WorldWideScience

Sample records for tio2 nanorods functionalized

  1. Thiourea-Modified TiO2 Nanorods with Enhanced Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Xiaofeng Wu

    2016-02-01

    Full Text Available Semiconductor TiO2 photocatalysis has attracted much attention due to its potential application in solving the problems of environmental pollution. In this paper, thiourea (CH4N2S modified anatase TiO2 nanorods were fabricated by calcination of the mixture of TiO2 nanorods and thiourea at 600 °C for 2 h. It was found that only N element was doped into the lattice of TiO2 nanorods. With increasing the weight ratio of thiourea to TiO2 (R from 0 to 8, the light-harvesting ability of the photocatalyst steady increases. Both the crystallization and photocatalytic activity of TiO2 nanorods increase first and then decrease with increase in R value, and R2 sample showed the highest crystallization and photocatalytic activity in degradation of Brilliant Red X3B (X3B and Rhodamine B (RhB dyes under visible light irradiation (λ > 420 nm. The increased visible-light photocatalytic activity of the prepared N-doped TiO2 nanorods is due to the synergistic effects of the enhanced crystallization, improved light-harvesting ability and reduced recombination rate of photo-generated electron-hole pairs. Note that the enhanced visible photocatalytic activity of N-doped nanorods is not based on the scarification of their UV photocatalytic activity.

  2. Y-doping TiO2 nanorod arrays for efficient perovskite solar cells

    Science.gov (United States)

    Deng, Xinlian; Wang, Yanqing; Cui, Zhendong; Li, Long; Shi, Chengwu

    2018-05-01

    To improve the electron transportation in TiO2 nanorod arrays and charge separation in the interface of TiO2/perovskite, Y-doping TiO2 nanorod arrays with the length of 200 nm, diameter of 11 nm and areal density of 1050 μm-2 were successfully prepared by the hydrothermal method and the influence of Y/Ti molar ratios of 0%, 3%, 5% in the hydrothermal grown solutions on the growth of TiO2 nanorod arrays was investigated. The results revealed that the appropriate Y/Ti molar ratios can increase the areal density of the corresponding TiO2 nanorod arrays and improve the charge separation in the interface of the TiO2/perovskite. The Y-doping TiO2 nanorod array perovskite solar cells with the Y/Ti molar ratio of 3% exhibited a photoelectric conversion efficiency (PCE) of 18.11% along with an open-circuit voltage (Voc) of 1.06 V, short-circuit photocurrent density (Jsc) of 22.50 mA cm-2 and fill factor (FF) of 76.16%, while the un-doping TiO2 nanorod array perovskite solar cells gave a PCE of 16.42% along with Voc of 1.04 V, Jsc of 21.66 mA cm-2 and FF of 72.97%.

  3. TiO2 nanorod arrays functionalized with In2S3 shell layer by a low-cost route for solar energy conversion

    International Nuclear Information System (INIS)

    Gan Xiaoyan; Li Xiaomin; Gao Xiangdong; Qiu Jijun; Zhuge Fuwei

    2011-01-01

    We report the fabrication and characterization of a TiO 2 -In 2 S 3 core-shell nanorod array structure for application of semiconductor-sensitized solar cells. Hydrothermally synthesized TiO 2 nanorod arrays on FTO glass substrates are functionalized with a uniform In 2 S 3 shell layer by using the successive ion layer adsorption and reaction (SILAR) method. This low-cost technique promotes a uniform deposition of In 2 S 3 nanoshells on the surface of TiO 2 nanorods, thus forming an intact interface between the In 2 S 3 shell and TiO 2 core. Results show that the thickness of In 2 S 3 shell layers as well as the visible light absorption threshold can be effectively controlled by varying the coating cycles during the SILAR process. The best reproducible performance of the sandwich solar cell using the TiO 2 -In 2 S 3 core-shell nanorod arrays as photoelectrodes was obtained after 30 SILAR cycles, exhibiting a short-circuit current (I sc ) of 2.40 mA cm -2 , an open-circuit voltage (V oc ) of 0.56 V, a fill factor (ff) of 0.40 and a conversion efficiency (η) of 0.54%, respectively. These results demonstrate a feasible and controllable route towards In 2 S 3 coating on a highly structured substrate and a proof of concept that such TiO 2 -In 2 S 3 core-shell architectures are novel and promising photoelectrodes in nanostructured solar cells.

  4. Dye-Sensitized Solar Cells with Anatase TiO2 Nanorods Prepared by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Ming-Jer Jeng

    2013-01-01

    Full Text Available The hydrothermal method provides an effective reaction environment for the synthesis of nanocrystalline materials with high purity and well-controlled crystallinity. In this work, we started with various sizes of commercial TiO2 powders and used the hydrothermal method to prepare TiO2 thin films. We found that the synthesized TiO2 nanorods were thin and long when smaller TiO2 particles were used, while larger TiO2 particles produced thicker and shorter nanorods. We also found that TiO2 films prepared by TiO2 nanorods exhibited larger surface roughness than those prepared by the commercial TiO2 particles. It was found that a pure anatase phase of TiO2 nanorods can be obtained from the hydrothermal method. The dye-sensitized solar cells fabricated with TiO2 nanorods exhibited a higher solar efficiency than those fabricated with commercial TiO2 nanoparticles directly. Further, triple-layer structures of TiO2 thin films with different particle sizes were investigated to improve the solar efficiency.

  5. TiO2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material

    International Nuclear Information System (INIS)

    Sciancalepore, C; Agostiano, A; Cassano, T; Valentini, A; Curri, M L; Striccoli, M; Mecerreyes, D; Tommasi, R

    2008-01-01

    Original nanocomposites have been obtained by direct incorporation of pre-synthesized oleic acid capped TiO 2 nanorods into properly functionalized poly(methyl methacrylate) copolymers, carrying carboxylic acid groups on the repeating polymer unit. The presence of carboxylic groups on the alkyl chain of the host functionalized copolymer allows an highly homogeneous dispersion of the nanorods in the organic matrix. The prepared TiO 2 /PMMA-co-MA nanocomposites show high optical transparency in the visible region, even at high TiO 2 nanorod content, and tunable linear refractive index depending on the nanoparticle concentration. Finally measurements of nonlinear optical properties of TiO 2 polymer nanocomposites demonstrate a negligible two-photon absorption and a negative value of nonlinear refractive index, highlighting the potential of the nanocomposite for efficient optical devices operating in the visible region

  6. TiO2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material

    Science.gov (United States)

    Sciancalepore, C.; Cassano, T.; Curri, M. L.; Mecerreyes, D.; Valentini, A.; Agostiano, A.; Tommasi, R.; Striccoli, M.

    2008-05-01

    Original nanocomposites have been obtained by direct incorporation of pre-synthesized oleic acid capped TiO2 nanorods into properly functionalized poly(methyl methacrylate) copolymers, carrying carboxylic acid groups on the repeating polymer unit. The presence of carboxylic groups on the alkyl chain of the host functionalized copolymer allows an highly homogeneous dispersion of the nanorods in the organic matrix. The prepared TiO2/PMMA-co-MA nanocomposites show high optical transparency in the visible region, even at high TiO2 nanorod content, and tunable linear refractive index depending on the nanoparticle concentration. Finally measurements of nonlinear optical properties of TiO2 polymer nanocomposites demonstrate a negligible two-photon absorption and a negative value of nonlinear refractive index, highlighting the potential of the nanocomposite for efficient optical devices operating in the visible region.

  7. Photoelectrochemical properties of the TiO2-ZnO nanorod hierarchical structure prepared by hydrothermal process

    Directory of Open Access Journals (Sweden)

    Bao SUN

    2018-02-01

    Full Text Available In order to increase the transport channels of the photogenerated electrons and enhance the photosensitizer loading ability of the electrode, a new TiO2-ZnO nanorod hierarchical structure is prepared through two-step hydrothermal process. First, TiO2 nanorod array is grown on the FTO conductive glass substrate by hydrothermal proess. Then, ZnO sol is coated onto the TiO2 nanorods through dip-coating method and inverted to ZnO seed layer by sintering. Finally, the secondary ZnO nanorods are grown onto the TiO2 nanorods by the sencond hydrothermal method to form the designed TiO2-ZnO nanorod hierarchical structure. A spin-coating assisted successive ionic layer reaction method (SC-SILR is used to deposit the CdS nanocrystals into the TiO2 nanorod array and the TiO2-ZnO nanorod hierarchical structure is used to form the CdS/TiO2 and CdS/TiO2-ZnO nanocomposite films. Different methods, such as SEM, TEM, XRD, UV-Vis and transient photocurrent, are employed to characterize and measure the morphologies, structures, light absorption and photoelectric conversion performance of all the samples, respectively. The results indicate that, compared with the pure TiO2 nanorod array, the TiO2-ZnO nanorod hierarchical structure can load more CdS photosensitizer. The light absorption properties and transient photocurrent performance of the CdS/TiO2-ZnO nanorod hierarchical structure composite film are evidently superior to that of the CdS/TiO2 nanocomposite films. The excellent photoelctrochemical performance of theTiO2-ZnO hierarchical structure reveales its application prospect in photoanode material of the solar cells.

  8. Electrochemical properties of TiO2 encapsulated ZnO nanorod aggregates dye sensitized solar cells

    International Nuclear Information System (INIS)

    Justin Raj, C.; Karthick, S.N.; Dennyson Savariraj, A.; Hemalatha, K.V.; Park, Song-Ki; Kim, Hee-Je; Prabakar, K.

    2012-01-01

    Highlights: ► ZnO nanorod aggregates were synthesized by simple co-precipitation technique. ► TiO 2 encapsulated ZnO nanorod aggregates photoanode was used for the DSSC. ► TiO 2 encapsulated ZnO nanorod aggregates shows an enhanced efficiency. ► The electron recombination and transport properties were studied using EIS method. - Abstract: Dye sensitized solar cells based on TiO 2 encapsulated ZnO nanorod (NR) aggregates were fabricated and electrochemical performance was analyzed using impedance spectroscopy as a function of forward bias voltage. Charge transfer properties such as electron life time (τ n ), electron diffusion coefficient (D n ) and electron diffusion length (L n ) were calculated in order to ensure the influence of TiO 2 layer over the ZnO NR aggregates. It is found that the short circuit current density (Jsc = 5.8 mA cm −2 ), open circuit potential (V oc = 0.743 V), fill factor (FF = 0.57) and conversion efficiency are significantly improved by the introduction of TiO 2 layer over ZnO photoanode. A power conversion efficiency of about 2.48% has been achieved for TiO 2 /ZnO cell, which is higher than that of bare ZnO NR aggregate based cells (1.73%). The formation of an inherent energy barrier between TiO 2 and ZnO films and the passivation of surface traps on the ZnO film caused by the introduction of TiO 2 layer increase the dye absorption and favor the electron transport which may be responsible for the enhanced performance of TiO 2 /ZnO cell.

  9. Digital selective fabrication of micro/nano-composite structured TiO2 nanorod arrays by laser direct writing

    Science.gov (United States)

    Jiang, Wei; He, Xiaoning; Liu, Hongzhong; Yin, Lei; Shi, Yongsheng; Ding, Yucheng

    2014-11-01

    In this article, we report on the digital selective fabrication of micro/nano-composite structured TiO2 nanorod arrays by laser direct writing. The pattern of TiO2 nanorod arrays can be easily designed and fabricated by laser scanning technology integrated with a computer-aided design system, which allows a high degree of freedom corresponding to the various pattern design demands. The approach basically involves the hydrothermal growth of TiO2 nanorod arrays on a transparent conductive substrate, the micropattern of TiO2 nanorod arrays and surface fluorination treatment. With these micro/nano-composite TiO2 nanorod array based films, we have demonstrated superhydrophilic patterned TiO2 nanorod arrays with rapid water spreading ability and superhydrophobic patterned TiO2 nanorod arrays with an excellent droplet bouncing effect and a good self-cleaning performance. The dynamic behaviours of the water droplets observed on the patterned TiO2 nanorod arrays were demonstrated by experiments and simulated by a finite element method. The approaches we will show are expected to provide potential applications in fields such as self-cleaning, surface protection, anticrawling and microfluidic manipulation.

  10. Synthesis of Fe2O3/TiO2 nanorod-nanotube arrays by filling TiO2 nanotubes with Fe

    International Nuclear Information System (INIS)

    Mohapatra, Susanta K; Banerjee, Subarna; Misra, Mano

    2008-01-01

    Synthesis of hematite (α-Fe 2 O 3 ) nanostructures on a titania (TiO 2 ) nanotubular template is carried out using a pulsed electrodeposition technique. The TiO 2 nanotubes are prepared by the sonoelectrochemical anodization method and are filled with iron (Fe) by pulsed electrodeposition. The Fe/TiO 2 composite is then annealed in an O 2 atmosphere to convert it to Fe 2 O 3 /TiO 2 nanorod-nanotube arrays. The length of the Fe 2 O 3 inside the TiO 2 nanotubes can be tuned from 50 to 550 nm by changing the deposition time. The composite material is characterized by scanning electron microscopy, transmission electron microscopy and diffuse reflectance ultraviolet-visible studies to confirm the formation of one-dimensional Fe 2 O 3 /TiO 2 nanorod-nanotube arrays. The present approach can be used for designing variable one-dimensional metal oxide heterostructures

  11. Synthesis of TiO2 nanorod-decorated graphene sheets and their highly efficient photocatalytic activities under visible-light irradiation

    International Nuclear Information System (INIS)

    Lee, Eunwoo; Hong, Jin-Yong; Kang, Haeyoung; Jang, Jyongsik

    2012-01-01

    Highlights: ► TiO 2 nanorods were successfully decorated on the surface of graphene sheets. ► Population of TiO 2 nanorods can be controlled by changing experimental conditions. ► TiO 2 nanorod-decorated graphene sheets have an expanded light absorption range. ► TiO 2 nanorod-decorated graphene sheets showed unprecedented photocatalytic activity. - Abstract: The titanium dioxide (TiO 2 ) nanorod-decorated graphene sheets photocatalysts with different TiO 2 nanorods population have been synthesized by a simple non-hydrolytic sol–gel approach. Electron microscopy and X-ray diffraction analysis indicated that the TiO 2 nanorods are well-dispersed and successfully anchored on the graphene sheet surface through the formation of covalent bonds between Ti and C atoms. The photocatalytic activities are evaluated in terms of the efficiencies of photodecomposition and adsorption of methylene blue (MB) in aqueous solution under visible-light irradiation. The as-synthesized TiO 2 nanorod-decorated graphene sheets showed unprecedented photodecomposition efficiency compared to the pristine TiO 2 nanorods and the commercial TiO 2 (P-25, Degussa) under visible-light. It is believed that this predominant photocatalytic activity is due to the synergistic contribution of both a retarded charge recombination rate caused by a high electronic mobility of graphene and an increased surface area originated from nanometer-sized TiO 2 nanorods. Furthermore, photoelectrochemical study is performed to give deep insights into the primary roles of graphene that determines the photocatalytic activity.

  12. Chemical synthesis of CdS onto TiO2 nanorods for quantum dot sensitized solar cells

    Science.gov (United States)

    Pawar, Sachin A.; Patil, Dipali S.; Lokhande, Abhishek C.; Gang, Myeng Gil; Shin, Jae Cheol; Patil, Pramod S.; Kim, Jin Hyeok

    2016-08-01

    A quantum dot sensitized solar cell (QDSSC) is fabricated using hydrothermally grown TiO2 nanorods and successive ionic layer adsorption and reaction (SILAR) deposited CdS. Surface morphology of the TiO2 films coated with different SILAR cycles of CdS is examined by Scanning Electron Microscopy which revealed aggregated CdS QDs coverage grow on increasing onto the TiO2 nanorods with respect to cycle number. Under AM 1.5G illumination, we found the TiO2/CdS QDSSC photoelectrode shows a power conversion efficiency of 1.75%, in an aqueous polysulfide electrolyte with short-circuit photocurrent density of 4.04 mA/cm2 which is higher than that of a bare TiO2 nanorods array.

  13. Fabrication of TiO_2 nanorod assembly grafted rGO (rGO@TiO_2-NR) hybridized flake-like photocatalyst

    International Nuclear Information System (INIS)

    Lv, Kangle; Fang, Shun; Si, Lingling; Xia, Yang; Ho, Wingkei; Li, Mei

    2017-01-01

    Highlights: • TiO_2 nanorod assembly grafted with GO hybrid was successfully fabricated. • TiO_2 nanorods can reduce the aggregation of TiO_2 nanoparticles on graphene. • This unique structure facilitates the injection of electron from TiO_2 to graphene. - Abstract: To efficiently separate the photo-generated electron–hole pairs of TiO_2 hybrid, anatase TiO_2 nanorod assembly grafted reduced graphene oxides (rGO@TiO_2-NR) hybrid was successfully fabricated using potassium titanium oxalate (PTO) and graphene oxides (GO) as starting materials and diethylene glycol (DEG) as reductant. The effect of GO content on the structure and photocatalytic activity of rGO@TiO_2-NR composite was systematically studied. Results show that, in the absence of GO, only TiO_2 microsphere assembly is obtained from TiO_2 nanorods. The presence of GO results in the formation of a flake-like TiO_2-nanorod-assembled grafted rGO hybrid. The photocatalytic activity of rGO@TiO_2-NR composite increases first and then decreases with increase in the amount of GO from 0 wt.% to 10 wt.%. The hybridized S4 sample prepared with 4 wt.% GO possesses the highest photocatalytic activity with a constant rate of 0.039 min"−"1 in the photocataytic degradation of Brilliant X-3B dye (X3B); this sample was enhanced more than three times when compared with pure TiO_2 sample (0.012 min"−"1). The enhanced photocatalytic activity of the rGO@TiO_2-NR hybrid was attributed to the strong interaction between TiO_2 nanorods and rGO. The unique hierarchical structure of 1D nanorod assembly TiO_2–rGO flakes facilitates the injection and transfer of photo-generated electrons from TiO_2 to graphene, thus retarding the recombination of electron–hole pairs and enhancing the photocatalytic activity. The enlarged BET surface areas, not only increasing the number of active sites, but also facilitating the adsorption of the dye, and improved light-harvesting ability also contribute to the enhanced photoreactivity

  14. Synthesis and characterization of TiO2/CdS core–shell nanorod arrays and their photoelectrochemical property

    International Nuclear Information System (INIS)

    Cao Chunlan; Hu Chenguo; Shen Weidong; Wang, Shuxia; Tian Yongshu; Wang Xue

    2012-01-01

    Highlights: ► TiO 2 /CdS core–shell nanorod arrays were fabricated by spin-SILAR method. ► The enhanced photocurrent was found in the TiO 2 /CdS core–shell nanorod arrays. ► The CdS coated on TiO 2 increases the e-h separation and enlarges light absorption range. - Abstract: TiO 2 /CdS core–shell nanorod arrays have been fabricated via a two-step method. Vertically aligned TiO 2 nanorod arrays (NRs) were synthesized by a facile hydrothermal method, and followed by depositing CdS nanoparticles on TiO 2 NRs by spin-coating successive ion layer adsorption and reaction (spin-SILAR) method. The surface morphology, structure, optical and photoelectrochemical behaviors of the core–shell NRs films are considered. The UV–vis absorption spectrum results suggested that the absorption peak of the TiO 2 /CdS core–shell NRs shifts from the ultraviolet region to the visible region in comparison to that of the pure TiO 2 NRs. The obviously enhanced photoelectrochemical (PEC) performances of the heterojunction NRs were found under illumination of the simulated sunlight in comparison with that of the TiO 2 NRs. The enhanced PEC performance and formation mechanism of TiO 2 /CdS core–shell NRs were discussed in detail.

  15. Superior environment resistance of quartz crystal microbalance with anatase TiO2/ZnO nanorod composite films

    International Nuclear Information System (INIS)

    Qiang, Wei; Wei, Li; Shaodan, Wang; Yu, Bai

    2015-01-01

    Graphical abstract: ZnO nanorod array being prepared by an in situ method on the QCM coated with Au film via hydrothermal process and surface modification with coated TiO 2 by sol–gel methods to form a superhydrophobic TiO 2 /ZnO composite film the anatase TiO 2 /ZnO nanorod composite film with a sharp, pencil-like structure exhibiting excellent superhydrophobicity (water contact angle of 155°), non-sticking water properties, and an autonomous cleaning property under UV irradiation. The anatase TiO 2 /ZnO nanorod composite film facilitates the precise measurement and extended lifetime of the QCM for the detection of organic gas molecules. - Highlights: • This work combines, for the first time, the advantage of the TiO 2 /ZnO composite film on photocatalysis and reversible super-hydrophobic and super-hydrophilic transition, and puts forward a solution to satisfy weatherability of quartz crystal microbalance in long-term application. • The anatase TiO 2 /ZnO nanorod composite film with pencil structure exhibit excellent super-hydrophobicity (water contact angle can reach 155°), no-sticking water properties and self-cleaning property under UV irradiation. • The photocatalysis and reversible super-hydrophobic and super-hydrophilic transition of the TiO 2 /ZnO nanorod composite film is stable in long-term application. - Abstract: The precise measurement of quartz crystal microbalance (QCM) in the detection and weighing of organic gas molecules is achieved due to excellent superhydrophobicity of a deposited film composite. Photocatalysis is utilized as a method for the self-cleaning of organic molecules on the QCM for extended long-term stability in the precision of the instrument. In this paper, ZnO nanorod array is prepared via in situ methods on the QCM coated with Au film via hydrothermal process. Subsequently, a TiO 2 /ZnO composite film is synthesized by surface modification with TiO 2 via sol–gel methods. Results show the anatase TiO 2 /ZnO nanorod

  16. Rutile TiO2 nanorod arrays directly grown on Ti foil substrates towards lithium-ion micro-batteries

    International Nuclear Information System (INIS)

    Dong Shanmu; Wang Haibo; Gu Lin; Zhou Xinhong; Liu Zhihong; Han Pengxian; Wang Ya; Chen Xiao; Cui Guanglei; Chen Liquan

    2011-01-01

    Nanosized rutile TiO 2 is one of the most promising candidates for anode material in lithium-ion micro-batteries owing to their smaller dimension in ab-plane resulting in an enhanced performance for area capacity. However, few reports have yet emerged up to date of rutile TiO 2 nanorod arrays growing along c-axis for Li-ion battery electrode application. In this study, single-crystalline rutile TiO 2 nanorod arrays growing directly on Ti foil substrates have been fabricated using a template-free method. These nanorods can significantly improve the electrochemical performance of rutile TiO 2 in Li-ion batteries. The capacity increase is about 10 times in comparison with rutile TiO 2 compact layer.

  17. Template-free formation of vertically oriented TiO2 nanorods with uniform distribution for organics-sensing application

    International Nuclear Information System (INIS)

    Mu Qinghui; Li Yaogang; Zhang Qinghong; Wang Hongzhi

    2011-01-01

    Graphical abstract: - Abstract: High-density arrays of vertically oriented TiO 2 nanorods with uniform distribution on Ti foil have been formed through template-free oxidation of Ti in hydrogen peroxide solutions. Subsequent thermal treatment was applied for growing mixed crystal structures to pursue higher performance. Morphology characterization using field emission scanning electron microscopy (FESEM) shows a nanorod diameter in the range of 20-50 nm with a length of 1.5 μm. X-ray diffraction (XRD) measurement demonstrates the crystallization of the TiO 2 nanorods prior to thermal treatment and the formation of anatase and rutile mixed phase after thermal treatment. The mixed crystal TiO 2 nanorods show a much higher performance than pure anatase in photoelectrochemical experiments. Steady-state photocurrent resulted from photocatalytic oxidation of organic compounds by TiO 2 nanorods is employed as response signal in determination of the organics to yield a linear range of 0-1.1 mM for glucose. For other organics, an excellent linear relationship between the net steady-state photocurrent and the concentration of electrons transferred in exhaustive oxidation for these organics is obtained, which empowers the mixed crystal TiO 2 nanorods to serve as versatile material in organics-sensing application.

  18. Improving the Efficiency of Dye-Sensitized Solar Cells by Growing Longer ZnO Nanorods on TiO2 Photoanodes

    Directory of Open Access Journals (Sweden)

    Bao-gai Zhai

    2017-01-01

    Full Text Available By increasing the temperature of hydrothermal reactions from 70 to 100°C, vertically aligned ZnO nanorods were grown on the TiO2 thin film in the photoanode of dye-sensitized solar cells (DSSCs as the blocking layer to reduce the electron back recombinations at the TiO2/electrolyte interfaces. The length effects of ZnO nanorods on the photovoltaic performances of TiO2 based DSSCs were investigated by means of scanning electron microscope, X-ray diffractometer, photoluminescence spectrophotometer, and the photocurrent-voltage measurement. Under the illumination of 100 mW/cm2, the power conversion efficiency of DSSC with ZnO nanorods decorated TiO2 thin film as its photoanode can be increased nearly fourfold from 0.27% to 1.30% as the length of ZnO nanorods increases from 300 to 1600 nm. The enhanced efficiency of DSSC with ZnO nanorods decorated TiO2 thin film as the photoanode can be attributed to the larger surface area and the lower defect density in longer ZnO nanorods, which are in favor of more dye adsorption and more efficient transport in the photoanode.

  19. Vertically aligned TiO2 nanorods-woven carbon fiber for reinforcement of both mechanical and anti-wear properties in resin composite

    Science.gov (United States)

    Fei, Jie; Zhang, Chao; Luo, Dan; Cui, Yali; Li, Hejun; Lu, Zhaoqing; Huang, Jianfeng

    2018-03-01

    A series of TiO2 nanorods were successfully grown on woven carbon fiber by hydrothermal method to reinforce the resin composite. The TiO2 nanorods improved the mechanical interlocking among woven carbon fibers and resin matrix, resulting in better fibers/resin interfacial bonding. Compared with desized-woven carbon fiber, the uniform TiO2 nanorods array resulted in an improvement of 84.3% and 73.9% in the tensile and flexural strength of the composite. However, the disorderly TiO2 nanorods on woven carbon fiber leaded to an insignificant promotion of the mechanical strength. The enhanced performance of well-proportioned TiO2 nanorods-woven carbon fiber was also reflected in the nearly 56% decrease of wear rate, comparing to traditional woven carbon fiber reinforced composite.

  20. TiO2 Nanorods Decorated with Pd Nanoparticles for Enhanced Liquefied Petroleum Gas Sensing Performance.

    Science.gov (United States)

    Dhawale, Dattatray S; Gujar, Tanaji P; Lokhande, Chandrakant D

    2017-08-15

    Development of highly sensitive and selective semiconductor-based metal oxide sensor devices to detect toxic, explosive, flammable, and pollutant gases is still a challenging research topic. In the present work, we systematically enhanced the liquefied petroleum gas (LPG) sensing performance of chemical bath deposited TiO 2 nanorods by decorating Pd nanoparticle catalyst. Surface morphology with elemental mapping, crystal structure, composition and oxidation states, and surface area measurements of pristine TiO 2 and Pd:TiO 2 nanorods was examined by high resolution transmission electron microscopy with energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption characterization techniques. LPG sensing performance of pristine TiO 2 and Pd:TiO 2 nanorods was investigated in different LPG concentration and operating temperature ranges. The LPG response of 21% for pristine TiO 2 nanorods is enhanced to 49% after Pd catalyst decoration with reasonably fast response and recovery times. Further, the sensor exhibited long-term stability, which could be due to the strong metal support (Pd:TiO 2 ) interaction and catalytic properties offered by the Pd nanoparticle catalyst. The work described herein demonstrates a general and scalable approach that provides a promising route for rational design of variety of sensor devices for LPG detection.

  1. Fabrication of TiO2 nanorod assembly grafted rGO (rGO@TiO2-NR) hybridized flake-like photocatalyst

    Science.gov (United States)

    Lv, Kangle; Fang, Shun; Si, Lingling; Xia, Yang; Ho, Wingkei; Li, Mei

    2017-01-01

    To efficiently separate the photo-generated electron-hole pairs of TiO2 hybrid, anatase TiO2 nanorod assembly grafted reduced graphene oxides (rGO@TiO2-NR) hybrid was successfully fabricated using potassium titanium oxalate (PTO) and graphene oxides (GO) as starting materials and diethylene glycol (DEG) as reductant. The effect of GO content on the structure and photocatalytic activity of rGO@TiO2-NR composite was systematically studied. Results show that, in the absence of GO, only TiO2 microsphere assembly is obtained from TiO2 nanorods. The presence of GO results in the formation of a flake-like TiO2-nanorod-assembled grafted rGO hybrid. The photocatalytic activity of rGO@TiO2-NR composite increases first and then decreases with increase in the amount of GO from 0 wt.% to 10 wt.%. The hybridized S4 sample prepared with 4 wt.% GO possesses the highest photocatalytic activity with a constant rate of 0.039 min-1 in the photocataytic degradation of Brilliant X-3B dye (X3B); this sample was enhanced more than three times when compared with pure TiO2 sample (0.012 min-1). The enhanced photocatalytic activity of the rGO@TiO2-NR hybrid was attributed to the strong interaction between TiO2 nanorods and rGO. The unique hierarchical structure of 1D nanorod assembly TiO2-rGO flakes facilitates the injection and transfer of photo-generated electrons from TiO2 to graphene, thus retarding the recombination of electron-hole pairs and enhancing the photocatalytic activity. The enlarged BET surface areas, not only increasing the number of active sites, but also facilitating the adsorption of the dye, and improved light-harvesting ability also contribute to the enhanced photoreactivity of rGO@TiO2-NR hybrid.

  2. Controllable hydrothermal synthesis of rutile TiO2 hollow nanorod arrays on TiCl4 pretreated Ti foil for DSSC application

    International Nuclear Information System (INIS)

    Xi, Min; Zhang, Yulan; Long, Lizhen; Li, Xinjun

    2014-01-01

    Rutile TiO 2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl 4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO 2 nanorod arrays (H-TNRs). The TiCl 4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl 4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ∼1.5 μm and diameter of ∼200 nm, obtained on 0.15 M TiCl 4 pretreated Ti foil with 0.6 mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180 °C-H-TNRs photoanode obtained from the 0.15-TiCl 4 -TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode. - Graphical abstract: Rutile hollow TiO 2 nanorod array photoanode obtained from original TiO 2 nanorod array photoanode by hydrothermal etching demonstrates enhanced photoelectric efficiency of DSSC. - Highlights: • TiO 2 nanorods are prepared via hydrothermal process on TiCl 4 -pretreated Ti foil. • Hollow TiO 2 nanorods are obtained by hydrothermal etching of TiO 2 nanorods. • TiCl 4 pretreatment plays a key role in protecting Ti foil from chemical corrosion. • Hollow TiO 2 nanorods photoanode shows enhanced photoelectric efficiency for DSSC

  3. Rapid thermal melted TiO2 nano-particles into ZnO nano-rod and its application for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Chao, Ching-Hsun; Chang, Chi-Lung; Chan, Chien-Hung; Lien, Shui-Yang; Weng, Ko-Wei; Yao, Kuo-Shan

    2010-01-01

    TiO 2 nano-particles with an anchored ZnO nano-rod structure were synthesized using the hydrothermal method to grow ZnO nano-rods and coated TiO 2 nano-particles on ZnO nano-rods using the rapid thermal annealing method on ITO conducting glass pre-coated with nano porous TiO 2 film. The XRD study showed that there was little difference in crystal composition for various types of TiO 2 nano-particles anchored to ZnO nano-rods. The as-prepared architecture was characterized using field-emission scanning electron microscopy (FE-SEM). Films with TiO 2 nano-particles anchored to ZnO nano-rods were used as electrode materials to fabricate dye sensitized solar cells (DSSCs). The best solar energy conversion efficiency of 2.397% was obtained by modified electrode material, under AM 1.5 illumination, achieved up to J sc = 15.382 mA/cm 2 , V oc = 0.479 V and fill factor = 32.8%.

  4. Fabrication of TiO2 nanoparticles/nanorod composite arrays via a two-step method for efficient dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Jingyang Wang

    2014-12-01

    Full Text Available TiO2 nanoparticles/nanorod composite arrays were prepared on the F-doped tin oxide (FTO substrate through a two-step method of hydrothermal and d.c. magnetron sputtering. The microstructure and optical properties of the samples were characterized respectively by means of X-ray diffraction (XRD, field-emission scanning electron microscopy (FESEM and UV–vis spectrometer. The results showed that the TiO2 composite nanorod arrays possess the nature of high surface area for more dye molecule absorption and the strong light scattering effects. The dye sensitized solar cells (DSSCs based on TiO2 composite nanorod arrays exhibited a 80% improvement in the overall energy conversion efficiency compared with the pure TiO2 nanorod arrays photoanode.

  5. Visible Light Photoelectrochemical Properties of N-Doped TiO2 Nanorod Arrays from TiN

    Directory of Open Access Journals (Sweden)

    Zheng Xie

    2013-01-01

    Full Text Available N-doped TiO2 nanorod arrays (NRAs were prepared by annealing the TiN nanorod arrays (NRAs which were deposited by using oblique angle deposition (OAD technique. The TiN NRAs were annealed at 330°C for different times (5, 15, 30, 60, and 120 min. The band gaps of annealed TiN NRAs (i.e., N-doped TiO2 NRAs show a significant variance with annealing time, and can be controlled readily by varying annealing time. All of the N-doped TiO2 NRAs exhibit an enhancement in photocurrent intensity in visible light compared with that of pure TiO2 and TiN, and the one annealed for 15 min shows the maximum photocurrent intensity owning to the optimal N dopant concentration. The results show that the N-doped TiO2 NRAs, of which the band gap can be tuned easily, are a very promising material for application in photocatalysis.

  6. Short-length and high-density TiO2 nanorod arrays for the efficient charge separation interface in perovskite solar cells

    International Nuclear Information System (INIS)

    Xiao, Guannan; Shi, Chengwu; Zhang, Zhengguo; Li, Nannan; Li, Long

    2017-01-01

    The TiO 2 nanorod arrays with the length of 70 nm, the diameter of 20 nm, and the areal density of 1000 µm −2 were firstly prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 60 min. Over-500 nm-thickness CH 3 NH 3 PbI 3−x Br x absorber layers were successfully obtained by sequential deposition routes using 1.7 M PbI 2 ·DMSO complex precursor solution and 0.465 M isopropanol solution of the methylammonium halide mixture with the molar ratio of CH 3 NH 3 I/CH 3 NH 3 Br=85/15. The perovskite solar cells based on the TiO 2 nanorod array and 560 nm-thickness CH 3 NH 3 PbI 3−x Br x absorber layer exhibited the best photoelectric conversion efficiency (PCE) of 15.93%, while the corresponding planar perovskite solar cells without the TiO 2 nanorod array and with 530 nm-thickness CH 3 NH 3 PbI 3−x Br x absorber layer gave the best PCE of 12.82% at the relative humidity of 50–54%. - Graphical abstract: The TiO 2 nanorod arrays with the length of 70 nm, the diameter of 20 nm, and the areal density of 1000 µm −2 were prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 60 min. The optimal annealing temperature of TiO 2 nanorod arrays was 450 °C. The perovskite solar cells based on the TiO 2 nanorod array and 560 nm-thickness CH 3 NH 3 PbI 3−x Br x absorber layer exhibited the best photoelectric conversion efficiency (PCE) of 15.93% and the average PCE of 13.41±2.52%, while the corresponding planar perovskite solar cells without the TiO 2 nanorod array and with 530 nm-thickness CH 3 NH 3 PbI 3−x Br x absorber layer gave the best PCE of 12.82% and the average PCE of 10.54±2.28% at the relative humidity of 50–54%. - Highlights: • Preparation of TiO 2 nanorod array with length of 70 nm and density of 1000 µm −2 . • Influence of annealing temperatures on the -OH content of TiO

  7. Influence of Zr doping on structure and morphology of TiO2 nanorods prepared using hydrothermal method

    Science.gov (United States)

    Muslimin, Masliana; Jumali, Mohammad Hafizuddin; Tee, Tan Sin; Beng, Lee Hock; Hui, Tan Chun; Chin, Yap Chi

    2018-04-01

    The aim of this work is to investigate the effect of Zr doping on TiO2 nanostructure. TiO2 nanorods thin films with different Zr-doping concentrations (6 × 10-3 M, 13 × 10-3 M and 25 × 10-3 M) were successfully prepared using a simple hydrothermal method. The structural and morphological properties of the samples were evaluated using XRD and FESEM respectively. The XRD results revealed that the TiO2 in all samples stabilized as rutile phase. The FESEM micrographs confirmed that TiO2 exist as square like nanorods with blunt tips. Although the crystallographic nature remains unchanged, the introduction of Zr has altered the surface density, structure and morphology of TiO2 which subsequently will have significant effect on its properties.

  8. Fabrication of TiO2-Reduced Graphene Oxide Nanorod Composition Spreads Using Combinatorial Hydrothermal Synthesis and Their Photocatalytic and Photoelectrochemical Applications.

    Science.gov (United States)

    Lu, Wen-Chung; Tseng, Li-Chun; Chang, Kao-Shuo

    2017-09-11

    This study is the first to employ combinatorial hydrothermal synthesis and facile spin-coating technology to fabricate TiO 2 -reduced graphene oxide (rGO) nanorod composition spreads. The features of this study are (1) the development of a self-designed spin-coating wedge, (2) the systemic investigation of the structure-property relationship of the system, (3) the high-throughput screening of the optimal ratio from a wide range of compositions for photocatalytic and photoelectrochemical (PEC) applications, and (4) the effective coupling between the density gradient TiO 2 nanorod array and the thickness gradient rGO. The formation of rGO in the fabricated TiO 2 -rGO sample was monitored through Fourier transform infrared spectrometry. Transmission electron microscopy images also suggested that the TiO 2 nanorod surfaces were covered with a thin layer of amorphous rGO. The rutile TiO 2 plane evolution along the composition variation was verified through X-ray diffraction. 7% TiO 2 -93% rGO on the nanorod composition spread exhibited the most promising photocatalytic ability; the corresponding photodegradation kinetics, denoted by the photodegradation rate constant (k), was determined to be approximately 12.7 × 10 -3 min -1 . The excellent performance was attributed to the effective coupling between the TiO 2 and rGO, which improved the charge carrier transport, thus inhibiting electron-hole pair recombination. A cycling test implied that 7% TiO 2 -93% rGO is a reliable photocatalyst. A photoluminescence spectroscopy study also supported the superior photocatalytic ability of the sample, which was attributed to its markedly poorer recombination behavior. In addition, without further treatment, the sample exhibited excellent PEC stability; the photocurrent density was more than three times higher than that exhibited by the density gradient TiO 2 nanorods.

  9. Enhanced photoelectrochemical properties of TiO2 nanorod arrays decorated with CdS nanoparticles

    International Nuclear Information System (INIS)

    Xie, Zheng; Wang, Weipeng; Liu, Can; Li, Zhengcao; Liu, Xiangxuan; Zhang, Zhengjun

    2014-01-01

    TiO 2 nanorod arrays (TiO 2 NRAs) sensitized with CdS nanoparticles were fabricated via successive ion layer adsorption and reaction (SILAR), and TiO 2 NRAs were obtained by oxidizing Ti NRAs obtained through oblique angle deposition. The TiO 2 NRAs decorated with CdS nanoparticles exhibited excellent photoelectrochemical and photocatalytic properties under visible light, and the one decorated with 20 SILAR cycles CdS nanoparticles shows the best performance. This can be attributed to the enhanced separation of electrons and holes by forming heterojunctions of CdS nanoparticles and TiO 2 NRAs. This provides a promising way to fabricate the material for solar energy conversion and wastewater degradation. (paper)

  10. Tunable photovoltaic performance of preferentially oriented rutile TiO2 nanorod photoanodes based dye sensitized solar cells with quasi-state electrolyte.

    Science.gov (United States)

    T C, Sabari Girisun; C, Jeganathan; N, Pavithra; Anandan, Sambandam

    2017-12-20

    Photoanodes made of highly oriented TiO2 nanorod arrays with different aspect ratios were synthesized via one-step hydrothermal technique. Preferentially oriented single crystalline rutile TiO2 was confirmed by the single peak in XRD pattern (2θ=63o, (0 0 2)). FESEM image evidence the growth of an array of nanorods having different geometry with respect to reaction time and solution refreshment rate. The length, diameter and aspect ratio of the nanorods increased with reaction time as 4 hours (1.98 μm, 121 nm, 15.32), 8 hours (4 μm, 185 nm, 22.70), 12 hours (5.6 μm, 242 nm, 27.24) and 16 hours (8 μm, 254 nm, 38.02) respectively. Unlike conventional Dye-Sensitized Solar Cell (DSSC) with a liquid electrolyte, DSSC were fabricated here using 1D rutile TiO2 nanorods based photoanodes, N719 dye and quasi-state electrolyte. The charge transport properties were investigated from current-voltage curves and fitted using one-diode model. Interestingly photovoltaic performance of DSSCs increased exponentially with the length of the nanorod and is attributed to the higher surface to volume ratio, more dye anchoring, and channelized electron transport. Higher photovoltaic performance (Jsc=5.99 mA/cm2, Voc=750 mV, η=3.08%) was observed with photoanodes (16 hours) made of densely packed longest TiO2 nanorods (8 µm, 254 nm). © 2017 IOP Publishing Ltd.

  11. Improvement of light harvesting and device performance of dye-sensitized solar cells using rod-like nanocrystal TiO2 overlay coating on TiO2 nanoparticle working electrode

    International Nuclear Information System (INIS)

    Liu, Xueyang; Fang, Jian; Gao, Mei; Wang, Hongxia; Yang, Weidong; Lin, Tong

    2015-01-01

    Novel TiO 2 single crystalline nanorods were synthesized by electrospinning and hydrothermal treatment. The role of the TiO 2 nanorods on TiO 2 nanoparticle electrode in improvement of light harvesting and photovoltaic properties of dye-sensitized solar cells (DSSCs) was examined. Although the TiO 2 nanorods had lower dye loading than TiO 2 nanoparticle, they showed higher light utilization behaviour. Electron transfer in TiO 2 nanorods received less resistance than that in TiO 2 nanoparticle aggregation. By just applying a thin layer of TiO 2 nanorods on TiO 2 nanoparticle working electrode, the DSSC device light harvesting ability and energy conversion efficiency were improved significantly. The thickness of the nanorod layer in the working electrode played an important role in determining the photovoltaic property of DSSCs. An energy conversion efficiency as high as 6.6% was found on a DSSC device with the working electrode consisting of a 12 μm think TiO 2 nanoparticle layer covered with 3 μm thick TiO 2 nanorods. The results obtained from this study may benefit further design of highly efficient DSSCs. - Highlights: • Single crystalline TiO 2 nanorods were prepared for DSSC application. • TiO 2 nanorods show effective light scattering performance. • TiO 2 nanorods have higher electron transfer efficiency than TiO 2 nanoparticles. • TiO 2 nanorods on TiO 2 nanoparticle electrode improve DSSC efficiency

  12. Annealing Effect on Photovoltaic Performance of CdSe Quantum-Dots-Sensitized TiO2 Nanorod Solar Cells

    Directory of Open Access Journals (Sweden)

    Yitan Li

    2012-01-01

    Full Text Available Large area rutile TiO2 nanorod arrays were grown on F:SnO2 (FTO conductive glass using a hydrothermal method at low temperature. CdSe quantum dots (QDs were deposited onto single-crystalline TiO2 nanorod arrays by a chemical bath deposition (CBD method to make a photoelectrode. The solar cell was assembled using a CdSe-TiO2 nanostructure as the photoanode and polysulfide solution as the electrolyte. The annealing effect on optical and photovoltaic properties of CdSe quantum-dots-sensitized TiO2 nanorod solar cells was studied systematically. A significant change of the morphology and a regular red shift of band gap of CdSe nanoparticles were observed after annealing treatment. At the same time, an improved photovoltaic performance was obtained for quantum-dots-sensitized solar cell using the annealed CdSe-TiO2 nanostructure electrode. The power conversion efficiency improved from 0.59% to 1.45% as a consequence of the annealing effect. This improvement can be explained by considering the changes in the morphology, the crystalline quality, and the optical properties caused by annealing treatment.

  13. Photodegradation of phenol by N-Doped TiO2 anatase/rutile nanorods assembled microsphere under UV and visible light irradiation

    International Nuclear Information System (INIS)

    Mohamed, Mohamad Azuwa; Salleh, W.N.W.; Jaafar, Juhana; Ismail, A.F.; Nor, Nor Azureen Mohamad

    2015-01-01

    N-doped TiO 2 anatase/rutile nanorods assembled microspheres were successfully synthesized via a simple and direct sol–gel method containing titanium-n-butoxide Ti(OBu) 4 as a precursor material, nitric acid as a catalyst, and isopropanol as a solvent. By manipulating calcination temperature, the photocatalyst consisting of different phase compositions of anatase and rutile was obtained. The prepared TiO 2 nanoparticles were characterized by means of x-ray diffraction (XRD), field emission scanning microscope (FESEM), atomic force microscopy (AFM), Brunauer–Emmett–Teller (BET) analysis, UV–Vis–NIR spectroscopy, and fourier transform infrared (FTIR). The results from UV–Vis–NIR spectroscopy and FTIR revealed the direct incorporation of nitrogen in TiO 2 lattice since visible absorption capability was observed at 400–600 nm. XPS study indicated the incorporation of nitrogen as dopant in TiO 2 at binding energies of 396.8, 397.5, 398.7, 399.8, and 401 eV. Calcination temperature was observed to have a great influence on the photocatalytic activity of the TiO 2 nanorods. The photocatalytic activity of the prepared mixed phase of anatase/rutile TiO 2 nanoparticles was measured by photodegradation phenol in an aqueous solution under UV and visible irradiations. N-doped TiO 2 anatase/rutile nanorods assembled microsphere (consists of 38.3% anatase and 61.7% rutile) that was prepared at 400 °C exhibited the highest photocatalytic activity after irradiated under visible and UV light for 540 min. The high performance of photocatalyst materials could be obtained by adopting a judicious combination of anatase/rutile prepared at optimum calcination conditions. - Highlights: • Synthesis of N-Doped TiO 2 Anatase/Rutile Nanorods via simple preparation method. • Direct incorporation of HNO 3 as the nitrogen dopant source. • The photocatalytic properties were studied upon UV and visible light irradiation. • The optimum calcination temperature is 400 °C for

  14. Films of brookite TiO2 nanorods/nanoparticles deposited by matrix-assisted pulsed laser evaporation as NO2 gas-sensing layers

    Science.gov (United States)

    Caricato, A. P.; Buonsanti, R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Taurino, A.; Rella, R.

    2011-09-01

    Titanium dioxide (TiO2) nanorods in the brookite phase, with average dimensions of 3-4 nm × 20-50 nm, were synthesized by a wet-chemical aminolysis route and used as precursors for thin films that were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. A nanorod solution in toluene (0.016 wt% TiO2) was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser at a fluence of 350 mJ/cm2 and repetition rate of 10 Hz. Single-crystal Si wafers, silica slides, carbon-coated Cu grids and alumina interdigitated slabs were used as substrates to allow performing different characterizations. Films fabricated with 6000 laser pulses had an average thickness of ˜150 nm, and a complete coverage of the selected substrate as achieved. High-resolution scanning and transmission electron microscopy investigations evidenced the formation of quite rough films incorporating individually distinguishable TiO2 nanorods and crystalline spherical nanoparticles with an average diameter of ˜13 nm. Spectrophotometric analysis showed high transparency through the UV-Vis spectral range. Promising resistive sensing responses to 1 ppm of NO2 mixed in dry air were obtained.

  15. TiO2 nanocrystals decorated Z-schemed core-shell CdS-CdO nanorod arrays as high efficiency anodes for photoelectrochemical hydrogen generation.

    Science.gov (United States)

    Li, Chia-Hsun; Hsu, Chan-Wei; Lu, Shih-Yuan

    2018-07-01

    TiO 2 nanocrystals decorated core-shell CdS-CdO nanorod arrays, TiO 2 @CdO/CdS NR, were fabricated as high efficiency anodes for photoelctrochemical hydrogen generation. The novel sandwich heterostructure was constructed from first growth of CdS nanorod arrays on a fluorine doped tin oxide (FTO) substrate with a hydrothermal process, followed by in situ generation of CdO thin films of single digit nanometers from the CdS nanorod surfaces through thermal oxidation, and final decoration of TiO 2 nanocrystals of 10-20 nm via a successive ionic layer absorption and reaction process. The core-shell CdS-CdO heterostructure possesses a Z-scheme band structure to enhance interfacial charge transfer, facilitating effective charge separation to suppress electron-hole recombination within CdS for much improved current density generation. The final decoration of TiO 2 nanocrystals passivates surface defects and trap states of CdO, further suppressing surface charge recombination for even higher photovoltaic conversion efficiencies. The photoelectrochemical performances of the plain CdS nanorod array were significantly improved with the formation of the sandwich heterostructure, achieving a photo current density of 3.2 mA/cm 2 at 1.23 V (vs. RHE), a 141% improvement over the plain CdS nanorod array and a 32% improvement over the CdO/CdS nanorod array. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials.

    Science.gov (United States)

    Jang, Seon-Min; Yang, Su Chul

    2018-06-08

    Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO 3 nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO 2 epitaxial growth and BaTiO 3 conversion. Through the TiO 2 epitaxial growth on FTO substrate, (001) oriented TiO 2 nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six. In particular, chemical etching of the TiO 2 NBA was conducted to enlarge the surface area for effective Ba 2+ ion diffusion during the perovskite conversion process from TiO 2 to BaTiO 3 . The final structure of perovskite BaTiO 3 NBA was found to exhibit a feasible piezoelectric response of 3.56 nm with a clear phase change of 180° from the single BaTiO 3 bundle, by point piezoelectric forced microscopy (PFM) analysis. Consequently, highly piezoelectric NBA could be a promising nanostructure for various nanoscale electronic devices.

  17. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials

    Science.gov (United States)

    Jang, Seon-Min; Yang, Su Chul

    2018-06-01

    Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO 3 nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO2 epitaxial growth and BaTiO3 conversion. Through the TiO2 epitaxial growth on FTO substrate, (001) oriented TiO2 nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six. In particular, chemical etching of the TiO2 NBA was conducted to enlarge the surface area for effective Ba2+ ion diffusion during the perovskite conversion process from TiO2 to BaTiO3. The final structure of perovskite BaTiO3 NBA was found to exhibit a feasible piezoelectric response of 3.56 nm with a clear phase change of 180° from the single BaTiO3 bundle, by point piezoelectric forced microscopy (PFM) analysis. Consequently, highly piezoelectric NBA could be a promising nanostructure for various nanoscale electronic devices.

  18. Enhancement of Perovskite Solar Cells Efficiency using N-Doped TiO2 Nanorod Arrays as Electron Transfer Layer.

    Science.gov (United States)

    Zhang, Zhen-Long; Li, Jun-Feng; Wang, Xiao-Li; Qin, Jian-Qiang; Shi, Wen-Jia; Liu, Yue-Feng; Gao, Hui-Ping; Mao, Yan-Li

    2017-12-01

    In this paper, N-doped TiO 2 (N-TiO 2 ) nanorod arrays were synthesized with hydrothermal method, and perovskite solar cells were fabricated using them as electron transfer layer. The solar cell performance was optimized by changing the N doping contents. The power conversion efficiency of solar cells based on N-TiO 2 with the N doping content of 1% (N/Ti, atomic ratio) has been achieved 11.1%, which was 14.7% higher than that of solar cells based on un-doped TiO 2 . To get an insight into the improvement, some investigations were performed. The structure was examined with X-ray powder diffraction (XRD), and morphology was examined by scanning electron microscopy (SEM). Energy dispersive spectrometer (EDS) and Tauc plot spectra indicated the incorporation of N in TiO 2 nanorods. Absorption spectra showed higher absorption of visible light for N-TiO 2 than un-doped TiO 2 . The N doping reduced the energy band gap from 3.03 to 2.74 eV. The photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectra displayed the faster electron transfer from perovskite layer to N-TiO 2 than to un-doped TiO 2 . Electrochemical impedance spectroscopy (EIS) showed the smaller resistance of device based on N-TiO 2 than that on un-doped TiO 2 .

  19. Pr3+ doped biphasic TiO2 (rutile-brookite) nanorod arrays grown on activated carbon fibers: Hydrothermal synthesis and photocatalytic properties

    Science.gov (United States)

    Li, Min; Zhang, Xiaomei; Liu, Ying; Yang, Yi

    2018-05-01

    Praseodymium-doped biphasic TiO2 (rutile-brookite) nanorod arrays (Pr-TiO2 NRAs) were successfully prepared via a two-step hydrothermal reaction on activated carbon fibers (ACFs) which pre-coated with TiO2 nanoparticles at first step. The bicrystalline arrays grown on ACFs are primarily constructed by the well-aligned TiO2 nanorods growing along [0 0 1] direction, which were indicated by the results of SEM and XRD. The nanorods are uniform in diameter and length with about 250 nm and 2.5 μm. The composite photocatalyst with high specific surface area and well-aligned nanostructure are beneficial to enhance the adsorption capacity and even help to suppress electron-hole recombination effectively, which consequently revealed much better (2 times) catalytic performance than that of commercially available P25 TiO2 on methylene blue(MB) photodegradation. In addition, the existence of praseodymium in TiO2 gives rise to shift of absorption edge towards long wavelength, which was indicated by the results of UV-vis DRS. Photodegradation results reveal that Pr-doping significantly improves the activity of TiO2, which was 20% higher than that of undoped TiO2 NRAs for the photodegradation of MB in aqueous medium under visible light irradiation. Meanwhile, the doped amount of Pr had a tiny influence on the photocatalytic performance of the composites. In our experiment, 3% Pr-doped molar concentration was proven to be the relatively optimal dopant concentration for the doping of TiO2 NRAs. Moreover, the photocatalyst grown on ACFs substrates is favorable to reuse and photodegradation rate kept on 76% even after 4 times of reuse.

  20. Combination of short-length TiO_2 nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Zhang, Zhengguo; Shi, Chengwu; Chen, Junjun; Xiao, Guannan; Li, Long

    2017-01-01

    Graphical abstract: The TiO_2 nanorod array with the length of 600 nm, the diameter of 20 nm, the areal density of 500 μm"−"2 was successfully prepared. The compact PbS quantum-dot thin film was firstly obtained on the TiO_2 nanorod array by spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol. The photoelectric conversion efficiency (PCE) of the compact PbS quantum-dot thin film sensitized solar cells achieved 4.10% using spiro-OMeTAD as a hole transporting layer, while the PCE of the PbS quantum-dot sensitized solar cells was only 0.54%. - Highlights: • Preparation of TiO_2 nanorod arrays with the length of 600 nm, diameter of 20 nm. • The compact PbS QD thin film and short-length TiO_2 nanorod array were combined. • EDT addition improved PbS nanoparticle coverage and photovoltaic performance. • The compact PbS QD thin film sensitized solar cell achieved the PCE of 4.10%. - Abstract: Considering the balance of the hole diffusion length and the loading quantity of quantum-dots, the rutile TiO_2 nanorod array with the length of 600 nm, the diameter of 20 nm, and the areal density of 500 μm"−"2 is successfully prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 105 min. The compact PbS quantum-dot thin film on the TiO_2 nanorod array is firstly obtained by the spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol (EDT). The result reveals that the strong interaction between lead and EDT is very important to control the crystallite size of PbS quantum-dots and obtain the compact PbS quantum-dot thin film on the TiO_2 nanorod array. The all solid-state sensitized solar cell with the combination of the short-length, high-density TiO_2 nanorod array and the compact PbS quantum-dot thin film achieves the photoelectric conversion efficiency of 4.10%, along with an open

  1. Surfactant-free bio-synthesised Tio2 nanorods from Turbinaria conoides-a study on photocatalytic and anti-bacterial activity

    Science.gov (United States)

    Subhapriya, S.; Gomathipriya, P.

    2018-06-01

    In this study, Titania nanorods were synthesised from aqueous extract of Turbinaria conoides (brown seaweeds) (TiO2NRs-TC) under surfactant free medium. The photocatalytic activity of the synthesised nanorods was tested towards the photocatalytic decolourization using simulated dye wastewater containing Navy Blue HER (NBHER). The synthesised Titania nanorods were characterized by using x-ray diffraction (XRD), UV–visible spectroscopy (UV–vis), Scanning Electron Microscopy (SEM), Energy Dispersive Spectrophotometer (EDS) and Transmission Electron Microscopy (TEM). XRD pattern confirms the anatase phase formation and HR-SEM micrograph shows the presence of rod like structure with the size of about 50 nm. TEM analysis proves the rod like structure with a size of 45–50 nm which was in agreement with the XRD analysis and HR-SEM images. EDS and XDS confirmed the formation of Titania nanoparticles. The formation of TiO2NRs-TC has a beneficial influence on the dye Navy blue HER photodegradation. TiO2-TC nano rods also show superior photocatalytic ability in hydrogen generation (2.1 mmol/h‑1g‑1). The antibacterial activity of the synthesised nanoparticles was examined using disc diffusion method which showed diverse susceptibility of microorganisms to the Titania nanoparticles.

  2. Enhanced supercapacitor performance using hierarchical TiO2 nanorod/Co(OH)2 nanowall array electrodes

    International Nuclear Information System (INIS)

    Ramadoss, Ananthakumar; Kim, Sang Jae

    2014-01-01

    Graphical abstract: - Highlights: • TiO 2 /Co(OH) 2 hierarchical nanostructure was prepared by a combination of hydrothermal and cathodic electrodeposition method. • Hierarchical nanostructure electrode exhibited a maximum capacitance of 274.3 mF cm −2 at a scan rate of 5 mV s −1 . • Combination of Co(OH) 2 nanowall with TiO 2 NR into a single system enhanced the electrochemical behavior of supercapacitor electrode. - Abstract: We report novel hierarchical TiO 2 nanorod (NR)/porous Co(OH) 2 nanowall array electrodes for high-performance supercapacitors fabricated using a two-step process that involves hydrothermal and electrodeposition techniques. Field-emission scanning electron microscope images reveal a bilayer structure consisting of TiO 2 NR arrays with porous Co(OH) 2 nanowalls. Compared with the bare TiO 2 NRs, the hierarchical TiO 2 NRs/Co(OH) 2 electrodes showed improved pseudocapacitive performance in a 2-M KOH electrolyte solution, exhibiting an areal specific capacitance of 274.3 mF cm −2 at a scan rate of 5 mV s −1 . The electrodes exhibited good stability, retaining 82.5% of the initial capacitance after 4000 cycles. The good pseudocapacitive performance of the hierarchical nanostructures is mainly due to the porous structure, which provides fast ion and electron transfer, a large surface area, short ion diffusion paths, and a favourable volume change during the cycling process

  3. Solid-State Dewetting of Gold Aggregates/Islands on TiO2 Nanorod Structures Grown by Oblique Angle Deposition.

    Science.gov (United States)

    Liu, Shizhao; Plawsky, Joel L

    2017-12-12

    A composite film made of a stable gold nanoparticle (NP) array with well-controlled separation and size atop a TiO 2 nanorod film was fabricated via the oblique angle deposition (OAD) technique. The fabrication of the NP array is based on controlled, Rayleigh-instability-induced, solid-state dewetting of as-deposited gold aggregates on the TiO 2 nanorods. It was found that the initial spacing between as-deposited gold aggregates along the vapor flux direction should be greater than the TiO 2 interrod spacing created by 80° OAD to control dewetting and produce NP arrays. A numerical investigation of the process was conducted using a phase-field modeling approach. Simulation results showed that coalescence between neighboring gold aggregates is likely to have caused the uncontrolled dewetting in the 80° deposition, and this could be circumvented if the initial spacing between gold aggregates is larger than a critical value s min . We also found that TiO 2 nanorod tips affect dewetting dynamics differently than planar TiO 2 . The topology of the tips can induce contact line pinning and an increase in the contact angle along the vapor flux direction to the supported gold aggregates. These two effects are beneficial for the fabrication of monodisperse NPs based on Rayleigh-instability-governed self-assembly of materials, as they help to circumvent the undesired coalescence and facilitate the instability growth on the supported material. The findings uncover the application potential of OAD as a new method to fabricate structured films as template substrates to mediate dewetting. The reported composite films would have uses in optical coatings and photocatalytic systems, taking advantage of their ability to combine plasmonic nanostructures within a nanostructured dielectric film.

  4. A mechanistic study on templated electrodeposition of one-dimensional TiO2 nanorods and nanotubes using TiOSO4 as a precursor

    KAUST Repository

    Teo, Gladys Y.

    2014-10-01

    One-dimensional (1D) TiO2 nanorods and nanotubes have been successfully synthesized by templated electrodeposition within an anodic aluminium oxide membrane (AAM) using an aqueous precursor containing TiOSO 4. The deposition voltages were found to influence the resultant nanostructure of TiO2. Using a precursor of aqueous TiOSO4 at pH 3 maintained at 10 °C, TiO2 nanorods were electrodeposited in the AAM between applied voltages of - 1.4 V to - 1.0 V (vs. Ag/AgCl), while TiO2 nanotubes were obtained at less negative voltages of - 1.0 V to - 0.3 V (vs. Ag/AgCl). Cyclic voltammetry (CV) revealed that nitrate reduction in the voltage range of - 0.3 V to - 1.4 V played an essential role in the formation of TiO2. The mechanism for TiO2 nanotube formation has been elucidated, paving the way for the future tailoring of metal oxide nanostructures by templated electrodeposition. © 2014 Elsevier B.V.

  5. A mechanistic study on templated electrodeposition of one-dimensional TiO2 nanorods and nanotubes using TiOSO4 as a precursor

    KAUST Repository

    Teo, Gladys Y.; Ryan, Mary P.; Riley, D. Jason

    2014-01-01

    One-dimensional (1D) TiO2 nanorods and nanotubes have been successfully synthesized by templated electrodeposition within an anodic aluminium oxide membrane (AAM) using an aqueous precursor containing TiOSO 4. The deposition voltages were found to influence the resultant nanostructure of TiO2. Using a precursor of aqueous TiOSO4 at pH 3 maintained at 10 °C, TiO2 nanorods were electrodeposited in the AAM between applied voltages of - 1.4 V to - 1.0 V (vs. Ag/AgCl), while TiO2 nanotubes were obtained at less negative voltages of - 1.0 V to - 0.3 V (vs. Ag/AgCl). Cyclic voltammetry (CV) revealed that nitrate reduction in the voltage range of - 0.3 V to - 1.4 V played an essential role in the formation of TiO2. The mechanism for TiO2 nanotube formation has been elucidated, paving the way for the future tailoring of metal oxide nanostructures by templated electrodeposition. © 2014 Elsevier B.V.

  6. Charge separation in branched TiO_2 nanorod array homojunction aroused by quantum effect for enhanced photocatalytic decomposition of gaseous benzene

    International Nuclear Information System (INIS)

    Wang, Xiaoxia; Ni, Qian; Zeng, Dawen; Liao, Guanglan; Xie, Changsheng

    2016-01-01

    Highlights: • Charge separation in homojunction based on the broadened band gap by quantum effect. • Absolute charge separation by the passivation effect of TiO_2 nanorod. • Long-distance electron transfer behavior in photocatalysis. • Roughed surface for enhanced light harvesting by light trapping effect. - Abstract: As known, the electron transfer behavior in photocatalysis is short-distance transportation, which leads the photo-induced electrons and holes to be localized. The temporarily separated electrons and holes will recombine with each other in the localized region. In this paper, we successfully achieved electron transfer in a homojunction of branched rutile TiO_2 nanorod @nanoparticle core-shell architecture by quantum confinement effect aroused by the nanoparticle, which is proved by the blue-shifting in UV–vis absorption spectrum of the homojunction. Meanwhile, an absolute charge separation is also achieved by the long-distance electron transfer along the single-crystalline rutile TiO_2 nanorod as uninterrupted high-speed electron transfer channel to FTO substrates. Based on the effective charge separation, the photocatalytic decomposition of gaseous benzene by the homojunction is significantly enhanced, yielding 10 times CO_2 than that of the nanorod array. This homojunction interfacial charge separation, aroused by quantum effect, through long-distance transfer along the single-crystalline nanorod gives us inspiration to achieve efficient charge separation with defect-less interfaces, which might can be utilized for real-time environmental abatement and energy generation simultaneously.

  7. Adsorption of carbon dioxide on TEPA-modified TiO_2/titanate composite nano-rods

    International Nuclear Information System (INIS)

    Kapica-Kozar, Joanna; Michalkiewicz, Beata; Wrobel, Rafal J.; Mozia, Sylwia; Pirog, Ewa; Usiak-Nejman, Ewelina K.; Serafin, Jaroslaw; Morawski, Antoni W.; Narkiewicz, Urszula

    2017-01-01

    A titanate-TiO_2 composite was obtained through hydrothermal treatment of TiO_2 in KOH solution. The presence of a titanate phase was confirmed by X-ray diffraction (XRD), whereas scanning electron microscopy (SEM) measurements showed the porous nano-rod structure of the material. The obtained nano-rods were treated with tetra-ethylene-pentamine (TEPA). Such synthesized sorbents were applied for CO_2 removal. The CO_2 capacity under a pressure of 1 bar and at 80 C was 0.47, 0.34, and 3.11 mmol.g"-"1 for the starting TiO_2, the titanate-TiO_2 composite and the TEPA-titanate-TiO_2 composite (27.4 wt% of TEPA), respectively. The experimental isotherms of CO_2 were analysed using the Langmuir, Freundlich, Sips, Toth, Unilan, Redlich-Peterson, Radke-Prausnitz, Dubinin-Radushkevich, Temkin and Pyzhev, and Jovanovich models. The error sums of squares (SSR) function was used to test the fit of the models. The analysis revealed that the Sips isotherm is the best-fitting model for the CO_2 adsorption on the starting TiO_2, whereas the Freundlich equation should be used to describe the CO_2 adsorption isotherm on the titanate-TiO_2 composite. The CO_2 adsorption on the TEPA-modified sorbents was proposed to be described using the Sips isotherm for physical sorption and the modified Sips model for chemical sorption. The calculated isosteric heat of adsorption was found to be E46 kJ mol"-"1, which is about two times higher than the heat of CO_2 absorption in liquid TEPA reported in the literature (i.e. E85 kJ.mol"-"1). Therefore, it was concluded that the TEPA-titanate-TiO_2 composite is an attractive alternative for liquid amines due to the lower energy of regeneration in the sorption-desorption process. The material was proved to be stable during multiple sorption-desorption cycles. Moreover, its thermal stability up to 150 C was confirmed by thermogravimetric analysis (TGA). All these features make it a promising alternative for sorbents based on liquid amines. (authors)

  8. Enhanced visible light photocatalytic properties of Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles

    International Nuclear Information System (INIS)

    Liu, Y.; Wei, J.H.; Xiong, R.; Pan, C.X.; Shi, J.

    2011-01-01

    In order to get photocatalysts with desired morphologies and enhanced visible light responses, the Fe-doped TiO 2 nanorod clusters and monodispersed nanoparticles were prepared by modified hydrothermal and solvothermal method, respectively. The microstructures and morphologies of TiO 2 crystals can be controlled by restraining the hydrolytic reaction rates. The Fe-doped photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy (UV-vis), N 2 adsorption-desorption measurement (BET), and photoluminescence spectroscopy (PL). The refinements of the microstructures and morphologies result in the enhancement of the specific surface areas. The Fe 3+ -dopants in TiO 2 lattices not only lead to the significantly extending of the optical responses from UV to visible region but also diminish the recombination rates of the electrons and holes. The photocatalytic activities were evaluated by photocatalytic decomposition of formaldehyde in air under visible light illumination. Compared with P25 (TiO 2 ) and N-doped TiO 2 nanoparticles, the Fe-doped photocatalysts show high photocatalytic activities under visible light.

  9. Three-dimensional self-branching anatase TiO_2 nanorods with the improved carrier collection for SrTiO_3-based perovskite solar cells

    International Nuclear Information System (INIS)

    Hu, Yajing; Wang, Chen; Tang, Ying; Huang, Lu; Fu, Jianxun; Shi, Weimin; Wang, Linjun; Yang, Weiguang

    2016-01-01

    The organic–inorganic perovskite solar cells based on ternary oxide SrTiO_3 shows a higher Voc, attributed to its slightly higher conduction band edge and better morphology of absorber material. However, its less efficient carrier collection and limited overall interfacial areas between the absorber material and the electron-transport layer (ETL), dramatically reducing the Jsc. Here, By adjusting the concentrations of the Ti(OBu)_4, we successfully prepared the three-dimensional (3D) self-branching anatase TiO_2 nanorod/SrTiO_3 nanocomposites, and slightly tuned the particle size of SrTiO_3. With the incorporation of the three-dimensional (3D) self-branching anatase TiO_2 nanorod, the Jsc of the device based on SrTiO_3 was highly boosted. The best performing solar cell we obtained exhibited a PCE of 9.99% with a Jsc of 19.48 mA/cm"2. The excellent performance could be ascribed to the improvement of charge carrier collection of SrTiO_3, better surface coverage and crystallinity of CH_3NH_3PbI_3, and enhanced light scattering ability caused by 3D self-branching anatase TiO_2 nanorods. - Highlights: • The three-dimensional (3D) self-branching anatase TiO_2 nanorod/SrTiO_3 nanocomposites were prepared. • The particle sizes of SrTiO_3 can be slightly tuned. • The best performing solar cell we obtained exhibited a PCE of 9.99% with the Jsc of 19.48 mA/cm"2.

  10. Controlled Assembly of Nanorod TiO2 Crystals via a Sintering Process: Photoanode Properties in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Saeid Vafaei

    2017-01-01

    Full Text Available We present for the first time a synthetic method of obtaining 1D TiO2 nanorods with sintering methods using bundle-shaped 3D rutile TiO2 particles (3D BR-TiO2 with the dimensions of around 100 nm. The purpose of this research is (i to control crystallization of the mixture of two kinds of TiO2 semiconductor nanocrystals, that is, 3D BR-TiO2 and spherical anatase TiO2 (SA-TiO2 on FTO substrate via sintering process and (ii to establish a new method to create photoanodes in dye-sensitized solar cells (DSSCs. In addition, we focus on the preparation of low-cost and environmentally friendly titania electrode by adopting the “water-based” nanofluids. Our results provide useful guidance on how to improve the photovoltaic performance by reshaping the numerous 3D TiO2 particles to 1D TiO2-based electrodes with sintering technique.

  11. A large interconnecting network within hybrid MEH-PPV/TiO2 nanorod photovoltaic devices

    International Nuclear Information System (INIS)

    Zeng, T-W; Lin, Y-Y; Lo, H-H; Chen, C-W; Chen, C-H; Liou, S-C; Huang, H-Y; Su, W-F

    2006-01-01

    This is a study of hybrid photovoltaic devices based on TiO 2 nanorods and poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV). We use TiO 2 nanorods as the electron acceptors and conduction pathways. Here we describe how to develop a large interconnecting network within the photovoltaic device fabricated by inserting a layer of TiO 2 nanorods between the MEH-PPV:TiO 2 nanorod hybrid active layer and the aluminium electrode. The formation of a large interconnecting network provides better connectivity to the electrode, leading to a 2.5-fold improvement in external quantum efficiency as compared to the reference device without the TiO 2 nanorod layer. A power conversion efficiency of 2.2% under illumination at 565 nm and a maximum external quantum efficiency of 24% at 430 nm are achieved. A power conversion efficiency of 0.49% is obtained under Air Mass 1.5 illumination

  12. Role of Ag2S coupling on enhancing the visible-light-induced catalytic property of TiO2 nanorod arrays

    Science.gov (United States)

    Li, Zhengcao; Xiong, Shan; Wang, Guojing; Xie, Zheng; Zhang, Zhengjun

    2016-01-01

    In order to obtain a better photocatalytic performance under visible light, Ag2S-coupled TiO2 nanorod arrays (NRAs) were prepared through the electron beam deposition with glancing angle deposition (GLAD) technique, annealing in air, followed by the successive ionic layer absorption and reaction (SILAR) method. The properties of the photoelectrochemical and photocatalytic degradation of methyl orange (MO) were thus conducted. The presence of Ag2S on TiO2 NRAs was observed to have a significant improvement on the response to visible light. It’s resulted from that Ag2S coupling can improve the short circuit photocurrent density and enhance the photocatalytic activity remarkably.

  13. Synthesis, characterization, and photocatalytic activities of Cobalt(II)-Titanium dioxide nanorods, and electrophoretic deposition of Titanium dioxide nanoparticle/nanorod composite films for self-cleaning applications

    Science.gov (United States)

    Kang, Wonjun

    This dissertation consists of two projects. The first project is synthesis, characterization, and photocatalytic activities of Co(II)-TiO2 nanorods. We modified brookite TiO2 nanorods with cobalt(II) ions to design new photocatalysts with visible light absorption. X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) data indicated that the local structure of Co(II)-TiO2 nanorods was shown as tetrahedral and octahedral Co(II) sites at TiO2 nanorod surface. Dimethylglyoxime (DMG) has been used to remove surface Co(II) from Co(II)-TiO2 nanorods to determine single-site Co(II) ions selectively attached to the TiO 2 nanorod surface. We proposed a mechanism that the Co-Co bond of the precursor Co2(CO)8 undergoes heterolysis followed by disproportionation of Co(I) to produce Co(II) and Co(0) precipitate. Finally, the Co(II)-TiO2 nanorods showed greater activity than TiO 2 nanorods in the degradation of 5,8-dihydroxy-1,4-naphthoquinone (DHNQ) dye under visible light irradiation. The second project is electrophoretic deposition (EPD) of TiO2 nanoparticle/nanorod composite films for self-cleaning applications. We developed novel electrolyte system for EPD of TiO2 nanoparticle/nanorod composites for self-cleaning coatings. A mixture of TiO2 powder and TiO2 nanorods was used as EPD suspension in a mixture of THF and acetone. TiO2 nanoparticle/nanorod composite films were fabricated on aluminium substrates via the EPD method, and were characterized by scanning electron microscope (SEM). SEM images showed that TiO2 nanoparticle/nanorod composite films had a uniform pore structure. The hydrophobic properties of surfaces in TiO2 nanoparticle/nanorod composite films were evaluated by water contact angle measurements. It was found that the surfaces of TiO2 nanoparticle/nanorod composite films were hydrophobic with contact angle of 103°. These hydrophobic surfaces are expected to have potential applications for self-cleaning.

  14. Design and construction of hierarchical TiO2 nanorod arrays by combining layer-by-layer and hydrothermal crystallization techniques for electrochromic application

    Science.gov (United States)

    Chen, Yongbo; Li, Xiaomin; Bi, Zhijie; He, Xiaoli; Li, Guanjie; Xu, Xiaoke; Gao, Xiangdong

    2018-05-01

    The hierarchical TiO2 (H-TiO2) nanorod arrays (NRAs) composed of single-crystalline nanorods and nanocrystals were finely designed and successfully constructed for electrochromic (EC) application. By combining layer-by-layer (LBL) method and hydrothermal crystallization technique, the superfine nanocrystals (5-7 nm), which can provide abundant active sites and facilitate ion insertion/extraction during EC reactions, were uniformly and conformally assembled on the surface of single-crystalline TiO2 (SC-TiO2) NRAs. The as-formed H-TiO2 NRAs integrate the advantages of one-dimensional NRAs with fast kinetics and superfine nanocrystals with high ion capacity, showing highly enhanced EC performance. Large optical contrast (40.3%), shorter coloring/bleaching time (22/4 s), high coloration efficiency (11.2 cm2 C-1), and excellent cycling stability can be achieved in H-TiO2 NRAs, superior to the pristine SC-TiO2 NRAs and nanocrystalline TiO2 films. This work provides a feasible and well-designed strategy to explore high-performance materials for EC application.

  15. Simply synthesized TiO2 nanorods as an effective scattering layer for quantum dot sensitized solar cells

    International Nuclear Information System (INIS)

    Samadpour, Mahmoud; Zad, Azam Iraji; Molaei, Mehdi

    2014-01-01

    TiO 2 nanorod layers are synthesized by simple chemical oxidation of Ti substrates. Diffuse reflectance spectroscopy measurements show effective light scattering properties originating from nanorods with length scales on the order of one micron. The films are sensitized with CdSe quantum dots (QDs) by successive ionic layer adsorption and reaction (SILAR) and integrated as a photoanode in quantum dot sensitized solar cells (QDSCs). Incorporating nanorods in photoanode structures provided 4- to 8-fold enhancement in light scattering, which leads to a high power conversion efficiency, 3.03% (V oc = 497 mV, J sc = 11.32 mA/cm 2 , FF = 0.54), in optimized structures. High efficiency can be obtained just by tuning the photoanode structure without further treatments, which will make this system a promising nanostructure for efficient quantum dot sensitized solar cells. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Optimization of charge transfer and transport processes at the CdSe quantum dots/TiO2 nanorod interface by TiO2 interlayer passivation

    International Nuclear Information System (INIS)

    Jaramillo-Quintero, O A; Rincon, M E; Triana, M A

    2017-01-01

    Surface trap states hinder charge transfer and transport properties in TiO 2 nanorods (NRs), limiting its application on optoelectronic devices. Here, we study the interfacial processes between rutile TiO 2 NR and CdSe quantum dots (QDs) using TiO 2 interlayer passivation treatments. Anatase or rutile TiO 2 thin layers were deposited on an NR surface by two wet-chemical deposition treatments. Reduced interfacial charge recombination between NRs and CdSe QDs was observed by electrochemical impedance spectroscopy with the introduction of TiO 2 thin film interlayers compared to bare TiO 2 NRs. These results can be ascribed to in-gap trap state passivation of the TiO 2 NR surface, which led to an increase in open circuit voltage. Moreover, the rutile thin layer was more efficient than anatase to promote a higher photo-excited electron transfer from CdSe QDs to TiO 2 NRs due to a large driving force for charge injection, as confirmed by surface photovoltage spectroscopy. (paper)

  17. CdS Nanoparticle-Modified α-Fe2O3/TiO2 Nanorod Array Photoanode for Efficient Photoelectrochemical Water Oxidation.

    Science.gov (United States)

    Yin, Ruiyang; Liu, Mingyang; Tang, Rui; Yin, Longwei

    2017-09-02

    In this work, we demonstrate a facile successive ionic layer adsorption and reaction process accompanied by hydrothermal method to synthesize CdS nanoparticle-modified α-Fe 2 O 3 /TiO 2 nanorod array for efficient photoelectrochemical (PEC) water oxidation. By integrating CdS/α-Fe 2 O 3 /TiO 2 ternary system, light absorption ability of the photoanode can be effectively improved with an obviously broadened optical-response to visible light region, greatly facilitates the separation of photogenerated carriers, giving rise to the enhancement of PEC water oxidation performance. Importantly, for the designed abnormal type-II heterostructure between Fe 2 O 3 /TiO 2 , the conduction band position of Fe 2 O 3 is higher than that of TiO 2 , the photogenerated electrons from Fe 2 O 3 will rapidly recombine with the photogenerated holes from TiO 2 , thus leads to an efficient separation of photogenerated electrons from Fe 2 O 3 /holes from TiO 2 at the Fe 2 O 3 /TiO 2 interface, greatly improving the separation efficiency of photogenerated holes within Fe 2 O 3 and enhances the photogenerated electron injection efficiency in TiO 2 . Working as the photoanodes of PEC water oxidation, CdS/α-Fe 2 O 3 /TiO 2 heterostucture electrode exhibits improved photocurrent density of 0.62 mA cm - 2 at 1.23 V vs. reversible hydrogen electrode (RHE) in alkaline electrolyte, with an obviously negatively shifted onset potential of 80 mV. This work provides promising methods to enhance the PEC water oxidation performance of the TiO 2 -based heterostructure photoanodes.

  18. Effect of growth time on the structure, morphology and optical properties of hydrothermally synthesized TiO2 nanorod thin films

    Science.gov (United States)

    Mohapatra, A. K.; Nayak, J.

    2018-05-01

    Titanium dioxide (TiO2) nanorod thin films were deposited on fluorine doped tin oxide coated glass substrates by a single step rapid hydrothermal process. The concentration of the precursor, the temperature of the reaction mixture were optimized in order to enhance the rate of deposition. Unlike the previously reported hydrothermal treatment for 24 - 48 h, the deposition of well aligned titanium dioxide nanorods was achieved in a short time such as 3 - 8 h. The crystal structure of the films were investigated by X-rays diffraction. The morphology of the nanorod films were studied with scanning electron microscopy. The optical properties were studied by photoluminescence spectroscopy.

  19. Enhanced photoelectrochemical and photocatalytic behaviors of MFe2O4 (M = Ni, Co, Zn and Sr) modified TiO2 nanorod arrays

    Science.gov (United States)

    Gao, Xin; Liu, Xiangxuan; Zhu, Zuoming; Wang, Xuanjun; Xie, Zheng

    2016-07-01

    Modified TiO2 nanomaterials are considered to be promising in energy conversion and ferrites modification may be one of the most efficient modifications. In this research, various ferrites, incorporated with various cations (MFe2O4, M = Ni, Co, Zn, and Sr), are utilized to modify the well aligned TiO2 nanorod arrays (NRAs), which is synthesized by hydrothermal method. It is found that all MFe2O4/TiO2 NRAs show obvious red shift into the visible light region compared with the TiO2 NRAs. In particular, NiFe2O4 modification is demonstrated to be the best way to enhance the photoelectrochemical and photocatalytic activity of TiO2 NRAs. Furthermore, the separation and transfer of charge carriers after MFe2O4 modification are clarified by electrochemical impedance spectroscopy measurements. Finally, the underlying mechanism accounting for the enhanced photocatalytic activity of MFe2O4/TiO2 NRAs is proposed. Through comparison among different transition metals modified TiO2 with the same synthesis process and under the same evaluating condition, this work may provide new insight in designing modified TiO2 nanomaterials as visible light active photocatalysts.

  20. Deliberate Design of TiO2 Nanostructures towards Superior Photovoltaic Cells.

    Science.gov (United States)

    Sun, Ziqi; Liao, Ting; Sheng, Liyuan; Kou, Liangzhi; Kim, Jung Ho; Dou, Shi Xue

    2016-08-01

    TiO2 nanostructures are being sought after as flexibly utilizable building blocks for the fabrication of the mesoporous thin-film photoelectrodes that are the heart of the third-generation photovoltaic devices, such as dye-sensitized solar cells (DSSCs), quantum-dot-sensitized solar cells (QDSSCs), and the recently promoted perovskite-type solar cells. Here, we report deliberate tailoring of TiO2 nanostructures for superior photovoltaic cells. Morphology engineering of TiO2 nanostructures is realized by designing synthetic protocols in which the precursor hydrolysis, crystal growth, and oligomer self-organization are precisely controlled. TiO2 nanostructures in forms varying from isolated nanocubes, nanorods, and cross-linked nanorods to complex hierarchical structures and shape-defined mesoporous micro-/nanostructures were successfully synthesized. The photoanodes made from the shape-defined mesoporous TiO2 microspheres and nanospindles presented superior performances, owing to the well-defined overall shapes and the inner ordered nanochannels, which allow not only a high amount of dye uptake, but also improved visible-light absorption. This study provides a new way to seek an optimal synthetic protocol to meet the required functionality of the nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Solution-processed all-oxide bulk heterojunction solar cells based on CuO nanaorod array and TiO2 nanocrystals

    Science.gov (United States)

    Wu, Fan; Qiao, Qiquan; Bahrami, Behzad; Chen, Ke; Pathak, Rajesh; Tong, Yanhua; Li, Xiaoyi; Zhang, Tiansheng; Jian, Ronghua

    2018-05-01

    We present a method to synthesize CuO nanorod array/TiO2 nanocrystals bulk heterojunction (BHJ) on fluorine-tin-oxide (FTO) glass, in which single-crystalline p-type semiconductor of the CuO nanorod array is grown on the FTO glass by hydrothermal reaction and the n-type semiconductor of the TiO2 precursor is filled into the CuO nanorods to form well-organized nano-interpenetrating BHJ after air annealing. The interface charge transfer in CuO nanorod array/TiO2 heterojunction is studied by Kelvin probe force microscopy (KPFM). KPFM results demonstrate that the CuO nanorod array/TiO2 heterojunction can realize the transfer of photo-generated electrons from the CuO nanorod array to TiO2. In this work, a solar cell with the structure FTO/CuO nanoarray/TiO2/Al is successfully fabricated, which exhibits an open-circuit voltage (V oc) of 0.20 V and short-circuit current density (J sc) of 0.026 mA cm‑2 under AM 1.5 illumination. KPFM studies indicate that the very low performance is caused by an undesirable interface charge transfer. The interfacial surface potential (SP) shows that the electron concentration in the CuO nanorod array changes considerably after illumination due to increased photo-generated electrons, but the change in the electron concentration in TiO2 is much less than in CuO, which indicates that the injection efficiency of the photo-generated electrons from CuO to TiO2 is not satisfactory, resulting in an undesirable J sc in the solar cell. The interface photovoltage from the KPFM measurement shows that the low V oc results from the small interfacial SP difference between CuO and TiO2 because the low injected electron concentration cannot raise the Fermi level significantly in TiO2. This conclusion agrees with the measured work function results under illumination. Hence, improvement of the interfacial electron injection is primary for the CuO nanorod array/TiO2 heterojunction solar cells.

  2. Functionalized TiO2 nanoparticle containing isocyanate groups

    International Nuclear Information System (INIS)

    Ou, Baoli; Li, Duxin; Liu, Qingquan; Zhou, Zhihua; Liao, Bo

    2012-01-01

    Functionalized TiO 2 nanoparticle containing isocyanate groups can extend the TiO 2 nanoparticle chemistry, and may promote their many potential applications such as in polymer composites and coatings. This paper describes a facile method to prepare functionalized TiO 2 nanoparticle with highly reactive isocyanate groups on its surface, via the reaction between toluene-2, 4-diisocyanate (TDI) and hydroxyl on TiO 2 nanoparticle surface. The main effect factors on the reaction of TiO 2 with TDI were studied by determining the reaction extent of hydroxyl groups on TiO 2 surface. Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) confirmed that reactive isocyanate groups were covalently attached to the TiO 2 nanoparticle surface. The dispersion of the TDI-functionalized TiO 2 nanoparticle was studied by transmission electron microscopy (TEM). Owing to the TDI molecules covalently bonded on TiO 2 nanoparticle surface, it was established that the TiO 2 nanoparticle can be uniformly dispersed in toluene, thus indicating that this functionalization method can prevent TiO 2 nanoparticle from agglomerating. -- Highlights: ► TiO 2 nanoparticle was functionalized with toluene-2, 4-diisocyanate. ► Functionalized TiO 2 nanoparticle can be uniformly dispersed in xylene. ► Compatibility of TiO 2 nanoparticle and organic solvent is significantly improved. ► TiO 2 containing isocyanate groups can extend the TiO 2 nanoparticle chemistry.

  3. Study of titania nanorod films deposited by matrix-assisted pulsed laser evaporation as a function of laser fluence

    Science.gov (United States)

    Caricato, A. P.; Belviso, M. R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Rella, R.; Taurino, A.

    2011-11-01

    Chemically synthesized brookite titanium dioxide (TiO2) nanorods with average diameter and length dimensions of 3-4 nm and 35-50 nm, respectively, were deposited by the matrix-assisted pulsed laser evaporation technique. A toluene nanorod solution was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser ( λ=248 nm, τ=20 ns) at the repetition rate of 10 Hz, at different fluences (25 to 350 mJ/cm2). The deposited films were structurally characterized by high-resolution scanning and transmission electron microscopy. single-crystal Si wafers and carbon-coated Cu grids were used as substrates. Structural analyses evidenced the occurrence of brookite-phase crystalline nanospheres coexisting with individually distinguishable TiO2 nanorods in the films deposited at fluences varying from 50 to 350 mJ/cm2. Nanostructured TiO2 films comprising only nanorods were deposited by lowering the laser fluence to 25 mJ/cm2. The observed shape and phase transitions of the nanorods are discussed taking into account the laser-induced heating effects, reduced melting temperature and size-dependent thermodynamic stability of nanoscale TiO2.

  4. Cr2O3 nanoparticle-functionalized WO3 nanorods for ethanol gas sensors

    Science.gov (United States)

    Choi, Seungbok; Bonyani, Maryam; Sun, Gun-Joo; Lee, Jae Kyung; Hyun, Soong Keun; Lee, Chongmu

    2018-02-01

    Pristine WO3 nanorods and Cr2O3-functionalized WO3 nanorods were synthesized by the thermal evaporation of WO3 powder in an oxidizing atmosphere, followed by spin-coating of the nanowires with Cr2O3 nanoparticles and thermal annealing in an oxidizing atmosphere. Scanning electron microscopy was used to examine the morphological features and X-ray diffraction was used to study the crystallinity and phase formation of the synthesized nanorods. Gas sensing tests were performed at different temperatures in the presence of test gases (ethanol, acetone, CO, benzene and toluene). The Cr2O3-functionalized WO3 nanorods sensor showed a stronger response to these gases relative to the pristine WO3 nanorod sensor. In particular, the response of the Cr2O3-functionalized WO3 nanorods sensor to 200 ppm ethanol gas was 5.58, which is approximately 4.4 times higher that of the pristine WO3 nanorods sensor. Furthermore, the Cr2O3-functionalized WO3 nanorods sensor had a shorter response and recovery time. The pristine WO3 nanorods had no selectivity toward ethanol gas, whereas the Cr2O3-functionalized WO3 nanorods sensor showed good selectivity toward ethanol. The gas sensing mechanism of the Cr2O3-functionalized WO3 nanorods sensor toward ethanol is discussed in detail.

  5. Quantum Dot Sensitized Solar Cells Based on TiO2/AgInS2

    Science.gov (United States)

    Pawar, Sachin A.; Jeong, Jae Pil; Patil, Dipali S.; More, Vivek M.; Lee, Rochelle S.; Shin, Jae Cheol; Choi, Won Jun

    2018-05-01

    Quantum dot heterojunctions with type-II band alignment can efficiently separate photogenerated electron-hole pairs and, hence, are useful for solar cell studies. In this study, a quantum dot sensitized solar cell (QDSSC) made of TiO2/AgInS2 is achieved to boost the photoconversion efficiency for the TiO2-based system by varying the AgInS2 layer's thickness. The TiO2 nanorods array film is prepared by using a simple hydrothermal technique. The formation of a AgInS2 QD-sensitized TiO2-nanorod photoelectrode is carried out by successive ionic layer adsorption and reaction (SILAR) technique. The effect of the QD layer on the performance of the solar cell is studied by varying the SILAR cycles of the QD coating. The synthesized electrode materials are characterized by using X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, high resolution transmission electron microscopy and solar cell performances. The results indicate that the nanocrystals have effectively covered the outer surfaces of the TiO2 nanorods. The interfacial structure of quantum dots (QDs)/TiO2 is also investigated, and the growth interface is verified. A careful comparison between TiO2/AgInS2 sensitized cells reveals that the trasfer of electrons and hole proceeds efficiently, the recombination is suppressed for the optimum thickness of the QD layer and light from the entire visible spectrum is utilised. Under AM 1.5G illumination, a high photocurrent of 1.36 mAcm-2 with an improved power conversion efficiency of 0.48% is obtained. The solar cell properties of our photoanodes suggest that the TiO2 nanorod array films co-sensitized by AgInS2 nanoclusters have potential applications in solar cells.

  6. Quantum dot sensitized solar cell based on TiO2/CdS/Ag2S heterostructure

    Science.gov (United States)

    Pawar, Sachin A.; Patil, Dipali S.; Kim, Jin Hyeok; Patil, Pramod S.; Shin, Jae Cheol

    2017-04-01

    Quantum dot sensitized solar cell (QDSSC) is fabricated based on a stepwise band structure of TiO2/CdS/Ag2S to improve the photoconversion efficiency of TiO2/CdS system by incorporating a low band gap Ag2S QDs. Vertically aligned TiO2 nanorods assembly is prepared by a simple hydrothermal technique. The formation of CdS and Ag2S QDs over TiO2 nanorods assembly as a photoanode is carried out by successive ionic layer adsorption and reaction (SILAR) technique. The synthesized electrode materials are characterized by XRD, XPS, field emission scanning electron microscopy (FE-SEM), Optical, solar cell and electrochemical performances. The results designate that the QDs of CdS and Ag2S have efficiently covered exterior surfaces of TiO2 nanorods assembly. A cautious evaluation between TiO2/CdS and TiO2/CdS/Ag2S sensitized cells tells that CdS and Ag2S synergetically helps to enhance the light harvesting ability. Under AM 1.5G illumination, the photoanodes show an improved power conversion efficiency of 1.87%, in an aqueous polysulfide electrolyte with short-circuit photocurrent density of 7.03 mA cm-2 which is four fold higher than that of a TiO2/CdS system.

  7. A thick hierarchical rutile TiO2 nanomaterial with multilayered structure

    International Nuclear Information System (INIS)

    Zhu, Shengli; Xie, Guoqiang; Yang, Xianjin; Cui, Zhenduo

    2013-01-01

    Highlights: ► We synthesized a new rutile TiO 2 nanomaterial with a hierarchical nanostructure. ► The nano architecture structure consist of nanorods and nanoflower arrays. ► The rutile TiO 2 nanomaterial is thick in size (several 10 μm). ► The TiO 2 nanomaterials present a multilayer structure. - Abstract: In the present paper, we synthesized a new type of rutile TiO 2 nanomaterial with a hierarchical nanostructure using a novel method, which combined dealloying process with chemical synthesis. The structure characters were examined using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The rutile TiO 2 nanomaterial is thick in size (several 10 μm). The hierarchical structure of the rutile TiO 2 nanomaterial consists of large quantities nanorods and nanoflower arrays. The nanoflowers consist of serveral nanopetals with diameter of 100–200 nm. The cross section of TiO 2 nanomaterials presents a multilayer structure with the layer thickness of about 3–5 μm. The rutile TiO 2 nanomaterial has high specific surface area. The formation mechanism of the rutile TiO 2 nanomaterial was discussed according to the experimental results. The rutile TiO 2 nanomaterial has potential applications in catalysis, photocatalysis and solar cells

  8. Facile synthesis of CdS@TiO2 core–shell nanorods with controllable shell thickness and enhanced photocatalytic activity under visible light irradiation

    International Nuclear Information System (INIS)

    Dong, Wenhao; Pan, Feng; Xu, Leilei; Zheng, Minrui; Sow, Chorng Haur; Wu, Kai; Xu, Guo Qin

    2015-01-01

    Graphical abstract: - Highlights: • CdS nanorods were coated with amorphous TiO 2 shells under a mild condition. • The TiO 2 shell thickness can be controlled from 3.5 to 40 nm. • CdS@TiO 2 nanorods exhibit enhanced photocatalytic activities under visible light. • Efficient charge carriers separation leads to the improved photocatalytic activity. - Abstract: Amorphous TiO 2 layers with a controllable thickness from 3.5 to 40 nm were coated on the one-dimensional CdS nanorods surface under mild conditions. Compared to the bare CdS nanorods, the as-prepared CdS@TiO 2 nanorods exhibit enhanced photocatalytic activities for phenol photodecomposition under visible light irradiation. The improved photoactivity is ascribed to the efficient separation of photogenerated electron and hole charge carriers between CdS cores and TiO 2 shells. This study promises a simple approach to fabricating CdS@TiO 2 core–shell structure nanocomposites, and can be applied for other semiconductor cores with TiO 2 shells

  9. TiO2 Nanorod Arrays Based Self-Powered UV Photodetector: Heterojunction with NiO Nanoflakes and Enhanced UV Photoresponse.

    Science.gov (United States)

    Gao, Yanyan; Xu, Jianping; Shi, Shaobo; Dong, Hong; Cheng, Yahui; Wei, Chengtai; Zhang, Xiaosong; Yin, Shougen; Li, Lan

    2018-04-04

    The self-powered ultraviolet photodetectors (UV PDs) have attracted increasing attention due to their potential applications without consuming any external power. It is important to obtain the high-performance self-powered UV PDs by a simple method for the practical application. Herein, TiO 2 nanorod arrays (NRs) were synthesized by hydrothermal method, which were integrated with p-type NiO nanoflakes to realize a high performance pn heterojunction for the efficient UV photodetection. TiO x thin film can improve the morphological and carrier transport properties of TiO 2 NRs and decrease the surface and defect states, resulting in the enhanced photocurrent of the devices. NiO/TiO 2 nanostructural heterojunctions show excellent rectifying characteristics (rectification ratio of 2.52 × 10 4 and 1.45 × 10 5 for NiO/TiO 2 NRs and NiO/TiO 2 NRs/TiO x , respectively) with a very low reverse saturation current. The PDs based on the heterojunctions exhibit good spectral selectivity, high photoresponsivity, and fast response and recovery speeds without external applied bias under the weak light radiation. The devices demonstrate good stability and repeatability under UV light radiation. The self-powered performance could be attributed to the proper built-in electric field of the heterojunction. TiO 2 NRs and NiO nanoflakes construct the well-aligned energy-band structure. The enhanced responsivity and detectivity for the devices with TiO x thin films is related to the increased interfacial charge separation efficiency, reduced carrier recombination, and relatively good electron transport of TiO 2 NRs.

  10. Dye-sensitized solar cells based on nanoparticle-decorated ZnO/TiO2 core/shell nanorod arrays

    International Nuclear Information System (INIS)

    Wang Meili; Huang Changgang; Cao Yongge; Deng Zhonghua; Liu Yuan; Huang Zhi; Huang Jiquan; Huang Qiufeng; Guo Wang; Liang Jingkui; Yu Qingjiang

    2009-01-01

    Nanoparticles (NPs) decorated ZnO/TiO 2 core/shell nanorod arrays were fabricated on transparent conductive glass substrates by sequential plasma deposition and post-annealing processes for dye-sensitized solar cells (DSSCs) applications. The NPs decorated ZnO/TiO 2 nanorods were composed of single-crystalline ZnO nanorods, homogeneously coated thin TiO 2 shells and entirely covered anatase TiO 2 NPs. The photocurrent density of the composite electrode was largely enhanced due to the enlarged surface area, the dark current was suppressed and the open-circuit voltage was increased because of the energy barrier formed at the interface between the ZnO core and the TiO 2 shell. The increased photocurrent and open-circuit voltage led to an improvement of twice the energy conversion efficiency.

  11. Graphene oxide hydrogel as a restricted-area nanoreactor for synthesis of 3D graphene-supported ultrafine TiO2 nanorod nanocomposites for high-rate lithium-ion battery anodes

    Science.gov (United States)

    Cheng, Jianli; Gu, Guifang; Ni, Wei; Guan, Qun; Li, Yinchuan; Wang, Bin

    2017-07-01

    Three-dimensional graphene-supported TiO2 nanorod nanocomposites (3D GS-TNR) are prepared using graphene oxide hydrogel as a restricted-area nanoreactor in the hydrothermal process, in which well-distributed TiO2 nanorods with a width of approximately 5 nm and length of 30 nm are conformally embedded in the 3D interconnected graphene network. The 3D graphene oxide not only works as a restricted-area nanoreactor to constrain the size, distribution and morphology of the TiO2; it also work as a highly interconnected conducting network to facilitate electrochemical reactions and maintain good structural integration when the nanocomposites are used as anode materials in lithium-ion batteries. Benefiting from the nanostructure, the 3D GS-TNR nanocomposites show high capacity and excellent long-term cycling capability at high current rates. The 3D GS-TNR composites deliver a high initial charge capacity of 280 mAh g-1 at 0.2 C and maintain a reversible capacity of 115 mAh g-1, with a capacity retention of 83% at 20 C after 1000 cycles. Meanwhile, compared with that of previously reported TiO2-based materials, the 3D GS-TNR nanocomposites show much better performance, including higher capacity, better rate capability and long-term cycling stability.

  12. Photocatalytic activity of Ti3+ self-doped dark TiO2 ultrafine nanorods, grey SiO2 nanotwin crystalline, and their composite under visible light

    Science.gov (United States)

    Zhang, Renhui; Yang, Yingchang; Leng, Senlin; Wang, Qing

    2018-04-01

    Efficient electron-holes separation is of crucial importance for the improvement of photocatalytic activity for photocatalytic reaction. In this work, dark TiO2 (D-TiO2) nanorods, grey SiO2 (G-SiO2) and D-TiO2/G-SiO2 composite with surface defects are synthesized. We report that the efficiency of photo-generated electrons and holes separation is well enhanced by introducing G-SiO2 into D-TiO2 lattice. Using first-principles method, we find that surface defects (O or Si vacancy) can be conducive to improving the optical absorption under visible-light region. Combination of the experimental results, for D-TiO2/G-SiO2 composite, the surface defects of TiO2 nanocrystallines can significantly improve the photocatalytic efficiency.

  13. Heterostructured TiO2/NiTiO3 Nanorod Arrays for Inorganic Sensitized Solar Cells with Significantly Enhanced Photovoltaic Performance and Stability.

    Science.gov (United States)

    Li, Yue-Ying; Wang, Jian-Gan; Sun, Huan-Huan; Wei, Bingqing

    2018-04-11

    Organic dyes used in the conventional dye-sensitized solar cells (DSSCs) suffer from poor light stability and high cost. In this work, we demonstrate a new inorganic sensitized solar cell based on ordered one-dimensional semiconductor nanorod arrays of TiO 2 /NiTiO 3 (NTO) heterostructures prepared via a facile two-step hydrothermal approach. The semiconductor heterostructure arrays are highly desirable and promising for DSSCs because of their direct charge transport capability and slow charge recombination rate. The low-cost NTO inorganic semiconductor possesses an appropriate band gap that matches well with TiO 2 , which behaves like a "dye" to enable efficient light harvesting and fast electron-hole separation. The solar cells constructed by the ordered TiO 2 /NTO heterostructure photoanodes show a significantly improved power conversion efficiency, high fill factor, and more promising, outstanding life stability. The present work will open up an avenue to design heterostructured inorganics for high-performance solar cells.

  14. 3D Bi2S3/TiO2 cross-linked heterostructure: An efficient strategy to improve charge transport and separation for high photoelectrochemical performance

    Science.gov (United States)

    Han, Minmin; Jia, Junhong

    2016-10-01

    A novel 3D cross-linked heterostructure of TiO2 nanorods connecting with each other via ultrathin Bi2S3 nanosheets is constructed by a facile and effective strategy. The growth mechanism has been investigated and proposed based on the evolution of microstructure by changing the reaction parameters. Benefiting from the unique cross-linked heterostructure, the as-prepared Bi2S3 nanosheets modified TiO2 nanorods arrays could achieve a high energy conversion efficiency of 3.29% which is the highest value to date for Bi2S3-only sensitized solar cells as the reported highest value is 2.23% and other reported values are less than 1%. Furthermore, the photoelectrochemical studies clearly reveal that the novel cross-linked heterostructure exhibits much better activity than 0D nanoparticles decorated TiO2 nanorods under visible light irradiation, which may be primarily ascribed to the efficient electron transfer from 2D ultrathin Bi2S3 nanosheets to 1D TiO2 nanorod arrays. The promising results in this work confirm the advantages of cross-linked heterostructure and also undoubtedly offer an attractive synthesis strategy to fabricate other nanorod-based hierarchical architecture as well as nano-devices for solar energy conversion.

  15. Solvothermal preparation of micro/nanostructured TiO_2 with enhanced lithium storage capability

    International Nuclear Information System (INIS)

    Li, Jie; Wang, Chao; Zheng, Ping; Zhang, Lei; Chen, Gongxuan; Tang, Chengchun; Wu, Tian

    2017-01-01

    Facile and controllable preparation of TiO_2 is of prime importance to elaborately tailor and then fully exploit its intriguing functionalities in energy storage, catalysis and environmental remediation. Herein, a solvothermal method combined with post annealing is conducted, in which the hydrolysis of tetrabutyl titanate is controlled by the in-situ generated water during solvothermal treatment. By controlling synthetic conditions (i.e. reactant ratio, solvothermal temperature and reaction time), we manage to tailor the morphologies of TiO_2. Specially, three typical structures (nanoparticle, nanoneedle and nanorod) are studied to reveal the growth mechanism and the effects of the synthesis conditions. Nanoneedle-structured TiO_2 shows higher specific capacity and enhanced cycle stability as anode material for lithium ion batteries. - Highlights: • Controllable preparation of nano-TiO_2 is achieved by a solvothermal method. • TiO_2 morphology is tailored by tuning reactant ratio, temperature and duration. • Needle structured TiO_2 shows enhanced lithium storage capability.

  16. Electron microscopy observation of TiO2 nanocrystal evolution in high-temperature atomic layer deposition.

    Science.gov (United States)

    Shi, Jian; Li, Zhaodong; Kvit, Alexander; Krylyuk, Sergiy; Davydov, Albert V; Wang, Xudong

    2013-01-01

    Understanding the evolution of amorphous and crystalline phases during atomic layer deposition (ALD) is essential for creating high quality dielectrics, multifunctional films/coatings, and predictable surface functionalization. Through comprehensive atomistic electron microscopy study of ALD TiO2 nanostructures at designed growth cycles, we revealed the transformation process and sequence of atom arrangement during TiO2 ALD growth. Evolution of TiO2 nanostructures in ALD was found following a path from amorphous layers to amorphous particles to metastable crystallites and ultimately to stable crystalline forms. Such a phase evolution is a manifestation of the Ostwald-Lussac Law, which governs the advent sequence and amount ratio of different phases in high-temperature TiO2 ALD nanostructures. The amorphous-crystalline mixture also enables a unique anisotropic crystal growth behavior at high temperature forming TiO2 nanorods via the principle of vapor-phase oriented attachment.

  17. Synthesis of Various Metal/TiO2 Core/shell Nanorod Arrays

    Science.gov (United States)

    Zhu, Wei; Wang, Guan-zhong; Hong, Xun; Shen, Xiao-shuang

    2011-02-01

    We present a general approach to fabricate metal/TiO2 core/shell nanorod structures by two-step electrodeposition. Firstly, TiO2 nanotubes with uniform wall thickness are prepared in anodic aluminum oxide (AAO) membranes by electrodeposition. The wall thickness of the nanotubes could be easily controlled by modulating the deposition time, and their outer diameter and length are only limited by the channel diameter and the thickness of the AAO membranes, respectively. The nanotubes' tops prepared by this method are open, while the bottoms are connected directly with the Au film at the back of the AAO membranes. Secondly, Pd, Cu, and Fe elements are filled into the TiO2 nanotubes to form core/shell structures. The core/shell nanorods prepared by this two-step process are high density and free-standing, and their length is dependent on the deposition time.

  18. The role of annealing temperature variation on ZnO nanorods array deposited on TiO2 seed layer

    Science.gov (United States)

    Asib, N. A. M.; Aadila, A.; Afaah, A. N.; Rusop, M.; Khusaimi, Z.

    2018-05-01

    Seed layer of Titanium dioxide (TiO2) by sol-gel spin coating technique were coated on glass substrate to grow Zinc oxide nanorods (ZNR) by solution-immersion method. The fabricated ZNR were annealed at various temperatures ranged from 400 to 600° C. FESEM images revealed that smaller ZNR were densely grown at optimum temperature of 450 and 500°C. Meanwhile, for all samples a dominant (0 0 2) diffraction peak of ZNR recorded by XRD patterns was at 34.4° which corresponding to hexagonal ZNR with a wurtzite structure. UV-Vis absorbance spectra showed the maximum absorption properties at UV region were detected at 450 and 500°C. The samples also showed high absorbance values at visible region.

  19. Construction of AgBr nano-cakes decorated Ti3+ self-doped TiO2 nanorods/nanosheets photoelectrode and its enhanced visible light driven photocatalytic and photoelectrochemical properties

    Science.gov (United States)

    Deng, Xiaoyong; Zhang, Huixuan; Guo, Ruonan; Cheng, Xiuwen; Cheng, Qingfeng

    2018-05-01

    In the study, AgBr nano-cakes decorated Ti3+ self-doped TiO2 nanorods/nanosheets (AgBr-Ti3+/TiO2 NRs/NSs) photoelectrode with enhanced visible light driven photocatalytic (PC) and photoelectrochemical (PECH) performance has been successfully fabricated by hydrothermal reaction, followed by sodium borohydride reduction and then successive ionic layer adsorption and reaction (SILAR) treatment. Afterwards, series of characterizations were conducted to study the physicochemical properties of AgBr-Ti3+/TiO2 NRs/NSs photoelectrode. Results indicated that AgBr nano-cakes with sizes varying from 110 to 180 nm were uniformly decorated on the surface of Ti3+/TiO2 NRs/NSs to form AgBr-Ti3+/TiO2 NRs/NSs photoelectrode. Moreover, PC activity of AgBr-Ti3+/TiO2 NRs/NSs photoelectrode was measured by degradation of methylene blue (MB). It was found that AgBr-Ti3+/TiO2 NRs/NSs photoelectrode exhibited higher PC activity (98.7%) than that of other samples within 150 min visible light illumination, owing to the enhancement of visible light harvesting and effective separation of photoproduced charges. Thus, AgBr nano-cakes and Ti3+ exerted a huge influence on the PC and PECH properties of AgBr-Ti3+/TiO2 NRs/NSs photoelectrode. Furthermore, the possible enhanced visible light driven PC mechanism of AgBr-Ti3+/TiO2 NRs/NSs was proposed and confirmed.

  20. Tunable photovoltaic performance of preferentially oriented rutile TiO2 nanorod photoanode based dye sensitized solar cells with quasi-state electrolyte.

    Science.gov (United States)

    Girisun, T C Sabari; Jeganathan, C; Pavithra, N; Anandan, S

    2018-01-23

    Photoanodes made of highly oriented TiO 2 nanorod (NR) arrays with different aspect ratios were synthesized via a one-step hydrothermal technique. Preferentially oriented single crystalline rutile TiO 2 was confirmed by the single peak in an XRD pattern (2θ = 63°, (0 0 2)). FESEM images evidenced the growth of an array of NRss having different geometries with respect to reaction time and solution refreshment rate. The length, diameter and aspect ratio of the NRs increased with reaction time as 4 h (1.98 μm, 121 nm, 15.32), 8 h (4 μm, 185 nm, 22.70), 12 h (5.6 μm, 242 nm, 27.24) and 16 h (8 μm, 254 nm, 38.02), respectively. Unlike a conventional dye-sensitized solar cell (DSSC) with a liquid electrolyte, DSSCs were fabricated here using one-dimensional rutile TiO 2 NR based photoanodes, N719 dye and a quasi-state electrolyte. The charge transport properties were investigated using current-voltage curves and fitted using the one-diode model. Interestingly the photovoltaic performance of the DSSCs increased exponentially with the length of the NR and was attributed to a higher surface to volume ratio, more dye anchoring, and channelized electron transport. The higher photovoltaic performance (J sc  = 5.99 mA cm -2 , V oc  = 750 mV, η = 3.08%) was observed with photoanodes (16 h) made with the longer, densely packed TiO 2 NRs (8 μm, 254 nm).

  1. Mn-doped CdS quantum dots sensitized hierarchical TiO2 flower-rod for solar cell application

    International Nuclear Information System (INIS)

    Yu, Libo; Li, Zhen; Liu, Yingbo; Cheng, Fa; Sun, Shuqing

    2014-01-01

    A double-layered TiO 2 film which three dimensional (3D) flowers grown on highly ordered self-assembled one dimensional (1D) TiO 2 nanorods was synthesized directly on transparent fluorine-doped tin oxide (FTO) conducting glass substrate by a facile hydrothermal method and was applied as photoanode in Mn-doped CdS quantum dots sensitized solar cells (QDSSCs). The 3D TiO 2 flowers with the increased surface areas can adsorb more QDs, which increased the absorption of light; meanwhile 1D TiO 2 nanorods beneath the flowers offered a direct electrical pathway for photogenerated electrons, accelerating the electron transfer rate. A typical type II band alignment which can effectively separate photogenerated excitons and reduce recombination of electrons and holes was constructed by Mn-doped CdS QDs and TiO 2 flower-rod. The incident photon-to-current conversion efficiency (IPCE) of the Mn-doped CdS/TiO 2 flower-rod solar cell reached to 40% with the polysulfide electrolyte filled in the solar cell. The power conversion efficiency (PCE) of 1.09% was obtained with the Mn-doped CdS/TiO 2 flower-rod solar cell under one sun illumination (AM 1.5G, 100 mW/cm 2 ), which is 105.7% higher than that of the CdS/TiO 2 nanorod solar cell (0.53%).

  2. The effects of solvent on photocatalytic properties of Bi2WO6/TiO2 heterojunction under visible light irradiation

    Science.gov (United States)

    Guo, Qiyao; Huang, Yunfang; Xu, Hui; Luo, Dan; Huang, Feiyue; Gu, Lin; Wei, Yuelin; Zhao, Huang; Fan, Leqing; Wu, Jihuai

    2018-04-01

    Bi2WO6/TiO2 heterojunction photocatalysts with two different microstructures were controllably fabricated via a facile two-step synthetic route. XRD, XPS, SEM, TEM, BET-surface, DRS, PL spectra, photoelectrochemical measurement (Mott-Schottky), and zeta-potential analyzer were employed to clarify structural and morphological characteristics of the obtained products. The results showed that Bi2WO6 nanoparticles/nanosheets grew on the primary TiO2 nanorods. The TiO2 nanorods used as a synthetic template inhibit the growth of Bi2WO6 crystals along the c-axis, resulting in Bi2WO6/TiO2 heterostructure with one-dimensional (1D) morphology. The photocatalytic properties of Bi2WO6/TiO2 heterojunction photocatalysts were strongly dependent on their shapes and structures. Compared with bare Bi2WO6 and TiO2, Bi2WO6/TiO2 composite have stronger adsorption ability and better visible light photocatalytic activities towards organic dyes. The Bi2WO6/TiO2 composite prepared in EG solvent with optimal Bi:Ti ratio of 2:12 (S-TB2) showed the highest photocatalytic activity, which could totally decompose Rhodamine B within 10 min upon irradiation with visible light (λ > 422 nm), and retained the high photocatalytic performance after five recycles, confirming its stability and practical usability. The results of PL indicated that Bi2WO6 and TiO2 could combine well to form a heterojunction structure which facilitated electron-hole separation, and lead to the increasing photocatalytic activity.

  3. A facile hydrothermal strategy for synthesis of SnO2 nanorods-graphene nanocomposites for high performance photocatalysis.

    Science.gov (United States)

    Chen, Lu-Ya; Zhang, Wei-De; Xu, Bin; Yu, Yu-Xiang

    2012-09-01

    In this study, we report a facilely hydrothermal process for synthesizing SnO2 nanorods-graphene (SnO2 nanorods-GR) composite using graphite oxide and SnCl4 as raw materials. The SnO2 nanorods-GR composite was characterized by X-ray diffraction, electron microscopy, Xray photoelectron spectroscopy, and thermogravimetric analysis. Compared to commercial TiO2 nanoparticles P25 and neat SnO2 nanorods, the SnO2 nanorods-GR composite exhibits higher photocatalytic activity under UV light irradiation. The mechanism of its high photocatalytic activity is mainly ascribed to the synergy effect between SnO2 and graphene, in which graphene acts as an adsorbent and electron acceptor due to its large structure of pi-pi conjugation from sp2 hybrid carbon atoms. The results demonstrated in this study provide a promising way to enhance the photocatalytic activity by compounding semiconductive nanocrystals with graphene.

  4. Stability and Electronic Properties of TiO2 Nanostructures With and Without B and N Doping

    DEFF Research Database (Denmark)

    Mowbray, Duncan; Martinez, Jose Ignacio; García Lastra, Juan Maria

    2009-01-01

    We address one of the main challenges to TiO2 photocatalysis, namely band gap narrowing, by combining nanostructural changes with doping. With this aim we compare TiO2’s electronic properties for small 0D clusters, 1D nanorods and nanotubes, 2D layers, and 3D surface and bulk phases using differe...

  5. Improve photovoltaic performance of titanium dioxide nanorods based dye-sensitized solar cells by Ca-doping

    International Nuclear Information System (INIS)

    Li, Weixin; Yang, Junyou; Zhang, Jiaqi; Gao, Sheng; Luo, Yubo; Liu, Ming

    2014-01-01

    Highlights: • TiO 2 nanorods doped with Ca ions were synthesized by one-step hydrothermal method. • The flat band edge of rutile TiO 2 shifted positively via Ca-doping. • The photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs) based on TiO 2 electrode was much enhanced by Ca-doping. • A relatively high open circuit voltage was obtained by adopting Ca-doped TiO 2 nanorods electrode. - Abstract: Ca-doped TiO 2 nanorod arrays were prepared via the one-step hydrothermal method successfully, and the effect of Ca ions content on the photovoltaic conversion efficiency of dye-sensitized solar cells has been fully discussed in the paper. Although no obvious change on the microstructure and morphology was observed by field emission scanning electron microscope and transmission electron microscope for the Ca-doped samples, the results of X-ray diffraction and X-ray photoelectron spectroscopy confirmed that Ti 4+ was substituted with Ca 2+ successfully. UV–vis spectroscopy results revealed that the flat band edge shifted positively by Ca ions doping. The photovoltaic conversion efficiency of the dye-sensitized solar cells based on the 2 mol% Ca-doped TiO 2 electrode was 43% higher than that of the undoped one due to the less recombination possibility

  6. Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application

    International Nuclear Information System (INIS)

    Fu, Chong; Li, Mingji; Li, Hongji; Li, Cuiping; Qu, Changqing; Yang, Baohe

    2017-01-01

    Vertically stacked graphene nanosheet/titanium carbide nanorod array/titanium (graphene/TiC nanorod array) wires were fabricated using a direct current arc plasma jet chemical vapor deposition (DC arc plasma jet CVD) method. The graphene/TiC nanorod arrays were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction spectroscopy. The TiO 2 nanotube array was reduced to the TiC nanorod array, and using those TiC nanorods as nucleation sites, the vertical graphene layer was formed on the TiC nanorod surface. The multi-target response mechanisms of the graphene/TiC nanorod array were investigated for ascorbic acid (AA), dopamine (DA), uric acid (UA), and hydrochlorothiazide (HCTZ). The vertically stacked graphene sheets facilitated the electron transfer and reactant transport with a unique porous surface, high surface area, and high electron transport network of CVD graphene sheets. The TiC nanorod array facilitated the electron transfer and firmly held the graphene layer. Thus, the graphene/TiC nanorod arrays could simultaneously respond to trace biomarkers and antihypertensive drugs. - Highlights: • Vertical graphene sheets were prepared with Ti as the catalyst via a CVD method. • TiO 2 nanotubes were key transition layers in the formation of the TiC nanorods. • Vertical growth mechanism of graphene products was discussed. • Biomolecules were detected to be a chemical sensor. • Response mechanism for analytes at the graphene/TiC nanorod array was discussed.

  7. TiO2/PbS/ZnS heterostructure for panchromatic quantum dot sensitized solar cells synthesized by wet chemical route

    Science.gov (United States)

    Bhat, T. S.; Mali, S. S.; Sheikh, A. D.; Korade, S. D.; Pawar, K. K.; Hong, C. K.; Kim, J. H.; Patil, P. S.

    2017-11-01

    So far we developed the efficient photoelectrodes which can harness the UV as well as the visible regime of the solar spectrum effectively. In order to exploit a maximum portion of solar spectrum, it is necessary to study the synergistic effect of a photoelectrode comprising UV and visible radiations absorbing materials. Present research work highlights the efforts to study the synchronized effect of TiO2 and PbS on the power conversion efficiency of quantum dot sensitized solar cell (QDSSC). A cascade structure of TiO2/PbS/ZnS QDSSC is achieved to enhance the photoconversion efficiency of TiO2/PbS system by incorporating a surface passivation layer of ZnS which avoids the recombination of charge carriers. A QDSSC is fabricated using a simple and cost-effective technique such as hydrothermally grown TiO2 nanorod arrays decorated with PbS and ZnS using successive ionic layer adsorption and reaction (SILAR) method. Synthesized electrode materials are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), High resolution-transmission electron microscopy (TEM), STEM-EDS mapping, optical and solar cell performances. Phase formation of TiO2, PbS and ZnS get confirmed from the XPS study. FE-SEM images of the photoelectrode show uniform coverage of PbS QDs onto the TiO2 nanorods which increases with increasing number of SILAR cycles. The ZnS layer not only improves the charge transport but also reduces the photocorrosion of lead chalcogenides in the presence of a liquid electrolyte. Finally, the photoelectrochemical (PEC) study is carried out using an optimized photoanode comprising TiO2/PbS/ZnS assembly. Under AM 1.5G illumination the TiO2/PbS/ZnS QDSSC photoelectrode shows 4.08 mA/cm2 short circuit current density in a polysulfide electrolyte which is higher than that of a bare TiO2 nanorod array.

  8. Efficient one-pot synthesis of Ag nanoparticles loaded on N-doped multiphase TiO2 hollow nanorod arrays with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Wu Min; Yang Beifang; Lv Yan; Fu Zhengping; Xu Jiao; Guo Ting; Zhao Yongxun

    2010-01-01

    The simultaneous Ag loaded and N-doped TiO 2 hollow nanorod arrays with various contents of silver (Ag/N-THNAs) were successfully synthesized on glass substrates by one-pot liquid phase deposition (LPD) method using ZnO nanorod arrays as template. The catalysts were characterized by Raman spectrum, field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscope (HRTEM), ultraviolet-vis (UV-vis) absorption spectrum and X-ray photoelectron spectroscopy (XPS). The results suggest that AgNO 3 additive in the precursor solutions not only can promote the anatase-to-rutile phase transition, but also influence the amount of N doping in the samples. The photocatalytic activity of all the samples was evaluated by photodegradation of methylene blue (MB) in aqueous solution. The sample exhibited the highest photocatalytic activity under UV light illumination when the AgNO 3 concentration in the precursor solution was 0.03 M, due to Ag nanoparticles acting as electron sinks; When the AgNO 3 concentration was 0.07 M, the sample performed best under visible light illumination, attributed to the synergetic effects of Ag loading, N doping, and the multiphase structure (anatase/rutile).

  9. Adsorption and Recovery of Polyphenolic Flavonoids Using TiO_2-Functionalized Mesoporous Silica Nanoparticles

    International Nuclear Information System (INIS)

    Khan, M. Arif; Wallace, William T.; Islam, Syed Z.; Nagpure, Suraj; Strzalka, Joseph

    2017-01-01

    Exploiting specific interactions with titania (TiO_2) has been proposed for the separation and recovery of a broad range of biomolecules and natural products, including therapeutic polyphenolic flavonoids which are susceptible to degradation, such as quercetin. Functionalizing mesoporous silica with TiO_2 has many potential advantages over bulk and mesoporous TiO_2 as an adsorbent for natural products, including robust synthetic approaches leading to high surface area, stable separation platforms. Here, TiO_2 surface functionalized mesoporous silica nanoparticles (MSNPs) are synthesized and characterized as a function of TiO_2 content (up to 636 mg TiO2/g). The adsorption isotherms of two polyphenolic flavonoids, quercetin and rutin, were determined (0.05-10 mg/ml in ethanol), and a 100-fold increase in the adsorption capacity was observed relative to functionalized nonporous particles with similar TiO_2 surface coverage. An optimum extent of functionalization (approximately 440 mg TiO_2/g particles) is interpreted from characterization techniques including grazing incidence x-ray scattering (GIXS), high resolution transmission electron microscopy (HRTEM) and nitrogen adsorption, which examined the interplay between the extent of TiO_2 functionalization and the accessibility of the porous structures. The recovery of flavonoids is demonstrated using ligand displacement in ethanolic citric acid solution (20% w/v), in which greater than 90% recovery can be achieved in a multistep extraction process. The radical scavenging activity (RSA) of the recovered and particle-bound quercetin as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay demonstrates greater than 80% retention of antioxidant activity by both particle-bound and recovered quercetin. In conclusion, these mesoporous titanosilicate materials can serve as a synthetic platform to isolate, recover, and potentially deliver degradation-sensitive natural products to biological systems.

  10. Hydrothermal synthesis of 1D TiO2 nanostructures for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Tacchini, I.; Ansón-Casaos, A.; Yu, Youhai; Martínez, M.T.; Lira-Cantu, M.

    2012-01-01

    Highlights: ► Hydrothermal synthesis allows the preparation of different 1D TiO 2 nanostructures easily. ► Nanotubular morphology demonstrates the highest photovoltaic efficiencies in dye sensitized cells (DSCs). ► Morphology at the nanoscale level is as decisive for DSC efficiency as it is TiO 2 crystal structure and surface area. - Abstract: Mono-dimensional titanium oxide nanostructures (multi-walled nanotubes and nanorods) were synthesized by the hydrothermal method and applied to the construction of dye sensitized solar cells (DSCs). First, nanotubes (TiNTs) and nanotubes loaded with titanium oxide nanoparticles (TiNT/NPs) were synthesized with specific surface areas of 253 m 2 /g and 304 m 2 /g, respectively. After that, thermal treatment of the nanotubes at 500 °C resulted in their transformation into the corresponding anatase nanorods (TiNT-Δ and TiNT/NPs-Δ samples). X-ray diffraction and Raman spectroscopy data indicated that titanium oxide in the pristine TiNT and TiNT/NP samples was converted into anatase phase TiO 2 during the heating. Additionally, specific surface areas and water adsorption capacities decreased after the heat treatment due to the sample agglomeration and the collapse of the inner nanotube channels. DSCs were fabricated with the nanotube TiNT and TiNT/NP samples and with the anatase nanorod TiNT-Δ and TiNT/NPs-Δ samples as well. The highest power conversion efficiency of η = 3.12% was obtained for the TiNT sample, despite its lower specific surface compared with the corresponding nanoparticle-loaded sample (TiNT/NP).

  11. Enhanced Photoelectrochemical Behavior of H-TiO2 Nanorods Hydrogenated by Controlled and Local Rapid Thermal Annealing.

    Science.gov (United States)

    Wang, Xiaodan; Estradé, Sonia; Lin, Yuanjing; Yu, Feng; Lopez-Conesa, Lluis; Zhou, Hao; Gurram, Sanjeev Kumar; Peiró, Francesca; Fan, Zhiyong; Shen, Hao; Schaefer, Lothar; Braeuer, Guenter; Waag, Andreas

    2017-12-01

    Recently, colored H-doped TiO 2 (H-TiO 2 ) has demonstrated enhanced photoelectrochemical (PEC) performance due to its unique crystalline core-disordered shell nanostructures and consequent enhanced conduction behaviors between the core-shell homo-interfaces. Although various hydrogenation approaches to obtain H-TiO 2 have been developed, such as high temperature hydrogen furnace tube annealing, high pressure hydrogen annealing, hydrogen-plasma assisted reaction, aluminum reduction and electrochemical reduction etc., there is still a lack of a hydrogenation approach in a controlled manner where all processing parameters (temperature, time and hydrogen flux) were precisely controlled in order to improve the PEC performance of H-TiO 2 and understand the physical insight of enhanced PEC performance. Here, we report for the first time a controlled and local rapid thermal annealing (RTA) approach to prepare hydrogenated core-shell H-TiO 2 nanorods grown on F:SnO 2 (FTO) substrate in order to address the degradation issue of FTO in the typical TiO 2 nanorods/FTO system observed in the conventional non-RTA treated approaches. Without the FTO degradation in the RTA approach, we systematically studied the intrinsic relationship between the annealing temperature, structural, optical, and photoelectrochemical properties in order to understand the role of the disordered shell on the improved photoelectrochemical behavior of H-TiO 2 nanorods. Our investigation shows that the improvement of PEC performance could be attributed to (i) band gap narrowing from 3.0 to 2.9 eV; (ii) improved optical absorption in the visible range induced by the three-dimensional (3D) morphology and rough surface of the disordered shell; (iii) increased proper donor density; (iv) enhanced electron-hole separation and injection efficiency due to the formation of disordered shell after hydrogenation. The RTA approach developed here can be used as a suitable hydrogenation process for TiO 2 nanorods

  12. Studied Localized Surface Plasmon Resonance Effects of Au Nanoparticles on TiO2 by FDTD Simulations

    Directory of Open Access Journals (Sweden)

    Guo-Ying Yao

    2018-06-01

    Full Text Available Localized surface plasmon resonance (LSPR plays a significant role in the fields of photocatalysis and solar cells. It can not only broaden the spectral response range of materials, but also improve the separation probability of photo-generated electron-hole pairs through local field enhancement or hot electron injection. In this article, the LSPR effects of Au/TiO2 composite photocatalyst, with different sizes and shapes, have been simulated by the finite difference time domain (FDTD method. The variation tendency of the resonance-absorption peaks and the intensity of enhanced local enhanced electric field were systematically compared and emphasized. When the location of Au nanosphere is gradually immersed into the TiO2 substrate, the local enhanced electric field of the boundary is gradually enhanced. When Au nanoshperes are covered by TiO2 at 100 nm depths, the local enhanced electric field intensities reach the maximum value. However, when Au nanorods are loaded on the surface of the TiO2 substrate, the intensity of the corresponding enhanced local enhanced electric field is the maximum. Au nanospheres produce two strong absorption peaks in the visible light region, which are induced by the LSPR effect and interband transitions between Au nanoparticles and the TiO2 substrate. For the LSPR resonance-absorption peaks, the corresponding position is red-shifted by about 100 nm, as the location of Au nanospheres are gradually immersed into the TiO2 substrate. On the other hand, the size change of the Au nanorods do not lead to a similar variation of the LSPR resonance-absorption peaks, except to change the length-diameter ratio. Meanwhile, the LSPR effects are obviously interfered with by the interband transitions between the Au nanorods and TiO2 substrate. At the end of this article, three photo-generated carrier separation mechanisms are proposed. Among them, the existence of direct electron transfer between Au nanoparticles and the TiO2

  13. Pressure effect on the Raman and photoluminescence spectra of Eu3+-doped Na2Ti6O13 nanorods

    Science.gov (United States)

    Zeng, Q. G.; Yang, G. T.; Chen, F.; Luo, J. Y.; Zhang, Z. M.; Leung, C. W.; Ding, Z. J.; Sheng, Y. Q.

    2013-12-01

    Eu3+-doped Na2Ti6O13 (Na2Ti6O13:Eu) nanorods with diameters of 30 nm and lengths 400 nm were synthesized by hydrothermal and heat treatment methods. Raman spectra at ambient conditions indicated a pure monoclinic phase (space group C2/m) of the nanorods. The relations between structural and optical properties of Na2Ti6O13:Eu nanorods under high pressures were obtained by photoluminescence and Raman spectra. Two structural transition points at 1.39 and 15.48 GPa were observed when the samples were pressurized. The first transition point was attributed to the crystalline structural distortion. The later transition point was the result of pressure-induced amorphization, and the high-density amorphous (HDA) phase formed after 15.48 GPa was structurally related to the monoclinic baddeleyite structured TiO2 (P21/c). However, the site symmetry of the local environment around the Eu3+ ions in Na2Ti6O13 increased with the rising pressure. These above results indicate the occurrence of short-range order for the local asymmetry around the Eu3+ ions and long-range disorder for the crystalline structure of Na2Ti6O13:Eu nanorods by applying pressure. After releasing the pressure from 22.74 GPa, the HDA phase is transformed to low-density amorphous form, which is attributed to be structurally related to the α-PbO2-type TiO2.

  14. Data on the effect of improved TiO2/FTO interface and Ni(OH2 cocatalyst on the photoelectrochemical performances and stability of CdS cased ZnIn2S4/TiO2 heterojunction

    Directory of Open Access Journals (Sweden)

    Mahadeo A. Mahadik

    2018-04-01

    Full Text Available This data article presents the experimental evidences of the effect of TiO2-fluorine doped tin oxide interface annealing and Ni(OH2 cocatalysts on the photoelectrochemical, structural, morphological and optical properties of Ni(OH2/CdS/ZnIn2S4/TiO2 heterojunction. The Raman spectroscopy exhibits the sharp features of the rutile phase of TiO2 and in agreement with the X-ray diffraction data. The band gap energy of the 500 °C sample was found to be 3.12 eV, further it was increased to 3.20, 3.22 eV for samples annealed at 600 and 700 °C respectively. The decrease in the band gap energy at 500 °C related to the oxygen vacancies and was analysed by photoluminescence spectroscopy analysis. The synthesis, characterization methods and other experimental details of TiO2 based heterostructure are also provided. The presence of CdS and ZnIn2S4 coating on surface of TiO2 electrodes providing a high surface area, extended visible absorption and helps to improve the change separation. This data article contains data related to the research article entitled “Highly efficient and stable 3D Ni(OH2/CdS/ZnIn2S4/TiO2 heterojunction under solar light: Effect of an improved TiO2/FTO interface and cocatalyst” (Mahadik et al., 2017 [1]. Keywords: Annealed TiO2 nanorods, CdS/ZnIn2S4/TiO2 heterostructure, Ni(OH2 cocatalyst, TiO2-FTO interface

  15. Optical and Morphological Properties of ZnO- and TiO2-Derived Nanostructures Synthesized via a Microwave-Assisted Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Nosipho Moloto

    2012-01-01

    Full Text Available A microwave-assisted hydrothermal method was used to synthesize ZnO and TiO2 nanostructures. The experimental results show that the method resulted in crystalline monodispersed ZnO nanorods that have pointed tips with hexagonal crystal phase. TiO2 nanotubes were also formed with minimum bundles. The mechanism for the formation of the tubes was validated by HRTEM results. The optical properties of both ZnO and TiO2 nanostructures showed characteristics of strong quantum confinement regime. The photoluminescence spectrum of TiO2 nanotubes shows good improvement from previously reported data.

  16. TiO2 brookite nanostructured thin layer on magneto-optical surface plasmon resonance transductor for gas sensing applications

    Science.gov (United States)

    Manera, M. G.; Colombelli, A.; Rella, R.; Caricato, A.; Cozzoli, P. D.; Martino, M.; Vasanelli, L.

    2012-09-01

    The sensing performance comparisons presented in this work were carried out by exploiting a suitable magneto-plasmonic sensor in both the traditional surface plasmon resonance configuration and the innovative magneto-optic surface plasmon resonance one. The particular multilayer transducer was functionalized with TiO2 Brookite nanorods layers deposited by matrix assisted pulsed laser evaporation, and its sensing capabilities were monitored in a controlled atmosphere towards different concentrations of volatile organic compounds mixed in dry air.

  17. 3D periodic multiscale TiO_2 architecture: a platform decorated with graphene quantum dots for enhanced photoelectrochemical water splitting

    International Nuclear Information System (INIS)

    Xu, Zhen; Yin, Min; Lu, Linfeng; Chen, Xiaoyuan; Li, Dongdong; Sun, Jing; Ding, Guqiao; Chang, Paichun

    2016-01-01

    Micropatterned TiO_2 nanorods (TiO_2NRs) via three-dimensional (3D) geometry engineering in both microscale and nanoscale decorated with graphene quantum dots (GQDs) have been demonstrated successfully. First, micropillar (MP) and microcave (MC) arrays of anatase TiO_2 films are obtained through the sol–gel based thermal nanoimprinting method. Then they are employed as seed layers in hydrothermal growth to fabricate the 3D micropillar/microcave arrays of rutile TiO_2NRs (NR), which show much-improved photoelectrochemical water-splitting performance than the TiO_2NRs grown on flat seed layer. The zero-dimensional GQDs are sequentially deposited onto the surfaces of the microscale patterned nanorods. Owing to the fast charge separation that resulted from the favorable band alignment of the GQDs and rutile TiO_2, the MP-NR-GQDs electrode achieves a photocurrent density up to 2.92 mA cm"−"2 under simulated one-sun illumination. The incident-photon-to-current-conversion efficiency (IPCE) value up to 72% at 370 nm was achieved on the MP-NR-GQDs electrode, which outperforms the flat-NR counterpart by 69%. The IPCE results also imply that the improved photocurrent mainly benefits from the distinctly enhanced ultraviolet response. The work provides a cost-effective and flexible pathway to develop periodic 3D micropatterned photoelectrodes and is promising for the future deployment of high performance optoelectronic devices. (paper)

  18. Growth and structure of carbide nanorods

    International Nuclear Information System (INIS)

    Lieber, C.M.; Wong, E.W.; Dai, H.; Maynor, B.W.; Burns, L.D.

    1996-01-01

    Recent research on the growth and structure of carbide nanorods is reviewed. Carbide nanorods have been prepared by reacting carbon nanotubes with volatile transition metal and main group oxides and halides. Using this approach it has been possible to obtain solid carbide nanorods of TiC, SiC, NbC, Fe 3 C, and BC x having diameters between 2 and 30 nm and lengths up to 20 microm. Structural studies of single crystal TiC nanorods obtained through reactions of TiO with carbon nanotubes show that the nanorods grow along both [110] and [111] directions, and that the rods can exhibit either smooth or saw-tooth morphologies. Crystalline SiC nanorods have been produced from reactions of carbon nanotubes with SiO and Si-iodine reactants. The preferred growth direction of these nanorods is [111], although at low reaction temperatures rods with [100] growth axes are also observed. The growth mechanisms leading to these novel nanomaterials have also been addressed. Temperature dependent growth studies of TiC nanorods produced using a Ti-iodine reactant have provided definitive proof for a template or topotactic growth mechanism, and furthermore, have yielded new TiC nanotube materials. Investigations of the growth of SiC nanorods show that in some cases a catalytic mechanism may also be operable. Future research directions and applications of these new carbide nanorod materials are discussed

  19. Synthesis of TiO2/Bi2S3 heterojunction with a nuclear-shell structure and its high photocatalytic activity

    International Nuclear Information System (INIS)

    Lu, Juan; Han, Qiaofeng; Wang, Zuoshan

    2012-01-01

    Highlights: ► Bi 2 S 3 was doped into TiO 2 and it was clearly proved by the expander of the crystalline lattice in XRD result. ► As-prepared TiO 2 /Bi 2 S 3 heterojunctions have a nuclear-shell structure which has not been reported. ► As-prepared TiO 2 /Bi 2 S 3 heterojunctions have the excellent photocatalytic activity. -- Abstract: TiO 2 /Bi 2 S 3 heterojunctions with a nuclear-shell structure were prepared by the coprecipitation method. The products were characterized by X-ray diffraction analysis, Raman spectra, transmission electron microscope images and energy dispersion X-ray spectra. Results showed that as-prepared Bi 2 S 3 was urchin-like, made from many nanorods, and TiO 2 /Bi 2 S 3 heterojunctions have a similar nuclear-shell structure, with Bi 2 S 3 as the shell and TiO 2 as the nuclear. The photocatalytic experiments performed under UV irradiation using methyl orange as the pollutant revealed that the photocatalytic activity of TiO 2 could be improved by introduction of an appropriate amount of Bi 2 S 3 . However, excessive amount of Bi 2 S 3 would result in the decrease of photocatalytic activity of TiO 2 . The relative mechanism was proposed.

  20. Solid state perovskite solar modules by vacuum-vapor assisted sequential deposition on Nd:YVO_4 laser patterned rutile TiO_2 nanorods

    International Nuclear Information System (INIS)

    Fakharuddin, Azhar; Wali, Qamar; Rauf, Muhammad; Jose, Rajan; Palma, Alessandro L; Giacomo, Francesco Di; Casaluci, Simone; Matteocci, Fabio; Carlo, Aldo Di; Brown, Thomas M

    2015-01-01

    The past few years have witnessed remarkable progress in solution-processed methylammonium lead halide (CH_3NH_3PbX_3, X = halide) perovskite solar cells (PSCs) with reported photoconversion efficiency (η) exceeding 20% in laboratory-scale devices and reaching up to 13% in their large area perovskite solar modules (PSMs). These devices mostly employ mesoporous TiO_2 nanoparticles (NPs) as an electron transport layer (ETL) which provides a scaffold on which the perovskite semiconductor can grow. However, limitations exist which are due to trap-limited electron transport and non-complete pore filling. Herein, we have employed TiO_2 nanorods (NRs), a material offering a two-fold higher electronic mobility and higher pore-filing compared to their particle analogues, as an ETL. A crucial issue in NRs’ patterning over substrates is resolved by using precise Nd:YVO_4 laser ablation, and a champion device with η ∼ 8.1% is reported via a simple and low cost vacuum-vapor assisted sequential processing (V-VASP) of a CH_3NH_3PbI_3 film. Our experiments showed a successful demonstration of NRs-based PSMs via the V-VASP technique which can be applied to fabricate large area modules with a pin-hole free, smooth and dense perovskite layer which is required to build high efficiency devices. (paper)

  1. Characteristics of zinc oxide nanorod array/titanium oxide film heterojunction prepared by aqueous solution deposition

    Science.gov (United States)

    Lee, Ming-Kwei; Hong, Min-Hsuan; Li, Bo-Wei

    2016-07-01

    The characteristics of a ZnO nanorod array/TiO2 film heterojunction were investigated. A TiO2 film was prepared on glass by aqueous solution deposition with precursors of ammonium hexafluorotitanate and boric acid at 40 °C. Then, a ZnO seed layer was prepared on a TiO2 film/glass substrate by RF sputtering. A vertically oriented ZnO nanorod array was grown on a ZnO seed layer/TiO2 film/glass substrate by aqueous solution deposition with precursors of zinc nitrate and hexamethylenetetramine (HMT) at 70 °C. After thermal annealing in N2O ambient at 300 °C, this heterojunction used as an oxygen gas sensor shows much better rise time, decay time, and on/off current ratio than as-grown and annealed ZnO nanorods.

  2. Cellulose nanofiber-templated three-dimension TiO 2 hierarchical nanowire network for photoelectrochemical photoanode

    Science.gov (United States)

    Zhaodong Li; Chunhua Yao; Fei Wang; Zhiyong Cai; Xudong Wang

    2014-01-01

    Three dimensional (3D) nanostructures with extremely large porosity possess a great promise for the development of high-performance energy harvesting storage devices. In this paper, we developed a high-density 3D TiO2 fiber-nanorod (NR) heterostructure for photoelectrochemical (PEC) water splitting. The hierarchical structure was synthesized on a...

  3. Whiter, brighter, and more stable cellulose paper coated with TiO2 /SiO2 core/shell nanoparticles using a layer-by-layer approach.

    Science.gov (United States)

    Cheng, Fei; Lorch, Mark; Sajedin, Seyed Mani; Kelly, Stephen M; Kornherr, Andreas

    2013-08-01

    To inhibit the photocatalytic degradation of organic material supports induced by small titania (TiO2 ) nanoparticles, four kinds of TiO2 nanoparticles, that is, commercial P25-TiO2 , commercial rutile phase TiO2 , rutile TiO2 nanorods and rutile TiO2 spheres, prepared from TiCl4 , were coated with a thin, but dense, coating of silica (SiO2 ) using a conventional sol-gel technique to form TiO2 /SiO2 core/shell nanoparticles. These core/shell particles were deposited and fixed as a very thin coating onto the surface of cellulose paper samples by a wet-chemistry polyelectrolyte layer-by-layer approach. The TiO2 /SiO2 nanocoated paper samples exhibit higher whiteness and brightness and greater stability to UV-bleaching than comparable samples of blank paper. There are many potential applications for this green chemistry approach to protect cellulosic fibres from UV-bleaching in sunlight and to improve their whiteness and brightness. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. BiOI/TiO2-nanorod array heterojunction solar cell: Growth, charge transport kinetics and photoelectrochemical properties

    International Nuclear Information System (INIS)

    Wang, Lingyun; Daoud, Walid A.

    2015-01-01

    Highlights: • BiOI/TiO 2 photoanodes were fabricated by a simple solvothermal/hydrothermal method. • BiOI/TiO 2 (PVP) showed a 13-fold increase in photocurrent density compared to TiO 2 . • Charge transport kinetics within the BiOI/TiO 2 heterojunctions are discussed. - Abstract: A series of BiOI/TiO 2 -nanorod array photoanodes were grown on fluorine-doped tin oxide (FTO) glass using a simple two-step solvothermal/hydrothermal method. The effects of the hydrothermal process, such as TiO 2 nanorod growth time, BiOI concentration and the role of surfactant, polyvinylpyrrolidone (PVP), on the growth of BiOI, were investigated. The heterojunctions were characterized by X-ray diffraction, UV–vis absorbance spectroscopy and scanning electron microscopy. The photoelectrochemical properties of the as-grown junctions, such as linear sweep voltammetry (LSV) behavior, photocurrent response and incident photon-to-electron conversion efficiency (IPCE) under Xenon lamp illumination, are presented. The cell with BiOI/TiO 2 (PVP) as photoanode can reach a short current density (J sc ) of 0.13 mA/cm 2 and open circuit voltage (V oc ) of 0.46 V vs. Ag/AgCl under the irradiation of a 300 W Xenon lamp. Compared to bare TiO 2 , the IPCE of BiOI/TiO 2 (PVP) increased 4–5 times at 380 nm. Furthermore, the charge transport kinetics within the heterojunction is also discussed

  5. Facile Preparation of TiO2 Nanobranch/Nanoparticle Hybrid Architecture with Enhanced Light Harvesting Properties for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Ju Seong Kim

    2015-01-01

    Full Text Available We report TiO2 nanobranches/nanoparticles (NBN hybrid architectures that can be synthesized by a facile solution phase method. The hybrid architecture simultaneously improves light harvesting and charge collection performances for a dye-sensitized solar cell. First, TiO2 nanorods with a trunk length of 2 μm were grown on a fluorine-doped tin oxide (FTO/glass substrate, and then nanobranches and nanoparticles were deposited on the nanorods’ trunks through a solution method using an aqueous TiCl3 solution at 80°C. The relative amount of nanobranches and nanoparticles can be controlled by multiplying the number of TiCl3 treatments to maximize the amount of surface area. We found that the resultant TiO2 NBN hybrid architecture greatly improves the amount of dye adsorption (five times compared to bare nanorods due to the enhanced surface area, while maintaining a fast charge collection, leading to a three times higher current density and thus tripling the maximum power conversion efficiency for a dye-sensitized solar cell.

  6. Improving the photovoltaic performance of the all-solid-state TiO2 NR/CuInS2 solar cell by hydrogen plasma treatment

    Science.gov (United States)

    Chen, Bingfeng; Niu, Wenzhe; Lou, Zirui; Ye, Zhizhen; Zhu, Liping

    2018-07-01

    The interfacial properties of the heterojunction between p-type and n-type materials play an important role in the performance of the solar cell. In this paper, a p-type CuInS2 film was deposited on TiO2 nanorod arrays by spin coating to fabricate an all-solid-state solar cell and the TiO2 nanorod arrays were treated with hydrogen plasma(H:TiO2) to ameliorate the interfacial properties. The influence of the hydrogen plasma treatment on the performance of the solar cell was investigated. The short-circuit current density was obviously raised and the power conversion efficiency of the solar cell improved to 0.30%, which is three times that of solar cells without hydrogen plasma treatment. The enhancement of the performance is attributed to not only the enhancement of carrier separation and transport, but the reduction of the recombination of electrons and holes, which is caused by hydrogen plasma treatment.

  7. Improving the photovoltaic performance of the all-solid-state TiO2 NR/CuInS2 solar cell by hydrogen plasma treatment.

    Science.gov (United States)

    Chen, Bingfeng; Niu, Wenzhe; Lou, Zirui; Ye, Zhizhen; Zhu, Liping

    2018-07-06

    The interfacial properties of the heterojunction between p-type and n-type materials play an important role in the performance of the solar cell. In this paper, a p-type CuInS 2 film was deposited on TiO 2 nanorod arrays by spin coating to fabricate an all-solid-state solar cell and the TiO 2 nanorod arrays were treated with hydrogen plasma(H:TiO 2 ) to ameliorate the interfacial properties. The influence of the hydrogen plasma treatment on the performance of the solar cell was investigated. The short-circuit current density was obviously raised and the power conversion efficiency of the solar cell improved to 0.30%, which is three times that of solar cells without hydrogen plasma treatment. The enhancement of the performance is attributed to not only the enhancement of carrier separation and transport, but the reduction of the recombination of electrons and holes, which is caused by hydrogen plasma treatment.

  8. Mesoporous 1D TiO_2 nanostructures obtained by the hydrothermal method

    International Nuclear Information System (INIS)

    Cabrera, Julieta; Vilchez, Ricardo; Alarcon, Hugo; Rodriguez, Juan; Lopez, Alcides

    2014-01-01

    Mesoporous one dimensional nanostructures (1D) such as nanotubes/nanorods of TiO_2 were synthesized by alkaline hydrothermal treatment of TiO_2 nanoparticles obtained by Sol Gel process (SG-TiO_2). The electronic microscopy images revealed the nanotubes formation of approximately 8 nm in diameter and more than around 400 nm long after hydrothermal treatment of 18 h and 24 h. These tube-like structures were maintained after acid treatment but after annealing at 400 °C during 2 hours these turn into rod-like structures of crystalline TiO_2 corresponding to anatase phase as revealed the diffraction patterns obtained by X-Ray Diffraction (XRD). The conversion of nanoparticles into nanotubes and afterward into rodlike shape was also confirmed by the variations in the BET surface area from 201, 269 and 97 m"2/g around, respectively. The adsorption-desorption isotherms also revealed hysteresis loop typical of mesoporous materials. These qualities are attractive to use these materials for the treatment of pollutants in water, for example. (author)

  9. Adsorption of methyl orange by synthesized and functionalized-CNTs with 3-aminopropyltriethoxysilane loaded TiO2 nanocomposites.

    Science.gov (United States)

    Ahmad, Amirah; Razali, Mohd Hasmizam; Mamat, Mazidah; Mehamod, Faizatul Shimal Binti; Anuar Mat Amin, Khairul

    2017-02-01

    This study aims to develop a highly efficient adsorbent material. CNTs are prepared using a chemical vapor deposition method with acetylene and synthesized mesoporous Ni-MCM41 as the carbon source and catalyst, respectively, and are then functionalized using 3-aminopropyltriethoxysilane (APTES) through the co-condensation method and loaded with commercial TiO 2 . Results of X-ray powder diffraction (XRD), Raman spectra, and Fourier transform infrared spectroscopy (FTIR) confirm that the synthesized CNTs grown are multi-walled carbon nanotubes (MWNTs). Transmission electron microscopy shows good dispersion of TiO 2 nanoparticles onto functionalized-CNTs loaded TiO 2 , with the diameter of a hair-like structure measuring between 3 and 8 nm. The functionalized-CNTs loaded TiO 2 are tested as an adsorbent for removal of methyl orange (MO) in aqueous solution, and results show that 94% of MO is removed after 10 min of reaction, and 100% after 30 min. The adsorption kinetic model of functionalized-CNTs loaded TiO 2 follows a pseudo-second order with a maximum adsorption capacity of 42.85 mg/g. This study shows that functionalized-CNTs loaded TiO 2 has considerable potential as an adsorbent material due to the short adsorption time required to achieve equilibrium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Modest effect on plaque progression and vasodilatory function in atherosclerosis-prone mice exposed to nanosized TiO2

    DEFF Research Database (Denmark)

    Mikkelsen, Lone; Sheykhzade, Majid; Jensen, Keld A

    2011-01-01

    of atherosclerotic plaques in aorta was assessed in mice exposed to nanosized TiO2 (0.5 mg/kg bodyweight) once a week for 4 weeks. We measured mRNA levels of Mcp-1, Mip-2, Vcam-1, Icam-1 and Vegf in lung tissue to assess pulmonary inflammation and vascular function. TiO2-induced alterations in nitric oxide (NO...... were intratracheally instilled (0.5 mg/kg bodyweight) with rutile fine TiO2 (fTiO2, 288 nm), photocatalytic 92/8 anatase/rutile TiO2 (pTiO2, 12 nm), or rutile nano TiO2 (nTiO2, 21.6 nm) at 26 and 2 hours before measurement of vasodilatory function in aorta segments mounted in myographs. The progression...

  11. Carboxylic acid-functionalized SBA-15 nanorods for gemcitabine delivery

    International Nuclear Information System (INIS)

    Bahrami, Zohreh; Badiei, Alireza; Ziarani, Ghodsi Mohammadi

    2015-01-01

    The present study deals with the functionalization of mesoporous silica nanoparticles as drug delivery systems. Mono, di, and tri amino-functionalized SBA-15 nanorods were synthesized by post-grafting method using (3-aminopropyl) triethoxysilane, N-(2-aminoethyl-)3- aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino) ethylamino] propyl trimethoxysilane, respectively. The carboxylic acid derivatives of the amino-functionalized samples were obtained using succinic anhydride. Tminopropyltrimethoxysilanehe obtained modified materials were investigated as matrixes for the anticancer drug (gemcitabine) delivery. The prepared samples were characterized by SAXS, N 2 adsorption/desorption, SEM, transmission electron microscopy, thermogravimetric analysis, and FTIR and UV spectroscopies. The adsorption and release properties of all samples were studied. It was revealed that the adsorption capacity and release behavior of gemcitabine were highly dependent on the type of the introduced functional groups. The carboxylic acid-modified samples have higher loading content, due to the strong interaction with gemcitabine. The maximum content of deposited drug in the modified SBA-15 nanorods is close to 40 wt%. It was found that the surface functionalization leads toward significant decrease of the drug release rate. The carboxylic acid-functionalized samples have slower release rate in contrast with the amino-functionalized samples

  12. CdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity

    Directory of Open Access Journals (Sweden)

    Fakher Laatar

    2017-12-01

    Full Text Available CdSe nanorods (NRs with an average length of ≈120 nm were prepared by a solvothermal process and associated to TiO2 nanoparticles (Aeroxide® P25 by annealing at 300 °C for 1 h. The content of CdSe NRs in CdSe/TiO2 composites was varied from 0.5 to 5 wt %. The CdSe/TiO2 heterostructured materials were characterized by XRD, TEM, SEM, XPS, UV–visible spectroscopy and Raman spectroscopy. TEM images and XRD patterns show that CdSe NRs with wurtzite structure are associated to TiO2 particles. The UV–visible spectra demonstrate that the narrow bandgap of CdSe NRs serves to increase the photoresponse of CdSe/TiO2 composites until ≈725 nm. The CdSe (2 wt %/TiO2 composite exhibits the highest photocatalytic activity for the degradation of rhodamine B in aqueous solution under simulated sunlight or visible light irradiation. The enhancement in photocatalytic activity likely originates from CdSe sensitization of TiO2 and the heterojunction between these materials which facilitates electron transfer from CdSe to TiO2. Due to its high stability (up to ten reuses without any significant loss in activity, the CdSe/TiO2 heterostructured catalysts show high potential for real water decontamination.

  13. Pyrrole-regulated precipitation of titania nanorods on polymer fabrics for photocatalytic degradation of trace toluene in air

    Science.gov (United States)

    Gu, Yi-Jie; Wen, Wei; Xu, Yang; Wu, Jin-Ming

    2018-03-01

    When compared with nanoparticulate counterparts, TiO2 thin films with vertically aligned one-dimensional (1D) nanostructures exhibit enhanced photocatalytic activity because of the highly accessible surface area. The perpendicular of the 1D nanostructure reduces the charge migration path and hence the carrier recombination rate, which also contributes to the photocatalytic activity. Furthermore, TiO2 thin films on flexible substrates are more suitable to degrade pollutants in either water or air because of its easy recovery and free-bending shape. In this study, flexible polyethylene fabrics were firstly coated with a sol-gel nanoparticulate TiO2 seed layer. Quasi-aligned TiO2 nanorods were then precipitated homogeneously under an atmospheric pressure and a low temperature not exceeding 80 °C, using a peroxy-titanium complex precursor with the additive of pyrrole. It is found that the density of TiO2 nanorods increased with the increasing amount of pyrrole monomers. The resultant TiO2 film on polyethylene fabrics exhibited a much reduced band gap of ca. 2.86 eV, which can be attributed to the surface oxygen deficiencies. When utilized to assist photocatalytic degradation of trace toluene in air under the UV light illumination, the TiO2 film exhibited a gradually increased photocatalytic activity upon the increasing cycles for up to six, because of the gradual removal of trace organics on the TiO2 surface. The highest photocatalytic efficiency is recorded to be 5 times that of TiO2 nanotube arrays, which are regarded as an excellent photocatalyst for air cleaning.

  14. Synthesis of mesoporous β-Ga2O3 nanorods using PEG as template: preparation, characterization and photocatalytic properties.

    Science.gov (United States)

    Zhao, Weirong; Yang, Yong; Hao, Rui; Liu, Feifei; Wang, Yan; Tan, Min; Tang, Jing; Ren, Daqing; Zhao, Dongye

    2011-09-15

    Mesoporous wide bandgap semiconductors offer high photocatalytic oxidation and mineralization activities. In this study, mesoporous β-Ga(2)O(3) diamond nanorods with 200-300 nm in diameter and 1.0-1.2 μm in length were synthesized via a urea-based hydrothermal method using polyethylene glycol (PEG) as template agent. The UV photocatalytic oxidation activity of β-Ga(2)O(3) for gaseous toluene was evaluated, and 7 kinds of intermediates were monitored online by a proton transfer reaction mass spectrometry. Photoluminescence spectra manifested that the dosage and molecular weight of PEG are crucial for formation of vacancies and photocatalytic oxidation activities. A PEG-assisted hydrothermal formation mechanism of mesoporous β-Ga(2)O(3) diamond nanorods was proposed. Based on the health risk influence index (η) of the intermediates, the calculated health risks revealed that the β-Ga(2)O(3) nanorods with a η value of 9.6 are much safer than TiO(2) (η = 17.6). Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Sensing behavior of acetone vapors on TiO_2 nanostructures — application of density functional theory

    Directory of Open Access Journals (Sweden)

    V. Nagarajan

    2017-12-01

    Full Text Available The electronic properties of TiO_2 nanostructure are explored using density functional theory. The adsorption properties of acetone on TiO_2 nanostructure are studied in terms of adsorption energy, average energy gap variation and Mulliken charge transfer. The density of states spectrum and the band structure clearly reveals the adsorption of acetone on TiO_2 nanostructures. The variation in the energy gap and changes in the density of charge are observed upon adsorption of acetone on n-type TiO_2 base material. The results of DOS spectrum reveal that the transfer of electrons takes place between acetone vapor and TiO_2 base material. The findings show that the adsorption property of acetone is more favorable on TiO_2 nanostructure. Suitable adsorption sites of acetone on TiO_2 nanostructure are identified at atomistic level. From the results, it is confirmed that TiO_2 nanostructure can be efficiently utilized as a sensing element for the detection of acetone vapor in a mixed environment.

  16. The Effects of Anchor Groups on (1) TiO2-Catalyzed Photooxidation and (2) Linker-Assisted Assembly on TiO2

    Science.gov (United States)

    Anderson, Ian Mark

    Quantum dot-sensitized solar cells (QDSSCs) are a popular target for research due to their potential for highly efficient, easily tuned absorption. Typically, light is absorbed by quantum dots attached to a semiconductor substrate, such as TiO2, via bifunctional linker molecules. This research aims to create a patterned monolayer of linker molecules on a TiO2 film, which would in turn allow the attachment of a patterned layer of quantum dots. One method for the creation of a patterned monolayer is the functionalization of a TiO2 film with a linker molecule, followed by illumination with a laser at 355 nm. This initiates a TiO 2-catalyzed oxidation reaction, causing loss of surface coverage. A second linker molecule can then be adsorbed onto the TiO2 surface in the illuminated area. Towards that end, the behaviors of carboxylic and phosphonic acids adsorbed on TiO2 have been studied. TiO2 films were functionalized by immersion in solutions a single adsorbate and surface coverage was determined by IR spectroscopy. It is shown that phosphonic acids attain higher surface coverage than carboxylic acids, and will displace them from TiO2 when in a polar solvent. Alkyl chain lengths, which can influence stabilities of monolayers, are shown not to have an effect on this relationship. Equilibrium binding data for the adsorption of n-hexadecanoic acid to TiO2 from a THF solution are presented. It is shown that solvent polarity can affect monolayer stability; carboxylates and phosphonates undergo more desorption into polar solvents than nonpolar. Through illumination, it was possible to remove nearly all adsorbed linkers from TiO2. However, the illuminated areas were found not to be receptive to attachment by a second adsorbate. A possible reason for this behavior is presented. I also report on the synthesis and characterization of a straight-chain, thiol-terminated phosphonic acid. Initial experiments involving monolayer formation and quantum dot attachment are presented

  17. Existence, release, and antibacterial actions of silver nanoparticles on Ag–PIII TiO2 films with different nanotopographies

    Directory of Open Access Journals (Sweden)

    Li J

    2014-07-01

    Full Text Available Jinhua Li, Yuqin Qiao, Hongqin Zhu, Fanhao Meng, Xuanyong Liu State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China Abstract: Nanotopographical TiO2 films (including nanorod, nanotip, and nanowire topographies were successfully fabricated on the metallic Ti surface via hydrothermal treatment and then underwent Ag plasma immersion ion implantation to incorporate Ag with TiO2. The surface morphology, phase component, and chemical composition before and after Ag–PIII were characterized. In view of the potential clinical applications, both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus were used to estimate their antimicrobial effect. The nanostructured TiO2 films on a Ti surface exhibit a better bacteriostatic effect on both microbes compared to the pristine Ti. The nanotopographies of the TiO2 films affect the nucleation, growth, and distribution of Ag nanoparticles in the films during Ag–PIII process. The Ag nanoparticles are completely embedded into the nanorod film while partially exposed out of the nanotip and nanowire films, which account for the significant differences in the release behaviors of Ag ions in vitro. However, no significant difference exists in their antimicrobial activity against both microbes. The antimicrobial actions of the Ag@TiO2 system described here consist of two methods – the contact-killing action and the release-killing action. Nevertheless, based on the observed results, the contact-killing action should be regarded as the main method to destroy microbes for all the Ag plasma-modified TiO2 nanofilms. This study provides insight to optimize the surface design of Ti-based implants to acquire more effective antimicrobial surfaces to meet clinical applications. Keywords: silver, nanoparticles, titania, nanostructure, antibacterial, plasma

  18. Characterization of LPD-TiO2 compact layer in ZnO nano-rods photoelectrode for dye-sensitized solar cell

    Science.gov (United States)

    Huang, Jung-Jie; Wu, Chih-Kan; Hsu, Chun-Fa

    2017-12-01

    A titanium oxide (TiO2) compact layer was used to enhance the performance of a dye-sensitized solar cell (DSSC) by reducing the electrical loss from recombination at the indium tin oxide (ITO)/electrolyte interface and by improving the electrical contact between ITO and the zinc oxide (ZnO) nano-rod photoelectrode. The TiO2 compact layer was deposited on ITO glass using the liquid phase deposition (LPD) method. DSSCs fabricated with and without the LPD-TiO2 compact layer were compared. In addition, various thicknesses of the LPD-TiO2 compact layer were evaluated. The light-to-electricity conversion efficiency of the DSSC increased from 0.43 to 0.75% by incorporating the LPD-TiO2 compact layer. Experimental results demonstrated that the LPD method is a promising alternative to the conventional TiO2 compact layer technology for the production of high-performance DSSCs.

  19. Three-dimensional ruthenium-doped TiO 2 sea urchins for enhanced visible-light-responsive H 2 production

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Phan, Thuy-Duong; Luo, Si; Vovchok, Dimitriy; Llorca, Jordi; Sallis, Shawn; Kattel, Shyam; Xu, Wenqian; Piper, Louis F. J.; Polyansky, Dmitry E.; Senanayake, Sanjaya D.; Stacchiola, Dario J.; Rodriguez, José A.

    2016-01-01

    Three-dimensional (3D) monodispersed sea urchin-like Ru-doped rutile TiO2 hierarchical architectures composed of radially aligned, densely-packed TiO2 nanorods have been successfully synthesized via an acid-hydrothermal method at low temperature without the assistance of any structure-directing agent and post annealing treatment. The addition of a minuscule concentration of ruthenium dopants remarkably catalyze the formation of the 3D urchin structure and drive the enhanced photocatalytic H2 production under visible light irradiation, not possible on undoped and bulk rutile TiO2. Increasing ruthenium doping dosage not only increases the surface area up to 166 m2 g-1 but also induces enhanced photo response in the regime of visible and near infrared light. The doping introduces defect impurity levels, i.e. oxygen vacancy and under-coordinated Ti3+, significantly below the conduction band of TiO2, and ruthenium species act as electron donors/acceptors that accelerate the photogenetated hole and electron transfer and efficiently suppress the rapid charge recombination, therefore improving the visible-light-driven activity.

  20. The TiO2 Hierarchical Structure with Nanosheet Spheres for Improved Photoelectric Performance in Dye-Sensitized Solar Cells

    Science.gov (United States)

    Yin, Xin; Guan, Yingli; Song, Lixin; Xie, Xueyao; Du, Pingfan; Xiong, Jie

    2018-04-01

    A bi-layer photoanode is successfully fabricated for dye-sensitized solar cells (DSSCs) composed of P25/TiO2 nanorod (P25/TNR) as the underlayer and TiO2 nanosheet spheres (TNSs) as the light-scattering layer. Notably, the P25-TNR provides multiple functions, including more dye loading, more efficient charge transport and a lower electron recombination rate for the photoanode. Besides, the unique structure of TNS can significantly improve the light-harvesting capacity, boosting the light-harvesting efficiency. Therefore, an enhanced short-circuit current and power conversion efficiency of 18.04 mA cm-2 and 5.99%, respectively, were achieved for the P25/TNR-TNS-based DSSC, which was better than that of the P25-TNS-based (15.17 mA cm-2, 5.36%) and bare TNS-based (11.43 mA cm-2, 4.14%) DSSCs. This indicates that this bi-layer structure effectively combines the advantages of the one-dimensional (1D) nanostructure and three-dimensional (3D) hierarchical structure. In short, this work demonstrates the possibility of fabricating desirable photoanodes for high-performance DSSCs by rational design of nanostructures and effective combination of multi-functional components.

  1. Hydrothermal synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of mesoporous anatase TiO2 nanopowders

    International Nuclear Information System (INIS)

    Pavasupree, Sorapong; Jitputti, Jaturong; Ngamsinlapasathian, Supachai; Yoshikawa, Susumu

    2008-01-01

    Mesoporous anatase TiO 2 nanopowder was synthesized by hydrothermal method at 130 deg. C for 12 h. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), HRTEM, and Brunauer-Emmett-Teller (BET) surface area. The as-synthesized sample with narrow pore size distribution had average pore diameter about 3-4 nm. The specific BET surface area of the as-synthesized sample was about 193 m 2 /g. Mesoporous anatase TiO 2 nanopowders (prepared by this study) showed higher photocatalytic activity than the nanorods TiO 2 , nanofibers TiO 2 mesoporous TiO 2 , and commercial TiO 2 nanoparticles (P-25, JRC-01, and JRC-03). The solar energy conversion efficiency (η) of the cell using the mesoporous anatase TiO 2 was about 6.30% with the short-circuit current density (Jsc) of 13.28 mA/cm 2 , the open-circuit voltage (Voc) of 0.702 V and the fill factor (ff) of 0.676; while η of the cell using P-25 reached 5.82% with Jsc of 12.74 mA/cm 2 , Voc of 0.704 V and ff of 0.649

  2. Preparation and solar-light photocatalytic activity of TiO2 composites: TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite

    Science.gov (United States)

    Li, Y.; Li, S. G.; Wang, J.; Li, Y.; Ma, C. H.; Zhang, L.

    2014-12-01

    Three TiO2 loaded composites, TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite, were prepared in order to improve the solar-light photocatalytic activity of TiO2. The results showed that the photocatalytic activity could obviously be enhanced by loading appropriate amount of inorganic mineral materials. Meanwhile, TiO2 content, heat-treatment temperature and heat-treatment time on the photocatalytic activity were reviewed. Otherwise, the effect of solar light irradiation time and dye concentration on the photocatalytic degradation of Acid Red B was investigated. Furthermore, the degradation mechanism and adsorption process were also discussed.

  3. Enhanced gas sensing performance of TiO2 functionalized magneto-optical SPR sensors

    OpenAIRE

    Manera, Maria Grazia; Montagna, G.; Ferreiro-Vila, Elías; González-García, Lola; Sánchez-Valencia, J.R.; González-Elipe, Agustín R.; Cebollada, Alfonso; García-Martín, José Miguel; García-Martín, Antonio; Armelles Reig, Gaspar; Rella, Roberto

    2011-01-01

    Porous TiO2 thin films deposited by glancing angle deposition are used as sensing layers to monitor their sensing capabilities towards Volatile Organic Compounds both in a standard Surface Plasmon Resonance (SPR) sensor and in Magneto-Optical Surface Plasmon Resonance (MO-SPR) configuration in order to compare their sensing performances. Here our results on the enhanced sensing capability of these TiO2 functionalized MO-SPR sensors with Au/Co/Au transducers with respect to traditional SPR gas...

  4. Development of Nano TiO2–Geopolymer Functional Composite as Antifouling Bricks

    Directory of Open Access Journals (Sweden)

    Kusuma Wardani Nurul

    2017-01-01

    Full Text Available The purpose of study is to examine the ability of nano TiO2 – geopolymer functional composite as antifouling bricks. The samples were synthesized through alkali-activation method at 70°C for 1 hour by mixing metaclay with TiO2 nanoparticles and activated with sodium silicate solution. There were two series of samples produced, namely, GT_A with addition of 2% nanoTiO2 and GT_B with addition of 4% nano TiO2 relative to the mass of metaclay. The samples were immersed in water and in 1M H2SO4 solution for 4 days to examine the resistance of composites in hars environment. The x-ray diffraction (XRD was performed to examine the chemical compositions of the samples before and after environmental test. The morphology of the samples surfaces was examined by using Scanning Electron Microscopy (SEM coupled with energy dispersive spectroscopy (EDS. Based on this study, sample GT_A shows its excellent properties as antifouling bricks. The addition of nano TiO2 was found to improve the quality of geopolymers as a high performance bricks.

  5. Bio-functionalizing of α-MnO_2 nanorods with natural L-amino acids: A favorable adsorbent for the removal of Cd(II) ions

    International Nuclear Information System (INIS)

    Mallakpour, Shadpour; Motirasoul, Forough

    2017-01-01

    α-MnO_2 nanorods were prepared by hydrothermal method and then the surface of these nanorods were covalently biofunctionalized with natural L-amino acids (alanine, phenylalanine, leucine, isoleucine, methionine, and valine). The modified α-MnO_2 nanorods were analyzed by Fourier transform infrared spectroscopy and X-ray diffraction. Morphological studies were carried out by field emission scanning electron microscopy and transmission electron microscopy. The morphology of nanorods was improved after biofunctionalization and aggregation was reduced. In addition, the thermal gravimetric analysis was used for demonstrating a successful grafting of amino acids to the surface of α-MnO_2 nanorods and determine the degree of functionalization. The amount of amino acids grafted onto α-MnO_2 surface was estimated to be 5–32 wt%. Finally, the α-MnO_2 and α-MnO_2-L-valine were investigated as adsorbents for the removal of cadmium ions from aqueous solution. The results showed that they have a potential to be used as effective adsorbents for cadmium ions removal from the aqueous solution. The equilibrium adsorption data showed the best fit for the pseudo-second-order and the Freundlich models. - Highlights: • α-MnO_2 nanorods were biofunctionalized with natural L-amino acids. • Biofunctionalized α-MnO_2 nanorods by solvothermal strategy were fully characterized. • Cadmium adsorption property of α-MnO_2 and α-MnO_2-L-valine was studied.

  6. Promoted Fixation of Molecular Nitrogen with Surface Oxygen Vacancies on Plasmon-Enhanced TiO2 Photoelectrodes.

    Science.gov (United States)

    Li, Chengcheng; Wang, Tuo; Zhao, Zhi-Jian; Yang, Weimin; Li, Jian-Feng; Li, Ang; Yang, Zhilin; Ozin, Geoffrey A; Gong, Jinlong

    2018-02-19

    A hundred years on, the energy-intensive Haber-Bosch process continues to turn the N 2 in air into fertilizer, nourishing billions of people while causing pollution and greenhouse gas emissions. The urgency of mitigating climate change motivates society to progress toward a more sustainable method for fixing N 2 that is based on clean energy. Surface oxygen vacancies (surface O vac ) hold great potential for N 2 adsorption and activation, but introducing O vac on the very surface without affecting bulk properties remains a great challenge. Fine tuning of the surface O vac by atomic layer deposition is described, forming a thin amorphous TiO 2 layer on plasmon-enhanced rutile TiO 2 /Au nanorods. Surface O vac in the outer amorphous TiO 2 thin layer promote the adsorption and activation of N 2 , which facilitates N 2 reduction to ammonia by excited electrons from ultraviolet-light-driven TiO 2 and visible-light-driven Au surface plasmons. The findings offer a new approach to N 2 photofixation under ambient conditions (that is, room temperature and atmospheric pressure). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Self-Assembly of ZnO-Nanorods and Its Performance in Quasi Solid Dye Sensitized Solar Cells

    Science.gov (United States)

    Aprilia, A.; Erdienzy, A.; Bahtiar, A.; Safriani, L.; Syakir, N.; Risdiana; Saragi, T.; Hidayat, S.; Fitrilawati; Hidayat, R.; Siregar, R. E.

    2017-07-01

    Zinc oxide (ZnO) nanorods (NRs) were successfully prepared by self-assembly methods using zinc nitrate hexahydrate and hexamethylenetetramine as raw materials. ZnO-NRs were grown on FTO/ZnO seed layer and to enhance dye adsorption it was continued by deposition of titania (TiO2) paste by screen printing method. Deposition time of ZnO-NRs were varied, for 120, 150 and 180 minutes and subsequently stacked with one layer of TiO2 mesoporous. The resulting heterojunction layers of FTO/ZnO-Nrs/TiO2 was then applied as a photoanode in quasi-solid dye sensitized solar cell (QS- DSSC) with polymer gel electrolyte (PGE) as a hole conductor. UV-Vis spectrometer was used to investigate the changes of dye adsorption in photoanode with/without inserting titania mesoporous. Characterizations of scanning electron microscopy (SEM) and X-ray diffraction was carried out and the results shows that increasing the deposition time produces a smaller average grain size, diameter and denser layer of ZnO-nanorods. From current-voltage measurement, higher efficiency (η = 2.53%) was obtained for 120 min ZnO nanorods with short circuit current density (Jsc ) of 2.84 mA/cm2 and open circuit voltage (Voc) of 0.7 V. The combination of TiO2 and ZnO-NRs shows a better performance in solar cells characteristics due to increases of dye adsorption on photoanode and high photogenerated electron transport rate. This work emphasizes an optimum condition of ZnO-NRs in combination with TiO2 mesoporous as an alternative photoanode in QS-DSSC.

  8. Towards TiO2 nanotubes modified by WO3 species: influence of ex situ crystallization of precursor on the photocatalytic activities of WO3/TiO2 composites

    Science.gov (United States)

    Sun, Hui; Dong, Bohua; Su, Ge; Gao, Rongjie; Liu, Wei; Song, Liang; Cao, Lixin

    2015-09-01

    TiO2 nanotubes (TNT) crystallized at different temperatures were loaded with WO3 hydrate through the reaction between (NH4)6W7O24·6H2O and an aqueous solution of HCl. The photocatalytic activities of nanocomposites firstly increase and then decrease as a function of the crystallized temperature of the TNT precursor. The structural, morphologic and optical properties of WO3/TiO2 nanocomposites were also investigated in this study. The samples, initially anatase titania (573 K-773 K), presented phase transition to rutile titania at 873 K. With the crystallized temperature increasing, an evolution of samples morphology changing from nanotube-like structure to nanorod-like structure was observed. Meanwhile, the absorption edge of samples exhibited a red shift, and correspondingly their band gap decreased. Consistent with x-ray diffraction diffractograms, the existence of rutile titania as an impurity in the precursor TNT, crystallized at higher than 873 K, depressed photocatalytic activity evidently. As a result, the degradation rate of methyl orange (MO) increased with the samples crystallinity firstly, and then reduced due to the appearance of rutile titania. In our experimental conditions, the optimal photocatalytic activity was achieved for the sample crystalized at 773 K. Its degradation rate could reach 98.76% after 90 min UV light irradiation.

  9. Towards TiO2 nanotubes modified by WO3 species: influence of ex situ crystallization of precursor on the photocatalytic activities of WO3/TiO2 composites

    International Nuclear Information System (INIS)

    Sun, Hui; Dong, Bohua; Su, Ge; Gao, Rongjie; Liu, Wei; Cao, Lixin; Song, Liang

    2015-01-01

    TiO 2 nanotubes (TNT) crystallized at different temperatures were loaded with WO 3 hydrate through the reaction between (NH 4 ) 6 W 7 O 24 ·6H 2 O and an aqueous solution of HCl. The photocatalytic activities of nanocomposites firstly increase and then decrease as a function of the crystallized temperature of the TNT precursor. The structural, morphologic and optical properties of WO 3 /TiO 2 nanocomposites were also investigated in this study. The samples, initially anatase titania (573 K–773 K), presented phase transition to rutile titania at 873 K. With the crystallized temperature increasing, an evolution of samples morphology changing from nanotube-like structure to nanorod-like structure was observed. Meanwhile, the absorption edge of samples exhibited a red shift, and correspondingly their band gap decreased. Consistent with x-ray diffraction diffractograms, the existence of rutile titania as an impurity in the precursor TNT, crystallized at higher than 873 K, depressed photocatalytic activity evidently. As a result, the degradation rate of methyl orange (MO) increased with the samples crystallinity firstly, and then reduced due to the appearance of rutile titania. In our experimental conditions, the optimal photocatalytic activity was achieved for the sample crystalized at 773 K. Its degradation rate could reach 98.76% after 90 min UV light irradiation. (paper)

  10. Bulk heterojunction formation between indium tin oxide nanorods and CuInS2 nanoparticles for inorganic thin film solar cell applications.

    Science.gov (United States)

    Cho, Jin Woo; Park, Se Jin; Kim, Jaehoon; Kim, Woong; Park, Hoo Keun; Do, Young Rag; Min, Byoung Koun

    2012-02-01

    In this study, we developed a novel inorganic thin film solar cell configuration in which bulk heterojunction was formed between indium tin oxide (ITO) nanorods and CuInS(2) (CIS). Specifically, ITO nanorods were first synthesized by the radio frequency magnetron sputtering deposition method followed by deposition of a dense TiO(2) layer and CdS buffer layer using atomic layer deposition and chemical bath deposition method, respectively. The spatial region between the nanorods was then filled with CIS nanoparticle ink, which was presynthesized using the colloidal synthetic method. We observed that complete gap filling was achieved to form bulk heterojunction between the inorganic phases. As a proof-of-concept, solar cell devices were fabricated by depositing an Au electrode on top of the CIS layer, which exhibited the best photovoltaic response with a V(oc), J(sc), FF, and efficiency of 0.287 V, 9.63 mA/cm(2), 0.364, and 1.01%, respectively.

  11. Sn4+-Doped TiO2 Nanorod Array Film with Enhanced Visible Light ...

    Indian Academy of Sciences (India)

    61

    specific surface area of flat film than nano-powder would lead to the decrease of its .... doped TiO2 NAFs were acquired with EDS spectrometer fitted on the microscopy. ... The morphologies of films were obtained by the SEM measurement.

  12. High Photocatalytic Activity of Fe3O4-SiO2-TiO2 Functional Particles with Core-Shell Structure

    Directory of Open Access Journals (Sweden)

    Chenyang Xue

    2013-01-01

    Full Text Available This paper describes a novel method of synthesizing Fe3O4-SiO2-TiO2 functional nanoparticles with the core-shell structure. The Fe3O4 cores which were mainly superparamagnetic were synthesized through a novel carbon reduction method. The Fe3O4 cores were then modified with SiO2 and finally encapsulated with TiO2 by the sol-gel method. The results of characterizations showed that the encapsulated 700 nm Fe3O4-SiO2-TiO2 particles have a relatively uniform size distribution, an anatase TiO2 shell, and suitable magnetic properties for allowing collection in a magnetic field. These magnetic properties, large area, relative high saturation intensity, and low retentive magnetism make the particles have high dispersibility in suspension and yet enable them to be recovered well using magnetic fields. The functionality of these particles was tested by measuring the photocatalytic activity of the decolouring of methyl orange (MO and methylene blue (MB under ultraviolet light and sunlight. The results showed that the introduction of the Fe3O4-SiO2-TiO2 functional nanoparticles significantly increased the decoloration rate so that an MO solution at a concentration of 10 mg/L could be decoloured completely within 180 minutes. The particles were recovered after utilization, washing, and drying and the primary recovery ratio was 87.5%.

  13. Dispersions of geometric TiO2 nanomaterials and their toxicity to RPMI 2650 nasal epithelial cells

    Science.gov (United States)

    Tilly, Trevor B.; Kerr, Lei L.; Braydich-Stolle, Laura K.; Schlager, John J.; Hussain, Saber M.

    2014-11-01

    Titanium dioxide (TiO2) based nanofilaments—nanotube, nanowire, nanorod—have gained interest for industrial, electrical, and as of recent, medical applications due to their superior performance over TiO2 nanoparticles. Safety assessment of these nanomaterials is critical to protect workers, patients, and bystanders as these technologies become widely implemented. Additionally, TiO2 based nanofilaments can easily be inhaled by humans and their high aspect ratio, much like asbestos fibers, may make them toxic in the respiratory system. The tendency of TiO2 nanofilaments to aggregate makes evaluating their nanotoxicity difficult and the results controversial, because incomplete dispersion results in larger particle sizes that are no longer in the nano dimensional size range. TiO2 nanofilaments are aggregated and difficult to disperse homogeneously in solution by conventional methods, such as sonication and vortexing. In this study, a microfluidic device was utilized to produce stable, homogeneous dosing solutions necessary for in vitro toxicity evaluation by eliminating any toxicity caused by aggregated TiO2 nanomaterials. The toxicity results could then be directly correlated to the TiO2 nanostructure itself. The toxicity of four TiO2 nanogeometries—nanotube, nanowire, nanorod, and nanoparticle—were assessed in RPMI 2650 human nasal epithelial cells at representative day, week, and month in vitro exposure dosages of 10, 50, 100 μg/ml, respectively. All TiO2 based nanomaterials dispersed by the microfluidic method were nontoxic to RPMI 2650 cells at the concentrations tested, whereas higher concentrations of 100 μg/ml of nanowires and nanotubes dispersed by sonication reduced viability up to 27 %, indicating that in vitro toxicity results may be controlled by the dispersion of dosing solutions.

  14. Plasma-induced synthesis of Pt nanoparticles supported on TiO2 nanotubes for enhanced methanol electro-oxidation

    Science.gov (United States)

    Su, Nan; Hu, Xiulan; Zhang, Jianbo; Huang, Huihong; Cheng, Jiexu; Yu, Jinchen; Ge, Chao

    2017-03-01

    A Pt/C/TiO2 nanotube composite catalyst was successfully prepared for enhanced methanol electro-oxidation. Pt nanoparticles with a particle size of 2 nm were synthesized by plasma sputtering in water, and anatase TiO2 nanotubes with an inner diameter of approximately 100 nm were prepared by a simple two-step anodization method and annealing process. Field-emission scanning electron microscopy images indicated that the different morphologies of TiO2 synthesized on the surface of Ti foils were dependent on the different anodization parameters. The electrochemical performance of Pt/C/TiO2 catalysts for methanol oxidation showed that TiO2 nanotubes were more suitable for use as Pt nanoparticle support materials than irregular TiO2 short nanorods due to their tubular morphology and better electronic conductivity. X-ray photoelectron spectroscopy characterization showed that the binding energies of the Pt 4f of the Pt/C/TiO2 nanotubes exhibited a slightly positive shift caused by the relatively strong interaction between Pt and the TiO2 nanotubes, which could mitigate the poisoning of the Pt catalyst by COads, and further enhance the electrocatalytic performance. Thus, the as-obtained Pt/C/TiO2 nanotubes composites may become a promising catalyst for methanol electro-oxidation.

  15. Hierarchical architectures TiO2: Pollen-inducted synthesis, remarkable crystalline-phase stability, tunable size, and reused photo-catalysis

    International Nuclear Information System (INIS)

    Dou, Lingling; Gao, Lishuang; Yang, Xiaohui; Song, Xiuqin

    2012-01-01

    Highlights: ► The synthetic method is much milder and simpler than that of conventional methods. ► The obtained hierarchical TiO 2 shows three interesting hierarchical morphology. ► The products have tunable crystal phase structures. ► The pure phase of anatase can be retained after being annealed at 900 °C. ► The product exhibits higher and reused photo-catalytic activity. - Abstract: TiO 2 with hierarchical architectures, tunable crystalline phase and thermal stability is successfully fabricated on a large scale through a facile hydrolysis process of TiCl 4 combining with inducing of pollen. The structure of the as-prepared TiO 2 is characterized by X-ray diffraction, Raman spectroscopy, infrared spectra, and scanning electron microscopy. The experimental results indicate that different phases (anatase, rutile or mixed crystallite) of TiO 2 can be synthesized by controlling the experimental conditions. The pure phase of rutile or anatase can be obtained at 100 °C, while the pure phase of anatase can be retained after being annealed at 900 °C. The hierarchical structures TiO 2 are constitute through self-assembly of nanoparticles or nanorods TiO 2 , which exhibit high and reused photo-catalytic properties for degradation of methylene blue.

  16. Degradation of the ammonia wastewater in aqueous medium with ozone in combination with mesoporous TiO2 catalytic

    Science.gov (United States)

    Liu, Zhiwu; Qiu, Jianping; Zheng, Chaocan; Li, Liqing

    2017-03-01

    TiO2 mesoporous nanomaterials are now widely used in catalytic ozone technology. In this paper, the market P25 as precursor hydrothermal method to prepare TiO2 mesoporous materials, ozone catalyst material characterization by transmission electron microscopy, surface area analyzers, and X-ray diffraction technique and found that nanotubes, nanosheets, nanorods through characterization results, nano-particles of different morphology and anatase and rutile proportion of the ozone catalytic material can be controlled by the calcination temperature and the temperature of hot water to give, and with the hot water temperature and calcination temperature, the catalyst becomes small aperture size larger catalyst crystalline phase from anatase to rutile gradually shift. Catalytic materials have been prepared by the Joint ozone degradation of ammonia wastewater to evaluate mesoporous TiO2 nanomaterials ozone catalytic performance, the results showed that: ammonia wastewater removal efficiency of various catalytic materials relatively separate ozone and markets P25 effects are significantly improved, and TiO2 nanotubes cooperate with ozone degradation ammonia wastewater highest efficiency, in addition, rutile TiO2 catalysts, the more the better the performance of their ozone catalysis.

  17. Hierarchical (0 0 1) facet anatase/rutile TiO2 heterojunction photoanode with enhanced photoelectrocatalytic performance

    International Nuclear Information System (INIS)

    Tian, Hongyi; Zhao, Guohua; Zhang, Ya-nan; Wang, Yanbin; Cao, Tongcheng

    2013-01-01

    Highlights: ► (0 0 1) facet TiO 2 photoanode with large surface area is reported for the first time. ► Ordered heterojunction further improves light absorption in (0 0 1) facet TiO 2 system. ► (0 0 1) facet TiO 2 photoanode possesses promoted photoelectrocatalytic performance. ► Photoelectrical enhancement mechanism is clarified by electrochemical methods. ► Photogenerated carrier and lifetime are remarkably enhanced by ingenious design. -- Abstract: A hierarchical heterojunction TiO 2 photoanode with large surface/body ratio is reported to exhibit high oxidation activity due to the constructing of anatase TiO 2 with exposed (0 0 1) facets. The mixed-phase photoanode is fabricated through surfactant-assisted anchoring ultrathin anatase nanosheets on vertically ordered rutile nanorod arrays. This cactaceae-like TiO 2 possesses high-exposed (0 0 1) facets outer layer, large specific surface area (375 m 2 g −1 ), efficient photo-to-current conversion (8.2%) and excellent photocatalytic ability to degrade bisphenol A. The greatly promoted photoelectric and photocatalytic performance results from the synergetic effects of the architecture design of high-active (0 0 1) facets and hierarchical heterojunctions. The mechanism analysis reveals that the remarkable increase of photogenerated carrier concentration (2.40 × 10 22 cm −3 ) improves photocatalytic activity, by virtue of constructing staggered energy levels, suppressing the recombination of electrons and holes, and extending the electron lifetime (133 ms)

  18. Amine functionalized TiO2-carbon nanotube composite: synthesis, characterization and application to glucose biosensing

    Science.gov (United States)

    Tasviri, Mahboubeh; Rafiee-Pour, Hossain-Ali; Ghourchian, Hedayatollah; Gholami, Mohammad Reza

    2011-12-01

    The synthesis of amine functionalized TiO2-coated multiwalled carbon nanotubes (NH2-TiO2-CNTs) using sol-gel method was investigated. The synthesized nanocomposite was characterized with XRD, FTIR spectroscopy, BET test and SEM imaging. The results demonstrated a unique nanostructure with no destruction of the CNTs' shape. In addition, the presence of amine groups on the composite surface was confirmed by FTIR. This nanocomposite was used for one-step immobilization of glucose oxidase (GOx) to sense glucose. The result of cyclic voltammetry showed a pair of well-defined and quasi-reversible peaks for direct electron transfer of GOx in the absence of glucose. Also, the result of electrochemical impedance spectroscopy indicated that GOx was successfully immobilized on the surface of NH2-TiO2-CNTs. Furthermore, good amperometric response showed that immobilized GOx on the NH2-TiO2-CNTs exhibits exceptional bioelectrocatalytic activity toward glucose oxidation.

  19. An enzymatic glucose biosensor based on a glassy carbon electrode modified with cylinder-shaped titanium dioxide nanorods

    International Nuclear Information System (INIS)

    Yang, Zhanjun; Xu, Youbao; Li, Juan; Jian, Zhiqin; Yu, Suhua; Zhang, Yongcai; Hu, Xiaoya; Dionysiou, Dionysios D.

    2015-01-01

    We describe a highly sensitive electrochemical enzymatic glucose biosensor. A glassy carbon electrode was modified with cylinder-shaped titanium dioxide nanorods (TiO 2 -NRs) for the immobilization of glucose oxidase. The modified nanorods and the enzyme biosensor were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The glucose oxidase on the TiO 2 -NRs displays a high activity and undergoes fast surface-controlled electron transfer. A pair of well-defined quasi-reversible redox peaks was observed at −0.394 and −0.450 V. The TiO 2 -NRs provide a good microenvironment to facilitate the direct electron transfer between enzyme and electrode surface. The biosensor has two linear response ranges, viz. from 2.0 to 52 μM, and 0.052 to 2.3 mM. The lower detection limit is 0.5 μM, and the sensitivity is 68.58 mA M −1 cm −2 . The glucose biosensor is selective, well reproducible, and stable. In our perception, the cylindrically shaped TiO 2 -NRs provide a promising support for the immobilization of proteins and pave the way to the development of high-performance biosensors. (author)

  20. One-Step Nonaqueous Synthesis of Pure Phase TiO2 Nanocrystals from TiCl4 in Butanol and Their Photocatalytic Properties

    Directory of Open Access Journals (Sweden)

    Tieping Cao

    2011-01-01

    Full Text Available Pure phase TiO2 nanomaterials were synthesized by an autoclaving treatment of TiCl4 with butanol as a single alcohol source. It was found that the control of molar ratio of TiCl4 to butanol played an important role in determining the TiO2 crystal phase and morphology. A high molar ratio of TiCl4 to butanol favored the formation of anatase nanoparticles, whereas rutile nanorods were selectively obtained at a low molar ratio of TiCl4 to butanol. Evaluation of the photocatalytic activity of the synthesized TiO2 was performed in terms of decomposition of organic dye rhodamine B under ultraviolet irradiation. It turned out that the as-synthesized TiO2 crystallites possessed higher photocatalytic activities toward bleaching rhodamine B than Degussa P25, benefiting from theirhigh surface area, small crystal size as well as high crystallinity.

  1. Characterization and Comparison of Photocatalytic Activity Silver Ion doped on TiO2(TiO2/Ag+) and Silver Ion doped on Black TiO2(Black TiO2/Ag+)

    Science.gov (United States)

    Kim, Jin Yi; Sim, Ho Hyung; Song, Sinae; Noh, Yeoung Ah; Lee, Hong Woon; Taik Kim, Hee

    2018-03-01

    Titanium dioxide (TiO2) is one of the representative ceramic materials containing photocatalyst, optic and antibacterial activity. The hydroxyl radical in TiO2 applies to the intensive oxidizing agent, hence TiO2 is suitable to use photocatalytic materials. Black TiO2was prepared through reduction of amorphous TiO2 conducting under H2 which leads to color changes. Its black color is proven that absorbs 100% light across the whole-visible light, drawing enhancement of photocatalytic property. In this study, we aimed to compare the photocatalytic activity of silver ion doped on TiO2(TiO2/Ag+) and silver ion doped on black TiO2(black TiO2/Ag+) under visible light range. TiO2/Ag+ was fabricated following steps. 1) TiO2 was synthesized by a sol-gel method from Titanium tetraisopropoxide (TTIP). 2) Then AgNO3 was added during an aging process step for silver ion doping on the surface of TiO2. Moreover, Black TiO2/Ag+ was obtained same as TiO2/Ag+ except for calcination under H2. The samples were characterized X-ray diffraction (XRD), UV-visible reflectance (UV-vis DRS), and Methylene Blue degradation test. XRD analysis confirmed morphology of TiO2. The band gap of black TiO2/Ag+ was confirmed (2.6 eV) through UV-vis DRS, which was lower than TiO2/Ag+ (2.9 eV). The photocatalytic effect was conducted by methylene blue degradation test. It demonstrated that black TiO2/Ag+ had a photocatalytic effect under UV light also visible light.

  2. Synthesis and Tribological Properties of WSe2Nanorods

    Directory of Open Access Journals (Sweden)

    Yang Jinghai

    2008-01-01

    Full Text Available Abstract The WSe2nanorods were synthesized via solid-state reaction method and characterized by X-ray diffractometer, TEM, and HRTEM. The results indicated the WSe2compounds had rod-like structures with diameters of 10–50 nm and lengths of 100–400 nm, and the growth process of WSe2nanorods was discussed on the basis of the experimental facts. The tribological properties of WSe2nanorods as additives in HVI500 base oil were investigated by UMT-2 multispecimen tribotester. Under the determinate conditions, the friction coefficient of the base oil containing WSe2nanorods was lower than that of the base oil, and decreased with increasing mass fraction of WSe2nanorods when it was <7 wt.%. Moreover, the base oil with the additives was rather suited to high load and high rotating speed. A combination of rolling friction, sliding friction, and stable tribofilm on the rubbing surface could explain the good friction and wear properties of WSe2nanorods as additives.

  3. Calculation of DSSC parameters based on ZnO nanorod/TiO2 mesoporous photoanode

    Science.gov (United States)

    Safriani, L.; Nurrida, A.; Mulyana, C.; Susilawati, T.; Bahtiar, A.; Aprilia, A.

    2017-07-01

    Photoanode of dye sensitized solar cell (DSSC) plays an important role as electron transport media to accept photogenerated electron from excited state of dye. There are several physical properties that are required from photoanode of DSSC. It should be highly transparent, have large surface area, has a conduction band lower than LUMO of dye molecule, has high charge carrier mobility and finally has a good stability in redox electrolyte process. In this work, DSSC with structure FTO/ZnO nanorod/TiO2 mesoporous/Ru-dye/gel electrolyte/ Pt/FTO has been fabricated. In order to modified the structures of photoanode, ZnO nanorod was grown on aluminium doped ZnO seed layer by variation concentration of Al (0 wt%, 0.5 wt% and 1.0 wt%). Zinc nitrate hexahydrate and hexamethylenetetramine used as raw materials for ZnO nanorod growth solution and deposited by self-assembly methods on FTO/Al doped ZnO seed layer. It is then followed by deposition of titania (TiO2) paste by screen printing methods. DSSC parameters i.e. ideally factor (n), series resistance (RS ), and shunt resistance (RSH ) was derived from current density-voltage (I-V) curve using the simplify equation of ideal diode model. The influences of ZnO photoanode structures to the solar cell performance will be completely discussed.

  4. Hydrothermal transformation of titanate nanotubes into single-crystalline TiO2 nanomaterials with controlled phase composition and morphology

    International Nuclear Information System (INIS)

    Xu, Yuanmei; Fang, Xiaoming; Xiong, Jian; Zhang, Zhengguo

    2010-01-01

    Single-crystalline TiO 2 nanomaterials were synthesized by hydrothermally treating suspensions of H-titanate nanotubes and characterized by XRD, TEM, and HRTEM. The effects of the pH values of the suspensions and the hydrothermal temperatures on the phase composition and morphology of the obtained TiO 2 nanomaterials were systematically investigated. The H-titanate nanotubes were predominately transformed into anatase nanoparticle with rhombic shape when the pH value was greater than or equal to 1.0, whereas primarily turned into rutile nanorod with two pyramidal ends at the pH value less than or equal to 0.5. We propose a possible mechanism for hydrothermal transformation of H-titanate nanotubes into single-crystalline TiO 2 nanomaterials. While the H-titanate nanotubes transform into tiny anatase nanocrystallites of ca. 3 nm in size, the formed nanocrystallites as an intermediate grow into the TiO 2 nanomaterials with controlled phase composition and morphology. This growth process involves the steps of protonation, oriented attachment, and Ostwald ripening.

  5. Effect of annealing temperature on surface morphology and work function of ZnO nanorod arrays

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hainan [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Xue, Mingshan, E-mail: xuems04@mails.ucas.ac.cn [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Ou, Junfei [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Jiangsu Key Laboratory for Solar Cell Materials and Technology, Changzhou University, Changzhou 213164 (China); Wang, Fajun [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Li, Wen, E-mail: wenl@ualberta.ca [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2013-07-15

    Highlights: •The 600°C and 450°C isothermal sections of the Zn-Fe-B system are determined. •The solubility of Zn in Fe{sub 2}B and FeB at 600°C is 1.8 at.% and 2.5 at.%, respectively. •The solubility of Zn in Fe{sub 2}B and FeB at 450°C is 1.7 at.% and 2.1 at.%, respectively. •All Fe-Zn compounds can be in equilibrium with Fe{sub 2}B at 450°C. •Both FeB and Fe{sub 2}B are in equilibrium with the liquid phase at 600°C. -- Abstract: A simple and effective method of fabricating nanomaterials and the understanding of their electronic structures are significant for designing novel nanodevices. In this study, ZnO nanorod arrays on ITO substrate were synthesized by electrochemical deposition, and the effect of annealing temperature on surface morphology and especially work function was investigated using various techniques. The results indicated that the formation of hexagonal ZnO nanorod arrays with (0 0 0 1) orientation was strongly associated with the annealing temperature. The work function of well-aligned ZnO nanorod arrays is 4.84 eV, which shows an obvious dependence on the arrangement of ZnO nanorod arrays. These changes in work function of ZnO nanorod arrays (e.g., used as the photoanode of dye-sensitized solar cells) are important to understand the electron transport of related nanodevices.

  6. Fabrication of A/R-TiO2 composite for enhanced photoelectrochemical performance: Solar hydrogen generation and dye degradation

    Science.gov (United States)

    Mahadik, Mahadeo A.; An, Gil Woo; David, Selvaraj; Choi, Sun Hee; Cho, Min; Jang, Jum Suk

    2017-12-01

    Anatase/rutile TiO2 nanorods composites were prepared by a facile hydrothermal method followed by dip coating method using titanium isopropoxide in acetic acid and ethanol solvent. The effects of the titanium isopropoxide precursor concentration, on the formation of dip coated anatase/rutile TiO2 nanorods composite were systematically explored. The growth of anatase on rutile TiO2 nanorods can be controlled by varying the titanium isopropoxide concentration. The morphological study reveals that anatase TiO2 nanograins formed on the surface of rutile TiO2 nanorod arrays through dip coating method. Photoelectrochemical analyses showed that the enhancement of the photocatalytic activities of the samples is affected by the anatase nanograins present on the rutile TiO2 nanorods, which can induce the separation of electrons and holes. To interpret the photoelectrochemical behaviors, the prepared photoelectrodes were applied in photoelectrochemical solar hydrogen generation and orange II dye degradation. The optimized photocurrent density of 1.8 mA cm-2 and the 625 μmol hydrogen generation was observed for 10 mM anatase/rutile TiO2 NRs composites. Additionally, 96% removal of the orange II dye was achieved within 5 h during oxidative degradation under solar light irradiation. One of the benefits of high specific surface area and the efficient photogenerated charge transport in the anatase/rutile TiO2 nanorod composite improves the photoelectrochemical hydrogen generation and orange dye degradation compared to the rutile TiO2. Thus, our strategy provides a promising, stable, and low cost alternative to existing photocatalysts and is expected to attract considerable attention for industrial applications.

  7. Bio-functionalizing of α-MnO{sub 2} nanorods with natural L-amino acids: A favorable adsorbent for the removal of Cd(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Mallakpour, Shadpour, E-mail: mallak@cc.iut.ac.ir [Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Motirasoul, Forough [Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of)

    2017-04-15

    α-MnO{sub 2} nanorods were prepared by hydrothermal method and then the surface of these nanorods were covalently biofunctionalized with natural L-amino acids (alanine, phenylalanine, leucine, isoleucine, methionine, and valine). The modified α-MnO{sub 2} nanorods were analyzed by Fourier transform infrared spectroscopy and X-ray diffraction. Morphological studies were carried out by field emission scanning electron microscopy and transmission electron microscopy. The morphology of nanorods was improved after biofunctionalization and aggregation was reduced. In addition, the thermal gravimetric analysis was used for demonstrating a successful grafting of amino acids to the surface of α-MnO{sub 2} nanorods and determine the degree of functionalization. The amount of amino acids grafted onto α-MnO{sub 2} surface was estimated to be 5–32 wt%. Finally, the α-MnO{sub 2} and α-MnO{sub 2}-L-valine were investigated as adsorbents for the removal of cadmium ions from aqueous solution. The results showed that they have a potential to be used as effective adsorbents for cadmium ions removal from the aqueous solution. The equilibrium adsorption data showed the best fit for the pseudo-second-order and the Freundlich models. - Highlights: • α-MnO{sub 2} nanorods were biofunctionalized with natural L-amino acids. • Biofunctionalized α-MnO{sub 2} nanorods by solvothermal strategy were fully characterized. • Cadmium adsorption property of α-MnO{sub 2} and α-MnO{sub 2}-L-valine was studied.

  8. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting.

    Science.gov (United States)

    Pu, Ying-Chih; Wang, Gongming; Chang, Kao-Der; Ling, Yichuan; Lin, Yin-Kai; Fitzmorris, Bob C; Liu, Chia-Ming; Lu, Xihong; Tong, Yexiang; Zhang, Jin Z; Hsu, Yung-Jung; Li, Yat

    2013-08-14

    Here we demonstrate that the photoactivity of Au-decorated TiO2 electrodes for photoelectrochemical water oxidation can be effectively enhanced in the entire UV-visible region from 300 to 800 nm by manipulating the shape of the decorated Au nanostructures. The samples were prepared by carefully depositing Au nanoparticles (NPs), Au nanorods (NRs), and a mixture of Au NPs and NRs on the surface of TiO2 nanowire arrays. As compared with bare TiO2, Au NP-decorated TiO2 nanowire electrodes exhibited significantly enhanced photoactivity in both the UV and visible regions. For Au NR-decorated TiO2 electrodes, the photoactivity enhancement was, however, observed in the visible region only, with the largest photocurrent generation achieved at 710 nm. Significantly, TiO2 nanowires deposited with a mixture of Au NPs and NRs showed enhanced photoactivity in the entire UV-visible region. Monochromatic incident photon-to-electron conversion efficiency measurements indicated that excitation of surface plasmon resonance of Au is responsible for the enhanced photoactivity of Au nanostructure-decorated TiO2 nanowires. Photovoltage experiment showed that the enhanced photoactivity of Au NP-decorated TiO2 in the UV region was attributable to the effective surface passivation of Au NPs. Furthermore, 3D finite-difference time domain simulation was performed to investigate the electrical field amplification at the interface between Au nanostructures and TiO2 upon SPR excitation. The results suggested that the enhanced photoactivity of Au NP-decorated TiO2 in the UV region was partially due to the increased optical absorption of TiO2 associated with SPR electrical field amplification. The current study could provide a new paradigm for designing plasmonic metal/semiconductor composite systems to effectively harvest the entire UV-visible light for solar fuel production.

  9. Controllable synthesis of TiO2 nanomaterials by assisting with l-cysteine and ethylenediamine

    KAUST Repository

    Tao, Yugui

    2013-11-21

    This paper reports a facile l-cysteine-assisted solvothermal synthesis of TiO2 nanomaterials using ethylenediamine (En) and distilled water as solvent. The influence of reaction time, temperature, l-cysteine and solvent was initially investigated. Results demonstrated the reaction temperature, l-cysteine and En significantly imposed impact on the phase and morphology of the particles. Amorphous nanosheets, mixed-crystal nanorods and pure anatase nanoparticles were controllably synthesized by varying reaction temperature. The formation of the amorphous nanosheets and mixed-crystal nanorods were directly affected by the presence of l-cysteine and En. And the presence of En distinctly affected the crystal phase of the products, which was rarely mentioned in other studies. Moreover, the photocatalytic activities of three typical samples were excellent. The possible formation mechanism of the sample was also discussed. © 2013 Springer Science+Business Media New York.

  10. Controllable synthesis of TiO2 nanomaterials by assisting with l-cysteine and ethylenediamine

    KAUST Repository

    Tao, Yugui; Cao, Ning; Pan, Jun; Sun, Yichen; Jin, Cheng; Song, Yang

    2013-01-01

    This paper reports a facile l-cysteine-assisted solvothermal synthesis of TiO2 nanomaterials using ethylenediamine (En) and distilled water as solvent. The influence of reaction time, temperature, l-cysteine and solvent was initially investigated. Results demonstrated the reaction temperature, l-cysteine and En significantly imposed impact on the phase and morphology of the particles. Amorphous nanosheets, mixed-crystal nanorods and pure anatase nanoparticles were controllably synthesized by varying reaction temperature. The formation of the amorphous nanosheets and mixed-crystal nanorods were directly affected by the presence of l-cysteine and En. And the presence of En distinctly affected the crystal phase of the products, which was rarely mentioned in other studies. Moreover, the photocatalytic activities of three typical samples were excellent. The possible formation mechanism of the sample was also discussed. © 2013 Springer Science+Business Media New York.

  11. Hierarchical architectures of ZnS–In2S3 solid solution onto TiO2 nanofibers with high visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Liu, Chengbin; Meng, Deshui; Li, Yue; Wang, Longlu; Liu, Yutang; Luo, Shenglian

    2015-01-01

    Graphical abstract: A unique hierarchical architecture of ZnS–In 2 S 3 solid solution onto TiO 2 nanofibers was fabricated. The hierarchical heterostructures exhibit high visible light photocatalytic activity and outstanding recycling performance. - Highlights: • Novel hierarchical heterostructure of TiO 2 @ZnS–In 2 S 3 solid solution. • Efficient inhibition of ZnS–In 2 S 3 solid solution aggregation. • High visible light photocatalytic activity. • Highly stable recycling performance. - Abstract: A unique hierarchical architecture of ZnS–In 2 S 3 solid solution nanostructures onto TiO 2 nanofibers (TiO 2 @ZnS–In 2 S 3 ) has been successfully fabricated by simple hydrothermal method. The ZnS–In 2 S 3 solid solution nanostructures exhibit a diversity of morphologies: nanosheet, nanorod and nanoparticle. The porous TiO 2 nanofiber templates effectively inhibit the aggregation growth of ZnS–In 2 S 3 solid solution. The formation of ZnS–In 2 S 3 solid solution is proved by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) and the intimate contact between TiO 2 nanofibers and ZnS–In 2 S 3 solid solution favors fast transfer of photogenerated electrons. The trinary TiO 2 @ZnS–In 2 S 3 heterostructures exhibit high adsorption capacity and visible light photocatalytic activity for the degradation of rhodamine B dye (RhB), remarkably superior to pure TiO 2 nanofibers or binary structures (ZnS/TiO 2 nanofibers, In 2 S 3 /TiO 2 nanofibers and ZnS–In 2 S 3 solid solution). Under visible light irradiation the RhB photocatalytic degradation rate over TiO 2 @ZnS–In 2 S 3 heterostructures is about 16.7, 12.5, 6.3, 5.9, and 2.2 times that over pure TiO 2 nanofibers, ZnS nanoparticles, In 2 S 3 /TiO 2 nanofibers, ZnS/TiO 2 nanofibers, and ZnS-In 2 S 3 solid solution, respectively. Furthermore, the TiO 2 @ZnS–In 2 S 3 heterostructures show highly stable recycling performance

  12. Selective adsorption of bovine hemoglobin on functional TiO2 nano-adsorbents: surface physic-chemical properties determined adsorption activity

    Science.gov (United States)

    Guo, Shiguang; Zhang, Jianghua; Shao, Mingxue; Zhang, Xia; Liu, Yufeng; Xu, Junli; Meng, Hao; Han, Yide

    2015-04-01

    Surface functionalized nanoparticles are efficient adsorbents which have shown good potential for protein separation. In this work, we chose two different types of organic molecules, oleic acid (OA) and 3-glycidoxypropyltrimethoxy silane (GPTMS), to functionalize the surface of TiO2 nanoparticles, and we studied the effects of this modification on their surface physicochemical properties in correlation with their selective adsorption of proteins. The results showed that the surface zeta potential and the surface water wettability of the modified TiO2 were significantly changed in comparison with the original TiO2 nanoparticles. The adsorption activities of bovine hemoglobin (BHb) and bovine serum albumin (BSA) on these functionalized TiO2 samples were investigated under different conditions, including pH values, contact time, ion strength, and initial protein concentration. In comparison with the non-specific adsorption of original TiO2, however, both the OA-TiO2 and GPTMS-TiO2 exhibited increased BHb adsorption and decreased BSA adsorption at the same time. Using a binary protein mixture as the adsorption object, a higher separation factor (SF) was obtained for OA-TiO2 under optimum conditions. The different adsorption activities of BHb and BSA on the modified TiO2 were correlated with different interactions at the protein/solid interface, and the chemical force as well as the electrostatic force played an important role in the selective adsorption process.

  13. Adsorption of H2S molecule on TiO2/Au nanocomposites: A density functional theory study

    Directory of Open Access Journals (Sweden)

    Amirali Abbasi

    2017-01-01

    Full Text Available The adsorption of hydrogen sulfide molecule on undoped and N-doped TiO2/Au nanocomposites was investigated by density functional theory (DFT calculations. The results showed that the adsorption energies of H2S on the nanocomposites follow the order of 2N doped (Ti site>N-doped (Ti site>Undoped (Ti site. The structural properties including bond lengths, angles and adsorption energies and electronic properties in view of the projected density of states (PDOSs and molecular orbitals (MOs were analyzed in detail. The results indicated that the interaction between H2S molecule and N-doped TiO2/Au nanocomposite is stronger than that between H2S and undoped nanocomposite, suggesting that N-doping helps to strengthen the interaction of H2S with TiO2/Au nanocomposite. Mulliken population analysis was conducted to analyze the charge transfer between the nanocomposite and H2S molecule. Although H2S molecule has no significant interaction with undoped nanocomposite, it tends to be strongly adsorbed on the N-doped nanocomposite. The results also suggest that the two doped nitrogen atoms in TiO2 greatly strengthen the adsorption process, being a helpful procedure to help in the design and development of improved sensor devices for H2S detection.

  14. Surface nanostructuring of TiO2 thin films by ion beam irradiation

    International Nuclear Information System (INIS)

    Romero-Gomez, P.; Palmero, A.; Yubero, F.; Vinnichenko, M.; Kolitsch, A.; Gonzalez-Elipe, A.R.

    2009-01-01

    This work reports a procedure to modify the surface nanostructure of TiO 2 anatase thin films through ion beam irradiation with energies in the keV range. Irradiation with N + ions leads to the formation of a layer with voids at a depth similar to the ion-projected range. By setting the ion-projected range a few tens of nanometers below the surface of the film, well-ordered nanorods appear aligned with the angle of incidence of the ion beam. Slightly different results were obtained by using heavier (S + ) and lighter (B + ) ions under similar conditions

  15. Synergistic effects between TiO2 and carbon nanotubes (CNTs) in a TiO2/CNTs system under visible light irradiation.

    Science.gov (United States)

    Wu, Chung-Hsin; Kuo, Chao-Yin; Chen, Shih-Ting

    2013-01-01

    This study synthesized a TiO2/carbon nanotubes (CNTs) composite via the sol-gel method. The surface characteristics of the TiO2/CNTs composite were determined by X-ray diffraction, transmission electron microscopy, specific surface area analyser, ultraviolent (UV)-vis spectroscopy, X-ray photoelectron spectroscopy and Raman spectrometer. The photocatalytic activity ofthe TiO2/CNTs composite was evaluated by decolourizing C.I. Reactive Red 2 (RR2) under visible light irradiation. Furthermore, the effects of calcination temperature, pH, RR2 concentration, and the TiO2/CNTs composite dosage on RR2 decolourization were determined simultaneously. The optimal calcination temperature to generate TiO2 and the TiO2/CNTs composite was 673 K, as the percentage of anatase crystallization at this temperature was highest. The specific surface area of the TiO2/CNTs composite and TiO2 were 45 and 42 m2/g, respectively. The band gap of TiO2 and the TiO2/CNTs composite was 2.97 and 2.71 eV by UV-vis measurements, respectively. Experimental data indicate that the Ti-O-C bond formed in the TiO2/CNTs composite. The RR2 decolourization rates can be approximated by pseudo-first-order kinetics; moreover, only the TiO2/CNTs composite had photocatalytic activity under visible light irradiation. At pH 7, the RR2 decolourization rate constant of 0.5, 1 and 2 g/L TiO2/CNTs addition was 0.005, 0.0015, and 0.0047 min(-1), respectively. Decolourization rate increased as pH and the RR2 concentration decreased. The CNTs functioned as electron acceptors, promoting separation of photoinduced electron-hole pairs to retard their recombination; thus, photocatalytic activity of the TiO2/CNTs composite exceeded that of TiO2.

  16. Study on plasma pre-functionalized PVC film grafted with TiO2/PVP to improve blood compatible and antibacterial properties

    International Nuclear Information System (INIS)

    Suganya, Arjunan; Shanmugavelayutham, Gurusamy; Rodríguez, Carmen Serra

    2017-01-01

    Research into the design of new biopolymers/polymer functionalized with nanoparticles is of tremendous interest to the medical sector, particularly with regard to blood-contacting devices. In this present study, a steady blood compatible and active antibacterial coating was fabricated by the grafting of titanium dioxide (TiO 2 )/polyvinylpyyrolidone (PVP) onto a polyvinyl chloride (PVC) film surface via the direct-current glow discharge plasma method. To enhance the chemical interaction between TiO 2 /PVP and PVC, the surfaces of the PVC films were functionalized by different plasmas (air, argon, and oxygen) before coating. In this study, the plasma parameters were varied, such as treatment time of about 5–20 min for a constant power of 100 W, potential 300 V, and a constant gas pressure of 2 Pa for air, argon, and oxygen gas environment. Then, the different plasma treatments on the PVC films, TiO 2 /PVP were grafted using a simple dip-coating method. In addition, the TiO 2 /PVP-grafted PVC films were characterized by contact angle, attenuated total reflectance Fourier transform infrared spectroscopy, field-emission scanning electron microscope, and x-ray photo electron spectroscopy. Importantly, TiO 2 /PVP is grafted onto the PVC surface due to the plasma-based retained functionality and demonstrates adhesive efficiency, which was observed by XPS. The bio-stability of the TiO 2 /PVP-modified PVC film was evaluated by in vitro platelet activation analysis and protein adsorption analysis. Then, the antibacterial properties were evaluated by the agar diffusion method against Escherichia coli . The result reveals that the grafting of TiO 2 /PVP was slightly higher for the 15 min oxygen plasma-functionalized PVC, which significantly decreases the platelet adhesion and protein adsorption. Moreover, the antibacterial properties of the 15 min oxygen plasma-functionalized PVC with TiO 2 /PVP-grafted film is also greatly improved compared with an air- and argon-functionalized

  17. Influence of sterilization methods on cell behavior and functionality of osteoblasts cultured on TiO2 nanotubes

    International Nuclear Information System (INIS)

    Oh, Seunghan; Brammer, Karla S.; Moon, Kyung-Suk; Bae, Ji-Myung; Jin, Sungho

    2011-01-01

    We investigated the adhesion, proliferation and osteogenic functionality of osteoblasts cultured on titanium dioxide (TiO 2 ) nanotubes in response to different sterilization methods (dry autoclaving vs. wet autoclaving). We prepared various sizes (30-100 nm diameter) of TiO 2 nanotubes on titanium substrates by anodization, sterilized nanotubes by different conditions, and seeded osteoblast cells onto the nanotube surfaces with two different cell seeding densities (10,000 vs. 50,000 cells/well in 12-culture well). The result of this study indicates that the adhesion, proliferation and alkaline phosphatase activity of osteoblasts cultured on only the larger 70 and 100 nm TiO 2 nanotube arrays were dramatically changed by the different sterilization conditions at a low cell seeding density. However, with a higher cell seeding density (50,000 cells/well in 12-cell culture well), the results revealed no significant difference among altered nanotube geometry, 30-100 nm diameters, nor sterilization methods. Next, it was revealed that the nanofeatures of proteins adhered on nanotubular TiO 2 morphology are altered by the sterilization method. It was determined that this protein adhesion effect, in combination with the cell density of osteoblasts seeded onto such TiO 2 nanotube surfaces, has profound effects on cell behavior. This study clearly shows that these are some of the important in vitro culture factors that need to be taken into consideration, as well as TiO 2 nanotube diameters which play an important role in the improvement of cell behavior and functionality.

  18. Preparation of micro/nanostructure TiO2 spheres by controlling pollen as hard template and soft template.

    Science.gov (United States)

    Yang, Xiaohui; Xu, Bin; Zhang, Xuehong; Song, Xiuqin; Chen, Rufen

    2014-09-01

    In this paper, micro/nanostructure TiO2 spheres were synthesized by a sunflower pollen induced and self-assembly mineralization process, in which a titania precursor and pollen reacted in one-pot at normal pressure. In this paper, the bio-template advantage, as hard and soft template is fully demonstrated. The superiority of our synthesis is that we not only can control pollen as hard template, but also can control it as soft template only by changing reactions temperature. Under 80 degrees C of water bath, TiO2 microspheres which replicated the morphology of pollen were prepared by controlling pollen as hard template. Under 100 degrees C, hierarchical TiO2 spheres with complicated morphology, different from pollen template, were synthesized by using pollen as soft template. At the same time, judicious choice of the amount of pollen affords the synthesis of hierarchical structures spheres with adjustable morphology and crystal structure. The morphology can be tuned from microspheres constructed from TiO2 nanorods to nanospheres constructed from TiO2 nanoparticles, and the crystal structure can be tuned from rutile to anatase. More over this anatase phase can be keep better even at high temperature of 1000 degrees C. The as-prepared micro/nano structure photocatalysts not only have high photocatalytic activities, but also have good separability and reuse performance.

  19. Data on the effect of the dispersion of functionalized nanoparticles TiO2 with photocatalytic activity in LDPE

    Directory of Open Access Journals (Sweden)

    Alvarado Jahell

    2018-02-01

    Full Text Available This article contains the dataset referring to the article ''Study of the effect of the dispersion of functionalized nanoparticles TiO2 with photocatalytic activity in LDPE'' (Jahell et al., 2016 [1]. It includes the FT-IR data of the functionalized nanoparticles of TiO2 with Hexadecyltrimethoxysilane in different degrees of functionalization, thermogravimetric analysis, distribution and particle size in the polymer matrix by scanning electron microscopy (SEM, carbonyl index, gravimetry and scanning electron microscopy of the nanocomposite degraded by UV radiation.

  20. Coating fabrics with gold nanorods for colouring, UV-protection, and antibacterial functions

    Science.gov (United States)

    Zheng, Yidan; Xiao, Manda; Jiang, Shouxiang; Ding, Feng; Wang, Jianfang

    2012-12-01

    Gold nanorods exhibit rich colours owing to the nearly linear dependence of the longitudinal plasmon resonance wavelength on the length-to-diameter aspect ratio. This property of Au nanorods has been utilized in this work for dyeing fabrics. Au nanorods of different aspect ratios were deposited on both cotton and silk fabrics by immersing them in Au nanorod solutions. The coating of Au nanorods makes the fabrics exhibit a broad range of colours varying from brownish red through green to purplish red, which are essentially determined by the longitudinal plasmon wavelength of the deposited Au nanorods. The colorimetric values of the coated fabrics were carefully measured for examining the colouring effects. The nanorod-coated cotton fabrics were found to be commercially acceptable in washing fastness to laundering tests and colour fastness to dry cleaning tests. Moreover, the nanorod-coated cotton and silk fabrics show significant improvements on both UV-protection and antibacterial functions. Our study therefore points out a promising approach for the use of noble metal nanocrystals as dyeing materials for textile applications on the basis of their inherent localized plasmon resonance properties.

  1. High-resolution photoelectron spectroscopy of TiO3H2-: Probing the TiO2- + H2O dissociative adduct

    Science.gov (United States)

    DeVine, Jessalyn A.; Abou Taka, Ali; Babin, Mark C.; Weichman, Marissa L.; Hratchian, Hrant P.; Neumark, Daniel M.

    2018-06-01

    Slow electron velocity-map imaging spectroscopy of cryogenically cooled TiO3H2- anions is used to probe the simplest titania/water reaction, TiO20/- + H2O. The resultant spectra show vibrationally resolved structure assigned to detachment from the cis-dihydroxide TiO(OH)2- geometry based on density functional theory calculations, demonstrating that for the reaction of the anionic TiO2- monomer with a single water molecule, the dissociative adduct (where the water is split) is energetically preferred over a molecularly adsorbed geometry. This work represents a significant improvement in resolution over previous measurements, yielding an electron affinity of 1.2529(4) eV as well as several vibrational frequencies for neutral TiO(OH)2. The energy resolution of the current results combined with photoelectron angular distributions reveals Herzberg-Teller coupling-induced transitions to Franck-Condon forbidden vibrational levels of the neutral ground state. A comparison to the previously measured spectrum of bare TiO2- indicates that reaction with water stabilizes neutral TiO2 more than the anion, providing insight into the fundamental chemical interactions between titania and water.

  2. A selective potentiometric copper (II) ion sensor based on the functionalized ZnO nanorods.

    Science.gov (United States)

    Khun, K; Ibupoto, Z H; Liu, X; Nur, O; Willander, M; Danielsson, B

    2014-09-01

    In this work, ZnO nanorods were hydrothermally grown on the gold-coated glass substrate and characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) techniques. The ZnO nanorods were functionalized by two different approaches and performance of the sensor electrode was monitored. Fourier transform infrared spectroscopy (FTIR) was carried out for the confirmation of interaction between the ionophore molecules and ZnO nanorods. In addition to this, the surface of the electrode was characterized by X-ray photoelectron spectroscopy (XPS) showing the chemical and electronic state of the ionophore and ZnO nanorod components. The ionophore solution was prepared in the stabilizer, poly vinyl chloride (PVC) and additives, and then functionalized on the ZnO nanorods that have shown the Nernstian response with the slope of 31 mV/decade. However, the Cu2+ ion sensor was fabricated only by immobilizing the selective copper ion ionophore membrane without the use of PVC, plasticizers, additives and stabilizers and the sensor electrode showed a linear potentiometric response with a slope of 56.4 mV/decade within a large dynamic concentration range (from 1.0 x 10(-6) to 1.0 x 10(-1) M) of copper (II) nitrate solutions. The sensor showed excellent repeatability and reproducibility with response time of less than 10 s. The negligible response to potentially interfering metal ions such as calcium (Ca2+), magnesium (Mg2+), potassium (K+), iron (Fe3+), zinc (Zn2+), and sodium (Na+) allows this sensor to be used in biological studies. It may also be used as an indicator electrode in the potentiometric titration.

  3. Ion-assisted functional monolayer coating of nanorod arrays in hydrogen plasmas

    International Nuclear Information System (INIS)

    Tam, E.; Levchenko, I.; Ostrikov, K.; Keidar, M.; Xu, S.

    2007-01-01

    Uniformity of postprocessing of large-area, dense nanostructure arrays is currently one of the greatest challenges in nanoscience and nanofabrication. One of the major issues is to achieve a high level of control in specie fluxes to specific surface areas of the nanostructures. As suggested by the numerical experiments in this work, this goal can be achieved by manipulating microscopic ion fluxes by varying the plasma sheath and nanorod array parameters. The dynamics of ion-assisted deposition of functional monolayer coatings onto two-dimensional carbon nanorod arrays in a hydrogen plasma is simulated by using a multiscale hybrid numerical simulation. The numerical results show evidence of a strong correlation between the aspect ratios and nanopattern positioning of the nanorods, plasma sheath width, and densities and distributions of microscopic ion fluxes. When the spacing between the nanorods and/or their aspect ratios are larger, and/or the plasma sheath is wider, the density of microscopic ion current flowing to each of the individual nanorods increases, thus reducing the time required to apply a functional monolayer coating down to 11 s for a 7-μm-wide sheath, and to 5 s for a 50-μm-wide sheath. The computed monolayer coating development time is consistent with previous experimental reports on plasma-assisted functionalization of related carbon nanostructures [B. N. Khare et al., Appl. Phys. Lett. 81, 5237 (2002)]. The results are generic in that they can be applied to a broader range of plasma-based processes and nanostructures, and contribute to the development of deterministic strategies of postprocessing and functionalization of various nanoarrays for nanoelectronic, biomedical, and other emerging applications

  4. Synthesis and thermoelectric properties of RuO2 nanorods

    International Nuclear Information System (INIS)

    Music, Denis; Basse, Felix H.-U.; Schneider, Jochen M.; Hassdorf, Ralf

    2010-01-01

    We have explored the effect of the O/Ru ratio on the morphology and the Seebeck coefficient of RuO 2 nanorods (space group P4 2 /mnm) synthesized by reactive sputtering. At an O/Ru ratio of 1.69, a faceted surface is observed, while nanorod formation occurs at O/Ru ratios of 2.03 and 2.24. Using classical molecular dynamics with the potential parameters derived in this work, we show that volatile species enable nanorod formation. Based on ab initio calculations, two effects of the nanorod formation on the Seebeck coefficient are observed: (i) increase due to additional states in the vicinity of the Fermi level and (ii) decrease due to oxygen point defects (volatile species). These two competing effects give rise to a moderate increase in the Seebeck coefficient upon nanorod formation.

  5. Interspace modification of titania-nanorod arrays for efficient mesoscopic perovskite solar cells

    International Nuclear Information System (INIS)

    Chen, Peng; Jin, Zhixin; Wang, Yinglin; Wang, Meiqi; Chen, Shixin; Zhang, Yang; Wang, Lingling; Zhang, Xintong; Liu, Yichun

    2017-01-01

    Highlights: • The fabrication of perovskite solar cells utilizing TiO_2 NR arrays. • Investigation of the interspace effect of TiO_2 NR on perovskite layer. • Understanding of the balance between perovskite capping layer and pore filling. - Abstract: Morphology of electron transport layers (ETLs) has an important influence on the device architecture and electronic processes of mesostructured solar cells. In this work, we thoroughly investigated the effect of the interspace of TiO_2 nanorod (NR) arrays on the photovoltaic performance of the perovskite solar cells (PSCs). Along with the interspace in TiO_2-NR arrays increasing, the thickness as well as the crystal size of perovskite capping layer are reduced accordingly, and the filling of perovskite in the channel becomes incomplete. Electrochemical impedance spectroscopy measurements reveal that this variation of perovskite absorber layer, induced by interspace of TiO_2 NR arrays, causes the change of charge recombination process at the TiO_2/perovskite interface, suggesting that a balance between capping layer and the perovskite filling is critical to obtain high charge collection efficiency of PSCs. A power conversion efficiency of 10.3% could be achieved through careful optimization of interspace in TiO_2-NR arrays. Our research will shed light on the morphology control of ETLs with 1D structure for heterojunction solar cells fabricated by solution-deposited method.

  6. Interspace modification of titania-nanorod arrays for efficient mesoscopic perovskite solar cells

    Science.gov (United States)

    Chen, Peng; Jin, Zhixin; Wang, Yinglin; Wang, Meiqi; Chen, Shixin; Zhang, Yang; Wang, Lingling; Zhang, Xintong; Liu, Yichun

    2017-04-01

    Morphology of electron transport layers (ETLs) has an important influence on the device architecture and electronic processes of mesostructured solar cells. In this work, we thoroughly investigated the effect of the interspace of TiO2 nanorod (NR) arrays on the photovoltaic performance of the perovskite solar cells (PSCs). Along with the interspace in TiO2-NR arrays increasing, the thickness as well as the crystal size of perovskite capping layer are reduced accordingly, and the filling of perovskite in the channel becomes incomplete. Electrochemical impedance spectroscopy measurements reveal that this variation of perovskite absorber layer, induced by interspace of TiO2 NR arrays, causes the change of charge recombination process at the TiO2/perovskite interface, suggesting that a balance between capping layer and the perovskite filling is critical to obtain high charge collection efficiency of PSCs. A power conversion efficiency of 10.3% could be achieved through careful optimization of interspace in TiO2-NR arrays. Our research will shed light on the morphology control of ETLs with 1D structure for heterojunction solar cells fabricated by solution-deposited method.

  7. Fabrication of Eu-TiO2 NCs functionalized cotton textile as a multifunctional photocatalyst for dye pollutants degradation

    Science.gov (United States)

    Caschera, Daniela; Federici, Fulvio; de Caro, Tilde; Cortese, Barbara; Calandra, Pietro; Mezzi, Alessio; Lo Nigro, Raffaella; Toro, Roberta G.

    2018-01-01

    A modified one step and cost-effective chemical green route has been used to synthesize oleate-capped TiO2 anatase nanocrystals (NCs) doped with different amounts of europium, with high yields and without high-temperature post-calcination processes. Europium doping endowed TiO2 NCs with an intense red luminescence associated with the 5D0 → 7F2 transition of the electronic structure of Eu3+ and was responsible for both the morphological change of the NCs structure (from nanorods to spherical nanoparticles) and the blue shift in the absorption edge respect to the undoped TiO2 NCs. Furthermore, photocatalytic experiments revealed that a low-content (0.5 mol%) Eu3+ doped TiO2 NCs showed the best ability as photocatalyst for the degradation of methylene blue (MB) under both UV and visible light irradiation, even if all the Eu3+ doped oleate-capped TiO2 NCs were more effective under visible light. Moreover, taking advantage of their photocatalytic activity, the 0.5% Eu3+ doped oleate-capped TiO2 photocatalysts has been employed on cotton fabrics. Our results highlighted that functionalization of cotton textile with Eu3+ doped oleate-capped TiO2 NCs imparted new functionalities, such as a high photocatalytic activity toward MB degradation under visible light. In addition, it determined also the change in the wetting behaviour of cotton that switches to a superhydrophobic nature. The obtained fabric also showed stable and robust superhydrophobicity against strong acid and alkaline environments. Multifunctional materials having simultaneously luminescence, superhydrophobicity and visible light photocatalysis are expected to be very useful in many technological applications.

  8. The effect of TiO2 nanocrystal shape on the electrical properties of poly(styrene-b-methyl methacrylate) block copolymer based nanocomposites for solar cell application

    International Nuclear Information System (INIS)

    Cano, Laida; Gutierrez, Junkal; Di Mauro, A. Evelyn; Curri, M. Lucia; Tercjak, Agnieszka

    2015-01-01

    Titanium dioxide (TiO 2 ) nanocrystals were synthesized into two shapes, namely spherical and rod-like and used for the fabrication of polystyrene-block-poly(methyl methacrylate) (PSMMA) block copolymer based nanocomposites, which were employed as the active top layer of electro-devices for solar cell application. Electro-devices were designed using nanocomposites with high TiO 2 nanocrystal contents (50-70 wt%) and for comparison as-synthesized TiO 2 nanospheres (TiO 2 NSs) and TiO 2 nanorods (TiO 2 NRs) were also used. The morphology of the electro-devices was studied by atomic force microscopy showing good nanocrystal dispersion. The electrical properties of the devices were investigated by PeakForce tunneling atomic force microscopy and Keithley semiconductor analyzer, which showed higher electrical current values for devices containing TiO 2 NRs in comparison to TiO 2 NSs. Remarkably, the influence of the PSMMA block copolymer on the improvement of the conductivity of the electro-devices was also assessed, demonstrating that the self-assembling ability of block copolymer can be beneficial to improve charge transfer in the fabricated electro-devices, thus representing relevant systems to be potentially developed for photovoltaic applications. Moreover, the absorbance of the prepared electro-devices in solar irradiation range was confirmed by UV–vis spectroscopy characterization.

  9. TiO{sub 2} nanorod arrays functionalized with In{sub 2}S{sub 3} shell layer by a low-cost route for solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Gan Xiaoyan; Li Xiaomin; Gao Xiangdong; Qiu Jijun; Zhuge Fuwei, E-mail: ganxiaoyan@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding Xi Road, Shanghai 200050 (China)

    2011-07-29

    We report the fabrication and characterization of a TiO{sub 2}-In{sub 2}S{sub 3} core-shell nanorod array structure for application of semiconductor-sensitized solar cells. Hydrothermally synthesized TiO{sub 2} nanorod arrays on FTO glass substrates are functionalized with a uniform In{sub 2}S{sub 3} shell layer by using the successive ion layer adsorption and reaction (SILAR) method. This low-cost technique promotes a uniform deposition of In{sub 2}S{sub 3} nanoshells on the surface of TiO{sub 2} nanorods, thus forming an intact interface between the In{sub 2}S{sub 3} shell and TiO{sub 2} core. Results show that the thickness of In{sub 2}S{sub 3} shell layers as well as the visible light absorption threshold can be effectively controlled by varying the coating cycles during the SILAR process. The best reproducible performance of the sandwich solar cell using the TiO{sub 2}-In{sub 2}S{sub 3} core-shell nanorod arrays as photoelectrodes was obtained after 30 SILAR cycles, exhibiting a short-circuit current (I{sub sc}) of 2.40 mA cm{sup -2}, an open-circuit voltage (V{sub oc}) of 0.56 V, a fill factor (ff) of 0.40 and a conversion efficiency ({eta}) of 0.54%, respectively. These results demonstrate a feasible and controllable route towards In{sub 2}S{sub 3} coating on a highly structured substrate and a proof of concept that such TiO{sub 2}-In{sub 2}S{sub 3} core-shell architectures are novel and promising photoelectrodes in nanostructured solar cells.

  10. Effect of RGD Peptide-Coated TiO2 Nanotubes on the Attachment, Proliferation, and Functionality of Bone-Related Cells

    Directory of Open Access Journals (Sweden)

    Seunghan Oh

    2013-01-01

    Full Text Available The purpose of this research was to characterize an Arg-Gly-Asp (RGD peptide immobilized on TiO2 nanotubes. In addition, we investigated the effects of the RGD peptide-coated TiO2 nanotubes on the cellular response, proliferation, and functionality of osteogenic-induced human mesenchymal stem cells (hMSCs, which are osteoclasts that have been induced by bone marrow macrophages. The RGD peptide was grafted covalently onto the surface of TiO2 nanotubes based on the results of SEM, FT-IR, and XPS. Furthermore, the RGD peptide promoted the initial attachment and proliferation of the hMSCs, regardless of the size of the TiO2 nanotubes. However, the RGD peptide did not prominently affect the osteogenic functionality of the hMSCs because the peptide suppressed hMSC motility associated with osteogenic differentiation. The result of an in vitro osteoclast test showed that the RGD peptide accelerated the initial attachment of preosteoclasts and the formation of mature osteoclasts, which could resorb the bone matrix. Therefore, we believe that an RGD coating on TiO2 nanotubes synthesized on Ti implants might not offer significant acceleration of bone formation in vivo because osteoblasts and osteoclasts reside in the same compartment.

  11. Magnetic-plasmonic multilayered nanorods

    Science.gov (United States)

    Thumthan, Orathai

    Multilayered nanorods which consist of alternating magnetic layers separated by Au layers combine two distinctive properties, magnetic properties and surface plasmonic resonance (SPR) properties into one nano-entity. Their magnetic properties are tunable by changing the layer thickness, varying from single domain to superparamagnetic state. Superparamagnetic is a key requirement for magnetic nanoparticles for bioapplications. Superparamagnetic nanoparticles exhibit high magnetic moments at low applied magnetic field while retain no magnetic moments when magnetic field is removed preventing them from aggregation due to magnetic attraction. Au layers in the nanorods provide anchorage sites for functional group attachment. Also, Au nanodisks exhibit SPR properties. The SPR peak can be tuned from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. In this research, there are three types of multilayered nanorod have been fabricated: Au/NiFe nanorods, Au/Fe nanorods, and Au/Co nanorods. These magnetic nanorods were fabricated by templated electrodeposition into the channels in Anodic Aluminum Oxide (AAO) membrane. The setup for AAO fabrication was developed as a part of this research. Our fabricated AAO membrane has channels with a diameter ranging from 40nm to 80 nm and a thickness of 10um to 12um. Magnetic properties of nanorods such as saturation field, saturation moment, coercivity and remanence are able to manipulate through their shape anisotropy. The magnetization will be easier in long axis rather than short axis of particle. In addition, Au nanodisks in the nanorod structure are not only serving as anchorage sites for functional groups but also provide SPR properties. Under irradiation of light Au nanodisks strongly absorb light at SPR frequency which ranging from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. The SPR tunability of nanorods in near

  12. ZnO nanorods/AZO photoanode for perovskite solar cells fabricated in ambient air

    Science.gov (United States)

    La Ferrara, Vera; De Maria, Antonella; Rametta, Gabriella; Della Noce, Marco; Vittoria Mercaldo, Lucia; Borriello, Carmela; Bruno, Annalisa; Delli Veneri, Paola

    2017-08-01

    ZnO nanorods are a good candidate for replacing standard photoanodes, such as TiO2, in perovskite solar cells and in principle superseding the high performances already obtained. This is possible because ZnO nanorods have a fast electron transport rate due to their large surface area. An array of ZnO nanorods is grown by chemical bath deposition starting from Al-doped ZnO (AZO) used both as a seed layer and as an efficient transparent anode in the visible spectral range. In particular, in this work we fabricate methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells using glass/AZO/ZnO nanorods/perovskite/Spiro-OMeTAD/Au as the architecture. The growth of ZnO nanorods has been optimized by varying the precursor concentrations, growth time and solution temperature. All the fabrication process and photovoltaic characterizations have been carried out in ambient air and the devices have not been encapsulated. Power conversion efficiency as high as 7.0% has been obtained with a good stability over 20 d. This is the highest reported value to the best of our knowledge and it is a promising result for the development of perovskite solar cells based on ZnO nanorods and AZO.

  13. One-pot engineering TiO2/graphene interface for enhanced adsorption and photocatalytic degradation of multiple organics.

    Science.gov (United States)

    Song, Jianhua; Ling, Yun; Xie, Yu; Liu, Lianjun; Zhu, Huihua

    2018-06-13

    It is challenging to design a multifunctional structure or composite for simultaneously adsorb and photocatalytic degrade organic pollutants in water. Towards this goal, this work innovatively engineered interfacial sites between TiO2 particles and reduced graphene oxide (RGO) sheets by employing in situ one-pot one-step solvothermal method. The interface was associated with the content of RGO, solvothermal time and solvent ratio of n-pentanol to n-hexane. It was found that when at a moderate amount of RGO (25%), TiO2 nanoparticles were well dispersed on the surface of RGO or wrapped by RGO, thus leading to a fully contact and strong interaction to form Ti - O - C interfacial structure. But when at a low content of RGO (6%), TiO2 aggregates were mixture of nanosheets, nanoparticles and nanorods. 25%RGO/TiO2 also had 175% higher surface area (146m2/g), 95% larger volume (0.339 cm3/g) and smaller band gap than 6%RGO/TiO2. More importantly, 25%RGO/TiO2 demonstrated higher adsorption efficiency (25%) and 4 times faster degradation rate than TiO2 (0%). It also exhibited good capability to eliminate multiple organics and stable long-term cycle performance (up to 93% retention after 30 cycles). Its superiority was attributed to the large surface area and unique interface between TiO2 and RGO, which not only provided more active sites to capture pollutants but also enhanced charge transfer (3 µA/cm2, 5 times higher than TiO2). This work offered a promising way to purify water through engineering new materials structure and integrating adsorption and photodegradation technologies. © 2018 IOP Publishing Ltd.

  14. Phase transformation synthesis of TiO2/CdS heterojunction film with high visible-light photoelectrochemical activity

    Science.gov (United States)

    Liu, Canjun; Yang, Yahui; Li, Jie; Chen, Shu

    2018-06-01

    CdS/TiO2 heterojunction film used as a photoanode has attracted much attention in the past few years due to its good visible light photocatalytic activity. However, CdS/TiO2 films prepared by conventional methods (successive ionic layer adsorption and reaction, chemical bath deposition and electrodeposition) show numerous grain boundaries in the CdS layer and an imperfect contact at the heterojunction interface. In this study, we designed a phase transformation method to fabricate CdS/TiO2 nanorod heterojunction films. The characterization results showed that the CdS layer with fewer grain boundaries was conformally coated on the TiO2 nanorod surface and the formation mechanism has been explained in this manuscript. Moreover, the prepared CdS/TiO2 films show a high photocatalytic activity and the photocurrent density is as high as 9.65 mA cm‑2 at 0.80 V versus RHE. It may be attributed to fewer grain boundaries and a compact heterojunction contact, which can effectively improve charge separation and transportation.

  15. Enhanced Bonding of Silver Nanoparticles on Oxidized TiO2(110)

    DEFF Research Database (Denmark)

    Hansen, Jonas Ørbæk; Salazar, Estephania Lira; Galliker, Patrick

    2010-01-01

    The nucleation and growth of silver nanoclusters on TiO2(110) surfaces with on-top O adatoms (oxidized TiO2), surface O vacancies and H adatoms (reduced TiO2) have been studied. From the interplay of scanning tunneling microscopy/photoelectron spectroscopy experiments and density functional theor...

  16. Fabrication of a TiO2-P25/(TiO2-P25+TiO2 nanotubes junction for dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Nguyen Huy Hao

    2016-08-01

    Full Text Available The dye sensitized solar cell (DSSC, which converts solar light into electric energy, is expected to be a promising renewable energy source for today's world. In this work, dye sensitized solar cells, one containing a single layer and one containing a double layer, were fabricated. In the double layer DSSC structure, the under-layer was TiO2-P25 film, and the top layer consisted of a mixture of TiO2-P25 and TiO2 nanotubes. The results indicated that the efficiency of the DSSC with the double layer structure was a significant improvement in comparison to the DSSC consisting of only a single film layer. The addition of TiO2-P25 in the top layer caused an improvement in the adsorption of dye molecules on the film rather than on the TiO2 nanotubes only. The presence of the TiO2 nanotubes together with TiO2-P25 in the top layer revealed the enhancement in harvesting the incident light and an improvement of electron transport through the film.

  17. N-doped hollow urchin-like anatase TiO2@C composite as a novel anode for Li-ion batteries

    Science.gov (United States)

    Xing, Yalan; Wang, Shengbin; Fang, Baizeng; Song, Ge; Wilkinson, David P.; Zhang, Shichao

    2018-05-01

    N-doped hollow urchin-like anatase TiO2 spheres (HUTSs) with carbon coating (HUTS@C) are prepared through a facile and scalable hydrothermal reaction followed by coating of polypyrrole and carbonization. The HUTS is composed of radially grown anatase nanorods and possesses an enhanced percentage of exposed {001} facets compared with P25 TiO2 nanoparticles. After the carbon coating, the HUTS@C retains the hollow nanostructure although covered with an N-doped carbon layer. As an anode for Li-ion batteries, the HUTS@C delivers a higher capacity of 165.1 mAh g-1 at 1C after 200 cycles and better rate capability (111.7 mAh g-1 at 10C) than the HUTS. Further electrochemical studies reveal that the HUTS@C has a better electrochemical reversibility, lower charge-transfer resistance, and higher Li-ion diffusion coefficient due to its unique nanosctructure including the hollow core, anatase phase of TiO2 microspheres with high exposed {001} facets and the N-doped carbon layer, which facilitates mass transport and enhances electrical conductivity.

  18. Development of a physical and electronic model for RuO 2 nanorod rectenna devices

    Science.gov (United States)

    Dao, Justin

    Ruthenium oxide (RuO2) nanorods are an emergent technology in nanostructure devices. As the physical size of electronics approaches a critical lower limit, alternative solutions to further device miniaturization are currently under investigation. Thin-film nanorod growth is an interesting technology, being investigated for use in wireless communications, sensor systems, and alternative energy applications. In this investigation, self-assembled RuO2 nanorods are grown on a variety of substrates via a high density plasma, reactive sputtering process. Nanorods have been found to grow on substrates that form native oxide layers when exposed to air, namely silicon, aluminum, and titanium. Samples were analyzed with Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques. Conductive Atomic Force Microscopy (C-AFM) measurements were performed on single nanorods to characterize structure and electrical conductivity. The C-AFM probe tip is placed on a single nanorod and I-V characteristics are measured, potentially exhibiting rectifying capabilities. An analysis of these results using fundamental semiconductor physics principles is presented. Experimental data for silicon substrates was most closely approximated by the Simmons model for direct electron tunneling, whereas that of aluminum substrates was well approximated by Fowler-Nordheim tunneling. The native oxide of titanium is regarded as a semiconductor rather than an insulator and its ability to function as a rectifier is not strong. An electronic model for these nanorods is described herein.

  19. First-Principles Modeling of Polaron Formation in TiO2 Polymorphs.

    Science.gov (United States)

    Elmaslmane, A R; Watkins, M B; McKenna, K P

    2018-06-21

    We present a computationally efficient and predictive methodology for modeling the formation and properties of electron and hole polarons in solids. Through a nonempirical and self-consistent optimization of the fraction of Hartree-Fock exchange (α) in a hybrid functional, we ensure the generalized Koopmans' condition is satisfied and self-interaction error is minimized. The approach is applied to model polaron formation in known stable and metastable phases of TiO 2 including anatase, rutile, brookite, TiO 2 (H), TiO 2 (R), and TiO 2 (B). Electron polarons are predicted to form in rutile, TiO 2 (H), and TiO 2 (R) (with trapping energies ranging from -0.02 eV to -0.35 eV). In rutile the electron localizes on a single Ti ion, whereas in TiO 2 (H) and TiO 2 (R) the electron is distributed across two neighboring Ti sites. Hole polarons are predicted to form in anatase, brookite, TiO 2 (H), TiO 2 (R), and TiO 2 (B) (with trapping energies ranging from -0.16 eV to -0.52 eV). In anatase, brookite, and TiO 2 (B) holes localize on a single O ion, whereas in TiO 2 (H) and TiO 2 (R) holes can also be distributed across two O sites. We find that the optimized α has a degree of transferability across the phases, with α = 0.115 describing all phases well. We also note the approach yields accurate band gaps, with anatase, rutile, and brookite within six percent of experimental values. We conclude our study with a comparison of the alignment of polaron charge transition levels across the different phases. Since the approach we describe is only two to three times more expensive than a standard density functional theory calculation, it is ideally suited to model charge trapping at complex defects (such as surfaces and interfaces) in a range of materials relevant for technological applications but previously inaccessible to predictive modeling.

  20. Imidazolium ionic liquid induced one-step synthesis of -Fe2O3 nanorods and nanorod assemblies for lithium-ion battery

    Directory of Open Access Journals (Sweden)

    Shuting Xie

    2016-12-01

    Full Text Available α-Fe2O3 nanorods and nanorod assemblies are prepared via a facile one-step method with the assistance of imidazolium-based ionic liquid. The aspect ratio of synthesized nanorods is determined by the alkyl chain length of [Cnmim]+. The inter-molecular π−π interaction and intra-molecular dipole-dipole interaction among imidazole rings of [C4mim]+[PhCOO]− play critical roles in both nucleation and assembly processes of α-Fe2O3 nanorods. The α-Fe2O3 nanorod assemblies show an excellent performance in lithium-ion batteries with a reversible capacity of 1007.3 mA h g−1 at the rate of 500 mA g−1 after 150 cycles.

  1. Synthesis and characterization of titanium oxide/bismuth sulfide nanorods for solar cells applications

    International Nuclear Information System (INIS)

    Solis, M.; Rincon, M. E.

    2008-01-01

    In the present work is showed the synthesis and characterization of titanium oxide/bismuth sulfide nanowires hetero-junctions for solar cells applications. Conductive glass substrates (Corning 25 x 75 mm) were coated with a thin layer of sol-gel TiO2 and used as substrates for the subsequent deposition of bismuth sulfide nanorods (BN). TiO2 films (∼400 nm) were deposited with a semiautomatic immersion system with controlled immersion/withdraw velocity, using titanium isopropoxide as the titania precursor [1]. For BN synthesis and deposition, the solvo-thermal method was used, introducing air annealed TiO2-substrates in the autoclave. The typical bilayer TiO2/BN hetero-junction was 600 nm thick. The synthesized materials (powders and films) were characterized by X-Ray Diffraction, Scanning Electron Microscopy, and UV-Visible Spectroscopy. Anatase was the crystalline phase of TiO2, while bismuth sulfide nanotubes show a diffraction pattern characteristic of bismuthinite distorted by the preferential growth of some planes [2-4]. The optoelectronic characterization of TiO2/NB hetero-junctions was compared with hetero-junctions obtained by sensitizing TiO2 with chemically deposited bismuth sulfide films. Bismuth sulfide nanowires are 2µm long and 70nm wide (aspect ratio L/D = 43), while chemically deposited bismuth sulfide have L/D = 1, therefore the effect of particle size evaluation and geometry in the photosensitization phenomena will be discussed in the context of new materials for solar-cells applications. (Full text)

  2. Preparation and characterization of dye-sensitized TiO{sub 2} nanorod solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Lijian, E-mail: ljm@isep.ipp.pt [Departamento de Física, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto (Portugal); Centro de Física, Universidade do Minho, 4800-058 Guimarães (Portugal); Chen, Hong [Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, fine Mechanics and Physics of Chinese Academy of Science, Changchun 130033 (China); Li, Can [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023,China (China); Santos, M.P. dos [CEFITEC, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Departamento de Física, Escola de Ciências e Tecnologia, Universidade de Évora (Portugal)

    2015-02-27

    TiO{sub 2} nanorods were prepared by DC reactive magnetron sputtering technique and applied to dye-sensitized solar cells (DSSCs). The length of the TiO{sub 2} nanorods was varied from 1 μm to 6 μm. The scanning electron microscopy images show that the nanorods are perpendicular to the substrate. Both the X-ray diffraction patterns and Raman scattering results show that the nanorods have an anatase phase; no other phase has been observed. (101) and the (220) diffraction peaks have been observed for the TiO{sub 2} nanorods. The (101) diffraction peak intensity remained constant despite the increase of nanorod length, while the intensity of the (220) diffraction peak increased almost linearly with the nanorod length. These nanorods were used as the working electrodes in DSSCs and the effect of the nanorod length on the conversion efficiency has been studied. An optimum photoelectric conversion efficiency of 4.8% has been achieved for 4 μm length nanorods. - Highlights: • [110] oriented TiO{sub 2} nanorods were deposited on ITO substrate by dc reactive magnetron sputtering. • The structural properties of these nanorods have been studied. • The (110) texture is dominated by strain energy minimization. • DSSCs were assembled using these nanorods as electrode.

  3. A Simple Method to Functionalize the Surface of Plasma Electrolytic Oxidation Produced TiO2 Coatings for Growing Hydroxyapatite

    International Nuclear Information System (INIS)

    Teng, Huan-Ping; Yang, Chia-Jung; Lin, Jia-Fu; Huang, Yu-Hsin; Lu, Fu-Hsing

    2016-01-01

    Highlights: • TiO 2 coatings with porous surfaces were produced by plasma electrolytic oxidation. • Simple pre-immersion in K 2 HPO 4 could functionalize the surfaces of the TiO 2 . • Such pre-immersion enhanced substantially the growth of hydroxyapatite in SBF. • Growth mechanisms of hydroxyapatite via the pre-immersion have been proposed. • MTT assay shows great osteoblast-like cell activity on the obtained hydroxyapatite. - Abstract: Conventionally, hydrothermal treatment was often used to modify the TiO 2 surface prior to the growth of hydroxyapatite (HA) that is one of the most important implant biomaterials. In this work, a simple pre-immersion of the obtained TiO 2 in a weak base, instead of the conventionally high pressure-temperature hydrothermal pre-treatment, was conducted prior to the growth of HA. Firstly, anatase TiO 2 coatings with porous surfaces were produced by plasma electrolytic oxidation with optimized processing parameters. X-ray diffraction patterns and field-emission microscopy reveal that the anatase TiO 2 films with porous surfaces were produced by plasma electrolytic oxidation. Subsequently, the films were pre-immersed in 0.1–2 M K 2 HPO 4 solutions for only 10 min. Fourier transform infrared spectroscopy shows that the −OH functional groups were generated after such pre-immersion, which could enhance significantly the growth of a single phase of HA in simulated body fluid (SBF). Growth mechanisms of HA via the pre-immersion treatment and soaking in SBF have been proposed. Moreover, the proliferation rate and attachment of the MG-63 osteoblast cells were greatly enhanced on the obtained HA compared to that without the immersion pre-treatment from the MTT assay and morphology analyses. This simple immersion pre-treatment evidently provides an easy route for the growth of HA and has great potential for biomedical applications.

  4. Coaxial nanofibers containing TiO2 in the shell for water treatment applications

    Science.gov (United States)

    Kizildag, N.; Geltmeyer, J.; Ucar, N.; De Buysser, K.; De Clerck, K.

    2017-10-01

    In recent years, the basic electrospinning setup has undergone many modifications carried out to enhance the quality and improve the functionality of the resulting nanofibers. Being one of these modifications, coaxial electrospinning has attracted great attention. It enables to use different materials in nanofiber production and produce multi-layered and functional nanofibers in one step. In this study, TiO2 has been added to the shell layer of coaxial nanofibers to develop functional nanofibers which may be used in water treatment applications. The coaxial nanofibers containing TiO2 in the shell layer are compared to uniaxial nanofibers containing TiO2 in bulk fiber structure, regarding their morphology and photocatalytic activity. Uniform uniaxial and coaxial nanofibers with TiO2 were obtained. The average nanofiber diameter of coaxial nanofibers were higher. Coaxial nanofibers, which contained lower amount of TiO2, displayed similar performance to uniaxial nanofibers with TiO2 in terms of photocatalytic degradation ability against isoproturon.

  5. TiO2-TiO2 composite resistive humidity sensor: ethanol crosssensitivity

    International Nuclear Information System (INIS)

    Ghalamboran, Milad; Saedi, Yasin

    2016-01-01

    The fabrication method and characterization results of a TiO 2 -TiO 2 composite bead used for humidity sensing along with its negative cross-sensitivity to ethanol vapor are reported. The bead shaped resistive sample sensors are fabricated by the drop-casting of a TiO 2 slurry on two Pt wire segments. The dried bead is pre-fired at 750°C and subsequently impregnated with a Ti-based sol. The sample is ready for characterization after a thermal annealing at 600°C in air. Structurally, the bead is a composite of the micron-sized TiO 2 crystallites embedded in a matrix of nanometric TiO 2 particle aggregates. The performance of the beads as resistive humidity sensors is recorded at room temperature in standard humidity level chambers. Results evince the wide dynamic range of the sensors fabricated in the low relative humidity range. While the sensor conductance is not sensitive to ethanol vapor in dry air, in humid air, sensor's responses are negatively affected by the contaminant. (paper)

  6. The Properties of Nano TiO2-Geopolymer Composite as a Material for Functional Surface Application

    Directory of Open Access Journals (Sweden)

    Syamsidar D.

    2017-01-01

    Full Text Available The aim of this study is to examine the properties of Nano TiO2-geopolymer as a material for functional surface applications such as walls, floors, bench top, arts and decoration materials. Class-C fly ash and metakaolin were used as raw materials to produce geopolymers pastes (binder. Geopolymers were synthesized through alkali activation method cured at 50°C for 2 hours using molar oxide ratios of SiO2/Al2O3 = 3.0, Na2O/SiO2 = 0.2, and H2O/Na2O = 10. Nano TiO2 was added into geopolymers paste at different concentration namely 0 wt%, 5wt%, 10wt% and 15wt % relative the weight of fly ash or metakaolin. The measurements were commenced after the samples aged 7 days. The samples made from fly ash were immersed in 1 M H2SO4 solution for 3 days for acid resistance examination. The self-cleaning properties of the composites were observed by immersing the sample into red clays solution. The X-Ray Diffraction (XRD was performed to examine the structure and phase of the samples before and after acid resistance measurement. Scanning Electron Microscopy (SEM was performed to examine the surface morphology of the resulting composites. The measurements results showed that Nano TiO2–geopolymers composite can be applied as functionally surface materials.

  7. Fabrication, characterization and photocatalytic properties of Ag nanoparticles modified TiO2 NTs

    International Nuclear Information System (INIS)

    Wang Qingyao; Yang Xiuchun; Liu Dan; Zhao Jianfu

    2012-01-01

    Graphical abstract: The TiO 2 NTs were first treated with bi-functional mercaptoacetic acid linkers (HOOC–R–S). The –OH group on the surface of TiO 2 NT provides a strong affinity with the carboxylate group in the linker molecules. The thiol functional group in the linker molecules facilitates the binding with Ag from AgNO 3 solution. After Ag + ions were reduced by NaBH 4 , Ag nanoparticles formed by nucleation and growth. Highlights: ► Ag nanoparticles with an average diameter of 9.2 nm were filled in the TiO 2 nanotubes by a successive ionic layer adsorption and reaction (SILAR) technique. ► Bi-functional mercaptoacetic acid linkers were used to bind TiO 2 nanotubes with Ag nanoparticles. ► Ag nanoparticles modification of TiO 2 NTs largely enhanced the photocatalytic degradation of methyl orange under ultraviolet light irradiation. - Abstract: Ordered anatase TiO 2 nanotubes (TiO 2 NTs) on Ti substrate were synthesized by electrochemical anodization and subsequently vapor-thermal treatment. Ag nanoparticles were decorated on TiO 2 NTs by successive ionic layer adsorption and reaction (SILAR) technique. Raman spectroscopy, X-ray absorption near edge spectroscopy (XANES), X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for the characterization of surface morphology, phase composition, and microstructure of the original TiO 2 NTs, the vapor-thermally treated TiO 2 NTs and the Ag nanoparticles decorated TiO 2 NTs. The results indicate that vapor-thermal treatment favors to the transformation of amorphous TiO 2 into anatase phase. Increasing the SILAR cycle times favors to increase the loaded amounts of Ag nanoparticles in TiO 2 NTs. Ag nanoparticles are uniformly distributed in the TiO 2 NTs, and the SILAR process does not damage the ordered tubular structure. A possible formation mechanism of Ag/TiO 2 NTs has also been proposed. The

  8. Hollow Co2P nanoflowers organized by nanorods for ultralong cycle-life supercapacitors

    KAUST Repository

    Cheng, Ming; Fan, Hongsheng; Xu, Yingying; Wang, Rongming; Zhang, Xixiang

    2017-01-01

    Hollow Co2P nanoflowers (Co2P HNF) are successfully prepared via a one-step, template-free method. Microstructure analysis reveals that Co2P HNF is assembled by nanorods, possesses abundant mesopores and a amorphous carbon shell. Density functional

  9. Water on TiO2 studied by work function change: adsorption in cycles

    International Nuclear Information System (INIS)

    Bundaleski, Nenad; Silva, Ana G; Jean-Shaw, Bobbie; Teodoro, Orlando; Moutinho, Augusto

    2013-01-01

    The nature of water adsorption on TiO 2 (110) rutile surface attracts a lot of attention for quite some time. In spite of the considerable experimental and theoretical efforts a lot of details remain unclear. We have been using work function study to follow the adsorption of water on TiO 2 at room temperature, and interpreted the results in terms of fast dissociative adsorption on bridging oxygen vacancies (BOV) and much slower non-dissociative adsorption on Ti 5f rows. Additionally, we concluded that water from Ti 5f rows efficiently desorbs at room temperature which is not the case for BOV adsorption sites. Here we propose a novel experimental approach which consists of monitoring in real-time the work function change during cycles of water adsorption. Since desorption at BOVs does not take place at room temperature, this method allows us to resolve the adsorption dynamics on the two adsorption sites. The first results changed our understanding of the phenomenon: we show that both, adsorption on BOVs and Ti 5f are both very fast. Additionally, slow exponential decay of the work function is observed, which is not directly related to water adsorption. The possible explanation of the third slow contribution could be related to the migration of hydrogen atoms along the bridging oxygen rows.

  10. Enhanced photocatalytic activity and synthesis of ZnO nanorods/MoS2 composites

    Science.gov (United States)

    Li, Hui; Shen, Hao; Duan, Libing; Liu, Ruidi; Li, Qiang; Zhang, Qian; Zhao, Xiaoru

    2018-05-01

    A stable and recyclable organic degradation catalyst based on MoS2 functionalized ZnO nanorods was introduced. ZnO nanorods were synthesized on the glass substrates (2 cm*2 cm) by sol-gel method and hydrothermal method and functionalized with MoS2 via an argon flow annealing method. The structure and morphology of the as-prepared samples were characterized by XRD, SEM and TEM. Results showed that a small amount of MoS2 was successfully wrapped on the surfaces of ZnO nanorods. XPS analyses showed the existence of Zn-S between ZnO and MoS2, indicating that the MoS2 was combined with ZnO through chemical bonds and formed the ZnO/MoS2 heterostructure. PL results revealed that ZnO/MoS2 had lower fluorescence spectra indicating an electron transport channel between ZnO and MoS2 which separated electrons and holes. Photocatalytic experiment showed that ZnO/MoS2 composites showed a better photodegradation performance of Rhodamine B (RhB) after functionalized with MoS2 under the UV light irradiation which could be attributed to the separation and transfer of photogenerated electrons and holes between ZnO and MoS2. Meanwhile, the high active adsorption sites on the edges of MoS2 also accelerated the degradation process. Furthermore, the scavengers were used to investigate the major active species and results indicated that h+ was the major reactive species for the degradation.

  11. High Lithium Insertion Voltage Single-Crystal H2 Ti12 O25 Nanorods as a High-Capacity and High-Rate Lithium-Ion Battery Anode Material.

    Science.gov (United States)

    Guo, Qiang; Chen, Li; Shan, Zizhao; Lee, Wee Siang Vincent; Xiao, Wen; Liu, Zhifang; Liang, Jingjing; Yang, Gaoli; Xue, Junmin

    2018-01-10

    H 2 Ti 12 O 25 holds great promise as a high-voltage anode material for advanced lithium-ion battery applications. To enhance its electrochemical performance, control of the crystal orientation and morphology is an effective way to cope with slow Li + -ion diffusion inside H 2 Ti 12 O 25 with severe anisotropy. In this report, Na 2 Ti 6 O 13 nanorods, prepared from Na 2 CO 3 and anatase TiO 2 in molten NaCl medium, were used as a precursor in the synthesis of long single-crystal H 2 Ti 12 O 25 nanorods with reactive facets. The as-prepared H 2 Ti 12 O 25 nanorods with a diameter of 100-200 nm showed higher charge (extraction) specific capacity and better rate performance than previously reported systems. The reversible capacity of H 2 Ti 12 O 25 was 219.8 mAh g -1 at 1C after 100 cycles, 172.1 mAh g -1 at 10C, and 144.4 mAh g -1 at 20C after 200 cycles; these values are higher than those of H 2 Ti 12 O 25 prepared by the conventional soft-chemical method. Moreover, the as-prepared H 2 Ti 12 O 25 nanorods exhibited superior cycle stability with more than 94 % retention of capacity with nearly 100 % coulombic efficiency after 100 cycles at 1C. On the basis of the above results, long single-crystal H 2 Ti 12 O 25 nanorods synthesized in molten NaCl with outstanding electrochemical characteristics hold a significant amount of promise for hybrid electric vehicles and energy-storage systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Carrier-free, functionalized pure drug nanorods as a novel cancer-targeted drug delivery platform

    International Nuclear Information System (INIS)

    Li Yanan; An Feifei; Zhang Xiaohong; Yang Yinlong; Liu Zhuang; Zhang Xiujuan

    2013-01-01

    A one-dimensional drug delivery system (1D DDS) is highly attractive since it has distinct advantages such as enhanced drug efficiency and better pharmacokinetics. However, drugs in 1D DDSs are all encapsulated in inert carriers, and problems such as low drug loading content and possible undesirable side effects caused by the carriers remain a serious challenge. In this paper, a novel, carrier-free, pure drug nanorod-based, tumor-targeted 1D DDS has been developed. Drugs are first prepared as nanorods and then surface functionalized to achieve excellent water dispersity and stability. The resulting drug nanorods show enhanced internalization rates mainly through energy-dependent endocytosis, with the shape-mediated nanorod (NR) diffusion process as a secondary pathway. The multiple endocytotic mechanisms lead to significantly improved drug efficiency of functionalized NRs with nearly ten times higher cytotoxicity than those of free molecules and unfunctionalized NRs. A targeted drug delivery system can be readily achieved through surface functionalization with targeting group linked amphipathic surfactant, which exhibits significantly enhanced drug efficacy and discriminates between cell lines with high selectivity. These results clearly show that this tumor-targeting DDS demonstrates high potential toward specific cancer cell lines. (paper)

  13. The synthesis of PbF2 nanorods in a microemulsion system

    International Nuclear Information System (INIS)

    Xu Ke; Mao Changjie; Geng Jun; Zhu Junjie

    2007-01-01

    Single-crystalline PbF 2 nanorods with a diameter of 100-500 nm and length of 1-10 μm have been successfully synthesized by a simple sonochemical route in a microemulsion system at room temperature. The morphologies and structures of the nanorods were characterized by x-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy. The experimental results showed that polyethylene glycol 6000 played an important role in the formation of PbF 2 nanorods. Room-temperature photoluminescence measurements indicated that the as-prepared PbF 2 nanorods had strong green emission, which could have potential applications in optoelectronic devices

  14. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light.

    Science.gov (United States)

    Ananpattarachai, Jirapat; Seraphin, Supapan; Kajitvichyanukul, Puangrat

    2016-02-01

    This work reports on synthesis, characterization, adsorption ability, formation rate of hydroxyl radicals (OH(•)), photocatalytic oxidation kinetics, and mineralization ability of C-doped titanium dioxide (TiO2), N-doped TiO2, and C,N co-doped TiO2 prepared by the sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy were used to analyze the titania. The rate of formation of OH(•) for each type of titania was determined, and the OH-index was calculated. The kinetics of as-synthesized TiO2 catalysts in photocatalytic oxidation of 2-chlorophenol (2-CP) under visible light irradiation were evaluated. Results revealed that nitrogen was incorporated into the lattice of titania with the structure of O-Ti-N linkages in N-doped TiO2 and C,N co-doped TiO2. Carbon was joined to the Ti-O-C bond in the C-doped TiO2 and C,N co-doped TiO2. The 2-CP adsorption ability of C,N co-doped TiO2 and C-doped TiO2 originated from a layer composed of a complex carbonaceous mixture at the surface of TiO2. C,N co-doped TiO2 had highest formation rate of OH(•) and photocatalytic activity due to a synergistic effect of carbon and nitrogen co-doping. The order of photocatalytic activity per unit surface area was the same as that of the formation rate of OH(•) unit surface area in the following order: C,N co-doped TiO2 > C-doped TiO2 > N-doped TiO2 > undoped TiO2.

  15. Acetone gas-sensing properties of multiple-networked Pd-decorated Bi_2O_3 nanorod sensors

    International Nuclear Information System (INIS)

    Park, Sung Hoon; Kim, Soo Hyun; Lee, Sang Min; Lee, Chong Mu

    2015-01-01

    This study examined the sensing properties of Bi_2O_3 nanorods decorated with Pd nanoparticles. Pd-decorated β-Bi_2O_3 nanorods were prepared by immersing the Bi_2O_3 nanorods in ethanol/(50 mM)PdCl_2 solution followed by UV irradiation and annealing. The Bi_2O_3 nanorods decorated with Pd nanoparticles showed faster and stronger response to acetone gas than the pristine Bi_2O_3 nanorods. Interestingly, the difference in response time between the Pd-decorated Bi_2O_3 nanorod sensor and pristine Bi_2O_3 nanorod sensor increased with increasing the acetone gas concentration. In contrast, the difference in recovery time between the two nanorod sensors decreased with increasing the acetone gas concentration. This difference can be explained using the chemical mechanism. The underlying mechanism for the enhanced response of the Bi_2O_3 nanorods decorated with Pd nanoparticles to acetone gas is also discussed

  16. Positron annihilation lifetime characterization of oxygen ion irradiated rutile TiO2

    Science.gov (United States)

    Luitel, Homnath; Sarkar, A.; Chakrabarti, Mahuya; Chattopadhyay, S.; Asokan, K.; Sanyal, D.

    2016-07-01

    Ferromagnetic ordering at room temperature has been induced in rutile phase of TiO2 polycrystalline sample by O ion irradiation. 96 MeV O ion induced defects in rutile TiO2 sample has been characterized by positron annihilation spectroscopic techniques. Positron annihilation results indicate the formation of cation vacancy (VTi, Ti vacancy) in these irradiated TiO2 samples. Ab initio density functional theoretical calculations indicate that in TiO2 magnetic moment can be induced either by creating Ti or O vacancies.

  17. Guided proliferation and bone-forming functionality on highly ordered large diameter TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Zhang, Ruopeng; Wu, Hongliu; Ni, Jiahua; Zhao, Changli; Chen, Yifan; Zheng, Chengjunyi; Zhang, Xiaonong

    2015-01-01

    The significantly enhanced osteoblast adhesion, proliferation and alkaline phosphatase (ALP) activity were observed on TiO 2 nanotube surface in recent studies in which the scale of nanotube diameter was restricted under 100 nm. In this paper, a series of highly ordered TiO 2 nanotube arrays with larger diameters ranging from 150 nm to 470 nm were fabricated via high voltage anodization. The behaviors of MC3T3-E1 cells in response to the diameter-controlled TiO 2 nanotubes were investigated. A contrast between the trend of proliferation and the trend of cell elongation was observed. The highest cell elongation (nearly 10:1) and the lowest cell number were observed on the TiO 2 nanotube arrays with 150 nm diameter. While, the lowest cell elongation and highest cell number were achieved on the TiO 2 nanotube arrays with 470 nm diameter. Furthermore, the ALP activity peaked on the 150 nm diameter TiO 2 nanotube arrays and decreased dramatically with the increase of nanotube diameter. Thus a narrow range of diameter (100–200 nm) that could induce the greatest bone-forming activity is determined. It is expected that more delicate design of orthopedic implant with regional abduction of cell proliferation or bone forming could be achieved by controlling the diameter of TiO 2 nanotubes. - Highlights: • Improved anodization methods leading to more ordered large diameter TiO 2 nanotubes • Significantly enhanced ALP activity was observed on 150 nm diameter TiO 2 nanotubes. • The highest cell density was observed on 470 nm diameter TiO 2 nanotube arrays. • Similar cell response was observed on the amorphous and anatase phased nanotube surface

  18. Clarification of the interaction between Au atoms and the anatase TiO2 (112) surface using density functional theory

    Science.gov (United States)

    Tada, Kohei; Koga, Hiroaki; Okumura, Mitsutaka; Tanaka, Shingo

    2018-04-01

    A model (112) surface slab of anatase TiO2 (112) was optimized, and the adsorption of Au atoms onto the (112) surface was investigated by first-principles calculations based on DFT (density functional theory) with the generalized gradient approximation (GGA). Furthermore, the results were compared with those of Au/anatase TiO2 (101) system. The (112) surface has a ridge and a groove (zig-zag structure). The Au atoms were strongly adsorbed in the grooves but became unstable as they climbed toward the ridges, and the promotion of electrons in the 5d orbitals to the 6s and 6p orbitals in the absorbed Au atom occurred. At the Au/anatase TiO2 interface, the Au-Ti4+ coordinate bond in the (112) system is stronger than that in the (101) system because the promotion of electrons is greater in the former interaction than the latter. The results suggest that Au/anatase TiO2 catalysts with a higher dispersion of Au nanoparticles could be prepared when the (112) surface is preferentially exposed.

  19. Hydrothermal Synthesis and Photocatalytic Property of β-Ga2O3 Nanorods

    Science.gov (United States)

    Reddy, L. Sivananda; Ko, Yeong Hwan; Yu, Jae Su

    2015-09-01

    Gallium oxide (Ga2O3) nanorods were facilely prepared by a simple hydrothermal synthesis, and their morphology and photocatalytic property were studied. The gallium oxide hydroxide (GaOOH) nanorods were formed in aqueous growth solution containing gallium nitrate and ammonium hydroxide at 95 °C of growth temperature. Through the calcination treatment at 500 and 1000 °C for 3 h, the GaOOH nanorods were converted into single crystalline α-Ga2O3 and β-Ga2O3 phases. From X-ray diffraction analysis, it could be confirmed that a high crystalline quality of β-Ga2O3 nanorods was achieved by calcinating at 1000 °C. The thermal behavior of the Ga2O3 nanorods was also investigated by differential thermal analysis, and their vibrational bands were identified by Fourier transform infrared spectroscopy. In order to examine the photocatalytic activity of samples, the photodegradation of Rhodamine B solution was observed under UV light irradiation. As a result, the α-Ga2O3 and β-Ga2O3 nanorods exhibited high photodegeneration efficiencies of 62 and 79 %, respectively, for 180 min of UV irradiation time.

  20. Hydrothermal Synthesis and Photocatalytic Property of β-Ga2O3 Nanorods.

    Science.gov (United States)

    Reddy, L Sivananda; Ko, Yeong Hwan; Yu, Jae Su

    2015-12-01

    Gallium oxide (Ga2O3) nanorods were facilely prepared by a simple hydrothermal synthesis, and their morphology and photocatalytic property were studied. The gallium oxide hydroxide (GaOOH) nanorods were formed in aqueous growth solution containing gallium nitrate and ammonium hydroxide at 95 °C of growth temperature. Through the calcination treatment at 500 and 1000 °C for 3 h, the GaOOH nanorods were converted into single crystalline α-Ga2O3 and β-Ga2O3 phases. From X-ray diffraction analysis, it could be confirmed that a high crystalline quality of β-Ga2O3 nanorods was achieved by calcinating at 1000 °C. The thermal behavior of the Ga2O3 nanorods was also investigated by differential thermal analysis, and their vibrational bands were identified by Fourier transform infrared spectroscopy. In order to examine the photocatalytic activity of samples, the photodegradation of Rhodamine B solution was observed under UV light irradiation. As a result, the α-Ga2O3 and β-Ga2O3 nanorods exhibited high photodegeneration efficiencies of 62 and 79 %, respectively, for 180 min of UV irradiation time.

  1. Functionalization of atomic force microscope tips by dielectrophoretic assembly of Gd2O3:Eu3+ nanorods

    International Nuclear Information System (INIS)

    Macedo, Andreia G; Ananias, Duarte; Andre, Paulo S; Ferreira, Rute A sa; Carlos, Luis D; Kholkin, Andrei L; Rocha, J

    2008-01-01

    An atomic force microscopy (AFM) tip has been coated with photoluminescent Eu 3+ -doped Gd 2 O 3 nanorods using a dielectrophoresis technique, which preserves the red emission of the nanorods (quantum yield 0.47). The performance of the modified tips has been tested by using them for regular topography imaging in tapping and contact modes. Both a regular AFM standard grid and a patterned surface (of an organic-inorganic methacrylate Zr-based oxo-cluster and poly(oxyethylene)/siloxane hybrid) have been used. Similar depth values have been measured using a conventional silicon tip and the nanorod-modified tip. The tips before and after use exhibit similar SEM images and photoluminescence spectra and, thus, seem to be stable under working conditions. These tips should find applications in scanning near-field optical microscopy and other scanning techniques

  2. Bi-functional TiO2 cemented Ag grid under layer for enhancing the photovoltaic performance of a large-area dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Lan Zhang; Wu Jihuai; Lin Jianming; Huang, Miaoliang

    2012-01-01

    Graphical abstract: Enhanced photovoltaic performance of large-area DSSC with conductive grids in the photo and counter electrodes. Highlights: ► TiO 2 protected Ag grids is made for using as electrode in large-area DSSC. ► The electrode has high conductivity and low internal resistance. ► TiO 2 protected Ag grids electrode avoids iodine corrosion in electrolyte. ► The TiO 2 layer also play a blocking layer role. ► Above factors enhance the photovoltaic performance of large-area DSSC. - Abstract: A bi-functional TiO 2 cemented Ag grid under layer for enhanced the photovoltaic performance of a large-area dye-sensitized solar cell (DSSC) is prepared with a simple way. The conductive printing paste contains micro-sized Ag powders and nano-sized TiO 2 cementing agent. The conductive printing paste can be well cemented on the FTO glass and form high conductive grids with Ag powders sintered together by the nano-sized TiO 2 particles. The formed conductive grid is protected with a TiO 2 thin layer and TiO 2 sol treatment to avoid the iodine corrosion. The addition of the TiO 2 cemented conductive grid can decrease the internal resistance of the large-area dye-sensitized solar cell when it is prepared in the photo and counter electrodes. Furthermore, the protecting TiO 2 thin layer and the TiO 2 sol treatment can be done on the whole area of the large-area photo electrode to both play as the blocking under layer at the same time, which can also enhance the photovoltaic performance of the large-area dye-sensitized solar cell.

  3. Oxidation and photo-oxidation of water on TiO2 surface

    DEFF Research Database (Denmark)

    Valdes, A.; Qu, Z.W.; Kroes, G.J.

    2008-01-01

    The oxidation and photo-oxidation of water on the rutile TiO2(110) surface is investigated using density functional theory (DFT) calculations. We investigate the relative stability of different surface terminations of TiO2 interacting with H2O and analyze the overpotential needed for the electrol...

  4. Carbon coated Li4Ti5O12 nanorods as superior anode material for high rate lithium ion batteries

    International Nuclear Information System (INIS)

    Luo, Hongjun; Shen, Laifa; Rui, Kun; Li, Hongsen; Zhang, Xiaogang

    2013-01-01

    Highlights: •A novel approach has been developed to fabricate 1D Li 4 Ti 5 O 12 /C nanorods by a wet-chemical route. •Carbon coating layer effectively restrict the particle growth and enhance electronic conductivity. •The Li 4 Ti 5 O 12 /C nanorods exhibit remarkable rate capability and long cycle life. -- Abstract: We describe a novel approach for the synthesis of carbon coated Li 4 Ti 5 O 12 (Li 4 Ti 5 O 12 /C) nanorods for high rate lithium ion batteries. The carbon coated TiO 2 nanotubes using the glucose as carbon source are first synthesized by hydrothermal treatment. The commercial anatase TiO 2 powder is immersed in KOH sulotion and subsequently transforms into Li 4 Ti 5 O 12 /C in LiOH solution under hydrothermal condition. Field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, nitrogen adsorption/desorption and Raman spectra are performed to characterize their morphologies and structures. Compared with the pristine Li 4 Ti 5 O 12 , one-dimensional (1D) Li 4 Ti 5 O 12 /C nanostructures show much better rate capability and cycling stability. The 1D Li 4 Ti 5 O 12 /C architectures effectively restrict the particle growth and enhance their electronic conductivity, enabling fast ion and electron transport

  5. Defects improved photocatalytic ability of TiO2

    International Nuclear Information System (INIS)

    Li, Lei; Tian, Hong-Wei; Meng, Fan-Ling; Hu, Xiao-Ying; Zheng, Wei-Tao; Sun, Chang Q.

    2014-01-01

    Highlights: • Defect improves the photocatalytic ability by band gap narrowing and carrier life prolonging. • Atomic undercoordination shortens the local bonds, entraps, and polarizes electrons. • Polarization lowers the local workfunction and lengthens carrier life. • Entrapment and polarization narrows the band gap tuning the wavelength of absorption. - Abstract: Defect generation forms an important means modulating the photocatalytic ability of TiO 2 with mechanisms that remain yet unclear. Here we show that a spectral distillation clarifies the impact of defect on modulating the band gap, electroaffinity, and work function of the substance. Firstly, by analyzing XPS measurements, we calibrated the 2p 3/2 level of 451.47 eV for an isolated Ti atom and its shifts by 2.14 and 6.94 eV, respectively, upon Ti and TiO 2 bulk formation. Spectral difference between the defected and the un-defected TiO 2 skin revealed then that the 2p 3/2 level shifts further from 6.94 to 9.67 eV due to the defect-induced quantum entrapment. This entrapment is associated with an elevation of the upper edges of both the 2p 3/2 and the conduction band by polarization. The shortening and strengthening of bonds between undercoordinated atoms densify and entrap the core electrons, which in turn polarize the dangling bond electrons of defect atoms. The entrapment and polarization mediate thus the band gap, the electroaffinity, the work function, and the photocatalytic ability of TiO 2

  6. Thermal degradation of TiO2 nanotubes on titanium

    Science.gov (United States)

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2014-10-01

    The objective of this research was to study thermal degradation behavior of TiO2 nanotubes on titanium (Ti). TiO2 nanotubes were grown via anodization method on commercially pure Ti (Cp-Ti) discs using two different electrolytes, 1 vol. % HF in deionized (DI) water and 1 vol. % HF + 0.5 wt. % NH4F + 10 vol. % DI water in ethylene glycol, to obtain nanotubes with two different lengths, 300 nm and 950 nm keeping the nanotube diameter constant at 100 ± 20 nm. As grown TiO2 nanotubes were subjected to heat treatment to understand thermal degradation as a function of both temperature and hold time. The signs of degradation were observed mainly when amorphous nanotubes started to crystallize, however the crystallization temperature varied based on TiO2 nanotubes length and anodizing condition. Overall, 300 nm nanotubes were thermally stable at least up to 400 °C for 12 h, while the 950 nm long nanotubes show signs of degradation from 400 °C for 6 h only. Clearly, length of nanotubes, heat treatment temperature as well as hold times show influence toward degradation kinetics of TiO2 nanotubes on titanium.

  7. Prominent ethanol sensing with Cr2O3 nanoparticle-decorated ZnS nanorods sensors

    Science.gov (United States)

    Sun, Gun-Joo; Kheel, Hyejoon; Ko, Tae-Gyung; Lee, Chongmu; Kim, Hyoun Woo

    2016-08-01

    ZnS nanorods and Cr2O3 nanoparticle-decorated ZnS nanorods were synthesized by using facile hydrothermal techniques, and their ethanol sensing properties were examined. X-ray diffraction and scanning electron microscopy revealed good crystallinity and size uniformity for the ZnS nanorods. The Cr2O3 nanoparticle-decorated ZnS nanorod sensor showed a stronger response to ethanol than the pristine ZnS nanorod sensor. The responses of the pristine and the decorated nanorod sensors to 200 ppm of ethanol at 300 °C were 2.9 and 13.8, respectively. Furthermore, under these conditions, the decorated nanorod sensor showed a longer response time (23 s) and a shorter recovery time (20 s) than the pristine one did (19 and 35 s, respectively). Consequently, the total sensing time of the decorated nanorod sensor (42 s) was shorter than that of the pristine one (55 s). The decorated nanorod sensor showed excellent selectivity to ethanol over other volatile organic compound gases including acetone, methanol, benzene, and toluene whereas the pristine one failed to show selectivity to ethanol over acetone. The improved sensing performance of the decorated nanorod sensor is attributed to a modulation of the width of the conduction channel and the height of the potential barrier at the ZnS-Cr2O3 interface accompanying the adsorption and the desorption of ethanol gas, and the greater surface-to-volume ratio of the decorated nanorods which was greater than that of the pristine one due to the existence of the ZnS-Cr2O3 interface.

  8. Nonenzymetic glucose sensing using carbon functionalized carbon doped ZnO nanorod arrays

    Science.gov (United States)

    Chakraborty, Pinak; Majumder, Tanmoy; Dhar, Saurab; Mondal, Suvra Prakash

    2018-04-01

    Fabrication of highly sensitive, long stability and low cost glucose sensors are attractive for biomedical applications and food industries. Most of the commercial glucose sensors are based on enzymatic detection which suffers from problems underlying in enzyme activities. Development of high sensitive, enzyme free sensors is a great challenge for next generation glucose sensing applications. In our study Zinc oxide nanorod sensing electrodes have been grown using low cost hydrothermal route and their nonenzymatic glucose sensing properties have been demonstrated with carbon functionalized, carbon doped ZnO nanorods (C-ZnO NRs) in neutral medium (0.1M PBS, pH 7.4) using cyclic voltammetry and amperometry measurements. The C-ZnO NRs electrodes demonstrated glucose sensitivity˜ 13.66 µAmM-1cm-2 in the concentration range 0.7 - 14 mM.

  9. Locating structures and evolution pathways of reconstructed rutile TiO2(011) using genetic algorithm aided density functional theory calculations.

    Science.gov (United States)

    Ding, Pan; Gong, Xue-Qing

    2016-05-01

    Titanium dioxide (TiO2) is an important metal oxide that has been used in many different applications. TiO2 has also been widely employed as a model system to study basic processes and reactions in surface chemistry and heterogeneous catalysis. In this work, we investigated the (011) surface of rutile TiO2 by focusing on its reconstruction. Density functional theory calculations aided by a genetic algorithm based optimization scheme were performed to extensively sample the potential energy surfaces of reconstructed rutile TiO2 structures that obey (2 × 1) periodicity. A lot of stable surface configurations were located, including the global-minimum configuration that was proposed previously. The wide variety of surface structures determined through the calculations performed in this work provide insight into the relationship between the atomic configuration of a surface and its stability. More importantly, several analytical schemes were proposed and tested to gauge the differences and similarities among various surface structures, aiding the construction of the complete pathway for the reconstruction process.

  10. Density functional theory studies of TiO2 for photocatalysis and Li storage applications

    Science.gov (United States)

    Kim, Yong-Hoon; Lee, Ji Il; Lee, Dong Ki; Lee, Gyu Heon; Kang, Jeung Ku

    We present two theory-experiment collaboration studies of anatase TiO2 for energy applications. First, we discuss a hydrogen-nitrogen co-doped TiO2 (HN-TiO2) as a photocatalyst, and show that the interstitially introduced HN contributes to the increase of solar-to-fuel conversion efficiency. We find that the variation of valence band maximum (VBM) of NH-TiO2 extends the photoactive spectrum to the visible light, and argue that created mid-gap states produce efficient electron and hole conduction channels. Next, we consider experimentally fabricated hierarchical TiO2 nanocrystals integrated with binder-free porous graphene (PG) network foam for a Li storage application. It was found that the TiO2-PG facilitated rapid ionic transfer during the Li-ion insertion/extraction process. We clarify the mechanisms by showing that Li ion migration into the TiO2-PG interface stabilize the binder-free oxide-graphene interface. Atomistic mechanism of Li ion insertion and migration is discussed by comparing cases between an isolated Li ion, when the crowding effect is included, and when the surface Li ions are present. We found that the supply of additional surface Li ions significantly reduce the Li insertion barrier, driving a spontaneous domino-like concerted Li insertion at the oxide surface region.

  11. Density functional theory study of atomic and electronic properties of defects in reduced anatase TiO2 nanocrystals

    Science.gov (United States)

    Morita, Kazuki; Yasuoka, Kenji

    2018-03-01

    Anatase TiO2 nanocrystals have received considerable attention owing to their promising applications in photocatalysis, photovoltaics, and fuel cells. Although experimental evidence has shown that the performance of nanocrystals can be significantly improved through reduction, the mechanistic basis of this enhancement remains unclear. To shed a light on the chemistry of reduced anatase TiO2 nanocrystals, density functional theory were used to investigate the properties of defects and excess electrons. We demonstrated that oxygen vacancies are stable both on the surface and at the sub-surface of the nanocrystal, while titanium interstitials prefer sub-surface sites. Different defect locations possessed different excess electron structures, which contributed to deep and shallow states in the band gap of the nanocrystals. Furthermore, valence band tailing was observed, resulting in band gap narrowing. The theoretical results presented here deepen our understanding, and show the potential of defects to considerably change the macroscopic properties of anatase TiO2 nanocrystals.

  12. Density functional theory study of atomic and electronic properties of defects in reduced anatase TiO2 nanocrystals

    Directory of Open Access Journals (Sweden)

    Kazuki Morita

    2018-03-01

    Full Text Available Anatase TiO2 nanocrystals have received considerable attention owing to their promising applications in photocatalysis, photovoltaics, and fuel cells. Although experimental evidence has shown that the performance of nanocrystals can be significantly improved through reduction, the mechanistic basis of this enhancement remains unclear. To shed a light on the chemistry of reduced anatase TiO2 nanocrystals, density functional theory were used to investigate the properties of defects and excess electrons. We demonstrated that oxygen vacancies are stable both on the surface and at the sub-surface of the nanocrystal, while titanium interstitials prefer sub-surface sites. Different defect locations possessed different excess electron structures, which contributed to deep and shallow states in the band gap of the nanocrystals. Furthermore, valence band tailing was observed, resulting in band gap narrowing. The theoretical results presented here deepen our understanding, and show the potential of defects to considerably change the macroscopic properties of anatase TiO2 nanocrystals.

  13. Electrical transport properties of single ZnO nanorods

    International Nuclear Information System (INIS)

    Heo, Y.W.; Tien, L.C.; Norton, D.P.; Kang, B.S.; Ren, F.; Gila, B.P.; Pearton, S.J.

    2004-01-01

    Single ZnO nanorods with diameters of ∼130 nm were grown on Au-coated Al 2 O 3 substrates by catalyst-driven molecular beam epitaxy. Individual nanorods were removed from the substrate and placed between Ohmic contact pads and the current-voltage characteristics measured as a function of temperature and gas ambient. In the temperature range from 25 to 150 deg. C, the resistivity of nanorods treated in H 2 at 400 deg. C prior to measurement showed an activation energy of 0.089±0.02 eV and was insensitive to the ambient used (C 2 H 4 ,N 2 O,O 2 or 10% H 2 in N 2 ). By sharp contrast, the conductivity of nanorods not treated in H 2 was sensitive to trace concentrations of gases in the measurement ambient even at room temperature, demonstrating their potential as gas sensors

  14. TiO2/Pt/TiO2 Sandwich Nanostructures: Towards Alcohol Sensing and UV Irradiation-Assisted Recovery

    Directory of Open Access Journals (Sweden)

    Rungroj Maolanon

    2017-01-01

    Full Text Available The TiO2/Pt/TiO2 sandwich nanostructures were synthesized by RF magnetron sputtering and demonstrated as an alcohol sensor at room-temperature operation with a fast recovery by UV irradiation. The TiO2/Pt/TiO2 layers on SiO2/Si substrate were confirmed by Auger electron spectroscopy with the interdiffusion of each layer. The TiO2/Pt/TiO2 layers on printed circuit board show the superior sensor response to alcohol in terms of the sensitivity and stability compared to the nonsandwich structure, that is, the only Pt layer or the TiO2/Pt structures. Moreover, the recovery time of the TiO2/Pt/TiO2 was improved by UV irradiation-assisted recovery. The optimum TiO2/Pt/TiO2 with thicknesses of the undermost TiO2 layer, a Pt layer, and the topmost TiO2 layer being 50 nm, 6 nm, and 5 nm, respectively, showed the highest response to ethanol down to 10 ppm. Additionally, TiO2/Pt/TiO2 shows an excellent sensing stability and exhibits different sensing selectivity among ethanol, methanol, and 2-propanol. The sensing mechanism could be attributed to the change of Pt work function during vapor adsorption. The TiO2 layer plays an important role in UV-assisted recovery by photocatalytic activity and the topmost TiO2 acts as protective layer for Pt.

  15. Sol-Gel TiO2 thin films sensitized with the mulberry pigment cyanidin

    Directory of Open Access Journals (Sweden)

    Emerson Henrique de Faria

    2007-12-01

    Full Text Available TiO2 films have various applications, among them solar cells and photodegradation of pollutants. In this study, we investigated TiO2 films functionalized with the organic dye cyanidin extracted from black mulberry (Morus nigra. The TiO2 was functionalized by the sol-gel method and the film was deposited on glass substrates by dip-coating. Our aim was to investigate the interaction between the semiconductor and the dye, as well as the influence of the velocity and number of deposits on the characteristics of the film. Using ultraviolet-visible spectroscopy, we observed a shift from the maximum absorption band at 545 nm for the dye’s ethanol solution to 595 nm for the film, indicating interaction of the cyanidin with the TiO2. The absorption spectra in the infrared region of the functionalized TiO2 particles showed bands characteristic of the oxide and indicated their interaction with the dye. Using profilometry and m-line techniques, we found that the films presented thicknesses in the order of 100 nm. A SEM analysis confirmed the high density of the films.

  16. TiO2/EVOH based reactive interlayer in Surlyn for organic device encapsulation

    International Nuclear Information System (INIS)

    Kopanati, Gayathri N; Madras, Giridhar; Ramamurthy, Praveen C

    2016-01-01

    Barrier materials are important for improving the stability and lifetimes of organic electronic devices. A simple technique for improving the barrier properties of polymer films was considered in this work by using TiO 2 nanoparticles in the interlayer to be incorporated in the polymer film. TiO 2 was synthesized by the solution combustion technique, was further functionalized using stearic acid or octadecylamine to induce hydrophobicity and enhance processing of the composite interlayer. The grafting of these compounds on to TiO 2 was investigated using Fourier transform infrared spectroscopy, Raman spectroscopy, elemental analysis and thermo-gravimetric analysis. The functionalized and neat TiO 2 were blended with poly (vinyl alcohol-ethylene) (EVOH) and were melt compressed between Surlyn films. The resulting nanocomposite films were tested for their transparency and barrier properties using UV–visible spectroscopy and calcium degradation test, respectively. Further, the effectiveness of these barrier films in encapsulating organic devices was determined from accelerated aging tests. Therefore, the synthesized barrier films with neat and functionalized TiO 2 in the interlayers proved to be effective as moisture barrier composite films. (paper)

  17. Tailored MoS2 nanorods: a simple microwave assisted synthesis

    Science.gov (United States)

    Reshmi, S.; Akshaya, M. V.; Satpati, Biswarup; Roy, Anupam; Basu, Palash Kumar; Bhattacharjee, K.

    2017-11-01

    We report here the synthesis of MoS2 nanostructures by a simple liquid phase exfoliation of MoS2 powder in organic solvents followed by microwave treatment. The probe sonication and the microwave treatment play an important role in rolling and curling of the MoS2 nanosheets to give rise to MoS2 spheres and rod/tube like-structures with diameter approximately 150-200 nm. The MoS2 nanorods formed in this fashion are hollow inside with a wall thickness of 15-20 nm and the length of the nanorods is found in the order of several micrometers. Synthesis of such tailored MoS2 nanorods by liquid phase exfoliation is not yet reported. Our observations suggest the 2H phase of bulk MoS2 remains preserved in the nanostructures with high crystalline quality.

  18. Single Nanorod Devices for Battery Diagnostics: A Case Study on LiMn 2 O 4

    KAUST Repository

    Yang, Yuan

    2009-12-09

    This paper presents single nanostructure devices as a powerful new diagnostic tool for batteries with LiMn2O4 nanorod materials as an example. LiMn2O4 and Al-doped LiMn2O4 nanorods were synthesized by a two-step method that combines hydrothermal synthesis of β-MnO2 nanorods and a solid state reaction to convert them to LiMn2O4 nanorods. λ-MnO2 nanorods were also prepared by acid treatment of LiMn2O4 nanorods. The effect of electrolyte etching on these LiMn2O 4-related nanorods is investigated by both SEM and single-nanorod transport measurement, and this is the first time that the transport properties of this material have been studied at the level of an individual singlecrystalline particle. Experiments show that Al dopants reduce the dissolution of Mn3+ ions significantly and make the LiAl 0.1Mn1.9O4 nanorods much more stable than LiMn2O4 against electrolyte etching, which is reflected by the magnification of both size shrinkage and conductance decrease. These results correlate well with the better cycling performance of Al-doped LiMn 2O4 in our Li-ion battery tests: LiAl0.1Mn 1.9O4 nanorods achieve 96% capacity retention after 100 cycles at 1C rate at room temperature, and 80% at 60 °C, whereas LiMn 2O4 shows worse retention of 91% at room temperature, and 69% at 60 °C. Moreover, temperature-dependent I - V measurements indicate that the sharp electronic resistance increase due to charge ordering transition at 290 K does not appear in our LiMn2O4 nanorod samples, suggesting good battery performance at low temperature. © 2009 American Chemical Society.

  19. The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO2 nanostructures of different shapes

    Science.gov (United States)

    Grover, Inderpreet Singh; Singh, Satnam; Pal, Bonamali

    2013-09-01

    Titania based nanocatalysts such as sodium titanates of different morphology having superior surface properties are getting wide importance in photocatalysis research. Despite having sodium (Na) contents and its high temperature synthesis (that generally deteriorate the photoreactivity), these Na-titanates often exhibit better photoactivity than P25-TiO2 catalyst. Hence, this work demonstrated the influence of crystal structure, BET surface area, surface charge, zeta potential (ζ) and metal loading on the photocatalytic activity of as-prepared sodium titanate nanotube (TNT) and titania nanorod (TNR). Straw like hollow orthorhombic-TNT (Na2Ti2O5·H2O) particles (W = 9-12 nm and L = 82-115 nm) and rice like pure anatase-TNR particles (W = 8-13 nm and L = 81-134 nm) are obtained by the hydrothermal treatment of P25-TiO2 with NaOH, which in fact, altered the net surface charge of TNT and TNR particles. The observed ζ = -2.82 (P25-TiO2), -13.5 (TNT) and -22.5 mV (TNR) are significantly altered by the Ag and Cu deposition. It has been found here that TNT displayed best photocatalytic activity for the imidacloprid insecticide (C9H10ClN5O2) degradation to CO2 formation under UV irradiation because of its largest surface area 176 m2 g-1 among the catalysts studied.

  20. Development of Multi-functional Properties on Cotton Fabric by In Situ Application of TiO2 and ZnO Nanoparticles

    Science.gov (United States)

    Butola, B. S.; Garg, Aayush; Garg, Aman; Chauhan, Indu

    2018-06-01

    Cotton fabrics functionalized with different combinations of TiO2 and ZnO were evaluated for multifunctional properties including UV protection, antimicrobial and self-cleaning. The ZnO nanoparticles synthesized using sol gel method were applied on cotton fabric by pad-dry-cure method and TiO2 was deposited in situ. The deposition of both TiO2 and ZnO was examined and confirmed by SEM and EDX analysis. Application of both metal oxides resulted in good improvement in UV protection of treated fabrics. The fabrics which were finished with combination of both Zinc and Titanium oxides, showed UPF rating of 50+ as compared to UPF rating of untreated cotton, which was only 5. The same fabrics also showed higher self-cleaning extent as compared to untreated cotton fabric. It was found that the sequence of application of ZnO and TiO2 affected the antimicrobial activity of the finished fabric and also the durability. When application of TiO2 was followed by ZnO, the combination resulted in development of excellent antimicrobial property against Escherichia coli ( 99% colony reduction) which was retained after 10 wash cycles. However, when application of ZnO nanoparticles was followed by application of TiO2, the improvement in antimicrobial activity was found to be moderate ( 48% colony reduction) and had poor wash durability. Hence, the specific sequence of application of these metals oxides can be utilized for obtaining good durability of the multifunctional properties on cotton fabric.

  1. Development of Multi-functional Properties on Cotton Fabric by In Situ Application of TiO2 and ZnO Nanoparticles

    Science.gov (United States)

    Butola, B. S.; Garg, Aayush; Garg, Aman; Chauhan, Indu

    2018-05-01

    Cotton fabrics functionalized with different combinations of TiO2 and ZnO were evaluated for multifunctional properties including UV protection, antimicrobial and self-cleaning. The ZnO nanoparticles synthesized using sol gel method were applied on cotton fabric by pad-dry-cure method and TiO2 was deposited in situ. The deposition of both TiO2 and ZnO was examined and confirmed by SEM and EDX analysis. Application of both metal oxides resulted in good improvement in UV protection of treated fabrics. The fabrics which were finished with combination of both Zinc and Titanium oxides, showed UPF rating of 50+ as compared to UPF rating of untreated cotton, which was only 5. The same fabrics also showed higher self-cleaning extent as compared to untreated cotton fabric. It was found that the sequence of application of ZnO and TiO2 affected the antimicrobial activity of the finished fabric and also the durability. When application of TiO2 was followed by ZnO, the combination resulted in development of excellent antimicrobial property against Escherichia coli ( 99% colony reduction) which was retained after 10 wash cycles. However, when application of ZnO nanoparticles was followed by application of TiO2, the improvement in antimicrobial activity was found to be moderate ( 48% colony reduction) and had poor wash durability. Hence, the specific sequence of application of these metals oxides can be utilized for obtaining good durability of the multifunctional properties on cotton fabric.

  2. Sol-gel synthesis of TiO2 nanoparticles and photocatalytic degradation of methyl orange in aqueous TiO2 suspensions

    International Nuclear Information System (INIS)

    Yang Huaming; Zhang Ke; Shi Rongrong; Li Xianwei; Dong Xiaodan; Yu Yongmei

    2006-01-01

    Anatase TiO 2 nanoparticles of about 16 nm in crystal size have been successfully synthesized via a sol-gel method. Thermal treatment of the precursor at 500-600 deg. C results in the formation of different TiO 2 phase compositions. The samples were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Effects of the pH value of the solution, H 2 O 2 addition, TiO 2 phase composition and recycled TiO 2 on the photocatalytic degradation of methyl orange (MeO) in TiO 2 suspensions under ultraviolet (UV) illumination were primarily investigated. The results indicate that a low pH value, proper amount of H 2 O 2 and pure anatase TiO 2 will facilitate the photocatalytic oxidation of the MeO solution. The photodegradation degree decreases with increasing the pH value of the solution and varies with different amounts of H 2 O 2 . Pure anatase TiO 2 shows better photocatalytic activity for MeO decolorization than biphase TiO 2 . The photocatalytic mechanism of the as-synthesized TiO 2 nanoparticles was discussed

  3. Fabrication of a Large-Area Superhydrophobic SiO2 Nanorod Structured Surface Using Glancing Angle Deposition

    Directory of Open Access Journals (Sweden)

    Xun Lu

    2017-01-01

    Full Text Available A glancing angle deposition (GLAD technique was used to generate SiO2 nanorods on a glass substrate to fabricate a low-cost superhydrophobic functional nanostructured surface. GLAD-deposited SiO2 nanorod structures were fabricated using various deposition rates, substrate rotating speeds, oblique angles, and deposition times to analyze the effects of processing conditions on the characteristics of the fabricated functional nanostructures. The wettability of the surface was measured after surface modification with a self-assembled monolayer (SAM. The measured water contact angles were primarily affected by substrate rotation speed and oblique angle because the surface fraction of the GLAD nanostructure was mainly affected by these parameters. A maximum contact angle of 157° was obtained from the GLAD sample fabricated at a rotation speed of 5 rpm and an oblique angle of 87°. Although the deposition thickness (height of the nanorods was not a dominant factor for determining the wettability, we selected a deposition thickness of 260 nm as the optimum processing condition based on the measured optical transmittance of the samples because optically transparent films can serve as superhydrophobic functional nanostructures for optical applications.

  4. Catalytic oxidation of 1,2-DCBz over V2O5/TiO2-CNTs: effect of CNT diameter and surface functional groups.

    Science.gov (United States)

    Du, Cuicui; Wang, Qiulin; Peng, Yaqi; Lu, Shengyong; Ji, Longjie; Ni, Mingjiang

    2017-02-01

    A series of V 2 O 5 /TiO 2 -carbon nanotube (CNT) catalysts were prepared and tested to decompose gaseous 1,2-dichlorobenzene (1,2-DCBz). Several physicochemical methods, including nitrogen adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and H 2 temperature-programmed reduction (TPR) were employed to characterise their physicochemical properties. To better understand the effect of CNT properties on the reactivity of V 2 O 5 /TiO 2 -CNT catalysts, the 1,2-DCBz residue remaining in the off-gas and on the catalyst surface were both collected and analysed. The results indicate that the outer diameter and the surface functional groups (hydroxide radical and carboxyl) of CNTs significantly influence upon the catalytic activity of CNT-containing V 2 O 5 /TiO 2 catalysts: the CNT outer diameter mainly affects the aggregation of CNTs and the π-π interaction between the benzene ring and CNTs, while the introduction of -OH and -COOH groups by acid treatment can further enlarge specific surface area (SSA) and contribute to a higher average oxidation state of vanadium (V aos ) and supplemental surface chemisorbed oxygen (O ads ). In addition, the enhanced mobility of lattice oxygen (O latt) also improves the oxidation ability of the catalysts.

  5. First-principles atomistic Wulff constructions for an equilibrium rutile TiO2 shape modeling

    Science.gov (United States)

    Jiang, Fengzhou; Yang, Lei; Zhou, Dali; He, Gang; Zhou, Jiabei; Wang, Fanhou; Chen, Zhi-Gang

    2018-04-01

    Identifying the exposed surfaces of rutile TiO2 crystal is crucial for its industry application and surface engineering. In this study, the shape of the rutile TiO2 was constructed by applying equilibrium thermodynamics of TiO2 crystals via first-principles density functional theory (DFT) and Wulff principles. From the DFT calculations, the surface energies of six low-index stoichiometric facets of TiO2 are determined after the calibrations of crystal structure. And then, combined surface energy calculations and Wulff principles, a geometric model of equilibrium rutile TiO2 is built up, which is coherent with the typical morphology of fully-developed equilibrium TiO2 crystal. This study provides fundamental theoretical guidance for the surface analysis and surface modification of the rutile TiO2-based materials from experimental research to industry manufacturing.

  6. Effect of TiO2 on the Gas Sensing Features of TiO2/PANi Nanocomposites

    Directory of Open Access Journals (Sweden)

    Duong Ngoc Huyen

    2011-02-01

    Full Text Available A nanocomposite of titanium dioxide (TiO2 and polyaniline (PANi was synthesized by in-situ chemical polymerization using aniline (ANi monomer and TiCl4 as precursors. SEM pictures show that the nanocomposite was created in the form of long PANi chains decorated with TiO2 nanoparticles. FTIR, Raman and UV-Vis spectra reveal that the PANi component undergoes an electronic structure modification as a result of the TiO2 and PANi interaction. The electrical resistor of the nanocomposite is highly sensitive to oxygen and NH3 gas, accounting for the physical adsorption of these gases. A nanocomposite with around 55% TiO2 shows an oxygen sensitivity of 600–700%, 20–25 times higher than that of neat PANi. The n-p contacts between TiO2 nanoparticles and PANi matrix give rise to variety of shallow donors and acceptor levels in the PANi band gap which enhance the physical adsorption of gas molecules.

  7. Highly uniform bipolar resistive switching characteristics in TiO2/BaTiO3/TiO2 multilayer

    International Nuclear Information System (INIS)

    Ma, W. J.; Zhang, X. Y.; Wang, Ying; Zheng, Yue; Lin, S. P.; Luo, J. M.; Wang, B.; Li, Z. X.

    2013-01-01

    Nanoscale multilayer structure TiO 2 /BaTiO 3 /TiO 2 has been fabricated on Pt/Ti/SiO 2 /Si substrate by chemical solution deposition method. Highly uniform bipolar resistive switching (BRS) characteristics have been observed in Pt/TiO 2 /BaTiO 3 /TiO 2 /Pt cells. Analysis of the current-voltage relationship demonstrates that the space-charge-limited current conduction controlled by the localized oxygen vacancies should be important to the resistive switching behavior. X-ray photoelectron spectroscopy results indicated that oxygen vacancies in TiO 2 play a crucial role in the resistive switching phenomenon and the introduced TiO 2 /BaTiO 3 interfaces result in the high uniformity of bipolar resistive switching characteristics

  8. Fabrication of TiO_2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment

    International Nuclear Information System (INIS)

    Qian, Yingjia; Chi, Lina; Zhou, Weili; Yu, Zhenjiang; Zhang, Zhongzhi; Zhang, Zhenjia; Jiang, Zheng

    2016-01-01

    Graphical abstract: - Highlights: • Multifunctional TiO_2/PAA/PTFE ultrafiltration membrane was fabricated via tight coating of TiO_2 functional layer onto the plasma-assisted graft of PAA on PTFE. • The high water flux rate, remarkable enhanced ultrafiltration performance and excellent self-cleaning ability were demonstrated. • The formation of COO−Ti bidentate coordination between TiO_2 and PAA was responsible for the successful coating. - Abstract: Surface hydrophilic modification of polymer ultrafiltration membrane using metal oxide represents an effective yet highly challenging solution to improve water flux and antifouling performance. Via plasma-enhanced graft of poly acryl acid (PAA) prior to coating TiO_2, we successfully fixed TiO_2 functional thin layer on super hydrophobic polytetrafluoroethylene (PTFE) ultrafiltration (UF) membranes. The characterization results evidenced TiO_2 attached on the PTFE-based UF membranes through the chelating bidentate coordination between surface-grafted carboxyl group and Ti"4"+. The TiO_2 surface modification may greatly reduce the water contact angle from 115.8° of the PTFE membrane to 35.0° without degradation in 30-day continuous filtration operations. The novel TiO_2/PAA/PTFE membranes also exhibited excellent antifouling and self-cleaning performance due to the intrinsic hydrophilicity and photocatalysis properties of TiO_2, which was further confirmed by the photo-degradation of MB under Xe lamp irradiation.

  9. The (2 × 2) tunnels structured manganese dioxide nanorods with α phase for lithium air batteries

    Science.gov (United States)

    Ghouri, Zafar Khan; Zahoor, Awan; Barakat, Nasser A. M.; Alsoufi, Mohammad S.; Bawazeer, Tahani M.; Mohamed, Ahmed F.; Kim, Hak Yong

    2016-02-01

    The (2 × 2) tunnels structured manganese dioxide nanorods with α phase (α-MnO2) are synthesized via simplistic hydrothermal method at low temperature. The obtained tunnels structured α-MnO2 nanorods are characterized by, Transmission electron microscopy, Scanning electron microscopy, and X-ray diffraction techniques. The oxygen reduction reaction (ORR) activity was studied by cyclic voltammetry and rotating ring-disc electrode voltammetry techniques in alkaline media. Moreover; the highly electrocatalytic tunnels structured α-MnO2 nanorods were then also applied as cathode in rechargeable Li-O2 cells. The Li-O2 cells exhibited initial discharge capacity as high as ∼4000 mAh/g with the tunnels structured α-MnO2 nanorods which was double the original capacity of the cells without any catalyst. Also we obtained 100% round trip efficiency upon cycling with limited capacity for more than 50 cycles.

  10. Functionalized vertically aligned ZnO nanorods for application in electrolyte-insulator-semiconductor based pH sensors and label-free immuno-sensors

    International Nuclear Information System (INIS)

    Kumar, Narendra; Senapati, Sujata; Kumar, Jitendra; Panda, Siddhartha; Kumar, Satyendra

    2016-01-01

    Vertically aligned ZnO nanorods were grown on a SiO 2 /Si surface by optimization of the temperature and atmosphere for annealing of the seed. The seed layer annealed at 500 °C in vacuum provided well separated and uniform seeds which also provided the best condition to get densely packed, uniformly distributed, and vertically aligned nanorods. These nanorods grown on the substrates were used to fabricate electrolyte-insulator-semiconductor (EIS) devices for pH sensing. Etching of ZnO at acidic pH prevents the direct use of nanorods for pH sensing. Therefore, the nanorods functionalised with 3-aminopropyltriethoxysilane (APTES) were utilized for pH sensing and showed the pH sensitivity of 50.1 mV/pH. APTES is also known to be used as a linker to immobilize biomolecules (such as antibodies). The EIS device with APTES functionalized nanorods was used for the label free detection of prostate-specific antigen (PSA). Finally, voltage shifts of 23 mV and 35 mV were observed with PSA concentrations of 1 ng/ml and 100 ng/ml, respectively. (paper)

  11. Surface passivation function of indium-tin-oxide-based nanorod structural sensors

    International Nuclear Information System (INIS)

    Lin, Tzu-Shun; Lee, Ching-Ting; Lee, Hisn-Ying; Lin, Chih-Chien

    2012-01-01

    Employing self-shadowing traits of an oblique-angle electron-beam deposition system, various indium tin oxide (ITO) nanorod arrays were deposited on a silicon substrate and used as extended-gate field-effect-transistor (EGFET) pH sensors. The length and morphology of the deposited ITO nanorod arrays could be changed and controlled under different deposition conditions. The ITO nanorod structural EGFET pH sensors exhibited high sensing performances owing to the larger sensing surface area. The sensitivity of the pH sensors with 150-nm-length ITO nanorod arrays was 53.96 mV/pH. By using the photoelectrochemical treatment of the ITO nanorod arrays, the sensitivity of the pH sensors with 150-nm-length passivated ITO nanorod arrays was improved to 57.21 mV/pH.

  12. Spin-dependent tunneling transport into CrO2 nanorod devices with nonmagnetic contacts.

    Science.gov (United States)

    Song, Yipu; Schmitt, Andrew L; Jin, Song

    2008-08-01

    Single-crystal nanorods of half-metallic chromium dioxide (CrO2) were synthesized and structurally characterized. Spin-dependent electrical transport was investigated in individual CrO2 nanorod devices contacted with nonmagnetic metallic electrodes. Negative magnetoresistance (MR) was observed at low temperatures due to the spin-dependent direct tunneling through the contact barrier and the high spin polarization in the half-metallic nanorods. The magnitude of this negative magnetoresistance decreases with increasing bias voltage and temperature due to spin-independent inelastic hopping through the barrier, and a small positive magnetoresistance was found at room temperature. It is believed that the contact barrier and the surface state of the nanorods have great influence on the spin-dependent transport limiting the magnitude of MR effect in this first attempt at spin filter devices of CrO2 nanorods with nonmagnetic contacts.

  13. FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol

    Directory of Open Access Journals (Sweden)

    Andrea León

    2017-01-01

    Full Text Available The aim of this study was to prepare a novel targeting drug delivery system for 2-Methoxyestradiol (2ME in order to improve the clinical application of this antitumor drug. It is based in nanoparticles (NPs of titanium dioxide (TiO2 coated with polyethylene glycol (PEG and loaded with 2ME. A complete IR and Raman characterization have been made to confirm the formation of TiO2–PEG–2ME composite. Vibrational modes have been assigned for TiO2, PEG, and 2ME and functionalized TiO2–PEG and TiO2–PEG–2ME. The observed variation in peak position of FTIR and Raman of each for these composites has been elucidated in terms of intermolecular interactions between PEG–2ME and TiO2, obtaining step-by-step the modification processes that were attributed to the conjugation of PEG and 2ME to TiO2 NPs. Modifying TiO2 NPs with PEG loaded with the 2ME drug revealed that the titanium dioxide nanocarrier possesses an effective adsorption capability, and we discuss their potential application as a system of drug delivery.

  14. TiO2-ITO and TiO2-ZnO nanocomposites: application on water treatment

    Directory of Open Access Journals (Sweden)

    Bessais B.

    2012-06-01

    Full Text Available One of the most promising ideas to enhance the photocatalytic efficiency of the TiO2 is to couple this photocatalyst with other semiconductors. In this work, we report on the development of photo-catalytic properties of two types of composites based on TiO2 – ITO (Indium Tin Oxide and TiO2 – ZnO deposited on conventional ceramic substrates. The samples were characterized by X-ray diffraction (XRD and transmission Electron Microscopy (TEM. The photo-catalytic test was carried out under UV light in order to reduce/oxidize a typical textile dye (Cibacron Yellow. The experiment was carried out in a bench scale reactor using a solution having a known initial dye concentration. After optimization, we found that both nanocomposites exhibit better photocatalytic activity compared to the standard photocatalyst P25 TiO2.

  15. Synthesis, Characterization, and Photocatalytic Activity of TiO2 Microspheres Functionalized with Porphyrin

    Directory of Open Access Journals (Sweden)

    Jin-Hua Cai

    2012-01-01

    Full Text Available In order to utilize visible light more efficiently in the photocatalytic reaction, TiO2 microspheres sensitized by 5-(4-allyloxyphenyl-10,15,20-tri(4-methylphenylporphyrin (APTMPP were prepared and characterized by X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, nitrogen physisorption, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FT-IR and UV-vis diffuse reflectance spectroscopy, and so forth, The characterization results indicated that APTMPP-MPS-TiO2 was composed of the anatase crystal phase. The morphology of the composite materials was spheriform with size of 0.3–0.7 μm and the porphyrin was chemisorbed on the surface of TiO2 through a Si–O–Ti bond. The photooxidation of α-terpinene was employed as the model reaction to evaluate the photocatalytic activity of APTMPP-MPS-TiO2 microspheres under visible light. The results indicated that the photodegradation of α-terpinene was significantly enhanced in the presence of the APTMPP-MPS-TiO2 compared with the nonmodified TiO2 under visible light.

  16. Quantitative Measurements of Photocatalytic CO-Oxidation as a Function of Light Intensity and Wavelength over TiO2 Nanotube Thin Films in mu-Reactors

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; In, Su-il; Olsen, Jacob L.

    2010-01-01

    Gas-phase photooxidation of CO over TiO2 catalysts (P25 and TiO2 nanotubes) in mu-reactors with quantitative product detection was used to study turnover as a function of illumination intensity over 4 orders of magnitude. Turnover was found to be of order 0.84 in illumination intensity. A CO phot...

  17. Immobilization of TiO2 nanoparticles on Fe-filled carbon nanocapsules for photocatalytic applications

    International Nuclear Information System (INIS)

    Huang, H.-C.; Huang, G.-L.; Chen, H.-L.; Lee, Y.-D.

    2006-01-01

    Using a simple sol-gel method, a novel magnetic photocatalyst was produced by immobilization of TiO 2 nano-crystal on Fe-filled carbon nanocapsules (Fe-CNC). High resolution TEM images indicated that the immobilization of TiO 2 on Fe-CNC was driven primarily by heterogeneous coagulation, whereas surface nucleation and growth was the dominant mechanism for immobilizing TiO 2 on acid-functionalized hollow CNC. The TiO 2 immobilized on Fe-CNC exhibited the anatase phase as revealed by the X-ray diffraction (XRD) patterns. In comparison with free TiO 2 and TiO 2 -coated CNC, TiO 2 -coated Fe-CNC displayed good performance in the removal of NO gas under UV exposure. Due to the advantages of easy recycling and good photocatalytic efficiency, the novel magnetic photocatalyst developed here has potential use in photocatalytic applications for pollution prevention

  18. Spray pyrolysed Ru:TiO2 thin film electrodes prepared for electrochemical supercapacitor

    Science.gov (United States)

    Fugare, B. Y.; Thakur, A. V.; Kore, R. M.; Lokhande, B. J.

    2018-04-01

    Ru doped TiO2 thin films are prepared by using 0.06 M aqueous solution of potassium titanium oxalate (pto), and 0.005 M aqueous solution of ruthenium tri chloride (RuCl3) precursors. The deposition was carried on stainless steel (SS) by using well known ultrasonic spray pyrolysis technique (USPT) at 723° K by maintaining the spray rate 12 cc/min and compressed air flow rate 10 Lmin-1. Prepared Ru:TiO2 thin films were characterized by structurally, morphologically and electrochemically. Deposited RuO2 shows amorphous structure and TiO2 shows tetragonal crystal structure with rutile as prominent phase at very low decomposition temperature. SEM micrographs of RuO2 exhibits porous, interconnected, spherical grains type morphology and TiO2 shows porous, nanorods and nanoplates like morphology and also Ru doped TiO2 shows porous, spherical, granular and nanorods type morphology. The electrochemical cyclic voltammetery shows mixed capacitive behavior. The achieved highest value of specific capacitance 2692 F/g was Ru doped TiO2 electrode in 0.5 M H2SO4.

  19. Synthesis of hybrid cellulose nanocomposite bonded with dopamine SiO2/TiO2 and its antimicrobial activity

    Science.gov (United States)

    Ramesh, Sivalingam; Kim, Gwang-Hoon; Kim, Jaehwan; Kim, Joo-Hyung

    2015-04-01

    Organic-inorganic hybrid material based cellulose was synthesized by the sol-gel approach. The explosion of activity in this area in the past decade has made tremendous progress in industry or academic both fundamental understanding of sol-gel process and applications of new functionalized hybrid materials. In this present research work, we focused on cellulose-dopamine functionalized SiO2/TiO2 hybrid nanocomposite by sol-gel process. The cellulose-dopamine hybrid nanocomposite was synthesized via γ-aminopropyltriethoxysilane (γ-APTES) coupling agent by in-situ sol-gel process. The chemical structure of cellulose-amine functionalized dopamine bonding to cellulose structure with covalent cross linking hybrids was confirmed by FTIR spectral analysis. The morphological analysis of cellulose-dopamine nanoSiO2/TiO2 hybrid nanocomposite materials was characterized by XRD, SEM and TEM. From this different analysis results indicate that the optical transparency, thermal stability, control morphology of cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite. Furthermore cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite was tested against pathogenic bacteria for antimicrobial activity.

  20. TiO2 beads and TiO2-chitosan beads for urease immobilization

    International Nuclear Information System (INIS)

    Ispirli Doğaç, Yasemin; Deveci, İlyas; Teke, Mustafa; Mercimek, Bedrettin

    2014-01-01

    The aim of the present study is to synthesize TiO 2 beads for urease immobilization. Two different strategies were used to immobilize the urease on TiO 2 beads. In the first method (A), urease enzyme was immobilized onto TiO 2 beads by adsorption and then crosslinking. In the second method (B), TiO 2 beads were coated with chitosan-urease mixture. To determine optimum conditions of immobilization, different parameters were investigated. The parameters of optimization were initial enzyme concentration (0.5; 1; 1.5; 2 mg/ml), alginate concentration (1; 2; 3%), glutaraldehyde concentration (1; 2; 3% v/v) and chitosan concentration (2; 3; 4 mg/ml). The optimum enzyme concentrations were determined as 1.5 mg/ml for A and 1.0 mg/ml for B. The other optimum conditions were found 2.0% (w/v) for alginate concentration (both A and B); 3.0 mg/ml for chitosan concentration (B) and 2.0% (v/v) for glutaraldehyde concentration (A). The optimum temperature (20-60 °C), optimum pH (3.0-10.0), kinetic parameters, thermal stability (4–70 °C), pH stability (4.0-9.0), operational stability (0-230 min) and reusability (20 times) were investigated for characterization. The optimum temperatures were 30 °C (A), 40 °C (B) and 35 °C (soluble). The temperature profiles of the immobilized ureases were spread over a large area. The optimum pH values for the soluble urease and immobilized urease prepared by using methods (A) and (B) were found to be 7.5, 7.0, 7.0, respectively. The thermal stabilities of immobilized enzyme sets were studied and they maintained 50% activity at 65 °C. However, at this temperature free urease protected only 15% activity. - Highlights: • TiO 2 and TiO 2 -chitosan beads for urease immobilization have been prepared and characterized. • The beads used in this work are good matrices for the immobilization of urease. • The immobilized urease was shown to have good properties and stabilities (pH and thermal stability, operational stability). • The 50

  1. Photocatalytic activity of TiO2/Nb2O5/PANI and TiO2/Nb2O5/RGO as new nanocomposites for degradation of organic pollutants.

    Science.gov (United States)

    Zarrin, Saviz; Heshmatpour, Felora

    2018-06-05

    In this study, highly active titanium dioxide modified by niobium oxide (Nb 2 O 5 ), polymer (PANI) and reduced graphene oxide (RGO) were successfully prepared. The morphology, structure, surface area and light absorption properties of the present nanocomposites for removal of methylene blue (MB) and methyl orange (MO) were investigated and compared with those of TiO 2 /Nb 2 O 5 and TiO 2 nanoparticles. The characterization techniques such as XRD, FT-IR, UV-vis, SEM, EDX, BET and TEM were employed in order to identify the nanocomposites. Also, photocatalytic properties of TiO 2 /Nb 2 O 5 /PANI and TiO 2 /Nb 2 O 5 /RGO nanocomposites under visible light irradiation were studied. In this way, the obtained results were compared to each other and also compared to TiO 2 /Nb 2 O 5 and TiO 2 nanoparticles. In this context, the chemical oxygen demand (COD) removal follows the photodegradation in observed performance. The results indicate that reduced TiO 2 /Nb 2 O 5 nanocomposite is effectively modified by graphene oxide to give TiO 2 /Nb 2 O 5 /RGO composite. The TiO 2 /Nb 2 O 5 /RGO exhibits significantly higher photocatalytic activity in degradation of organic dyes under visible light rather than that of TiO 2 /Nb 2 O 5 /PANI, TiO 2 /Nb 2 O 5 and pure TiO 2 . Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Charge transfer in photorechargeable composite films of TiO2 and polyaniline

    Science.gov (United States)

    Nomiyama, Teruaki; Sasabe, Kenichi; Sakamoto, Kenta; Horie, Yuji

    2015-07-01

    A photorechargeable battery (PRB) is a photovoltaic device having an energy storage function in a single cell. The photoactive electrode of PRB is a bilayer film consisting of bare porous TiO2 and a TiO2-polyaniline (PANi) mixture that work as a photovoltaic current generator and an electrochemical energy storage by ion dedoping, respectively. To study the charge transfer between TiO2 and PANi, the photorechargeable quantum efficiency QE ([electron count on discharge]/[incident photon count on photocharge]) was measured by varying the thickness LS of the TiO2-PANi mixture. The quantum efficiency QEuv for UV photons had a maximum of ˜7% at LS ˜ 7 µm. The time constant τTP for the charge transfer was about 10-1 s, which was longer ten times or more than the lifetime of excited electrons within TiO2. These facts reveal that the main rate-limiting factor in the photocharging process is the charge transfer between TiO2 and PANi.

  3. Constructing MnO{sub 2}/single crystalline ZnO nanorod hybrids with enhanced photocatalytic and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Weiwei [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China); Liu, Tiangui, E-mail: tianguiliu@gmail.com [College of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China); Cao, Shiyi; Wang, Chen [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China); Chen, Chuansheng, E-mail: 1666423158@qq.com [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China)

    2016-07-15

    In order to improve the photocatalytic and antibacterial activity of ZnO nanorods, ZnO nanorods decorated with MnO{sub 2} nanoparticles (MnO{sub 2}/ZnO nanorod hybrids) were prepared by using microwave assisted coprecipitation method under the influence of hydrogen peroxide, and the structure, photocatalytic activity and antibacterial property of the products were studied. Experimental results indicated that MnO{sub 2} nanoparticles are decorated on the surface of single crystalline ZnO nanorods. Moreover, the resultant MnO{sub 2}/ZnO nanorod hybrids have been proven to possess good photocatalytic and antibacterial activity, which their degradated efficiency for Rhodamin B (RhB) is twice as the pure ZnO nanorods. Enhancement for photocatalytic and antibacterial activity is mainly attributed to the low band gap energy and excellent electrochemical properties of MnO{sub 2} nanoparticles. - Graphical abstract: The MnO{sub 2}/single crystalline ZnO nanorods hybrids, which MnO{sub 2} nanoparticles are loaded on the surface of ZnO nanorods, were prepared by the step-by-step precipitation method under the assistance of ammonia and hydrogen peroxide. Display Omitted - Highlights: • MnO{sub 2}/ZnO nanorod hybrids were prepared by the step-by-step assembly method. • Single crystalline ZnO nanorods can be decorated by MnO{sub 2} nanoparticles. • MnO{sub 2}/ZnO nanorod hybrids possess good photocatalytic and antibacterial activity. • MnO{sub 2} can improve the photocatalytic activity of ZnO nanorods under visible light.

  4. Study on activities of vanadium (IV/V) doped TiO2(R) nanorods induced by UV and visible light

    International Nuclear Information System (INIS)

    Li, Li; Liu Chunyan; Liu Yun

    2009-01-01

    Vanadium (IV/V) doped rutile TiO 2 naonorods had been successfully synthesized through a single step hydrothermal method. The photocatalyst was characterized by transmission electron microscopy (TEM), selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), UV-vis diffusive reflectance spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS). The results showed that the doping of V ions had significant influence on the band gap energy and the surface state of TiO 2 . The photo-activities of the new catalysts were investigated under ultraviolet (UV) and visible light. The UV-photocatalytic activity of the as-prepared catalysts was hardly influenced by doping V ions; while under visible light, the samples with 1 wt% and 0.1 wt% V exhibited enhanced activity to the oxidation of methylene blue (MB) and the reduction of Cr (VI), respectively

  5. In vitro toxicity studies of polymer-coated gold nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Rayavarapu, Raja G; Petersen, Wilma; Manohar, Srirang; Van Leeuwen, Ton G [Biomedical Photonic Imaging Group, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, PO Box 217, 7500AE Enschede (Netherlands); Hartsuiker, Liesbeth; Otto, Cees [Medical Cell Biophysics, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, PO Box 217, 7500AE Enschede (Netherlands); Chin, Patrick; Van Leeuwen, Fijs W B [Division of Diagnostic Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands); Janssen, Hans, E-mail: S.Manohar@utwente.nl [Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands)

    2010-04-09

    We evaluated cellular responses to polymer-treated gold nanorods, which were synthesized using the standard wet-chemistry method that utilizes hexadecyltrimethylammonium bromide (CTAB). The nanorod dispersions were coated with either polystyrene sulfonate (PSS) or polyethylene glycol (PEG). Two sizes of nanorods were tested, with optical responses peaking at 628 and 773 nm. The cells were from mammary adenocarcinoma (SKBR3), Chinese Hamster Ovary (CHO), mouse myoblast (C2C12) and Human Leukemia (HL60) cell lines. Their mitochondrial function following exposure to the nanorods were assessed using the MTS assay. We found PEGylated particles to have superior biocompatibility compared with PSS-coated nanorods, which showed substantial cytotoxicity. Electron microscopy showed no cellular uptake of PEGylated particles compared with their PSS counterparts. PEGylated gold nanorods also exhibited better dispersion stability in the presence of cell growth medium; PSS-coated rods tended to flocculate or cluster. In the case of the PSS particles, toxicity correlated with surface area across the two sizes of nanorods studied.

  6. Synthesis, characterization and formation mechanism of metastable phase VO2(A) nanorods

    International Nuclear Information System (INIS)

    Cheng, X.H.; Xu, H.F.; Wang, Z.Z.; Zhu, K.R.; Li, G.; Jin, Shaowei

    2013-01-01

    Graphical abstract: - Highlights: • Pure phases of VO 2 (B) and VO 2 (A) were prepared by a facile hydrothermal method. • Belt-like particles prepared at 180 °C was indexed as monoclinic VO 2 (B) phase. • Rod-like particles prepared at 230 °C was indexed as tetragonal VO 2 (A) phase. • VO 2 (A) nanorods resulted from VO 2 (B) nanobelts by assembly and crystal adjustment. - Abstract: Pure phase VO 2 (A) nanorods were synthesized via the reduction of V 2 O 5 by oxalic acid during the hydrothermal treatment. Two sets of samples were prepared by varying both system temperature and reaction time under a filling ratio of 0.40 for observing the formation and evolution of VO 2 (A) nanorods. Structures were characterized by X-ray diffraction, scanning and transmission electron microscopies, respectively. It was found that VO 2 (B) was firstly formed and then transformed into VO 2 (A) as the increasing system temperature or extending reaction time. An assembling and following crystal adjustment was proposed for explanation the formation process of VO 2 (A) from VO 2 (B). For VO 2 (A) nanorods, the phase transition temperature of 169.7 °C was higher than that of the VO 2 (A) bulk, it might be ascribed to the lower crystallinity or nonstoichiometry in VO 2 (A) nanorods. VO 2 nanostructures with controllable phases and properties should find their promising applications in a single VO 2 nanodevice

  7. Interfacial Cation-Defect Charge Dipoles in Stacked TiO2/Al2O3 Gate Dielectrics.

    Science.gov (United States)

    Zhang, Liangliang; Janotti, Anderson; Meng, Andrew C; Tang, Kechao; Van de Walle, Chris G; McIntyre, Paul C

    2018-02-14

    Layered atomic-layer-deposited and forming-gas-annealed TiO 2 /Al 2 O 3 dielectric stacks, with the Al 2 O 3 layer interposed between the TiO 2 and a p-type germanium substrate, are found to exhibit a significant interface charge dipole that causes a ∼-0.2 V shift of the flat-band voltage and suppresses the leakage current density for gate injection of electrons. These effects can be eliminated by the formation of a trilayer dielectric stack, consistent with the cancellation of one TiO 2 /Al 2 O 3 interface dipole by the addition of another dipole of opposite sign. Density functional theory calculations indicate that the observed interface-dependent properties of TiO 2 /Al 2 O 3 dielectric stacks are consistent in sign and magnitude with the predicted behavior of Al Ti and Ti Al point-defect dipoles produced by local intermixing of the Al 2 O 3 /TiO 2 layers across the interface. Evidence for such intermixing is found in both electrical and physical characterization of the gate stacks.

  8. A potentiometric biosensor for the detection of notch 3 using functionalized ZnO nanorods.

    Science.gov (United States)

    Ibupoto, Z H; Khun, K; Liu, X; Willander, M

    2014-09-01

    The notch signalling plays a vital and radical role for the activity of cellular proliferation, differentiation and apoptosis. In this study, for the first time a particular biosensor is developed for the detection of notch 3. ZnO nanorods were fabricated on the gold coated glass substrate by hydrothermal method and afterwards were decorated with the gold nanoparticles by electrodepositing technique. Scanning electron microscopy (SEM) has shown the perpendicular to the substrate growth pattern of ZnO nanorods. X-ray diffraction (XRD) studies showed the c-axis oriented growth direction with wurtzite crystal structure of ZnO nanorods. X-ray Photoelectron Spectroscopy (XPS) and energy dispersive X-ray (EDX) techniques have shown the presence of Zn, O and Au atoms in the prepared functional material. Furthermore, the anti-notch 3 was physically adsorbed on the gold nanoparticles functionalized ZnO nanorods. The developed potentiometric immunosensor has shown response to the wide range of notch 3 molecules. The detected range included 1.00 x 10(-5)-1.50 x 10(0 ) μg/mL with a sensitivity of 23.15 ± 0.31 mV/decade. The analytical parameters including reproducibility, stability, and selectivity were also investigated and the observed results indicate the acceptable performance of the notch 3 biosensor. Moreover, the proposed notch 3 biosensor exhibited a fast response time of 10 s.

  9. Towards the development of a novel bioinspired functional material: synthesis and characterization of hybrid TiO2/DHICA-melanin nanoparticles.

    Science.gov (United States)

    Pezzella, Alessandro; Capelli, Luigia; Costantini, Aniello; Luciani, Giuseppina; Tescione, Fabiana; Silvestri, Brigida; Vitiello, Giuseppe; Branda, Francesco

    2013-01-01

    A large number of recent literature data focus on modification/modulation of surface chemistry of inorganic materials in order to improve their functional properties. Melanins, a wide class of natural pigments, are recently emerging as a powerful organic component for developing bioinspired active material for a large number of applications from organoelectronics to bioactive compounds. Here we report the use of the approach referred as "chimie douce", involving in situ formation of the hybrids through reactions of precursors under mild conditions, to prepare novel hybrid functional architectures based on eumelanin like 5,6 dihydroxyindole-2-carboxylic acid (DHICA) polymer and TiO2. Two synthesis procedures were carried out to get DHICA-melanin coated TiO2 nanoparticles as well as mixed DHICA/TiO2 hybrid nanostructures. Such systems were characterized through EPR, FT-IR and fluorescence spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), and TEM microscopy in order to assess the effect of synthesis path as well as of DHICA content on structural, morphological and optical properties of TiO2 nanostructures. In particular, EPR, FT-IR spectra and TGA analysis confirmed the presence of DHICA-melanin in these samples. TEM measurements indicated the formation of the nanoparticles having relatively narrow size distribution with average particle size of about 10nm. DHICA-melanin does act as a morphological agent affecting morphology of hybrid nanostructures. XRD analysis proved that TiO2 hybrid nanoparticles kept anatase structures for DHICA-melanin contents within the range of investigated compositions, i.e. up to 50% wt/wt. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Synthesis and photocatalytic activity of Ce-doped TiO2 and TiO2 nanotubes

    International Nuclear Information System (INIS)

    Arruda, L.B.; Pereira, E.A.; Paula, F.R.; Lisboa Filho, P.N.

    2016-01-01

    Full text: One-dimensional nanostructures have been intensively studied, from the point of view of their synthesis and mechanisms of formation, as well as their applications in photonics, solar energy conversion, environmental and photocatalysis, since their properties due high surface area, electrical conductivity and light dispersion effects. Titanium dioxide (TiO2) nanoparticles have been demonstrated to be an effective multifunctional material especially when the particle size is less than 50 nm exhibit photoinduced activities that originate from the semiconductor band gap. TiO2 is semiconductor more used in photocatalysis, for this reason various properties have been thoroughly investigated in order to show that the photocatalytic activity and TiO2 reaction mechanism are influenced by structure, defects and impurities, surface morphology. and interfaces in addition to the concentration of dopants, such as rare-earth elements. Cerium ions, for example, vary between Ce4+ and Ce3 + oxidation state making the cerium oxide appear as CeO2 and Ce2O3 under oxidation and reduction conditions. These different electronic structures of Ce3+ (4f15d0) and Ce4+ (4f05d0) provide different catalytic and optical properties at the TiO2. In this work, samples of Ce-doped TiO2 and TiO2 were synthesized by alkali route, and its photocatalytic activity analyzed in order to create a relationship between the response obtained and the structure and morphology of each sample. Alkali route consists in submitting TiO2 (anatase) powder directly in medium of the NaOH (10M) and maintained at 120°C/20 hours by a glycerin bath with subsequent washed with water and HCl (0.1M) until reaching the desired pH. The synthesized samples were then studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The photocatalytic decomposition of rhodamine B (Rh.B) it was performed under UV irradiation and visible light in air. For the obtained

  11. Synthesis and photocatalytic activity of Ce-doped TiO2 and TiO2 nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Arruda, L.B.; Pereira, E.A.; Paula, F.R.; Lisboa Filho, P.N. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil)

    2016-07-01

    Full text: One-dimensional nanostructures have been intensively studied, from the point of view of their synthesis and mechanisms of formation, as well as their applications in photonics, solar energy conversion, environmental and photocatalysis, since their properties due high surface area, electrical conductivity and light dispersion effects. Titanium dioxide (TiO2) nanoparticles have been demonstrated to be an effective multifunctional material especially when the particle size is less than 50 nm exhibit photoinduced activities that originate from the semiconductor band gap. TiO2 is semiconductor more used in photocatalysis, for this reason various properties have been thoroughly investigated in order to show that the photocatalytic activity and TiO2 reaction mechanism are influenced by structure, defects and impurities, surface morphology. and interfaces in addition to the concentration of dopants, such as rare-earth elements. Cerium ions, for example, vary between Ce4+ and Ce3 + oxidation state making the cerium oxide appear as CeO2 and Ce2O3 under oxidation and reduction conditions. These different electronic structures of Ce3+ (4f15d0) and Ce4+ (4f05d0) provide different catalytic and optical properties at the TiO2. In this work, samples of Ce-doped TiO2 and TiO2 were synthesized by alkali route, and its photocatalytic activity analyzed in order to create a relationship between the response obtained and the structure and morphology of each sample. Alkali route consists in submitting TiO2 (anatase) powder directly in medium of the NaOH (10M) and maintained at 120°C/20 hours by a glycerin bath with subsequent washed with water and HCl (0.1M) until reaching the desired pH. The synthesized samples were then studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The photocatalytic decomposition of rhodamine B (Rh.B) it was performed under UV irradiation and visible light in air. For the obtained

  12. The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO2 nanostructures of different shapes

    International Nuclear Information System (INIS)

    Grover, Inderpreet Singh; Singh, Satnam; Pal, Bonamali

    2013-01-01

    Titania based nanocatalysts such as sodium titanates of different morphology having superior surface properties are getting wide importance in photocatalysis research. Despite having sodium (Na) contents and its high temperature synthesis (that generally deteriorate the photoreactivity), these Na-titanates often exhibit better photoactivity than P25-TiO 2 catalyst. Hence, this work demonstrated the influence of crystal structure, BET surface area, surface charge, zeta potential (ζ) and metal loading on the photocatalytic activity of as-prepared sodium titanate nanotube (TNT) and titania nanorod (TNR). Straw like hollow orthorhombic-TNT (Na 2 Ti 2 O 5 ·H 2 O) particles (W = 9–12 nm and L = 82–115 nm) and rice like pure anatase-TNR particles (W = 8–13 nm and L = 81–134 nm) are obtained by the hydrothermal treatment of P25-TiO 2 with NaOH, which in fact, altered the net surface charge of TNT and TNR particles. The observed ζ = −2.82 (P25-TiO 2 ), −13.5 (TNT) and −22.5 mV (TNR) are significantly altered by the Ag and Cu deposition. It has been found here that TNT displayed best photocatalytic activity for the imidacloprid insecticide (C 9 H 10 ClN 5 O 2 ) degradation to CO 2 formation under UV irradiation because of its largest surface area 176 m 2 g −1 among the catalysts studied.

  13. Room temperature NO2-sensing properties of porous silicon/tungsten oxide nanorods composite

    International Nuclear Information System (INIS)

    Wei, Yulong; Hu, Ming; Wang, Dengfeng; Zhang, Weiyi; Qin, Yuxiang

    2015-01-01

    Highlights: • Porous silicon/WO 3 nanorods composite is synthesized via hydrothermal method. • The morphology of WO 3 nanorods depends on the amount of oxalic acid (pH value). • The sensor can detect ppb level NO 2 at room temperature. - Abstract: One-dimensional single crystalline WO 3 nanorods have been successfully synthesized onto the porous silicon substrates by a seed-induced hydrothermal method. The controlled morphology of porous silicon/tungsten oxide nanorods composite was obtained by using oxalic acid as an organic inducer. The reaction was carried out at 180 °C for 2 h. The influence of oxalic acid (pH value) on the morphology of porous silicon/tungsten oxide nanorods composite was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The NO 2 -sensing properties of the sensor based on porous silicon/tungsten oxide nanorods composite were investigated at different temperatures ranging from room temperature (∼25 °C) to 300 °C. At room temperature, the sensor behaved as a typical p-type semiconductor and exhibited high gas response, good repeatability and excellent selectivity characteristics toward NO 2 gas due to its high specific surface area, special structure, and large amounts of oxygen vacancies

  14. Spinel LiMn 2 O 4 Nanorods as Lithium Ion Battery Cathodes

    KAUST Repository

    Kim, Do Kyung

    2008-11-12

    Spinel LiMn 2O 4 is a low-cost, environmentally friendly, and highly abundant material for Li-ion battery cathodes. Here, we report the hydrothermal synthesis of single-crystalline β-MnO 2 nanorods and their chemical conversion into free-standing single-crystalline LiMn 2O 4 nanorods using a simple solid-state reaction. The LiMn 2O 4 nanorods have an average diameter of 130 nm and length of 1.2 μm. Galvanostatic battery testing showed that LiMn 2O 4 nanorods have a high charge storage capacity at high power rates compared with commercially available powders. More than 85% of the initial charge storage capacity was maintained for over 100 cycles. The structural transformation studies showed that the Li ions intercalated into the cubic phase of the LiMn 2O 4 with a small change of lattice parameter, followed by the coexistence of two nearly identical cubic phases in the potential range of 3.5 to 4.3V. © 2008 American Chemical Society.

  15. Spinel LiMn 2 O 4 Nanorods as Lithium Ion Battery Cathodes

    KAUST Repository

    Kim, Do Kyung; Muralidharan, P.; Lee, Hyun-Wook; Ruffo, Riccardo; Yang, Yuan; Chan, Candace K.; Peng, Hailin; Huggins, Robert A.; Cui, Yi

    2008-01-01

    Spinel LiMn 2O 4 is a low-cost, environmentally friendly, and highly abundant material for Li-ion battery cathodes. Here, we report the hydrothermal synthesis of single-crystalline β-MnO 2 nanorods and their chemical conversion into free-standing single-crystalline LiMn 2O 4 nanorods using a simple solid-state reaction. The LiMn 2O 4 nanorods have an average diameter of 130 nm and length of 1.2 μm. Galvanostatic battery testing showed that LiMn 2O 4 nanorods have a high charge storage capacity at high power rates compared with commercially available powders. More than 85% of the initial charge storage capacity was maintained for over 100 cycles. The structural transformation studies showed that the Li ions intercalated into the cubic phase of the LiMn 2O 4 with a small change of lattice parameter, followed by the coexistence of two nearly identical cubic phases in the potential range of 3.5 to 4.3V. © 2008 American Chemical Society.

  16. Adsorption and oxidation of oxalic acid on anatase TiO2 (001) surface: A density functional theory study.

    Science.gov (United States)

    Sun, Tao; Wang, Yun; Zhang, Haimin; Liu, Porun; Zhao, Huijun

    2015-09-15

    Anatase TiO2 (001) surfaces have attracted great interest for photo-degradation of organic species recently due to their high reactivity. In this work, adsorption properties and oxidation mechanisms of oxalic acid on the anatase TiO2 (001) surface have been theoretically investigated using the first-principles density functional theory. Various possible adsorption configurations are considered by diversifying the connectivity of carboxylic groups with the surface. It is found that the adsorption of oxalic acid on the anatase (001) surface prefer the dissociative states. A novel double-bidentate configuration has been found due to the structural match between oxalic acid and the (001) surface. More charge is transferred from the adsorbed oxalic acid to the surface with the double-bidentate configuration when comparing with other adsorption structures. Thus, there is a positive correlation relationship between the transferred charge amount and the interfacial bond numbers when oxalic acid adsorbs on the anatase TiO2 (001) surface. The adsorption energies with dispersion corrections have demonstrated that the van der Waals interactions play an important role in the adsorption, especially when adsorbates are close to the surface. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Nanorod diameter modulated osteogenic activity of hierarchical micropore/nanorod-patterned coatings via a Wnt/β-catenin pathway.

    Science.gov (United States)

    Zhou, Jianhong; Zhao, Lingzhou; Li, Bo; Han, Yong

    2018-04-14

    Hierarchical micropore/nanorod-patterned strontium doped hydroxyapatite (Ca 9 Sr 1 (PO 4 ) 6 (OH) 2 , Sr 1 -HA) structures (MNRs) with different nanorod diameters of about 30, 70 and 150 nm were coated on titanium, to investigate the effect of nanorod diameter on osteogenesis and the involved mechanism. Compared to micropore/nanogranule-patterned Sr 1 -HA coating (MNG), MNRs gave rise to dramatically enhanced in vitro mesenchymal stem cell functions including osteogenic differentiation in the absence of osteogenic supplements and in vivo osseointegration related to the nanorod diameter with about 70 nm displaying the best effects. MNRs activated the cellular Wnt/β-catenin pathway by increasing the expression of Wnt3a and LRP6 and decreasing the expression of Wnt/β-catenin pathway antagonists (sFRP1, sFRP2, Dkk1 and Dkk2). The exogenous Wnt3a significantly enhanced the β-catenin signaling activation and cell differentiation on MNG, and the exogenous Dkk1 attenuated the enhancing effect of MNRs on them. The data demonstrate that MNRs favor osseointegration via a Wnt/β-catenin pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Fullerene C70 decorated TiO2 nanowires for visible-light-responsive photocatalyst

    International Nuclear Information System (INIS)

    Cho, Er-Chieh; Ciou, Jing-Hao; Zheng, Jia-Huei; Pan, Job; Hsiao, Yu-Sheng; Lee, Kuen-Chan; Huang, Jen-Hsien

    2015-01-01

    Graphical abstract: - Highlights: • TiO 2 nanowire decorated with C 60 and C 70 derivatives has been synthesized. • The fullerenes impede the charge recombination due to its high electron affinity. • The fullerenes expand the utilization of solar light from UV to visible light. • The modified-TiO 2 has great biocompatibility. - Abstract: In this study, we have synthesized C 60 and C 70 -modified TiO 2 nanowire (NW) through interfacial chemical bonding. The results indicate that the fullerenes (C 60 and C 70 derivatives) can act as sinks for photogenerated electrons in TiO 2 , while the fullerene/TiO 2 is illuminated under ultraviolet (UV) light. Therefore, in comparison to the pure TiO 2 NWs, the modified TiO 2 NWs display a higher photocatalytic activity under UV irradiation. Moreover, the fullerenes also can function as a sensitizer to TiO 2 which expand the utilization of solar light from UV to visible light. The results reveal that the C 70 /TiO 2 NWs show a significant photocatalytic activity for degradation of methylene blue (MB) in visible light region. To better understand the mechanism responsible for the effect of fullerenes on the photocatalytic properties of TiO 2 , the electron only devices and photoelectrochemical cells based on fullerenes/TiO 2 are also fabricated and evaluated.

  19. Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure.

    Science.gov (United States)

    Larue, Camille; Castillo-Michel, Hiram; Sobanska, Sophie; Trcera, Nicolas; Sorieul, Stéphanie; Cécillon, Lauric; Ouerdane, Laurent; Legros, Samuel; Sarret, Géraldine

    2014-05-30

    Engineered TiO2 nanoparticles (TiO2-NPs) are present in a large variety of consumer products, and are produced in largest amount. The building industry is a major sector using TiO2-NPs, especially in paints. The fate of NPs after their release in the environment is still largely unknown, and their possible transfer in plants and subsequent impacts have not been studied in detail. The foliar transfer pathway is even less understood than the root pathway. In this study, lettuces were exposed to pristine TiO2-NPs and aged paint leachate containing TiO2-NPs and microparticles (TiO2-MPs). Internalization and in situ speciation of Ti were investigated by a combination of microscopic and spectroscopic techniques. Not only TiO2-NPs pristine and from aged paints, but also TiO2-MPs were internalized in lettuce leaves, and observed in all types of tissues. No change in speciation was noticed, but an organic coating of TiO2-NPs is likely. Phytotoxicity markers were tested for plants exposed to pristine TiO2-NPs. No acute phytotoxicity was observed; variations were only observed in glutathione and phytochelatin levels but remained low as compared to typical values. These results obtained on the foliar uptake mechanisms of nano- and microparticles are important in the perspective of risk assessment of atmospheric contaminations. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Single-layer graphene/titanium oxide cubic nanorods array/FTO heterojunction for sensitive ultraviolet light detection

    Science.gov (United States)

    Liang, Feng-Xia; Wang, Jiu-Zhen; Wang, Yi; Lin, Yi; Liang, Lin; Gao, Yang; Luo, Lin-Bao

    2017-12-01

    In this study, we report on the fabrication of a sensitive ultraviolet photodetector (UVPD) by simply transferring single-layer graphene (SLG) on rutile titanium oxide cubic nanorod (TiO2NRs) array. The cubic TiO2NRs array with strong light trapping effect was grown on fluorine-doped tin oxide (FTO) glass through a hydrothermal approach. The as-assembled UVPD was very sensitive to UV light illumination, but virtually blind to white light illumination. The responsivity and specific detectivity were estimated to be 52.1 A/W and 4.3 × 1012 Jones, respectively. What is more, in order to optimize device performance of UVPD, a wet-chemistry treatment was then employed to reduce the high concentration of defects in TiO2NRs during hydrothermal growth. It was found that the UVPD after treatment showed obvious decrease in sensitivity, but the response speed (rise time: 80 ms, fall time: 160 ms) and specific detectivity were substantially increased. It is also found that the speicific detectivity was imporoved by six-fold to 3.2 × 1013 Jones, which was the best result in comparison with previously reported TiO2 nanostructures or thin film based UVPDs. This totality of this study shows that the present SLG/TiO2NR/FTO UVPD may find potential application in future optoelectronic devices and systems.

  1. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles.

    Science.gov (United States)

    Oleyaei, Seyed Amir; Zahedi, Younes; Ghanbarzadeh, Babak; Moayedi, Ali Akbar

    2016-08-01

    In this research, potato starch and TiO2 nanoparticles (0.5, 1 and 2wt%) films were developed. Influences of different concentrations of TiO2 on the functional properties of nanocomposite films (water-related properties, mechanical characteristics, and UV transmittance) were investigated. XRD, FTIR, and DSC analyses were used to characterize the morphology and thermal properties of the films. The results revealed that TiO2 nanoparticles dramatically decreased the values of water-related properties (water vapor permeability: 11-34%; water solubility: 1.88-9.26%; moisture uptake: 2.15-11.18%). Incorporation of TiO2 led to a slight increment of contact angle and tensile strength, and a decrease in elongation at break of the films. TiO2 successfully blocked more than 90% of UV light, while opacity and white index of the films were enhanced. Glass transition temperature and melting point of the films were positively affected by the addition of TiO2 nanoparticles. The result of XRD study exhibited that due to a limited agglomeration of TiO2 nanoparticles, the mean crystal size of TiO2 increased. Formation of new hydrogen bonds between the hydroxyl groups of starch and nanoparticles was confirmed by FTIR spectroscopy. In conclusion, TiO2 nanoparticles improved the functional properties of potato starch film and extended the potential for food packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Favorable recycling photocatalyst TiO2/CFA: Effects of loading percent of TiO2 on the structural property and photocatalytic activity

    International Nuclear Information System (INIS)

    Shi Jianwen; Chen Shaohua; Ye Zhilong; Wang Shumei; Wu Peng

    2010-01-01

    A series of photocatalysts TiO 2 /CFA were prepared using coal fly ash (CFA), waste discharged from coal-fired power plant, as substrate, and then these photocatalysts were characterized by scanning electron microscope, X-ray diffraction analysis, nitrogen adsorption test and ultraviolet-visible absorption analysis. The effects of loading percent of TiO 2 on the photocatalytic activity and re-use property of TiO 2 /CFA were evaluated by the photocatalytic decoloration and mineralization of methyl orange solution. The results show that the pore volume and the specific surface area of the TiO 2 /CFA both increased with the increase in the loading percent of TiO 2 , which improved the photocatalytic activity of TiO 2 /CFA. However, when the loading percent of TiO 2 was too high (up to 54.51%), superfluous TiO 2 was easy to break away from CFA in the course of water treatment, which was disadvantaged to the recycling property of TiO 2 /CFA. In this study, the optimal loading percent of TiO 2 was 49.97%, and the efficiencies of photocatalytic decoloration and mineralization could be maintained above 99% and 90%, respectively, when the photocatalyst was used repeatedly, without any decline, even at the sixth cycle.

  3. Synthesis of titanate, TiO2 (B), and anatase TiO2 nanofibers from natural rutile sand

    International Nuclear Information System (INIS)

    Pavasupree, Sorapong; Suzuki, Yoshikazu; Yoshikawa, Susumu; Kawahata, Ryoji

    2005-01-01

    Titanate nanofibers were synthesized by hydrothermal method (150 deg. C for 72 h) using natural rutile sand as the starting materials. TiO 2 (B) and anatase TiO 2 (high crystallinity) nanofibers with the diameters of 20-100 nm and the lengths of 10-100 μm were obtained by calcined titanate nanofibers for 4 h at 400 and 700 deg. C (in air), respectively. The samples characterized by XRD, SEM, TEM, SAED, HRTEM, and BET surface area. This synthesis method provides a simple route to fabricate one-dimensional nanostructured TiO 2 from low cost material. -- Graphical abstract: Titanate nanofibers (b) were synthesized by hydrothermal method (150 deg. C for 72 h) using natural rutile sand (a) as the starting materials. TiO 2 (B) (c) and anatase TiO 2 (d) nanofibers with the diameters of 20-50 nm and the lengths of 10-100 μm were obtained by calcined titanate nanofibers for 4 h at 400 deg. C and 700 deg. C (in air), respectively

  4. The properties of transparent TiO2 films for Schottky photodetector

    Directory of Open Access Journals (Sweden)

    Sung-Ho Park

    2017-08-01

    Full Text Available In this data, the properties of transparent TiO2 film for Schottky photodetector are presented for the research article, entitled as “High-performing transparent photodetectors based on Schottky contacts” (Patel et al., 2017 [1]. The transparent photoelectric device was demonstrated by using various Schottky metals, such as Cu, Mo and Ni. This article mainly shows the optical transmittance of the Ni-transparent Schottky photodetector, analyzed by the energy dispersive spectroscopy and interfacial TEM images for transparency to observe the interface between NiO and TiO2 film. The observation and analyses clearly show that no pinhole formation in the TiO2 film by Ni diffusion. The rapid thermal process is an effective way to form the quality TiO2 film formation without degradation, such as pinholes (Qiu et al., 2015 [2]. This thermal process may apply to form functional metal oxide layers for solar cells and photodetectors.

  5. The Function of TiO2 with Respect to Sensitizer Stability in Nanocrystalline Dye Solar Cells

    Directory of Open Access Journals (Sweden)

    A. Barkschat

    2008-01-01

    Full Text Available Dyes of characteristically different composition have been tested with respect to long-term stability in operating standardized dye sensitized cells during a time period of up to 3600 hours. Selective solar illumination, the use of graded filters, and imaging of photocurrents revealed that degradation is linked to the density of photocurrent passed. Photoelectrochemical degradation was observed with all sensitizers investigated. Sensitization was less efficient and sensitizers were less photostable with nanostructured ZnO compared to nanostructured TiO2. The best performance was confirmed for cis-RuII(dcbpyH22(NCS2 on TiO2. However, it was 7–10 times less stable under other identical conditions on ZnO. Stability is favored by carboxylate anchoring and metal-centred electron transfer. In presence of TiO2, it is enhanced by formation of a stabilizing charge-transfer complex between oxidized Ru dye and back-bonding interfacial Ti3+ states. This is considered to be the main reason for the ongoing use of expensive Ru complexes in combination with TiO2. The local surface chemistry of the nanocrystalline TiO2 turned out to be a crucial factor for sensitizer stability and requires further investigation.

  6. Graded core/shell semiconductor nanorods and nanorod barcodes

    Science.gov (United States)

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  7. Antibacterial activity and inflammation inhibition of ZnO nanoparticles embedded TiO2 nanotubes

    Science.gov (United States)

    Yao, Shenglian; Feng, Xujia; Lu, Jiaju; Zheng, Yudong; Wang, Xiumei; Volinsky, Alex A.; Wang, Lu-Ning

    2018-06-01

    Titanium (Ti) with nanoscale structure on the surface exhibits excellent biocompatibility and bone integration. Once implanted, the surgical implantation may lead to bacterial infection and inflammatory reaction, which cause the implant failure. In this work, irregular and nanorod-shaped ZnO nanoparticles were doped into TiO2 nanotubes (TNTs) with inner diameter of about 50 nm by electro-deposition. The antibacterial properties of ZnO incorporated into TiO2 nanotubes (TNTs/ZnO) were evaluated using Staphylococcus aureus (S. aureus). Zn ions released from the nanoparticles and the morphology could work together, improving antibacterial effectiveness up to 99.3% compared with the TNTs. Macrophages were cultured on the samples to determine their respective anti-inflammatory properties. The proliferation and viability of macrophages were evaluated by the CCK-8 method and Live&Dead stain, and the morphology of the cells was observed by scanning electron microscopy. Results indicated that TNTs/ZnO has a significant inhibitory effect on the proliferation and adhesion of macrophages, which could be used to prevent chronic inflammation and control the inflammatory reaction. Besides, the release of Zn ions from the ZnO nanoparticles is a long-term process, which could be beneficial for bone integration. Results demonstrate that ZnO deposited into TNTs improved the antibacterial effectiveness and weakened the inflammatory reaction of titanium-based implants, which is a promising approach to enhance their bioactivity.

  8. Development of DNA biosensor based on TiO2 nanoparticles

    Science.gov (United States)

    Nadzirah, Sh.; Hashim, U.; Rusop, M.

    2018-05-01

    A novel technique of DNA hybridization on the TiO2 nanoparticles film was developed by dropping a single droplet of target DNA onto the surface of TiO2 for the study of various concentrations of target DNA. The surface of TiO2 nanoparticle film was functionalized with APTES and covalently immobilized with 1 µM probe DNA on the silanized TiO2 nanoparticles surface. The effect of silanization, immobilization and hybridization were quantitatively measured by the output current signal obtained using a picoammeter. The 1 µM target DNA was found to be the most effective target towards the 1 µM probe DNA as the output current signal was within range; while the output current signal of the 10 µM target DNA was observed to beyond the range of the probe DNA control due to the excessive concentration as compared to the probe DNA. This approach has several advantages such as rapid, simple, low cost, and sensitive current signal during detection of different target DNA concentrations.

  9. Fast response of sprayed vanadium pentoxide (V2O5) nanorods towards nitrogen dioxide (NO2) gas detection

    Science.gov (United States)

    Mane, A. A.; Suryawanshi, M. P.; Kim, J. H.; Moholkar, A. V.

    2017-05-01

    The V2O5 nanorods have been successfully spray deposited at optimized substrate temperature of 400 °C onto the glass substrates using vanadium trichloride (VCl3) solution of different concentrations. The effect of solution concentration on the physicochemical and NO2 gas sensing properties of sprayed V2O5 nanorods is studied at different operating temperatures and gas concentrations. The XRD study reveals the formation of V2O5 having an orthorhombic symmetry. The FE-SEM micrographs show the nanorods-like morphology of V2O5. The AFM micrographs exhibit a well covered granular surface topography. For direct allowed transition, the band gap energy values are found to be decreased from 2.45 eV to 2.42 eV. The nanorods deposited with 30 mM solution concentration shows the maximum response of 24.2% for 100 ppm NO2 gas concentration at an operating temperature of 200 °C with response and recovery times of 13 s and 140 s, respectively. Finally, the chemisorption mechanism of NO2 gas on the V2O5 nanorods is discussed.

  10. Properties of phases in HfO2-TiO2 system

    International Nuclear Information System (INIS)

    Red'ko, V.P.; Terekhovskij, P.B.; Majster, I.M.; Shevchenko, A.V.; Lopato, L.M.; Dvernyakova, A.A.

    1990-01-01

    A study was made on axial and linear coefficients of thermal expansion (CTE) of HfO 2 -TiO 2 system samples in concentration range of 25-50 mol% TiO 2 . Samples, containing 35 and 37 mol% TiO 2 , are characterized by the lowest values of linear CTE. Dispersion of the basic substances doesn't affect CTE value. Correlation with axial and linear CTE of samples in ZrO 2 -TiO 2 system was conducted. Presence of anisotropy of change of lattice parameters was supported for samples, containing 37.5 and 40 mol% TiO 2 . Polymorphous transformations for hafnium titanate were not revealed

  11. Complex impedance study on nano-CeO2 coating TiO2

    International Nuclear Information System (INIS)

    Zhang Mei; Wang Honglian; Wang Xidong; Li Wenchao

    2006-01-01

    Titanium dioxide (TiO 2 ) nanoparticles and cerium dioxide (CeO 2 ) nanoparticles coated titanium dioxide (TiO 2 ) nanoparticles (CeO 2 -TiO 2 nanoparticles) have been successfully synthesized by sol-gel method. The complex impedance of the materials was investigated. The grain resistance, boundary resistance and activation energy of the nanoparticles were calculated according to Arrhenius equation. According to calculating results, the active capacity of pure TiO 2 nanoparticles has been improved because of nano-CeO 2 coating. An optimal CeO 2 content of 4.9 mol% was achieved. The high resolution electron microscopy images of CeO 2 -TiO 2 nanoparticles showed that TiO 2 nanoparticles, as a core, were covered by CeO 2 nanoparticles. The average size of CeO 2 coating TiO 2 nanoparticles was about 70 nm. Scanning electron microscopy observation indicted that CeO 2 nanoparticle coating improved the separation, insulation, and stability the CeO 2 -TiO 2 nanoparticles, which was benefit to the activity of materials

  12. Pure rotational spectra of TiO and TiO2 in VY Canis Majoris

    Science.gov (United States)

    Kamiński, T.; Gottlieb, C. A.; Menten, K. M.; Patel, N. A.; Young, K. H.; Brünken, S.; Müller, H. S. P.; McCarthy, M. C.; Winters, J. M.; Decin, L.

    2013-03-01

    We report the first detection of pure rotational transitions of TiO and TiO2 at (sub-)millimeter wavelengths towards the red supergiant VY CMa. A rotational temperature, Trot, of about 250 K was derived for TiO2. Although Trot was not well constrained for TiO, it is likely somewhat higher than that of TiO2. The detection of the Ti oxides confirms that they are formed in the circumstellar envelopes of cool oxygen-rich stars and may be the "seeds" of inorganic-dust formation, but alternative explanations for our observation of TiO and TiO2 in the cooler regions of the envelope cannot be ruled out at this time. The observations suggest that a significant fraction of the oxides is not converted to dust, but instead remains in the gas phase throughout the outflow. Based on observations carried out with the Submillimeter Array and IRAM Plateau de Bure Interferometer.Plateau de Bure data (FITS file) is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A113

  13. Synthesis, Characterization, and Catalytic Performance of Sb2Se3 Nanorods

    Directory of Open Access Journals (Sweden)

    Ning Hu

    2017-01-01

    Full Text Available Antimony selenide has many potential applications in thermoelectric, photovoltaic, and phase-change memory devices. A novel method is described for the rapid and scalable preparation of antimony selenide (Sb2Se3 nanorods in the presence of hydrazine hydrate and/or permanganate at 40°C. Crystalline nanorods are obtained by the addition of hydrazine hydrate in a reaction mixture of antimony acetate and/or chloride and sodium selenite in neutral and basic media, while amorphous nanoparticles are formed by the addition of KMnO4 in a reaction mixture of antimony acetate/chloride and sodium selenite. The powder X-ray diffraction pattern confirms orthorhombic phase crystalline Sb2Se3 for the first and second reactions with lattice parameters a=1.120 nm, b=1.128 nm, and c=0.383 nm and amorphous Sb2Se3 for the third reaction. Scanning electron microscopy (SEM, transmission electron microscopy (TEM, and high-resolution TEM (HRTEM images show the diameter of nanorods for the first and second reactions to be in the order of 100 nm to 150 nm and about 20 nm particles for the third reaction. EDX and XPS suggest that the nanorods are pure Sb2Se3. The UV-vis analysis indicates a band gap of 4.14 and 4.97 eV for the crystalline and amorphous Sb2Se3, respectively, corresponding to a blue shift. The photocatalytic study shows that the decolorization of Rhodamine in solution by nanoparticles is slightly greater than nanorods.

  14. OXIDACIÓN DE p -NITROFENOL USANDO TiO 2 -ADENOSINA MONOFOSFATO I OXIDATION OF p -NITROPHENOL USING TiO 2 -ADENOSIN MONOPHOSPHATE

    Directory of Open Access Journals (Sweden)

    Carlos F. Rivas

    2018-04-01

    Full Text Available The surface of TiO2 was modified with the nucleotides adenosine 3’-monophosphate (AMP’3 and Adenosine 5’-monophosphate (AMP’5. The adsorption of nucleotides was adjusted to Langmuir ́s adsorption model, determining that the optimal condition for TiO 2 modification was at neutral pH. UV-Visible Diffuse Reflectance and IR Attenuated Total Reflectance spectra show that the chemisorption of nucleotides take placed on TiO 2 anatase. The new catalysts (TiO 2 -nucleotide improved the photodegradation of p -nitrophenol in a wide range of pH as compared with the titanium dioxide precursor. Most photoactivity was generated by using the new photocatalytic in the degradation of p -nitrophenol at pH = 6, obtaining high values for the pseudo first order kinetic constant (0.0254 min -1 and 0.0244 min -1 for TiO 2 -AMP’3 and TiO 2 -AMP’5, respectively. For all pH, the trend obtained for the photodegradation was: TiO 2 -AMP ́3 @ TiO 2 -AMP’5 > TiO 2 . Langmuir-Hinshelwood kinetics shows that the contribution of the surface reac tion rate governs the oxidation of the contaminant.

  15. EFFECT OF THE REDUCTION TEMPERATURE INTO CATALYTIC ACTIVITY OF Ni SUPPORTED BY TiO2, AL2O2 AND TiO2/AL2O3 FOR CONVERSION CO2 INTO METHANE

    Directory of Open Access Journals (Sweden)

    Hery Haerudin

    2010-06-01

    Full Text Available Nickel catalysts, containing 6% (w/w of nickel, have been prepared using TiO2, Al2O3 and mixture of TiO2-Al2O3 (1:9. The catalysts were used for CO2 conversion into methane. The characteristics of catalysts were studied by determination of its specific surface area, temperature programmed reaction technique and X-ray diffraction. The specific surface area were varied slightly by different temperature of reduction, namely after reduction at 300°C it was 39, 120 and 113 m2/g and after reduction at 400°C it was 42, 135  and 120 m2/g for 6% nickel catalysts supported on TiO2, Al2O3 and mixture of TiO2-Al2O3 (1:9 respectively. Temperature program reaction studies (TPO and TPR showed that NiTiOx species were possibly formed during the pretreatments which has shown by the shift of its peak to the lower temperature on Ni catalyst, that supported on mixture of TiO2-Al2O3 compared with catalysts supported on individual TiO2 or Al2O3. The nickel species on reduced Ni catalysts supported on TiO2 and on mixture of TiO2-Al2O3 could be detected by X-ray diffraction. The catalyst's activities toward CH4 formation were affected by the reduction temperature. Activity for CH4 formation was decreased in the following order: Ni/ TiO2 > Ni/ TiO2: Al2O3 > Ni/ Al2O3 and Ni/ TiO2: Al2O3 > Ni/ TiO2> Ni/ Al2O3, when catalysts were reduced at 300°C or 400°C respectively. The CO2 conversion was decreased in the following order: Ni/ Al2O3 > Ni/ TiO2: Al2O3 > Ni/ TiO2 when catalysts were reduced at 300°C or 400°C respectively.   Keywords: nickel catalyst, carbondioxide, methane

  16. Hydrothermal synthesis of HoMn{sub 2}O{sub 5} nanorods and their size-dependent magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Yichao; Wu, Songping, E-mail: chwsp@scut.edu.cn; Xu, Rui

    2017-03-01

    The HoMn{sub 2}O{sub 5} nanorods were synthesized by a surfactant-assisted hydrothermal process. The length of nanorods is readily controllable with basically constant diameter. HoMn{sub 2}O{sub 5} nanorods show recognizable divagation at T{sub N}(Ho) of 13 K between FC and ZFC curve due to the contribution of the magnetic ordering of holmium. Size-dependent magnetic properties (i.e. a critical length for magnetization) of HoMn{sub 2}O{sub 5} nanorods can be ascribed to the competition between surface strain and uncompensated spin at the surface. - Highlights: • HoMn{sub 2}O{sub 5} nanorods were synthesized by a surfactant-assisted hydrothermal route. • HoMn{sub 2}O{sub 5} nanorods show recognizable divagation at T{sub N}(Ho) of 13 K between FC and ZFC. • Size-dependent magnetic properties of HoMn{sub 2}O{sub 5} nanorods can be observed.

  17. Genotoxic and cytotoxic activity of green synthesized TiO2 nanoparticles

    Science.gov (United States)

    Koca, Fatih Doğan; Duman, Fatih

    2018-03-01

    Nowadays, nanomaterials that are smaller than 100 nm in size are very attractive owing to their enhanced physicochemical properties. Although they have been used widely for industrial applications, their toxicity still remains a problem. This article is a new record of the synthesis of titanium dioxide nanoparticles (TiO2 NPs) by a Mentha aquatica leaf extract and determination of its toxicity to rat marrow mesenchymal stem cells. In this study, we aimed to determine the genotoxic and cytotoxic effects of biologically synthetized TiO2 NPs. The characteristic peak of the nanomaterial was observed at 354 nm. The mean size of the nanomaterial was measured to be 69 nm from SEM images. According to zeta analysis, the surface charge of the nanomaterial was - 37.6 mV. The crystalline structure of the nanomaterial was determined using XRD analysis. It was concluded that the obtained nanomaterial was TiO2 The results of the FT-IR analysis showed that the functional groups that were found in the plant extract could play an important role in the formation and stabilization of TiO2 NPs. The effective size of the TiO2 NPs was found to be 304 nm using DLS analysis. The TGA analysis results showed that the total mass loss was 4% at 900 °C. According to DNA cleavage analysis results, TiO2 NPs cause damage to the plasmid pBR322 DNA in a concentration-dependant matter. It has been noted that TiO2 NPs lead to decreased cell viability during increased time and concentration of applications on rat marrow mesenchymal stem cells. It has also been determined that bulk TiO2 causes a greater reduction in the stem cell viability compared to the biosynthesized NPs. The obtained results could be useful for further application and toxicity studies.

  18. Influence of surface treatment on preparing nanosized TiO2 supported on carbon nanotubes

    International Nuclear Information System (INIS)

    Wang Shuo; Ji Lijun; Wu Bin; Gong Qianming; Zhu Yuefeng; Liang Ji

    2008-01-01

    In this paper, nanosize titanium dioxide (TiO 2 ) deposited on pristine and acid treated carbon nanotubes (CNTs) were prepared by a modified sol-gel method. The nanoscale materials were extensively characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and Raman spectra. The results indicated that about 6.8 nm TiO 2 nanoparticles were successfully deposited on acid-treated CNTs surface homogeneously and densely, which was smaller than TiO 2 coated on pristine CNTs. The surface state of CNTs was a critical factor in obtaining a homogeneous distribution of nanoscale TiO 2 particles. Acid oxidization could etch the surface of CNTs and introduce functional groups, which were beneficial to controllable homogeneous deposition. The TiO 2 coated on acid-treated CNTs was used as photocatalyst for Reactive Brilliant Red X-3B dye degradation under UV irradiation, which showed higher efficiency than that of TiO 2 coated on pristine CNTs and commercial photocatalyst P25.

  19. Low temperature synthesis of Zn{sub 2}GeO{sub 4} nanorods and their photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Meng-Yen [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu 300, Taiwan (China); Huang, Sheng-Hsin [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Perng, Tsong-Pyng, E-mail: tpperng@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli 320, Taiwan (China)

    2013-04-15

    Zn{sub 2}GeO{sub 4} nanorods were synthesized using a simple reflux method. The product with 0.05 M Zn{sub 2}GeO{sub 4} is an aggregation of short nanorods with the diameter ranging from 30 to 50 nm. If the Zn{sub 2}GeO{sub 4} molarity was increased, the nanorods became longer and aggregated as bundles. An intense white-bluish photoluminescence (PL) was observed from these nanorods, and the PL band can be dissolved into four Gaussian peaks that are associated with the native defects. Since the PL intensity of the nanorods is comparable to that of sintered particles, this reflux method provides a time- and energy-efficient route to prepare Zn{sub 2}GeO{sub 4} phosphor. -- Highlights: ► Zn{sub 2}GeO{sub 4} nanorods were prepared by a simple refluxing method at low temperature without any surfactants. ► The morphologies and crystal structures of Zn{sub 2}GeO{sub 4} growth were studied from beginning to the end (0 min to 3 h). ► The photoluminescence of Zn{sub 2}GeO{sub 4} synthesized by different methods was studied.

  20. Effects of low pressure plasma treatments on DSSCs based on rutile TiO2 array photoanodes

    International Nuclear Information System (INIS)

    Wang, Weiqi; Chen, Jiazang; Luo, Jianqiang; Zhang, Yuzhi; Gao, Lian; Liu, Yangqiao; Sun, Jing

    2015-01-01

    Graphical abstract: - Highlights: • Plasma treatment effects on rutile nanorod arrays studied. • Dye adsorption amount increased by all plasma treatment. • Flat-band potential positively shifted after NP and OP treatments. • Cell performance improved by NP and OP treatments. - Abstract: In this paper, three types of low pressure plasma including hydrogen (HP), oxygen (OP) and nitrogen (NP) treatments have been utilized for the first time to improve DSSCs based on rutile TiO 2 array photoanodes. Their effects on the photoanodes and the cell performance have been systematically compared by characterizing the dye loading amount, flat-band potential, donor concentration, electron lifetime and the photovoltaic parameters. Experimental results show that all the three plasma treatments increase the dye loading owing to improved hydrophilicity or enhanced surface roughness. It is found that NP and OP treatments significantly increase the TiO 2 donor concentration and decrease trapping sites. By this way, the electron transport is enhanced and the electron recombination is effectively restrained. These comprehensive effects make NP and OP treatments beneficial for the overall performance, by which 13% and 5% increases in efficiency are achieved. However, HP treatment causes obvious reduction in the donor concentration and more severe electron recombination, which decreases the efficiency by about 15%

  1. Photocatalytic effects for the TiO2-coated phosphor materials

    International Nuclear Information System (INIS)

    Yoon, Jin-Ho; Jung, Sang-Chul; Kim, Jung-Sik

    2011-01-01

    Research highlights: → The photocatalytic behavior of the coupling of TiO 2 with phosphorescent materials. → The photobleaching of an MB aqueous solution under visible light irradiation. → The ALD TiO 2 -coated phosphor composite showed much higher photocatalytic reactivity. → The light emitted from the phosphors contributed to the photo-generation. - Abstract: This study investigated the photocatalytic behavior of the coupling of TiO 2 with phosphorescent materials. A TiO 2 thin film was deposited on CaAl 2 O 4 :Eu 2+ ,Nd 3+ phosphor particles by using atomic layer deposition (ALD), and its photocatalytic reaction was investigated by the photobleaching of an aqueous solution of methylene-blue (MB) under visible light irradiation. To clarify the mechanism of the TiO 2 -phosphorescent materials, two different samples of TiO 2 -coated phosphor and TiO 2 -Al 2 O 3 -coated phosphor particles were prepared. The photocatalytic mechanisms of the ALD TiO 2 -coated phosphor powders were different from those of the pure TiO 2 and TiO 2 -Al 2 O 3 -coated phosphor. The absorbance in a solution of the ALD TiO 2 -coated phosphor decreased much faster than that of pure TiO 2 under visible irradiation. In addition, the ALD TiO 2 -coated phosphor showed moderately higher photocatalytic degradation of MB solution than the TiO 2 -Al 2 O 3 -coated phosphor did. The TiO 2 -coated phosphorescent materials were characterized by transmission electron microscopy (TEM), Auger electron spectroscopy (AES) and X-ray photon spectroscopy (XPS).

  2. Hydrothermal route to VO2 (B) nanorods: controlled synthesis and characterization

    Science.gov (United States)

    Song, Shaokun; Huang, Qiwei; Zhu, Wanting

    2017-10-01

    One-dimensional vanadium dioxides have attracted intensive attention owing to their distinctive structure and novel applications in catalysis, high energy lithium-ion batteries, chemical sensors/actuators and electrochemical devices etc. In this paper, large-scale VO2 (B) nanorods have been successfully synthesized via a versatile and environment friendly hydrothermal strategy using V2O5 as vanadium source and carbohydrates/alcohols as reductant. The obtained samples are characterized by XRD, FT-IR, TEM, and XPS techniques to investigate the effects of chemical parameters such as reductants, temperature, and time of synthesis on the structure and morphology of products. Results show that pure B phase VO2 with homogeneous nanorod-like morphology can be prepared easily at 180 °C for 3 days with glycerol as reluctant. Typically, the nanorod-like products are 0.5-1 μm long and 50 nm width. Furthermore, it is also confirmed that the products are consisted of VO2, corresponding to the B phase. More importantly, this novel approach is efficient, free of any harmful solvents and surfactants. Therefore, this efficient, green, and cost-saving route will have great potential in the large-scale fabrication of 1D VO2 (B) nanorods from the economic and environmental point of view.

  3. Spherical anatase TiO2 covered with nanospindles as dual functional scatters for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Xue, Xiaopan; Tian, Jianhua; Liao, Wenming; Shan, Zhongqiang

    2014-01-01

    Highlights: • Spherical anatase TiO 2 covered with nanospindles (SNS) were employed in DSSCs. • SNS possess the dual functions of light scattering and high dye loading. • SNS were fabricated through a facile hydrothermal treatment of the precursors. • Precursors were synthesized by controlled hydrolysis of TBT after being diluted. • The cells based on SNS-18/P25 photoanode exhibited advanced performance. - Abstract: Spherical anatase TiO 2 covered with nanospindles (SNS) were fabricated through a facile hydrothermal treatment of precursors in the presence of ammonia. The precursors were synthesized by controlling hydrolysis rate of TBT (tetrabutyl titanate) in ethanol. Organic structure directing agents and toxic reagents were avoided in the two–step process. By scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), it is confirmed that the morphology and structure of the products can be controlled by adjusting hydrothermal treatment conditions. Time dependent trails revealed the growth mechanism of SNS, which indicating that ammonia can not only retard the dissolution of precursors but also make TiO 2 grow selectively along the direction. Furthermore, photocurrent-potential (I-V) curves show that the solar cells fabricated with the SNS collected after 18 h hydrothermal treatment (SNS-18) exhibit the highest solar energy conversion efficiency. The efficiency is improved by 24.5% compared with that of the cells fabricated with pure P25. Based on the UV-Vis spectrum, nitrogen sorption and IPCE analysis, the improved performance can be attributed to the enhanced scattering and increased active sites for dye loading. Therefore, the dual functions of light scattering and many active sites for dye loading make SNS superior candidates for DSSCs

  4. Microwave-assisted hydrothermal synthesis of Bi2S3 nanorods in flower-shaped bundles

    International Nuclear Information System (INIS)

    Thongtem, Titipun; Pilapong, Chalermchai; Kavinchan, Jutarat; Phuruangrat, Anukorn; Thongtem, Somchai

    2010-01-01

    Bi 2 S 3 nanorods in flower-shaped bundles were successfully synthesized from the decomposition of Bi-thiourea complexes under the microwave-assisted hydrothermal process. X-ray powder diffraction (XRD) patterns and field emission scanning electron microscopy (FE-SEM) show that Bi 2 S 3 has the orthorhombic phase and appears as nanorods in flower-shaped bundles. A transmission electron microscopic (TEM) study reveals the independent single Bi 2 S 3 nanorods with their growth along the [0 0 1] direction. A possible formation mechanism of Bi 2 S 3 nanorods in flower-shaped bundles is also proposed and discussed. Their UV-vis spectrum shows the absorbance at 596 nm, with its direct energy band gap of 1.82 eV.

  5. Crystalline TiO2 grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom-transfer radical polymerization

    International Nuclear Information System (INIS)

    Zhao Yuancong; Tu Qiufen; Wang Jin; Huang Qiongjian; Huang Nan

    2010-01-01

    Crystalline TiO 2 films were prepared by unbalanced magnetron sputtering and the structure was confirmed by XRD. An organic layer of 11-hydroxyundecylphosphonic acid (HUPA) was prepared on the TiO 2 films by self-assembling, and the HUPA on TiO 2 films was confirmed by FTIR analysis. Simultaneously, hydroxyl groups were introduced in the phosphonic acid molecules to provide a functionality for further chemical modification. 2-Methacryloyloxyethyl phosphorylcholine (MPC), a biomimetic monomer, was chemically grafted on the HUPA surfaces at room temperature by surface-initiated atom-transfer radical polymerization. The surface characters of TiO 2 films modified by poly-MPC were confirmed by FTIR, XPS and SEM analysis. Platelet adhesion experiment revealed that poly-MPC modified surface was effective to inhibit platelet adhesion in vitro.

  6. Crystalline TiO 2 grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom-transfer radical polymerization

    Science.gov (United States)

    Zhao, Yuancong; Tu, Qiufen; Wang, Jin; Huang, Qiongjian; Huang, Nan

    2010-12-01

    Crystalline TiO 2 films were prepared by unbalanced magnetron sputtering and the structure was confirmed by XRD. An organic layer of 11-hydroxyundecylphosphonic acid (HUPA) was prepared on the TiO 2 films by self-assembling, and the HUPA on TiO 2 films was confirmed by FTIR analysis. Simultaneously, hydroxyl groups were introduced in the phosphonic acid molecules to provide a functionality for further chemical modification. 2-Methacryloyloxyethyl phosphorylcholine (MPC), a biomimetic monomer, was chemically grafted on the HUPA surfaces at room temperature by surface-initiated atom-transfer radical polymerization. The surface characters of TiO 2 films modified by poly-MPC were confirmed by FTIR, XPS and SEM analysis. Platelet adhesion experiment revealed that poly-MPC modified surface was effective to inhibit platelet adhesion in vitro.

  7. TiO2 and Cu/TiO2 Thin Films Prepared by SPT

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2015-12-01

    Full Text Available Titanium oxide (TiO2 and copper (Cu doped titanium oxide (Cu/TiO2 thin films have been prepared by spray pyrolysis technique. Titanium chloride (TiCl4 and copper acetate (Cu(CH3COO2.H2O were used as source of Ti and Cu. The doping concentration of Cu was varied from 1-10 wt. %. The X-ray diffraction studies show that TiO2 thin films are tetragonal structure and Cu/TiO2 thin films implies CuO has present with monoclinic structure. The optical properties of the TiO2 thin films have been investigated as a function of Cu-doping level. The optical transmission of the thin films was found to increase from 88 % to 94 % with the addition of Cu up to 8 % and then decreases for higher percentage of Cu doping. The optical band gap (Eg for pure TiO2 thin film is found to be 3.40 eV. Due to Cu doping, the band gap is shifted to lower energies and then increases further with increasing the concentration of Cu. The refractive index of the TiO2 thin films is found to be 2.58 and the variation of refractive index is observed due to Cu doped. The room temperature resistivity of the films decreases with increasing Cu doping and is found to be 27.50 - 23.76 W·cm. It is evident from the present study that the Cu doping promoted the thin film morphology and thereby it is aspect for various applications.

  8. Highly efficient perovskite solar cells based on a nanostructured WO3-TiO2 core-shell electron transporting material

    KAUST Repository

    Mahmood, Khalid; Swain, Bhabani Sankar; Kirmani, Ahmad R.; Amassian, Aram

    2015-01-01

    Until recently, only mesoporous TiO2 and ZnO were successfully demonstrated as electron transport layers (ETL) alongside the reports of ZrO2 and Al2O3 as scaffold materials in organometal halide perovskite solar cells, largely owing to ease of processing and to high power conversion efficiency. In this article, we explore tungsten trioxide (WO3)-based nanostructured and porous ETL materials directly grown hydrothermally with different morphologies such as nanoparticles, nanorods and nanosheet arrays. The nanostructure morphology strongly influences the photocurrent and efficiency in organometal halide perovskite solar cells. We find that the perovskite solar cells based on WO3 nanosheet arrays yield significantly enhanced photovoltaic performance as compared to nanoparticles and nanorod arrays due to good perovskite absorber infiltration in the porous scaffold and more rapid carrier transport. We further demonstrate that treating the WO3 nanostructures with an aqueous solution of TiCl4 reduces charge recombination at the perovskite/WO3 interface, resulting in the highest power conversion efficiency of 11.24% for devices based on WO3 nanosheet arrays. The successful demonstration of alternative ETL materials and nanostructures based on WO3 will open up new opportunities in the development of highly efficient perovskite solar cells. This journal is © The Royal Society of Chemistry 2015.

  9. First-principles study of Mn-S codoped anatase TiO2

    Science.gov (United States)

    Li, Senlin; Huang, Jinliang; Ning, Xiangmei; Chen, Yongcha; Shi, Qingkui

    2018-04-01

    In this work, the CASTEP program in Materials Studio 2017 software package was applied to calculate the electronic structures and optical properties of pure anatase TiO2, S-doped, Mn-doped and Mn-S co-doped anatase TiO2 by GGA + U methods based on the density function theory (DFT). The results indicate that the lattice is distorted and the lattice constant is reduce due to doping. The doping also introduces impurity energy levels into the forbidden band. After substitution of Mn for Ti atom, band gap narrowing of anatase TiO2 is caused by the impurity energy levels appearance in the near Fermi surface, which are contributed by Mn-3d orbital, Ti-3d orbital and O-2p orbital hybridization. After substitution of S for O atom, band gap narrowing is creited with the shallow accepter level under the conduction hand of S-3p orbital. The Mn-S co-doped anatase TiO2 could be a potential candidate for a photocatalyst because of tis enhanced absorption ability of visible light. The results can well explain the immanent cause of a band gap narrowing as well as a red shift in the spectrum for doped anatase TiO2.

  10. Synthesis of Ag{sub 2}S nanorods by biomimetic method in the lysozyme matrix

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Dezhi, E-mail: dezhiqin@163.com; Zhang, Li; He, Guoxu; Zhang, Qiuxia

    2013-09-01

    Graphical abstract: - Highlights: • Firstly, Ag{sub 2}S nanorods were synthesized by biomimetic method in the lysozyme solutions. • The study of the interaction between Ag{sup +} and the lysozyme. • Discussion of possible formation mechanism of Ag{sub 2}S nanorods. • The synthesis process of lyso-conjugated Ag{sub 2}S nanocrystals is facile, effective and environment friendly. - Abstract: Ag{sub 2}S nanorods were successfully synthesized by biomimetic route in the lysozyme solution at physiological temperature and atmospheric pressure. The transmission electron microscopy (TEM) images revealed that the prepared nanorods are uniform and monodisperse with homogeneous size about 50 nm in diameter and 150 nm in length. The optical property of Ag{sub 2}S nanocrystals was studied by the ultraviolet–visible (UV–vis) and photoluminescence (PL) spectroscopy, the results show that the products exhibit well-defined emission at 471 nm and 496 nm excited by 292 nm. The interaction of Ag{sup +}/Ag{sub 2}S with the lysozyme was investigated through Fourier transform infrared (FT-IR) spectroscopy, which shows that the cooperation effect of the lysozyme and Ag{sup +} could be responsible for the formation of as obtained Ag{sub 2}S nanorods.

  11. Comparison of Interfacial Electron Transfer Efficiency in [Fe(ctpy)2]2+-TiO2 and [Fe(cCNC)2]2+-TiO2 Assemblies: Importance of Conformational Sampling.

    Science.gov (United States)

    Mukherjee, Sriparna; Liu, Chang; Jakubikova, Elena

    2018-02-22

    Fe(II)-polypyridines have limited applications as chromophores in dye-sensitized solar cells due to the short lifetimes (∼100 fs) of their photoactive metal-to-ligand charge transfer (MLCT) states formed upon photoexcitation. Recently, a 100-fold increase in the MLCT lifetime was observed in a [Fe(CNC) 2 ] 2+ complex (CNC = 2,6-bis(3-methylimidazole-1-ylidine)pyridine) which has strong σ-donating N-heterocyclic carbene ligand in comparison to the weaker field parent [Fe(tpy) 2 ] 2+ complex (tpy = 2,2':6',2″-terpyridine). This study utilizes density functional theory (DFT), time-dependent DFT, and quantum dynamics simulations to investigate the interfacial electron transfer (IET) in [Fe(cCNC) 2 ] 2+ (cCNC = 4'-carboxy-2,6-bis(3-methylimidazole-1-ylidine)pyridine) and [Fe(ctpy) 2 ] 2+ (ctpy = 4'-carboxy-2,2':6',2″-terpyridine) sensitized TiO 2 . Our results suggest that the replacement of tpy by CNC ligand does not significantly speed up the IET kinetics in the [Fe(cCNC) 2 ] 2+ -TiO 2 assembly in comparison to the [Fe(ctpy) 2 ] 2+ -TiO 2 analogue. The high IET efficiency in the [Fe(cCNC) 2 ] 2+ -TiO 2 assemblies is therefore due to longer lifetime of [Fe(cCNC) 2 ] 2+ photoactive 3 MLCT states rather than faster electron injection kinetics. It was also found that the inclusion of conformational sampling in the computational model is important for proper description of the IET processes in these systems, as the models relying on the use of only fully optimized structures may yield misleading results. The simulations presented in this work also illustrate various pitfalls of utilizing properties such as electronic coupling, number of available acceptor states, and driving force, as well as calculations based on Fermi's golden rule framework, to reach conclusions on the IET efficiency in dye-semiconductor systems.

  12. TiO2/Cu2O composite based on TiO2 NTPC photoanode for photoelectrochemical (PEC) water splitting under visible light

    KAUST Repository

    Shi, Le

    2015-05-01

    Water splitting through photoelectrochemical reaction is widely regarded as a major method to generate H2 , a promising source of renewable energy to deal with the energy crisis faced up to human being. Efficient exploitation of visible light in practice of water splitting with pure TiO2 material, one of the most popular semiconductor material used for photoelectrochemical water splitting, is still challenging. One dimensional TiO2 nanotubes is highly desired with its less recombination with the short distance for charge carrier diffusion and light-scattering properties. This work is based on TiO2 NTPC electrode by the optimized two-step anodization method from our group. A highly crystalized p-type Cu2O layer was deposited by optimized pulse potentiostatic electrochemical deposition onto TiO2 nanotubes to enhance the visible light absorption of a pure p-type TiO2 substrate and to build a p-n junction at the interface to improve the PEC performance. However, because of the real photocurrent of Cu2O is far away from its theoretical limit and also poor stability in the aqueous environment, a design of rGO medium layer was added between TiO2 nanotube and Cu2O layer to enhance the photogenerated electrons and holes separation, extend charge carrier diffusion length (in comparison with those of conventional pure TiO2 or Cu2O materials) which could significantly increase photocurrent to 0.65 mA/cm2 under visible light illumination (>420 nm) and also largely improve the stability of Cu2O layer, finally lead to an enhancement of water splitting performance.

  13. Influence of Sn ion doping on the photocatalytic performance of V2O5 nanorods prepared by hydrothermal method

    Science.gov (United States)

    Rajeshwari, S.; Santhosh Kumar, J.; Rajendrakumar, R. T.; Ponpandian, N.; Thangadurai, P.

    2018-02-01

    Pure and different concentrations of Sn4+ doped V2O5 (Sn:V2O5) nanorods were synthesized by hydrothermal method. The Sn:V2O5 nanorods obtained were orthorhombic in structure. No secondary phase was observed up to 10% of Sn doping, but beyond that, there evolved a secondary phase of SnO2. Microstructural analysis revealed the morphology of V2O5 as nanorods and platelets like structure. Presence of V, O and Sn elements in the samples was confirmed by energy dispersive spectroscopy. The V2O5 nanorods have shown a strong absorption in the visible region and the band gap energy was obtained to be varying from 2.21 to 2.26 eV as a function of Sn ion doping. Photocatalytic studies on methylene blue (MB) under visible light irradiation showed that the 3% Sn:V2O5 had effectively degraded MB up to a maximum degradation of 96% and further increase in Sn content had decreased the photodegradation due to higher recombination rate of photogenerated electrons. The mechanism of photodegradation was completely understood and the OH· radicals have played a dominant role in the photodegradation of the organic dyes.

  14. Electronic, elastic, acoustic and optical properties of cubic TiO2: A DFT approach

    International Nuclear Information System (INIS)

    Mahmood, Tariq; Cao, Chuanbao; Tahir, Muhammad; Idrees, Faryal; Ahmed, Maqsood; Tanveer, M.; Aslam, Imran; Usman, Zahid; Ali, Zulfiqar; Hussain, Sajad

    2013-01-01

    The electronic, elastic, acoustic and optical properties of cubic phases TiO 2 fluorite and pyrite are investigated using the first principles calculations. We have employed five different exchange–correlation functions within the local density and generalized gradient approximations using the ultrasoft plane wave pseudopotential method. The calculated band structures of cubic-TiO 2 elucidate that the TiO 2 fluorite and pyrite are direct and indirect semiconductors in contrast to the previous findings. From our studied properties such as bulk and shear moduli, elastic constants C 44 and Debye temperature for TiO 2 fluorite and pyrite, we infer that both the cubic phases are not superhard materials and the pyrite phase is harder than fluorite. The longitudinal and transversal acoustic wave speeds for both phases in the directions [100], [110] and [111] are determined using the pre-calculated elastic constants. In addition, we also calculate the optical properties such as dielectric function, absorption spectrum, refractive index and energy loss function using the pre-optimized structure. On the observation of optical properties TiO 2 fluorite phase turn out to be more photocatalytic than pyrite

  15. Fast response of sprayed vanadium pentoxide (V{sub 2}O{sub 5}) nanorods towards nitrogen dioxide (NO{sub 2}) gas detection

    Energy Technology Data Exchange (ETDEWEB)

    Mane, A.A. [Thin Film Nanomaterials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (India); General Science and Humanities Department, Sant Gajanan Maharaj College of Engineering, Mahagaon, 416 503 (India); Suryawanshi, M.P. [Optoelectronics Convergence Research Center, Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju 500-757 (Korea, Republic of); Kim, J.H., E-mail: jinhyeok@chonnam.ac.kr [Optoelectronics Convergence Research Center, Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju 500-757 (Korea, Republic of); Moholkar, A.V., E-mail: avmoholkar@gmail.com [Thin Film Nanomaterials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (India)

    2017-05-01

    Highlights: • Effect of solution concentration on physicochemical properties of sprayed V{sub 2}O{sub 5} nanorods is studied. • Good response and short response-recovery times of V{sub 2}O{sub 5} nanorods towards NO{sub 2} gas show it is potential material for fabrication of NO{sub 2} sensor. • The chemisorption mechanism of NO{sub 2} gas on the V{sub 2}O{sub 5} nanorods is discussed. - Abstract: The V{sub 2}O{sub 5} nanorods have been successfully spray deposited at optimized substrate temperature of 400 °C onto the glass substrates using vanadium trichloride (VCl{sub 3}) solution of different concentrations. The effect of solution concentration on the physicochemical and NO{sub 2} gas sensing properties of sprayed V{sub 2}O{sub 5} nanorods is studied at different operating temperatures and gas concentrations. The XRD study reveals the formation of V{sub 2}O{sub 5} having an orthorhombic symmetry. The FE-SEM micrographs show the nanorods-like morphology of V{sub 2}O{sub 5}. The AFM micrographs exhibit a well covered granular surface topography. For direct allowed transition, the band gap energy values are found to be decreased from 2.45 eV to 2.42 eV. The nanorods deposited with 30 mM solution concentration shows the maximum response of 24.2% for 100 ppm NO{sub 2} gas concentration at an operating temperature of 200 °C with response and recovery times of 13 s and 140 s, respectively. Finally, the chemisorption mechanism of NO{sub 2} gas on the V{sub 2}O{sub 5} nanorods is discussed.

  16. Morphological and magnetic properties of the hydrothermally prepared α-Fe{sub 2}O{sub 3} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Hadia, N.M.A., E-mail: nomery_abass@science.sohag.edu.eg [Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo, 33006 Oviedo (Spain); Physics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt); García-Granda, Santiago; García, José R. [Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo, 33006 Oviedo (Spain); Martínez-Blanco, D. [Servicios Científico-Técnicos, Universidad de Oviedo, 33006 Oviedo (Spain); Mohamed, S.H. [Physics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt)

    2014-10-15

    α-Fe{sub 2}O{sub 3} nanorods were synthesized via hydrothermal method. X-ray powder diffraction revealed the formation of rhombohedral α-Fe{sub 2}O{sub 3} single crystal phase with fiber texture. Scanning and transmission electron micrographs analyses showed that the rhombohedral α-Fe{sub 2}O{sub 3} has nanorods in shape with diameters of 40–85 nm and lengths of 150–45,000 nm. Isothermal magnetization vs. applied magnetic field curves measured at room and liquid nitrogen temperatures displayed a variation on magnetic ordering: from weak ferromagnetism at room temperature to not hysteretic behavior at liquid nitrogen temperature that is well described by a Langevin function. Moreover, the zero field cooling-field cooling curves under applied magnetic field of 100 Oe confirms the decreasing of Morin temperature transition due to nanometric size of the samples. - Highlights: • The structural and magnetic properties of α-Fe{sub 2}O{sub 3} nanorods are examined. • Rietveld and Harris texture indicated the [001] is preferentially oriented. • The magnetic characterization evidenced the presence of hematite α-Fe{sub 2}O{sub 3}.

  17. GW quasiparticle bandgaps of anatase TiO2 starting from DFT + U.

    Science.gov (United States)

    Patrick, Christopher E; Giustino, Feliciano

    2012-05-23

    We investigate the quasiparticle band structure of anatase TiO(2), a wide gap semiconductor widely employed in photovoltaics and photocatalysis. We obtain GW quasiparticle energies starting from density-functional theory (DFT) calculations including Hubbard U corrections. Using a simple iterative procedure we determine the value of the Hubbard parameter yielding a vanishing quasiparticle correction to the fundamental bandgap of anatase TiO(2). The bandgap (3.3 eV) calculated using this optimal Hubbard parameter is smaller than the value obtained by applying many-body perturbation theory to standard DFT eigenstates and eigenvalues (3.7 eV). We extend our analysis to the rutile polymorph of TiO(2) and reach similar conclusions. Our work highlights the role of the starting non-interacting Hamiltonian in the calculation of GW quasiparticle energies in TiO(2) and suggests an optimal Hubbard parameter for future calculations.

  18. Ethanol sensing properties and dominant sensing mechanism of NiO-decorated SnO2 nanorod sensors

    Science.gov (United States)

    Sun, Gun-Joo; Lee, Jae Kyung; Lee, Wan In; Dwivedi, Ram Prakash; Lee, Chongmu; Ko, Taegyung

    2017-05-01

    NiO-decorated SnO2 nanorods were synthesized by the thermal evaporation of Sn powders followed by the solvothermal deposition of NiO. A multi-networked p- n heterostructured nanorod sensor was fabricated by dropping the p-NiO-decorated n-SnO2 nanorods onto the interdigited electrode pattern and then annealing. The multi-networked p- n heterostructured nanorod sensor exhibited enhanced response to ethanol compared with the pristine SnO2 nanorod and NiO nanoparticle sensors. The former also exhibited a shorter sensing time for ethanol. Both sensors exhibited selectivity for ethanol over other volatile organic compounds (VOCs) such as HCHO, methanol, benzene and toluene and the decorated sensor exhibited superior selectivity to the other two sensors. In addition, the dominant sensing mechanism is discussed in detail by comparing the sensing properties and current-voltage characteristics of a p-NiO/ n-SnO2 heterostructured nanorod sensor with those of a pristine SnO2 nanorod sensor and a pristine NiO nanoparticle sensor. Of the two competing electronic mechanisms: a potential barrier-controlled carrier transport mechanism at a NiO-SnO2 p- n junction and a surface-depletio n-controlled carrier transport mechanism, the former has some contribution to the enhanced gas sensing performance of the p- n heterostructured nanorod sensor, however, its contribution is not as significant as that of the latter. [Figure not available: see fulltext.

  19. Exchange of TiO2 nanoparticles between streams and streambeds.

    Science.gov (United States)

    Boncagni, Natalia Ticiana; Otaegui, Justo Manuel; Warner, Evelyn; Curran, Trisha; Ren, Jianhong; de Cortalezzi, Maria Marta Fidalgo

    2009-10-15

    The expanding use of manufactured nanoparticles has increased the potential for their release into the natural environment. Particularly, TiO2 nanoparticles pose significant exposure risk to humans and other living species due to their extensive use in a wide range of fields. To better understand the environmental and health risks associated with the release of TiO2 nanoparticles, knowledge on their fate and transport is needed. This study evaluates the transport of two different TiO2 nanoparticles: one commercially available (P25 TiO2 and the other synthesized at a lab scale (synthesized TiO2). Laboratory flume, column, and batch experiments were conducted to investigate the processes dominating the transport of TiO2 nanoparticles between streams and streambeds and to characterize the properties of these nanoparticles under different physicochemical conditions. Results show that the synthesized TiO2 was more stable compared to the P25 TiO2, which underwent significant aggregation under the same experimental conditions. As a result, P25 TiO2 deposited at a faster rate than the synthesized TiO2 in the streambed. Both types of TiO2 nanoparticles deposited in the streambed were easily released when the stream velocity was increased. The aggregation and deposition of P25 TiO2 were highly dependent on pH. A process-based colloid exchange model was applied to interpret the observed transport behavior of the TiO2 nanoparticles.

  20. Molecular design of TiO2 for gigantic red shift via sublattice substitution.

    Science.gov (United States)

    Shao, Guosheng; Deng, Quanrong; Wan, Lin; Guo, Meilan; Xia, Xiaohong; Gao, Yun

    2010-11-01

    The effects of 3d transition metal doping in TiO2 phases have been simulated in detail. The results of modelling indicate that Mn has the biggest potential among 3d transition metals, for the reduction of energy gap and the introduction of effective intermediate bands to allow multi-band optical absorption. On the basis of theoretical formulation, we have incorporated considerable amount of Mn in nano-crystalline TiO2 materials. Mn doped samples demonstrate significant red shift in the optical absorption edge, with a secondary absorption edge corresponding to theoretically predicted intermediate bands/states. The gigantic red shift achievable in Mn-doped TiO2 is expected to extend the useful TiO2 functionalities well beyond the UV threshold via the optical absorption of both visible and infrared photon irradiance.

  1. Confinement and Ordering of Au Nanorods in Polymer Films

    Science.gov (United States)

    Hore, Michael J. A.; Mills, Eric; Liu, Yu; Composto, Russell J.

    2009-03-01

    Ordered arrays of gold nanorods (Au NRs) possess interesting optical properties that might be utilized in future devices. Au NRs functionalized with a poly(ethylene glycol)-thiol brush are incorporated into homopolymer or block copolymer (BCP) films. NR distribution and orientational correlations are studied as a function of nanorod concentration and spacial confinement via Rutherford backscattering spectrometry (RBS) and transmission electron microscopy, respectively. In particular, differences in the degree of nanorod ordering are presented for PMMA homopolymer films (d ˜ 45 nm) versus PS-b-PMMA BCP films (L/2 ˜ 40 nm), where higher ordering is seen in the case of BCP films. At moderate volume fractions of NRs, φ = 1% to 10%, the degree of ordering is moderate, and increases with increasing φ . However, coexistence between regions of higher ordering and isotropic orientations is observed. In addition to the planar confinement considered above, orientation of Au NRs confined to cylindrical P2VP domains is studied in PS-b-P2VP BCP films.

  2. MoSe2 modified TiO2 nanotube arrays with superior photoelectrochemical performance

    Science.gov (United States)

    Zhang, Yaping; Zhu, Haifeng; Yu, Lianqing; He, Jiandong; Huang, Chengxing

    2018-04-01

    TiO2 nanotube arrays (TNTs) are first prepared by anodization Ti foils in ethylene glycol electrolyte. Then, MoSe2 deposites electrochemically on TNTs. The as-synthesized MoSe2/TiO2 composite has a much higher photocurrent density of 1.07 mA cm‑2 at 0 V than pure TNTs of 0.38 mA cm‑2, which suggests that the MoSe2/TiO2 composite film has optimum photoelectrocatalysis properties. The electron transport resistances of the MoSe2/TiO2 decreases to half of pure TiO2, at 295.6 ohm/cm2. Both photocurrent-time and Mott-Schottky plots indicate MoSe2 a p-type semiconductor characteristics. MoSe2/TiO2 composite can achieve a maximum 5 orders of magnitude enhancement in carrier density (4.650 × 1027 cm‑3) than that of pure TiO2 arrays. It can be attributed to p-n heterojunction formed between MoSe2 and TiO2, and the composite can be potentially applied in photoelectrochemical, photocatalysis fields.

  3. Engineering the TiO2 -graphene interface to enhance photocatalytic H2 production.

    Science.gov (United States)

    Liu, Lichen; Liu, Zhe; Liu, Annai; Gu, Xianrui; Ge, Chengyan; Gao, Fei; Dong, Lin

    2014-02-01

    In this work, TiO2 -graphene nanocomposites are synthesized with tunable TiO2 crystal facets ({100}, {101}, and {001} facets) through an anion-assisted method. These three TiO2 -graphene nanocomposites have similar particle sizes and surface areas; the only difference between them is the crystal facet exposed in TiO2 nanocrystals. UV/Vis spectra show that band structures of TiO2 nanocrystals and TiO2 -graphene nanocomposites are dependent on the crystal facets. Time-resolved photoluminescence spectra suggest that the charge-transfer rate between {100} facets and graphene is approximately 1.4 times of that between {001} facets and graphene. Photoelectrochemical measurements also confirm that the charge-separation efficiency between TiO2 and graphene is greatly dependent on the crystal facets. X-ray photoelectron spectroscopy reveals that Ti-C bonds are formed between {100} facets and graphene, while {101} facets and {001} facets are connected with graphene mainly through Ti-O-C bonds. With Ti-C bonds between TiO2 and graphene, TiO2 -100-G shows the fastest charge-transfer rate, leading to higher activity in photocatalytic H2 production from methanol solution. TiO2 -101-G with more reductive electrons and medium interfacial charge-transfer rate also shows good H2 evolution rate. As a result of its disadvantageous electronic structure and interfacial connections, TiO2 -001-G shows the lowest H2 evolution rate. These results suggest that engineering the structures of the TiO2 -graphene interface can be an effective strategy to achieve excellent photocatalytic performances. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fabrication of TiO2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment

    Science.gov (United States)

    Qian, Yingjia; Chi, Lina; Zhou, Weili; Yu, Zhenjiang; Zhang, Zhongzhi; Zhang, Zhenjia; Jiang, Zheng

    2016-01-01

    Surface hydrophilic modification of polymer ultrafiltration membrane using metal oxide represents an effective yet highly challenging solution to improve water flux and antifouling performance. Via plasma-enhanced graft of poly acryl acid (PAA) prior to coating TiO2, we successfully fixed TiO2 functional thin layer on super hydrophobic polytetrafluoroethylene (PTFE) ultrafiltration (UF) membranes. The characterization results evidenced TiO2 attached on the PTFE-based UF membranes through the chelating bidentate coordination between surface-grafted carboxyl group and Ti4+. The TiO2 surface modification may greatly reduce the water contact angle from 115.8° of the PTFE membrane to 35.0° without degradation in 30-day continuous filtration operations. The novel TiO2/PAA/PTFE membranes also exhibited excellent antifouling and self-cleaning performance due to the intrinsic hydrophilicity and photocatalysis properties of TiO2, which was further confirmed by the photo-degradation of MB under Xe lamp irradiation.

  5. 3-D MnNb{sub 2}O{sub 6} nanogears from 1-D Nb{sub 2}O{sub 5} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Hu Weibing, E-mail: w.hu@tom.com [School of Chemical and Environmental Engineering, Hubei Institute for Nationalities, Enshi 445000 (China); Cui Zhicai [School of Chemical and Environmental Engineering, Hubei Institute for Nationalities, Enshi 445000 (China); Mi Yuanzhu [School of Chemistry and Environmental Engineering, Yangtze University, Nanhuan Road 1, Jingzhou 434023 (China)

    2012-04-16

    Graphical abstract: The geometry morphology of Nb-based nanomaterial evolved from long Nb{sub 2}O{sub 5} nanorods to a mixture of short Nb{sub 2}O{sub 5} nanorods and MnNb{sub 2}O{sub 6} 6-teeth nanogears, and eventually to fully developed pure 3-D nanogears. Highlights: Black-Right-Pointing-Pointer MnNb{sub 2}O{sub 6} nanogears have been generated by a simple solvothermal process when the Mn: Nb ratio was 1:1. Black-Right-Pointing-Pointer MnNb{sub 2}O{sub 6} 6-teeth nanogears accompanied with MnNb{sub 2}O{sub 6} 5-teeth nanogears are got when the Mn:Nb ratio reached 1:2. Black-Right-Pointing-Pointer The nanomaterial consists of nanorods and 6-teeth nanogears at low Mn:Nb molar ratio(1:4). Black-Right-Pointing-Pointer Pure long Nb{sub 2}O{sub 5} nanorods are achieved by only using NbCl{sub 5} - Abstract: MnNb{sub 2}O{sub 6} nanogears have been generated by using mixed NbCl{sub 5} and MnCl{sub 2} at an optimized ratio of 1:1 in a cyclohexanol solvent in a simple solvothermal process. It has shown that the Mn:Nb ratio determines the shape of the products. Detailed characterization by electron microscopy has shown that increasing the Mn{sup +2} concentration during the solvo-thermal synthesis promotes a morphological evolution from relatively long Nb{sub 2}O{sub 5} nanorods to a mixture of short Nb{sub 2}O{sub 5} nanorods and MnNb{sub 2}O{sub 6} 6-teeth nanogears, then to a mixture of short Nb{sub 2}O{sub 5} nanorods and more MnNb{sub 2}O{sub 6} 6-teeth nanogears, then to more and more MnNb{sub 2}O{sub 6} 6-teeth nanogears that are occasionally accompanied with under-developed MnNb{sub 2}O{sub 6} 5-teeth nanogears, and eventually to fully developed pure 3-D nanogears. The driving force for such interesting geometry transformations is attributed to the inclusion of Mn{sup 2+} into the Nb{sub 2}O{sub 5} template at low Mn{sup 2+} concentrations, which introduces internal stresses to the Nb{sub 2}O{sub 5} nanorods. At high Mn{sup 2+} concentrations, close to the

  6. MIL-125-NH2@TiO2 Core-Shell Particles Produced by a Post-Solvothermal Route for High-Performance Photocatalytic H2 Production.

    Science.gov (United States)

    Zhang, Bingxing; Zhang, Jianling; Tan, Xiuniang; Shao, Dan; Shi, Jinbiao; Zheng, Lirong; Zhang, Jing; Yang, Guanying; Han, Buxing

    2018-05-02

    Metal-organic frameworks (MOFs) have proven to be an interesting class of sacrificial precursors of functional inorganic materials for catalysis, energy storage, and conversion applications. However, the controlled synthesis of MOF-derived materials with desirable compositions, structures, and properties still remains a big challenge. Herein, we propose a post-solvothermal route for the outer-to-inner loss of organic linkers from MOF, which is simple, rapid, and controllable and can be operated at temperature much lower than that of the commonly adopted pyrolysis method. By such a strategy, the MIL-125-NH 2 particles coated by TiO 2 nanosheets were produced, and the thickness of TiO 2 shell can be easily tuned. The MIL-125-NH 2 @TiO 2 core-shell particles combine the advantages of highly active TiO 2 nanosheets, MIL-125-NH 2 photosensitizer, plenty of linker defects and oxygen vacancies, and mesoporous structure, which allows them to be utilized as photocatalysts for the visible-light-driven hydrogen production reaction. It is remarkable that the hydrogen evolution rate by MIL-125-NH 2 @TiO 2 can be enhanced 70 times compared with the pristine MIL-125-NH 2 . Such a route can be easily applied to the synthesis of different kinds of MOF-derived functional materials.

  7. Charge transfer between biogenic jarosite derived Fe3+and TiO2 enhances visible light photocatalytic activity of TiO2.

    Science.gov (United States)

    Chowdhury, Mahabubur; Shoko, Sipiwe; Cummings, Fransciuos; Fester, Veruscha; Ojumu, Tunde Victor

    2017-04-01

    In this work, we have shown that mining waste derived Fe 3+ can be used to enhance the photocatalytic activity of TiO 2 . This will allow us to harness a waste product from the mines, and utilize it to enhance TiO 2 photocatalytic waste water treatment efficiency. An organic linker mediated route was utilized to create a composite of TiO 2 and biogenic jarosite. Evidence of FeOTi bonding in the TiO 2 /jarosite composite was apparent from the FTIR, EFTEM, EELS and ELNEFS analysis. The as prepared material showed enhanced photocatalytic activity compared to pristine TiO 2 , biogenic jarosite and mechanically mixed sample of jarosite and TiO 2 under both simulated and natural solar irradiation. The prepared material can reduce the electrical energy consumption by 4 times compared to pristine P25 for degradation of organic pollutant in water. The material also showed good recyclability. Results obtained from sedimentation experiments showed that the larger sized jarosite material provided the surface to TiO 2 nanoparticles, which increases the settling rate of the materials. This allowed simple and efficient recovery of the catalyst from the reaction system after completion of photocatalysis. Enhanced photocatalytic activity of the composite material was due to effective charge transfer between TiO 2 and jarosite derived Fe 3+ as was shown from the EELS and ELNEFS. Generation of OH was supported by photoluminesence (PL) experiments. Copyright © 2016. Published by Elsevier B.V.

  8. Enhanced ethanol gas sensing performance of the networked Pd, In2O3-codecorated ZnO nanorod sensor

    Science.gov (United States)

    Lee, Sangmin; Sun, Gun-Joo; Lee, Jae Kyung; Hyun, Soong Keun; Lee, Chongmu

    2017-10-01

    ZnO nanorods codecorated with Pd and In2O3 nanoparticles were synthesized by thermal evaporation of a mixture of ZnO and graphite powders in an oxidizing atmosphere and followed by solvothermal deposition of Pd and In2O3 and their ethanol gas sensing properties were examined. Pristine ZnO nanorods, Pd-decorated ZnO nanorods and In2O3-decorated ZnO nanorods were also prepared in a similar manner. The codecorated ZnO nanorod sensor showed significantly stronger response to ethanol than the other three sensors, suggesting a synergistic effect of Pd and In2O3 codecoration. The former also showed faster response and recovery than the latter. The pristine and codecorated ZnO nanorod sensors exhibited selectivity toward ethanol over other gases such as acetone, CO, benzene, and toluene. The underlying mechanism for the enhanced sensing performance of the Pd, In2O3-codecorated ZnO nanorod sensor toward ethanol is discussed.

  9. Synthesis of non-aggregated nicotinic acid coated magnetite nanorods via hydrothermal technique

    Energy Technology Data Exchange (ETDEWEB)

    Attallah, Olivia A., E-mail: olivia.adly@hu.edu.eg [Center of Nanotechnology, Nile University, 12677 Giza (Egypt); Pharmaceutical Chemistry Department, Heliopolis University, 11777 El Salam, Cairo (Egypt); Girgis, E. [Solid State Physics Department, National Research Center, 12622 Dokki, Giza (Egypt); Advanced Materials and Nanotechnology Lab, CEAS, National Research Center, 12622 Dokki, Giza (Egypt); Abdel-Mottaleb, Mohamed M.S.A. [Center of Nanotechnology, Nile University, 12677 Giza (Egypt)

    2016-02-01

    Non-aggregated magnetite nanorods with average diameters of 20–30 nm and lengths of up to 350 nm were synthesized via in situ, template free hydrothermal technique. These nanorods capped with different concentrations (1, 1.5, 2 and 2.5 g) of nicotinic acid (vitamin B3); possessed good magnetic properties and easy dispersion in aqueous solutions. Our new synthesis technique maintained the uniform shape of the nanorods even with increasing the coating material concentration. The effect of nicotinic acid on the shape, particle size, chemical structure and magnetic properties of the prepared nanorods was evaluated using different characterization methods. The length of nanorods increased from 270 nm to 350 nm in nicotinic acid coated nanorods. Goethite and magnetite phases with different ratios were the dominant phases in the coated samples while a pure magnetite phase was observed in the uncoated one. Nicotinic acid coated magnetic nanorods showed a significant decrease in saturation magnetization than uncoated samples (55 emu/g) reaching 4 emu/g in 2.5 g nicotinic acid coated sample. The novel synthesis technique proved its potentiality to prepare coated metal oxides with one dimensional nanostructure which can function effectively in different biological applications. - Highlights: • We synthesize nicotinic acid coated magnetite nanorods via hydrothermal technique • Effect of nicotinic acid concentration on the nanorods properties was significant • Nanorods maintained uniform shape with increased concentration of nicotinic acid • Alterations occurred in particle size, mineral phases and magnetics of coated samples.

  10. Synthesis of non-aggregated nicotinic acid coated magnetite nanorods via hydrothermal technique

    International Nuclear Information System (INIS)

    Attallah, Olivia A.; Girgis, E.; Abdel-Mottaleb, Mohamed M.S.A.

    2016-01-01

    Non-aggregated magnetite nanorods with average diameters of 20–30 nm and lengths of up to 350 nm were synthesized via in situ, template free hydrothermal technique. These nanorods capped with different concentrations (1, 1.5, 2 and 2.5 g) of nicotinic acid (vitamin B3); possessed good magnetic properties and easy dispersion in aqueous solutions. Our new synthesis technique maintained the uniform shape of the nanorods even with increasing the coating material concentration. The effect of nicotinic acid on the shape, particle size, chemical structure and magnetic properties of the prepared nanorods was evaluated using different characterization methods. The length of nanorods increased from 270 nm to 350 nm in nicotinic acid coated nanorods. Goethite and magnetite phases with different ratios were the dominant phases in the coated samples while a pure magnetite phase was observed in the uncoated one. Nicotinic acid coated magnetic nanorods showed a significant decrease in saturation magnetization than uncoated samples (55 emu/g) reaching 4 emu/g in 2.5 g nicotinic acid coated sample. The novel synthesis technique proved its potentiality to prepare coated metal oxides with one dimensional nanostructure which can function effectively in different biological applications. - Highlights: • We synthesize nicotinic acid coated magnetite nanorods via hydrothermal technique • Effect of nicotinic acid concentration on the nanorods properties was significant • Nanorods maintained uniform shape with increased concentration of nicotinic acid • Alterations occurred in particle size, mineral phases and magnetics of coated samples.

  11. First-principles density functional theory (DFT) study of gold nanorod and its interaction with alkanethiol ligands.

    Science.gov (United States)

    Hu, Hang; Reven, Linda; Rey, Alejandro

    2013-10-17

    The structure and mechanical properties of gold nanorods and their interactions with alkenthiolate self-assembled monolayers have been determined using a novel first-principle density functional theory simulation approach. The multifaceted, 1-dimensional, octagonal nanorod has alternate Au100 and Au110 surfaces. The structural optimization of the gold nanorods was performed with a mixed basis: the outermost layer of gold atoms used double-ζ plus polarization (DZP), the layer below used double-ζ (DZ), and the inner layers used single-ζ (SZ). The final structure compares favorably with simulations using DZP for all atoms. Phonon dispersion calculations and ab initio molecular dynamics (AIMD) were used to establish the dynamic and thermal stability of the system. From the AIMD simulations it was found that the nanorod system will undergo significant surface reconstruction at 300 K. In addition, when subjected to mechanical stress in the axial direction, the nanorod responds as an orthotropic material, with uniform expansion along the radial direction. The Young's moduli are 207 kbar in the axial direction and 631 kbar in the radial direction. The binding of alkanethiolates, ranging from methanethiol to pentanethiol, caused formation of surface point defects on the Au110 surfaces. On the Au100 surfaces, the defects occurred in the inner layer, creating a small surface island. These defects make positive and negative concavities on the gold nanorod surface, which helps the ligand to achieve a more stable state. The simulation results narrowed significant knowledge gaps on the alkanethiolate adsorption process and on their mutual interactions on gold nanorods. The mechanical characterization offers a new dimension to understand the physical chemistry of these complex nanoparticles.

  12. High pressure structural phase transitions of TiO2 nanomaterials

    International Nuclear Information System (INIS)

    Li Quan-Jun; Liu Bing-Bing

    2016-01-01

    Recently, the high pressure study on the TiO 2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO 2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO 2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO 2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO 2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets, and nanoporous materials, and pressure-induced amorphization (PIA) and polyamorphism in ultrafine nanoparticles and TiO 2 -B nanoribbons. Various TiO 2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO 2 nanoribbons, α -PbO 2 -type TiO 2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO 2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO 2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications. (topical review)

  13. Nanoparticle and nanorod films deposited by matrix assisted pulsed laser evaporation

    Science.gov (United States)

    Caricato, A. P.; Cesaria, M.; Luches, A.; Martino, M.

    2012-07-01

    The promising results obtained with the MAPLE-deposition of nanostructured thin films, to be used in different fields, are reviewed. Nanoparticles (TiO2, SnO2, CdS) and nanorods (TiO2) with well defined dimensions were suspended in appropriate solvents (distilled water, toluene) with low concentration (1wt% or less). The solutions were flash frozen at the liquid nitrogen temperature to form the targets to be laser irradiated. The MAPLE process allowed a successful transfer from the target to rough and flat substrates, preserving the starting composition and crystalline phase of the nanostructures in a wide range of experimental conditions. In contrast, a careful choice of the laser fluence is mandatory to avoid shape modifications. Growth of metal nanoparticles with a low dispersion in size was also obtained by the MAPLE technique, starting from target solutions of a metallorganic element (AcPd) diluted in different solvents (acetone, diethyl ether). It seems that selecting the solvent with appropriate values of viscosity and boiling temperatures, it is possible to modulate the nanoparticles size. Most of the deposited nanostructured films were tested as sensing elements for gas sensors.

  14. TiO2/Gold nanocomposite as an extremely sensitive molecule sensor for NO2 detection: A DFT study

    Directory of Open Access Journals (Sweden)

    Amirali Abbasi

    2016-07-01

    Full Text Available First-principles calculations within density functional theory (DFT have been performed to investigate the interactions of NO2 molecules with TiO2/Gold nanocomposites in order to completely exploit the adsorption properties of these nanostructures. Given the need to further comprehend the behavior of the NO2 molecules positioned between the TiO2 nanoparticle and Au monolayer, we have geometrically optimized the complex systems consisting of the NO2 molecule oriented at appropriate positions between the nanoparticle and Au monolayer. The structural properties such as bond lengths, bond angles, adsorption energies and Mulliken population analysis and the electronic properties including the density of states and molecular orbitals have been also analyzed in detail. The results indicate that the interaction between NO2 and undoped TiO2-N/Gold nanocomposites is stronger than that between gas molecules and N-doped TiO2/Gold nanocomposites, which reveals that the pristine nanocomposite can react with NO2 molecule more efficiently. Therefore, the obtained results also suggest a theoretical basis for the potential applications of TiO2/Gold nanocomposites in gas sensing, which could help in the developing of novel TiO2 based advanced sensor devices.

  15. TiO2 nanofiber solid-state dye sensitized solar cells with thin TiO2 hole blocking layer prepared by atomic layer deposition

    International Nuclear Information System (INIS)

    Li, Jinwei; Chen, Xi; Xu, Weihe; Nam, Chang-Yong; Shi, Yong

    2013-01-01

    We incorporated a thin but structurally dense TiO 2 layer prepared by atomic layer deposition (ALD) as an efficient hole blocking layer in the TiO 2 nanofiber based solid-state dye sensitized solar cell (ss-DSSC). The nanofiber ss-DSSCs having ALD TiO 2 layers displayed increased open circuit voltage, short circuit current density, and power conversion efficiency compared to control devices with blocking layers prepared by spin-coating liquid TiO 2 precursor. We attribute the improved photovoltaic device performance to the structural integrity of ALD-coated TiO 2 layer and consequently enhanced hole blocking effect that results in reduced dark leakage current and increased charge carrier lifetime. - Highlights: • TiO 2 blocking locking layer prepared by atomic layer deposition (ALD) method. • ALD-coated TiO 2 layer enhanced hole blocking effect. • ALD blocking layer improved the voltage, current and efficiency. • ALD blocking layer reduced dark leakage current and increased electron lifetime

  16. Microporous TiO2-WO3/TiO2 films with visible-light photocatalytic activity synthesized by micro arc oxidation and DC magnetron sputtering

    International Nuclear Information System (INIS)

    Wu, Kee-Rong; Hung, Chung-Hsuang; Yeh, Chung-Wei; Wu, Jiing-Kae

    2012-01-01

    Highlights: ► A simple MAO is used to prepare porous WO 3 /TiO 2 layer on Ti sheet as a visible-light enabled catalyst. ► The photocatalytic activity of the WO 3 /TiO 2 is enhanced by sputtering over an N,C-TiO 2 layer. ► This is ascribed to the synergetic effect of hybrid sample prepared by two-step method. - Abstract: This study reports the preparation of microporous TiO 2 -WO 3 /TiO 2 films with a high surface area using a two-step approach. A porous WO 3 /TiO 2 template was synthesized by oxidizing a titanium sheet using a micro arc oxidation (MAO) process. This sheet was subsequently overlaid with a visible light (Vis)-enabled TiO 2 (N,C-TiO 2 ) film, which was deposited by codoping nitrogen (N) and carbon (C) ions into a TiO 2 lattice using direct current magnetron sputtering. The resulting microporous TiO 2 -WO 3 /TiO 2 film with a 0.38-μm-thick N,C-TiO 2 top-layer exhibited high photocatalytic activity in methylene blue (MB) degradation among samples under ultraviolet (UV) and Vis irradiation. This is attributable to the synergetic effect of two-step preparation method, which provides a highly porous microstructure and the well-crystallized N,C-TiO 2 top-layer. This is because a higher surface area with high crystallinity favors the adsorption of more MB molecules and more photocatalytic active areas. Thus, the microporous TiO 2 -WO 3 /TiO 2 film has promising applications in the photocatalytic degradation of dye solution under UV and Vis irradiation. These results imply that the microporous WO 3 /TiO 2 can be used as a template of hybrid electrode because it enables rapid fabrication.

  17. Design of Sb2S3 nanorod-bundles: imperfect oriented attachment

    Science.gov (United States)

    Lu, Qifei; Zeng, Haibo; Wang, Zhenyang; Cao, Xueli; Zhang, Lide

    2006-05-01

    The large scale formation of uniform Sb2S3 nanorod-bundles has been achieved via a simple and mild hydrothermal approach with the assistance of polyvinylpyrrolidone. By closely inspecting the growth process and the crystallographic analysis of as-synthesized products, conclusive evidence has been provided to show that the growth mechanism of such nanorod-bundles is imperfect oriented attachment. The anisotropic adsorption of polyvinylpyrrolidone at the different surfaces of Sb2S3 nanocrystals assists the one-dimensional preferential growth; it is just the misorientations that result in the nanorod-based superstructures. Moreover, the hydrothermal treatment time plays a crucial role, and can be used as the parameter to control the size and morphology of the bundles. This simple approach promises future large-scale controlled synthesis of various nanobody-based superstructures for many important applications in nanotechnology.

  18. Photocatalytic degradation of paracetamol on TiO2 nanoparticles and TiO2/cellulosic fiber under UV and sunlight irradiation

    Directory of Open Access Journals (Sweden)

    Nabil Jallouli

    2017-05-01

    Full Text Available In the present study, photocatalytic degradation of acetaminophen ((N-(4-hydroxyphe-nylacetamide, an analgesic drug has been investigated in a batch reactor using TiO2 P25 as a photocatalyst in slurry and under UV light. Using TiO2 P25 nanoparticles, much faster photodegradation of paracetamol and effective mineralization occurred, more than 90% of 2.65 × 10−4 M paracetamol was degraded under UV irradiation. Changes in pH values affected the adsorption and the photodegradation of paracetamol. pH 9.0 is found to be the optimum for the photodegradation of paracetamol. HPLC detected hydroquinone, benzoquinone, p-nitrophenol, and 1,2,4-trihydroxybenzene during the TiO2-assisted photodegradation of paracetamol among which some pathway products are disclosed for the first time. The results showed that TiO2 suspension/UV system is more efficient than the TiO2/cellulosic fiber mode combined to solar light for the photocatalytic degradation of paracetamol. Nerveless the immobilization of TiO2 showed many advantages over slurry system because it can enhance adsorption properties while allowing easy separation of the photocatalyst from the treated solution with improved reusable performance.

  19. An efficient route to Cu_2O nanorod array film for high-performance Li-ion batteries

    International Nuclear Information System (INIS)

    Yang, Yumei; Wang, Kun; Yang, Zeheng; Zhang, Yingmeng; Gu, Heyun; Zhang, Weixin; Li, Errui; Zhou, Chen

    2016-01-01

    Fabrication of well-organized one-dimensional nanostructured arrays on conducting substrates as binder free electrodes allows us to synergize and integrate multi-functionalities into lithium ion batteries. In this contribution, we report a metal-induced thermal reduction (MITR) method to prepare free-standing Cu_2O nanorod array film with average diameters of 400 ± 100 nm and lengths of several microns on copper substrates by direct thermal reduction of Cu(OH)_2 nanorod arrays on copper foils in nitrogen atmosphere at 500 °C. The presence of Cu substrates reduces the Cu(OH)_2 to Cu_2O and decreases the reduction temperature significantly through changing the reaction Gibbs energy. Compared with some previously-reported methods about thermal reduction, the MITR method is facile, controllable, efficient and low energy consumption. The free-standing Cu_2O nanorod array film on Cu substrates as anode can achieve high rate capability (315 mAh g"−"1 at 10 C) and good cyclability (358 mAh g"−"1 after 200 cycles at 1 C), demonstrating their excellent electrochemical performance in lithium ion batteries, which results from relatively faster electron and ion transport, easier electrolyte diffusion and better accommodation of strains from the repeated conversion reactions based on their one-dimensional nanostructured arrays. - Highlights: • A metal-induced thermal reduction method was used to prepare Cu_2O nanorod array film. • Copper substrate takes an important part in the conversion of Cu(OH)_2 to Cu_2O. • The Cu_2O films show excellent electrochemical properties as anode for Li-ion battery.

  20. SiO2@TiO2 Coating: Synthesis, Physical Characterization and Photocatalytic Evaluation

    Directory of Open Access Journals (Sweden)

    A. Rosales

    2018-03-01

    Full Text Available Use of silicon dioxide (SiO2 and titanium dioxide (TiO2 have been widely investigated individually in coatings technology, but their combined properties promote compatibility for different innovative applications. For example, the photocatalytic properties of TiO2 coatings, when exposed to UV light, have interesting environmental applications, such as air purification, self-cleaning and antibacterial properties. However, as reported in different pilot projects, serious durability problems, associated with the adhesion between the substrate and TiO2, have been evidenced. Thus, the aim of this work is to synthesize SiO2 together with TiO2 to increase the durability of the photocatalytic coating without affecting its photocatalytic potential. Therefore, synthesis using sonochemistry, synthesis without sonochemistry, physical characterization, photocatalytic evaluation, and durability of the SiO2, SiO2@TiO2 and TiO2 coatings are presented. Results indicate that using SiO2 improved the durability of the TiO2 coating without affecting its photocatalytic properties. Thus, this novel SiO2@TiO2 coating shows potential for developing long-lasting, self-cleaning and air-purifying construction materials.

  1. Unclonable Security Codes Designed from Multicolor Luminescent Lanthanide-Doped Y2O3 Nanorods for Anticounterfeiting.

    Science.gov (United States)

    Kumar, Pawan; Nagpal, Kanika; Gupta, Bipin Kumar

    2017-04-26

    The duplicity of important documents has emerged as a serious problem worldwide. Therefore, many efforts have been devoted to developing easy and fast anticounterfeiting techniques with multicolor emission. Herein, we report the synthesis of multicolor luminescent lanthanide-doped Y 2 O 3 nanorods by hydrothermal method and their usability in designing of unclonable security codes for anticounterfeiting applications. The spectroscopic features of nanorods are probed by photoluminescence spectroscopy. The Y 2 O 3 :Eu 3+ , Y 2 O 3 :Tb 3+ , and Y 2 O 3 :Ce 3+ nanorods emit hypersensitive red (at 611 nm), strong green (at 541 nm), and bright blue (at 438 nm) emissions at 254, 305, and 381 nm, respectively. The SEM and TEM/HRTEM results reveal that these nanorods have diameter and length in the range of 80-120 nm and ∼2-5 μm, respectively. The two-dimensional spatially resolved photoluminescence intensity distribution in nanorods is also investigated by using confocal photoluminescence microscopic technique. Further, highly luminescent unclonable security codes are printed by a simple screen printing technique using luminescent ink fabricated from admixing of lanthanide doped multicolor nanorods in PVC medium. The prospective use of these multicolor luminescent nanorods provide a new opportunity for easily printable, highly stable, and unclonable multicolor luminescent security codes for anti-counterfeiting applications.

  2. Preparation of brookite TiO2 nanoparticles with small sizes and the improved photovoltaic performance of brookite-based dye-sensitized solar cells.

    Science.gov (United States)

    Xu, Jinlei; Wu, Shufang; Jin, Jingpeng; Peng, Tianyou

    2016-11-10

    Brookite TiO 2 nanoparticles with small sizes (hereafter denoted as BTP particles) were synthesized through the hydrothermal treatment of TiCl 4 solution with Pb(NO 3 ) 2 as an additive. The obtained BTP particles have a large specific surface area (∼122.2 m 2 g -1 ) and relatively uniform particle sizes (∼10 nm) with the coexistence of a small quantity of nanorods with a length of ∼100 nm. When used as a photoanode material for dye-sensitized solar cells (DSSCs), the BTP particles show a much higher dye-loading content than the brookite TiO 2 quasi nanocubes (denoted as BTN particles) with a mean size of ∼50 nm and a specific surface area of ∼34.2 m 2 g -1 that were prepared through a similar hydrothermal process but without the addition of Pb(NO 3 ) 2 . The fabricated BTP film-based solar cell with an optimized film thickness gives a conversion efficiency up to 6.36% with a 74% improvement when compared to the BTN film-based one (3.65%) under AM 1.5G one sun irradiation, while the corresponding bilayer brookite-based solar cell by using brookite TiO 2 submicrometer particles as an overlayer of the BTP film displays a significantly enhanced efficiency of 7.64%. Both of them exceed the current record (5.97%) for the conversion efficiency of pure brookite-based DSSCs reported in the literature. The present results not only demonstrate a really simple synthesis of brookite TiO 2 nanoparticles with both high phase purity and a large surface area, but also offer an efficient approach to improve the photovoltaic performance of brookite-based solar cells by offsetting brookite's inherent shortages such as lower dye-loading and poor conductivity as compared to anatase.

  3. Multi-Layered TiO2 Films towards Enhancement of Escherichia coli Inactivation

    Directory of Open Access Journals (Sweden)

    Sorachon Yoriya

    2016-09-01

    Full Text Available Crystalline TiO2 has shown its great photocatalytic properties in bacterial inactivation. This work presents a design fabrication of low-cost, layered TiO2 films assembled reactors and a study of their performance for a better understanding to elucidate the photocatalytic effect on inactivation of E. coli in water. The ability to reduce the number of bacteria in water samples for the layered TiO2 composing reactors has been investigated as a function of time, while varying the parameters of light sources, initial concentration of bacteria, and ratios of TiO2 film area and volume of water. Herein, the layered TiO2 films have been fabricated on the glass plates by thermal spray coating prior to screen printing, allowing a good adhesion of the films. Surface topology and crystallographic phase of TiO2 for the screen-printed active layer have been characterized, resulting in the ratio of anatase:rutile being 80:20. Under exposure to sunlight and a given condition employed in this study, the optimized film area:water volume of 1:2.62 has shown a significant ability to reduce the E. coli cells in water samples. The ratio of surface area of photocatalytic active base to volume of water medium is believed to play a predominant role facilitating the cells inactivation. The kinetic rate of inactivation and its behavior are also described in terms of adsorption of reaction species at different contact times.

  4. An Au/Si hetero-nanorod-based biosensor for Salmonella detection

    Energy Technology Data Exchange (ETDEWEB)

    Fu Junxue; Zhao Yiping [Physics and Astronomy Department, University of Georgia, Athens, GA 30602 (United States); Park, Bosoon; Siragusa, Greg [USDA, ARS, Russell Research Center, Athens, GA 30605 (United States); Jones, Les; Tripp, Ralph [Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 (United States); Cho, Yong-Jin [Korea Food Research Institute, Songnam (Korea, Republic of)], E-mail: zhaoy@physast.uga.edu

    2008-04-16

    We present a novel and effective food-borne bacteria detection method. A hetero-structured silicon/gold nanorod array fabricated by the glancing angle deposition method is functionalized with anti-Salmonella antibodies and organic dye molecules. Due to the high aspect ratio nature of the Si nanorods, dye molecules attached to the Si nanorods produce an enhanced fluorescence upon capture and detection of Salmonella. This bio-functional hetero-nanorod detection method has great potential in the food safety industry as well as in biomedical diagnostics.

  5. The synthesis of aqueous-dispersible anatase TiO2 nanoplatelets

    International Nuclear Information System (INIS)

    Shan Guobin; Demopoulos, George P

    2010-01-01

    Aqueous well-dispersed and phase-pure anatase TiO 2 truncated octahedron nanoplatelets (NPLs) were prepared via controlled hydrolysis of titanium tetrachloride (TiCl 4 ) in ethylene glycol at 240 deg. C. Two shapes, square and hexagon, were observed by microscopy, exactly corresponding to the truncated octahedron NPLs. Ethylene glycol was found to produce water in situ that reacts with TiCl 4 to produce TiO 2 and HCl-the latter promoting TiO 2 colloid peptization. TiO 2 truncated octahedron NPLs are formed under the stabilizing action of ethylene glycol thermolysis derivatives, such as aldehydes. Crystal growth of the TiO 2 NPLs was affected by the reaction temperature that determines the water production rate and HCl-assisted peptization. TGA and FT-IR results showed ∼1.2% ethylene glycol thermolysis derivatives are attached to the surface of the TiO 2 NPLs, which prevents their agglomeration, hence making them easily dispersible in aqueous media. HR-TEM and SAED results showed that the TiO 2 NPLs are well crystallized and that the SAED patterns of the single TiO 2 NPL changes with its size and shape. XRD patterns showed that the TiO 2 NPLs are phase-pure anatase and the percentage of the {101} plane in the TiO 2 NPLs to be only 18%-a structural feature that renders the TiO 2 NPLs with enhanced UV absorption and reactivity properties.

  6. Titanium Dioxide (TiO2) Dye-Sensitized Solar Cells

    Science.gov (United States)

    Alseadi, Anwar Abdulaziz

    With the increasing global energy consumption and diminishing fossil fuels, various renewable and sustainable energies have been harvested in past decades and related devices have been fabricated. Dye-sensitized solar cells (DSSCs) are the most efficient third-generation solar cells to harvest solar energy into electricity directly. Titanium dioxide (TiO2) based DSSCs were invented in 1988 and have attracted more and more attention since then because of low-cost and high efficiency. TiO2 nanoparticles are one kind of popular anode materials of DSSC because of stability, abundance, environment safety, non-toxicity, and excellent photovoltaic properties. In the project, TiO2 nanoparticles with different crystallographic sizes were produced by ball-milling. Physical properties of the produced TiO 2 nanoparticles were characterized by X-ray powder diffraction, UV-visible spectroscopy, and Raman scattering. TiO2-based DSSCs were fabricated and their photovoltaic performances were tested. The effects of TiO2 layer thickness, crystallographic size, and microsphere fillings were investigated. The project enriched our understanding of TiO2-based DSSCs.

  7. Graphene-enhanced Raman imaging of TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Naumenko, Denys; Snitka, Valentinas; Snopok, Boris; Arpiainen, Sanna; Lipsanen, Harri

    2012-01-01

    The interaction of anatase titanium dioxide (TiO 2 ) nanoparticles with chemical vapour deposited graphene sheets transferred on glass substrates is investigated by using atomic force microscopy, Raman spectroscopy and imaging. Significant electronic interactions between the nanoparticles of TiO 2 and graphene were found. The changes in the graphene Raman peak positions and intensity ratios indicate that charge transfer between graphene and TiO 2 nanoparticles occurred, increasing the Raman signal of the TiO 2 nanoparticles up to five times. The normalized Raman intensity of TiO 2 nanoparticles per their volume increased with the disorder of the graphene structure. The complementary reason for the observed enhancement is that due to the higher density of states in the defect sites of graphene, a higher electron transfer occurs from the graphene to the anatase TiO 2 nanoparticles. (paper)

  8. Tunable surface wettability and water adhesion of Sb2S3 micro-/nanorod films

    International Nuclear Information System (INIS)

    Zhong, Xin; Zhao, Huiping; Yang, Hao; Liu, Yunling; Yan, Guoping; Chen, Rong

    2014-01-01

    Antimony sulfide (Sb 2 S 3 ) films were successfully prepared by spin coating Sb 2 S 3 micro-/nanorods with different sizes on glass slides, which was synthesized via a facile and rapid microwave irradiation method. The prepared Sb 2 S 3 micro-/nanorods and films were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle (CA). The as-prepared Sb 2 S 3 films exhibited different surface wettabilities ranging from superhydrophilicity to superhydrophobicity, which was strongly dependent on the diameter of Sb 2 S 3 micro-/nanorod. Sb 2 S 3 film made by nanorods possessed superhydrophobic surface and high water adhesive property. After surface modification with stearic acid, the superhydrophobic surface exhibited an excellent self-cleaning property owing to its low adhesive force. The clarification of three possible states including Wenzel's state, “Gecko” state and Cassie's state for Sb 2 S 3 film surfaces was also proposed to provide a better understanding of interesting surface phenomena on Sb 2 S 3 films.

  9. ADSORCIÓN DE ALDEHÍDOS INSATURADOS SOBRE TiO2

    Directory of Open Access Journals (Sweden)

    Natalia Ortega

    2012-01-01

    Full Text Available En el presente trabajo se estudió la adsorción de aldehídos insaturados sobre la superficie del TiO2. Para evaluar su eficiencia como catalizador, se realizaron experimentos de fotocatálisis heterogénea de p-nitrofenol (PNF y una muestra proveniente de efluentes industriales. Se empleó un simulador solar y cuatro sistemas de TiO2: el TiO2-sólo (sin modificar y los sistemas TiO2-dienal constituidos por la adsorción química de 2,4 hexadienal, 2,4 heptadienal y el trans-cinamaldehído sobre la superficie del TiO2. La adsorción de los aldehídos insaturados sobre el TiO2 se cuantificó empleando los modelos de adsorción de Langmuir y Freundlich. Se evaluó la influencia del pH en los sistemas TiO2-dienal y su efecto en la degradación fotocatalítica del PNF. En condiciones básicas, la constante de velocidad del PNF es mayor al emplear los sistemas TiO2-dienal en comparación con el TiO2-sólo, mientras que en condiciones ácidas se encontró la tendencia opuesta. El sistema TiO2-cina resultó ser el fotocatalizador de mayor eficiencia.

  10. Hydrogen isotope behavior on Li2TiO3

    International Nuclear Information System (INIS)

    Olivares, Ryan; Oda, Takuji; Tanaka, Satoru; Oya, Yasuhisa; Tsuchiya, Kunihiko

    2004-01-01

    The surface nature of Li 2 TiO 3 and the adsorption behavior of water on Li 2 TiO 3 surface were studied by XPS/UPS and FT/IR. Preliminary experiments by Ar ion sputtering, heating and water exposure were conducted, and the following results were obtained. (1) By Ar sputtering, Li deficient surface was made, and Ti was reduced from Ti 4+ to Ti 3+ . (2) By heating sputtered samples over 573-673 K, Li emerged on the surface and Ti was re-oxidized to Ti 4+ . The surface -OH was removed. The valence band of Li 2 TiO 3 became similar to that of TiO 2 . (3) By water exposure at 623 K, H 2 O could be adsorbed dissociatively on the surface. LiOH was not formed. (4) The nature of Li 2 TiO 3 surface resembles that of TiO 2 , rather than Li 2 O. (author)

  11. Tailoring of TiO2 films by H2SO4 treatment and UV irradiation to improve anticoagulant ability and endothelial cell compatibility.

    Science.gov (United States)

    Liao, Yuzhen; Li, Linhua; Chen, Jiang; Yang, Ping; Zhao, Ansha; Sun, Hong; Huang, Nan

    2017-07-01

    Surfaces with dual functions that simultaneously exhibit good anticoagulant ability and endothelial cell (EC) compatibility are desirable for blood contact materials. However, these dual functions have rarely been achieved by inorganic materials. In this study, titanium dioxide (TiO 2 ) films were treated by sulphuric acid (H 2 SO 4 ) and ultraviolet (UV) irradiation successively (TiO 2 H 2 SO 4 -UV), resulting in good anticoagulant ability and EC compatibility simultaneously. We found that UV irradiation improved the anticoagulant ability of TiO 2 films significantly while enhancing EC compatibility, though not significantly. The enhanced anticoagulant ability could be related to the oxidation of surface-adsorbed hydrocarbons and increased hydrophilicity. The H 2 SO 4 treatment improved the anticoagulant ability of TiO 2 films slightly, while UV irradiation improved the anticoagulant ability strongly. The enhanced EC compatibility could be related to the increased surface roughness and positive charges on the surface of the TiO 2 films. Furthermore, the time-dependent degradation of the enhanced EC compatibility and anticoagulant ability of TiO 2 H 2 SO 4 -UV was observed. In summary, TiO 2 H 2 SO 4 -UV expressed both excellent anticoagulant ability and good EC compatibility at the same time, which could be desirable for blood contact materials. However, the compatibility of TiO 2 H 2 SO 4 -UV with smooth muscle cells (SMCs) and macrophages was also improved. More effort is still needed to selectively improve EC compatibility on TiO 2 films for better re-endothelialization. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Li2FeSiO4 nanorod as high stability electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Hsu, Chun-Han; Shen, Yu-Wen; Chien, Li-Hsuan; Kuo, Ping-Lin

    2015-01-01

    Li 2 FeSiO 4 (LFS) nanorods, with a diameter of 80–100 nm and length of 0.8–1.0 μm, were synthesized successfully from a mixture of LiOH, FeSO 4 , and SiO 2 nanoparticles via a simple hydrothermal process. The secondary structure with micro-sized bundles of nanorods was developed with high crystallinity under the hydrothermal condition of 180 °C for 72 h. Then, sucrose, as carbon source, was coated and carbonized on the surface of the LFS nanorods to fabricate LFS/C nanorod composite. The resulting LFS/C nanorod composite was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and surface area measurements. When used as the cathode materials for lithium-ion battery, the electrochemical performance of the LFS/C nanorod material delivers discharge capacities of 156 mAh g −1 in the voltage window of 1.8−4.7 V and also demonstrates good cycle stability when it is cycled between 1.8 and 4.1 V. In short, superior electrochemical properties could be caused by the short lithium-ion diffusion path of its nanorod structure

  13. Synthesis of ZnO nanorods by spray pyrolysis for H2S gas sensor

    International Nuclear Information System (INIS)

    Shinde, S.D.; Patil, G.E.; Kajale, D.D.; Gaikwad, V.B.; Jain, G.H.

    2012-01-01

    Highlights: ► Hexagonal pillar shaped ZnO nanorods with different sizes have been successfully synthesized by spray pyrolysis technique. ► ZnO nanorods thin films showed much better sensitivity and stability than the conventional materials to H 2 S gas (100 ppm) at 50 °C. ► This ZnO thin film has potential in application of room temperature H 2 S gas sensing. - Abstract: Hexagonal pillar shaped ZnO nanorods with different sizes have been successfully synthesized by spray pyrolysis technique (SPT). The equal amount of methanol and water is used as a solvent to dissolve the AR grade Zinc acetate for precursor solution. This solution is sprayed on to the glass substrate heated at 350 °C. The films were characterized by ultra-violet spectroscopy (UV), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The deposition of thin films results in a layer comprising well-shaped hexagonal ZnO nanorods with diameter of 90–120 nm and length of up to 200 nm. The gas sensing properties of these films have been investigated for various interfering gases such as CO 2 , CO, ethanol, NH 3 and H 2 S, etc. at operating temperature from 30° (room temperature) to 450 °C. The results indicate that the ZnO nanorods thin films showed much better sensitivity and stability than the conventional materials to H 2 S gas (100 ppm) at 50 °C. The hexagonal pillar shaped ZnO nanorods can improve the sensitivity and selectivity of the sensors.

  14. Application of the Functional Theory in studying the adsorption of carbon monoxide on the TiO2 rutile surface of 110, defected surface and the surface modified by some metallic ions

    International Nuclear Information System (INIS)

    Le Kim Long; Phung Manh Quan; Tran Thi Thanh Van

    2012-01-01

    Density functional theory (DFT) is used to investigate properties of TiO 2 (110) surface with defects and metal-doped TiO 2 . The results of our calculations of structure of TiO 2 surface have been shown in good agreement with those of experiments and other ab-initio calculations. The differences of band structure between TiO 2 (110) and TiO 2 surface defected show that visible light can excite surface with defects easily. We also investigate density of states (DOS) of metal-doped surface (Li, Ca, Sc, V, Mo, Mn, Fe, Co, Ni) and find that the Mo-doped surface has very small band gap (∼ 0 eV). This surface may have higher photo-chemical activity in visible light. (author)

  15. Doping effects of Co2+ ions on ZnO nanorods and their photocatalytic properties

    International Nuclear Information System (INIS)

    Qiu Xiaoqing; Li Guangshe; Sun Xuefei; Li Liping; Fu Xianzhi

    2008-01-01

    A series of Zn 1-x Co x O nanorods with dopant content ranging from x = 0.00 to 0.10 was prepared by a wet chemical method. All Zn 1-x Co x O samples were investigated by x-ray diffraction, transmission electron microscopy, energy-dispersion x-ray line mapping analysis, and UV-visible absorption spectroscopy. It was found that Co 2+ ions were homogeneously substituted for Zn 2+ ions in ZnO nanorods. Rhodamine B degradation was used as a probe reaction to evaluate the effect of Co 2+ doping on ZnO nanorods and photocatalytic performance under UV light and visible light irradiation. Co 2+ ions acted as the trapping or recombination centers for electrons and holes, leading to a reduction in photodegradation efficiency under UV light illumination. Alternatively, Co 2+ ions enhanced the optical absorption and produced the photoinduced carriers under visible illumination in terms of two charge transfer transitions involving Co 2+ ions. Consequently, Co 2+ ions substituted in the lattice of ZnO nanorods significantly improved the visible light photocatalytic activity

  16. Interfacial enhancement of carbon fiber composites by growing TiO2 nanowires onto amine-based functionalized carbon fiber surface in supercritical water

    Science.gov (United States)

    Ma, Lichun; Li, Nan; Wu, Guangshun; Song, Guojun; Li, Xiaoru; Han, Ping; Wang, Gang; Huang, Yudong

    2018-03-01

    A novel amine-based functionalization method was developed to improve the interfacial adhesion between TiO2 NWs and CFs in supercritical water. The microstructure, morphology and mechanical properties of CFs were investigated. It was found that introducing hexamethylenetetramine (HMTA) dendrimers and branched polyethyleneimine (PEI) on CF could increase significantly the adhesion strength between CF and TiO2 NWs and their interfacial shear strength with epoxy resin, and the order is CF-PEI-TiO2 NWs > CF-HMTA-TiO2 NWs > CF-COOH-TiO2 NWs > CF-TiO2 NW. Meanwhile, the reinforcing mechanisms and interfacial failure modes have also been discussed. We believe that these effective methods may provide theoretical foundation for the preparation of high performance composite materials.

  17. Enhanced photoelectrocatalytic performance for degradation of diclofenac and mechanism with TiO2 nano-particles decorated TiO2 nano-tubes arrays photoelectrode

    International Nuclear Information System (INIS)

    Cheng, Xiuwen; Liu, Huiling; Chen, Qinghua; Li, Junjing; Wang, Pu

    2013-01-01

    In this study, TiO 2 nano-particles decorated TiO 2 nano-tubes arrays (TiO 2 NPs/TiO 2 NTAs) photoelectrodes have been successfully prepared through anodization, combined with ultrasonic strategy, followed by annealing post-treatment. The morphology and structure of the as-prepared TiO 2 NPs/TiO 2 NTAs photoelectrodes were characterized by scanning electrons microscopy (SEM), N 2 adsorption/desorption isotherms, X-ray diffraction (XRD) and UV–visible light diffuse reflection spectroscopy (DRS). In addition, the generation of hydroxyl radicals (·OH) was detected by a photoluminescence (PL) spectra using terephthalic acid (TA) as a probe molecule. Furthermore, the photoelectrochemical (PECH) properties of TiO 2 NPs/TiO 2 NTAs photoanode were investigated through transient open circuit potential (OCP), photocurrent response (PCR) and electrochemical impedance spectroscopy (EIS). It was found that TiO 2 NPs/TiO 2 NTAs photoelectrode exhibited a distinct decrease of OCP of −0.219 mV cm −2 and PCR of 0.049 mA cm −2 , while a significantly enhanced photoelectrocatalytic (PEC) efficiency of 63.6% (0.4 V vs. SCE) for the degradation of diclofenac. Moreover, the enhanced PEC mechanism of TiO 2 NPs/TiO 2 NTAs photoanode was proposed. The high PEC performance could be attributed to the decoration of TiO 2 NPs, which could improve the mobility and separation efficiency of photoinduced charge carriers under external potential

  18. Tuning TiO2 nanoparticle morphology in graphene-TiO2 hybrids by graphene surface modification

    Science.gov (United States)

    Sordello, Fabrizio; Zeb, Gul; Hu, Kaiwen; Calza, Paola; Minero, Claudio; Szkopek, Thomas; Cerruti, Marta

    2014-05-01

    We report the hydrothermal synthesis of graphene (GNP)-TiO2 nanoparticle (NP) hybrids using COOH and NH2 functionalized GNP as a shape controller. Anatase was the only TiO2 crystalline phase nucleated on the functionalized GNP, whereas traces of rutile were detected on unfunctionalized GNP. X-Ray Photoelectron spectroscopy (XPS) showed C-Ti bonds on all hybrids, thus confirming heterogeneous nucleation. GNP functionalization induced the nucleation of TiO2 NPs with specific shapes and crystalline facets exposed. COOH functionalization directed the synthesis of anatase truncated bipyramids, bonded to graphene sheets via the {101} facets, while NH2 functionalization induced the formation of belted truncated bipyramids, bonded to graphene via the {100} facets. Belted truncated bipyramids formed on unfunctionalized GNP too, however the NPs were more irregular and rounded. These effects were ascribed to pH variations in the proximity of the functionalized GNP sheets, due to the high density of COOH or NH2 groups. Because of the different reactivity of anatase {100} and {101} crystalline facets, we hypothesize that the hybrid materials will behave differently as photocatalysts, and that the COOH-GNP-TiO2 hybrids will be better photocatalysts for water splitting and H2 production.We report the hydrothermal synthesis of graphene (GNP)-TiO2 nanoparticle (NP) hybrids using COOH and NH2 functionalized GNP as a shape controller. Anatase was the only TiO2 crystalline phase nucleated on the functionalized GNP, whereas traces of rutile were detected on unfunctionalized GNP. X-Ray Photoelectron spectroscopy (XPS) showed C-Ti bonds on all hybrids, thus confirming heterogeneous nucleation. GNP functionalization induced the nucleation of TiO2 NPs with specific shapes and crystalline facets exposed. COOH functionalization directed the synthesis of anatase truncated bipyramids, bonded to graphene sheets via the {101} facets, while NH2 functionalization induced the formation of belted

  19. TiO2/Cu2O composite based on TiO2 NTPC photoanode for photoelectrochemical (PEC) water splitting under visible light

    KAUST Repository

    Shi, Le

    2015-01-01

    in practice of water splitting with pure TiO2 material, one of the most popular semiconductor material used for photoelectrochemical water splitting, is still challenging. One dimensional TiO2 nanotubes is highly desired with its less recombination

  20. Electrochemical properties of TiO{sub 2} encapsulated ZnO nanorod aggregates dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Justin Raj, C.; Karthick, S.N.; Dennyson Savariraj, A.; Hemalatha, K.V.; Park, Song-Ki; Kim, Hee-Je [Pusan National University, Department of Electrical Engineering, San 30, Jangjeong-Dong, Gumjeong-Ku, Busan 609 735 (Korea, Republic of); Prabakar, K., E-mail: prabakar@pusan.ac.kr [Pusan National University, Department of Electrical Engineering, San 30, Jangjeong-Dong, Gumjeong-Ku, Busan 609 735 (Korea, Republic of)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer ZnO nanorod aggregates were synthesized by simple co-precipitation technique. Black-Right-Pointing-Pointer TiO{sub 2} encapsulated ZnO nanorod aggregates photoanode was used for the DSSC. Black-Right-Pointing-Pointer TiO{sub 2} encapsulated ZnO nanorod aggregates shows an enhanced efficiency. Black-Right-Pointing-Pointer The electron recombination and transport properties were studied using EIS method. - Abstract: Dye sensitized solar cells based on TiO{sub 2} encapsulated ZnO nanorod (NR) aggregates were fabricated and electrochemical performance was analyzed using impedance spectroscopy as a function of forward bias voltage. Charge transfer properties such as electron life time ({tau}{sub n}), electron diffusion coefficient (D{sub n}) and electron diffusion length (L{sub n}) were calculated in order to ensure the influence of TiO{sub 2} layer over the ZnO NR aggregates. It is found that the short circuit current density (Jsc = 5.8 mA cm{sup -2}), open circuit potential (V{sub oc} = 0.743 V), fill factor (FF = 0.57) and conversion efficiency are significantly improved by the introduction of TiO{sub 2} layer over ZnO photoanode. A power conversion efficiency of about 2.48% has been achieved for TiO{sub 2}/ZnO cell, which is higher than that of bare ZnO NR aggregate based cells (1.73%). The formation of an inherent energy barrier between TiO{sub 2} and ZnO films and the passivation of surface traps on the ZnO film caused by the introduction of TiO{sub 2} layer increase the dye absorption and favor the electron transport which may be responsible for the enhanced performance of TiO{sub 2}/ZnO cell.

  1. Monolithic Au/CeO2 nanorod framework catalyst prepared by dealloying for low-temperature CO oxidation

    Science.gov (United States)

    Zhang, Xiaolong; Duan, Dong; Li, Guijing; Feng, Wenjie; Yang, Sen; Sun, Zhanbo

    2018-03-01

    Monolithic Au/CeO2 nanorod frameworks (NFs) with porous structure were prepared by dealloying melt-spun Al89.7Ce10Au0.3 ribbons. After calcination in O2, a 3D Au/CeO2 NF catalyst with large surface area was obtained and used for low-temperature CO oxidation. The small Au clusters/nanoparticles (NPs) were in situ supported and highly dispersed on the nanorod surface, creating many nanoscale contact interfaces. XPS results demonstrated that high-concentration oxygen vacancy and Au δ+/Au0 co-existed in the calcined sample. The Au/CeO2 nanorod catalyst calcined at 400 °C exhibited much higher catalytic activity for CO oxidation compared with the dealloyed sample and bare CeO2 nanorods. Moreover, its complete reaction temperature was as low as 91 °C. The designed Au/CeO2 NF catalyst not only possessed extreme sintering resistance but also exhibited high performance owing to the enhanced interaction between the Au clusters/NPs and CeO2 nanorod during calcination.

  2. Study of TiO2 nanotubes as an implant application

    International Nuclear Information System (INIS)

    Hazan, Roshasnorlyza; Sreekantan, Srimala; Mydin, Rabiatul Basria S. M. N.; Mat, Ishak; Abdullah, Yusof

    2016-01-01

    Vertically aligned TiO 2 nanotubes have become the primary candidates for implant materials that can provide direct control of cell behaviors. In this work, 65 nm inner diameters of TiO 2 nanotubes were successfully prepared by anodization method. The interaction of bone marrow stromal cells (BMSC) in term of cell adhesion and cell morphology on bare titanium and TiO 2 nanotubes is reported. Field emission scanning electron microscopy (FESEM) analysis proved interaction of BMSC on TiO 2 nanotubes structure was better than flat titanium (Ti) surface. Also, significant cell adhesion on TiO 2 nanotubes surface during in vitro study revealed that BMSC prone to attach on TiO 2 nanotubes. From the result, it can be conclude that TiO 2 nanotubes are biocompatible to biological environment and become a new generation for advanced implant materials

  3. Electrical conduction and NO{sub 2} gas sensing properties of ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Şahin, Yasin [Council of Forensic Medicine, Bahçelievler, 34196 Istanbul (Turkey); Öztürk, Sadullah, E-mail: sadullahozturk@gyte.edu.tr [Gebze Institute of Technology, Science Faculty, Department of Physics, 41400 Gebze, Kocaeli (Turkey); Kılınç, Necmettin [Gebze Institute of Technology, Science Faculty, Department of Physics, 41400 Gebze, Kocaeli (Turkey); Koc University, Department of Electrical and Electronics Engineering, Sariyer, 34450 Istanbul (Turkey); Kösemen, Arif [Gebze Institute of Technology, Science Faculty, Department of Physics, 41400 Gebze, Kocaeli (Turkey); Mus Alparslan University, Department of Physics, 49100 Mus (Turkey); Erkovan, Mustafa [SAKARYA University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Esentepe Campus, 54187 Sakarya (Turkey); Öztürk, Zafer Ziya [Gebze Institute of Technology, Science Faculty, Department of Physics, 41400 Gebze, Kocaeli (Turkey); TÜBİTAK-Marmara Research Center, Materials Institute, 41470 Gebze, Kocaeli (Turkey)

    2014-06-01

    Thermally stimulated current (TSC), photoresponse and gas sensing properties of zinc oxide (ZnO) nanorods were investigated depending on heating rates, illumination and dark aging times with using sandwich type electrode system. Vertically aligned ZnO nanorods were grown on indium tin oxide (ITO) coated glass substrate by hydrothermal process. TSC measurements were performed at different heating rates under constant potential. Photoresponse and gas sensing properties were investigated in dry air ambient at 200 °C. For gas sensing measurements, ZnO nanorods were exposed to NO{sub 2} (100 ppb to 1 ppm) in dark and illuminated conditions and the resulting resistance transient was recorded. It was found from dark electrical measurements that the dependence of the dc conductivity on temperature followed Mott's variable range hopping (VRH) model. In addition, response time and recovery times of ZnO nanorods to NO{sub 2} gas decreased by exposing to white light.

  4. Facile synthesis of ZnO/CuInS{sub 2} nanorod arrays for photocatalytic pollutants degradation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yawei [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, School of Electronic & Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Que, Wenxiu, E-mail: wxque@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, School of Electronic & Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Zhang, Xinyu [Frontier Institute of Science and Technology Jointly with College of Science, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Xing, Yonglei; Yin, Xingtian [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, School of Electronic & Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Du, Yaping, E-mail: ypdu2013@mail.xjtu.edu.cn [Frontier Institute of Science and Technology Jointly with College of Science, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China)

    2016-11-05

    Highlights: • Vertically-aligned ZnO nanorod arrays were synthesized by the hydrothermal process. • Monodisperse CuInS{sub 2} QDs were synthesized by the one-pot colloidal chemistry method. • ZnO/CuInS{sub 2} nanorod arrays films were fabricated by the EPD process. • The homogeneous CuInS{sub 2} loading was optimized by EPD duration. • The photoelectrochemical and photocatalytic activities of the ZnO/CuInS{sub 2} nanorod arrays films were discussed. - Abstract: Vertically-aligned ZnO nanorod arrays on a fluorine-doped tin oxide glass substrate were homogeneously coated with visible light active CuInS{sub 2} quantum dots by using a controllable electrophoretic deposition strategy. Compared with the pure ZnO nanorod arrays, the formation of high-quality ZnO/CuInS{sub 2} heterojunction with well-matched band energy alignment expanded the light absorption from ultraviolet to visible region and facilitated efficient charge separation and transportation, thus yielding remarkable enhanced photoelectrochemical performance and photocatalytic activities for methyl orange and 4-chlorophenol degradation. The ZnO/CuInS{sub 2} film with the deposition duration of 80 min showed the highest degradation rate and photocurrent density (0.95 mA/cm{sup 2}), which was almost 6.33 times higher than that of the pure ZnO nanorod arrays film. The CuInS{sub 2} QDs sensitized ZnO nanorod arrays film was proved to be a superior structure for photoelectrochemical and photocatalytic applications due to the optimized CuInS{sub 2} loading and well-maintained one-dimensional nanostructure.

  5. A first-principles study of the dielectric properties of TiO2 polymorphs

    International Nuclear Information System (INIS)

    Thilagam, A; Simpson, D J; Gerson, A R

    2011-01-01

    We present an analysis of the dielectric properties of the three polymorphs of TiO 2 (rutile, anatase and brookite phases), using ab initio time-dependent density functional perturbation theory based on the Vignale-Kohn functional. We implement this functional, which incorporates many-body effects, using the periodic program BAND. The improved result for the density of states spectra for brookite is suggestive of increased titanium ion Jahn-Teller effects for this phase. The imaginary and real components of the frequency-dependent dielectric functions show notable dielectric anisotropies, with implications for excitonic interactions, for all three common phases of TiO 2 . Comparison of the electron energy-loss spectrum for undoped and doped rutile and anatase reveals the critical role of collective charge excitations in photocatalytic mechanisms. The correlation between plasmon peaks present at lower energies and decreased photocatalytic activity due to substitutional aluminum doping in combination with oxygen vacancies in rutile and anatase is highlighted. Moreover, there is clear correlation between dielectric properties and the microstructure of the TiO 2 polymorphs as suggested via the framework of the Born effective charge and Hirshfeld charge distribution schemes.

  6. Facile preparation and improved photocatalytic H{sub 2}-production of Pt-decorated CdS/TiO{sub 2} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Qi [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Xu, Jie [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Wang, Wenzhong, E-mail: wzwang@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Lu, Chunli [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2014-03-01

    Graphical abstract: - Highlights: • Pt-CdS/TiO{sub 2} nanorods were firstly realized by electrospinning. • They exhibited high photocatalytic H{sub 2} production activity. • The mechanism of the high performance was discussed. - Abstract: Pt-CdS/TiO{sub 2} nanorods with different molar ratios of Cd:Ti were prepared through an electrospinning method followed by sulfidation treatment and photodeposition. The nanorod-like samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence spectra (PL), and UV–vis diffuse reflectance spectroscopy (DRS). The results indicated that the as-prepared samples exhibited wider light absorption range and lower recombination rate of photogenerated electron–hole pairs after the introduction of Pt and CdS. The photocatalysis experiments showed that Pt-modified CdS/TiO{sub 2} nanorods exhibited much higher activities than pure TiO{sub 2} in the evolution of hydrogen under simulated solar light irradiation.

  7. Properties and Photocatalytic Activity of β-Ga2O3 Nanorods under Simulated Solar Irradiation

    Directory of Open Access Journals (Sweden)

    Yinzhen Wang

    2015-01-01

    Full Text Available β-Ga2O3 nanorods are prepared by hydrothermal method and characterized by X-ray diffraction, high-resolution transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and photoluminescence spectra. The results reveal that high crystallinity, monoclinic phase of β-Ga2O3 nanorods were prepared with a diameter of about 60 nm and length of 500 nm. Photoluminescence study indicates that the β-Ga2O3 nanorods exhibit a broad blue light emission at room temperature. The β-Ga2O3 nanorods displayed high photocatalytic activity under simulated solar irradiation; after 2 h irradiation, over 95% of methylene blue solution and over 90% of methyl orange solution were decolorized. Since this process does not require additional hydrogen peroxide and uses solar light, it can be developed as an economically feasible and environmentally friendly method to treat dye effluent.

  8. Synchrotron X-ray Scattering of ZnO Nanorods: Periodic Ordering and Lattice Size

    International Nuclear Information System (INIS)

    Zhu, Z.; Andelman, T.; Yin, M.; Chen, T.; Ehrlich, S.; O'Brien, S.; Osgood, Jr. R.

    2005-01-01

    We demonstrate that synchrotron x-ray powder diffraction (XRD) is a powerful technique for studying the structure and self-organization of zinc-oxide nanostructures. Zinc-oxide nanorods were prepared by a solution-growth method that resulted in uniform nanorods with 2-nm diameter and lengths in the range 10-50 nm. These nanorods were structurally characterized by a combination of small-angle and wide-angle synchrotron XRD and transmission electron microscopy (TEM). Small-angle XRD and TEM were used to investigate nanorod self-assembly and the influence of surfactant/precursor ratio on self-assembly. Wide-angle XRD was used to study the evolution of nanorod growth as a function of synthesis time and surfactant/precursor ratio

  9. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays

    Science.gov (United States)

    Shuang, Shuang; Lv, Ruitao; Xie, Zheng; Zhang, Zhengjun

    2016-05-01

    The low quantum yields and lack of visible light utilization hinder the practical application of TiO2 in high-performance photocatalysis. Herein, we present a design of TiO2 nanopillar arrays (NPAs) decorated with both Au and Pt nanoparticles (NPs) directly synthesized through successive ion layer adsorption and reaction (SILAR) at room temperature. Au/Pt NPs with sizes of ~4 nm are well-dispersed on the TiO2 NPAs as evidenced by electron microscopic analyses. The present design of Au/Pt co-decoration on the TiO2 NPAs shows much higher visible and ultraviolet (UV) light absorption response, which leads to remarkably enhanced photocatalytic activities on both the dye degradation and photoelectrochemical (PEC) performance. Its photocatalytic reaction efficiency is 21 and 13 times higher than that of pure TiO2 sample under UV-vis and visible light, respectively. This great enhancement can be attributed to the synergy of electron-sink function of Pt and surface plasmon resonance (SPR) of Au NPs, which significantly improves charge separation of photoexcited TiO2. Our studies demonstrate that through rational design of composite nanostructures one can harvest visible light through the SPR effect to enhance the photocatalytic activities initiated by UV-light, and thus realize more effectively utilization of the whole solar spectrum for energy conversion.

  10. TiO2 Deposition on AZ31 Magnesium Alloy Using Plasma Electrolytic Oxidation

    Directory of Open Access Journals (Sweden)

    Leon White

    2013-01-01

    Full Text Available Plasma electrolytic oxidation (PEO has been used in the past as a useful surface treatment technique to improve the anticorrosion properties of Mg alloys by forming protective layer. Coatings were prepared on AZ31 magnesium alloy in phosphate electrolyte with the addition of TiO2 nanoparticles using plasma electrolytic oxidation (PEO. This present work focuses on developing a TiO2 functional coating to create a novel electrophotocatalyst while observing the surface morphology, structure, composition, and corrosion resistance of the PEO coating. Microstructural characterization of the coating was investigated by X-ray diffraction (XRD and scanning electron microscopy (SEM followed by image analysis and energy dispersive spectroscopy (EDX. The corrosion resistance of the PEO treated samples was evaluated with electrochemical impedance spectroscopy (EIS and DC polarization tests in 3.5 wt.% NaCl. The XRD pattern shows that the components of the oxide film include Mg from the substrate as well as MgO and Mg2TiO4 due to the TiO2 nanoparticle addition. The results show that the PEO coating with TiO2 nanoparticles did improve the corrosion resistance when compared to the AZ31 substrate alloy.

  11. Gold and TiO2 Nanostructure Surfaces for Assembling of Electrochemical Biosensors

    International Nuclear Information System (INIS)

    Curulli, A.; Zane, D.

    2008-01-01

    Devices based on nano materials are emerging as a powerful and general class of ultrasensitive sensors for the direct detection of biological and chemical species. In this work, we report the preparation and the full characterization of nano materials such as gold nano wires and TiO 2 nano structured films to be used for assembling of electrochemical biosensors. Gold nano wires were prepared by electroless deposition within the pores of polycarbonate particle track-etched membranes (PMS). Glucose oxidase was deposited onto the nano wires using self-assembling monolayer as an anchor layer for the enzyme molecules. Finally, cyclic voltammetry was performed for different enzymes to test the applicability of gold nano wires as biosensors. Considering another interesting nano material, the realization of functionalized TiO 2 thin films on Si substrates for the immobilization of enzymes is reported. Glucose oxidase and horseradish peroxidase immobilized onto TiO 2 -based nano structured surfaces exhibited a pair of well-defined and quasi reversible voltammetric peaks. The electron exchange between the enzyme and the electrodes was greatly enhanced in the TiO 2 nano structured environment. The electrocatalytic activity of HRP and GOD embedded in TiO 2 electrodes toward H 2 O 2 and glucose, respectively, may have a potential perspective in the fabrication of third-generation biosensors based on direct electrochemistry of enzymes.

  12. Effects of TiO2 and Co3O4 Nanoparticles on Circulating Angiogenic Cells

    Science.gov (United States)

    Spigoni, Valentina; Cito, Monia; Alinovi, Rossella; Pinelli, Silvana; Passeri, Giovanni; Zavaroni, Ivana; Goldoni, Matteo; Campanini, Marco; Aliatis, Irene; Mutti, Antonio

    2015-01-01

    Background and Aim Sparse evidence suggests a possible link between exposure to airborne nanoparticles (NPs) and cardiovascular (CV) risk, perhaps through mechanisms involving oxidative stress and inflammation. We assessed the effects of TiO2 and Co3O4 NPs in human circulating angiogenic cells (CACs), which take part in vascular endothelium repair/replacement. Methods CACs were isolated from healthy donors’ buffy coats after culturing lymphomonocytes on fibronectin-coated dishes in endothelial medium for 7 days. CACs were pre-incubated with increasing concentration of TiO2 and Co3O4 (from 1 to 100 μg/ml) to test the effects of NP – characterized by Transmission Electron Microscopy – on CAC viability, apoptosis (caspase 3/7 activation), function (fibronectin adhesion assay), oxidative stress and inflammatory cytokine gene expression. Results Neither oxidative stress nor cell death were associated with exposure to TiO2 NP (except at the highest concentration tested), which, however, induced a higher pro-inflammatory effect compared to Co3O4 NPs (p<0.01). Exposure to Co3O4 NPs significantly reduced cell viability (p<0.01) and increased caspase activity (p<0.01), lipid peroxidation end-products (p<0.05) and pro-inflammatory cytokine gene expression (p<0.05 or lower). Notably, CAC functional activity was impaired after exposure to both TiO2 (p<0.05 or lower) and Co3O4 (p<0.01) NPs. Conclusions In vitro exposure to TiO2 and Co3O4 NPs exerts detrimental effects on CAC viability and function, possibly mediated by accelerated apoptosis, increased oxidant stress (Co3O4 NPs only) and enhancement of inflammatory pathways (both TiO2 and Co3O4 NPs). Such adverse effects may be relevant for a potential role of exposure to TiO2 and Co3O4 NPs in enhancing CV risk in humans. PMID:25803285

  13. Fabrication and Characteristics of Macroporous TiO2 Photocatalyst

    Directory of Open Access Journals (Sweden)

    Guiyun Yi

    2014-01-01

    Full Text Available Macroporous TiO2 photocatalyst was synthesized by a facile nanocasting method using polystyrene (PS spherical particles as the hard template. The synthesized photocatalyst was characterized by transmission electron microscope (TEM, scanning electron microscopy (SEM, thermogravimetry-differential thermogravimetry (TG-DTG, X-ray diffraction (XRD, and N2-sorption. TEM, SEM, and XRD characterizations confirmed that the macroporous TiO2 photocatalyst is composed of anatase phase. The high specific surface area of 87.85 m2/g can be achieved according to the N2-sorption analysis. Rhodamine B (RhB was chosen as probe molecule to evaluate the photocatalytic activity of the TiO2 catalysts. Compared with the TiO2 materials synthesized in the absence of PS spherical template, the macroporous TiO2 photocatalyst sintered at 500°C exhibits much higher activity on the degradation of RhB under the UV irradiation, which can be assigned to the well-structured macroporosity. The macroporous TiO2 material presents great potential in the fields of environmental remediation and energy conversion and storage.

  14. TiO2 nanoparticles cause mitochondrial dysfunction, activate inflammatory responses, and attenuate phagocytosis in macrophages: A proteomic and metabolomic insight

    Directory of Open Access Journals (Sweden)

    Qun Chen

    2018-05-01

    Full Text Available Titanium dioxide nanoparticles (TiO2 NPs are widely used in food and cosmetics but the health impact of human exposure remains poorly defined. Emerging evidence suggests that TiO2 NPs may elicit immune responses by acting on macrophages. Our proteomic study showed that treatment of macrophages with TiO2 NPs led to significant re-organization of cell membrane and activation of inflammation. These observations were further corroborated with transmission electron microscopy (TEM experiments, which demonstrated that TiO2 NPs were trapped inside of multi-vesicular bodies (MVB through endocytotic pathways. TiO2 NP caused significant mitochondrial dysfunction by increasing levels of mitochondrial reactive oxygen species (ROS, decreasing ATP generation, and decreasing metabolic flux in tricarboxylic acid (TCA cycle from 13C-labelled glutamine using GC-MS-based metabolic flux analysis. Further lipidomic analysis showed that TiO2 NPs significantly decreased levels of cardiolipins, an important class of mitochondrial phospholipids for maintaining proper function of electron transport chains. Furthermore, TiO2 NP exposure activates inflammatory responses by increasing mRNA levels of TNF-α, iNOS, and COX-2. Consistently, our targeted metabolomic analysis showed significantly increased production of COX-2 metabolites including PGD2, PGE2, and 15d-PGJ2. In addition, TiO2 NP also caused significant attenuation of phagocytotic function of macrophages. In summary, our studies utilizing multiple powerful omic techniques suggest that human exposure of TiO2 NPs may have profound impact on macrophage function through activating inflammatory responses and causing mitochondrial dysfunction without physical presence in mitochondria.

  15. Phase coexistence and exchange-bias effect in LiM n2O4 nanorods

    Science.gov (United States)

    Zhang, X. K.; Yuan, J. J.; Xie, Y. M.; Yu, Y.; Kuang, F. G.; Yu, H. J.; Zhu, X. R.; Shen, H.

    2018-03-01

    In this paper, the magnetic properties of LiM n2O4 nanorods with an average diameter of ˜100 nm and length of ˜1 μ m are investigated. The temperature dependences of dc and ac susceptibility measurements show that LiM n2O4 nanorods experience multiple magnetic phase transitions upon cooling, i.e., paramagnetic (PM), antiferromagnetic (AFM), canted antiferromagnetic (CAFM), and cluster spin glass (SG). The coexistence between a long-range ordered AFM phase due to a M n4 +-M n4 + interaction and a cluster SG phase originating from frozen AFM clusters at low temperature in LiM n2O4 nanorods is elucidated. Field-cooled hysteresis loops (FC loops) and magnetic training effect (TE) measurements confirm the presence of an exchange-bias (EB) effect in LiM n2O4 nanorods below the Néel temperature (TN˜60 K ) . Furthermore, by analyzing the TE, we conclude that the observed EB effect originates completely from an exchange coupling interaction at the interface between the AFM and cluster SG states. A phenomenological model based on phase coexistence is proposed to interpret the origin of the EB effect below 60 K in the present compound. In turn, the appearance of the EB effect further supports the coexistence of AFM order along with a cluster SG state in LiM n2O4 nanorods.

  16. Interface actions between TiO2 and porous diatomite on the structure and photocatalytic activity of TiO2-diatomite

    International Nuclear Information System (INIS)

    Xia, Yue; Li, Fangfei; Jiang, Yinshan; Xia, Maosheng; Xue, Bing; Li, Yanjuan

    2014-01-01

    TiO 2 -diatomite photocatalysts were prepared by sol–gel process with various pre-modified diatomite. In order to obtain diatomite with different surface characteristics, two modification approaches including calcination and phosphoric acid treatment on the micro-structure of diatomite are introduced. The photocatalysts were characterized by XRD, XPS, nitrogen adsorption–desorption isotherms and micromorphology analysis. The results indicate that, compared with pure TiO 2 , the anatase-to-rutile phase transition temperature of TiO 2 loaded on diatomite carrier is significantly increased to nearly 900 °C, depending on the different pretreatment method of diatomite. The photocatalytic activities of different samples were evaluated by their degradation rate of methyl orange (MO) dye under UV and visible-light irradiation. The samples prepared by phosphoric acid pretreatment method exhibit the highest photocatalytic activity. After 90 min of UV irradiation, about 90% of MO is decomposed by the best effective photocatalyst. And after 8 h visible-light irradiation, nearly 60% of MO is decomposed by the same sample. Further mechanism investigation reveals that the H 3 PO 4 pretreatment process can obviously change the surface features of diatomite carrier, cause the formation of Si–O–Ti bond, increase the binding strength between TiO 2 and diatomite, restrain crystal growth of loaded TiO 2 , and thus form thermal-stable mesoporous structure at the granular spaces. It helps to build micro-, meso- and macro-porous hierarchical porous structure in TiO 2 -diatomite, and improves the charge and mass transfer efficiency during catalyzing process, resulting in the significantly increased photocatalytic activity of TiO 2 -diatomite pretreated by phosphoric acid.

  17. Interface actions between TiO2 and porous diatomite on the structure and photocatalytic activity of TiO2-diatomite

    Science.gov (United States)

    Xia, Yue; Li, Fangfei; Jiang, Yinshan; Xia, Maosheng; Xue, Bing; Li, Yanjuan

    2014-06-01

    TiO2-diatomite photocatalysts were prepared by sol-gel process with various pre-modified diatomite. In order to obtain diatomite with different surface characteristics, two modification approaches including calcination and phosphoric acid treatment on the micro-structure of diatomite are introduced. The photocatalysts were characterized by XRD, XPS, nitrogen adsorption-desorption isotherms and micromorphology analysis. The results indicate that, compared with pure TiO2, the anatase-to-rutile phase transition temperature of TiO2 loaded on diatomite carrier is significantly increased to nearly 900 °C, depending on the different pretreatment method of diatomite. The photocatalytic activities of different samples were evaluated by their degradation rate of methyl orange (MO) dye under UV and visible-light irradiation. The samples prepared by phosphoric acid pretreatment method exhibit the highest photocatalytic activity. After 90 min of UV irradiation, about 90% of MO is decomposed by the best effective photocatalyst. And after 8 h visible-light irradiation, nearly 60% of MO is decomposed by the same sample. Further mechanism investigation reveals that the H3PO4 pretreatment process can obviously change the surface features of diatomite carrier, cause the formation of Si-O-Ti bond, increase the binding strength between TiO2 and diatomite, restrain crystal growth of loaded TiO2, and thus form thermal-stable mesoporous structure at the granular spaces. It helps to build micro-, meso- and macro-porous hierarchical porous structure in TiO2-diatomite, and improves the charge and mass transfer efficiency during catalyzing process, resulting in the significantly increased photocatalytic activity of TiO2-diatomite pretreated by phosphoric acid.

  18. Origin of the Enhanced Visible-Light Absorption in N-Doped Bulk Anatase TiO 2 from First-Principles Calculations

    KAUST Repository

    Harb, Moussab

    2011-10-06

    Extension of the absorption properties of TiO2 photocatalytic materials to the visible part of the solar spectrum is of major importance for energy and cleaning up applications. We carry out a systematic study of the N-doped anatase TiO2 material using spin-polarized density functional theory (DFT) and the range-separated hybrid HSE06 functional. The thermodynamic stability of competitive N-doped TiO2 structural configurations is studied as a function of the oxygen chemical potential and of various chemical doping agents: N2, (N2 + H2), NH3, N2H4. We show that the diamagnetic TiO (2-3x)N2x system corresponding to a separated substitutional N species (with 2-4% N impurities) and formation of one-half concentration of O vacancies (1-2 atom %) is an optimal configuration thermodynamically favored by NH3, N2H4, and (N2 + H2) chemical doping agents presenting a dual nitrating-reducing character. The simulated UV-vis absorption spectra using the perturbation theory (DFPT) approach demonstrates unambiguously that the diamagnetic TiO(2-3x)N2x system exhibits the enhanced optical absorption in N-doped TiO2 under visible-light irradiation. Electronic analysis further reveals a band gap narrowing of 0.6 eV induced by delocalized impurity states located at the top of the valence band of TiO 2. A fruitful comparison with experimental data is furnished. © 2011 American Chemical Society.

  19. ELECTROPHORETIC DEPOSITION OF TIO2-MULTI-WALLED CARBON NANOTUBE COMPOSITE COATINGS: MORPHOLOGICAL STUDY

    Directory of Open Access Journals (Sweden)

    M. S. MAHMOUDI JOZEE

    2016-09-01

    Full Text Available A homogenous TiO2 / multi-walled carbon nanotubes(MWCNTs composite film were prepared by electrophoretic co-deposition from organic suspension on a stainless steel substrate.  In this study, MWCNTs was incorporated to the coating because of their long structure and their capability to be functionalized by different inorganic groups on the surface. FTIR spectroscopy showed the existence of carboxylic groups on the modified carbon nanotubes surface. The effect of applied electrical fields, deposition time and concentration of nanoparticulates on coatings morphology were investigated by scanning electron microscopy. It was found that combination of MWCNTs within TiO2 matrix eliminating micro cracks presented on TiO2 coating. Also, by increasing the deposition voltages, micro cracks were increased. SEM observation of the coatings revealed that TiO2/multi-walled carbon nanotubes coatings produced from optimized electric field was uniform and had good adhesive to the substrate.

  20. Facile preparation of large-scale α-Fe{sub 2}O{sub 3} nanorod/SnO{sub 2} nanorod composites and their LPG-sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Vuong, Dang Duc [School of Engineering Physics, Hanoi University of Science and Technology, No. 1, Dai Co Viet Road, Hai Ba Trung District, Hanoi (Viet Nam); Trung, Khuc Quang [University of Fire Fighting and Protection, No. 243, Khuat Duy Tien Street, Thanh Xuan District, Hanoi (Viet Nam); Hung, Nguyen Hoang [School of Engineering Physics, Hanoi University of Science and Technology, No. 1, Dai Co Viet Road, Hai Ba Trung District, Hanoi (Viet Nam); Hieu, Nguyen Van [International Training Institute for Materials Science, Hanoi University of Science and Technology (Viet Nam); Chien, Nguyen Duc, E-mail: chien.nguyenduc@hust.edu.vn [School of Engineering Physics, Hanoi University of Science and Technology, No. 1, Dai Co Viet Road, Hai Ba Trung District, Hanoi (Viet Nam)

    2014-06-25

    Highlights: • A simple method was used for synthesis of α-Fe{sub 2}O{sub 3} nanorod/SnO{sub 2} nanorod composites. • LPG-sensing properties of the composites were studied and explained consistently. • The results demonstrate a potential method for the mass production of gas sensors. - Abstract: α-Fe{sub 2}O{sub 3} nanorods (NRs) with length and diameter of 300 and 50 nm, and SnO{sub 2} NRs with length and diameter of 30 and 10 nm, respectively, were prepared through hydrothermal treatment method. Morphologies of α-Fe{sub 2}O{sub 3} and SnO{sub 2} NRs and their composites with different weight ratios were studied by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The SEM and TEM images showed SnO{sub 2} NRs attached on (branch onto) the surface of the α-Fe{sub 2}O{sub 3} NRs. Liquefied petroleum gas (LPG)-sensing properties of films with bare α-Fe{sub 2}O{sub 3}, SnO{sub 2} NRs, and their composite NRs were investigated. The composite of 75 wt% α-Fe{sub 2}O{sub 3}/25 wt% SnO{sub 2} exhibits the highest response to LPG at optimum operating temperature of 370 °C. The improvement in the gas-sensing characteristics of the composite NRs compared with bare NRs is attributed to the formation of hetero-junctions in α-Fe{sub 2}O{sub 3} NRs/SnO{sub 2} NRs and to their porous structure.

  1. Growth and characterization of iridium dioxide nanorods

    International Nuclear Information System (INIS)

    Chen, R.S.; Huang, Y.S.; Liang, Y.M.; Tsai, D.S.; Tiong, K.K.

    2004-01-01

    Conductive iridium dioxide (IrO 2 ) nanorods have been successfully grown on the Si(1 0 0) substrates via metalorganic chemical vapor deposition (MOCVD). A wedge-shaped morphology and naturally formed sharp tips are observed for IrO 2 nanorods using field-emission scanning electron microscopy (FESEM). High-resolution transmission electron microscopy (TEM) image and electron diffraction pattern show the growth of IrO 2 nanorods preferentially along c-axis. Structure and composition of IrO 2 nanorods have also been characterized using the techniques of Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), respectively. It is noted that the IrO 2 nanorods are self-mediated instead of the conventional vapor-liquid-solid (VLS) approach or catalyst-mediated method

  2. Photocatalytic properties of porous TiO2/Ag thin films

    International Nuclear Information System (INIS)

    Chang, C.-C.; Chen, J.-Y.; Hsu, T.-L.; Lin, C.-K.; Chan, C.-C.

    2008-01-01

    In this study, nanocrystalline TiO 2 /Ag composite thin films were prepared by a sol-gel spin-coating technique. By introducing polystyrene (PS) spheres into the precursor solution, porous TiO 2 /Ag thin films were prepared after calcination at a temperature of 500 deg. C for 4 h. Three different sizes (50, 200, and 400 nm) of PS spheres were used to prepare porous TiO 2 films. The as-prepared TiO 2 and TiO 2 /Ag thin films were characterized by X-ray diffractometry (XRD) and by scanning electron microscopy to reveal structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation. When PS spheres of different sizes were introduced after calcination, the as-prepared TiO 2 films exhibited different porous structures. XRD results showed that all TiO 2 /Ag films exhibited a major anatase phase. The photodegradation of porous TiO 2 thin films prepared with 200 nm PS spheres and doped with 1 mol% Ag exhibited the best photocatalytic efficiency where ∼ 100% methylene blue was decomposed within 8 h under UV exposure

  3. Synthesis, Structural and Optical Properties of Co Doped TiO2 Nanocrystals by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    D.V. Sridevi

    2017-06-01

    Full Text Available A TiO2 nanoparticle doped with cobalt was synthesized by sol-gel technique employed at room temperature with appropriate reactants. In the present case, we used titanium tetra isoprotoxide (TTIP and 2–propanol as a common starting material and the obtained products were calcined at 450˚ C. From the Powder XRD data the particle size was calculated by Scherrer method. The FE-SEM analysis shows the morphology of cobalt doped TiO2 nanoparticles. The various functional groups of the samples were identified by Fourier transform spectroscopy (FT-IR. The UV-Vis-NIR spectra of cobalt doped TiO2 material shows two absorption peaks in the visible region related to d-d transitions of Co2+ in TiO2 lattice. Compared to un-doped TiO2 nanoparticles, the cobalt doped material show a red shift in the band gap.

  4. Photodecomposition of volatile organic compounds using TiO2 nanoparticles.

    Science.gov (United States)

    Jwo, Ching-Song; Chang, Ho; Kao, Mu-Jnug; Lin, Chi-Hsiang

    2007-06-01

    This study examined the photodecomposition of volatile organic compounds (VOCs) using TiO2 catalyst fabricated by the Submerged Arc Nanoparticle Synthesis System (SANSS). TiO2 catalyst was employed to decompose volatile organic compounds and compare with Degussa-P25 TiO2 in terms of decomposition efficiency. In the electric discharge manufacturing process, a Ti bar, applied as the electrode, was melted and vaporized under high temperature. The vaporized Ti powders were then rapidly quenched under low-temperature and low-pressure conditions in deionized water, thus nucleating and forming nanocrystalline powders uniformly dispersed in the base solvent. The average diameter of the TiO2 nanoparticles was 20 nm. X-ray diffraction analysis confirmed that the nanoparticles in the deionized water were Anatase type TiO2. It was found that gaseous toluene exposed to UV irradiation produced intermediates that were even harder to decompose. After 60-min photocomposition, Degussa-P25 TiO2 reduced the concentration of gaseous toluene to 8.18% while the concentration after decomposition by SANSS TiO2 catalyst dropped to 0.35%. Under UV irradiation at 253.7 +/- 184.9 nm, TiO2 prepared by SANSS can produce strong chemical debonding energy, thus showing great efficiency, superior to that of Degussa-P25 TiO2, in decomposing gaseous toluene and its intermediates.

  5. Synthesis of Nanocrystalline SnO2 Modified TiO2:a Material for Carbon Monoxide Gas Sensor

    Directory of Open Access Journals (Sweden)

    A. B. BODADE

    2008-11-01

    Full Text Available Nanocrystalline SnO2 doped TiO2 having average crystallite size of 45-50 nm were synthesized by the sol-gel method and studied for gas sensing behavior to reducing gases like CO, liquefied petroleum gas (LPG, NH3 and H2. The material characterization was done by using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR and scanning electron microscope (SEM. The sensitivity measurements were carried out as a function of different operating temperature in SnO2 doped TiO2. The 15 wt.% SnO2 doped TiO2 based CO sensor shows better sensitivity at an operating temperature 240°C Incorporation of 0.5 wt% Pd improved the sensitivity, selectivity, response time and reduced the operating temperature from 240°C to 200°C for CO sensor.

  6. Changing the thickness of two layers: i-ZnO nanorods, p-Cu2O and its influence on the carriers transport mechanism of the p-Cu2O/i-ZnO nanorods/n-IGZO heterojunction.

    Science.gov (United States)

    Ke, Nguyen Huu; Trinh, Le Thi Tuyet; Phung, Pham Kim; Loan, Phan Thi Kieu; Tuan, Dao Anh; Truong, Nguyen Huu; Tran, Cao Vinh; Hung, Le Vu Tuan

    2016-01-01

    In this study, two layers: i-ZnO nanorods and p-Cu2O were fabricated by electrochemical deposition. The fabricating process was the initial formation of ZnO nanorods layer on the n-IGZO thin film which was prepared by sputtering method, then a p-Cu2O layer was deposited on top of rods to form the p-Cu2O/i-ZnO nanorods/n-ZnO heterojunction. The XRD, SEM, UV-VIS, I-V characteristics methods were used to define structure, optical and electrical properties of these heterojunction layers. The fabricating conditions and thickness of the Cu2O layers significantly affected to the formation, microstructure, electrical and optical properties of the junction. The length of i-ZnO nanorods layer in the structure of the heterojunction has strongly affected to the carriers transport mechanism and performance of this heterojunction.

  7. Anti-fish bacterial pathogen effect of visible light responsive Fe3O4@TiO2 nanoparticles immobilized on glass using TiO2 sol–gel

    International Nuclear Information System (INIS)

    Yeh, N.; Lee, Y.C.; Chang, C.Y.; Cheng, T.C.

    2013-01-01

    This paper demonstrates a fish pathogen reduction procedure that uses TiO 2 sol–gel coating Fe 3 O 4 @TiO 2 powder on glass substrate. Such procedure can effectively relieve two constraints that haunt TiO 2 sterilization applications: 1) the need for UV for overcoming the wide band gap of pure TiO 2 and 2) the difficulty of its recovering from water for reuse. In the process, visible light responsive Fe 3 O 4 /TiO 2 nanoparticles are synthesized and immobilized on glass using TiO 2 sol–gel as the binder for fish bacterial pathogen disinfection test. After 3 h of visible light irradiation, the immobilized Fe 3 O 4 @TiO 2 's inhibition efficiencies for fish bacterial pathogen are, respectively, 50% for Edwardsiella tarda (BCRC 10670) and 23% for Aeromonas hydrophila (BCRC 13018)

  8. Silicon surface passivation by PEDOT: PSS functionalized by SnO2 and TiO2 nanoparticles.

    Science.gov (United States)

    García-Tecedor, M; Karazhanov, S Zh; Vásquez, G C; Haug, H; Maestre, D; Cremades, A; Taeño, M; Ramírez-Castellanos, J; González-Calbet, J M; Piqueras, J; You, C C; Marstein, E S

    2018-01-19

    In this paper, we present a study of silicon surface passivation based on the use of spin-coated hybrid composite layers. We investigate both undoped poly(3,4-ethylenedioxythiophene)/poly-(styrenesulfonate) (PEDOT:PSS), as well as PEDOT:PSS functionalized with semiconducting oxide nanomaterials (TiO 2 and SnO 2 ). The hybrid compound was deposited at room temperature by spin coating-a potentially lower cost, lower processing time and higher throughput alternative compared with the commonly used vacuum-based techniques. Photoluminescence imaging was used to characterize the electronic properties of the Si/PEDOT:PSS interface. Good surface passivation was achieved by PEDOT:PSS functionalized by semiconducting oxides. We show that control of the concentration of semiconducting oxide nanoparticles in the polymer is crucial in determining the passivation performance. A charge carrier lifetime of about 275 μs has been achieved when using SnO 2 nanoparticles at a concentration of 0.5 wt.% as a filler in the composite film. X-ray diffraction (XRD), scanning electron microscopy, high resolution transmission electron microscopy (HRTEM), energy dispersive x-ray in an SEM, and μ-Raman spectroscopy have been used for the morphological, chemical and structural characterization. Finally, a simple model of a photovoltaic device based on PEDOT:PSS functionalized with semiconducting oxide nanoparticles has been fabricated and electrically characterized.

  9. Deposition of gold nanoparticles from colloid on TiO2 surface

    Science.gov (United States)

    Rehacek, Vlastimil; Hotovy, Ivan

    2017-11-01

    In this paper, experimental results are presented on the deposition of colloidal gold nanoparticles on the surfaces of TiO2 prepared on silicon/silicon dioxide. Important procedures, such as titanium dioxide surface hydrophilization as well as functionalization by an organosilane coupling agent (3-aminopropyl) trimethoxysilane and (3-mercaptopropyl) trimethoxysilane were investigated in order to obtain a metal oxide surface with the most convenient properties for immobilization of gold nanoparticles having a dense and uniform distribution. TiO2 nanotips prepared by reactive ion etching of oxide surface covered with self-mask gold nanoparticles are demonstrated.

  10. Synthesis and characterization of beta-Ga2O3 nanorod array clumps by chemical vapor deposition.

    Science.gov (United States)

    Shi, Feng; Wei, Xiaofeng

    2012-11-01

    beta-Ga2O3 nanorod array clumps were successfully synthesized on Si (111) substrates by chemical vapor deposition. The composition, microstructure, morphology, and light-emitting property of these clumps were characterized by X-ray diffraction, Fourier transform infrared spectrophotometry, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, and photoluminescence. The results demonstrate that the sample synthesized at 1050 degrees C for 15 min was composed of monoclinic beta-Ga2O3 nanorod array clumps, where each single nanorod was about 300 nm in diameter with some nano-droplets on its tip. These results reveal that the growth mechanism agrees with the vapor-liquid-solid (VLS) process. The photoluminescence spectrum shows that the Ga2O3 nanorods have a blue emission at 438 nm, which may be attributed to defects, such as oxygen vacancies and gallium-oxygen vacancy pairs. Defect-energy aggregation confinement growth theory was proposed to explain the growth mechanism of Ga2O3 nanorod array clumps collaborated with the VLS mechanism.

  11. Improved hydrogen storage properties of MgH2 catalyzed with TiO2

    Science.gov (United States)

    Jangir, Mukesh; Meena, Priyanka; Jain, I. P.

    2018-05-01

    In order to improve the hydrogenation properties of the MgH2, various concentration of rutile Titanium Oxide (TiO2) (X wt%= 5, 10, 15 wt %) is added to MgH2 by ball milling and the catalytic effect of TiO2 on hydriding/dehydriding properties of MgH2 has been investigated. Result shows that the TiO2 significantly reduced onset temperature of desorption. Onset temperature as low as 190 °C were observed for the MgH2-15 wt% TiO2 sample which is 60 °C and 160 °C lower than the as-milled and as-received MgH2. Fromm the Kissinger plot the activation energy of 15 wt% TiO2 added sample is calculated to be -75.48 KJ/mol. These results indicate that the hydrogenation properties of MgH2-TiO2 have been improved compared to the as-milled and as-received MgH2. Furthermore, XRD and XPS were performed to characterize the structural evolution upon milling and dehydrogenation.

  12. TiO2-SnS2 nanocomposites: solar-active photocatalytic materials for water treatment.

    Science.gov (United States)

    Kovacic, Marin; Kusic, Hrvoje; Fanetti, Mattia; Stangar, Urska Lavrencic; Valant, Matjaz; Dionysiou, Dionysios D; Bozic, Ana Loncaric

    2017-08-01

    The study is aimed at evaluating TiO 2 -SnS 2 composites as effective solar-active photocatalysts for water treatment. Two strategies for the preparation of TiO 2 -SnS 2 composites were examined: (i) in-situ chemical synthesis followed by immobilization on glass plates and (ii) binding of two components (TiO 2 and SnS 2 ) within the immobilization step. The as-prepared TiO 2 -SnS 2 composites and their sole components (TiO 2 or SnS 2 ) were inspected for composition, crystallinity, and morphology using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analyses. Diffuse reflectance spectroscopy (DRS) was used to determine band gaps of immobilized TiO 2 -SnS 2 and to establish the changes in comparison to respective sole components. The activity of immobilized TiO 2 -SnS 2 composites was tested for the removal of diclofenac (DCF) in aqueous solution under simulated solar irradiation and compared with that of single component photocatalysts. In situ chemical synthesis yielded materials of high crystallinity, while their morphology and composition strongly depended on synthesis conditions applied. TiO 2 -SnS 2 composites exhibited higher activity toward DCF removal and conversion in comparison to their sole components at acidic pH, while only in situ synthesized TiO 2 -SnS 2 composites showed higher activity at neutral pH.

  13. Oriented epitaxial TiO2 nanowires for water splitting

    Science.gov (United States)

    Hou, Wenting; Cortez, Pablo; Wuhrer, Richard; Macartney, Sam; Bozhilov, Krassimir N.; Liu, Rong; Sheppard, Leigh R.; Kisailus, David

    2017-06-01

    Highly oriented epitaxial rutile titanium dioxide (TiO2) nanowire arrays have been hydrothermally grown on polycrystalline TiO2 templates with their orientation dependent on the underlying TiO2 grain. Both the diameter and areal density of the nanowires were tuned by controlling the precursor concentration, and the template surface energy and roughness. Nanowire tip sharpness was influenced by precursor solubility and diffusivity. A new secondary ion mass spectrometer technique has been developed to install additional nucleation sites in single crystal TiO2 templates and the effect on nanowire growth was probed. Using the acquired TiO2 nanowire synthesis knowhow, an assortment of nanowire arrays were installed upon the surface of undoped TiO2 photo-electrodes and assessed for their photo-electrochemical water splitting performance. The key result obtained was that the presence of short and dispersed nanowire arrays significantly improved the photocurrent when the illumination intensity was increased from 100 to 200 mW cm-2. This is attributed to the alignment of the homoepitaxially grown nanowires to the [001] direction, which provides the fastest charge transport in TiO2 and an improved pathway for photo-holes to find water molecules and undertake oxidation. This result lays a foundation for achieving efficient water splitting under conditions of concentrated solar illumination.

  14. Experimental evidence of spin glass and exchange bias behavior in sputtered grown α-MnO{sub 2} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashwani; Sanger, Amit; Singh, Amit Kumar; Kumar, Arvind [Nanoscience Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Kumar, Mohit [Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Chandra, Ramesh [Nanoscience Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2017-07-01

    Highlights: • We have synthesized the α-MnO{sub 2} nanorods by using DC reactive sputtering. • We observed Spin glass and exchange bias behavior at low temperature in sputtered grown α-MnO{sub 2} nanorods. • Exchange bias arises due to exchange coupling of uncompensated FM spins and AFM spins at FM/AFM interface. - Abstract: Here, we present a single-step process to synthesize the α-MnO{sub 2} nanorods forest using reactive DC magnetron sputtering for the application of magnetic memories. The structural and morphological properties of the α-MnO{sub 2} nanorods were systematically studied using numerous analytical techniques, including X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy and transmission electron microscopy. The magnetic measurements suggest that the α-MnO{sub 2} nanorods exhibit spin glass and exchange bias behaviour at low temperature. Such low temperature behaviour is explained by the core-shell type structure of nanorods. Antiferromagnetic core and shell of uncompensated ferromagnetic spins leads to the formation of antiferromagnetic/ferromagnetic (AFM/FM) interfaces, which originates exchange bias in the sample.

  15. Synergic effect of the TiO2-CeO2 nanoconjugate system on the band-gap for visible light photocatalysis

    International Nuclear Information System (INIS)

    Contreras-García, M.E.; García-Benjume, M. Lorena; Macías-Andrés, Víctor I.; Barajas-Ledesma, E.; Medina-Flores, A.; Espitia-Cabrera, M.I.

    2014-01-01

    Graphical abstract: - Highlights: • Nanostructured TiO 2 -CeO 2 films are successfully synthesized by combining of sputtering and electrophoresis methods. • Synergic effect of CeO 2 on TiO 2 band gap was demonstrated, CeO 2 diminishes it from 3.125 to 2.74. • Morphologic characterization of the nanoconjugate TiO 2 -CeO 2 films by different microscopy techniques. - Abstract: The TiO 2 -CeO 2 photocatalytic system in films is proposed here, in order to obtain photocatalytic systems that can be excited by solar light. The films were obtained through the electrophoretic deposition (EPD) of TiO 2 -CeO 2 gel on sputtered Ti Corning glass substrates. The synergic effect of CeO 2 in TiO 2 films was analyzed as a function of the optical band gap reduction at different concentrations (1, 5, 10, and 15 mol%). The effect of two thermal treatments was also evaluated. The lowest band gap value was obtained for the sample with 5 mol% ceria that was thermally treated at 700 °C. The nanostructured films were characterized by Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high angle annular dark field (HAADF), high resolution transmission electron microscopy (HRTEM), and atomic force microscopy (AFM). The nanocomposites were formed by TiO 2 and CeO 2 nanoparticles in the anatase and fluorite type phases, respectively

  16. Bismuth titanate nanorods and their visible light photocatalytic properties

    International Nuclear Information System (INIS)

    Pei, L.Z.; Liu, H.D.; Lin, N.; Yu, H.Y.

    2015-01-01

    Highlights: • Bismuth titanate nanorods have been synthesized by a simple hydrothermal process. • The size of bismuth titanate nanorods can be controlled by growth conditions. • Bismuth titanate nanorods show good photocatalytic activities of methylene blue and Rhodamine B. - Abstract: Bismuth titanate nanorods have been prepared using a facile hydrothermal process without additives. The bismuth titanate products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and UV-vis diffusion reflectance spectrum. XRD pattern shows that the bismuth titanate nanorods are composed of cubic Bi 2 Ti 2 O 7 phase. Electron microscopy images show that the length and diameter of the bismuth titanate nanorods are 50-200 nm and 2 μm, respectively. Hydrothermal temperature and reaction time play important roles on the formation and size of the bismuth titanate nanorods. UV-vis diffusion reflectance spectrum indicates that bismuth titanate nanorods have a band gap of 2.58 eV. The bismuth titanate nanorods exhibit good photocatalytic activities in the photocatalytic degradation of methylene blue (MB) and Rhodamine B (RB) under visible light irradiation. The bismuth titanate nanorods with cubic Bi 2 Ti 2 O 7 phase are a promising candidate as a visible light photocatalyst

  17. Synthesis of nanocomposite coating based on TiO2/ZnAl layer double hydroxides

    International Nuclear Information System (INIS)

    Jovanov, V.; Rudic, O.; Ranogajec, J.; Fidanchevska, E.

    2017-01-01

    The aim of this investigation was the synthesis of nanocomposite coatings based on Zn-Al layered double hydroxides (Zn-Al LDH) and TiO2. The Zn-Al LDH material, which acted as the catalyst support of the active TiO2 component (in the content of 3 and 10 wt. %), was synthesized by a low super saturation co-precipitation method. The interaction between the Zn-Al LDH and the active TiO2 component was accomplished by using vacuum evaporation prior to the mechanical activation and only by mechanical activation. The final suspension based on Zn-Al LDH and 10wt. % TiO2, impregnated only by mechanical activation, showed the optimal characteristics from the aspect of particle size distribution and XRD analysis. These properties had a positive effect on the functional properties of the coatings (photocatalytic activity and self-cleaning efficiency) after the water rinsing procedure. [es

  18. Electrochemical characteristics of porous TiO2 encapsulated silicon anode

    International Nuclear Information System (INIS)

    Jeon, Bup Ju; Lee, Joong Kee

    2011-01-01

    Graphical abstract: Cycling performances of the TiO 2 coated silicon anode at different catalyst pH values. Display Omitted Highlights: → TiO 2 coated silicon was used as the anode material for lithium batteries. → TiO 2 layer acted as a buffer layer for reducing the volume expansion. → Pore size distribution of TiO 2 coated silicon influenced discharge capacity. → Higher capacity retention was exhibited at pH 10.7. - Abstract: TiO 2 coated silicon, which was prepared by the modified sol-gel method, was employed as the anode material for lithium secondary batteries and the relationship between the diffusivity and electrochemical characteristics was investigated. The results showed that the physical properties of the samples, such as their diffusivity and pore size distribution, enhanced the cycling efficiency of the TiO 2 coated silicon, probably due to the reduction of the side reactions, which may be closely related to the pore size distribution of the TiO 2 coating layer. The pore size of the coating layer plays an important role in retarding the lithium ion diffusion. In the experimental range studied herein, higher capacity retention was exhibited for the TiO 2 coated silicon prepared at pH 10.7.

  19. Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells

    International Nuclear Information System (INIS)

    Shalan, A.E.; Rashad, M.M.; Yu, Youhai; Lira-Cantú, Mónica; Abdel-Mottaleb, M.S.A.

    2013-01-01

    Graphical abstract: (a) A highly ordered, vertically oriented TiO 2 nanorods compared with TiO 2 nanopaticles and (b) Dye sensitized solar cell fabricated using sealing technique. Highlights: ► TiO 2 nanorods particles size of 3–5 nm was synthesized hydrothermally at 100 °C. ► S BET was 78.14 m 2 /g and the band gap energy was 3.2 eV. ► (J sc ) and (V oc ) of the DSSC were in the range 10.84–13.23 mA cm −2 and 0.71–0.78 V. ► Conversion efficiency of DSSCs was 7.2%. ► IPCE analyses of the DSSC showed two peaks, at ∼350 and 520 nm. -- Abstract: A low temperature hydrothermal process have been developed to synthesize titania nanorods (NRs) and nanoparticles (NPs) with controlled size for dye sensitized solar cells (DSSCs). Effect of calcination temperature on the performance of TiO 2 nanoparticles for solar cells was investigated and discussed. The crystallite size and the relative crystallinity of the anatase phase were increased with increasing the calcination temperature. The structures and morphologies of both (TiO 2 nanorods and nanoparticles) were characterized using XRD, SEM, TEM/HRTEM, UV–vis Spectroscopy, FTIR and BET specific surface area (S BET ) as well as pore-size distribution by BJH. The size of the titania nanorods was 6.7 nm width and 22 nm length while it was 13 nm for nanoparticles. Efficiency of dye-sensitized solar cells (DSSCs) fabricated with oriented TiO 2 nanorods was reported to be more superior compared to DSSC based on mesoporous TiO 2 nanoparticles due to their high surface area, hierarchically mesoporous structures, low charge recombination and fast electron-transfer rate. With increasing calcination temperature of the prepared nanopowders, the light-electricity conversion efficiency (η) decreased. The efficiency of the assembly solar cells was decreased due to the agglomeration of the particles and difficulty of electron movement. The power efficiency was enhanced from 1.7% for TiO 2 nanoparticles cells at

  20. Sonochemical synthesis and resonance light scattering effect of Zn(II)bis(1-(2-pyridylazo)-2-naphthol) nanorods

    International Nuclear Information System (INIS)

    Pan Hongcheng; Liang Fupei; Mao Changjie; Zhu Junjie

    2007-01-01

    Zn(II)bis(1-(2-pyridylazo)-2-naphthol) (Zn(PAN) 2 ) complex nanorods have been successfully synthesized via a facile sonochemical method. The transmission electron microscopy (TEM) images showed that the products had a rod-like morphology with a diameter of about 20-70 nm and a length of about 100-300 nm. The Zn(PAN) 2 nanorods exhibit an intense resonance light-scattering (RLS) effect, displaying a very strong RLS peak at 622 nm, a moderate peak at 361 nm and several broad bands ranged from 400 to 550 nm. The effect of ultrasonic irradiation and the mechanism of aggregation growth and resonance-enhanced light scattering were also discussed. Exciton coupling among neighbour Zn(PAN) 2 complex monomers in the nanorods were found to produce resonance-enhanced light scattering. The red-shifted absorption bands and depolarized RLS data can be explained in terms of a J-aggregate geometry of Zn(PAN) 2

  1. High pressure synthesis of amorphous TiO2 nanotubes

    Directory of Open Access Journals (Sweden)

    Quanjun Li

    2015-09-01

    Full Text Available Amorphous TiO2 nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO2 nanotubes. The structural phase transitions of anatase TiO2 nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD method. The starting anatase structure is stable up to ∼20GPa, and transforms into a high-density amorphous (HDA form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO2 nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO2 phase was revealed by high-resolution transmission electron microscopy (HRTEM study. In addition, the bulk modulus (B0 = 158 GPa of the anatase TiO2 nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa. We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO2 nanotubes.

  2. TiO2-Based Nanomaterials for Gas Sensing-Influence of Anatase and Rutile Contributions.

    Science.gov (United States)

    Zakrzewska, K; Radecka, M

    2017-12-01

    The paper deals with application of three nanomaterial systems: undoped TiO 2 , chromium-doped TiO 2 :Cr and TiO 2 -SnO 2 synthesized by flame spray synthesis (FSS) technique for hydrogen sensing. The emphasis is put on the role of anatase and rutile polymorphic forms of TiO 2 in enhancing sensitivity towards reducing gases. Anatase-to-rutile transformation is achieved by annealing of undoped TiO 2 in air at 700 °C, specific Cr doping and modification with SnO 2 . Undoped TiO 2 and TiO 2 -SnO 2 exhibit n-type behaviour and while TiO 2 : 5 at.% Cr is a p-type semiconductor. X-ray diffraction (XRD) has been applied to determine anatase-to-rutile weight ratio as well as anatase and rutile crystal size. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have been used to characterize the structure and morphological parameters. Optical reflectometry enabled to find and compare the band gaps E g of anatase and rutile predominated compositions. Electrical properties, i.e. the electrical conductivity and values of constant phase element (CPE), have been established on the basis of impedance spectroscopy. Dynamic responses of the electrical resistance as a function of hydrogen concentration revealed that predominance of rutile in anatase/rutile mixture is beneficial for gas sensing. Partial transformation to rutile in all three material systems under study resulted in an increased sensitivity towards hydrogen. It is proposed that this effect can be explained in a similar way as in photocatalysis, i.e. by specific band alignment and electron transfer from rutile to anatase to facilitate oxygen preadsorption on the surface of anatase grains.

  3. Reflectance spectroscopy from TiO2 particles embedded in polyurethane

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Canulescu, Stela; Johansen, Villads Egede

    2013-01-01

    This paper presents the results of a physical simulation carried out using TiO2-Polyurethane composite coating on bright aluminium surface to understand the light scattering effect for designing white surfaces. Polyurethane matrix is selected due to the matching refractive index (1.7) with Al2O3...... layer on anodized aluminium surfaces. Three different TiO2 particle distributions were dispersed in polyurethane and spin coated onto high gloss and caustic etched aluminium substrates. Reflectance spectra of TiO2-polyurethane films of various concentrations were analysed using an integrating sphere....... The results show that the TiO2-polyurethane coatings have a high diffuse reflectance as a result of multiple scattering from TiO2 particles. Diffuse reflectance spectra of TiO2 containing films vary weakly with particle concentration and reach a steady state value at a concentration of 0.75 wt.%. Using...

  4. Effect of TiO{sub 2} thickness on nanocomposited aligned ZnO nanorod/TiO{sub 2} for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Saurdi, I., E-mail: saurdy788@gmail.com; Ishak, A. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM),40450 Shah Alam, Selangor (Malaysia); UiTM Sarawak Kampus Kota Samarahan Jalan Meranek, Sarawak (Malaysia); Shafura, A. K.; Azhar, N. E. A.; Mamat, M. H. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM),40450 Shah Alam, Selangor (Malaysia); Malek, M. F.; Rusop, M. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM),40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), (Centre for Nano-Science and Nano-Technology), Institute of Science - IOS, Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia); Alrokayan, A. H. Salman; Khan, Haseeb A. [Department of Biochemistry, College of Science, Bldg. 5, King Saud University (KSU) P.O: 2455 Riyadh 1145 (Saudi Arabia)

    2016-07-06

    The TiO{sub 2} films were deposited on glass substrate at different thicknesses with different deposition frequencies (1, 2, 3 and 4 times) using spin coating technique and their structural properties were investigated. Subsequently, the nanocomposited aligned ZnO nanorods and TiO{sub 2} were formed by deposited the TiO{sub 2} on top of aligned ZnO Nanorod on ITO-coated glass at different thicknesses using the same method of TiO{sub 2} deposited on glass substrate. The nanocomposited aligned ZnO nanorod/TiO{sub 2} were coated with different thicknesses of 900µm, 1815µm, 2710µm, 3620µm and ZnO without TiO{sub 2}. The dye-sensitized solar cells were fabricated from the nanocomposited aligned ZnO nanorod/TiO{sub 2} with thickness of 900µm, 1815µm, 2710µm and 3620µm and ZnO without TiO{sub 2} and their photovoltaic properties of the DSSCs were investigated. From the solar simulator measurement the solar energy conversion efficiency (η) of 2.543% under AM 1.5 was obtained for the ZnO nanorod/TiO{sub 2} photoanode-2710µm Dye-Sensitized solar cell.

  5. Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications

    Science.gov (United States)

    Onozuka, Katsuhiro; Ding, Bin; Tsuge, Yosuke; Naka, Takayuki; Yamazaki, Michiyo; Sugi, Shinichiro; Ohno, Shingo; Yoshikawa, Masato; Shiratori, Seimei

    2006-02-01

    We have recently fabricated dye-sensitized solar cells (DSSCs) comprising nanofibrous TiO2 membranes as electrode materials. A thin TiO2 film was pre-deposited on fluorine doped tin oxide (FTO) coated conducting glass substrate by immersion in TiF4 aqueous solution to reduce the electron back-transfer from FTO to the electrolyte. The composite polyvinyl acetate (PVac)/titania nanofibrous membranes can be deposited on the pre-deposited thin TiO2 film coated FTO by electrospinning of a mixture of PVac and titanium isopropoxide in N,N-dimethylformamide (DMF). The nanofibrous TiO2 membranes were obtained by calcining the electrospun composite nanofibres of PVac/titania as the precursor. Spectral sensitization of the nanofibrous TiO2 membranes was carried out with a ruthenium (II) complex, cis-dithiocyanate-N,N'-bis(2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) dihydrate. The results indicated that the photocurrent and conversion efficiency of electrodes can be increased with the addition of the pre-deposited TiO2 film and the adhesion treatment using DMF. Additionally, the dye loading, photocurrent, and efficiency of the electrodes were gradually increased by increasing the average thickness of the nanofibrous TiO2 membranes. The efficiency of the fibrous TiO2 photoelectrode with the average membrane thickness of 3.9 µm has a maximum value of 4.14%.

  6. Growth of aragonite calcium carbonate nanorods in the biomimetic anodic aluminum oxide template

    Science.gov (United States)

    Lee, Inho; Han, Haksoo; Lee, Sang-Yup

    2010-04-01

    In this study, a biomimetic template was prepared and applied for growing calcium carbonate (CaCO 3) nanorods whose shape and polymorphism were controlled. A biomimetic template was prepared by adsorbing catalytic dipeptides into the pores of an anodic aluminum oxide (AAO) membrane. Using this peptide-adsorbed template, mineralization and aggregation of CaCO 3 was carried out to form large nanorods in the pores. The nanorods were aragonite and had a structure similar to nanoneedle assembly. This aragonite nanorod formation was driven by both the AAO template and catalytic function of dipeptides. The AAO membrane pores promoted generation of aragonite polymorph and guided nanorod formation by guiding the nanorod growth. The catalytic dipeptides promoted the aggregation and further dehydration of calcium species to form large nanorods. Functions of the AAO template and catalytic dipeptides were verified through several control experiments. This biomimetic approach makes possible the production of functional inorganic materials with controlled shapes and crystalline structures.

  7. Oriented Growth of α-MnO2 Nanorods Using Natural Extracts from Grape Stems and Apple Peels

    Directory of Open Access Journals (Sweden)

    Lina Sanchez-Botero

    2017-05-01

    Full Text Available We report on the synthesis of alpha manganese dioxide (α-MnO2 nanorods using natural extracts from Vitis vinifera grape stems and Malus domestica ‘Cortland’ apple peels. We used a two-step method to produce highly crystalline α-MnO2 nanorods: (1 reduction of KMnO4 in the presence of natural extracts to initiate the nucleation process; and (2 a thermal treatment to enable further solid-state growth of the nuclei. Transmission electron microscopy (TEM and field emission scanning electron microscopy (FESEM images provided direct evidence of the morphology of the nanorods and these images were used to propose nucleation and growth mechanisms. We found that the α-MnO2 nanorods synthesized using natural extracts exhibit structural and magnetic properties similar to those of nanoparticles synthesized via traditional chemical routes. Furthermore, Fourier transform infrared (FTIR shows that the particle growth of the α-MnO2 nanorods appears to be controlled by the presence of natural capping agents during the thermal treatment. We also evaluated the catalytic activity of the nanorods in the degradation of aqueous solutions of indigo carmine dye, highlighting the potential use of these materials to clean dye-polluted water.

  8. Instability of Hydrogenated TiO2

    Energy Technology Data Exchange (ETDEWEB)

    Nandasiri, Manjula I.; Shutthanandan, V.; Manandhar, Sandeep; Schwarz, Ashleigh M.; Oxenford, Lucas S.; Kennedy, John V.; Thevuthasan, Suntharampillai; Henderson, Michael A.

    2015-11-06

    Hydrogenated TiO2 (H-TiO2) is toted as a viable visible light photocatalyst. We report a systematic study on the thermal stability of H-implanted TiO2 using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Protons (40 keV) implanted at a ~2 atom % level within a ~120 nm wide profile of rutile TiO2(110) were situated ~300 nm below the surface. NRA revealed that this H-profile broadened preferentially toward the surface after annealing at 373 K, dissipated out of the crystal into vacuum at 473 K, and was absent within the beam sampling depth (~800 nm) at 523 K. Photoemission showed that the surface was reduced in concert with these changes. Similar anneals had no effect on pristine TiO2(110). The facile bulk diffusivity of H in rutile, as well as its activity toward interfacial reduction, significantly limits the utilization of H-TiO2 as a photocatalyst. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  9. The double peaks and symmetric path phenomena in the catalytic activity of Pd/Al2O3-TiO2 catalysts with different TiO2 contents

    Science.gov (United States)

    Zhang, Shen; Guo, Yuyu; Li, Xingying; Wu, Xu; Li, Zhe

    2018-06-01

    Physicochemical properties of Pd/Al2O3-TiO2 catalysts with different amounts of TiO2 contents were investigated by XRD, nitrogen adsorption-desorption, FTIR, NH3-TPD, H2-TPR and XPS techniques. Catalysts of different compositions were tested in the ethanol oxidation reaction to study the effects of TiO2 contents. Double peaks and symmetric path phenomena were observed at certain temperatures with the increase in TiO2 contents. The symmetric peak phenomena and the diverse activity fluctuations have been ascribed to the controlling factors such as temperature and compositions. With the increase in TiO2 content, the surface area, adsorbed oxygen contents and surface acid quantity decreased gradually. The large surface area and adsorbed oxygen contents were conducive to the performance, while increased acid amounts were not beneficial for ethanol oxidation. At 150 and 175 °C, Pd/AT(X1

  10. ??????????? ??????????????? ????? ??????-???????? ????????????? ?????????? ??????? ?aO?Al2O3?TiO2 ??? ???????? ?????? ?????

    OpenAIRE

    ???????, ????; ??????, ?????????

    2011-01-01

    ? ????? ?????? ?????????? ???????? ?????????????? ??????????? ????????????? ??? ??????-????????? ???????????????? ?????????? ??????? ?aO?Al2O3?TiO2, ?? ???????? ??????? ? ???????????? ??????? ??? ???????? ? ?????? ????????? ?????? ?????. ???????? ?????????? ???????? ??? ??????????? ?????????? ??????? ????????? ???????????? ?????????? ??? ??????????? 12000?, ?? ????????? ?????????????? ????????????? ???????, ????????? ???? ? ?????????? ????? ???????? ??????? ???????????. ????????, ?? ?? ...

  11. Bioactivity studies on TiO2-bearing Na2O–CaO–SiO2–B2O3 glasses

    International Nuclear Information System (INIS)

    Jagan Mohini, G.; Sahaya Baskaran, G.; Ravi Kumar, V.; Piasecki, M.; Veeraiah, N.

    2015-01-01

    Soda lime silica borate glasses mixed with different concentrations of TiO 2 are synthesized by the melt-quenching technique. As a part of study on bioactivity of these glasses, the samples were immersed in simulated body fluid (SBF) solution for prolonged times (~ 21 days) during which weight loss along with pH measurements is carried out at specific intervals of time. The XRD and SEM analyses of post-immersed samples confirm the formation of crystalline hydroxyapatite layer (HA) on the surface of the samples. To assess the role of TiO 2 on the formation of HA layer and degradability of the samples the spectroscopic studies viz. optical absorption and IR spectral studies on post- and pre-immersed samples have been carried out. The analysis of the results of degradability together with spectroscopic studies as a function of TiO 2 concentration indicated that about 6.0 mol% of TiO 2 is the optimal concentration for achieving better bioactivity of these glasses. The presence of the maximal concentration octahedral titanium ions in this glass that facilitates the formation of HA layer is found to be the reason for such a higher bioactivity. - Highlights: • Soda lime silica borate glasses mixed with TiO 2 are synthesized. • Bioactivity of the glasses is studied by immersing them in SBF solution. • XRD and SEM studies indicated the formation of hydroxyapatite layer on the surface. • Quantum of degradability is the highest in the glasses mixed with 6.0 mol% of TiO 2. • The results are analyzed using IR and optical absorption studies

  12. Growth and characterization of p-Cu2O/n-ZnO nanorod heterojunctions prepared by a two-step potentiostatic method

    International Nuclear Information System (INIS)

    Jeong, Yoon Suk; Kim, Hyunghoon; Lee, Ho Seong

    2013-01-01

    Highlights: •p-Cu 2 O/n-ZnO heterostructures were grown by a two-step potentiostatic method. •The high-quality p-Cu 2 O/n-ZnO nanorod heterojunctions were obtained only at relatively high temperatures of 90 and 100 °C. •p-Cu 2 O/n-ZnO heterojunctions exhibited a well-defined p–n diode characteristic. -- Abstract: p-Cu 2 O/n-ZnO nanorod heterojunctions were fabricated by a two-step process. The process was performed with potentiostatic deposition of n-ZnO nanorods on conductive indium-tin-oxide (ITO) glasses followed by potentiostatic deposition of p-Cu 2 O to form p-Cu 2 O/n-ZnO nanorod heterojunctions. The deposition condition required to form the cuprous oxide layer affected significantly the formation and microstructure of the p-Cu 2 O/n-ZnO nanorod heterojunctions. In particular, the high-quality p-Cu 2 O/n-ZnO nanorod heterojunctions were obtained only at relatively high temperatures of 90 and 100 °C. The p-Cu 2 O/n-ZnO nanorod heterojunctions exhibited a well-defined p–n diode characteristic with an ideality factor of about 4.3

  13. Water Adsorption on TiO2

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Wendt, Stefan; Besenbacher, Flemming

    2010-01-01

    Scanning Tunneling Microscopy (STM) studies and Density Functional Theory (DFT) investigations of the interaction of water with the rutile TiO2 (110) surface are summarized. From high-resolution STM the following reactions have been revealed: water adsorption and diffusion in the Ti troughs, water...... dissociation in bridging oxygen vacancies, assembly of adsorbed water monomers into rapidly diffusing water dimers, and formation of water dimers by reduction of oxygen molecules. The STM results are rationalized based on DFT calculations, revealing the bonding geometries and reaction pathways of the water...

  14. Synergistic effects for the TiO2/RuO2/Pt photodissociation of water

    Energy Technology Data Exchange (ETDEWEB)

    Blondel, G; Harriman, A; Williams, D

    1983-07-01

    Compressed discs of naked TiO2 or TiO2 coated with a thin film of a noble metal (e.g. Pt) do not photodissociate water upon illumination with UV light, but small amounts of H2 are generated if the TiO2 has been reduced in a stream of H2 at 600 C. Discs prepared from mixtures of TiO2/RuO2 facilitate the UV photodissociation of water into H2 and O2 although the yields are very low. When a thin (about 9 nm) film of Pt is applied to the TiO2/RuO2 discs, the yields of H2 and O2 observed upon irradiation with UV light are improved drastically. 25 references.

  15. Hydroxyapatite/gelatin functionalized graphene oxide composite coatings deposited on TiO2 nanotube by electrochemical deposition for biomedical applications

    International Nuclear Information System (INIS)

    Yan, Yajing; Zhang, Xuejiao; Mao, Huanhuan; Huang, Yong; Ding, Qiongqiong; Pang, Xiaofeng

    2015-01-01

    Highlights: • Graphene oxide cross-linked gelatin was firstly employed as reinforcement fillers in hydroxyapatite coatings by electrochemical deposition process on TiO 2 nanotube arrays. • Gelatin functionalized graphene oxide induced the formation of hydroxyapatite coatings. • The success of gelatin and graphene oxide incorporation was evidenced with FTIR and XPS. • The synthesized composite coatings showed good biocompatibility and no adverse effect in cell culture tests. - Abstract: Graphene oxide cross-linked gelatin was employed as reinforcement fillers in hydroxyapatite coatings by electrochemical deposition process on TiO 2 nanotube arrays (TNs). The TNs were grown on titanium by electrochemical anodization in hydrofluoric electrolyte using constant voltage. Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Field emission scanning electron microscopy equipped with energy dispersive X-ray analysis and biological studies were used to characterize the coatings. The corrosion resistance of the coatings was also investigated by electrochemical method in simulated body fluid solution

  16. Synthesis and characterization of CoFe2O4 magnetic nanotubes, nanorods and nanowires. Formation of magnetic structured elastomers by magnetic field-induced alignment of CoFe2O4 nanorods

    International Nuclear Information System (INIS)

    Antonel, P. Soledad; Oliveira, Cristiano L. P.; Jorge, Guillermo A.; Perez, Oscar E.; Leyva, A. Gabriela; Negri, R. Martín

    2015-01-01

    Magnetic CoFe 2 O 4 nanotubes, nanorods and nanowires were synthesized by the template method. The materials are highly crystalline and formed by compactly packed ceramic particles whose equivalent size diameter depends on the nanostructure type. Nanotubes and nanorods present the remarkable characteristic of having very large coercive fields (1000–1100 Oe) in comparison with nanoparticles of the same crystallite size (400 Oe) while keeping similar saturation magnetization (53–55 emu/g). Nanorods were used as filler material in polydimethylsiloxane elastomer composites, which were structured by curing in the presence of uniform magnetic field, H curing . In that way the nanorods agglomerate in the cured elastomer, forming needles-like structures (pseudo-chains) oriented in the direction of H curing . SEM analysis show that pseudo-chains are formed by bunches of nanorods oriented in that direction. At the considered filler concentration (1 % w/w), the structured elastomers conserve the magnetic properties of the fillers, that is, high coercive fields without observing magnetic anisotropy. The elastomer composites present strong elastic anisotropy, with compression constants about ten times larger in the direction parallel to the pseudo-chains than in the perpendicular direction, as determined by compression stress–strain curves. That anisotropic factor is about three-four times higher than that observed when using spherical CoFe 2 O 4 nanoparticles or elongated Ni nanochains. Hence, the use of morphological anisotropic structures (nanorods) results in composites with enhanced elastic anisotropy. It is also remarkable that the large elastic anisotropy was obtained at lower filler concentration compared with the above-mentioned systems (1 % w/w vs. 5–10 % w/w)

  17. MnO2 Nanorods Intercalating Graphene Oxide/Polyaniline Ternary Composites for Robust High-Performance Supercapacitors

    Science.gov (United States)

    Han, Guangqiang; Liu, Yun; Zhang, Lingling; Kan, Erjun; Zhang, Shaopeng; Tang, Jian; Tang, Weihua

    2014-04-01

    New ternary composites of MnO2 nanorods, polyaniline (PANI) and graphene oxide (GO) have been prepared by a two-step process. The 100 nm-long MnO2 nanorods with a diameter ~20 nm are conformably coated with PANI layers and fastened between GO layers. The MnO2 nanorods incorporated ternary composites electrode exhibits significantly increased specific capacitance than PANI/GO binary composite in supercapacitors. The ternary composite with 70% MnO2 exhibits a highest specific capacitance reaching 512 F/g and outstanding cycling performance, with ~97% capacitance retained over 5000 cycles. The ternary composite approach offers an effective solution to enhance the device performance of metal-oxide based supercapacitors for long cycling applications.

  18. Influence of material properties on TiO2 nanoparticle agglomeration.

    Directory of Open Access Journals (Sweden)

    Dongxu Zhou

    Full Text Available Emerging nanomaterials are being manufactured with varying particle sizes, morphologies, and crystal structures in the pursuit of achieving outstanding functional properties. These variations in these key material properties of nanoparticles may affect their environmental fate and transport. To date, few studies have investigated this important aspect of nanoparticles' environmental behavior. In this study, the aggregation kinetics of ten different TiO2 nanoparticles (5 anatase and 5 rutile each with varying size was systematically evaluated. Our results show that, as particle size increases, the surface charge of both anatase and rutile TiO2 nanoparticles shifts toward a more negative value, and, accordingly, the point of zero charge shifts toward a lower value. The colloidal stability of anatase sphere samples agreed well with DLVO theoretical predictions, where an increase in particle size led to a higher energy barrier and therefore greater critical coagulation concentration. In contrast, the critical coagulation concentration of rutile rod samples correlated positively with the specific surface area, i.e., samples with higher specific surface area exhibited higher stability. Finally, due to the large innate negative surface charge of all the TiO2 samples at the pH value (pH = 8 tested, the addition of natural organic matter was observed to have minimal effect on TiO2 aggregation kinetics, except for the smallest rutile rods that showed decreased stability in the presence of natural organic matter.

  19. Selective defunctionalization by TiO2 of monomeric phenolics from lignin pyrolysis into simple phenols.

    Science.gov (United States)

    Mante, Ofei D; Rodriguez, Jose A; Babu, Suresh P

    2013-11-01

    This study is focused on defunctionalizing monomeric phenolics from lignin into simple phenols for applications such as phenol/formaldehyde resins, epoxidized novolacs, adhesives and binders. Towards this goal, Titanium dioxide (TiO2) was used to selectively remove hydroxyl, methoxy, carbonyl and carboxyl functionalities from the monomeric phenolic compounds from lignin to produce mainly phenol, cresols and xylenols. The results showed that anatase TiO2 was more selective and active compared to rutile TiO2. Catechols were found to be the most reactive phenolics and 4-ethylguaiacol the least reactive with anatase TiO2. An overall conversion of about 87% of the phenolics was achieved at 550°C with a catalyst-to-feed ratio of 5 w/w. Over 97% conversion of phenolics is achievable at moderate temperatures (550°C or ≤ 600°C) and a moderate catalyst-to-feed ratio of 6.5:1. The reactivity of catechols on TiO2 suggests that titania is a promising catalyst in the removal of hydroxyl moiety. Published by Elsevier Ltd.

  20. Water on Graphene-Coated TiO2: Role of Atomic Vacancies

    Science.gov (United States)

    2018-01-01

    Beyond two-dimensional (2D) materials, interfaces between 2D materials and underlying supports or 2D-coated metal or metal oxide nanoparticles exhibit excellent properties and promising applications. The hybrid interface between graphene and anatase TiO2 shows great importance in photocatalytic, catalytic, and nanomedical applications due to the excellent and complementary properties of the two materials. Water, as a ubiquitous and essential element in practical conditions and in the human body, plays a significant role in the applications of graphene/TiO2 composites for both electronic devices and nanomedicine. Carbon vacancies, as common defects in chemically prepared graphene, also need to be considered for the application of graphene-based materials. Therefore, the behavior of water on top and at the interface of defective graphene on anatase TiO2 surface was systematically investigated by dispersion-corrected hybrid density functional calculations. The presence of the substrate only slightly enhances the on-top adsorption and reduces the on-top dissociation of water on defective graphene. However, at the interface, dissociated water is largely preferred compared with undissociated water on bare TiO2 surface, showing a prominent cover effect. Reduced TiO2 may further induce oxygen diffusion into the bulk. Our results are helpful to understand how the presence of water in the surrounding environment affects structural and electronic properties of the graphene/TiO2 interface and thus its application in photocatalysis, electronic devices, and nanomedicine. PMID:29368503

  1. Chemical dynamics of the first proton-coupled electron transfer of water oxidation on TiO2 anatase.

    Science.gov (United States)

    Chen, Jia; Li, Ye-Fei; Sit, Patrick; Selloni, Annabella

    2013-12-18

    Titanium dioxide (TiO2) is a prototype, water-splitting (photo)catalyst, but its performance is limited by the large overpotential for the oxygen evolution reaction (OER). We report here a first-principles density functional theory study of the chemical dynamics of the first proton-coupled electron transfer (PCET), which is considered responsible for the large OER overpotential on TiO2. We use a periodic model of the TiO2/water interface that includes a slab of anatase TiO2 and explicit water molecules, sample the solvent configurations by first principles molecular dynamics, and determine the energy profiles of the two electronic states involved in the electron transfer (ET) by hybrid functional calculations. Our results suggest that the first PCET is sequential, with the ET following the proton transfer. The ET occurs via an inner sphere process, which is facilitated by a state in which one electronic hole is shared by the two oxygen ions involved in the transfer.

  2. Shape and size controlled synthesis of Au nanorods: H2S gas-sensing characterizations and antibacterial application

    International Nuclear Information System (INIS)

    Lanh, Le Thi; Hoa, Tran Thai; Cuong, Nguyen Duc; Khieu, Dinh Quang; Quang, Duong Tuan; Van Duy, Nguyen; Hoa, Nguyen Duc; Van Hieu, Nguyen

    2015-01-01

    Highlights: • We have demonstrated a facile method to prepare colloid Au nanorods. • The size and shape of Au nanorods can be controlled via seed-mediated growth method. • The H 2 S gas-sensing properties have been investigated. • The antibacterial application has been conducted. - Abstract: Controlling their size and shape is one of the important issues in the fundamental study and application of colloidal metal nanoparticles. In the current study, different sizes and shapes of Au nanorods were fabricated using a seed-mediated growth method. Material characterization by X-ray diffraction and transmission electron microscopy revealed that the obtained products were made of single-crystal Au nanorods with an average diameter and length of 10 nm and 40 nm, respectively. The Au nanorod-based sensor exhibited significantly high sensitivity and fast response/recovery time to low concentrations (2.5–10 ppm) of H 2 S at temperatures ranging from 300 °C to 400 °C. Additionally, they exhibited antibacterial effect at low concentration. These results suggested that the fabricated Au nanorods have excellent potential for practical application in air pollution monitoring and biomedicine

  3. Synthesis of ZnO nanorods by spray pyrolysis for H{sub 2}S gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, S.D.; Patil, G.E. [Materials Research Lab., K.T.H.M. College, Nashik 422 005 (India); Kajale, D.D. [Materials Research Lab., Arts, Commerce and Science College, Nandgaon 423 106 (India); Gaikwad, V.B. [Materials Research Lab., K.T.H.M. College, Nashik 422 005 (India); Jain, G.H., E-mail: gotanjain@rediffmail.com [Materials Research Lab., K.T.H.M. College, Nashik 422 005 (India)

    2012-07-05

    Highlights: Black-Right-Pointing-Pointer Hexagonal pillar shaped ZnO nanorods with different sizes have been successfully synthesized by spray pyrolysis technique. Black-Right-Pointing-Pointer ZnO nanorods thin films showed much better sensitivity and stability than the conventional materials to H{sub 2}S gas (100 ppm) at 50 Degree-Sign C. Black-Right-Pointing-Pointer This ZnO thin film has potential in application of room temperature H{sub 2}S gas sensing. - Abstract: Hexagonal pillar shaped ZnO nanorods with different sizes have been successfully synthesized by spray pyrolysis technique (SPT). The equal amount of methanol and water is used as a solvent to dissolve the AR grade Zinc acetate for precursor solution. This solution is sprayed on to the glass substrate heated at 350 Degree-Sign C. The films were characterized by ultra-violet spectroscopy (UV), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The deposition of thin films results in a layer comprising well-shaped hexagonal ZnO nanorods with diameter of 90-120 nm and length of up to 200 nm. The gas sensing properties of these films have been investigated for various interfering gases such as CO{sub 2}, CO, ethanol, NH{sub 3} and H{sub 2}S, etc. at operating temperature from 30 Degree-Sign (room temperature) to 450 Degree-Sign C. The results indicate that the ZnO nanorods thin films showed much better sensitivity and stability than the conventional materials to H{sub 2}S gas (100 ppm) at 50 Degree-Sign C. The hexagonal pillar shaped ZnO nanorods can improve the sensitivity and selectivity of the sensors.

  4. Antimicrobial Activities of TiO2 Nanoparticle Against Escherichia coli and Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    F Barzegary

    2010-04-01

    Full Text Available Introduction: Organic antibacterial materials have been used as insecticides and bactericides for many years. Unfortunately, high temperatures in manufacturing process reduce their antibacterial properties. However, inorganic materials of antibacterial agents have excellent bacterial resistance and thermal stability. Over the past few decades, inorganic nanoparticles whose structures exhibit significantly novel and improved physical, chemical and biological properties and functionality due to their nano-scale size have elicited much interest. methods:The aim of this study was to investigate the antibacterial properties of one kind of nano-specimen (TiO2 nanoparticle against Escherichia coli and Streptococcus aureus. Our study was research perusal. In the first study, the optical density of E. coli and S. aureus cultures were observed in the presence of 0.01%, 0.75% and 1.5% of TiO2. In the second study, 6.3 log CFU/ml of E. coli and S. areus were separately exposed to 1.5% TiO2 at 37 ºC in water. In third study, we studied thew growth of E.coli in solid medium with and without nanoparticles. Results: The presence of 0.01% TiO2 nanoparticles didn’t have a statistically significant effect, but in the presence of 0.75% and 1.5% nanoparticles, the bacterial colonies decreased significantly. In the control group, bacterial cells survival was nearly 13 days, while complete cell death of E. coli was seen when 1.5% TiO2 was applied for 24 hours. The same experiment for S. aureu, showed that complete cell death occured when the bacterial culture was exposed to 1.5% TiO2 for 16 hours.. It was shown that presence of 1.5% TiO2 in the solid medium suppressed the growth of E. coli 5.6 times more (p < 0.001. Discussion: Our findings showed antibacterial effects of TiO2 nanoparticles against both bacteria, but S. areus bacteria were more sensitive to nanoparticles as compared to E. coli bacteria

  5. Superficial modifications in TiO2 and Al2O3 ceramics

    Directory of Open Access Journals (Sweden)

    Santos Flávio de Paula

    2003-01-01

    Full Text Available The properties of hydrophilicity or hydrophobicity of materials are defined mainly, though not exclusively, by their composition, morphology and surface energy. In this work, titanium dioxide (TiO2 and aluminum oxide-alumina (Al2O3 ceramics prepared by uniaxial pressing were studied in terms of surface energy. The surfaces of these ceramics were treated with nitrogen plasma, using a stainless steel reactor excited by a 13,6 MHz radio frequency operating at 50 W input power and 13 Pa nitrogen pressure. The surface morphology was investigated by scanning electron microscopy (SEM analysis. Surface energy and contact angle measurements were taken using a RAMÉ-HART goniometer. These measurements were taken as function of time, over a 21-day period. The contact angle and surface energy values were found to change by almost 34% in comparison to their initial values immediately following plasma treatment. Nonetheless, the hydrophilic character of the Al2O3 and TiO2 remained constant throughout the test period.

  6. TiO2-BASED Composite Films for the Photodegradation of Oxytetracycline

    Science.gov (United States)

    Li, Hui; Guan, Ling-Xiao; Feng, Ji-Jun; Li, Fang; Yao, Ming-Ming

    2015-02-01

    The spread of the antibiotic oxytetracycline (OTC) has been thought as a threat to the safety of drinking water. In this paper, the photocatalytic activity of the nanocrystalline Fe/Ca co-doped TiO2-SiO2 composite film for the degradation of OTC was studied. The films were characterized by field emission scanning electron microscopy (FE-SEM) equipped with energy-dispersive spectroscopy (EDS), N2 adsorption/desorption isotherms, photoluminescence (PL) spectra, and UV-Vis diffraction reflectance absorption spectra (DRS). The FE-SEM results indicated that the Fe/Ca co-doped TiO2-SiO2 film was composed of smaller nanoparticles compared to pure TiO2 or TiO2-SiO2 film. The BET surface area results showed that the specific surface area of the pure TiO2, TiO2-SiO2 and Ca2+/Fe3+ co-doped TiO2-SiO2 is 118.3 m2g-1, 294.3 m2g-1 and 393.7 m2g-1, respectively. The DRS and PL spectra revealed that the Fe/Ca co-doped TiO2-SiO2 film had strong visible light adsorption and diminished electrons/holes recombination. Experimental results showed that the Fe/Ca co-doped TiO2-SiO2 film is effective in the degradation of OTC under both UV and visible light irradiation.

  7. Theoretical prediction of morphotropic compositions in Na1/2Bi1/2TiO3-based solid solutions from transition pressures

    Science.gov (United States)

    Gröting, Melanie; Albe, Karsten

    2014-02-01

    In this article we present a method based on ab initio calculations to predict compositions at morphotropic phase boundaries in lead-free perovskite solid solutions. This method utilizes the concept of flat free energy surfaces and involves the monitoring of pressure-induced phase transitions as a function of composition. As model systems, solid solutions of Na1/2Bi1/2TiO3 with the alkali substituted Li1/2Bi1/2TiO3 and K1/2Bi1/2TiO3 and the alkaline earth substituted CaTiO3 and BaTiO3 are chosen. The morphotropic compositions are identified by determining the composition at which the phase transition pressure equals zero. In addition, we discuss the different effects of hydrostatic pressure (compression and tension) and chemical substitution on the antiphase tilts about the [111] axis (a-a-a-) present in pure Na1/2Bi1/2TiO3 and how they develop in the two solid solutions Na1/2Bi1/2TiO3-CaTiO3 and Na1/2Bi1/2TiO3-BaTiO3. Finally, we discuss the advantages and shortcomings of this simple computational approach.

  8. Eco-friendly synthesis of TiO2, Au and Pt doped TiO2 nanoparticles for dye sensitized solar cell applications and evaluation of toxicity

    Science.gov (United States)

    Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Thirumal, S.; Arumugam, A.

    2016-04-01

    Driven by the demand of pure TiO2, Au and Pt doped TiO2 NPs were successfully synthesized using Terminalia arjuna bark extract. The eco-friendly synthesized NPs were characterized by UV-Vis-DRS, ATR-FT-IR, PL, XRD, Raman, SEM with EDX and TEM analysis. The synthesized NPs were investigation for dye sensitized solar cell applications. UV-Vis-Diffused Reflectance Spectra clearly showed that the expected TiO2 inter band absorption below 306 nm, incorporation of gold shows surface plasma resonant (SPR) near 555 nm and platinum incorporated TiO2 NPs shows absorbance at 460 nm. The energy conversion efficiency for Au doped TiO2 NPs when compared to pure and Pt doped TiO2 NPs. In addition to that, Au noble metal present TiO2 matrix and an improve open-circuit voltage (Voc) of DSSC. Synthesized NPs was evaluated into antibacterial and antifungal activities by disk diffusion method. It is observed that NPs have not shown any activities in all tested bacterial and fungal strains. In this eco-friendly synthesis method to provide non toxic and environmental friendly nanomaterials can be used for solar energy device application.

  9. IGZO thin film transistor biosensors functionalized with ZnO nanorods and antibodies.

    Science.gov (United States)

    Shen, Yi-Chun; Yang, Chun-Hsu; Chen, Shu-Wen; Wu, Shou-Hao; Yang, Tsung-Lin; Huang, Jian-Jang

    2014-04-15

    We demonstrate a biosensor structure consisting of an IGZO (Indium-Gallium-Zinc-Oxide) TFT (thin film transistor) and an extended sensing pad. The TFT acts as the sensing and readout device, while the sensing pad ensures the isolation of biological solution from the transistor channel layer, and meanwhile increases the sensing area. The biosensor is functionalized by first applying ZnO nanorods to increase the surface area for attracting electrical charges of EGFR (epidermal growth factor receptor) antibodies. The device is able to selectively detect 36.2 fM of EGFR in the total protein solution of 0.1 ng/ml extracted from squamous cell carcinoma (SCC). Furthermore, the conjugation duration of the functionalized device with EGFR can be limited to 3 min, implying that the biosensor has the advantage for real-time detection. © 2013 Elsevier B.V. All rights reserved.

  10. Interaction and nanotoxic effect of TiO2 nanoparticle on fibrinogen by multi-spectroscopic method

    International Nuclear Information System (INIS)

    Wang, Chao; Li, Ying

    2012-01-01

    Toxicological effects of nanoparticles (NPs) are still poorly documented while there are great demands for industrial applications and daily life. The aim of this study is to evaluate the influence of physicochemical characteristics on TiO 2 NP toxicological effects toward protein. In order to better understand the physicochemical basis of the toxic of NP in industrial applications and under conditions of environmental exposure, we performed an array of photophysical measurements to quantify the interaction of TiO 2 NP with protein. Fluorescence quenching, circular dichroism, dynamic light scattering and transmission electron microscopy measurements were performed on TiO 2 NP having a diameter range from 10 to 35 nm in the performance of protein. We find that the TiO 2 NP strongly associates with protein where the binding constant, as well as the degree of cooperativity of particle–protein binding, depends on particle size. We also find tentative evidence that the protein undergoes conformational change upon association with the NP. These results indicate that exposure to TiO 2 NP may have an unfavorable effect on human health by inactivating functional proteins. - Highlights: ► The binding constants for fibrinogen onto TiO 2 NPs depend on particle size. ► CD results showed that the structural changes of protein are quite small. ► The adsorbed protein to cause the TiO 2 NP to aggregate was indicated by DLS and TEM.

  11. Efectos de fotodegradación propiciados por recubrimientos de TiO2 y TiO2-SiO2 obtenidos por Sol-Gel

    Directory of Open Access Journals (Sweden)

    Rodriguez Paez, J. E.

    2008-10-01

    Full Text Available Photodegradation effect is widely used for water purification this contributes to preservation and protection of environment. Titanium oxide, (TiO2, is a compound that shows up this phenomenon. TiO2 is a semiconductor which may degradate pollutants through of a oxidation process. It permit the treatment of the residual water. It this work we has conformed coatings of TiO2 y TiO2-SiO2, utilized Sol-Gel method and investigated the degradation of the blue Methylene. For this, we introduced these coatings in the blue methylene solution which was illuminated with radiation of λ=365nm to activate its photocatilist properties. The structures of the coatings were characterized using Atomic Force Microscopy (AFM and X-ray Photoelectron Spectroscopy (XPS.El efecto de fotodegradación es ampliamente utilizado para la purificación del agua, acción que contribuye a la conservación y protección del medio ambiente; el óxido de titanio (TiO2 es uno de los semiconductores que pueden degradar contaminantes mediante procesos de oxidación, lo que lo hace apto para el tratamiento de aguas residuales. En este trabajo se conformaron recubrimientos de TiO2 y TiO2-SiO2, por el método Sol-Gel, y se estudio la degradación que experimentaba una solución de azul de metileno al introducirle estos recubrimientos e iluminarlos con una radiación de λ=365nm para activar su propiedad fotocatalítica. Los recubrimientos fueron caracterizados microestructuralmente utilizando Microscopía de Fuerza Atómica (MFA y Espectroscopía de Fotoelectrones de rayos X (XPS. Los resultados obtenidos de los ensayos de fotodegradación indican que los recubrimientos con una cantidad pequeña de silicio presentan un mayor efecto de fotodegradación indicando que el silicio puede generar puntos de anclaje que facilitan las reacciones de fotocatálisis. Por otro lado, la formación de centros activos, constituidos principalmente por carbono, también contribuyeron al desarrollo de estas

  12. Investigation of the adsorption of ozone molecules on TiO2/WSe2 nanocomposites by DFT computations: Applications to gas sensor devices

    Science.gov (United States)

    Abbasi, Amirali; Sardroodi, Jaber Jahanbin

    2018-04-01

    The adsorption of O3 molecule on the undoped and N-doped TiO2/WSe2 nanocomposites was studied using first principles density functional theory calculations. O3 interaction with TiO2/WSe2 nanocomposites is considered so as to investigate WSe2 effects on the adsorption process. WSe2 favors the adsorption of O3 on TiO2 particles. In other words, WSe2 is conducive to the interaction of O3 molecule with fivefold coordinated titanium sites of TiO2. The effects of vdW interactions were taken into account in order to obtain equilibrium geometries of O3 molecules at TiO2/WSe2 interfaces. For all adsorption configurations, the binding site was positioned on the fivefold coordinated titanium atoms. The results show that the interactions between O3 and TiO2 in TiO2/WSe2 nanocomposites are stronger than those between O3 and bare TiO2, suggesting that WSe2 helps to strengthen the interaction of ozone molecule with TiO2 particles. The results also indicate that the adsorption of the O3 molecule on the N-doped TiO2/WSe2 nanocomposite is more energetically favorable than the adsorption of O3 on the pristine one, representing that the N-doped nanocomposites are more sensitive than the undoped ones. Our DFT results clearly show that the N-doped TiO2/WSe2 nanocomposite would be a promising O3 gas sensor. The electronic structure of the adsorption system was also investigated, including analysis of the total and projected density of states, and charge density differences of the TiO2/WSe2 with adsorbed O3 molecules. The charge density difference calculations indicate that the charges were accumulated over the adsorbed O3 molecule. Besides, the N-doped nanocomposites have better sensing response than the pristine ones. This work was devoted to provide the theory basis for the design and development of novel and advanced O3 sensors based on modified TiO2/WSe2 nanocomposites.

  13. Laser induced photocurrent and photovoltage transient measurements of dye-sensitized solar cells based on TiO_2 nanosheets and TiO_2 nanoparticles

    International Nuclear Information System (INIS)

    Ghaithan, Hamid M.; Qaid, Saif M.H.; Hezam, Mahmoud; Labis, Joselito P.; Alduraibi, Mohammad; Bedja, Idriss M.; Aldwayyan, Abdullah S.

    2016-01-01

    Dye-sensitized solar cells (DSSCs) based on TiO_2 nanoparticles and TiO_2 nanosheets with exposed {001} facets are investigated using laser-induced photovoltage and photocurrent transient decay (LIPVCD) measurements. We adopted a simplified version of LIPVCD technique, in which a single illumination light source and a laboratory oscilloscope could be conveniently used for the measurements. Although the {001} surface of TiO_2 nanosheets allowed a noticeably slower recombination with the electrolyte, this was counterpoised by a slower electron transport probably due to its planar morphology, resulting in a shorter diffusion length in TiO_2 nanosheets. The nanosheet morphology also resulted in less surface area and therefore reduced short circuit current density in the fabricated devices. Our work highlights the fact that the morphological parameters of TiO_2 nanosheets finally resulting after electrode film deposition is of no less importance than the reported efficient dye adsorption and slow electron recombination at the surface of individual nanosheets.

  14. Li{sub 2}FeSiO{sub 4} nanorod as high stability electrode for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chun-Han; Shen, Yu-Wen; Chien, Li-Hsuan; Kuo, Ping-Lin, E-mail: plkuo@mail.ncku.edu.tw [National Cheng Kung University, Department of Chemical Engineering (China)

    2015-01-15

    Li{sub 2}FeSiO{sub 4} (LFS) nanorods, with a diameter of 80–100 nm and length of 0.8–1.0 μm, were synthesized successfully from a mixture of LiOH, FeSO{sub 4}, and SiO{sub 2} nanoparticles via a simple hydrothermal process. The secondary structure with micro-sized bundles of nanorods was developed with high crystallinity under the hydrothermal condition of 180 °C for 72 h. Then, sucrose, as carbon source, was coated and carbonized on the surface of the LFS nanorods to fabricate LFS/C nanorod composite. The resulting LFS/C nanorod composite was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and surface area measurements. When used as the cathode materials for lithium-ion battery, the electrochemical performance of the LFS/C nanorod material delivers discharge capacities of 156 mAh g{sup −1} in the voltage window of 1.8−4.7 V and also demonstrates good cycle stability when it is cycled between 1.8 and 4.1 V. In short, superior electrochemical properties could be caused by the short lithium-ion diffusion path of its nanorod structure.

  15. Recovery of hexavalent chromium from water using photoactive TiO2-montmorillonite under sunlight

    Directory of Open Access Journals (Sweden)

    Ridha Djellabi

    2016-04-01

    Full Text Available Hexavalent chromium was removed from water under sunlight using a synthesized TiO2-montmorillonite (TiO2-M employing tartaric acid as a hole scavenger. Cr(VI species was then reduced to Cr(III species by electrons arising from TiO2 particles. After that, the produced Cr(III species  was transferred to montmorillonite  due to electrostatic attractions leading to  set free TiO2 particles for a further Cr(VI species reduction. Furthermore, produced Cr(III, after Cr(VI reduction, does not  penetrate into the solution. The results indicate that no dark adsorption of Cr(VI species on TiO2-M is present, however, the reduction of Cr(VI species under sunlight increased strongly as a function of tartaric acid concentration up to 60 ppm, for which the extent of reduction is maximum within 3 h. On the other hand, the reduction extent of Cr(VI species is maximum with an initial concentration of Cr(VI species lower than 30 ppm by the use of 0.2 g/L of TiO2-M. Nevertheless, the increase of the Cr(VI initial concentration led to increase the amount of Cr(VI species reduced (capacity of reduction until a Cr(VI concentration of 75 and 100 ppm, for which  it remained constant at around 221 mg/g. For comparison, the increase of Cr(VI species concentration in the case of the commercial TiO2 P25 under the same conditions exhibited its deactivation when the reduced amount decreased from 198.1 to 157.6 mg/g as the concentration increased from 75 to 100 ppm.

  16. ADSORCIÓN DE ALDEHÍDOS INSATURADOS SOBRE TiO2

    OpenAIRE

    Natalia Ortega; Oswaldo Núñez

    2012-01-01

    En el presente trabajo se estudió la adsorción de aldehídos insaturados sobre la superficie del TiO2. Para evaluar su eficiencia como catalizador, se realizaron experimentos de fotocatálisis heterogénea de p-nitrofenol (PNF) y una muestra proveniente de efluentes industriales. Se empleó un simulador solar y cuatro sistemas de TiO2: el TiO2-sólo (sin modificar) y los sistemas TiO2-dienal constituidos por la adsorción química de 2,4 hexadienal, 2,4 heptadienal y el trans-cinamaldehído sobre la ...

  17. Hazards of TiO2 and amorphous SiO2 nanoparticles

    NARCIS (Netherlands)

    Reijnders, L.; Kahn, H.A.; Arif, I.A.

    2012-01-01

    TiO2 and amorphous SiO2 nanoparticles have been described as ‘safe’, ‘non-toxic’ and ‘environment friendly’ in scientific literature. However, though toxicity data are far from complete, there is evidence that these nanoparticles are hazardous. TiO2 nanoparticles have been found hazardous to humans

  18. Structural, Optical, Morphological and Elemental Analysis on Sol-gel Synthesis of Ni Doped TiO2 Nanocrystallites

    Directory of Open Access Journals (Sweden)

    T. Sakthivel

    2017-06-01

    Full Text Available Pure and Ni doped titanium dioxide nanoparticles were successfully synthesized by sol-gel method and characterized usingXRD, UV-Visible, FTIR, FESEM and EDS techniques. XRD pattern confirms the formation of tetragonal TiO2. The absorbance spectra of pure and Ni doped TiO2 showed absorption spectrum at ultra-violet region due to electronic transition between bonding and anti-bonding orbital (π-π•. Bandgap energy of Ni doped TiO2 decreased to 2.5 eV when compared to pure TiO2 (3.39 eV. FESEM study reveals agglomerated spherical shaped morphology. The functional groups of the prepared samples were identified using FTIR spectroscopy and the elemental analysis was further supported with EDS analysis.

  19. Protein Corona Prevents TiO2 Phototoxicity.

    Directory of Open Access Journals (Sweden)

    Maja Garvas

    Full Text Available TiO2 nanoparticles have generally low toxicity in the in vitro systems although some toxicity is expected to originate in the TiO2-associated photo-generated radical production, which can however be modulated by the radical trapping ability of the serum proteins. To explore the role of serum proteins in the phototoxicity of the TiO2 nanoparticles we measure viability of the exposed cells depending on the nanoparticle and serum protein concentrations.Fluorescence and spin trapping EPR spectroscopy reveal that the ratio between the nanoparticle and protein concentrations determines the amount of the nanoparticles' surface which is not covered by the serum proteins and is proportional to the amount of photo-induced radicals. Phototoxicity thus becomes substantial only at the protein concentration being too low to completely coat the nanotubes' surface.These results imply that TiO2 nanoparticles should be applied with ligands such as proteins when phototoxic effects are not desired - for example in cosmetics industry. On the other hand, the nanoparticles should be used in serum free medium or any other ligand free medium, when phototoxic effects are desired - as for efficient photodynamic cancer therapy.

  20. Absorption spectra of trapped holes in anatase TiO2

    DEFF Research Database (Denmark)

    Zawadzki, Pawel

    2013-01-01

    absorption spectroscopy (TAS), but the understanding of the optical absorption due to trapped carriers in TiO2 is incomplete. On the basis of the generalized Δ self-consistent field density functional theory (Δ-SCF DFT) calculations, we attribute the experimentally observed absorption band at 430-550 nm...

  1. The chemical bonds effect of anthocyanin and chlorophyll dyes on TiO2 for dye-sensitized solar cell (DSSC)

    Science.gov (United States)

    Ahliha, A. H.; Nurosyid, F.; Supriyanto, A.; Kusumaningsih, T.

    2017-11-01

    Anthocyanin and chlorophyll dyes have been blended as the photosensitizer of Dye-Sensitized Solar Cell (DSSC). The results study showed the effect of chemical bond dyes on TiO2 and the efficiency of DSSC. Ratio blend of the anthocyanin and chlorophyll dyes are 1:1. The absorbance of dyes and TiO2 were characterized using UV-Vis Spectrophotometer. The chemical bonds contained in TiO2-dyes were characterized using FT-IR spectrophotometer. The efficiency of DSSC was calculated using I-V meter. The absorption spectra of chlorophyll: anthocyanin blend dye solutions and TiO2 films can increase after the dye adsorption. Absorbance characterization of anthocyanin and chlorophyll dye blend solutions showed three peaks at the wavelength of 412 nm; 535.5 nm; and 656.5 nm. Absorbance characterization of spinach before being blend with anthocyanin dyes solutions showed two peaks at the wavelength of 431 nm and 665.5 nm. The absorption spectra of TiO2 films can increase after the dyes adsorption at the wavelength of 400 nm. FT-IR spectra of TiO2 founded the functional groups C-Br, C=C, and O-H. The functional groups founded in anthocyanin: chlorophyll dye blended on the surface of TiO2 are C-Br, C-O, O-H, C-H, C=C, C=O, and O-H. The result showed that the greatest efficiency of 0.0544% at dye red cabbage-spinach. Adsorption blends of anthocyanin and chlorophyll dyes on the surface of TiO2 can be used as the photosensitizer for DSSC.

  2. Synthesis and characteristics of sword-like GaN nanorods clusters through ammoniating Ga2O3 thin films

    International Nuclear Information System (INIS)

    Xue Chengshane; Tian Deheng; Zhuang Huizhao; Zhang Xiaokai; Wu Yuxin; Liu Yi'an; He Jianting; Ai Yujie

    2006-01-01

    Sword-like GaN nanorods have been successfully synthesized by ammoniating Ga 2 O 3 thin films deposited on Si substrate by magnetron sputtering. The GaN nanorods have been characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). SEM images show that sword-like GaN nanorods take on radial structure. The XRD and SAED analyses have identified that the nanorods are pure hexagonal GaN with single crystalline wurtzite structure. The HRTEM images indicate that the nanorods are well crystallized and nearly free from defects

  3. Efficient photodecomposition of herbicide imazapyr over mesoporous Ga2O3-TiO2 nanocomposites.

    Science.gov (United States)

    Ismail, Adel A; Abdelfattah, Ibrahim; Faisal, M; Helal, Ahmed

    2018-01-15

    The unabated release of herbicide imazapyr into the soil and groundwater led to crop destruction and several pollution-related concerns. In this contribution, heterogeneous photocatalytic technique was employed utilizing mesoporous Ga 2 O 3 -TiO 2 nanocomposites for degrading imazapyr herbicide as a model pollutant molecule. Mesoporous Ga 2 O 3 -TiO 2 nanocomposites with varied Ga 2 O 3 contents (0-5wt%) were synthesized through sol-gel process. XRD and Raman spectra exhibited extremely crystalline anatase TiO 2 phase at low Ga 2 O 3 content which gradually reduced with the increase of Ga 2 O 3 content. TEM images display uniform TiO 2 particles (10±2nm) with mesoporous structure. The mesoporous TiO 2 exhibits large surface areas of 167m 2 g -1 , diminished to 108m 2 g -1 upon 5% Ga 2 O 3 incorporation, with tunable mesopore diameter in the range of 3-9nm. The photocatalytic efficiency of synthesized Ga 2 O 3 -TiO 2 nanocomposites was assessed by degrading imazapyr herbicide and comparing with commercial photocatalyst UV-100 and mesoporous Ga 2 O 3 under UV illumination. 0.1% Ga 2 O 3 -TiO 2 nanocomposite is considered the optimum photocatalyst, which degrades 98% of imazapyr herbicide within 180min. Also, the photodegradation rate of imazapyr using 0.1% Ga 2 O 3 -TiO 2 nanocomposite is nearly 10 and 3-fold higher than that of mesoporous Ga 2 O 3 and UV-100, respectively. The high photonic efficiency and long-term stability of the mesoporous Ga 2 O 3 -TiO 2 nanocomposites are ascribed to its stronger oxidative capability in comparison with either mesoporous TiO 2 , Ga 2 O 3 or commercial UV-100. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Controlled Directional Growth of TiO2 Nanotubes

    DEFF Research Database (Denmark)

    In, Su-il; Hou, Yidong; Abrams, Billie

    2010-01-01

    We demonstrate how the anodization direction and growth rate of vertically aligned, highly ordered TiO2 nanotube (NT) arrays can be controlled and manipulated by the local concentration of O-2 in the electrolyte. This leads to the growth of highly active TiO2 NT arrays directly on nonconducting s...

  5. TiO2--a prototypical memristive material.

    Science.gov (United States)

    Szot, K; Rogala, M; Speier, W; Klusek, Z; Besmehn, A; Waser, R

    2011-06-24

    Redox-based memristive switching has been observed in many binary transition metal oxides and related compounds. Since, on the one hand, many recent reports utilize TiO(2) for their studies of the memristive phenomenon and, on the other hand, there is a long history of the electronic structure and the crystallographic structure of TiO(2) under the impact of reduction and oxidation processes, we selected this material as a prototypical material to provide deeper insight into the mechanisms behind memristive switching. In part I, we briefly outline the results of the historical and recent studies of electroforming and resistive switching of TiO(2)-based cells. We describe the (tiny) stoichiometrical range for TiO(2 - x) as a homogeneous compound, the aggregation of point defects (oxygen vacancies) into extended defects, and the formation of the various Magnéli phases. Furthermore, we discuss the driving forces for these solid-state reactions from the thermodynamical point of view. In part II, we provide new experimental details about the hierarchical transformation of TiO(2) single crystals into Magnéli phases, and vice versa, under the influence of chemical, electrical and thermal gradients, on the basis of the macroscopic and nanoscopic measurements. Those include thermogravimetry, high-temperature x-ray diffraction (XRD), high-temperature conductivity measurements, as well as low-energy electron diffraction (LEED), x-ray photoelectron spectroscopy (XPS), and LC-AFM (atomic force microscope equipped with a conducting tip) studies. Conclusions are drawn concerning the relevant parameters that need to be controlled in order to tailor the memristive properties.

  6. Atomic layer deposited TiO2 for implantable brain-chip interfacing devices

    International Nuclear Information System (INIS)

    Cianci, E.; Lattanzio, S.; Seguini, G.; Vassanelli, S.; Fanciulli, M.

    2012-01-01

    In this paper we investigated atomic layer deposition (ALD) TiO 2 thin films deposited on implantable neuro-chips based on electrolyte-oxide-semiconductor (EOS) junctions, implementing both efficient capacitive neuron-silicon coupling and biocompatibility for long-term implantable functionality. The ALD process was performed at 295 °C using titanium tetraisopropoxide and ozone as precursors on needle-shaped silicon substrates. Engineering of the capacitance of the EOS junctions introducing a thin Al 2 O 3 buffer layer between TiO 2 and silicon resulted in a further increase of the specific capacitance. Biocompatibility for long-term implantable neuroprosthetic systems was checked upon in-vitro treatment.

  7. Electrical conductivity characteristic of TiO2 nanowires from hydrothermal method

    International Nuclear Information System (INIS)

    Othman, Mohd Azlishah; Amat, Noor Faridah; Ahmad, Badrul Hisham; Rajan, Jose

    2014-01-01

    One dimensional nanostructures of titanium dioxide (TiO 2 ) were synthesized via hydrothermal method by mixing TiO 2 as precursor in aqueous solution of NaOH as solvent. Then, heat and washing treatment was applied. Thus obtained wires had diameter ∼15 nm. TiO 2 nanowires will be used as a network in solar cell such dye-sensitized solar cell in order to improve the performance of electron movement in the device. To improve the performance of electron movement, the characteristics of TiO 2 nanowires have been analyses using field emission scanning electron microscopy (FESEM) analysis, x-ray diffractometer (XRD) analysis and brunauer emmett teller (BET) analysis. Finally, electrical conductivity of TiO 2 nanowires was determined by measuring the resistance of the TiO 2 nanowires paste on microscope glass.

  8. Experimental measurement and modelling of reactive species generation in TiO2 nanoparticle photocatalysis.

    Science.gov (United States)

    Turolla, Andrea; Piazzoli, Andrea; Budarz, Jeffrey Farner; Wiesner, Mark R; Antonelli, Manuela

    2015-07-01

    The generation of reactive species in titanium dioxide (TiO 2 ) nanoparticle photocatalysis was assessed in a laboratory scale setup, in which P25 Aeroxide TiO 2 suspensions were photoactivated by means of UV-A radiation. Photogenerated holes and hydroxyl radicals were monitored over time by observing their selective reaction with probe compounds, iodide and terephthalic acid, respectively. TiO 2 aggregate size and structure were characterized over the reaction time. Reactive species quenching was then described by a model, accounting for radiative phenomena, TiO 2 nanoparticle aggregation and kinetic reactions. The interaction between iodide and photogenerated holes was influenced by iodide adsorption on TiO 2 surface, described by a Langmuir-Hinshelwood mechanism, whose parameters were studied as a function of TiO 2 concentration and irradiation time. Iodide oxidation was effectively simulated by modelling the reaction volume as a completely stirred two-dimensional domain, in which irradiation phenomena were described by a two-flux model and the steady state for reactive species was assumed. The kinetic parameters for iodide adsorption and oxidation were estimated and successfully validated in a different experimental setup. The same model was adapted to describe the oxidation of terephthalic acid by hydroxyl radicals. The kinetic parameters for terephthalic acid oxidation were estimated and validated, while the issues in investigating the interaction mechanisms among the involved species have been discussed. The sensitivity of operating parameters on model response was assessed and the most relevant parameters were highlighted.

  9. TiO2 coated SnO2 nanosheet films for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Cai Fengshi; Yuan Zhihao; Duan Yueqing; Bie Lijian

    2011-01-01

    TiO 2 -coated SnO 2 nanosheet (TiO 2 -SnO 2 NS) films about 300 nm in thickness were fabricated on fluorine-doped tin oxide glass by a two-step process with facile solution-grown approach and subsequent hydrolysis of TiCl 4 aqueous solution. The as-prepared TiO 2 -SnO 2 NSs were characterized by scanning electron microscopy and X-ray diffraction. The performances of the dye-sensitized solar cells (DSCs) with TiO 2 -SnO 2 NSs were analyzed by current-voltage measurements and electrochemical impedance spectroscopy. Experimental results show that the introduction of TiO 2 -SnO 2 NSs can provide an efficient electron transition channel along the SnO 2 nanosheets, increase the short current density, and finally improve the conversion efficiency for the DSCs from 4.52 to 5.71%.

  10. Single-walled carbon nanotube-facilitated dispersion of particulate TiO2 on ZrO2 ceramic membrane filters.

    Science.gov (United States)

    Yao, Yuan; Li, Gonghu; Gray, Kimberly A; Lueptow, Richard M

    2008-07-15

    We report that SWCNTs substantially improve the uniformity and coverage of TiO2 coatings on porous ZrO2 ceramic membrane filters. The ZrO2 filters were dip coated with 100 nm anatase TiO2, TiO2/SWCNT composites, a TiO2+SWCNT mixture, and a TiO2/MWCNT composite at pH 3, 5, and 8. Whereas the TiO2+SWCNT mixture and the TiO2/MWCNT composite promote better coverage and less clumping than TiO2 alone, the TiO2/SWCNT composite forms a complete uniform coating without cracking at pH 5 ( approximately 100% coverage). A combination of chemical and electrostatic effects between TiO2 and SWCNTs forming the composite as well as between the composite and the ZrO2 surface explains these observations.

  11. An innovative approach to synthesize highly-ordered TiO2 nanotubes.

    Science.gov (United States)

    Isimjan, Tayirjan T; Yang, D Q; Rohani, Sohrab; Ray, Ajay K

    2011-02-01

    An innovative route to prepare highly-ordered and dimensionally controlled TiO2 nanotubes has been proposed using a mild sonication method. The nanotube arrays were prepared by the anodization of titanium in an electrolyte containing 3% NH4F and 5% H2O in glycerol. It is demonstrated that the TiO2 nanostructures has two layers: the top layer is TiO2 nanowire and underneath is well-ordered TiO2 nanotubes. The top layer can easily fall off and form nanowires bundles by implementing a mild sonication after a short annealing time. We found that the dimensions of the TiO2 nanotubes were only dependent on the anodizing condition. The proposed technique may be extended to fabricate reproducible well-ordered TiO2 nanotubes with large area on other metals.

  12. Structural, optical and ferromagnetic properties of Cr doped TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Choudhury, Biswajit; Choudhury, Amarjyoti

    2013-01-01

    Graphical abstract: Doping of Cr 3+ distorts the lattice of TiO 2 , generate oxygen vacancies and create d-band states in the mid band gap of TiO 2 . Incorporation of Cr 3+ also imparts magnetism in non-magnetic TiO 2 by undergoing coupling with the neighboring oxygen vacancies. -- Highlights: • Incorporation of Cr 3+ increases the concentration of oxygen vacancies in TiO 2 nanoparticles. • Doped TiO 2 nanoparticles contain absorption peaks corresponding to d–d transition of Cr 3+ into TiO 2 . • Pure and doped TiO 2 nanoparticles contain emission peaks related to oxygen vacancies. • Pure TiO 2 shows diamagnetism while Cr doped TiO 2 shows ferromagnetism. • The ferromagnetism is due to the interaction of Cr 3+ ions via oxygen vacancies. -- Abstract: Cr doped TiO 2 nanoparticles are prepared with three different concentrations of chromium, 1.5%, 3.0% and 4.5 mol% respectively. Doping decreases the crystallinity and increases the width of the X-ray diffraction peak. The Raman active E g peak of TiO 2 nanoparticles become asymmetric and shifted to higher energy on doping of 4.5% chromium. Electron paramagnetic resonance spectra reveal the presence of Cr 3+ in the host TiO 2 matrix. The absorption spectra of Cr doped TiO 2 nanoparticles contain absorption peaks corresponding to d–d transition of Cr 3+ in octahedral coordination. Most of the visible emission peaks are due to the electrons trapped in the oxygen vacancy centers. Undoped TiO 2 nanoparticles show diamagnetism at room temperature while all chromium doped samples show ferromagnetism. The magnetization of the doped samples increases at 1.5% and 3.0% and decreases at 4.5%. The ferromagnetism arises owing to the interaction of the neighboring Cr 3+ ions via oxygen vacancies. The decrease of magnetization at the highest doping is possibly due to the antiferromagnetic interactions of Cr 3+ pairs or due to Cr 3+ -O 2− -Cr 3+ superexchange interaction in the lattice

  13. Novel Flexible Transparent Conductive Films with Enhanced Chemical and Electromechanical Sustainability: TiO2 Nanosheet-Ag Nanowire Hybrid.

    Science.gov (United States)

    Sohn, Hiesang; Kim, Seyun; Shin, Weonho; Lee, Jong Min; Lee, Hyangsook; Yun, Dong-Jin; Moon, Kyoung-Seok; Han, In Taek; Kwak, Chan; Hwang, Seong-Ju

    2018-01-24

    Flexible transparent conductive films (TCFs) of TiO 2 nanosheet (TiO 2 NS) and silver nanowire (Ag NW) network hybrid were prepared through a simple and scalable solution-based process. The as-formed TiO 2 NS-Ag NW hybrid TCF shows a high optical transmittance (TT: 97% (90.2% including plastic substrate)) and low sheet resistance (R s : 40 Ω/sq). In addition, the TiO 2 NS-Ag NW hybrid TCF exhibits a long-time chemical/aging and electromechanical stability. As for the chemical/aging stability, the hybrid TCF of Ag NW and TiO 2 NS reveals a retained initial conductivity (ΔR s /R s 4000%) or RuO 2 NS-Ag NW hybrid (ΔR s /R s > 200%). As corroborated by the density functional theory simulation, the superb chemical stability of TiO 2 NS-Ag NW hybrid is attributable to the unique role of TiO 2 NS as a barrier, which prevents Ag NW's chemical corrosion via the attenuated adsorption of sulfidation molecules (H 2 S) on TiO 2 NS. With respect to the electromechanical stability, in contrast to Ag NWs (ΔR/R 0 ∼ 152.9%), our hybrid TCF shows a limited increment of fractional resistivity (ΔR/R 0 ∼ 14.4%) after 200 000 cycles of the 1R bending test (strain: 6.7%) owing to mechanically welded Ag NW networks by TiO 2 NS. Overall, our unique hybrid of TiO 2 NS and Ag NW exhibits excellent electrical/optical properties and reliable chemical/electromechanical stabilities.

  14. Quasiparticle interfacial level alignment of highly hybridized frontier levels: H2O on TiO2(110).

    Science.gov (United States)

    Migani, Annapaola; Mowbray, Duncan J; Zhao, Jin; Petek, Hrvoje

    2015-01-13

    Knowledge of the frontier levels' alignment prior to photoirradiation is necessary to achieve a complete quantitative description of H2O photocatalysis on TiO2(110). Although H2O on rutile TiO2(110) has been thoroughly studied both experimentally and theoretically, a quantitative value for the energy of the highest H2O occupied levels is still lacking. For experiment, this is due to the H2O levels being obscured by hybridization with TiO2(110) levels in the difference spectra obtained via ultraviolet photoemission spectroscopy (UPS). For theory, this is due to inherent difficulties in properly describing many-body effects at the H2O-TiO2(110) interface. Using the projected density of states (DOS) from state-of-the-art quasiparticle (QP) G0W0, we disentangle the adsorbate and surface contributions to the complex UPS spectra of H2O on TiO2(110). We perform this separation as a function of H2O coverage and dissociation on stoichiometric and reduced surfaces. Due to hybridization with the TiO2(110) surface, the H2O 3a1 and 1b1 levels are broadened into several peaks between 5 and 1 eV below the TiO2(110) valence band maximum (VBM). These peaks have both intermolecular and interfacial bonding and antibonding character. We find the highest occupied levels of H2O adsorbed intact and dissociated on stoichiometric TiO2(110) are 1.1 and 0.9 eV below the VBM. We also find a similar energy of 1.1 eV for the highest occupied levels of H2O when adsorbed dissociatively on a bridging O vacancy of the reduced surface. In both cases, these energies are significantly higher (by 0.6 to 2.6 eV) than those estimated from UPS difference spectra, which are inconclusive in this energy region. Finally, we apply self-consistent QPGW (scQPGW1) to obtain the ionization potential of the H2O-TiO2(110) interface.

  15. Stability analysis and structural rules of titanium dioxide clusters (TiO2)n with n = 1-9

    International Nuclear Information System (INIS)

    Zhang Weiwei; Han Ye; Yao Shuyu; Sun Haiqing

    2011-01-01

    Highlights: · We investigated the structure and stability of (TiO 2 ) n clusters with n = 1-9. · Some initial structures are introduced and proved to be the real global minimum. · We summarized the structural rules for small (TiO 2 ) n clusters. · The bonding features for the energy increment or decrement of the clusters are investigated. · A general shift of stability and reactivity with size for (TiO 2 ) n clusters. - Abstract: Atomic clusters have been considered as models for fundamental mechanistic insight into complex surfaces and catalysts. The structure and stability of (TiO 2 ) n clusters with n = 1-9 are investigated using the b3lyp hybrid density functional method in this paper. Some of the clusters are proposed initially and proved to be the real global minima. The stability and band gap of the clusters as a function of size are also investigated. The structural rules of the clusters are first summarized. The lowest-lying (TiO 2 ) n isomers tend to form some compact rather than quasi-linear or circular structures. The oxygen atom in 4-fold coordination and the titanium atom in 4-fold coordination favor the cluster stability. The 5-fold coordinated Ti-atom, the Ti-Ti bond and the terminal Ti-O bond lead to stability penalty for the clusters. No evidence for a regular variation in stability or reactivity with size of the clusters has shown. The structural rules can serve as guiding factors for formation research and structure design of (TiO 2 ) n and other transition metal oxide clusters.

  16. Side-detecting optical fiber coated with Zn(OH)2 nanorods for ultraviolet sensing applications

    Science.gov (United States)

    Azad, S.; Parvizi, R.; Sadeghi, E.

    2017-09-01

    This paper presents an improved coupling efficiency and side detecting of UV radiation induced by light scattering and luminescent features of Zn(OH)2 nanorods coated multimode optical fibers. Uniform and high density Zn(OH)2 nanorods were grown hydrothermally on the core of chemically etched multimode optical fibers. The prepared samples were characterized through x-ray diffraction patterns, scanning electron microscopy and photoluminescence spectroscopy. The detecting technique was based on the intensity modulation of the side coupled light through the Zn(OH)2 nanorods. A simple and cost-effective UV radiation detecting setup has been designed. Experimentally estimated coupling efficiency of the proposed setup was obtained near 11%. The proposed device exhibited stable and reversible responses with a fast rising and decaying time of about 1.4 s and 0.85 s, respectively.

  17. VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors

    Science.gov (United States)

    Hu, Chenchen; Xu, Henghui; Liu, Xiaoxiao; Zou, Feng; Qie, Long; Huang, Yunhui; Hu, Xianluo

    2015-11-01

    VO2/TiO2 nanosponges with easily tailored nanoarchitectures and composition were synthesized by electrostatic spray deposition as binder-free electrodes for supercapacitors. Benefiting from the unique interconnected pore network of the VO2/TiO2 electrodes and the synergistic effect of high-capacity VO2 and stable TiO2, the as-formed binder-free VO2/TiO2 electrode exhibits a high capacity of 86.2 mF cm-2 (~548 F g-1) and satisfactory cyclability with 84.3% retention after 1000 cycles. This work offers an effective and facile strategy for fabricating additive-free composites as high-performance electrodes for supercapacitors.

  18. VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors.

    Science.gov (United States)

    Hu, Chenchen; Xu, Henghui; Liu, Xiaoxiao; Zou, Feng; Qie, Long; Huang, Yunhui; Hu, Xianluo

    2015-11-04

    VO2/TiO2 nanosponges with easily tailored nanoarchitectures and composition were synthesized by electrostatic spray deposition as binder-free electrodes for supercapacitors. Benefiting from the unique interconnected pore network of the VO2/TiO2 electrodes and the synergistic effect of high-capacity VO2 and stable TiO2, the as-formed binder-free VO2/TiO2 electrode exhibits a high capacity of 86.2 mF cm(-2) (~548 F g(-1)) and satisfactory cyclability with 84.3% retention after 1000 cycles. This work offers an effective and facile strategy for fabricating additive-free composites as high-performance electrodes for supercapacitors.

  19. Single-Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO2 -Filmed Ultramicroelectrode.

    Science.gov (United States)

    Peng, Yue-Yi; Ma, Hui; Ma, Wei; Long, Yi-Tao; Tian, He

    2018-03-26

    An ultrasensitive photoelectrochemical method for achieving real-time detection of single nanoparticle collision events is presented. Using a micrometer-thick nanoparticulate TiO 2 -filmed Au ultra-microelectrode (TiO 2 @Au UME), a sub-millisecond photocurrent transient was observed for an individual N719-tagged TiO 2 (N719@TiO 2 ) nanoparticle and is due to the instantaneous collision process. Owing to a trap-limited electron diffusion process as the rate-limiting step, a random three-dimensional diffusion model was developed to simulate electron transport dynamics in TiO 2 film. The combination of theoretical simulation and high-resolution photocurrent measurement allow electron-transfer information of a single N719@TiO 2 nanoparticle to be quantified at single-molecule accuracy and the electron diffusivity and the electron-collection efficiency of TiO 2 @Au UME to be estimated. This method provides a test for studies of photoinduced electron transfer at the single-nanoparticle level. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Engineering of highly ordered TiO2 nanopore arrays by anodization

    Science.gov (United States)

    Wang, Huijie; Huang, Zhennan; Zhang, Li; Ding, Jie; Ma, Zhaoxia; Liu, Yong; Kou, Shengzhong; Yang, Hangsheng

    2016-07-01

    Finite element analysis was used to simulate the current density distributions in the TiO2 barrier layer formed at the initial stage of Ti anodization. The morphology modification of the barrier layer was found to induce current density distribution change. By starting the anodization with proper TiO2 barrier layer morphology, the current density distribution can be adjusted to favor the formation of either nanotube arrays or nanopore arrays of anodic TiO2. We also found that the addition of sodium acetate into the electrolyte suppressed both the field-assisted chemical dissolution of TiO2 and the TiF62- hydrolysis induced TiO2 deposition during anodization, and thus further favored the nanopore formation. Accordingly, highly ordered anodic TiO2 nanopore arrays, similar to anodic aluminum oxide nanopore arrays, were successfully prepared.

  1. Tensile properties of latex paint films with TiO2 pigment

    Science.gov (United States)

    Hagan, Eric W. S.; Charalambides, Maria N.; Young, Christina T.; Learner, Thomas J. S.; Hackney, Stephen

    2009-05-01

    The tensile properties of latex paint films containing TiO2 pigment were studied with respect to temperature, strain-rate and moisture content. The purpose of performing these experiments was to assist museums in defining safe conditions for modern paintings held in collections. The glass transition temperature of latex paint binders is in close proximity to ambient temperature, resulting in high strain-rate dependence in typical exposure environments. Time dependence of modulus and failure strain is discussed in the context of time-temperature superposition, which was used to extend the experimental time scale. Nonlinear viscoelastic material models are also presented, which incorporate a Prony series with the Ogden or Neo-Hookean hyperelastic function for different TiO2 concentrations.

  2. Cytotoxicity Evaluation of Anatase and Rutile TiO2 Thin Films on CHO-K1 Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Blanca Cervantes

    2016-07-01

    Full Text Available Cytotoxicity of titanium dioxide (TiO2 thin films on Chinese hamster ovary (CHO-K1 cells was evaluated after 24, 48 and 72 h of culture. The TiO2 thin films were deposited using direct current magnetron sputtering. These films were post-deposition annealed at different temperatures (300, 500 and 800 °C toward the anatase to rutile phase transformation. The root-mean-square (RMS surface roughness of TiO2 films went from 2.8 to 8.08 nm when the annealing temperature was increased from 300 to 800 °C. Field emission scanning electron microscopy (FESEM results showed that the TiO2 films’ thickness values fell within the nanometer range (290–310 nm. Based on the results of the tetrazolium dye and trypan blue assays, we found that TiO2 thin films showed no cytotoxicity after the aforementioned culture times at which cell viability was greater than 98%. Independently of the annealing temperature of the TiO2 thin films, the number of CHO-K1 cells on the control substrate and on all TiO2 thin films was greater after 48 or 72 h than it was after 24 h; the highest cell survival rate was observed in TiO2 films annealed at 800 °C. These results indicate that TiO2 thin films do not affect mitochondrial function and proliferation of CHO-K1 cells, and back up the use of TiO2 thin films in biomedical science.

  3. Cytotoxicity Evaluation of Anatase and Rutile TiO2 Thin Films on CHO-K1 Cells in Vitro

    Science.gov (United States)

    Cervantes, Blanca; López-Huerta, Francisco; Vega, Rosario; Hernández-Torres, Julián; García-González, Leandro; Salceda, Emilio; Herrera-May, Agustín L.; Soto, Enrique

    2016-01-01

    Cytotoxicity of titanium dioxide (TiO2) thin films on Chinese hamster ovary (CHO-K1) cells was evaluated after 24, 48 and 72 h of culture. The TiO2 thin films were deposited using direct current magnetron sputtering. These films were post-deposition annealed at different temperatures (300, 500 and 800 °C) toward the anatase to rutile phase transformation. The root-mean-square (RMS) surface roughness of TiO2 films went from 2.8 to 8.08 nm when the annealing temperature was increased from 300 to 800 °C. Field emission scanning electron microscopy (FESEM) results showed that the TiO2 films’ thickness values fell within the nanometer range (290–310 nm). Based on the results of the tetrazolium dye and trypan blue assays, we found that TiO2 thin films showed no cytotoxicity after the aforementioned culture times at which cell viability was greater than 98%. Independently of the annealing temperature of the TiO2 thin films, the number of CHO-K1 cells on the control substrate and on all TiO2 thin films was greater after 48 or 72 h than it was after 24 h; the highest cell survival rate was observed in TiO2 films annealed at 800 °C. These results indicate that TiO2 thin films do not affect mitochondrial function and proliferation of CHO-K1 cells, and back up the use of TiO2 thin films in biomedical science. PMID:28773740

  4. Optical spectroscopy of rare earth ion-doped TiO2 nanophosphors.

    Science.gov (United States)

    Chen, Xueyuan; Luo, Wenqin

    2010-03-01

    Trivalent rare-earth (RE3+) ion-doped TiO2 nanophosphors belong to one kind of novel optical materials and have attracted increasing attention. The luminescence properties of different RE3+ ions in various TiO2 nanomaterials have been reviewed. Much attention is paid to our recent progresses on the luminescence properties of RE3+ (RE = Eu, Er, Sm, Nd) ions in anatase TiO2 nanoparticles prepared by a sol-gel-solvothermal method. Using Eu3+ as a sensitive optical probe, three significantly different luminescence centers of Eu3+ in TiO2 nanoparticles were detected by means of site-selective spectroscopy at 10 K. Based on the crystal-field (CF) splitting of Eu3+ at each site, C2v and D2 symmetries were proposed for Eu3+ incorporated at two lattice sites. A structural model for the formation of multiple sites was proposed based on the optical behaviors of Eu3+ at different sites. Similar multi-site luminescence was observed in Sm(3+)- or Nd(3+)-doped TiO2 nanoparticles. In Eu(3+)-doped TiO2 nanoparticles, only weak energy transfer from the TiO2 host to the Eu3+ ions was observed at 10 K due to the mismatch of energy between the TiO2 band-gap and the Eu3+ excited states. On the contrary, efficient host-sensitized luminescences were realized in Sm(3+)- or Nd(3+)-doped anatase TiO2 nanoparticles due to the match of energy between TiO2 band-gap and the Sm3+ and Nd3+ excited states. The excitation spectra of both Sm(3+)- and Nd(3+)-doped samples exhibit a dominant broad peak centered at approximately 340 nm, which is associated with the band-gap of TiO2, indicating that sensitized emission is much more efficient than direct excitation of the Sm3+ and Nd3+ ions. Single lattice site emission of Er3+ in TiO2 nanocrystals can be achieved by modifying the experimental conditions. Upon excitation by a Ti: sapphire laser at 978 nm, intense green upconverted luminescence was observed. The characteristic emission of Er3+ ions was obtained both in the ultraviolet-visible (UV-vis) and

  5. Ionic liquid intercalated V2O5 nanorods: synthesis and ...

    Indian Academy of Sciences (India)

    Administrator

    materials for lithium ion battery, catalyst for photocata- lytic degradation ... ties.5,6 This compound is widely studied and is a promising material, both in the pure .... Figure 3 shows the Raman spectra of IL-V2O5 nanorods and calcined V2O5 ...

  6. Eu"2"+ doped TiO_2 nano structures synthesized by HYSYCVD for thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Perez A, J. A.; Leal C, A. L.; Melendrez A, R.; Barboza F, M.

    2016-10-01

    Titania (TiO_2) has attracted interest owing his potential applications as dosimetry material given his excellent optical, electrical and thermal properties and the ability to shape his structure make TiO_2 suitable for research and dosimetry applications. In this work, a systematic study to know the magnitude of processing parameters influence on thermoluminescent properties of undoped (TiO_2) and doped (TiO_2:Eu"2"+) nano materials obtained by hybrid precursor systems chemical vapor deposition (HYSYCVD) technique is presented. Synthesis of one dimension nano structures of TiO_2:Eu"2"+ was carried out using K_2TiF_6 and EuCl_2 as dopant at 0.5, 1, 2.5 and 5 wt %. The nano structures samples were irradiated with β-ray in a doses range of 0.083-3000 Gy. All thermoluminescence (Tl) glow curves showed 3 broad Tl peaks around 373, 473 and 573 K, and a dosimetric linear behavior from 0.083 to 300 Gy. The Tl has a good reproducibility, with deviations of around 5%, making these TiO_2:Eu"2"+ nano materials suitable for dosimetric applications. (Author)

  7. Shape and size controlled synthesis of Au nanorods: H{sub 2}S gas-sensing characterizations and antibacterial application

    Energy Technology Data Exchange (ETDEWEB)

    Lanh, Le Thi [College of Sciences, Hue University, 77 Nguyen Hue, Hue City (Viet Nam); Hoa, Tran Thai, E-mail: trthaihoa@yahoo.com [College of Sciences, Hue University, 77 Nguyen Hue, Hue City (Viet Nam); Cuong, Nguyen Duc [College of Sciences, Hue University, 77 Nguyen Hue, Hue City (Viet Nam); Faculty of Hospitality and Tourism, Hue University, 22 Lam Hoang, Hue City (Viet Nam); Khieu, Dinh Quang [College of Sciences, Hue University, 77 Nguyen Hue, Hue City (Viet Nam); Quang, Duong Tuan [College of Education, Hue University, 34 Le Loi, Hue City (Viet Nam); Van Duy, Nguyen; Hoa, Nguyen Duc [International Training Institute for Materials Science, Hanoi University of Science and Technology, Hanoi (Viet Nam); Van Hieu, Nguyen, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science, Hanoi University of Science and Technology, Hanoi (Viet Nam)

    2015-06-25

    Highlights: • We have demonstrated a facile method to prepare colloid Au nanorods. • The size and shape of Au nanorods can be controlled via seed-mediated growth method. • The H{sub 2}S gas-sensing properties have been investigated. • The antibacterial application has been conducted. - Abstract: Controlling their size and shape is one of the important issues in the fundamental study and application of colloidal metal nanoparticles. In the current study, different sizes and shapes of Au nanorods were fabricated using a seed-mediated growth method. Material characterization by X-ray diffraction and transmission electron microscopy revealed that the obtained products were made of single-crystal Au nanorods with an average diameter and length of 10 nm and 40 nm, respectively. The Au nanorod-based sensor exhibited significantly high sensitivity and fast response/recovery time to low concentrations (2.5–10 ppm) of H{sub 2}S at temperatures ranging from 300 °C to 400 °C. Additionally, they exhibited antibacterial effect at low concentration. These results suggested that the fabricated Au nanorods have excellent potential for practical application in air pollution monitoring and biomedicine.

  8. Carbon and TiO_2 synergistic effect on methylene blue adsorption

    International Nuclear Information System (INIS)

    Simonetti, Evelyn Alves Nunes; Simone Cividanes, Luciana de; Campos, Tiago Moreira Bastos; Rossi Canuto de Menezes, Beatriz; Brito, Felipe Sales; Thim, Gilmar Patrocínio

    2016-01-01

    Due to its high efficiency, low cost and a simple operation, the adsorption process is an important and widely used technique for industrial wastewater treatment. Recent studies on the removal of artificial dyes by adsorption include a large number of adsorbents, such as: activated carbon, silicates, carbon nanotube, graphene, fibers, titanates and doped titanates. The carbon insertion in the TiO_2 structure promotes a synergistic effect on the adsorbent composite, improving the adsorption and the charge-transfer efficiency rates. However, there are few studies regarding the adsorption capacity of TiO_2/Carbon composites with the carbon concentration. This study evaluates the effect of carbon (resorcinol/formaldehyde) insertion on TiO_2 structure through the adsorption process. Adsorbents were prepared by varying the carbon weight percentages using the sol-gel method. The physicochemical properties of the catalysts prepared, such as crystallinity, particle size, surface morphology, specific surface area and pore volume were investigated. The kinetic study, adsorption isotherm, pH effect and thermodynamic study were examined in batch experiments using methylene blue as organic molecule. In addition, the effect of carbon phase on the adsorption capacity of TiO_2-carbon composite was deeply investigated. SEM micrographs showed that TiO_2 phase grows along the carbon phase and FT-IR results showed the presence of Ti−O−C chemical bonding. The experiments indicate that the carbon phase acted as a nucleation agent for the growth of TiO_2 during the sol-gel step, with a TiO_2 structure suitable for blue methylene adsorption, resulting in a material with large surface area and slit-like or wedge-shaped pores. Further experiments will show the best carbon concentration for methylene blue adsorption using a TiO_2 based material. - Highlights: • This article deals with the adsorption of methylene blue onto TiO_2-Carbon composite. • The sol-gel synthesis was efficient

  9. Improving photoelectrochemical performance by building Fe{sub 2}O{sub 3} heterostructure on TiO{sub 2} nanorod arrays

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chunlan [Department of Applied Physics, Chongqing University, Chongqing 400044 (China); Key Laboratory of Special Power Supply, Chongqing Communication Institute, Chongqing 400035 (China); Hu, Chenguo, E-mail: hucg@cqu.edu.cn [Department of Applied Physics, Chongqing University, Chongqing 400044 (China); Shen, Weidong [Key Laboratory of Special Power Supply, Chongqing Communication Institute, Chongqing 400035 (China); Wang, Shuxia, E-mail: wangshuxia@cqu.edu.cn [Department of Applied Physics, Chongqing University, Chongqing 400044 (China); Song, Sihong [Key Laboratory of Special Power Supply, Chongqing Communication Institute, Chongqing 400035 (China); Wang, Mingjun [Department of Applied Physics, Chongqing University, Chongqing 400044 (China)

    2015-10-15

    Highlights: • Fe{sub 2}O{sub 3}@TiO{sub 2} heterostructure was fabricated by two-step method. • The photoelectrochemical properties were studied upon visible light irradiation. • Fe{sub 2}O{sub 3}@TiO{sub 2} heterostructure shows superior photoelectrochemical property. • A possible mechanism for enhanced photoelectrochemical property was put forward. - Abstract: Fe{sub 2}O{sub 3}@TiO{sub 2} heterostructure nanorod arrays were synthesized on a fluorine-doped tin oxide conductive (FTO) glass substrate via two-step method for improving photoelectrochemical activity of TiO{sub 2}. The TiO{sub 2} nanorod arrays on FTO substrate were first prepared by hydrothermal method and then Fe{sub 2}O{sub 3} nanoparticles were coated onto the surface of TiO{sub 2} nanorod arrays through chemical bath deposition. The heterojunction yielded a photocurrent density of 39.75 μA cm{sup −2} at a bias potential of 0 V (vs. Ag/AgCl) under visible light irradiation, which is 2.2 times as much as that produced by the pure TiO{sub 2} nanorod arrays. The enhanced photoelectrochemical activity is attributed to the extension of the light response range and efficient separation of photogenerated carriers. Our results have demonstrated the advantage of the novel Fe{sub 2}O{sub 3}@TiO{sub 2} heterojunction and will provide a new path to the fabrication of heterostructural materials.

  10. Photocatalytic Degradation of Methylene Blue Using TiO2 Impregnated Diatomite

    Directory of Open Access Journals (Sweden)

    Ranfang Zuo

    2014-01-01

    Full Text Available Nano-TiO2 showed a good catalytic activity, but it is easy to agglomerate, resulting in the reduction or even complete loss of photocatalytic activity. The dispersion of TiO2 particles on porous materials was a potential solution to this problem. Diatomite has high specific surface and absorbability because of its particular shell structure. Thus, TiO2/diatomite composite, prepared by loading TiO2 on the surface of diatomite, was a good photocatalyst, through absorbing organic compounds with diatomite and degrading them with TiO2. Scanning electron microscopy (SEM, energy dispersive spectrum (EDS, X-ray diffraction (XRD, chemical analysis, and Fourier transform infrared spectrometry (FTIR indicated that TiO2 was impregnated well on the surface of diatomite. Furthermore, TiO2/diatomite was more active than nano-TiO2 for the degradation of methylene blue (MB in solution. MB at concentrations of 15 and 35 ppm can be completely degraded in 20 and 40 min, respectively.

  11. Growth of a sea urchin-like rutile TiO2 hierarchical microsphere film on Ti foil for a quasi-solid-state dye-sensitized solar cell.

    Science.gov (United States)

    Ri, Jin Hyok; Wu, Shufang; Jin, Jingpeng; Peng, Tianyou

    2017-11-30

    A sea urchin-like rutile TiO 2 microsphere (RMS) film was fabricated on Ti foil via a hydrothermal process. The resulting rutile TiO 2 hierarchical microspheres with a diameter of 5-6 μm are composed of nanorods with a diameter of ∼200 nm and a length of 1-2 μm. The sea urchin-like hierarchical structure leads to the Ti foil-based RMS film possessing much better light-scattering capability in the visible region than the bare Ti foil. By using it as an underlayer of a nanosized anatase TiO 2 film (bTPP3) derived from a commercially available paste (TPP3), the corresponding bilayer Ti foil-based quasi-solid-state dye-sensitized solar cell (DSSC) only gives a conversion efficiency of 4.05%, much lower than the single bTPP3 film-based one on Ti foil (5.97%). By spin-coating a diluted TPP3 paste (sTPP3) on the RMS film prior to scraping the bTPP3 film, the resulting RMS/sTPP3/bTPP3 film-based DSSC achieves a significantly enhanced efficiency (7.27%). The electrochemical impedance spectra (EIS) show that the RMS/sTPP3/bTPP3 film possesses better electron transport capability and longer electron lifetime than the bTPP3 film. This work not only provides the first example of directly growing rutile TiO 2 hierarchically structured microsphere film on Ti foil suitable for replacing the rigid, heavy and expensive transparent conductive oxide (TCO) glass substrate to serve as a light-scattering underlayer of Ti foil-based quasi-solid-state DSSCs, but also paves a new route to develop Ti foil-based flexible DSSCs with high efficiency, low cost and a wide application field through optimizing the composition and structure of the photoanode.

  12. A Facile Method for Loading CeO2 Nanoparticles on Anodic TiO2 Nanotube Arrays.

    Science.gov (United States)

    Liao, Yulong; Yuan, Botao; Zhang, Dainan; Wang, Xiaoyi; Li, Yuanxun; Wen, Qiye; Zhang, Huaiwu; Zhong, Zhiyong

    2018-04-03

    In this paper, a facile method was proposed to load CeO 2 nanoparticles (NPs) on anodic TiO 2 nanotube (NT) arrays, which leads to a formation of CeO 2 /TiO 2 heterojunctions. Highly ordered anatase phase TiO 2 NT arrays were fabricated by using anodic oxidation method, then these individual TiO 2 NTs were used as tiny "nano-containers" to load a small amount of Ce(NO 3 ) 3 solutions. The loaded anodic TiO 2 NTs were baked and heated to a high temperature of 450 °C, under which the Ce(NO 3 ) 3 would be thermally decomposed inside those nano-containers. After the thermal decomposition of Ce(NO 3 ) 3 , cubic crystal CeO 2 NPs were obtained and successfully loaded into the anodic TiO 2 NT arrays. The prepared CeO 2 /TiO 2 heterojunction structures were characterized by a variety of analytical technologies, including XRD, SEM, and Raman spectra. This study provides a facile approach to prepare CeO 2 /TiO 2 films, which could be very useful for environmental and energy-related areas.

  13. TiO2 and SiC nanostructured films, organized CNT structures

    Indian Academy of Sciences (India)

    sized nanostructured TiO2 films through hydrolysis of titanium tetra-isopropoxide. (TTIP) [9 ... structured TiO2 as a photocatalyst is as follows [15]:. TiO2(ns) ... The deposited films were easily detached from the silica tube and subjected to. SEM.

  14. Tunable surface wettability and water adhesion of Sb{sub 2}S{sub 3} micro-/nanorod films

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xin; Zhao, Huiping [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Street, Wuhan 430073 (China); Yang, Hao, E-mail: hyangwit@hotmail.com [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Street, Wuhan 430073 (China); Liu, Yunling [State Key laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Yan, Guoping [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Street, Wuhan 430073 (China); Chen, Rong, E-mail: rchenhku@hotmail.com [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Street, Wuhan 430073 (China)

    2014-01-15

    Antimony sulfide (Sb{sub 2}S{sub 3}) films were successfully prepared by spin coating Sb{sub 2}S{sub 3} micro-/nanorods with different sizes on glass slides, which was synthesized via a facile and rapid microwave irradiation method. The prepared Sb{sub 2}S{sub 3} micro-/nanorods and films were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle (CA). The as-prepared Sb{sub 2}S{sub 3} films exhibited different surface wettabilities ranging from superhydrophilicity to superhydrophobicity, which was strongly dependent on the diameter of Sb{sub 2}S{sub 3} micro-/nanorod. Sb{sub 2}S{sub 3} film made by nanorods possessed superhydrophobic surface and high water adhesive property. After surface modification with stearic acid, the superhydrophobic surface exhibited an excellent self-cleaning property owing to its low adhesive force. The clarification of three possible states including Wenzel's state, “Gecko” state and Cassie's state for Sb{sub 2}S{sub 3} film surfaces was also proposed to provide a better understanding of interesting surface phenomena on Sb{sub 2}S{sub 3} films.

  15. Large-scale synthesis of bismuth sulfide nanorods by microwave irradiation

    International Nuclear Information System (INIS)

    Wu Jiliang; Qin Fan; Cheng Gang; Li Hui; Zhang Jiuhong; Xie Yaoping; Yang Haijian; Lu Zhong; Yu Xianglin; Chen Rong

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → Large-scale Bi 2 S 3 nanorods have been prepared by microwave irradiation methods. → CTAB and β-CD are beneficial to the formation of Bi 2 S 3 nanorods. → DMF, EG and DEG were favorable solvents. → Bismuth and sulfur precursors influenced the size and morphology. → A proposed formation mechanism of Bi 2 S 3 nanorods was summarized. - Abstract: Bismuth sulfide (Bi 2 S 3 ) has attracted considerable interest due to its potential applications in thermoelectric and electronic devices, optoelectronic devices, and biomedicine. In this study, large-scale highly crystalline Bi 2 S 3 nanorods were successfully prepared from bismuth citrate and thiourea (Tu) by microwave irradiation methods. The products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM, HRTEM) and selected area electron diffraction (SAED). The influences of reaction time, surfactants, solvents, and precursors on the formation of Bi 2 S 3 nanorods were discussed. The microwave irradiation method reduced reaction time by at least 80% in the synthesis of Bi 2 S 3 nanorods compared with the refluxing method. Cetyltrimethylammonium bromide (CTAB) and β-cyclodextrin (β-CD) were found to be beneficial to the formation of Bi 2 S 3 nanorods. N,N-dimethylformamide, ethylene glycol, and diethylene glycol were the favorable solvents in the fabrication of these nanorods. It was found that different bismuth and sulfur precursors influenced the sizes and morphologies of the Bi 2 S 3 nanorods. The proposed growth mechanism of Bi 2 S 3 nanorods was also discussed.

  16. Low temperature fabrication of perovskite solar cells with TiO2 nanoparticle layers

    International Nuclear Information System (INIS)

    Kanayama, Masato; Oku, Takeo; Suzuki, Atsushi; Yamada, Masahiro; Sakamoto, Hiroki; Minami, Satoshi; Kohno, Kazufumi

    2016-01-01

    TiO 2 /CH 3 NH 3 PbI 3 -based photovoltaic devices were fabricated by a spin-coating method using a mixture solution. TiO 2 require high-temperature processing to achieve suitably high carrier mobility. TiO 2 electron transport layers and TiO 2 scaffold layers for the perovskite were fabricated from TiO 2 nanoparticles with different grain sizes. The photovoltaic properties and microstructures of solar cells were characterized. Nanoparticle sizes of these TiO 2 were 23 nm and 3 nm and the performance of solar cells was improved by combination of two TiO 2 nanoparticles

  17. W-doped TiO2 photoanode for high performance perovskite solar cell

    International Nuclear Information System (INIS)

    Liu, Jinwang; Zhang, Jing; Yue, Guoqiang; Lu, Xingwei; Hu, Ziyang; Zhu, Yuejin

    2016-01-01

    Titanium dioxide (TiO 2 ) with dispersed W-doping shows its capability for efficient electron collection from perovskite to TiO 2 in perovskite solar cell. The conduction band (CB) of TiO 2 moves downward (positive shift) with increasing the tungsten (W) content, which enlarges the energy gap between the CB of TiO 2 and the perovskite. Thus, the efficiency of electron injection from perovskite to TiO 2 is increased. Due to the increased electron injection, W-doped TiO 2 (≤0.2% W content) enhances the short-circuit photocurrent (J sc ) of perovskite solar cell and improves the performance of perovskite solar cell. Perovskite solar cell with 0.1% W-doped photoanode obtains the highest power conversion efficiency (η = 10.6%), which shows enhancement by 13% in J sc and by 17% in η, as compared with the undoped TiO 2 perovskite solar cell.

  18. CdS-sensitized TiO2 nanocorals: hydrothermal synthesis, characterization, application.

    Science.gov (United States)

    Mali, S S; Desai, S K; Dalavi, D S; Betty, C A; Bhosale, P N; Patil, P S

    2011-10-01

    Cadmium sulfide (CdS) nanoparticle-sensitized titanium oxide nanocorals (TNC) were synthesized using a two-step deposition process. The TiO(2) nanocorals were grown on the conducting glass substrates (FTO) using A hydrothermal process and CdS nanoparticles were loaded on TNC using successive ionic layer adsorption and reaction (SILAR) method. The TiO(2), CdS and TiO(2)-CdS samples were characterized by optical absorption, X-ray diffraction (XRD), FT-Raman, FT-IR, scanning electron microscopy (SEM) and contact angle. Further, their photoelectrochemical (PEC) performance was tested in NaOH, Na(2)S-NaOH-S and Na(2)S electrolytes, respectively. When CdS nanoparticles are coated on TNCs, the optical absorption is found to be enhanced and band edge is red-shifted towards visible region. The TiO(2)-CdS sample exhibits improved photoelectrochemical (PEC) performance with maximum short circuit current of (J(sc)) 1.04 mA cm(-2). After applying these TiO(2)-CdS electrodes in photovoltaic cells, the photocurrent was found to be enhanced by 2.7 and 32.5 times, as compared with those of bare CdS and TiO(2) nanocorals films electrodes respectively. Also, the power conversion efficiency of TiO(2)-CdS electrodes is 0.72%, which is enhanced by about 16 and 29 times for TiO(2), CdS samples. This journal is © The Royal Society of Chemistry and Owner Societies 2011

  19. Three-dimensional observation of TiO2 nanostructures by electron tomography

    KAUST Repository

    Suh, Young Joon

    2013-03-01

    Three-dimensional nanostructures of TiO2 related materials including nanotubes, electron acceptor materials in hybrid polymer solar cells, and working electrodes of dye sensitized solar cells (DSSCs) were visualized by electron tomography as well as TEM micrographs. The regions on the wall of TiO2 nanotubes where the streptavidins were attached were elucidated by electron tomogram analysis. The coverage of TiO2 nanotubes by streptavidin was also investigated. The TiO2 nanostructures in hybrid polymer solar cells made by sol-gel and atomic layer deposition (ALD) methods and the morphologies of pores between TiO2 particles in DSSCs were also observed by reconstructed three-dimensional images made by electron tomography. © 2012 Elsevier Ltd.

  20. New trend for synthesizing of magnetic nanorods with titanomaghemite structure

    Energy Technology Data Exchange (ETDEWEB)

    Saber, Osama, E-mail: osmohamed@kfu.edu.sa [Faculty of Science, King Faisal University, P.O. Box 400, Al-Hassa 31982 (Saudi Arabia); Egyptian Petroleum Research Institute, Nasr City, P.O. Box 11727, Cairo (Egypt)

    2016-07-15

    This research aims at developing magnetic and optical materials through fabrication of uniform nanorods by facile and novel technique. In this trend, titanium and iron were successfully combined together forming nanorods without template or high temperature by urea hydrolysis. TEM images showed uniform and homogeneous nanorods with dimensions; 10 nm in width and 50 nm in length. In the same time, fine nanoparticles were observed around the nanorods. With further treatment for the nanorods at high temperature and pressure, FESEM images revealed that the dimensions of the rods slightly increased to be 70 nm in length and 12 nm in width with a complete disappearance of the nanoparticles. Using X-ray diffraction, thermal analyses and infrared spectra in addition to the results of the electron microscopy, the oriented attachment mechanism was suggested for the formation of titanium iron oxides nanorods. The magnetic measurements revealed that the prepared nanorods possess ferromagnetic behavior and exhibit high saturation magnetization. Also, the optical properties showed that the nanorods have high absorption in the visible region and possess low band gap energy. Finally, we concluded that it is probably the first time to prepare nanorods by urea hydrolysis. The advanced optical and magnetic properties give the prepared nanorods relevance to use as building blocks in functional nanoscale devices. - Graphical abstract: The present study has a dual aim for developing new and facile method for fabrication of nanorods containing titanomaghemite structure and improving their optical and magnetic properties - Highlights: • Synthesis of titanium iron oxides nanorods with titanomaghemite structure. • Using urea hydrolysis for preparation of nanorods. • Studying of the effect of pressure and temperature on the nanorods. • Enhancement of the magnetic properties of the nanorods in comparison with the nanoparticles. • Improvement of the optical properties of the nanorods

  1. Comparisons between TiO2- and SiO2-flux assisted TIG welding processes.

    Science.gov (United States)

    Tseng, Kuang-Hung; Chen, Kuan-Lung

    2012-08-01

    This study investigates the effects of flux compounds on the weld shape, ferrite content, and hardness profile in the tungsten inert gas (TIG) welding of 6 mm-thick austenitic 316 L stainless steel plates, using TiO2 and SiO2 powders as the activated fluxes. The metallurgical characterizations of weld metal produced with the oxide powders were evaluated using ferritoscope, optical microscopy, and Vickers microhardness test. Under the same welding parameters, the penetration capability of TIG welding with TiO2 and SiO2 fluxes was approximately 240% and 292%, respectively. A plasma column made with SiO2 flux exhibited greater constriction than that made with TiO2 flux. In addition, an anode root made with SiO2 flux exhibited more condensation than that made with TiO2 flux. Results indicate that energy density of SiO2-flux assisted TIG welding is higher than that of TiO2-flux assisted TIG welding.

  2. Flow-Regulated Growth of Titanium Dioxide (TiO2 ) Nanotubes in Microfluidics.

    Science.gov (United States)

    Fan, Rong; Chen, Xinye; Wang, Zihao; Custer, David; Wan, Jiandi

    2017-08-01

    Electrochemical anodization of titanium (Ti) in a static, bulk condition is used widely to fabricate self-organized TiO 2 nanotube arrays. Such bulk approaches, however, require extended anodization times to obtain long TiO 2 nanotubes and produce only vertically aligned nanotubes. To date, it remains challenging to develop effective strategies to grow long TiO 2 nanotubes in a short period of time, and to control the nanotube orientation. Here, it is shown that the anodic growth of TiO 2 nanotubes is significantly enhanced (≈16-20 times faster) under flow conditions in microfluidics. Flow not only controls the diameter, length, and crystal orientations of TiO 2 nanotubes, but also regulates the spatial distribution of nanotubes inside microfluidic devices. Strikingly, when a Ti thin film is deposited on silicon substrates and anodized in microfluidics, both vertically and horizontally aligned (relative to the bottom substrate) TiO 2 nanotubes can be produced. The results demonstrate previously unidentified roles of flow in the regulation of growth of TiO 2 nanotubes, and provide powerful approaches to effectively grow long, oriented TiO 2 nanotubes, and construct hierarchical TiO 2 nanotube arrays on silicon-based materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis and electrochemical properties of MnO2 nanorods/graphene composites for supercapacitor applications

    International Nuclear Information System (INIS)

    Deng, SiXu; Sun, Dan; Wu, ChunHui; Wang, Hao; Liu, JingBing; Sun, YuXiu; Yan, Hui

    2013-01-01

    MnO 2 nanorods/graphene composite materials have been fabricated using a facile hydrothermal method for supercapacitor applications. The prepared composite materials are characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and transmission electron microscope (TEM). Electrochemical performances are evaluated using cyclic voltammetry (CV), galvanostatic charge–discharge and electrochemical impedance spectrometry (EIS). It indicates that ratio of MnO 2 nanorods to graphene in composite materials has significant influence on the electrochemical performance of composite electrodes. We have achieved the maximum specific capacitance of 218 F g −1 at the scan rate of 5 mV s −1 in 1 M Na 2 SO 4 aqueous solution. Additionally, MnO 2 nanorods/graphene composite materials exhibit highest energy density of 16 Wh kg −1 at power density of 95 W kg −1 and excellent capacitance retention with no more than 6% capacitance loss after 1000 cycles at the most favorable composites ratio

  4. Reaction of silanes in supercritical CO2 with TiO2 and Al2O3.

    Science.gov (United States)

    Gu, Wei; Tripp, Carl P

    2006-06-20

    Infrared spectroscopy was used to investigate the reaction of silanes with TiO2 and Al2O3 using supercritical CO2 (Sc-CO2) as a solvent. It was found that contact of Sc-CO2 with TiO2 leads to partial removal of the water layer and to the formation of carbonate, bicarbonate, and carboxylate species on the surface. Although these carbonate species are weakly bound to the TiO2 surface and can be removed by a N2 purge, they poison the surface, resulting in a lower level of reaction of silanes with TiO2. Specifically, the amount of hexamethyldisilazane adsorbed on TiO2 is about 10% of the value obtained when the reaction is performed from the gas phase. This is not unique to TiO2, as the formation of carbonate species also occurs upon contact of Al2O3 with Sc-CO2 and this leads to a lower level of reaction with hexamethyldisilazane. This is in contrast to reactions of silanes on SiO2 where Sc-CO2 has several advantages over conventional gaseous or nonaqueous methods. As a result, caution needs to be applied when using Sc-CO2 as a solvent for silanization reactions on oxides other than SiO2.

  5. Effect of surface ethoxy groups on photoactivity of TiO2 nanocrystals

    International Nuclear Information System (INIS)

    Tian Lihong; Deng Kejian; Ye Liqun; Zan Lin

    2011-01-01

    TiO 2 nanocrystals modified by ethoxy groups were prepared by a facile nonhydrolytic solvothermal method and characterized by XRD, TEM, TG-DTA and XPS, which showed an enhanced visible-light photocatalytic activity on the degradation of Rhodamine B compared with TiO 2 modified by benzyloxy groups and the 'naked' TiO 2 . The adsorption and degradation pathway of Rhodamine B on TiO 2 modified by ethoxy groups were also investigated. The zeta-potential (ζ) results showed that the TiO 2 modified by ethoxy groups had high negative surface charge, which incited the positive -N(Et) 2 group of RhB absorbing on the TiO 2 surface and preferably led the N-dealkylation pathway under visible light irradiation.

  6. Preparation, characterization and photocatalytic activity of TiO2 ...

    Indian Academy of Sciences (India)

    Photocatalyst; TiO2 nanoparticle; polyaniline; conducting polymer; core-shell nanocomposite. 1. Introduction ..... tine TiO2 nanoparticles, HCl-doped PANI and PANI/TiO2 ..... Karim M R, Lim K T, Lee M S, Kim K and Yeum J H 2009 Synth. Met.

  7. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications

    Science.gov (United States)

    Pan, Xiaoyang; Yang, Min-Quan; Fu, Xianzhi; Zhang, Nan; Xu, Yi-Jun

    2013-04-01

    Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the synthesis of defective TiO2 with oxygen vacancies, and the defect related properties of TiO2 including structural, electronic, optical, dissociative adsorption and reductive properties, which are intimately related to the photocatalytic performance of TiO2. In particular, photocatalytic applications with regard to defective TiO2 are outlined. In addition, we offer some perspectives on the challenge and new direction for future research in this field. We hope that this tutorial minireview would provide some useful contribution to the future design and fabrication of defective semiconductor-based nanomaterials for diverse photocatalytic applications.Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the

  8. Tailoring the Activity for Oxygen Evolution Electrocatalysis on Rutile TiO2(110) by Transition-Metal Substitution

    DEFF Research Database (Denmark)

    Garcia-Mota, Monica; Vojvodic, Aleksandra; Metiu, Horia

    2011-01-01

    The oxygen evolution reaction (OER) on the rutile M-TiO2(110) (M = V, Nb, Ta, Cr, Mo, W, Mn, Fe, Ru, Ir, Ni) surfaces was investigated by using density functional theory calculations. The stability of different doped TiO2 systems was analyzed. The scaling relationship between the binding energies...... of OER intermediates (HOO* versus HO*) is found to follow essentially the same trend as for undoped oxides. Our theoretical analysis shows a lower overpotential associated with OER on the doped M-TiO2(110) than on the undoped TiO2(110). The theoretical activity of Cr-, Mo-, Mn-, and Ir-doped TiO2...

  9. Computational study of TiO2 Brookite (100), (010) and (210) surface doped with Ruthenium for application in Dye Sensitised Solar Cells

    Science.gov (United States)

    Dima, R. S.; Maluta, N. E.; Maphanga, R. R.; Sankaran, V.

    2017-10-01

    Titanium dioxide (TiO2) polymorphs are widely used in many energy-related applications due to their peculiar electronic and physicochemical properties. The electronic structures of brookite TiO2 surfaces doped with transition metal ruthenium have been investigated by ab initio band calculations based on the density functional theory with the planewave ultrasoft pseudopotential method. The generalized gradient approximation (GGA) was used in the scheme of Perdew-Burke-Ernzerhof (PBE) to describe the exchange-correlation functional. All calculations were carried out with CASTEP (Cambridge Sequential Total EnergyPackage) code in Materials Studio of Accelrys Inc. The surface structures of Ru doped TiO2 were constructed by cleaving the 1 × 1 × 1 optimized bulk structure of brookite TiO2. The results indicate that Ru doping can narrow the band gap of TiO2, leading to the improvement in the photoreactivity of TiO2, and simultaneously maintain strong redox potential. The theoretical calculations could provide meaningful guide to develop more active photocatalysts with visible light response.

  10. Enhancement of Y123 dye-sensitized solar cell performance using plasmonic gold nanorods.

    Science.gov (United States)

    Chandrasekhar, P S; Parashar, Piyush K; Swami, Sanjay Kumar; Dutta, Viresh; Komarala, Vamsi K

    2018-04-04

    The role of the surface plasmon resonance (SPR) of gold nanorods (Au NRs) on the performance of Y123 dye-sensitized solar cells (DSSC) was investigated. DSSCs were fabricated by incorporating different concentrations (0.6 to 3.0 wt%) of Au NRs into TiO2 photoanodes. With an increase in the concentration of the Au NRs, the light absorption by the Y123 dye loaded photoanodes enhanced linearly, but the charge extraction was susceptible to the concentration of the Au NRs. With optimized concentrations (∼1.8 wt%) of the Au NRs, the photocurrent of the DSSC enhanced from 12.45 to 15.74 mA cm-2, and the power conversion efficiency (PCE) improved from 5.31 to 8.86%. The DSSC performance was also verified using Au nanoparticles (the PCE was enhanced from 5.31 to 7.72%) for comparison with the Au NR DSSC performance, which demonstrated the advantage of the Au NRs' shape effect with longitudinal SPR due to the modified light interaction. To explain the experimental observations of the plasmonic DSSC, the Au NRs' extinction efficiency and spatial distribution of the near-fields in complete and porous TiO2 media were also estimated using the finite-element method.

  11. Ultraviolet and Visible Photochemistry of Methanol at 3D Mesoporous Networks: TiO2 and Au-TiO2

    Science.gov (United States)

    2013-05-23

    adsorbates are known to bend the bands of n-type semi- conductors ( ZnO , TiO2, etc.) upward, 21,133,134 which drives hole diffusion toward the surface... Electrochemistry of Ω-Functionalized Alkanethiolate-Stabilized Gold Cluster Compounds. J. Am. Chem. Soc. 1996, 118 (17), 4212−4213. (48) Dagan, G.; Tomkiewicz...Tsubota, S.; Haruta, M. FTIR Study of Carbon Monoxide Oxidation and Scrambling at Room Temperature over Gold Supported on ZnO and TiO2. J. Phys. Chem

  12. Zinc vanadate nanorods and their visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Pei, L.Z.; Lin, N.; Wei, T.; Liu, H.D.; Yu, H.Y.

    2015-01-01

    Highlights: • Zinc vanadate nanorods have been synthesized by a facile hydrothermal process. • The size of zinc vanadate nanorods can be controlled by growth conditions. • Zinc vanadate nanorods show good photocatalytic activities of methylene blue under solar light. - Abstract: Zinc vanadate nanorods have been synthesized by a simple hydrothermal process using zinc acetate and sodium vanadate as the raw materials. The zinc vanadate nanorods have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and solid UV–vis diffuse reflectance spectrum. XRD pattern and HRTEM image show that the zinc vanadate nanorods are composed of single crystalline monoclinic Zn 2 V 2 O 7 phase. SEM and TEM observations show that the diameter and length of the zinc vanadate nanorods are 50–100 nm and about 5 μm, respectively. Sodium dodecyl sulfonate (SDS) has an essential role in the formation of zinc vanadate nanorods. The SDS-assisted nucleation and growth process have been proposed to explain the formation and growth of the zinc vanadate nanorods. Solid UV–vis diffuse reflectance spectrum shows that the zinc vanadate nanorods have a band gap of 2.76 eV. The photocatalytic activities of the zinc vanadate nanorods have been evaluated by the photocatalytic degradation of methylene blue (MB) under solar light irradiation. The MB with the concentration of 10 mg L −1 can be degraded totally under the solar light irradiation for 4 h. It is suggested that the zinc vanadate nanorods exhibit promising application potential for the degradation of organic pollutants under solar light irradiation

  13. Manganese oxalate nanorods as ballistic modifier for composite solid propellants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Supriya [Department of Chemistry, DDU Gorakhpur University, Gorakhpur 273009, U.P. (India); Chawla, Mohit [School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, H.P. (India); Siril, Prem Felix, E-mail: prem@iitmandi.ac.in [School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, H.P. (India); Singh, Gurdip [Department of Chemistry, DDU Gorakhpur University, Gorakhpur 273009, U.P. (India)

    2014-12-10

    Highlights: • Manganese oxalate nanorods were prepared using mild thermal precipitation and aging. • The nanorods were found to be efficient ballistic modifier for solid propellants. • The nanorods sensitized the thermolysis of ammonium perchlorate. • Controlled thermal decomposition of nanorods yielded manganese oxide nanoparticles. • MnO nanoparticles formed insitu in the condensed phase enhance the burning rates. - Abstract: Rod-shaped nanostructures of manganese oxalate (MnC{sub 2}O{sub 4}) were synthesized via mild thermal precipitation and aging process. Chemical composition of the MnC{sub 2}O{sub 4} nanorods was confirmed using Fourier transform infra-red (FTIR) spectroscopy and energy dispersive X-ray spectroscopy (EDS). X-ray diffraction (XRD) and selected area electron diffraction (SAED) studies revealed the crystal structure. Field emission scanning electron microscopy (FE-SEM) imaging and high resolution transmission electron microscopy (HR-TEM) were employed to study the structural features of the nanorods. The MnC{sub 2}O{sub 4} nanorods were found to be efficient ballistic modifier for the burning rate enhancement of composite solid propellants (CSPs). Thermal analysis using TGA-DSC showed that MnC{sub 2}O{sub 4} nanorods sensitized the thermal decomposition of ammonium perchlorate (AP) and the CSPs. Controlled thermal decomposition of the MnC{sub 2}O{sub 4} nanorods resulted in the formation of managanese oxide nanoparticles with mesoporosity. A plausible mechanism for the burning rate enhancement using MnC{sub 2}O{sub 4} nanorods was proposed.

  14. ALMA observations of TiO2 around VY Canis Majoris

    Science.gov (United States)

    De Beck, E.; Vlemmings, W.; Muller, S.; Black, J. H.; O'Gorman, E.; Richards, A. M. S.; Baudry, A.; Maercker, M.; Decin, L.; Humphreys, E. M.

    2015-08-01

    Context. Titanium dioxide, TiO2, is a refractory species that could play a crucial role in the dust-condensation sequence around oxygen-rich evolved stars. To date, gas phase TiO2 has been detected only in the complex environment of the red supergiant VY CMa. Aims: We aim to constrain the distribution and excitation of TiO2 around VY CMa in order to clarify its role in dust formation. Methods: We analyse spectra and channel maps for TiO2 extracted from ALMA science verification data. Results: We detect 15 transitions of TiO2, and spatially resolve the emission for the first time. The maps demonstrate a highly clumpy, anisotropic outflow in which the TiO2 emission likely traces gas exposed to the stellar radiation field. An accelerating bipolar-like structure is found, oriented roughly east-west, of which the blue component runs into and breaks up around a solid continuum component. A distinct tail to the south-west is seen for some transitions, consistent with features seen in the optical and near-infrared. Conclusions: We find that a significant fraction of TiO2 remains in the gas phase outside the dust-formation zone and suggest that this species might play only a minor role in the dust-condensation process around extreme oxygen-rich evolved stars like VY CMa. Appendix A is available in electronic form at http://www.aanda.org

  15. Effect of Graphite Doped TiO_2 Nanoparticles on Smoke Degradation

    International Nuclear Information System (INIS)

    Roshasnorlyza Hazan; Mohamad Shahrizal Md Zain; Natrah Syafiqah Rosli

    2016-01-01

    Secondhand smoke affects in the same way as regular smoker. The best solution is to purify the air efficiently and effectively. In this study, we were successfully doped TiO_2 nanoparticle with graphite to accelerate the degradation of cigarette smoke. The graphite doped and undoped TiO_2 nanoparticles were prepared from synthetic rutile using alkaline fusion method and their photo catalytic activity were investigated under visible light irradiation. The photo catalytic activity of the TiO_2 nanoparticles was analyzed in terms of their particle size analysis, crystallization and optical band gap. TiO_2 nanoparticle act as photo catalyzer by utilization of light energy to excite electron-hole pairs in smoke degradation processes. With the aided from graphite in TiO_2 nanoparticles, the smoke degradation was accelerate up to 44.4 %. In this case, graphite helps to reduce optical band gap of TiO_2 nanoparticle, thus increasing excitation of electron from valence band to conduction band. (author)

  16. Recovery TiO2 by leaching process of carbothermic reduced Kalimantan ilmenite

    Science.gov (United States)

    Wahyuningsih, S.; Sari, P. P.; Ramelan, A. H.

    2018-05-01

    Ilmenite naturally occurred in iron titanate (FeTiO3) minerals. The separation of natural ilmenite into TiO2 and Fe2O3 need to be explored to gain the high purity separation product. A new combination method named of carbothermic reduction, acidic-leaching and complexation by EDTA were proposed for separation TiO2 from Ilmenite. Roasting of ilmenite was carried out at 950 °C for 1 h by the addition of activated carbon with mass ratio of ilmenite : activated carbon =4:3. The carbothermic reduction was carried out to yield a high separation of initial content of ilmenite that will be easily to dissolve within hydrochloric acid solution in leaching process. The composition of ilmenite observed by X-Ray Fluoresences (XRF) changed after the carbothermic reduction process and the dominant content is TiO2 (57.56%). X-Ray Diffraction (XRD) of roasted ilmenite composed of decomposed product of ilmenite i.e. hematite (Fe2O3), TiO2 anatase, TiO2 rutile, and inorganic salt. The leaching of the roasted ilmenite has been done by sulphuric acid solution (6 M) to gain the titanyl sulphate solution. Separation of iron impurities of TiO2 gel from titanyl sulphate (TiOSO4) solution was conducted by complexation method using EDTA as a complexation agent. The characteristic of TiO2 obtained using XRD showed that TiO2 is anatase type and the percentage of TiO2 using XRF showed that TiO2 content of 86,03%.

  17. Influence of Different Defects in Vertically Aligned Carbon Nanotubes on TiO2 Nanoparticle Formation through Atomic Layer Deposition.

    Science.gov (United States)

    Acauan, Luiz; Dias, Anna C; Pereira, Marcelo B; Horowitz, Flavio; Bergmann, Carlos P

    2016-06-29

    The chemical inertness of carbon nanotubes (CNT) requires some degree of "defect engineering" for controlled deposition of metal oxides through atomic layer deposition (ALD). The type, quantity, and distribution of such defects rules the deposition rate and defines the growth behavior. In this work, we employed ALD to grow titanium oxide (TiO2) on vertically aligned carbon nanotubes (VACNT). The effects of nitrogen doping and oxygen plasma pretreatment of the CNT on the morphology and total amount of TiO2 were systematically studied using transmission electron microscopy, Raman spectroscopy, and thermogravimetric analysis. The induced chemical changes for each functionalization route were identified by X-ray photoelectron and Raman spectroscopies. The TiO2 mass fraction deposited with the same number of cycles for the pristine CNT, nitrogen-doped CNT, and plasma-treated CNT were 8, 47, and 80%, respectively. We demonstrate that TiO2 nucleation is dependent mainly on surface incorporation of heteroatoms and their distribution rather than structural defects that govern the growth behavior. Therefore, selecting the best way to functionalize CNT will allow us to tailor TiO2 distribution and hence fabricate complex heterostructures.

  18. Synthesis, microstructural characterization and optical properties of CuO nanorods and nanowires obtained by aerosol assisted CVD

    International Nuclear Information System (INIS)

    Lugo-Ruelas, M.; Amézaga-Madrid, P.; Esquivel-Pereyra, O.; Antúnez-Flores, W.; Pizá-Ruiz, P.; Ornelas-Gutiérrez, C.; Miki-Yoshida, M.

    2015-01-01

    Highlights: • Nanorods and nanowires of CuO were successfully synthesized by AACVD technique. • The carrier gas velocity was a determinant factor for the growth of nanorods or nanowires. • The increase of deposition time generates the reduction in the evenness and distribution density. • The crystalline phase of nanorods and nanowires was monoclinic tenorite. - Abstract: Copper oxide is a particularly interesting material because it presents photovoltaic, electrochemical and catalytic properties. Its unique properties are very important in the area of nanotechnology and may be an advantage because these nanomaterials can be applied in the design and manufacture of nanosensors, photocatalysis area, nanolasers switches and transistors. Nowadays one-dimensional nanostructures as nanorods, nanowires, etc., have generated a great importance and have received considerable attention and study due to their unique physical and chemical properties. In this work we report the synthesis, microstructural characterization and optical properties of CuO nanorods and nanowires grown by aerosol assisted chemical vapor deposition onto a CuO, ZnO and TiO 2 thin film covered and bare borosilicate glass substrate. Concentration of the precursor solution and carrier gas flux were previously optimized and fixed at 0.1 mol dm −3 and 5 L min −1 , respectively. Other deposition parameters such as substrate temperature, as well the carrier gas velocity and deposition time were varied from 623 to 973 K, 0.88 to 1.77 m s −1 and 11 to 16 min, respectively. Their influence on the morphology, microstructure and optical properties of the nanorods and nanowires were analyzed. The crystalline structure of the materials was characterized by grazing incidence X-ray diffraction; results indicate the presence of the tenorite phase. Surface morphology and microstructure were studied by field emission scanning electron microscopy, and high resolution transmission electron microscopy. Optical

  19. Double functions of porous TiO2 electrodes on CH3NH3PbI3 perovskite solar cells: Enhancement of perovskite crystal transformation and prohibition of short circuiting

    Directory of Open Access Journals (Sweden)

    Govindhasamy Murugadoss

    2014-08-01

    Full Text Available In order to analyze the crystal transformation from hexagonal PbI2 to CH3NH3PbI3 by the sequential (two-step deposition process, perovskite CH3NH3PbI3 layers were deposited on flat and/or porous TiO2 layers. Although the narrower pores using small nanoparticles prohibited the effective transformation, the porous-TiO2 matrix was able to help the crystal transformation of PbI2 to CH3NH3PbI3 by sequential two-step deposition. The resulting PbI2 crystals in porous TiO2 electrodes did not deteriorate the photovoltaic effects. Moreover, it is confirmed that the porous TiO2 electrode had served the function of prohibiting short circuits between working and counter electrodes in perovskite solar cells.

  20. Reduced graphene oxide is not a universal promoter for photocatalytic activities of TiO2

    Directory of Open Access Journals (Sweden)

    Hui Ling Tan

    2017-03-01

    Full Text Available Addition of reduced graphene oxide (RGO to P25 TiO2 was made and its impacts on photocatalytic oxidation of various organic substances were studied. Although the presence of RGO in TiO2 can enhance certain TiO2-based photocatalytic reactions, it is not a universal observation that can be expected in all types of organic substances. The factor of photocatalytic activity enhancement is strongly affected by the various functional groups appeared in the organic substances. In this work, it is realised that the length of alkyl chain in alcohols and carboxylic acids have the minimum influence on the overall activity while the number of hydroxyl groups can promote the further activity enhancement in the presence of RGO.

  1. Excess electrons in reduced rutile and anatase TiO2

    Science.gov (United States)

    Yin, Wen-Jin; Wen, Bo; Zhou, Chuanyao; Selloni, Annabella; Liu, Li-Min

    2018-05-01

    As a prototypical photocatalyst, TiO2 is a material of scientific and technological interest. In photocatalysis and other applications, TiO2 is often reduced, behaving as an n-type semiconductor with unique physico-chemical properties. In this review, we summarize recent advances in the understanding of the fundamental properties and applications of excess electrons in reduced, undoped TiO2. We discuss the characteristics of excess electrons in the bulk and at the surface of rutile and anatase TiO2 focusing on their localization, spatial distribution, energy levels, and dynamical properties. We examine specific features of the electronic states for photoexcited TiO2, for intrinsic oxygen vacancy and Ti interstitial defects, and for surface hydroxyls. We discuss similarities and differences in the behaviors of excess electrons in the rutile and anatase phases. Finally, we consider the effect of excess electrons on the reactivity, focusing on the interaction between excess electrons and adsorbates.

  2. Low temperature grown ZnO@TiO{sub 2} core shell nanorod arrays for dye sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Gregory Kia Liang [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology, and Research), 3 Research Link, 117602 Singapore (Singapore); Le, Hong Quang, E-mail: lehq@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology, and Research), 3 Research Link, 117602 Singapore (Singapore); Huang, Tang Jiao; Hui, Benjamin Tan Tiong [Department of Materials Science and Engineering (DMSE), Faculty of Engineering National University of Singapore (NUS) BLK E3A, #04-10, 7 Engineering Drive 1, Singapore 117574 (Singapore)

    2014-06-01

    High aspect ratio ZnO nanorod arrays were synthesized on fluorine-doped tin oxide glasses via a low temperature solution method. By adjusting the growth condition and adding polyethylenimine, ZnO nanorod arrays with tunable length were successfully achieved. The ZnO@TiO{sub 2} core shells structures were realized by a fast growth method of immersion into a (NH{sub 4}){sub 2}·TiF{sub 6} solution. Transmission electron microscopy, X-ray Diffraction and energy dispersive X-ray measurements all confirmed the existence of a titania shell uniformly covering the ZnO nanorod's surface. Results of solar cell testing showed that addition of a TiO{sub 2} shell to the ZnO nanorod significantly increased short circuit current (from 4.2 to 5.2 mA/cm{sup 2}), open circuit voltage (from 0.6 V to 0.8 V) and fill factor (from 42.8% to 73.02%). The overall cell efficiency jumped from 1.1% for bare ZnO nanorod to 3.03% for a ZnO@TiO{sub 2} core shell structured solar cell with a 18–22 nm shell thickness, a nearly threefold increase. - Graphical abstract: The synthesis process of coating TiO{sub 2} shell onto ZnO nanorod core is shown schematically. A thin, uniform, and conformal shell had been grown on the surface of the ZnO core after immersing in the (NH{sub 4}){sub 2}·TiF{sub 6} solution for 5–15 min. - Highlights: • ZnO@TiO{sub 2} core shell nanorod has been grown on FTO substrate using low temperature solution method. • TEM, XRD, EDX results confirmed the existing of titana shell, uniformly covered rod's surface. • TiO{sub 2} shell suppressed recombination, demonstrated significant enhancement in cell's efficiency. • Core shell DSSC's efficiency achieved as high as 3.03%, 3 times higher than that of ZnO nanorods.

  3. One-component solution system to prepare nanometric anatase TiO2

    International Nuclear Information System (INIS)

    Trung, Tran; Ha, Chang-Sik

    2004-01-01

    A novel one-pot synthesis route was proposed to prepare nanometric anatase TiO 2 using trichloroethylene as reaction medium, which may have great advantage over multicomponent solution systems when TiO 2 is used as a reinforcing filler for polymers dissolved in trichloroethylene. The anatase TiO 2 nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy and small-angle X-ray scattering (SAXS). It was found that the diameters of TiO 2 nanoparticles are in the range from 5 to 13 nm

  4. Performance of NiFe2O4-SiO2-TiO2 Magnetic Photocatalyst for the Effective Photocatalytic Reduction of Cr(VI in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Mike O. Ojemaye

    2017-01-01

    Full Text Available Investigation into the reduction of Cr(VI in aqueous solution was carried out through some batch photocatalytic studies. The photocatalysts used were silica coated nickel ferrite nanoparticles (NiFe2O4-SiO2, nickel ferrite titanium dioxide (NiFe2O4-TiO2, nickel ferrite silica titanium dioxide (NiFe2O4-SiO2-TiO2, and titanium dioxide (TiO2. The characterization of the materials prepared via stepwise synthesis using coprecipitation and sol-gel methods were carried out with the aid of X-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, Fourier transform infrared (FTIR spectroscopy, thermal gravimetric analysis (TGA, and vibrating sample magnetometry (VSM. The reduction efficiency was studied as a function of pH, photocatalyst dose, and contact time. The effects of silica interlayer between the magnetic photocatalyst materials reveal that reduction efficiency of NiFe2O4-SiO2-TiO2 towards Cr(VI was higher than that of NiFe2O4-TiO2. However, TiO2 was observed to have the highest reduction efficiency at all batch photocatalytic experiments. Kinetics study shows that photocatalytic reduction of Cr(VI obeyed Langmuir-Hinshelwood model and first-order rate kinetics. Regenerability study also suggested that the photocatalyst materials can be reused.

  5. Monodispersed fabrication and dielectric studies on ethylenediamine passivated α-manganese dioxide nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, A. Martin [Research and Development Centre, Bharathiar University, Coimbatore, Tamilnadu (India); Kumar, R. Thilak, E-mail: manojthilak@yahoo.com [Periyar Arts College, Cuddalore-607001, Tamilnadu (India)

    2016-09-15

    Highlights: • Monodispersed ethylenediamine (EDA) passivated α-MnO{sub 2} nanorods were fabricated by inexpensive wet chemical method. • FTIR analysis indicated that surface passivation is strongly influenced by the introduction of the organic ligand. • XRD and HR-SEM revealed the structure and morphology of the fabricated α-MnO{sub 2} nanorods with an average size of about 40 × 200 nm. • Dielectric studies pointed out that the fabricated α-MnO{sub 2} is semiconducting in nature with resistivity, ρ = 1.46 to 5.76 × 10{sup 3} Ωcm. • The optical energy gap for the fabricated α-MnO{sub 2} nanorods is found to be around 1.37 eV. - Abstract: In this present work, pure α-MnO{sub 2} nanorods were fabricated by the reduction of 0.2 m/L of KMnO{sub 4} with 0.2 m/L of Na{sub 2}S{sub 2}O{sub 3}·5H{sub 2}O and by passivating with the organic ligand Ethylenediamine (EDA). The structural, functional, morphological and chemical composition of the nanorods were investigated by X-Ray Diffractometer (XRD), Fourier Transform Infrared Spectrometer (FTIR), High Resolution Scanning Electron Microscope (HR-SEM) and Energy Dispersive X-Ray Spectrometry (EDX). The XRD analysis indicated high crystalline nature of the product and FTIR confirmed the contribution of the organic ligand in surface passivation. HR-SEM image revealed the morphology of the α-MnO{sub 2} nanorods with an average size of about 40 × 200 nm. EDX confirmed the presence of Mn and O in the material. UV–visible spectrophotometery was used to determine the absorption behavior of the nanorods and an indirect band gap of 1.37 eV was acquired by Taucplot. Dielectric studies were carried out using Broadband Dielectric Spectrometer(BDS) and the resistivity was found to be around the semiconductor range (ρ = 1.46 to 5.76 × 10{sup 3} Ωcm).

  6. Theoretical prediction of Grüneisen parameter for SiO_2.TiO_2 bulk metallic glasses

    International Nuclear Information System (INIS)

    Singh, Chandra K.; Pandey, Brijesh K.; Pandey, Anjani K.

    2016-01-01

    The Grüneisen parameter (γ) is very important to decide the limitations for the prediction of thermoelastic properties of bulk metallic glasses. It can be defined in terms of microscopic and macroscopic parameters of the material in which former is based on vibrational frequencies of atoms in the material while later is closely related to its thermodynamic properties. Different formulation and equation of states are used by the pioneer researchers of this field to predict the true sense of Gruneisen parameter for BMG but for SiO_2.TiO_2 very few and insufficient information is available till now. In the present work we have tested the validity of two different isothermal EOS viz. Poirrior-Tarantola EOS and Usual-Tait EOS to predict the true value of Gruneisen parameter for SiO_2.TiO_2 as a function of compression. Using different thermodynamic limitations related to the material constraints and analyzing obtained result it is concluded that the Poirrior-Tarantola EOS gives better numeric values of Grüneisen parameter (γ) for SiO_2.TiO_2 BMG.

  7. Enhanced properties of nanostructured TiO2-graphene composites by rapid sintering

    Science.gov (United States)

    Shon, In-Jin; Yoon, Jin-Kook; Hong, Kyung-Tae

    2018-01-01

    Despite of many attractive properties of TiO2, the drawback of TiO2 ceramic is low fracture toughness for widely industrial application. The method to improve the fracture toughness and hardness has been reported by addition of reinforcing phase to fabricate a nanostructured composite. In this regard, graphene has been evaluated as an ideal second phase in ceramics. Nearly full density of nanostructured TiO2-graphene composite was achieved within one min using pulsed current activated sintering. The effect of graphene on microstructure, fracture toughness and hardness of TiO2-graphene composite was evaluated using Vickers hardness tester and field emission scanning electron microscopy. The grain size of TiO2 in the TiO2-x vol% (x = 0, 1, 3, and 5) graphene composite was greatly reduced with increase in addition of graphene. Both hardness and fracture toughness of TiO2-graphene composites simultaneously increased in the addition of graphene.

  8. Light-induced antifungal activity of TiO2 nanoparticles/ZnO nanowires

    International Nuclear Information System (INIS)

    Haghighi, N.; Abdi, Y.; Haghighi, F.

    2011-01-01

    Antifungal activity of TiO 2 /ZnO nanostructures under visible light irradiation was investigated. A simple chemical method was used to synthesize ZnO nanowires. Zinc acetate dihydrate, Polyvinyl Pyrrolidone and deionized water were used as precursor, capping and solvent, respectively. TiO 2 nanoparticles were deposited on ZnO nanowires using an atmospheric pressure chemical vapor deposition system. X-ray diffraction pattern of TiO 2 /ZnO nano-composite has represented the diffraction peaks relating to the crystal planes of the TiO 2 (anatase and rutile) and ZnO. TiO 2 /ZnO nanostructure antifungal effect on Candida albicans biofilms was studied and compared with the activity of TiO 2 nanoparticles and ZnO nanowires. The high efficiency photocatalytic activity of TiO 2 nanoparticles leads to increased antifungal activity of ZnO nanowires. Scanning electron microscope was utilized to study the morphology of the as prepared nanostructures and the degradation of the yeast.

  9. Adsorption study of a macro-RAFT agent onto SiO2-coated Gd2O3:Eu3+ nanorods: Requirements and limitations

    Science.gov (United States)

    Zou, Hua; Melro, Liliana; de Camargo Chaparro, Thaissa; de Souza Filho, Isnaldi Rodrigues; Ananias, Duarte; Bourgeat-Lami, Elodie; dos Santos, Amilton Martins; Barros-Timmons, Ana

    2017-02-01

    The use of a macromolecular RAFT (macro-RAFT) agent to encapsulate anisotropic nano-objects via emulsion polymerization is an emerging route to prepare polymer/inorganic colloidal nanocomposites. However, a number of requirements have to be fulfilled. This work aims at highlighting the effects of the preparative procedure and dispersion method on the amount of macro-RAFT agent adsorbed onto SiO2-coated Gd2O3:Eu3+ nanorods. The adsorption of macro-RAFT agent was studied using the depletion method with UV-vis spectrophotometry. Measurements were performed at a fixed concentration of nanorods and varying concentrations of the macro-RAFT agent in aqueous dispersion at room temperature. The adsorption isotherms showed that for the same initial macro-RAFT agent concentration, the highest adsorption capacity of the macro-RAFT agent on nanorods was usually achieved for non-calcined thin SiO2-coated nanorods under mild bath sonication.

  10. Photocatalytical Properties and Theoretical Analysis of N, Cd-Codoped TiO2 Synthesized by Thermal Decomposition Method

    Directory of Open Access Journals (Sweden)

    Hongtao Gao

    2012-01-01

    Full Text Available N, Cd-codoped TiO2 have been synthesized by thermal decomposition method. The products were characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, UV-visible diffuse reflectance spectra (DRS, X-ray photoelectron spectroscopy (XPS, and Brunauer-Emmett-Teller (BET specific surface area analysis, respectively. The products represented good performance in photocatalytic degradation of methyl orange. The effect of the incorporation of N and Cd on electronic structure and optical properties of TiO2 was studied by first-principle calculations on the basis of density functional theory (DFT. The impurity states, introduced by N 2p or Cd 5d, lied between the valence band and the conduction band. Due to dopants, the band gap of N, Cd-codoped TiO2 became narrow. The electronic transition from the valence band to conduction band became easy, which could account for the observed photocatalytic performance of N, Cd-codoped TiO2. The theoretical analysis might provide a probable reference for the experimentally element-doped TiO2 synthesis.

  11. The Influence of TiO2 Nanoparticles on LaFeO3/TiO2 Nanocomposites for Reduction of Aqueous Organic Dyes

    International Nuclear Information System (INIS)

    Afifah, N.; Saleh, R.

    2016-01-01

    A series of Lanthanum ferrite (LaFeO3) nanoparticles over titanium dioxide (TiO2) were synthesized using sol-gel method at room temperature by varying the loading of LaFeO3 on TiO2. The magnetic properties of samples were measured using vibrating sample magnetometer and photosonocatalytic activity towards the degradation of methylene blue under light (UV or visible) and ultrasound irradiation was also evaluated. The morphology and structure of the samples were characterized by field emission scanning electron microscope, energy dispersive analysis and X-ray diffraction. Furthermore the optical properties were also characterized by UV-visible diffuse reflectance. The experimental results showed that the prepared perovskites had sphere-like shape and strong visible light absorption. LaFeO3 demonstrated ferromagnetic properties and the magnetization decreased with the incorporation of TiO2 in the samples. However, the incorporation of TiO2 increased the photosonocatalytic activity and extended the photoresponding to UV light. (paper)

  12. Enhanced interfacial contact between PbS and TiO2 layers in quantum dot solar cells using 2D-arrayed TiO2 hemisphere nanostructures

    Science.gov (United States)

    Lee, Wonseok; Ryu, Ilhwan; Lee, Haein; Yim, Sanggyu

    2018-02-01

    Two-dimensionally (2D) arrayed hemispherical nanostructures of TiO2 thin films were successfully fabricated using a simple procedure of spin-coating or dip-coating TiO2 nanoparticles onto 2D close-packed polystyrene (PS) nanospheres, followed by PS extraction. The nanostructured TiO2 film was then used as an n-type layer in a lead sulfide (PbS) colloidal quantum dot solar cell. The TiO2 nanostructure could provide significantly increased contacts with subsequently deposited PbS quantum dot layer. In addition, the periodically arrayed nanostructure could enhance optical absorption of the cell by redirecting the path of the incident light and increasing the path length passing though the active layer. As a result, the power conversion efficiency (PCE) reached 5.13%, which is approximately a 1.7-fold increase over that of the control cell without nanostructuring, 3.02%. This PCE enhancement can mainly be attributed to the increase of the short-circuit current density from 19.6 mA/cm2 to 30.6 mA/cm2, whereas the open-circuit voltage and fill factor values did not vary significantly.

  13. Structural and optical properties of AgCl-sensitized TiO2 (TiO2 @AgCl prepared by a reflux technique under alkaline condition

    Directory of Open Access Journals (Sweden)

    V. A. Mu’izayanti

    Full Text Available Abstract The AgCl-sensitized TiO2 (TiO2@AgCl has been prepared from the precursor of TiO2-rutile type which on its surface adsorb chloride anion (Cl- and various amounts of silver using AgNO3 as starting material: AgNO3/(AgNO3+TiO2 mass ratio of 0.00, 1.14, 3.25, 6.38 and 10.32%. Reflux under alkaline condition was the employed technique. All samples were characterized by X-ray diffraction (XRD and diffuse reflectance UV-vis spectroscopy. The sample without the addition of AgNO3 was analyzed by scanning electron microscope and surface area analyzer. The morphology of the sample showed a distribution of microspheres of approximately 0.5 to 1.0 µm and the specific surface area was 68 m2/g. XRD patterns indicated that the sample without the addition of AgNO3 contained two types of TiO2: rutile (major and anatase (minor, whereas the samples with the addition of AgNO3 consisted of one phase of AgCl and two types of TiO2: rutile and anatase. The bandgaps of the samples were in the range of 2.97 to 3.24 eV, which were very close to the bandgap of intrinsic TiO2 powder. The presence of 0.8, 2.6 and 4.4 wt% of AgCl in each sample resulted in an additional bandgap in visible light region of 1.90, 1.94 and 2.26 eV, respectively, whereas the presence of 9.4 wt% of AgCl in the sample resulted in two bandgaps in visible light region of 1.98 and 1.88 eV.

  14. Ab-initio calculation and experimental observation of room temperature ferromagnetism in 50 keV nitrogen implanted rutile TiO2

    Science.gov (United States)

    Luitel, Homnath; Chakrabarti, Mahuya; Sarkar, A.; Dechoudhury, S.; Bhowmick, D.; Naik, V.; Sanyal, D.

    2018-02-01

    Room temperature magnetic properties of 50 keV N4+ ion beam implanted rutile TiO2 have been theoretically and experimentally studied. Ab-initio calculation under the frame work of density functional theory has been carried out to study the magnetic properties of the different possible nitrogen related defects in TiO2. Spin polarized density of states calculation suggests that both Ninst and NO can induce ferromagnetic ordering in rutile TiO2. In both cases the 2p orbital electrons of nitrogen atom give rise to the magnetic moment in TiO2. The possibility of the formation of N2 molecule in TiO2 system is also studied but in this case no significant magnetic moment has been observed. The magnetic measurements, using SQUID magnetometer, results a ferromagnetic ordering even at room temperature for the 50 keV N4+ ion beam implanted rutile TiO2.

  15. Synthesis and photocatalytic activity of graphene based doped TiO2 nanocomposites

    International Nuclear Information System (INIS)

    Gu, Yongji; Xing, Mingyang; Zhang, Jinlong

    2014-01-01

    Graphical abstract: - Highlights: • Graphene based doped TiO 2 nanocomposites were prepared. • The intimate contact between doped TiO 2 and graphene is achieved simultaneously. • These nanocomposites showed higher photocatalytic activity than TiO 2 and doped TiO 2 . • Photocatalytic mechanism was explained thoroughly. - Abstract: The nanocomposites of reduced graphene oxide based nitrogen doped TiO 2 (N–TiO 2 –RGO) and reduced graphene oxide based nitrogen and vanadium co-doped TiO 2 (N, V–TiO 2 –RGO) were prepared via a facile hydrothermal reaction of graphene oxide and TiO 2 in a water solvent. In this hydrothermal treatment, the reduction of graphene oxide and the intimate contact between nitrogen doped TiO 2 (N–TiO 2 ) or nitrogen and vanadium co-doped TiO 2 (N,V–TiO 2 ) and the RGO sheet is achieved simultaneously. Both N–TiO 2 –RGO and N,V–TiO 2 –RGO nanocomposites exhibit much higher visible light photocatalytic activity than N–TiO 2 and N,V–TiO 2 , and the order of visible light photocatalytic activity is N,V–TiO 2 –RGO > N–TiO 2 –RGO > N,V–TiO 2 > N–TiO 2 > TiO 2 . According to the characterization, the enhanced photocatalytic activity of the nanocomposites is attributed to reasons, such as enhancement of adsorption of pollutants, light absorption intensity, minimizing the recombination of photoinduced electrons and holes and more excited states of these nanocomposites under visible light irradiation. Overall, this work provides a more marked contrast of graphene based semiconductor nanocomposites and a more comprehensive explanation of the mechanism

  16. A DFT-D study of structural and energetic properties of TiO2 modifications

    International Nuclear Information System (INIS)

    Moellmann, Jonas; Ehrlich, Stephan; Tonner, Ralf; Grimme, Stefan

    2012-01-01

    The structures and relative energies of the three naturally occurring modifications of titanium dioxide (rutile, brookite and anatase) were investigated. For an accurate description, atom-pairwise dispersion-corrected density functional theory (DFT-D) was applied. The DFT-D3 scheme was extended non-empirically to improve the description of Ti atoms in bulk systems. New dispersion coefficients were derived from TDDFT calculations for electrostatically embedded TiO 2 clusters. The dispersion coefficient C 6 TiTi is reduced by a factor of 18 compared to the free atom. The three TiO 2 modifications were optimized in periodic plane-wave calculations with dispersion-corrected GGA (PBE, revPBE) and hybrid density functionals (PBE0, revPBE0). The calculated lattice parameters are in good agreement with experimental data, in particular the dispersion-corrected PBE0 and revPBE0 hybrid functionals. Although the observed relative stabilities could not be reproduced in all cases, dispersion corrections improve the results. For an accurate description of bulk metal oxides, London dispersion is a prominent force that should not be neglected when energies and structures are computed with DFT. Additionally, the influence of dispersion interactions on the relaxation of the TiO 2 (110) surface is investigated.

  17. Vapour transport growth of ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Mofor, A.C.; Bakin, A.S.; Elshaer, A.; Waag, A. [Technical University Braunschweig, Institute of Semiconductor Technology, Braunschweig (Germany); Fuhrmann, D.; Hangleiter, A. [Technical University Braunschweig, Institute of Applied Physics, Braunschweig (Germany); Bertram, F.; Christen, J. [University of Magdeburg, Department of Solid State Physics, Magdeburg (Germany)

    2007-07-15

    The fabrication of low-dimensional ZnO structures has attracted enormous attention as such nanostructures are expected to pave the way for many interesting applications in optoelectronics, spin electronics gas sensor technology and biomedicine. Many reported fabrication methods, especially for ZnO nanorods are mostly based on catalyst-assisted growth techniques that employ metal-organic sources and other contaminating agents like graphite to grow ZnO nanorods at relatively high temperatures. We report on catalyst-free vapour-phase epitaxy growth of ZnO nanorods on 6H-SiC and (11-20)Al{sub 2}O{sub 3} using purely elemental sources at relatively low temperatures and growth pressure. ZnO nanorods with widths of 80-900 nm and lengths of up to 12 {mu}m were obtained. Nanorod density on the order of 10{sup 9} cm{sup -2} with homogenous luminescence and high purity was also noted. (orig.)

  18. Electrochemical Behavior of TiO2 Nanoparticle Doped WO3 Thin Films

    Directory of Open Access Journals (Sweden)

    Suvarna R. Bathe

    2014-01-01

    Full Text Available Nanoparticle TiO2 doped WO3 thin films by pulsed spray pyrolysis technique have been studied on fluorine tin doped (FTO and glass substrate. XRD shows amorphous nature for undoped and anatase phase of TiO2 having (101 plane for nanoparticle TiO2 doped WO3 thin film. SEM shows microfibrous reticulated porous network for WO3 with 600 nm fiber diameter and nanocrystalline having size 40 nm for TiO2 nanoparticle doped WO3 thin film. TiO2 nanoparticle doped WO3 thin film shows ~95% reversibility due to may be attributed to nanocrystalline nature of the film, which helpful for charge insertion and deinsertion process. The diffusion coefficient for TiO2 nanoparticle doped WO3 film is less than undoped WO3.

  19. Chemically synthesized TiO2 and PANI/TiO2 thin films for ethanol sensing applications

    Science.gov (United States)

    Gawri, Isha; Ridhi, R.; Singh, K. P.; Tripathi, S. K.

    2018-02-01

    Ethanol sensing properties of chemically synthesized titanium dioxide (TiO2) and polyaniline/titanium dioxide nanocomposites (PANI/TiO2) had been performed at room temperature. In-situ oxidative polymerization process had been employed with aniline as a monomer in presence of anatase titanium dioxide nanoparticles. The prepared samples were structurally and morphologically characterized by x-ray diffraction, fourier transform infrared spectra, high resolution-transmission electron microscopy and field emission-scanning electron microscopy. The crystallinity of PANI/TiO2 nanocomposite was revealed by XRD and FTIR spectra confirmed the presence of chemical bonding between the polymer chains and metal oxide nanoparticles. HR-TEM micrographs depicted that TiO2 particles were embedded in polymer matrix, which provides an advantage over pure TiO2 nanoparticles in efficient adsorption of vapours. These images also revealed that the TiO2 nanoparticles were irregular in shape with size around 17 nm. FE-SEM studies revealed that in the porous structure of PANI/TiO2 film, the intercalation of TiO2 in PANI chains provides an advantage over pure TiO2 film for uniform interaction with ethanol vapors. The sensitivity values of prepared samples were examined towards ethanol vapours at room temperature. The PANI/TiO2 nanocomposite exhibited better sensing response and faster response-recovery examined at different ethanol concentrations ranging from 5 ppm to 20 ppm in comparison to pure TiO2 nanoparticles. The increase in vapour sensing of PANI/TiO2 sensing film as compared to pure TiO2 film had been explained in detail with the help of gas sensing mechanism of TiO2 and PANI/TiO2. This provides strong evidence that gas sensing properties of TiO2 had been considerably improved and enhanced with the addition of polymer matrix.

  20. Integrated titanium dioxide (TiO_2) nanoparticles on interdigitated device electrodes (IDEs) for pH analysis

    International Nuclear Information System (INIS)

    Azizah, N.; Gopinath, Subash C. B.; Nadzirah, Sh.; Farehanim, M. A.; Fatin, M. F.; Ruslinda, A. R.; Hashim, U.; Arshad, M. K. Md.; Ayub, R. M.

    2016-01-01

    Titanium dioxide (TiO_2) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of pH sensors using IDE nanocoated with TiO_2 was studied in this paper. In this paper, a preliminary assessment of this intracellular sensor with electrical measurement under different pH levels. 3-aminopropyltriethoxysilane (APTES) was used to enhance the sensitivity of titanium dioxide layer as well as able to provide surface modification by undergoing protonation and deprotonation process. Different types of pH solution provide different resistivity and conductivity towards the surface. Base solution has the higher current compared to an acid solution. Amine and oxide functionalized TiO_2 based IDE exhibit pH-dependent could be understood in terms of the change in surface charge during protonation and deprotonation. The simple fabrication process, high sensitivity, and fast response of the TiO_2 based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO_2 based IDE for sensitive, label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.