Lee, Y.C.; Chang, C.Y.; Cheng, T.C.

    2013-01-01

    This paper demonstrates a fish pathogen reduction procedure that uses TiO 2 sol–gel coating Fe 3 O 4 @TiO 2 powder on glass substrate. Such procedure can effectively relieve two constraints that haunt TiO 2 sterilization applications: 1) the need for UV for overcoming the wide band gap of pure TiO 2 and 2) the difficulty of its recovering from water for reuse. In the process, visible light responsive Fe 3 O 4 /TiO 2 nanoparticles are synthesized and immobilized on glass using TiO 2 sol–gel as the binder for fish bacterial pathogen disinfection test. After 3 h of visible light irradiation, the immobilized Fe 3 O 4 @TiO 2 's inhibition efficiencies for fish bacterial pathogen are, respectively, 50% for Edwardsiella tarda (BCRC 10670) and 23% for Aeromonas hydrophila (BCRC 13018)

  15. Preparation and catalytic activities for H{sub 2}O{sub 2} decomposition of Rh/Au bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haijun, E-mail: zhanghaijun@wust.edu.cn [Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); The State Key Laboratory of Refractory and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Deng, Xiangong; Jiao, Chengpeng; Lu, Lilin; Zhang, Shaowei [The State Key Laboratory of Refractory and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China)

    2016-07-15

    Graphical abstract: PVP-protected Rh/Au bimetallic nanoparticles (BNPs) were prepared by using hydrogen sacrificial reduction method, the activity of Rh80Au20 BNPs were about 3.6 times higher than that of Rh NPs. - Highlights: • Rh/Au bimetallic nanoparticles (BNPs) of 3∼5 nm in diameter were prepared. • Activity for H{sub 2}O{sub 2} decomposition of BNPs is 3.6 times higher than that of Rh NPs. • The high activity of BNPs was caused by the existence of charged Rh atoms. • The apparent activation energy for H{sub 2}O{sub 2} decomposition over the BNPs was calculated. - Abstract: PVP-protected Rh/Au bimetallic nanoparticles (BNPs) were prepared by using hydrogen sacrificial reduction method and characterized by UV–vis, XRD, FT-IR, XPS, TEM, HR-TEM and DF-STEM, the effects of composition on their particle sizes and catalytic activities for H{sub 2}O{sub 2} decomposition were also studied. The as-prepared Rh/Au BNPs possessed a high catalytic activity for the H{sub 2}O{sub 2} decomposition, and the activity of the Rh{sub 80}Au{sub 20} BNPs with average size of 2.7 nm were about 3.6 times higher than that of Rh monometallic nanoparticles (MNPs) even the Rh MNPs possess a smaller particle size of 1.7 nm. In contrast, Au MNPs with size of 2.7 nm show no any activity. Density functional theory (DFT) calculation as well as XPS results showed that charged Rh and Au atoms formed via electronic charge transfer effects could be responsible for the high catalytic activity of the BNPs.

  16. Improved hydrogen storage properties of MgH2 catalyzed with TiO2

    Science.gov (United States)

    Jangir, Mukesh; Meena, Priyanka; Jain, I. P.

    2018-05-01

    In order to improve the hydrogenation properties of the MgH2, various concentration of rutile Titanium Oxide (TiO2) (X wt%= 5, 10, 15 wt %) is added to MgH2 by ball milling and the catalytic effect of TiO2 on hydriding/dehydriding properties of MgH2 has been investigated. Result shows that the TiO2 significantly reduced onset temperature of desorption. Onset temperature as low as 190 °C were observed for the MgH2-15 wt% TiO2 sample which is 60 °C and 160 °C lower than the as-milled and as-received MgH2. Fromm the Kissinger plot the activation energy of 15 wt% TiO2 added sample is calculated to be -75.48 KJ/mol. These results indicate that the hydrogenation properties of MgH2-TiO2 have been improved compared to the as-milled and as-received MgH2. Furthermore, XRD and XPS were performed to characterize the structural evolution upon milling and dehydrogenation.

  17. RH-TRU Waste Content Codes (RH-Trucon)

    International Nuclear Information System (INIS)

    2007-01-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is '3.' The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based

  18. RH-TRU Waste Content Codes (RH-TRUCON)

    International Nuclear Information System (INIS)

    2007-01-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is '3.' The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based

  19. RH-TRU Waste Content Codes (RH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2007-08-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR

  20. RH-TRU Waste Content Codes (RH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions

    2007-05-30

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR