International Nuclear Information System (INIS)
Weinberg, S.
1989-01-01
Cosmological constant problem is discussed. History of the problem is briefly considered. Five different approaches to solution of the problem are described: supersymmetry, supergravity, superstring; anthropic approach; mechamism of lagrangian alignment; modification of gravitation theory and quantum cosmology. It is noted that approach, based on quantum cosmology is the most promising one
The cosmological constant problem
International Nuclear Information System (INIS)
Dolgov, A.D.
1989-05-01
A review of the cosmological term problem is presented. Baby universe model and the compensating field model are discussed. The importance of more accurate data on the Hubble constant and the Universe age is stressed. 18 refs
Cosmological constants and variations
International Nuclear Information System (INIS)
Barrow, John D
2005-01-01
We review properties of theories for the variation of the gravitation and fine structure 'constants'. We highlight some general features of the cosmological models that exist in these theories with reference to recent quasar data that is consistent with time-variation in the fine structure 'constant' since a redshift of 3.5. The behaviour of a simple class of varying alpha cosmologies is outlined in the light of all the observational constraints. We also discuss some of the consequences of varying 'constants' for oscillating universes and show by means of exact solutions that they appear to evolve monotonically in time even though the scale factor of the universe oscillates
Scalar-tensor cosmology with cosmological constant
International Nuclear Information System (INIS)
Maslanka, K.
1983-01-01
The equations of scalar-tensor theory of gravitation with cosmological constant in the case of homogeneous and isotropic cosmological model can be reduced to dynamical system of three differential equations with unknown functions H=R/R, THETA=phi/phi, S=e/phi. When new variables are introduced the system becomes more symmetrical and cosmological solutions R(t), phi(t), e(t) are found. It is shown that when cosmological constant is introduced large class of solutions which depend also on Dicke-Brans parameter can be obtained. Investigations of these solutions give general limits for cosmological constant and mean density of matter in plane model. (author)
Quintessence and the cosmological constant
International Nuclear Information System (INIS)
Doran, M.; Wetterich, C.
2003-01-01
Quintessence -- the energy density of a slowly evolving scalar field -- may constitute a dynamical form of the homogeneous dark energy in the universe. We review the basic idea in the light of the cosmological constant problem. Cosmological observations or a time variation of fundamental 'constants' can distinguish quintessence from a cosmological constant
Relaxing a large cosmological constant
International Nuclear Information System (INIS)
Bauer, Florian; Sola, Joan; Stefancic, Hrvoje
2009-01-01
The cosmological constant (CC) problem is the biggest enigma of theoretical physics ever. In recent times, it has been rephrased as the dark energy (DE) problem in order to encompass a wider spectrum of possibilities. It is, in any case, a polyhedric puzzle with many faces, including the cosmic coincidence problem, i.e. why the density of matter ρ m is presently so close to the CC density ρ Λ . However, the oldest, toughest and most intriguing face of this polyhedron is the big CC problem, namely why the measured value of ρ Λ at present is so small as compared to any typical density scale existing in high energy physics, especially taking into account the many phase transitions that our Universe has undergone since the early times, including inflation. In this Letter, we propose to extend the field equations of General Relativity by including a class of invariant terms that automatically relax the value of the CC irrespective of the initial size of the vacuum energy in the early epochs. We show that, at late times, the Universe enters an eternal de Sitter stage mimicking a tiny positive cosmological constant. Thus, these models could be able to solve the big CC problem without fine-tuning and have also a bearing on the cosmic coincidence problem. Remarkably, they mimic the ΛCDM model to a large extent, but they still leave some characteristic imprints that should be testable in the next generation of experiments.
Cosmological Hubble constant and nuclear Hubble constant
International Nuclear Information System (INIS)
Horbuniev, Amelia; Besliu, Calin; Jipa, Alexandru
2005-01-01
The evolution of the Universe after the Big Bang and the evolution of the dense and highly excited nuclear matter formed by relativistic nuclear collisions are investigated and compared. Values of the Hubble constants for cosmological and nuclear processes are obtained. For nucleus-nucleus collisions at high energies the nuclear Hubble constant is obtained in the frame of different models involving the hydrodynamic flow of the nuclear matter. Significant difference in the values of the two Hubble constant - cosmological and nuclear - is observed
Origin of a small cosmological constant in a brane world
International Nuclear Information System (INIS)
Ghoroku, Kazuo; Yahiro, Masanobu
2002-01-01
We address the relation between the parameters of an accelerating brane universe embedded in five-dimensional bulk space. It is pointed out that the tiny cosmological constant of our world can be obtained as quantum corrections around a given brane solution in the bulk theory or in the field theory on the boundary from a holographic viewpoint. Some implications to the cosmology and constraints on the parameters are also given
A null test of the cosmological constant
International Nuclear Information System (INIS)
Chiba, Takeshi; Nakamura, Takashi
2007-01-01
We provide a consistency relation between cosmological observables in general relativity with the cosmological constant. Breaking of this relation at any redshift would imply the breakdown of the hypothesis of the cosmological constant as an explanation of the current acceleration of the universe. (author)
Graviton fluctuations erase the cosmological constant
Wetterich, C.
2017-10-01
Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. The functional renormalization flow drives a positive cosmological constant towards zero, solving the cosmological constant problem without the need to tune parameters. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Within variable gravity, with effective Planck mass proportional to the scalar field, we find that the potential increases asymptotically at most quadratically with the scalar field. The solutions of the derived cosmological equations lead to an asymptotically vanishing cosmological "constant" in the infinite future, providing for dynamical dark energy in the present cosmological epoch. Beyond a solution of the cosmological constant problem, our simplified computation also entails a sizeable positive graviton-induced anomalous dimension for the quartic Higgs coupling in the ultraviolet regime, substantiating the successful prediction of the Higgs boson mass within the asymptotic safety scenario for quantum gravity.
Energy, stability and cosmological constant
International Nuclear Information System (INIS)
Deser, S.
1982-01-01
The definition of energy and its use in studying stability in general relativity are extended to the case when there is a nonvanishing cosmological constant Λ. Existence of energy is first demonstrated for any model (with arbitrary Λ). It is defined with respect to sets of solutions tending asymptotically to any background space possessing timelike Killing symmetry, and is both conserved and of flux integral form. When Λ O, small excitations about De Sitter space are stable inside the event horizon. Outside excitations can contribute negatively due to the Killing vector's flip at the horizon. This is a universal phenomenon associated with the possibility of Hawking radiation. Apart from this effect, the Λ>O theory appears to be stable, also at the semi-classical level. (author)
Asympotics with positive cosmological constant
Bonga, Beatrice; Ashtekar, Abhay; Kesavan, Aruna
2014-03-01
Since observations to date imply that our universe has a positive cosmological constant, one needs an extension of the theory of isolated systems and gravitational radiation in full general relativity from the asymptotically flat to asymptotically de Sitter space-times. In current definitions, one mimics the boundary conditions used in asymptotically AdS context to conclude that the asymptotic symmetry group is the de Sitter group. However, these conditions severely restricts radiation and in fact rules out non-zero flux of energy, momentum and angular momentum carried by gravitational waves. Therefore, these formulations of asymptotically de Sitter space-times are uninteresting beyond non-radiative spacetimes. The situation is compared and contrasted with conserved charges and fluxes at null infinity in asymptotically flat space-times.
On special relativity with cosmological constant
International Nuclear Information System (INIS)
Guo Hanying; Huang Chaoguang; Xu Zhan; Zhou Bin
2004-01-01
Based on the principle of relativity and the postulate of invariant speed and length, we propose the theory of special relativity with cosmological constant SRc,R, in which the cosmological constant is linked with the invariant length. Its relation with the doubly special relativity is briefly mentioned
Zero cosmological constant from normalized general relativity
International Nuclear Information System (INIS)
Davidson, Aharon; Rubin, Shimon
2009-01-01
Normalizing the Einstein-Hilbert action by the volume functional makes the theory invariant under constant shifts in the Lagrangian. The associated field equations then resemble unimodular gravity whose otherwise arbitrary cosmological constant is now determined as a Machian universal average. We prove that an empty space-time is necessarily Ricci tensor flat, and demonstrate the vanishing of the cosmological constant within the scalar field paradigm. The cosmological analysis, carried out at the mini-superspace level, reveals a vanishing cosmological constant for a universe which cannot be closed as long as gravity is attractive. Finally, we give an example of a normalized theory of gravity which does give rise to a non-zero cosmological constant.
A natural cosmological constant from chameleons
International Nuclear Information System (INIS)
Nastase, Horatiu; Weltman, Amanda
2015-01-01
We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT)-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero) and the coincidence problem (why Λ is comparable to the matter density now)
A natural cosmological constant from chameleons
Directory of Open Access Journals (Sweden)
Horatiu Nastase
2015-07-01
Full Text Available We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero and the coincidence problem (why Λ is comparable to the matter density now.
A natural cosmological constant from chameleons
Energy Technology Data Exchange (ETDEWEB)
Nastase, Horatiu, E-mail: nastase@ift.unesp.br [Instituto de Física Teórica, UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. II, Sao Paulo 01140-070, SP (Brazil); Weltman, Amanda, E-mail: amanda.weltman@uct.ac.za [Astrophysics, Cosmology & Gravity Center, Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7700 (South Africa)
2015-07-30
We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT)-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero) and the coincidence problem (why Λ is comparable to the matter density now)
Cosmological constant and advanced gravitational wave detectors
International Nuclear Information System (INIS)
Wang, Y.; Turner, E.L.
1997-01-01
Interferometric gravitational wave detectors could measure the frequency sweep of a binary inspiral (characterized by its chirp mass) to high accuracy. The observed chirp mass is the intrinsic chirp mass of the binary source multiplied by (1+z), where z is the redshift of the source. Assuming a nonzero cosmological constant, we compute the expected redshift distribution of observed events for an advanced LIGO detector. We find that the redshift distribution has a robust and sizable dependence on the cosmological constant; the data from advanced LIGO detectors could provide an independent measurement of the cosmological constant. copyright 1997 The American Physical Society
Interacting universes and the cosmological constant
International Nuclear Information System (INIS)
Alonso-Serrano, A.; Bastos, C.; Bertolami, O.; Robles-Pérez, S.
2013-01-01
In this Letter it is studied the effects that an interaction scheme among universes can have in the values of their cosmological constants. In the case of two interacting universes, the value of the cosmological constant of one of the universes becomes very close to zero at the expense of an increasing value of the cosmological constant of the partner universe. In the more general case of a chain of N interacting universes with periodic boundary conditions, the spectrum of the Hamiltonian splits into a large number of levels, each of them associated with a particular value of the cosmological constant, that can be occupied by single universes revealing a collective behavior that plainly shows that the multiverse is much more than the mere sum of its parts
Interacting universes and the cosmological constant
Energy Technology Data Exchange (ETDEWEB)
Alonso-Serrano, A. [Centro de Física “Miguel Catalán”, Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 121, 28006 Madrid (Spain); Estación Ecológica de Biocosmología, Pedro de Alvarado 14, 06411 Medellín (Spain); Bastos, C. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Bertolami, O. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Robles-Pérez, S., E-mail: salvarp@imaff.cfmac.csic.es [Centro de Física “Miguel Catalán”, Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 121, 28006 Madrid (Spain); Estación Ecológica de Biocosmología, Pedro de Alvarado 14, 06411 Medellín (Spain); Física Teórica, Universidad del País Vasco, Apartado 644, 48080 Bilbao (Spain)
2013-02-12
In this Letter it is studied the effects that an interaction scheme among universes can have in the values of their cosmological constants. In the case of two interacting universes, the value of the cosmological constant of one of the universes becomes very close to zero at the expense of an increasing value of the cosmological constant of the partner universe. In the more general case of a chain of N interacting universes with periodic boundary conditions, the spectrum of the Hamiltonian splits into a large number of levels, each of them associated with a particular value of the cosmological constant, that can be occupied by single universes revealing a collective behavior that plainly shows that the multiverse is much more than the mere sum of its parts.
Wormholes and the cosmological constant problem.
Klebanov, I.
The author reviews the cosmological constant problem and the recently proposed wormhole mechanism for its solution. Summation over wormholes in the Euclidean path integral for gravity turns all the coupling parameters into dynamical variables, sampled from a probability distribution. A formal saddle point analysis results in a distribution with a sharp peak at the cosmological constant equal to zero, which appears to solve the cosmological constant problem. He discusses the instabilities of the gravitational Euclidean path integral and the difficulties with its interpretation. He presents an alternate formalism for baby universes, based on the "third quantization" of the Wheeler-De Witt equation. This approach is analyzed in a minisuperspace model for quantum gravity, where it reduces to simple quantum mechanics. Once again, the coupling parameters become dynamical. Unfortunately, the a priori probability distribution for the cosmological constant and other parameters is typically a smooth function, with no sharp peaks.
A new cosmological paradigm: the cosmological constant and dark matter
International Nuclear Information System (INIS)
Krauss, L.M.
1998-01-01
The Standard Cosmological Model of the 1980 close-quote s is no more. I describe the definitive evidence that the density of matter is insufficient to result in a flat universe, as well as the mounting evidence that the cosmological constant is not zero. I finally discuss the implications of these results for particle physics and direct searches for non-baryonic dark matter. copyright 1998 American Institute of Physics
Varying Constants, Gravitation and Cosmology
Directory of Open Access Journals (Sweden)
Jean-Philippe Uzan
2011-03-01
Full Text Available Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. Thus, it is of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, solar system observations, meteorite dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.
Cosmological constant is a conserved charge
Chernyavsky, Dmitry; Hajian, Kamal
2018-06-01
Cosmological constant can always be considered as the on-shell value of a top form in gravitational theories. The top form is the field strength of a gauge field, and the theory enjoys a gauge symmetry. We show that cosmological constant is the charge of the global part of the gauge symmetry, and is conserved irrespective of the dynamics of the metric and other fields. In addition, we introduce its conjugate chemical potential, and prove the generalized first law of thermodynamics which includes variation of cosmological constant as a conserved charge. We discuss how our new term in the first law is related to the volume–pressure term. In parallel with the seminal Wald entropy, this analysis suggests that pressure can also be considered as a conserved charge.
Fast optimization algorithms and the cosmological constant
Bao, Ning; Bousso, Raphael; Jordan, Stephen; Lackey, Brad
2017-11-01
Denef and Douglas have observed that in certain landscape models the problem of finding small values of the cosmological constant is a large instance of a problem that is hard for the complexity class NP (Nondeterministic Polynomial-time). The number of elementary operations (quantum gates) needed to solve this problem by brute force search exceeds the estimated computational capacity of the observable Universe. Here we describe a way out of this puzzling circumstance: despite being NP-hard, the problem of finding a small cosmological constant can be attacked by more sophisticated algorithms whose performance vastly exceeds brute force search. In fact, in some parameter regimes the average-case complexity is polynomial. We demonstrate this by explicitly finding a cosmological constant of order 10-120 in a randomly generated 1 09-dimensional Arkani-Hamed-Dimopoulos-Kachru landscape.
Conformally invariant braneworld and the cosmological constant
International Nuclear Information System (INIS)
Guendelman, E.I.
2004-01-01
A six-dimensional braneworld scenario based on a model describing the interaction of gravity, gauge fields and 3+1 branes in a conformally invariant way is described. The action of the model is defined using a measure of integration built of degrees of freedom independent of the metric. There is no need to fine tune any bulk cosmological constant or the tension of the two (in the scenario described here) parallel branes to obtain zero cosmological constant, the only solutions are those with zero 4D cosmological constant. The two extra dimensions are compactified in a 'football' fashion and the branes lie on the two opposite poles of the compact 'football-shaped' sphere
The Cosmological Constant Problem (1/2)
CERN. Geneva
2015-01-01
I will review the cosmological constant problem as a serious challenge to our notion of naturalness in Physics. Weinberg’s no go theorem is worked through in detail. I review a number of proposals possibly including Linde's universe multiplication, Coleman's wormholes, the fat graviton, and SLED, to name a few. Large distance modifications of gravity are also discussed, with causality considerations pointing towards a global modification as being the most sensible option. The global nature of the cosmological constant problem is also emphasized, and as a result, the sequestering scenario is reviewed in some detail, demonstrating the cancellation of the Standard Model vacuum energy through a global modification of General Relativity.
The Cosmological Constant Problem (2/2)
CERN. Geneva
2015-01-01
I will review the cosmological constant problem as a serious challenge to our notion of naturalness in Physics. Weinberg’s no go theorem is worked through in detail. I review a number of proposals possibly including Linde's universe multiplication, Coleman's wormholes, the fat graviton, and SLED, to name a few. Large distance modifications of gravity are also discussed, with causality considerations pointing towards a global modification as being the most sensible option. The global nature of the cosmological constant problem is also emphasized, and as a result, the sequestering scenario is reviewed in some detail, demonstrating the cancellation of the Standard Model vacuum energy through a global modification of General Relativity.
Cosmological constant in the quantum multiverse
International Nuclear Information System (INIS)
Larsen, Grant; Nomura, Yasunori; Roberts, Hannes L. L.
2011-01-01
Recently, a new framework for describing the multiverse has been proposed which is based on the principles of quantum mechanics. The framework allows for well-defined predictions, both regarding global properties of the universe and outcomes of particular experiments, according to a single probability formula. This provides complete unification of the eternally inflating multiverse and many worlds in quantum mechanics. In this paper, we elucidate how cosmological parameters can be calculated in this framework, and study the probability distribution for the value of the cosmological constant. We consider both positive and negative values, and find that the observed value is consistent with the calculated distribution at an order of magnitude level. In particular, in contrast to the case of earlier measure proposals, our framework prefers a positive cosmological constant over a negative one. These results depend only moderately on how we model galaxy formation and life evolution therein.
The Nature of the Cosmological Constant Problem
Maia, M. D.; Capistrano, A. J. S.; Monte, E. M.
General relativity postulates the Minkowski space-time as the standard (flat) geometry against which we compare all curved space-times and also as the gravitational ground state where particles, quantum fields and their vacua are defined. On the other hand, experimental evidences tell that there exists a non-zero cosmological constant, which implies in a deSitter ground state, which not compatible with the assumed Minkowski structure. Such inconsistency is an evidence of the missing standard of curvature in Riemann's geometry, which in general relativity manifests itself in the form of the cosmological constant problem. We show how the lack of a curvature standard in Riemann's geometry can be fixed by Nash's theorem on metric perturbations. The resulting higher dimensional gravitational theory is more general than general relativity, similar to brane-world gravity, but where the propagation of the gravitational field along the extra dimensions is a mathematical necessity, rather than a postulate. After a brief introduction to Nash's theorem, we show that the vacuum energy density must remain confined to four-dimensional space-times, but the cosmological constant resulting from the contracted Bianchi identity represents a gravitational term which is not confined. In this case, the comparison between the vacuum energy and the cosmological constant in general relativity does not make sense. Instead, the geometrical fix provided by Nash's theorem suggests that the vacuum energy density contributes to the perturbations of the gravitational field.
Can the cosmological constant undergo abrupt changes?
Cabo-Montes de Oca, Alejandro; Rosabal, A; Cabo, Alejandro; Garcia-Chung, Alejandro; Rosabal, Alejandro
2005-01-01
The existence of a simple spherically symmetric and static solution of the Einstein equations in the presence of a cosmological constant vanishing outside a definite value of the radial distance is investigated. A particular succession of field configurations, which are solutions of the Einstein equations in the presence of the considered cosmological term and auxiliary external sources, is constructed. Then, it is shown that the associated succession of external sources tend to zero in the sense of the generalized functions. The type of weak solution that is found becomes the deSitter homogeneous space-time for the interior region, and the Schwartzschild space in the outside zone.
Vanishing cosmological constant in elementary particles theory
International Nuclear Information System (INIS)
Pisano, F.; Tonasse, M.D.
1997-01-01
The quest of a vanishing cosmological constant is considered in the simplest anomaly-free chiral gauge extension of the electroweak standard model where the new physics is limited to a well defined additional flavordynamics above the Fermi scale, namely up to a few TeVs by matching the gauge coupling constants at the electroweak scale, and with an extended Higgs structure. In contrast to the electroweak standard model, it is shown how the extended scalar sector of the theory allows a vanishing or a very small cosmological constant. the details of the cancellation mechanism are presented. At accessible energies the theory is indistinguishable from the standard model of elementary particles and it is in agreement with all existing data. (author). 32 refs
Wave packets in quantum cosmology and the cosmological constant
International Nuclear Information System (INIS)
Kiefer, C.
1990-01-01
Wave packets are constructed explicitly in minisuperspace of quantum gravity corresponding to a Friedmann universe containing a conformally coupled scalar field with and without a cosmological constant. The construction is performed in close analogy to the case of constructing coherent states in quantum mechanics. Various examples are also depicted numerically. The corresponding lorentzian path integrals are evaluated for some cases. It is emphasized that the new concept of time in quantum gravity demands the imposition of a kind of boundary conditions not encountered in quantum gravity demands the imposition of a kind of boundary conditions not encountered in quantum mechanics. Connection is also made to recent investigations predicting a vanishing cosmological constant. It is shown that the fact of whether this result is generic or not depends on where the boundary conditions are imposed in the configuration space. (orig.)
Some Dynamical Effects of the Cosmological Constant
Axenides, M.; Floratos, E. G.; Perivolaropoulos, L.
Newton's law gets modified in the presence of a cosmological constant by a small repulsive term (antigravity) that is proportional to the distance. Assuming a value of the cosmological constant consistent with the recent SnIa data (Λ~=10-52 m-2), we investigate the significance of this term on various astrophysical scales. We find that on galactic scales or smaller (less than a few tens of kpc), the dynamical effects of the vacuum energy are negligible by several orders of magnitude. On scales of 1 Mpc or larger however we find that the vacuum energy can significantly affect the dynamics. For example we show that the velocity data in the local group of galaxies correspond to galactic masses increased by 35% in the presence of vacuum energy. The effect is even more important on larger low density systems like clusters of galaxies or superclusters.
Cosmological Constant and the Final Anthropic Hypothesis
Cirkovic, Milan M.; Bostrom, Nick
1999-01-01
The influence of recent detections of a finite vacuum energy ("cosmological constant") on our formulation of anthropic conjectures, particularly the so-called Final Anthropic Principle is investigated. It is shown that non-zero vacuum energy implies the onset of a quasi-exponential expansion of our causally connected domain ("the universe") at some point in the future, a stage similar to the inflationary expansion at the very beginning of time. The transition to this future inflationary phase...
How does pressure gravitate? Cosmological constant problem confronts observational cosmology
Narimani, Ali; Afshordi, Niayesh; Scott, Douglas
2014-08-01
An important and long-standing puzzle in the history of modern physics is the gross inconsistency between theoretical expectations and cosmological observations of the vacuum energy density, by at least 60 orders of magnitude, otherwise known as the cosmological constant problem. A characteristic feature of vacuum energy is that it has a pressure with the same amplitude, but opposite sign to its energy density, while all the precision tests of General Relativity are either in vacuum, or for media with negligible pressure. Therefore, one may wonder whether an anomalous coupling to pressure might be responsible for decoupling vacuum from gravity. We test this possibility in the context of the Gravitational Aether proposal, using current cosmological observations, which probe the gravity of relativistic pressure in the radiation era. Interestingly, we find that the best fit for anomalous pressure coupling is about half-way between General Relativity (GR), and Gravitational Aether (GA), if we include Planck together with WMAP and BICEP2 polarization cosmic microwave background (CMB) observations. Taken at face value, this data combination excludes both GR and GA at around the 3 σ level. However, including higher resolution CMB observations (``highL'') or baryonic acoustic oscillations (BAO) pushes the best fit closer to GR, excluding the Gravitational Aether solution to the cosmological constant problem at the 4- 5 σ level. This constraint effectively places a limit on the anomalous coupling to pressure in the parametrized post-Newtonian (PPN) expansion, ζ4 = 0.105 ± 0.049 (+highL CMB), or ζ4 = 0.066 ± 0.039 (+BAO). These represent the most precise measurement of this parameter to date, indicating a mild tension with GR (for ΛCDM including tensors, with 0ζ4=), and also among different data sets.
How does pressure gravitate? Cosmological constant problem confronts observational cosmology
International Nuclear Information System (INIS)
Narimani, Ali; Scott, Douglas; Afshordi, Niayesh
2014-01-01
An important and long-standing puzzle in the history of modern physics is the gross inconsistency between theoretical expectations and cosmological observations of the vacuum energy density, by at least 60 orders of magnitude, otherwise known as the cosmological constant problem. A characteristic feature of vacuum energy is that it has a pressure with the same amplitude, but opposite sign to its energy density, while all the precision tests of General Relativity are either in vacuum, or for media with negligible pressure. Therefore, one may wonder whether an anomalous coupling to pressure might be responsible for decoupling vacuum from gravity. We test this possibility in the context of the Gravitational Aether proposal, using current cosmological observations, which probe the gravity of relativistic pressure in the radiation era. Interestingly, we find that the best fit for anomalous pressure coupling is about half-way between General Relativity (GR), and Gravitational Aether (GA), if we include Planck together with WMAP and BICEP2 polarization cosmic microwave background (CMB) observations. Taken at face value, this data combination excludes both GR and GA at around the 3 σ level. However, including higher resolution CMB observations (''highL'') or baryonic acoustic oscillations (BAO) pushes the best fit closer to GR, excluding the Gravitational Aether solution to the cosmological constant problem at the 4- 5 σ level. This constraint effectively places a limit on the anomalous coupling to pressure in the parametrized post-Newtonian (PPN) expansion, ζ 4 = 0.105 ± 0.049 (+highL CMB), or ζ 4 = 0.066 ± 0.039 (+BAO). These represent the most precise measurement of this parameter to date, indicating a mild tension with GR (for ΛCDM including tensors, with 0ζ 4 =), and also among different data sets
Positive Cosmological Constant and Quantum Theory
Directory of Open Access Journals (Sweden)
Felix M. Lev
2010-11-01
Full Text Available We argue that quantum theory should proceed not from a spacetime background but from a Lie algebra, which is treated as a symmetry algebra. Then the fact that the cosmological constant is positive means not that the spacetime background is curved but that the de Sitter (dS algebra as the symmetry algebra is more relevant than the Poincare or anti de Sitter ones. The physical interpretation of irreducible representations (IRs of the dS algebra is considerably different from that for the other two algebras. One IR of the dS algebra splits into independent IRs for a particle and its antiparticle only when Poincare approximation works with a high accuracy. Only in this case additive quantum numbers such as electric, baryon and lepton charges are conserved, while at early stages of the Universe they could not be conserved. Another property of IRs of the dS algebra is that only fermions can be elementary and there can be no neutral elementary particles. The cosmological repulsion is a simple kinematical consequence of dS symmetry on quantum level when quasiclassical approximation is valid. Therefore the cosmological constant problem does not exist and there is no need to involve dark energy or other fields for explaining this phenomenon (in agreement with a similar conclusion by Bianchi and Rovelli.
Holographic dark energy with cosmological constant
Hu, Yazhou; Li, Miao; Li, Nan; Zhang, Zhenhui
2015-08-01
Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ωhde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ2min=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain -0.07<ΩΛ0<0.68 and correspondingly 0.04<Ωhde0<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.
Holographic dark energy with cosmological constant
Energy Technology Data Exchange (ETDEWEB)
Hu, Yazhou; Li, Nan; Zhang, Zhenhui [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190 (China); Li, Miao, E-mail: asiahu@itp.ac.cn, E-mail: mli@itp.ac.cn, E-mail: linan@itp.ac.cn, E-mail: zhangzhh@mail.ustc.edu.cn [School of Astronomy and Space Science, Sun Yat-Sen University, Guangzhou 510275 (China)
2015-08-01
Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ω{sub hde} are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ{sup 2}{sub min}=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain −0.07<Ω{sub Λ0}<0.68 and correspondingly 0.04<Ω{sub hde0}<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.
Holographic dark energy with cosmological constant
International Nuclear Information System (INIS)
Hu, Yazhou; Li, Nan; Zhang, Zhenhui; Li, Miao
2015-01-01
Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ω hde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ 2 min =426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain −0.07<Ω Λ0 <0.68 and correspondingly 0.04<Ω hde0 <0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model
O(4) texture with a cosmological constant
International Nuclear Information System (INIS)
Cho, Inyong
2002-01-01
We investigate O(4) textures in a background with a positive cosmological constant. We find static solutions which comove with the expanding background. There exists a solution in which the scalar field is regular at the horizon. This solution has a noninteger winding number smaller than 1. There also exist solutions in which scalar-field derivatives are singular at the horizon. Such solutions can complete one winding within the horizon. If the winding number is larger than some critical value, static solutions including the regular one are unstable under perturbations
Asymptotics with a positive cosmological constant II
Kesavan, Aruna; Ashtekar, Abhay; Bonga, Beatrice
2015-04-01
The study of isolated systems has been vastly successful in the context of vanishing cosmological constant, Λ = 0 . However, there is no physically useful notion of asymptotics for the universe we inhabit with Λ > 0 . This means that presently there is no fundamental understanding of gravitational waves in our own universe. The full non-linear framework is still under development, but some interesting results at the linearized level have been obtained. In particular, I will discuss the quadrupole formula for gravitational radiation and its implications.
Time variable cosmological constants from the age of universe
International Nuclear Information System (INIS)
Xu Lixin; Lu Jianbo; Li Wenbo
2010-01-01
In this Letter, time variable cosmological constant, dubbed age cosmological constant, is investigated motivated by the fact: any cosmological length scale and time scale can introduce a cosmological constant or vacuum energy density into Einstein's theory. The age cosmological constant takes the form ρ Λ =3c 2 M P 2 /t Λ 2 , where t Λ is the age or conformal age of our universe. The effective equation of state (EoS) of age cosmological constant are w Λ eff =-1+2/3 (√(Ω Λ ))/c and w Λ eff =-1+2/3 (√(Ω Λ ))/c (1+z) when the age and conformal age of universe are taken as the role of cosmological time scales respectively. The EoS are the same as the so-called agegraphic dark energy models. However, the evolution histories are different from the agegraphic ones for their different evolution equations.
International Nuclear Information System (INIS)
Rami, El-Nabulsi Ahmad
2009-01-01
Higher dimensional cosmological implications of a decay law for the cosmological constant term are analyzed. Three independent cosmological models are explored mainly: 1) In the first model, the effective cosmological constant was chosen to decay with times like Δ effective = Ca -2 + D(b/a I ) 2 where a I is an arbitrary scale factor characterizing the isotropic epoch which proceeds the graceful exit period. Further, the extra-dimensional scale factor decays classically like b(t) approx. a x (t), x is a real negative number. 2) In the second model, we adopt in addition to Δ effective = Ca -2 + D(b/a I ) 2 the phenomenological law b(t) = a(t)exp( -Qt) as we expect that at the origin of time, there is no distinction between the visible and extra dimensions; Q is a real number. 3) In the third model, we study a Δ - decaying extra-dimensional cosmology with a static traversable wormhole in which the four-dimensional Friedmann-Robertson-Walker spacetime is subject to the conventional perfect fluid while the extra-dimensional part is endowed by an exotic fluid violating strong energy condition and where the cosmological constant in (3+n+1) is assumed to decays like Δ(a) = 3Ca -2 . The three models are discussed and explored in some details where many interesting points are revealed. (author)
The cosmological constant in theories with finite spacetime
International Nuclear Information System (INIS)
Kummer, Janis
2014-08-01
We study the role of the cosmological constant in different theories with finite spacetime. The cosmological constant appears both as an initial condition and as a constant of integration. In the context of the cosmological constant problem a new model will be presented. This modification of general relativity generates a small, non-vanishing cosmological constant, which is radiatively stable. The dynamics of the expansion of the universe in this model will be analyzed. Eventually, we try to solve the emergent problems concerning the generation of accelerated expansion using a quintessence model of dark energy.
Cosmological constant--the weight of the vacuum
International Nuclear Information System (INIS)
Padmanabhan, T.
2003-01-01
Recent cosmological observations suggest the existence of a positive cosmological constant Λ with the magnitude Λ(Gℎ/c 3 )∼10 -123 . This review discusses several aspects of the cosmological constant both from the cosmological (Sections 1-6) and field theoretical (Sections 7-11) perspectives. After a brief introduction to the key issues related to cosmological constant and a historical overview, a summary of the kinematics and dynamics of the standard Friedmann model of the universe is provided. The observational evidence for cosmological constant, especially from the supernova results, and the constraints from the age of the universe, structure formation, Cosmic Microwave Background Radiation (CMBR) anisotropies and a few others are described in detail, followed by a discussion of the theoretical models (quintessence, tachyonic scalar field, ...) from different perspectives. The latter part of the review (Sections 7-11) concentrates on more conceptual and fundamental aspects of the cosmological constant like some alternative interpretations of the cosmological constant, relaxation mechanisms to reduce the cosmological constant to the currently observed value, the geometrical structure of the de Sitter spacetime, thermodynamics of the de Sitter universe and the role of string theory in the cosmological constant problem
Cosmological constant and general isocurvature initial conditions
International Nuclear Information System (INIS)
Trotta, R.; Riazuelo, A.; Durrer, R.
2003-01-01
We investigate in detail the question of whether a nonvanishing cosmological constant is required by the present-day cosmic microwave background and large scale structure data when general isocurvature initial conditions are taken into account. We also discuss the differences between the usual Bayesian and the frequentist approaches in data analysis. We show that the Cosmic Background Explorer (COBE)-normalized matter power spectrum is dominated by the adiabatic mode and therefore breaks the degeneracy between initial conditions which is present in the cosmic microwave background anisotropies. We find that in a flat universe the Bayesian analysis requires Ω Λ =e0 to more than 3σ, while in the frequentist approach Ω Λ =0 is still within 3σ for a value of h≤0.48. Both conclusions hold regardless of the initial conditions
Higgs inflation and the cosmological constant
Energy Technology Data Exchange (ETDEWEB)
Jegerlehner, Fred [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2014-02-15
The Higgs not only induces the masses of all SM particles, the Higgs, given its special mass value, is the natural candidate for the inflaton and in fact is ruling the evolution of the early universe, by providing the necessary dark energy which remains the dominant energy density. SM running couplings not only allow us to extrapolate SM physics up to the Planck scale, but equally important they are triggering the Higgs mechanism. This is possible by the fact that the bare mass term in the Higgs potential changes sign at about μ{sub 0}≅1.40 x 10{sup 16} GeV and in the symmetric phase is enhanced by quadratic terms in the Planck mass. Such a huge Higgs mass term is able to play a key role in triggering inflation in the early universe. In this article we extend our previous investigation by working out the details of a Higgs inflation scenario. We show how different terms contributing to the Higgs Lagrangian are affecting inflation. Given the SM and its extrapolation to scales μ>μ{sub 0} we find a calculable cosmological constant V(0) which is weakly scale dependent and actually remains large during inflation. This is different to the Higgs fluctuation field dependent ΔV(φ), which decays exponentially during inflation, and actually would not provide a sufficient amount of inflation. The fluctuation field has a different effective mass which shifts the bare Higgs transition point to a lower value μ'{sub 0} ≅7.7 x 10{sup 14} GeV. The vacuum energy V(0) being proportional to M{sub Pl}{sup 4} has a coefficient which vanishes near the Higgs transition point, such that the bare and the renormalized cosmological constant match at this point. The role of the Higgs in reheating and baryogenesis is emphasized.
Bondi mass with a cosmological constant
Saw, Vee-Liem
2018-04-01
The mass loss of an isolated gravitating system due to energy carried away by gravitational waves with a cosmological constant Λ ∈R was recently worked out, using the Newman-Penrose-Unti approach. In that same article, an expression for the Bondi mass of the isolated system, MΛ, for the Λ >0 case was proposed. The stipulated mass MΛ would ensure that in the absence of any incoming gravitational radiation from elsewhere the emitted gravitational waves must carry away a positive-definite energy. That suggested quantity, however, introduced a Λ -correction term to the Bondi mass MB (where MB is the usual Bondi mass for asymptotically flat spacetimes), which would involve information not just on the state of the system at that moment but ostensibly also its past history. In this paper, we derive the identical mass-loss equation using an integral formula on a hypersurface formulated by Frauendiener based on the Nester-Witten identity and argue that one may adopt a generalization of the Bondi mass with Λ ∈R without any correction, viz., MΛ=MB for any Λ ∈R . Furthermore, with MΛ=MB, we show that for purely quadrupole gravitational waves given off by the isolated system (i.e., when the "Bondi news" σo comprises only the l =2 components of the spherical harmonics with spin-weight 2) the energy carried away is manifestly positive definite for the Λ >0 case. For a general σo having higher multipole moments, this perspicuous property in the Λ >0 case still holds if those l >2 contributions are weak—more precisely, if they satisfy any of the inequalities given in this paper.
Large numbers hypothesis. IV - The cosmological constant and quantum physics
Adams, P. J.
1983-01-01
In standard physics quantum field theory is based on a flat vacuum space-time. This quantum field theory predicts a nonzero cosmological constant. Hence the gravitational field equations do not admit a flat vacuum space-time. This dilemma is resolved using the units covariant gravitational field equations. This paper shows that the field equations admit a flat vacuum space-time with nonzero cosmological constant if and only if the canonical LNH is valid. This allows an interpretation of the LNH phenomena in terms of a time-dependent vacuum state. If this is correct then the cosmological constant must be positive.
Implications of the Cosmological Constant for Spherically Symmetric Mass Distributions
Zubairi, Omair; Weber, Fridolin
2013-04-01
In recent years, scientists have made the discovery that the expansion rate of the Universe is increasing rather than decreasing. This acceleration leads to an additional term in Albert Einstein's field equations which describe general relativity and is known as the cosmological constant. This work explores the aftermath of a non-vanishing cosmological constant for relativistic spherically symmetric mass distributions, which are susceptible to change against Einstein's field equations. We introduce a stellar structure equation known as the Tolman-Oppenhiemer-Volkoff (TOV) equation modified for a cosmological constant, which is derived from Einstein's modified field equations. We solve this modified TOV equation for these spherically symmetric mass distributions and obtain stellar properties such as mass and radius and investigate changes that may occur depending on the value of the cosmological constant.
The case for the cosmological constant
Indian Academy of Sciences (India)
A time dependent cosmological A-term can be generated by scalar field ... Perlmutter et al (1999) indicate that the joint probability distribution of ΩС ΩA is well .... and С must be adjusted to very high levels of accuracy in order to ensure. С.
TCP, quantum gravity, the cosmological constant and all that .
International Nuclear Information System (INIS)
Banks, T.
1985-01-01
We study cosmology from the point of view of quantum gravity. Some light is thrown on the nature of time, and it is suggested that the cosmological arrow of time is generated by a spontaneous breakdown of TCP. Conventional cosmological models in which quantum fields interact with a time-dependent gravitational field are shown to describe an approximation to the quantum gravitational wave function which is valid in the long-wavelength limit. Two problems with initial conditions are resolved in models in which a negative bare cosmological constant is cancelled by the classical excitation of a Bose field eta with a very flat potential. These models can also give a natural explanation for the observed value of the cosmological constant. (orig.)
Thermal decay of the cosmological constant into black holes
International Nuclear Information System (INIS)
Gomberoff, Andres; Henneaux, Marc; Teitelboim, Claudio; Wilczek, Frank
2004-01-01
We show that the cosmological constant may be reduced by thermal production of membranes by the cosmological horizon, analogous to a particle 'going over the top of the potential barrier', rather than tunneling through it. The membranes are endowed with charge associated with the gauge invariance of an antisymmetric gauge potential. In this new process, the membrane collapses into a black hole; thus, the net effect is to produce black holes out of the vacuum energy associated with the cosmological constant. We study here the corresponding Euclidean configurations ('thermalons') and calculate the probability for the process in the leading semiclassical approximation
Ashtekar, Abhay; Bonga, Béatrice; Kesavan, Aruna
2016-02-05
There is a deep tension between the well-developed theory of gravitational waves from isolated systems and the presence of a positive cosmological constant Λ, however tiny. In particular a generalization of Einstein's 1918 quadrupole formula that would allow a positive Λ is not yet available. We first explain the principal difficulties and then show that it is possible to overcome them in the weak field limit. These results also provide concrete hints for constructing the Λ>0 generalization of the Bondi-Sachs framework for full, nonlinear general relativity.
Friedmann cosmology with a cosmological 'constant' in the scale covariant theory
International Nuclear Information System (INIS)
Beesham, A.
1986-01-01
Homogeneous isotropic cosmologies in the presence of a cosmological 'constant' are studied in the scale covariant theory. A class of solutions is obtained for kappa = 0 for models filled with dust, radiation or stiff matter. For kappa not= 0, solutions are presented for the radiation models. (author)
Effective cosmological constant within the expanding axion universe
Energy Technology Data Exchange (ETDEWEB)
Pierpoint, M.P., E-mail: M.Pierpoint@lboro.ac.uk; Kusmartsev, F.V., E-mail: F.Kusmartsev@lboro.ac.uk
2014-09-12
We show that the value of an effective cosmological constant, Λ{sub eff}, is influenced by the dimensionality of the space. Results were obtained in the framework of the axion model describing expansion of the inhomogeneous universe. Λ{sub eff} determines the tension of the space (i.e. elasticity), and is relaxed when extra dimensions are accessible. We demonstrate that the effective value of the cosmological constant may be tuned to be consistent with experimental observation. Inhomogeneities considered are representative of temperature fluctuations observed within the cosmic microwave background radiation.
Value of the Cosmological Constant in Emergent Quantum Gravity
Energy Technology Data Exchange (ETDEWEB)
Hogan, Craig [Fermilab
2018-03-30
It is suggested that the exact value of the cosmological constant could be derived from first principles, based on entanglement of the Standard Model field vacuum with emergent holographic quantum geometry. For the observed value of the cosmological constant, geometrical information is shown to agree closely with the spatial information density of the QCD vacuum, estimated in a free-field approximation. The comparison is motivated by a model of exotic rotational fluctuations in the inertial frame that can be precisely tested in laboratory experiments. Cosmic acceleration in this model is always positive, but fluctuates with characteristic coherence length $\\approx 100$km and bandwidth $\\approx 3000$ Hz.
Identifying and eliminating the problem with Einstein's cosmological constant
Myers, Zachary
2005-12-01
The cosmological constant, L, was first introduced into Einstein's field equations in the early 20 th century. It was introduced as a quantity of outward-pushing energy in space that would counteract the contracting force of gravity thereby keeping the universe in a balanced and static state. Einstein willingly removed it once the universe was observed to be dynamic rather than static. However, as the decades have gone by, L has maintained its supporters and has continually been reintroduced to solve problems in cosmology. Presently, there is good reason to believe that L or something like it is indeed present in our universe. In the 1960s, in an effort to provide a physical basis for L, particle physicists turned to quantum vacuum energy and have since estimated a value for L to be ~ 10 110 erg/cm 3 , which happens to be significantly greater than its observationally constrained value of ~ 10 10 erg/cm 3 . This discrepancy of 120 orders of magnitude has come to be known as the cosmological constant problem. Any effort to resolve the inconsistency must also account for the various observations we attribute to L, such as cosmic inflation and cosmic acceleration. To date, there are two basic approaches to resolving the cosmological constant problem that we may call the Identity approach and the Eliminativist approach. The Identity approach entails that vacuum energy is responsible for all the relevant observations and the problem is to be solved by some cancellation mechanism within the internal components of the vacuum. The Eliminativist approach explicitly rejects the reality and cosmological efficacy of vacuum energy, seeks alternative explanations for the observations and eliminates the cosmological constant problem by eliminating the cosmological constant. The benefit of having a crisis between these two views at this particular stage in cosmology's history is that they can be tested against each other in an experimental situation. Whatever the outcome of the
Anisotropic cosmological constant and the CMB quadrupole anomaly
International Nuclear Information System (INIS)
Rodrigues, Davi C.
2008-01-01
There are evidences that the cosmic microwave background (CMB) large-angle anomalies imply a departure from statistical isotropy and hence from the standard cosmological model. We propose a ΛCDM model extension whose dark energy component preserves its nondynamical character but wields anisotropic vacuum pressure. Exact solutions for the cosmological scale factors are presented, upper bounds for the deformation parameter are evaluated and its value is estimated considering the elliptical universe proposal to solve the quadrupole anomaly. This model can be constructed from a Bianchi I cosmology with a cosmological constant from two different ways: (i) a straightforward anisotropic modification of the vacuum pressure consistently with energy-momentum conservation; (ii) a Poisson structure deformation between canonical momenta such that the dynamics remain invariant under scale factors rescalings
Can codimension-two branes solve the cosmological constant problem?
International Nuclear Information System (INIS)
Vinet, Jeremie; Cline, James M.
2004-01-01
It has been suggested that codimension-two braneworlds might naturally explain the vanishing of the 4D effective cosmological constant, due to the automatic relation between the deficit angle and the brane tension. To investigate whether this cancellation happens dynamically, and within the context of a realistic cosmology, we study a codimension-two braneworld with spherical extra dimensions compactified by magnetic flux. Assuming Einstein gravity, we show that when the brane contains matter with an arbitrary equation of state, the 4D metric components are not regular at the brane, unless the brane has nonzero thickness. We construct explicit 6D solutions with thick branes, treating the brane matter as a perturbation, and find that the universe expands consistently with standard Friedmann-Robertson-Walker (FRW) cosmology. The relation between the brane tension and the bulk deficit angle becomes Δ=2πG 6 (ρ-3p) for a general equation of state. However, this relation does not imply a self-tuning of the effective 4D cosmological constant to zero; perturbations of the brane tension in a static solution lead to deSitter or anti-deSitter braneworlds. Our results thus confirm other recent work showing that codimension-two braneworlds in nonsupersymmetric Einstein gravity do not lead to a dynamical relaxation of the cosmological constant, but they leave open the possibility that supersymmetric versions can be compatible with self-tuning
International Nuclear Information System (INIS)
Bertolami, Orfeu; Paramos, Jorge
2011-01-01
The purpose of this study is to describe a perfect fluid matter distribution that leads to a constant curvature region, thanks to the effect of a nonminimal coupling. This distribution exhibits a density profile within the range found in the interstellar medium and an adequate matching of the metric components at its boundary. By identifying this constant curvature with the value of the cosmological constant and superimposing the spherical distributions arising from different matter sources throughout the universe, one is able to mimic a large-scale homogeneous cosmological constant solution.
TASI Lectures on the cosmological constant
Energy Technology Data Exchange (ETDEWEB)
Bousso, Raphael; Bousso, Raphael
2007-08-30
The energy density of the vacuum, Lambda, is at least 60 orders of magnitude smaller than several known contributions to it. Approaches to this problem are tightly constrained by data ranging from elementary observations to precision experiments. Absent overwhelming evidence to the contrary, dark energy can only be interpreted as vacuum energy, so the venerable assumption that Lambda=0 conflicts with observation. The possibility remains that Lambda is fundamentally variable, though constant over large spacetime regions. This can explain the observed value, but only in a theory satisfying a number of restrictive kinematic and dynamical conditions. String theory offers a concrete realization through its landscape of metastable vacua.
Cosmic Explosions, Life in the Universe, and the Cosmological Constant
Piran, Tsvi; Jimenez, Raul; Cuesta, Antonio J.; Simpson, Fergus; Verde, Licia
2016-02-01
Gamma-ray bursts (GRBs) are copious sources of gamma rays whose interaction with a planetary atmosphere can pose a threat to complex life. Using recent determinations of their rate and probability of causing massive extinction, we explore what types of universes are most likely to harbor advanced forms of life. We use cosmological N -body simulations to determine at what time and for what value of the cosmological constant (Λ ) the chances of life being unaffected by cosmic explosions are maximized. Life survival to GRBs favors Lambda-dominated universes. Within a cold dark matter model with a cosmological constant, the likelihood of life survival to GRBs is governed by the value of Λ and the age of the Universe. We find that we seem to live in a favorable point in this parameter space that minimizes the exposure to cosmic explosions, yet maximizes the number of main sequence (hydrogen-burning) stars around which advanced life forms can exist.
Thermodynamics of de Sitter black holes: Thermal cosmological constant
International Nuclear Information System (INIS)
Sekiwa, Y.
2006-01-01
We study the thermodynamic properties associated with the black hole event horizon and the cosmological horizon for black hole solutions in asymptotically de Sitter spacetimes. We examine thermodynamics of these horizons on the basis of the conserved charges according to Teitelboim's method. In particular, we have succeeded in deriving the generalized Smarr formula among thermodynamical quantities in a simple and natural way. We then show that cosmological constant must decrease when one takes into account the quantum effect. These observations have been obtained if and only if the cosmological constant plays the role of a thermodynamical state variable. We also touch upon the relation between inflation of our universe and a phase transition of black holes
Cosmic Explosions, Life in the Universe, and the Cosmological Constant.
Piran, Tsvi; Jimenez, Raul; Cuesta, Antonio J; Simpson, Fergus; Verde, Licia
2016-02-26
Gamma-ray bursts (GRBs) are copious sources of gamma rays whose interaction with a planetary atmosphere can pose a threat to complex life. Using recent determinations of their rate and probability of causing massive extinction, we explore what types of universes are most likely to harbor advanced forms of life. We use cosmological N-body simulations to determine at what time and for what value of the cosmological constant (Λ) the chances of life being unaffected by cosmic explosions are maximized. Life survival to GRBs favors Lambda-dominated universes. Within a cold dark matter model with a cosmological constant, the likelihood of life survival to GRBs is governed by the value of Λ and the age of the Universe. We find that we seem to live in a favorable point in this parameter space that minimizes the exposure to cosmic explosions, yet maximizes the number of main sequence (hydrogen-burning) stars around which advanced life forms can exist.
Dynamics of the cosmological and Newton’s constant
International Nuclear Information System (INIS)
Smolin, Lee
2016-01-01
A modification of general relativity is presented in which Newton’s constant, G, and the cosmological constant, Λ, become a conjugate pair of dynamical variables. These are functions of a global time, hence the theory is presented in the framework of shape dynamics, which trades many-fingered time for a local scale invariance and an overall reparametrization of the global time. As a result, due to the fact that these global dynamical variables are canonically conjugate, the field equations are consistent. The theory predicts a relationship with no free parameters between the rates of change of Newton’s constant and the cosmological constant, in terms of the spatial average of the matter Lagrangian density. (paper)
Cosmological constant versus free energy for heterotic strings
International Nuclear Information System (INIS)
Alvarez, E.; Osorio, M.A.R.
1988-01-01
A detailed analysis is made of the modular-invariant formulation of the free energy of heterotic strings. Several instances are pointed out in which a duality formula can be obtained, and its physical implications are discussed. The interplay between the free energy of a given heterotic string and the cosmological constant of the toroidal compactification of another heterotic string is emphasized. (orig.)
A comment on technical naturalness and the cosmological constant
International Nuclear Information System (INIS)
Itzhaki, Nissan
2006-01-01
We propose a model of dynamical relaxation of the cosmological constant. Technical naturalness of the model and the present value of the vacuum energy density imply an upper bound on the supersymmetry breaking scale and the reheating temperature at the TeV scale
Dark Energy and the Cosmological Constant: A Brief Introduction
Harvey, Alex
2009-01-01
The recently observed acceleration of the expansion of the universe is a topic of intense interest. The favoured causes are the "cosmological constant" or "dark energy". The former, which appears in the Einstein equations as the term [lambda]g[subscript [mu]v], provides an extremely simple, well-defined mechanism for the acceleration. However,…
On the cosmological constant in the heterotic string theory
International Nuclear Information System (INIS)
Gava, E.; Iengo, R.
1987-01-01
We examine the possible physical assumptions which can be made in the heterotic string theory in order to derive the vanishing of the cosmological constant within the theory of modular forms on the moduli space. It seems that more mathematical information is needed to reach a definite result. (author)
Generalized Lie superalgebras and superqravity with a positive cosmological constant
International Nuclear Information System (INIS)
Vasil'ev, M.A.
1984-01-01
A modified law of Hermitian conjugation has been suggested, which permits to plot the Hermitian effect for supergravitation with a positive cosmological constant Λ. The modified conjugation is shown to result in generalized (Z 2 xZ 2 - graded) Lie superalgebras, corresconding to supergravitation With Λ > 0
Dynamical black rings with a positive cosmological constant
International Nuclear Information System (INIS)
Kimura, Masashi
2009-01-01
We construct dynamical black ring solutions in the five-dimensional Einstein-Maxwell system with a positive cosmological constant and investigate the geometrical structure. The solutions describe the physical process such that a thin black ring at early time shrinks and changes into a single black hole as time increases. We also discuss the multiblack rings and the coalescence of them.
The cosmological constant, branes and non-geometry
International Nuclear Information System (INIS)
Gautason, Fridhrik Freyr
2014-01-01
In this thesis we derive an equation for the classical cosmological constant in general string compactifications by employing scaling symmetries present in string theory. We find that in heterotic string theory, a perturbatively small, but non-vanishing, cosmological constant is impossible unless non-perturbative and/or string loop corrections are taken into account. In type II string theory we show that the classical cosmological constant is given by a sum of two terms, the source actions evaluated on-shell, and a certain combination of non-vanishing fluxes integrated over spacetime. In many cases we can express the classical cosmological constant in terms of only the source contributions by exploiting two scaling symmetries. This result can be used in two ways. First one can simply predict the classical cosmological constant in a given setup without solving all equations of motion. A second application is to give constraints on the near brane behavior of supergravity fields when the cosmological constant is known. In particular we motivate that energy densities of some fields diverge in the well-known KKLT scenario for de Sitter solutions in type IIB string theory. More precisely, we show, using our results and minimal assumptions, that energy densities of the three-form fluxes diverge in the near-source region of internal space. This divergence is unusual, since these fields do not directly couple to the source, and has been interpreted as a hint of instability of the solution. In the last chapter of the thesis we discuss the worldvolume actions of exotic five-branes. Using a specific chain of T- and S-dualities in a spacetime with two circular isometries, we derive the DBI and WZ actions of the so-called 5 2 2 - and 5 2 3 -brane. These actions describe the dynamics of the branes as well as their couplings to the ten-dimensional gauge potentials. We propose a modified Bianchi identity for the non-geometric Q-flux due to one of the branes. Q-flux often appears
Relaxing neutrino mass bounds by a running cosmological constant
Energy Technology Data Exchange (ETDEWEB)
Bauer, F.; Schrempp, L.
2007-11-15
We establish an indirect link between relic neutrinos and the dark energy sector which originates from the vacuum energy contributions of the neutrino quantum fields. Via renormalization group effects they induce a running of the cosmological constant with time which dynamically influences the evolution of the cosmic neutrino background. We demonstrate that the resulting reduction of the relic neutrino abundance allows to largely evade current cosmological neutrino mass bounds and discuss how the scenario might be probed by the help of future large scale structure surveys and Planck data. (orig.)
Relaxing neutrino mass bounds by a running cosmological constant
International Nuclear Information System (INIS)
Bauer, F.; Schrempp, L.
2007-11-01
We establish an indirect link between relic neutrinos and the dark energy sector which originates from the vacuum energy contributions of the neutrino quantum fields. Via renormalization group effects they induce a running of the cosmological constant with time which dynamically influences the evolution of the cosmic neutrino background. We demonstrate that the resulting reduction of the relic neutrino abundance allows to largely evade current cosmological neutrino mass bounds and discuss how the scenario might be probed by the help of future large scale structure surveys and Planck data. (orig.)
Exacerbating the Cosmological Constant Problem with Interacting Dark Energy Models.
Marsh, M C David
2017-01-06
Future cosmological surveys will probe the expansion history of the Universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e., the cosmological constant problem (CCP), but can make it spectacularly worse. We show that this is the case for "interacting dark energy" models in which the masses of the dark matter states depend on the dark energy sector. If realized in nature, these models have far-reaching implications for proposed solutions to the CCP that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that current estimates of the number of flux vacua in string theory, N_{vac}∼O(10^{272 000}), are far too small to realize certain simple models of interacting dark energy and solve the cosmological constant problem anthropically. These models admit distinctive observational signatures that can be targeted by future gamma-ray observatories, hence making it possible to observationally rule out the anthropic solution to the cosmological constant problem in theories with a finite number of vacua.
Current observations with a decaying cosmological constant allow for chaotic cyclic cosmology
International Nuclear Information System (INIS)
Ellis, George F.R.; Platts, Emma; Weltman, Amanda; Sloan, David
2016-01-01
We use the phase plane analysis technique of Madsen and Ellis [1] to consider a universe with a true cosmological constant as well as a cosmological 'constant' that is decaying. Time symmetric dynamics for the inflationary era allows eternally bouncing models to occur. Allowing for scalar field dynamic evolution, we find that if dark energy decays in the future, chaotic cyclic universes exist provided the spatial curvature is positive. This is particularly interesting in light of current observations which do not yet rule out either closed universes or possible evolution of the cosmological constant. We present only a proof of principle, with no definite claim on the physical mechanism required for the present dark energy to decay
Non-minimally coupled varying constants quantum cosmologies
International Nuclear Information System (INIS)
Balcerzak, Adam
2015-01-01
We consider gravity theory with varying speed of light and varying gravitational constant. Both constants are represented by non-minimally coupled scalar fields. We examine the cosmological evolution in the near curvature singularity regime. We find that at the curvature singularity the speed of light goes to infinity while the gravitational constant vanishes. This corresponds to the Newton's Mechanics limit represented by one of the vertex of the Bronshtein-Zelmanov-Okun cube [1,2]. The cosmological evolution includes both the pre-big-bang and post-big-bang phases separated by the curvature singularity. We also investigate the quantum counterpart of the considered theory and find the probability of transition of the universe from the collapsing pre-big-bang phase to the expanding post-big-bang phase
Degravitation, inflation and the cosmological constant as an afterglow
International Nuclear Information System (INIS)
Patil, Subodh P.
2009-01-01
In this report, we adopt the phenomenological approach of taking the degravitation paradigm seriously as a consistent modification of gravity in the IR, and investigate its consequences for various cosmological situations. We motivate degravitation — where Netwon's constant is promoted to a scale dependent filter function — as arising from either a small (resonant) mass for the graviton, or as an effect in semi-classical gravity. After addressing how the Bianchi identities are to be satisfied in such a set up, we turn our attention towards the cosmological consequences of degravitation. By considering the example filter function corresponding to a resonantly massive graviton (with a filter scale larger than the present horizon scale), we show that slow roll inflation, hybrid inflation and old inflation remain quantitatively unchanged. We also find that the degravitation mechanism inherits a memory of past energy densities in the present epoch in such a way that is likely significant for present cosmological evolution. For example, if the universe underwent inflation in the past due to it having tunneled out of some false vacuum, we find that degravitation implies a remnant 'afterglow' cosmological constant, whose scale immediately afterwards is parametrically suppressed by the filter scale (L) in Planck units Λ ∼ l 2 pl /L 2 . We discuss circumstances through which this scenario reasonably yields the presently observed value for Λ ∼ O(10 −120 ). We also find that in a universe still currently trapped in some false vacuum state, resonance graviton models of degravitation only degravitate initially Planck or GUT scale energy densities down to the presently observed value over timescales comparable to the filter scale. We argue that different functional forms for the filter function will yield similar conclusions. In this way, we argue that although the degravitation models we study have the potential to explain why the cosmological constant is not large
International Nuclear Information System (INIS)
Novikov, I.D.
1979-01-01
Progress made by this Commission over the period 1976-1978 is reviewed. Topics include the Hubble constant, deceleration parameter, large-scale distribution of matter in the universe, radio astronomy and cosmology, space astronomy and cosmology, formation of galaxies, physics near the cosmological singularity, and unconventional cosmological models. (C.F.)
On Semi-classical Degravitation and the Cosmological Constant Problems
Patil, Subodh P
2010-01-01
In this report, we discuss a candidate mechanism through which one might address the various cosmological constant problems. We first observe that the renormalization of gravitational couplings (induced by integrating out various matter fields) manifests non-local modifications to Einstein's equations as quantum corrected equations of motion. That is, at the loop level, matter sources curvature through a gravitational coupling that is a non-local function of the covariant d'Alembertian. If the functional form of the resulting Newton's `constant' is such that it annihilates very long wavelength sources, but reduces to $1/M^2_{pl}$ ($M_{pl}$ being the 4d Planck mass) for all sources with cosmologically observable wavelengths, we would have a complimentary realization of the degravitation paradigm-- a realization through which its non-linear completion and the corresponding modified Bianchi identities are readily understood. We proceed to consider various theories whose coupling to gravity may a priori induce no...
Cauchy horizon stability and mass inflation with a cosmological constant
International Nuclear Information System (INIS)
Costa, João L; Girão, Pedro M; Natário, José; Silva, Jorge Drumond
2015-01-01
Motivated by the strong cosmic censorship conjecture, we consider the Einstein- Maxwell-scalar field system with a cosmological constant Λ (of any sign), under spherical symmetry, for characteristic initial conditions, with outgoing data prescribed by a (complete) subextremal Reissner-Nordstrom black hole event horizon. We study the structure of the future maximal (globally hyperbolic) development, analyze the mass inflation scenarios, identifying, in particular, large choices of parameters for which the Hawking mass remains bounded, and study the existence of regular extensions. We also discuss why our results, although valid for all signs of Λ, only provide evidence for the failure of strong cosmic censorship in the case of a positive cosmological constant. (paper)
Small cosmological constant from the QCD trace anomaly?
International Nuclear Information System (INIS)
Schuetzhold, Ralf
2002-01-01
According to recent astrophysical observations the large scale mean pressure of our present Universe is negative suggesting a positive cosmological constant-like term. The issue of whether nonperturbative effects of self-interacting quantum fields in curved space-times may yield a significant contribution is addressed. Focusing on the trace anomaly of quantum chromodynamics, a preliminary estimate of the expected order of magnitude yields a remarkable coincidence with the empirical data, indicating the potential relevance of this effect
Compactification over coset spaces with torsion and vanishing cosmological constant
International Nuclear Information System (INIS)
Batakis, N.A.
1989-01-01
We consider the compactification of ten-dimensional Einstein-Yang-Mills theories over non-symmetric, six-dimensional homogeneous coset spaces with torsion. We examine the Einstein-Yang-Mills equations of motion requiring vanishing cosmological constant at ten and four dimensions and we present examples of compactifying solutions. It appears that the introduction of more than one radii in the coset space, when possible, may be mandatory for the existence of compactifying solutions. (orig.)
Compactification over coset spaces with torsion and vanishing cosmological constant
Energy Technology Data Exchange (ETDEWEB)
Batakis, N.A.; Farakos, K.; Koutsoumbas, G.; Zoupanos, G.; Kapetanakis, D.
1989-04-13
We consider the compactification of ten-dimensional Einstein-Yang-Mills theories over non-symmetric, six-dimensional homogeneous coset spaces with torsion. We examine the Einstein-Yang-Mills equations of motion requiring vanishing cosmological constant at ten and four dimensions and we present examples of compactifying solutions. It appears that the introduction of more than one radii in the coset space, when possible, may be mandatory for the existence of compactifying solutions.
Cosmological constant, inflation and no-cloning theorem
Energy Technology Data Exchange (ETDEWEB)
Huang Qingguo, E-mail: huangqg@itp.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); Lin Fengli, E-mail: linfengli@phy.ntnu.edu.tw [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Physics, National Taiwan Normal University, Taipei, 116, Taiwan (China)
2012-05-30
From the viewpoint of no-cloning theorem we postulate a relation between the current accelerated expansion of our universe and the inflationary expansion in the very early universe. It implies that the fate of our universe should be in a state with accelerated expansion. Quantitatively we find that the no-cloning theorem leads to a lower bound on the cosmological constant which is compatible with observations.
Quantum symmetry, the cosmological constant and Planck-scale phenomenology
International Nuclear Information System (INIS)
Amelino-Camelia, Giovanni; Smolin, Lee; Starodubtsev, Artem
2004-01-01
We present a simple algebraic mechanism for the emergence of deformations of Poincare symmetries in the low-energy limit of quantum theories of gravity. The deformations, called κ-Poincare algebras, are parametrized by a dimensional parameter proportional to the Planck mass, and imply modified energy-momentum relations of a type that may be observable in near future experiments. Our analysis assumes that the low energy limit of a quantum theory of gravity must also involve a limit in which the cosmological constant is taken very small with respect to the Planck scale, and makes use of the fact that in some quantum theories of gravity the cosmological constant results in the (anti)de Sitter symmetry algebra being quantum deformed. We show that deformed Poincare symmetries inevitably emerge in the small-cosmological-constant limit of quantum gravity in 2 + 1 dimensions, where geometry does not have local degrees of freedom. In 3 + 1 dimensions we observe that, besides the quantum deformation of the (anti)de Sitter symmetry algebra, one must also take into account that there are local degrees of freedom leading to a renormalization of the generators for energy and momentum of the excitations. At the present level of development of quantum gravity in 3 + 1 dimensions, it is not yet possible to derive this renormalization from first principles, but we establish the conditions needed for the emergence of a deformed low energy limit symmetry algebra also in the case of 3 + 1 dimensions
How universe evolves with cosmological and gravitational constants
Directory of Open Access Journals (Sweden)
She-Sheng Xue
2015-08-01
Full Text Available With a basic varying space–time cutoff ℓ˜, we study a regularized and quantized Einstein–Cartan gravitational field theory and its domains of ultraviolet-unstable fixed point gir≳0 and ultraviolet-stable fixed point guv≈4/3 of the gravitational gauge coupling g=(4/3G/GNewton. Because the fundamental operators of quantum gravitational field theory are dimension-2 area operators, the cosmological constant is inversely proportional to the squared correlation length Λ∝ξ−2. The correlation length ξ characterizes an infrared size of a causally correlate patch of the universe. The cosmological constant Λ and the gravitational constant G are related by a generalized Bianchi identity. As the basic space–time cutoff ℓ˜ decreases and approaches to the Planck length ℓpl, the universe undergoes inflation in the domain of the ultraviolet-unstable fixed point gir, then evolves to the low-redshift universe in the domain of ultraviolet-stable fixed point guv. We give the quantitative description of the low-redshift universe in the scaling-invariant domain of the ultraviolet-stable fixed point guv, and its deviation from the ΛCDM can be examined by low-redshift (z≲1 cosmological observations, such as supernova Type Ia.
Scalar field localization on a brane with cosmological constant
International Nuclear Information System (INIS)
Ghoroku, Kazuo; Yahiro, Masanobu
2003-01-01
We investigate the localization of a massive scalar for both dS and AdS branes, where the scalar mass is varied from the massive-particle region to the tachyon region. We find that the eigenmass m of the localized mode satisfies a simple relation m 2 = cM 2 with a positive constant c for the dS brane, and m 2 = c 1 M 2 + c 2 with positive constants c 1 and c 2 for the AdS brane. We discuss the relation of these results to the stability of the brane and also some cosmological problems
Inflationary phase in Brans-Dicke cosmology with a cosmological constant
Berman, Marcelo Samuel
1989-12-01
It has been shown earlier that, for a perfect fluid, a perfect gas law of state, and the Robertson-Walker metric, an exponential phase in Brans-Dicke cosmology is possible, with both positive pressure and density, but not with the violated energy condition p = -ρ. We demonstrate in this paper that the inclusion of a cosmological constant into the theory does not change that picture. Permanent address: Departamento de Ciencias Exatas da Faculdade de Filosofia, Ceincias e Letras da FURJ, Joinville, SC 89200, Brazil.
García-Bellido, J
2015-01-01
In these lectures I review the present status of the so-called Standard Cosmological Model, based on the hot Big Bang Theory and the Inflationary Paradigm. I will make special emphasis on the recent developments in observational cosmology, mainly the acceleration of the universe, the precise measurements of the microwave background anisotropies, and the formation of structure like galaxies and clusters of galaxies from tiny primordial fluctuations generated during inflation.
Relaxing the cosmological constant: a proof of concept
Energy Technology Data Exchange (ETDEWEB)
Alberte, Lasma [SISSA,Via Bonomea 265, 34136 Trieste (Italy); INFN - Sezione di Trieste,Via Valerio 2, 34127 Trieste (Italy); Creminelli, Paolo; Khmelnitsky, Andrei [Abdus Salam International Centre for Theoretical Physics (ICTP),Strada Costiera 11, 34151, Trieste (Italy); Pirtskhalava, David [Institute of Physics, École Polytechnique Fédérale de Lausanne,CH-1015, Lausanne (Switzerland); Trincherini, Enrico [Scuola Normale Superiore,Piazza dei Cavalieri 7, 56126, Pisa (Italy); INFN - Sezione di Pisa,56200, Pisa (Italy)
2016-12-06
We propose a technically natural scenario whereby an initially large cosmological constant (c.c.) is relaxed down to the observed value due to the dynamics of a scalar evolving on a very shallow potential. The model crucially relies on a sector that violates the null energy condition (NEC) and gets activated only when the Hubble rate becomes sufficiently small — of the order of the present one. As a result of NEC violation, this low-energy universe evolves into inflation, followed by reheating and the standard Big Bang cosmology. The symmetries of the theory force the c.c. to be the same before and after the NEC-violating phase, so that a late-time observer sees an effective c.c. of the correct magnitude. Importantly, our model allows neither for eternal inflation nor for a set of possible values of dark energy, the latter fixed by the parameters of the theory.
Testing the cosmological constant as a candidate for dark energy
International Nuclear Information System (INIS)
Kratochvil, Jan; Linde, Andrei; Linder, Eric V.; Shmakova, Marina
2004-01-01
It may be difficult to single out the best model of dark energy on the basis of the existing and planned cosmological observations, because many different models can lead to similar observational consequences. However, each particular model can be studied and either found consistent with observations or ruled out. In this paper, we concentrate on the possibility to test and rule out the simplest and by far the most popular of the models of dark energy, the theory described by general relativity with positive vacuum energy (the cosmological constant). We evaluate the conditions under which this model could be ruled out by the future observations made by the Supernova/Acceleration Probe SNAP (both for supernovae and weak lensing) and by the Planck Surveyor cosmic microwave background satellite
Rippled cosmological dark matter from a damped oscillating Newton constant
International Nuclear Information System (INIS)
Davidson, Aharon
2005-01-01
Let the reciprocal Newton 'constant' be an apparently non-dynamical Brans-Dicke scalar field damped oscillating towards its general relativistic VEV. We show, without introducing additional matter fields or dust, that the corresponding cosmological evolution averagely resembles, in the Jordan frame, the familiar dark radiation → dark matter → dark energy domination sequence. The fingerprints of our theory are fine ripples, hopefully testable, in the FRW scale factor; they die away at the general relativity limit. The possibility that the Brans-Dicke scalar also serves as the inflaton is favourably examined
On Vanishing Two Loop Cosmological Constants in Nonsupersymmetric Strings
Energy Technology Data Exchange (ETDEWEB)
Kachru, S
1998-10-22
It has recently been suggested that in certain special nonsupersymmetric type II string compactifications, at least the first two perturbative contributions to the cosmological constant Lambda vanish. Support for perturbative vanishing beyond 1-loop (as well as evidence for the absence of some nonperturbative contributions) has come from duality arguments. There was also a direct 2-loop computation which was incomplete; in this note we explain the deficiency of the previous 2-loop calculation and discuss the complete 2-loop computation in two different models. The corrected analysis yields a vanishing 2-loop contribution to Lambda in these models.
Effective action, massive gravitons and the Cosmological Constant
Energy Technology Data Exchange (ETDEWEB)
Garattini, Remo [Universita degli Studi di Bergamo, Facolta di Ingegneria, Viale Marconi 5, 24044 Dalmine (Bergamo) (Italy); INFN - sezione di Milano, Via Celoria 16, Milan (Italy)
2006-03-01
The one loop effective action in a Schwarzschild background is here used to compute the cosmological constant in presence of massive gravitons. It is shown that the expression of the Zero Point Energy (ZPE) is equivalent to the one computed by means of a variational approach. To handle with ZPE divergences, we use the zeta function regularization. The regularization is closely related to the subtraction procedure appearing in the computation of Casimir energy in a curved background. A renormalization procedure is introduced to remove the infinities together with a renormalization group equation.
Effective action, massive gravitons and the Cosmological Constant
International Nuclear Information System (INIS)
Garattini, Remo
2006-01-01
The one loop effective action in a Schwarzschild background is here used to compute the cosmological constant in presence of massive gravitons. It is shown that the expression of the Zero Point Energy (ZPE) is equivalent to the one computed by means of a variational approach. To handle with ZPE divergences, we use the zeta function regularization. The regularization is closely related to the subtraction procedure appearing in the computation of Casimir energy in a curved background. A renormalization procedure is introduced to remove the infinities together with a renormalization group equation
On vanishing two loop cosmological constants in nonsupersymmetric strings
International Nuclear Information System (INIS)
Kachru, Shamit; Silverstein, Eva
1998-01-01
It has recently been suggested that in certain special nonsupersymmetric type II string compactifications, at least the first two perturbative contributions to the cosmological constant Λ vanish. Support for perturbative vanishing beyond 1-loop (as well as evidence for the absence of some nonperturbative contributions) has come from duality arguments. There was also a direct 2-loop computation which was incomplete; in this note we explain the deficiency of the previous 2-loop calculation and discuss the complete 2-loop computation in two different models. The corrected analysis yields a vanishing 2-loop contribution to Λ in these models
An approach to the cosmological constant problem(s)
International Nuclear Information System (INIS)
Kane, Gordon L.; Perry, Malcolm J.; Z-dot ytkow, Anna N.
2005-01-01
We argue that in the context of string theory a large number N of connected degenerate supersymmetric vacua will lead to a ground state for the universe with a small, non-zero cosmological constant. For concreteness, we imagine a history where quantum fluctuations in any one vacuum give an energy density ∼H 2 m pl 2 but the universe quickly cascades to a state of energy density ∼H 2 m pl 2 /N at the beginning of inflation. A similar process can occur at the electroweak and other phase transitions. The wavefunction of the universe becomes a superposition of many string vacua
The cosmological constant filter without big bang singularity
International Nuclear Information System (INIS)
Bauer, Florian
2011-01-01
In the recently proposed cosmological constant (CC) filter mechanism based on modified gravity in the Palatini formalism, gravity in the radiation, matter and late-time de Sitter eras is insensitive to energy sources with the equation of state -1. This implies that finite vacuum energy shifts from phase transitions are filtered out too. In this work, we investigate the CC filter model at very early times. We find that the initial big bang singularity is replaced by a cosmic bounce, where the matter energy density and the curvature are finite. In a certain case, this finiteness can be already observed on the algebraic level. (paper)
Holographic Bound in Quantum Field Energy Density and Cosmological Constant
Castorina, Paolo
2012-01-01
The cosmological constant problem is reanalyzed by imposing the limitation of the number of degrees of freedom (d.o.f.) due to entropy bounds directly in the calculation of the energy density of a field theory. It is shown that if a quantum field theory has to be consistent with gravity and holography, i.e. with an upper limit of storing information in a given area, the ultraviolet momentum cut-off is not the Planck mass, M_p, as naively expected, but M_p/N_U^(1/4) where N_U is the number of ...
Implications of a positive cosmological constant for general relativity.
Ashtekar, Abhay
2017-10-01
Most of the literature on general relativity over the last century assumes that the cosmological constant [Formula: see text] is zero. However, by now independent observations have led to a consensus that the dynamics of the universe is best described by Einstein's equations with a small but positive [Formula: see text]. Interestingly, this requires a drastic revision of conceptual frameworks commonly used in general relativity, no matter how small [Formula: see text] is. We first explain why, and then summarize the current status of generalizations of these frameworks to include a positive [Formula: see text], focusing on gravitational waves.
Induced cosmological constant in braneworlds with warped internal spaces
International Nuclear Information System (INIS)
Saharian, Aram A.
2006-01-01
We investigate the vacuum energy density induced by quantum fluctuations of a bulk scalar field with general curvature coupling parameter on two codimension one parallel branes in a (D + 1)-dimensional background spacetime AdS D1+1 x Σ with a warped internal space Σ. It is assumed that on the branes the field obeys Robin boundary conditions. Using the generalized zeta function technique in combination with contour integral representations, the surface energies on the branes are presented in the form of the sums of single brane and second brane induced parts. For the geometry of a single brane both regions, on the left (L-region) and on the right (R-region), of the brane are considered. The surface densities for separate L- and R-regions contain pole and finite contributions. For an infinitely thin brane taking these regions together, in odd spatial dimensions the pole parts cancel and the total surface energy is finite. The parts in the surface densities generated by the presence of the second brane are finite for all nonzero values of the interbrane separation. The contribution of the Kaluza-Klein modes along Σ is investigated in various limiting cases. It is shown that for large distances between the branes the induced surface densities give rise to an exponentially suppressed cosmological constant on the brane. In the higher dimensional generalization of the Randall-Sundrum braneworld model, for the interbrane distances solving the hierarchy problem, the cosmological constant generated on the visible brane is of the right order of magnitude with the value suggested by the cosmological observations. (author)
Supersymmetric large extra dimensions and the cosmological constant: an update
International Nuclear Information System (INIS)
Burgess, C.P.
2004-01-01
This article critically reviews the proposal for addressing the cosmological constant problem within the framework of supersymmetric large extra dimensions (SLED), as recently proposed in hep-th/0304256. After a brief restatement of the cosmological constant problem, a short summary of the proposed mechanism is given. The emphasis is on the perspective of the low-energy effective theory in order to see how it addresses the problem of why low-energy particles like the electron do not contribute too large a vacuum energy. This is followed by a discussion of the main objections, which are grouped into the following five topics: (1) Weinberg's No-Go Theorem. (2) Are hidden tunings of the theory required, and are these stable under renormalization? (3) Why should the mechanism apply only now and not rule out possible earlier epochs of inflationary dynamics? (4) How big are quantum effects, and which are the most dangerous? and (5) Even if successful, can the mechanism be consistent with cosmological or current observational constraints? It is argued that there are plausible reasons why the mechanism can thread the potential objections, but that a definitive proof that it does depends on addressing well-defined technical points. These points include identifying what fixes the size of the extra dimensions, checking how topological obstructions renormalize and performing specific calculations of quantum corrections. More detailed studies of these issues, which are well within reach of our present understanding of extra-dimensional theories, are currently underway. As such, the jury remains out concerning the proposal, although the prospects for acquittal still seem good. (An abridged version of this article appears in the proceedings of SUSY 2003.)
The Einstein static universe with torsion and the sign problem of the cosmological constant
International Nuclear Information System (INIS)
Boehmer, C G
2004-01-01
In the field equations of Einstein-Cartan theory with cosmological constant a static spherically symmetric perfect fluid with spin density satisfying the Weyssenhoff restriction is considered. This serves as a rough model of space filled with (fermionic) dark matter. From this the Einstein static universe with constant torsion is constructed, generalizing the Einstein cosmos to Einstein-Cartan theory. The interplay between torsion and the cosmological constant is discussed. A possible way out of the cosmological constant's sign problem is suggested
Morris-Thorne wormholes with a cosmological constant
International Nuclear Information System (INIS)
Lemos, Jose P.S.; Lobo, Francisco S.N.; Oliveira, Sergio Quinet de
2003-01-01
First, the ideas introduced in the wormhole research field since the work of Morris and Thorne are reviewed, namely, the issues of energy conditions, wormhole construction, stability, time machines and astrophysical signatures. Then, spherically symmetric and static traversable Morris-Thorne wormholes in the presence of a generic cosmological constant Λ are analyzed. A matching of an interior solution to the unique exterior vacuum solution is done using directly the Einstein equations. The structure as well as several physical properties and characteristics of traversable wormholes due to the effects of the cosmological term are studied. Interesting equations appear in the process of matching. For instance, one finds that for asymptotically flat and anti-de Sitter spacetimes the surface tangential pressure P of the thin shell, at the boundary of the interior and exterior solutions, is always strictly positive, whereas for de Sitter spacetime it can take either sign as one would expect, being negative (tension) for relatively high Λ and high wormhole radius, positive for relatively high mass and small wormhole radius, and zero in between. Finally, some specific solutions with Λ, based on the Morris-Thorne solutions, are provided
A Non-anthropic Solution to the Cosmological Constant Problem
Directory of Open Access Journals (Sweden)
Spivey R. J.
2016-01-01
Full Text Available Accelerating cosmological expansion is driven by a minuscule vacuum energy density possibly seeking opportunities to decay to a true ground state. Quasar characteristics imply their central engines possess an intrinsic magnetic field compatible with the pres- ence of an electrically charged toroidal dark hole, an eternally collapsing structure lack- ing an event horizon. The possibility is consistent with the inability of black holes to capture particles in a universe of finite age, Einstein’s dismissal of the Schwarzschild metric as unphysical and the implausibility of the various paradoxes invoked by black hole existence. The uncloaked innards of these dark holes would expose immense vac- uum accelerations at their cores, inevitably tempered by Planck scale physics. The Unruh effect predicts that intense yet highly localised heating should occur there. As thermal energy gradually amasses and dissipates, radiation would eventually start to escape into the surrounding environment. Virtual from the d ark hole perspective, the emissions could not decrease the dark hole’s mass: the energy source must instead be the universal vacuum, the likely repository of dark energy. In analogy with core- collapse supernovae, neutrinos should dominate the cooling flows. Red-shifting to low energies upon escape, quantum degenerate haloes should for m predominantly around the largest galaxies. This mechanism is promising from the perspective of enabling the future universe to efficiently sustain aquatic life before stars become scarce, offering a biological yet decidedly non-anthropic solution to the cosmological constant problem.
Predicting the Cosmological Constant from the Causal Entropic Principle
Energy Technology Data Exchange (ETDEWEB)
Bousso, Raphael; Bousso, Raphael; Harnik, Roni; Kribs, Graham D.; Perez, Gilad
2007-05-01
We compute the expected value of the cosmological constant in our universe from the Causal Entropic Principle. Since observers must obey the laws of thermodynamics and causality, the principle asserts that physical parameters are most likely to be found in the range of values for which the total entropy production within a causally connected region is maximized. Despite the absence of more explicit anthropic criteria, the resulting probability distribution turns out to be in excellent agreement with observation. In particular, we find that dust heated by stars dominates the entropy production, demonstrating the remarkable power of this thermodynamic selection criterion. The alternative approach-weighting by the number of"observers per baryon" -- is less well-defined, requires problematic assumptions about the nature of observers, and yet prefers values larger than present experimental bounds.
Predicting the Cosmological Constant from the CausalEntropic Principle
Energy Technology Data Exchange (ETDEWEB)
Bousso, Raphael; Harnik, Roni; Kribs, Graham D.; Perez, Gilad
2007-02-20
We compute the expected value of the cosmological constant in our universe from the Causal Entropic Principle. Since observers must obey the laws of thermodynamics and causality, it asserts that physical parameters are most likely to be found in the range of values for which the total entropy production within a causally connected region is maximized. Despite the absence of more explicit anthropic criteria, the resulting probability distribution turns out to be in excellent agreement with observation. In particular, we find that dust heated by stars dominates the entropy production, demonstrating the remarkable power of this thermodynamic selection criterion. The alternative approach--weighting by the number of ''observers per baryon''--is less well-defined, requires problematic assumptions about the nature of observers, and yet prefers values larger than present experimental bounds.
Gravity with a cosmological constant from rational curves
Adamo, Tim
2015-11-01
We give a new formula for all tree-level correlators of boundary field insertions in gauged N=8 supergravity in AdS4; this is an analogue of the tree-level S-matrix in anti-de Sitter space. The formula is written in terms of rational maps from the Riemann sphere to twistor space, with no reference to bulk perturbation theory. It is polynomial in the cosmological constant, and equal to the classical scattering amplitudes of supergravity in the flat space limit. The formula is manifestly supersymmetric, independent of gauge choices on twistor space, and equivalent to expressions computed via perturbation theory at 3-point overline{MHV} and n-point MHV. We also show that the formula factorizes and obeys BCFW recursion in twistor space.
Gravity with a cosmological constant from rational curves
International Nuclear Information System (INIS)
Adamo, Tim
2015-01-01
We give a new formula for all tree-level correlators of boundary field insertions in gauged N=8 supergravity in AdS_4; this is an analogue of the tree-level S-matrix in anti-de Sitter space. The formula is written in terms of rational maps from the Riemann sphere to twistor space, with no reference to bulk perturbation theory. It is polynomial in the cosmological constant, and equal to the classical scattering amplitudes of supergravity in the flat space limit. The formula is manifestly supersymmetric, independent of gauge choices on twistor space, and equivalent to expressions computed via perturbation theory at 3-point (MHV)-bar and n-point MHV. We also show that the formula factorizes and obeys BCFW recursion in twistor space.
Scale of gravity and the cosmological constant within a landscape
International Nuclear Information System (INIS)
Graesser, Michael L.; Salem, Michael P.
2007-01-01
It is possible that the scale of gravity, parametrized by the apparent Planck mass, may obtain different values within different universes in an encompassing multiverse. We investigate the range over which the Planck mass may scan while still satisfying anthropic constraints. The window for anthropically allowed values of the Planck mass may have important consequences for landscape predictions. For example, if the likelihood to observe some value of the Planck mass is weighted by the inflationary expansion factors of the universes that contain that value, then it appears extremely unlikely to observe the value of the Planck mass that is measured within our universe. This is another example of the runaway inflation problem discussed in recent literature. We also show that the window for the Planck mass significantly weakens the anthropic constraint on the cosmological constant when both are allowed to vary over a landscape
Nonsingular electrovacuum solutions with dynamically generated cosmological constant
Energy Technology Data Exchange (ETDEWEB)
Guendelman, E.I., E-mail: guendel@bgumail.bgu.ac.il [Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel); Olmo, Gonzalo J., E-mail: gonzalo.olmo@csic.es [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia – CSIC, Universidad de Valencia, Burjassot 46100, Valencia (Spain); Rubiera-Garcia, D., E-mail: drubiera@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, 58051-900 João Pessoa, Paraíba (Brazil); Vasihoun, M., E-mail: maharyw@gmail.com [Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)
2013-11-04
We consider static spherically symmetric configurations in a Palatini extension of General Relativity including R{sup 2} and Ricci-squared terms, which is known to replace the central singularity by a wormhole in the electrovacuum case. We modify the matter sector of the theory by adding to the usual Maxwell term a nonlinear electromagnetic extension which is known to implement a confinement mechanism in flat space. One feature of the resulting theory is that the nonlinear electric field leads to a dynamically generated cosmological constant. We show that with this matter source the solutions of the model are asymptotically de Sitter and possess a wormhole topology. We discuss in some detail the conditions that guarantee the absence of singularities and of traversable wormholes.
Newtonian cosmology with a time-varying constant of gravitation
International Nuclear Information System (INIS)
McVittie, G.C.
1978-01-01
Newtonian cosmology is based on the Eulerian equations of fluid mechanics combined with Poisson's equation modified by the introduction of a time-varying G. Spherically symmetric model universes are worked out with instantaneously uniform densities. They are indeterminate unless instantaneous uniformity of the pressure is imposed. When G varies as an inverse power of the time, the models can in some cases be shown to depend on the solution of a second-order differential equation which also occurs in the Friedmann models of general relativity. In Section 3, a method for 'passing through' a singularity of this equation is proposed which entails making four arbitrary mathematical assumptions. When G varies as (time) -1 , models with initially cycloidal motion are possible, each cycle becoming longer as time progresses. Finally, gravitation becomes so weak that the model expands to infinity. Kinetic and potential energies for the whole model are derived from the basic equations; their sum is not constant. (author)
Cylindrically symmetric, static strings with a cosmological constant in Brans-Dicke theory
International Nuclear Information System (INIS)
Delice, Oezguer
2006-01-01
The static cylindrically symmetric vacuum solutions with a cosmological constant in the framework of the Brans-Dicke theory are investigated. Some of these solutions admitting Lorentz boost invariance along the symmetry axis correspond to local, straight cosmic strings with a cosmological constant. Some physical properties of such solutions are studied. These strings apply attractive or repulsive forces on the test particles. A smooth matching is also performed with a recently introduced interior thick string solution with a cosmological constant
Large scale geometry and evolution of a universe with radiation pressure and cosmological constant
Coquereaux, Robert; Coquereaux, Robert; Grossmann, Alex
2000-01-01
In view of new experimental results that strongly suggest a non-zero cosmological constant, it becomes interesting to revisit the Friedmann-Lemaitre model of evolution of a universe with cosmological constant and radiation pressure. In this paper, we discuss the explicit solutions for that model, and perform numerical explorations for reasonable values of cosmological parameters. We also analyse the behaviour of redshifts in such models and the description of ``very large scale geometrical features'' when analysed by distant observers.
A small cosmological constant and backreaction of non-finetuned parameters
International Nuclear Information System (INIS)
Krause, Axel
2003-01-01
We include the backreaction on warped geometry induced by non-finetuned parameters in a two domain-wall set-up to obtain an exponentially small Cosmological Constant Λ4. The mechanism to suppress the Cosmological Constant involves one classical fine-tuning as compared to an infinity of finetunings at the quantum level in standard D = 4 field theory. (author)
Role of the cosmological constant in the holographic description of the early universe
International Nuclear Information System (INIS)
Myung, Yun Soo
2004-01-01
We investigate the role of the cosmological constant in the holographic description of a radiation-dominated universe C 2 /R 4 with a positive cosmological constant Λ. In order to understand the nature of cosmological term, we first study the Newtonian cosmology. Here we find two aspects of the cosmological term: entropy (Λ→S Λ ) and energy (Λ→E Λ ). Also we solve the Friedmann equation parametrically to obtain another role. In the presence of the cosmological constant, the solutions are described by the Weierstrass elliptic functions on torus and have modular properties. In this case one may expect to have a two-dimensional Cardy entropy formula but the cosmological constant plays a role of the modular parameter τ(C 2 ,Λ) of torus. Consequently, the entropy concept of the cosmological constant is very suitable for establishing the holographic entropy bounds in the early universe. This contrasts to the role of the cosmological constant as a dark energy in the present universe
Condensates in quantum chromodynamics and the cosmological constant
Brodsky, Stanley J.; Shrock, Robert
2011-01-01
Casher and Susskind [Casher A, Susskind L (1974) Phys Rev 9:436–460] have noted that in the light-front description, spontaneous chiral symmetry breaking is a property of hadronic wavefunctions and not of the vacuum. Here we show from several physical perspectives that, because of color confinement, quark and gluon condensates in quantum chromodynamics (QCD) are associated with the internal dynamics of hadrons. We discuss condensates using condensed matter analogues, the Anti de Sitter/conformal field theory correspondence, and the Bethe–Salpeter–Dyson–Schwinger approach for bound states. Our analysis is in agreement with the Casher and Susskind model and the explicit demonstration of “in-hadron” condensates by Roberts and coworkers [Maris P, Roberts CD, Tandy PC (1998) Phys Lett B 420:267–273], using the Bethe–Salpeter–Dyson–Schwinger formalism for QCD-bound states. These results imply that QCD condensates give zero contribution to the cosmological constant, because all of the gravitational effects of the in-hadron condensates are already included in the normal contribution from hadron masses.
Asymptotics with a positive cosmological constant: I. Basic framework
Ashtekar, Abhay; Bonga, Béatrice; Kesavan, Aruna
2015-01-01
The asymptotic structure of the gravitational field of isolated systems has been analyzed in great detail in the case when the cosmological constant Λ is zero. The resulting framework lies at the foundation of research in diverse areas in gravitational science. Examples include: (i) positive energy theorems in geometric analysis; (ii) the coordinate invariant characterization of gravitational waves in full, nonlinear general relativity; (iii) computations of the energy-momentum emission in gravitational collapse and binary mergers in numerical relativity and relativistic astrophysics; and (iv) constructions of asymptotic Hilbert spaces to calculate S-matrices and analyze the issue of information loss in the quantum evaporation of black holes. However, by now observations have led to a strong consensus that Λ is positive in our universe. In this paper we show that, unfortunately, the standard framework does not extend from the Λ =0 case to the Λ \\gt 0 case in a physically useful manner. In particular, we do not have positive energy theorems, nor an invariant notion of gravitational waves in the nonlinear regime, nor asymptotic Hilbert spaces in dynamical situations of semi-classical gravity. A suitable framework to address these conceptual issues of direct physical importance is developed in subsequent papers.
International Nuclear Information System (INIS)
Buchert, Thomas
2006-01-01
In the framework of spatially averaged inhomogeneous cosmologies in classical general relativity, effective Einstein equations govern the regional and the global dynamics of averaged scalar variables of cosmological models. A particular solution may be characterized by a cosmic equation of state. In this paper, it is pointed out that a globally static averaged dust model is conceivable without employing a compensating cosmological constant. Much in the spirit of Einstein's original model we discuss consequences for the global, but also for the regional properties of this cosmology. We then consider the wider class of globally stationary cosmologies that are conceivable in the presented framework. All these models are based on exact solutions of the averaged Einstein equations and provide examples of cosmologies in an out-of-equilibrium state, which we characterize by an information-theoretical measure. It is shown that such cosmologies preserve high-magnitude kinematical fluctuations and so tend to maintain their global properties. The same is true for a Λ-driven cosmos in such a state despite exponential expansion. We outline relations to inflationary scenarios and put the dark energy problem into perspective. Here, it is argued, on the grounds of the discussed cosmologies, that a classical explanation of dark energy through backreaction effects is theoretically conceivable, if the matter-dominated universe emerged from a non-perturbative state in the vicinity of the stationary solution. We also discuss a number of caveats that furnish strong counter arguments in the framework of structure formation in a perturbed Friedmannian model
Testable solution of the cosmological constant and coincidence problems
International Nuclear Information System (INIS)
Shaw, Douglas J.; Barrow, John D.
2011-01-01
We present a new solution to the cosmological constant (CC) and coincidence problems in which the observed value of the CC, Λ, is linked to other observable properties of the Universe. This is achieved by promoting the CC from a parameter that must be specified, to a field that can take many possible values. The observed value of Λ≅(9.3 Gyrs) -2 [≅10 -120 in Planck units] is determined by a new constraint equation which follows from the application of a causally restricted variation principle. When applied to our visible Universe, the model makes a testable prediction for the dimensionless spatial curvature of Ω k0 =-0.0056(ζ b /0.5), where ζ b ∼1/2 is a QCD parameter. Requiring that a classical history exist, our model determines the probability of observing a given Λ. The observed CC value, which we successfully predict, is typical within our model even before the effects of anthropic selection are included. When anthropic selection effects are accounted for, we find that the observed coincidence between t Λ =Λ -1/2 and the age of the Universe, t U , is a typical occurrence in our model. In contrast to multiverse explanations of the CC problems, our solution is independent of the choice of a prior weighting of different Λ values and does not rely on anthropic selection effects. Our model includes no unnatural small parameters and does not require the introduction of new dynamical scalar fields or modifications to general relativity, and it can be tested by astronomical observations in the near future.
Barnes, Luke A.; Elahi, Pascal J.; Salcido, Jaime; Bower, Richard G.; Lewis, Geraint F.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop
2018-04-01
Models of the very early universe, including inflationary models, are argued to produce varying universe domains with different values of fundamental constants and cosmic parameters. Using the cosmological hydrodynamical simulation code from the EAGLE collaboration, we investigate the effect of the cosmological constant on the formation of galaxies and stars. We simulate universes with values of the cosmological constant ranging from Λ = 0 to Λ0 × 300, where Λ0 is the value of the cosmological constant in our Universe. Because the global star formation rate in our Universe peaks at t = 3.5 Gyr, before the onset of accelerating expansion, increases in Λ of even an order of magnitude have only a small effect on the star formation history and efficiency of the universe. We use our simulations to predict the observed value of the cosmological constant, given a measure of the multiverse. Whether the cosmological constant is successfully predicted depends crucially on the measure. The impact of the cosmological constant on the formation of structure in the universe does not seem to be a sharp enough function of Λ to explain its observed value alone.
The smallnes of the cosmological constant and the principle of naturalness
International Nuclear Information System (INIS)
Huang, J.J.; Wang, M.J.
1984-01-01
Within the framework of inflationary cosmology, they are given temperature-dependent values of the cosmological constant lambda, the value lambda(2.7 K) of which is compatible with the present observational upper limit. It is found that the smallness of lambda is theoretically as well as phenomenologically natural
Brane world perspective on the cosmological constant and the hierarchy problems
International Nuclear Information System (INIS)
Flanagan, Eanna; Jones, Nicholas; Stoica, Horace; Tye, S.-H. Henry; Wasserman, Ira
2001-01-01
We elaborate on the recently proposed static brane world scenario, where the effective 4D cosmological constant is exponentially small when parallel 3-branes are far apart. We extend this result to a compactified model with two positive tension branes. In addition to an exponentially small effective 4D cosmological constant, this model incorporates a Randall-Sundrum-like solution to the hierarchy problem. Furthermore, the exponential factors for the hierarchy problem and the cosmological constant problem obey an inequality that is satisfied in nature. This inequality implies that the cosmological constant problem can be explained if the hierarchy problem is understood. The basic idea generalizes to the multibrane world scenario. We discuss models with piecewise adjustable bulk cosmological constants (to be determined by the 5-dimensional Einstein equation), a key element of the scenario. We also discuss the global structure of this scenario and clarify the physical properties of the particle (Rindler) horizons that are present. Finally, we derive a 4D effective theory in which all observers on all branes not separated by particle horizons measure the same Newton's constant and 4D cosmological constant
Shadow cast by rotating braneworld black holes with a cosmological constant
Energy Technology Data Exchange (ETDEWEB)
Eiroa, Ernesto F.; Sendra, Carlos M. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)
2018-02-15
In this article, we study the shadow produced by rotating black holes having a tidal charge in a Randall-Sundrum braneworld model, with a cosmological constant. We obtain the apparent shape and the corresponding observables for different values of the tidal charge and the rotation parameter, and we analyze the influence of the presence of the cosmological constant. We also discuss the observational prospects for this optical effect. (orig.)
Ground State of the Universe and the Cosmological Constant. A Nonperturbative Analysis.
Husain, Viqar; Qureshi, Babar
2016-02-12
The physical Hamiltonian of a gravity-matter system depends on the choice of time, with the vacuum naturally identified as its ground state. We study the expanding Universe with scalar field in the volume time gauge. We show that the vacuum energy density computed from the resulting Hamiltonian is a nonlinear function of the cosmological constant and time. This result provides a new perspective on the relation between time, the cosmological constant, and vacuum energy.
Linearized stability analysis of thin-shell wormholes with a cosmological constant
International Nuclear Information System (INIS)
Lobo, Francisco S N; Crawford, Paulo
2004-01-01
Spherically symmetric thin-shell wormholes in the presence of a cosmological constant are constructed applying the cut-and-paste technique implemented by Visser. Using the Darmois-Israel formalism the surface stresses, which are concentrated at the wormhole throat, are determined. This construction allows us to apply a dynamical analysis to the throat, considering linearized radial perturbations around static solutions. For a large positive cosmological constant, i.e., for the Schwarzschild-de Sitter solution, the region of stability is significantly increased, relatively to the null cosmological constant case, analysed by Poisson and Visser. With a negative cosmological constant, i.e., the Schwarzschild-anti de Sitter solution, the region of stability is decreased. In particular, considering static solutions with a generic cosmological constant, the weak and dominant energy conditions are violated, while for a 0 ≤ 3M the null and strong energy conditions are satisfied. The surface pressure of the static solution is strictly positive for the Schwarzschild and Schwarzschild-anti de Sitter spacetimes, but takes negative values, assuming a surface tension in the Schwarzschild-de Sitter solution, for high values of the cosmological constant and the wormhole throat radius
A note on the local cosmological constant and the dark energy coincidence problem
International Nuclear Information System (INIS)
Tajmar, M
2006-01-01
It has been suggested that the dark energy coincidence problem could be interpreted as a possible link between the cosmological constant and a massive graviton. We show that by using this link and models for the graviton mass, a dark energy density can be obtained that is indeed very close to measurements by WMAP. As a consequence of the models, the cosmological constant was found to depend on the density of matter. A brief outline of the cosmological consequences such as the effect on the black hole solution is given. (comments, replies and notes)
Emergence of the product of constant curvature spaces in loop quantum cosmology
International Nuclear Information System (INIS)
Dadhich, Naresh; Joe, Anton; Singh, Parampreet
2015-01-01
The loop quantum dynamics of Kantowski–Sachs spacetime and the interior of higher genus black hole spacetimes with a cosmological constant has some peculiar features not shared by various other spacetimes in loop quantum cosmology. As in the other cases, though the quantum geometric effects resolve the physical singularity and result in a non-singular bounce, after the bounce a spacetime with small spacetime curvature does not emerge in either the subsequent backward or the forward evolution. Rather, in the asymptotic limit the spacetime manifold is a product of two constant curvature spaces. Interestingly, though the spacetime curvature of these asymptotic spacetimes is very high, their effective metric is a solution to Einstein’s field equations. Analysis of the components of the Ricci tensor shows that after the singularity resolution, the Kantowski–Sachs spacetime leads to an effective metric which can be interpreted as the ‘charged’ Nariai, while the higher genus black hole interior can similarly be interpreted as an anti Bertotti–Robinson spacetime with a cosmological constant. These spacetimes are ‘charged’ in the sense that the energy–momentum tensor that satisfies Einstein’s field equations is formally the same as the one for the uniform electromagnetic field, albeit it has a purely quantum geometric origin. The asymptotic spacetimes also have an emergent cosmological constant which is different in magnitude, and sometimes even its sign, from the cosmological constant in the Kantowski–Sachs and the interior of higher genus black hole metrics. With a fine tuning of the latter cosmological constant, we show that ‘uncharged’ Nariai, and anti Bertotti–Robinson spacetimes with a vanishing emergent cosmological constant can also be obtained. (paper)
Corrections to the apparent value of the cosmological constant due to local inhomogeneities
International Nuclear Information System (INIS)
Romano, Antonio Enea; Chen, Pisin
2011-01-01
Supernovae observations strongly support the presence of a cosmological constant, but its value, which we will call apparent, is normally determined assuming that the Universe can be accurately described by a homogeneous model. Even in the presence of a cosmological constant we cannot exclude nevertheless the presence of a small local inhomogeneity which could affect the apparent value of the cosmological constant. Neglecting the presence of the inhomogeneity can in fact introduce a systematic misinterpretation of cosmological data, leading to the distinction between an apparent and true value of the cosmological constant. We establish the theoretical framework to calculate the corrections to the apparent value of the cosmological constant by modeling the local inhomogeneity with a ΛLTB solution. Our assumption to be at the center of a spherically symmetric inhomogeneous matter distribution correspond to effectively calculate the monopole contribution of the large scale inhomogeneities surrounding us, which we expect to be the dominant one, because of other observations supporting a high level of isotropy of the Universe around us. By performing a local Taylor expansion we analyze the number of independent degrees of freedom which determine the local shape of the inhomogeneity, and consider the issue of central smoothness, showing how the same correction can correspond to different inhomogeneity profiles. Contrary to previous attempts to fit data using large void models our approach is quite general. The correction to the apparent value of the cosmological constant is in fact present for local inhomogeneities of any size, and should always be taken appropriately into account both theoretically and observationally
International Nuclear Information System (INIS)
Nojiri, Shin'ichi; Odintsov, Sergei D.
2007-01-01
We consider class of modified f(R) gravities with the effective cosmological constant epoch at the early and late universe. Such models pass most of solar system tests as well they satisfy to cosmological bounds. Despite their very attractive properties, it is shown that one realistic class of such models may lead to significant Newton law corrections at large cosmological scales. Nevertheless, these corrections are small at solar system as well as at the future universe. Another realistic model with acceptable Newton law regime shows the matter instability
Quintessential inflation from a variable cosmological constant in a 5D vacuum
Membiela, Agustin; Bellini, Mauricio
2006-01-01
We explore an effective 4D cosmological model for the universe where the variable cosmological constant governs its evolution and the pressure remains negative along all the expansion. This model is introduced from a 5D vacuum state where the (space-like) extra coordinate is considered as noncompact. The expansion is produced by the inflaton field, which is considered as nonminimally coupled to gravity. We conclude from experiental data that the coupling of the inflaton with gravity should be...
Cosmological constant from a deformation of the Wheeler–DeWitt equation
International Nuclear Information System (INIS)
Garattini, Remo; Faizal, Mir
2016-01-01
In this paper, we consider the Wheeler–DeWitt equation modified by a deformation of the second quantized canonical commutation relations. Such modified commutation relations are induced by a Generalized Uncertainty Principle. Since the Wheeler–DeWitt equation can be related to a Sturm–Liouville problem where the associated eigenvalue can be interpreted as the cosmological constant, it is possible to explicitly relate such an eigenvalue to the deformation parameter of the corresponding Wheeler–DeWitt equation. The analysis is performed in a Mini-Superspace approach where the scale factor appears as the only degree of freedom. The deformation of the Wheeler–DeWitt equation gives rise to a Cosmological Constant even in absence of matter fields. As a Cosmological Constant cannot exist in absence of the matter fields in the undeformed Mini-Superspace approach, so the existence of a non-vanishing Cosmological Constant is a direct consequence of the deformation by the Generalized Uncertainty Principle. In fact, we are able to demonstrate that a non-vanishing Cosmological Constant exists even in the deformed flat space. We also discuss the consequences of this deformation on the big bang singularity.
Cosmological constant from a deformation of the Wheeler–DeWitt equation
Directory of Open Access Journals (Sweden)
Remo Garattini
2016-04-01
Full Text Available In this paper, we consider the Wheeler–DeWitt equation modified by a deformation of the second quantized canonical commutation relations. Such modified commutation relations are induced by a Generalized Uncertainty Principle. Since the Wheeler–DeWitt equation can be related to a Sturm–Liouville problem where the associated eigenvalue can be interpreted as the cosmological constant, it is possible to explicitly relate such an eigenvalue to the deformation parameter of the corresponding Wheeler–DeWitt equation. The analysis is performed in a Mini-Superspace approach where the scale factor appears as the only degree of freedom. The deformation of the Wheeler–DeWitt equation gives rise to a Cosmological Constant even in absence of matter fields. As a Cosmological Constant cannot exist in absence of the matter fields in the undeformed Mini-Superspace approach, so the existence of a non-vanishing Cosmological Constant is a direct consequence of the deformation by the Generalized Uncertainty Principle. In fact, we are able to demonstrate that a non-vanishing Cosmological Constant exists even in the deformed flat space. We also discuss the consequences of this deformation on the big bang singularity.
One hundred years of the cosmological constant: from "superfluous stunt" to dark energy
O'Raifeartaigh, Cormac; O'Keeffe, Michael; Nahm, Werner; Mitton, Simon
2018-05-01
We present a centennial review of the history of the term known as the cosmological constant. First introduced to the general theory of relativity by Einstein in 1917 in order to describe a universe that was assumed to be static, the term fell from favour in the wake of the discovery of the expanding universe, only to make a dramatic return in recent times. We consider historical and philosophical aspects of the cosmological constant over four main epochs; (i) the use of the term in static cosmologies (both Newtonian and relativistic): (ii) the marginalization of the term following the discovery of cosmic expansion: (iii) the use of the term to address specific cosmic puzzles such as the timespan of expansion, the formation of galaxies and the redshifts of the quasars: (iv) the re-emergence of the term in today's Λ-CDM cosmology. We find that the cosmological constant was never truly banished from theoretical models of the universe, but was marginalized by astronomers for reasons of convenience. We also find that the return of the term to the forefront of modern cosmology did not occur as an abrupt paradigm shift due to one particular set of observations, but as the result of a number of empirical advances such as the measurement of present cosmic expansion using the Hubble Space Telescope, the measurement of past expansion using type SN Ia supernovae as standard candles, and the measurement of perturbations in the cosmic microwave background by balloon and satellite. We give a brief overview of contemporary interpretations of the physics underlying the cosmic constant and conclude with a synopsis of the famous cosmological constant problem.
One hundred years of the cosmological constant: from "superfluous stunt" to dark energy
O'Raifeartaigh, Cormac; O'Keeffe, Michael; Nahm, Werner; Mitton, Simon
2018-03-01
We present a centennial review of the history of the term known as the cosmological constant. First introduced to the general theory of relativity by Einstein in 1917 in order to describe a universe that was assumed to be static, the term fell from favour in the wake of the discovery of the expanding universe, only to make a dramatic return in recent times. We consider historical and philosophical aspects of the cosmological constant over four main epochs; (i) the use of the term in static cosmologies (both Newtonian and relativistic): (ii) the marginalization of the term following the discovery of cosmic expansion: (iii) the use of the term to address specific cosmic puzzles such as the timespan of expansion, the formation of galaxies and the redshifts of the quasars: (iv) the re-emergence of the term in today's Λ-CDM cosmology. We find that the cosmological constant was never truly banished from theoretical models of the universe, but was marginalized by astronomers for reasons of convenience. We also find that the return of the term to the forefront of modern cosmology did not occur as an abrupt paradigm shift due to one particular set of observations, but as the result of a number of empirical advances such as the measurement of present cosmic expansion using the Hubble Space Telescope, the measurement of past expansion using type SN Ia supernovae as standard candles, and the measurement of perturbations in the cosmic microwave background by balloon and satellite. We give a brief overview of contemporary interpretations of the physics underlying the cosmic constant and conclude with a synopsis of the famous cosmological constant problem.
Scalar potential from de Sitter brane in 5D and effective cosmological constant
International Nuclear Information System (INIS)
Ito, Masato
2004-01-01
We derive the scalar potential in zero mode effective action arising from a de Sitter brane embedded in five dimensions with bulk cosmological constant Λ. The scalar potential for a scalar field canonically normalized is given by the sum of exponential potentials. In the case of Λ = 0 and Λ > 0, we point out that the scalar potential has an unstable maximum at the origin and exponentially vanishes for large positive scalar field. In the case of Λ < 0, the scalar potential has an unstable maximum at the origin and a local minimum. It is shown that the positive cosmological constant in dS brane is reduced by negative potential energy of scalar at minimum and that effective cosmological constant depends on a dimensionless quantity. Furthermore, we discuss the fate of our universe including the potential energy of the scalar. (author)
Cosmological constant problem and renormalized vacuum energy density in curved background
Energy Technology Data Exchange (ETDEWEB)
Kohri, Kazunori [Theory Center, IPNS, KEK, Tsukuba 305-0801, Ibaraki (Japan); Matsui, Hiroki, E-mail: kohri@post.kek.jp, E-mail: matshiro@post.kek.jp [The Graduate University of Advanced Studies (Sokendai), Tsukuba 305-0801, Ibaraki (Japan)
2017-06-01
The current vacuum energy density observed as dark energy ρ{sub dark}≅ 2.5×10{sup −47} GeV{sup 4} is unacceptably small compared with any other scales. Therefore, we encounter serious fine-tuning problem and theoretical difficulty to derive the dark energy. However, the theoretically attractive scenario has been proposed and discussed in literature: in terms of the renormalization-group (RG) running of the cosmological constant, the vacuum energy density can be expressed as ρ{sub vacuum}≅ m {sup 2} H {sup 2} where m is the mass of the scalar field and rather dynamical in curved spacetime. However, there has been no rigorous proof to derive this expression and there are some criticisms about the physical interpretation of the RG running cosmological constant. In the present paper, we revisit the RG running effects of the cosmological constant and investigate the renormalized vacuum energy density in curved spacetime. We demonstrate that the vacuum energy density described by ρ{sub vacuum}≅ m {sup 2} H {sup 2} appears as quantum effects of the curved background rather than the running effects of cosmological constant. Comparing to cosmological observational data, we obtain an upper bound on the mass of the scalar fields to be smaller than the Planck mass, m ∼< M {sub Pl}.
Deflation of the cosmological constant associated with inflation and dark energy
International Nuclear Information System (INIS)
Geng, Chao-Qiang; Lee, Chung-Chi
2016-01-01
In order to solve the fine-tuning problem of the cosmological constant, we propose a simple model with the vacuum energy non-minimally coupled to the inflaton field. In this model, the vacuum energy decays to the inflaton during pre-inflation and inflation eras, so that the cosmological constant effectively deflates from the Planck mass scale to a much smaller one after inflation and plays the role of dark energy in the late-time of the universe. We show that our deflationary scenario is applicable to arbitrary slow-roll inflation models. We also take two specific inflation potentials to illustrate our results.
Low-redshift formula for the luminosity distance in a LTB model with cosmological constant
Energy Technology Data Exchange (ETDEWEB)
Romano, Antonio Enea [National Taiwan University, Leung Center for Cosmology and Particle Astrophysics, Taipei (China); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia); Chen, Pisin [National Taiwan University, Leung Center for Cosmology and Particle Astrophysics, Taipei (China); SLAC National Accelerator Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Menlo Park, CA (United States)
2014-04-15
We calculate the low-redshift Taylor expansion for the luminosity distance for an observer at the center of a spherically symmetric matter inhomogeneity with a non-vanishing cosmological constant. We then test the accuracy of the formulas comparing them to the numerical calculation for different cases for both the luminosity distance and the radial coordinate. The formulas can be used as a starting point to understand the general non-linear effects of a local inhomogeneity in the presence of a cosmological constant, without making any special assumption as regards the inhomogeneity profile. (orig.)
Crossing of the cosmological constant boundary-an equation of state description
International Nuclear Information System (INIS)
Stefancic, Hrvoje
2006-01-01
The phenomenon of the dark energy transition between the quintessence regime (w > -1) and the phantom regime (w < -1), also known as the cosmological constant boundary crossing, is analysed in terms of the dark energy equation of state. It is found that the dark energy equation of state in the dark energy models which exhibit the transition is implicitly defined. The generalizations of the models explicitly constructed to exhibit the transition are studied to gain insight into the mechanism of the transition. It is found that the cancellation of the terms corresponding to the cosmological constant boundary makes the transition possible
Influence of the cosmological constant on gravitational lensing in small systems
International Nuclear Information System (INIS)
Sereno, Mauro
2008-01-01
The cosmological constant Λ affects gravitational lensing phenomena. The contribution of Λ to the observable angular positions of multiple images and to their amplification and time delay is here computed through a study of the weak deflection limit of the equations of motion in the Schwarzschild-de Sitter metric. Because of Λ the unresolved images are slightly demagnified, the radius of the Einstein ring decreases, and the time delay increases. The effect is however negligible for near lenses. In the case of a null cosmological constant, we provide some updated results on lensing by a Schwarzschild black hole
Teichmueller motion of (2+1)-dimensional gravity with the cosmological constant
International Nuclear Information System (INIS)
Fujiwara, Yoshihisa; Soda, Jiro.
1989-08-01
The (2+1)-dimensional Einstein gravity with a cosmological constant is studied in the ADM canonical formalism. Adopting the York's time slice, we completely solve the initial-value problem and the time evolution equations with an initial spacelike 2-surface being a closed Riemann surface of genus zero and one. The result in a torus case is that the Teichmueller parameters for the torus follow a geodesic in the Teichmueller space but its motion asymptotically stops due to the presence of the cosmological constant. (author)
International Nuclear Information System (INIS)
Canfora, Fabrizio; Willison, Steven; Giacomini, Alex; Troncoso, Ricardo
2009-01-01
It is shown that Einstein gravity in four dimensions with small cosmological constant and small extra dimensions can be obtained by spontaneous compactification of Lovelock gravity in vacuum. Assuming that the extra dimensions are compact spaces of constant curvature, general relativity is recovered within a certain class of Lovelock theories possessing necessarily cubic or higher order terms in curvature. This bounds the higher dimension to at least 7. Remarkably, the effective gauge coupling and Newton constant in four dimensions are not proportional to the gravitational constant in higher dimensions, but are shifted with respect to their standard values. This effect opens up new scenarios where a maximally symmetric solution in higher dimensions could decay into the compactified spacetime either by tunneling or through a gravitational analog of ghost condensation. Indeed, this is what occurs requiring both the extra dimensions and the four-dimensional cosmological constant to be small.
International Nuclear Information System (INIS)
Gomberoff, Andres; Henneaux, Marc; Teitelboim, Claudio
2005-01-01
We study the decay of the cosmological constant in two spacetime dimensions through production of pairs. We show that the same nucleation process looks as quantum-mechanical tunneling (instanton) to one Killing observer and as thermal activation (thermalon) to another. Thus, we find another striking example of the deep interplay between gravity, thermodynamics and quantum mechanics which becomes apparent in presence of horizons
Contribution of the cosmological constant to the relativistic bending of light revisited
International Nuclear Information System (INIS)
Rindler, Wolfgang; Ishak, Mustapha
2007-01-01
We study the effect of the cosmological constant Λ on the bending of light by a concentrated spherically symmetric mass. Contrarily to previous claims, we show that, when the Schwarzschild-de Sitter geometry is taken into account, Λ does indeed contribute to the bending
Generalized Lie superalgebras and a supergravity with a positive cosmological constant
International Nuclear Information System (INIS)
Vasil'ev, M.A.
1984-01-01
A new law for forming the Hermitian conjugation makes it possible to construct a Hermitian action for a supergravity with a positive cosmological constant Λ. This modified conjugation leads to generalized (Z 2 x Z 2 -gauge) Lie superalgebras that correspond to a supergravity with Λ>0
Measuring the cosmological constant through the Lyman-alpha forest using the Alcock-Paczynski test
Lin, Wen-Ching
An important topic in cosmology is the determination of the energy densities of the major components of the Universe---OB, O DM and OΛ. Among these, the cosmological constant OΛ, which associates with the vacuum energy of our universe, draws specific attentions for its importance in fundamental particle physics. The Lyalpha forest QSO spectra are observationally available from z ˜ 0 to z ˜ 4. Recently the concept of performing the Alcock-Paczynski test on the Lyalpha forest to determine the cosmological constant has been proposed. This motivates us to develop a methodology incorporating sophisticated cosmological hydrodynamics simulations including these effects to implement the AP test and to perform an accurate measurement on the cosmological constant O Λ. To manipulate the data from paired QSO spectra with different angular separations, we propose an explicit method based on the maximum likelihood estimation. We use this method to implement the AP test and demonstrate the whole procedure based on our numerical simulations. Using mock pair spectra, we estimate that more than 40 pairs are required to derive an accurate value of OΛ due to the impact of cosmic variance. The degeneracy of other cosmological parameters is an important topic for this project. We examine two other parameters, sigma8 and n, the initial power spectrum amplitude and index, whose value are not consistently derived through other means. We conclude that when the uncertainties of these two parameters are around 10%--20%, the resulting bias in O Λ is less than 10%. Using a small sample of currently available QSO pairs, we have derived OΛ = 0.65+0.39-1.16 . Our preliminary result encourges us to take further steps on this project.
Null geodesics in black hole metrics with non-zero cosmological constant
International Nuclear Information System (INIS)
Stuchlik, Z.; Calvani, M.
1990-02-01
We study the radial motion along null geodesics in the Reissner-Nordstroem-de Sitter and Kerr-de Sitter space-times. We analyze the properties of the effective potential and we discuss circular orbits. We find that the radii of circular geodesics in the Reissner-Nordstroem-de Sitter space-time do not depend on the cosmological constant, and we explain this property using the optical reference geometry. In addition, we describe the unusual consequences of the interplay between rotation of the source and cosmological repulsion. (author). 16 refs, 8 figs
Quintessential inflation from a variable cosmological constant in a 5D vacuum
Membiela, Agustin; Bellini, Mauricio
2006-10-01
We explore an effective 4D cosmological model for the universe where the variable cosmological constant governs its evolution and the pressure remains negative along all the expansion. This model is introduced from a 5D vacuum state where the (space-like) extra coordinate is considered as noncompact. The expansion is produced by the inflaton field, which is considered as nonminimally coupled to gravity. We conclude from experimental data that the coupling of the inflaton with gravity should be weak, but variable in different epochs of the evolution of the universe.
Quintessential inflation from a variable cosmological constant in a 5D vacuum
Energy Technology Data Exchange (ETDEWEB)
Membiela, Agustin [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata (Argentina)]. E-mail: membiela@argentina.com; Bellini, Mauricio [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata (Argentina) and Consejo Nacional de Ciencia y Tecnologia (CONICET) (Argentina)]. E-mail: mbellini@mdp.edu.ar
2006-10-05
We explore an effective 4D cosmological model for the universe where the variable cosmological constant governs its evolution and the pressure remains negative along all the expansion. This model is introduced from a 5D vacuum state where the (space-like) extra coordinate is considered as noncompact. The expansion is produced by the inflaton field, which is considered as nonminimally coupled to gravity. We conclude from experimental data that the coupling of the inflaton with gravity should be weak, but variable in different epochs of the evolution of the universe.
Quintessential inflation from a variable cosmological constant in a 5D vacuum
International Nuclear Information System (INIS)
Membiela, Agustin; Bellini, Mauricio
2006-01-01
We explore an effective 4D cosmological model for the universe where the variable cosmological constant governs its evolution and the pressure remains negative along all the expansion. This model is introduced from a 5D vacuum state where the (space-like) extra coordinate is considered as noncompact. The expansion is produced by the inflaton field, which is considered as nonminimally coupled to gravity. We conclude from experimental data that the coupling of the inflaton with gravity should be weak, but variable in different epochs of the evolution of the universe
Higgs mechanism and cosmological constant in N = 1 supergravity with inflaton in a vector multiplet
Energy Technology Data Exchange (ETDEWEB)
Aldabergenov, Yermek [Tokyo Metropolitan University, Department of Physics, Tokyo (Japan); Ketov, Sergei V. [Tokyo Metropolitan University, Department of Physics, Tokyo (Japan); The University of Tokyo, Kavli Institute for the Physics and Mathematics of the Universe (IPMU), Chiba (Japan); Tomsk Polytechnic University, Institute of Physics and Technology, Tomsk (Russian Federation)
2017-04-15
The N = 1 supergravity models of cosmological inflation with an inflaton belonging to a massive vector multiplet and spontaneous SUSY breaking after inflation are reformulated as the supersymmetric U(1) gauge theories of a massless vector superfield interacting with the Higgs and Polonyi chiral superfields, all coupled to supergravity. The U(1) gauge sector is identified with the U(1) gauge fields of the super-GUT coupled to supergravity, whose gauge group has a U(1) factor. A positive cosmological constant (dark energy) is included. The scalar potential is calculated, and its de Sitter vacuum solution is found to be stable. (orig.)
Massive graviton and determination of cosmological constant from gauge theory of gravity
International Nuclear Information System (INIS)
Mitrut, Alexandru
2002-01-01
The universe contains a lot more than the eye meets . Sophisticated experiments search diligently for this invisible dark matter. Here we will describe some theoretical implications of the gravitational gauge theory recently proposed by Ning Wu (hep-th/0112062), namely the possibility of the existence of massive gravitons which fill the intergalactic space. Dark matter is an important problem in cosmology. In gravitational gauge field theory, the following effects should be taken into account to solve this problem: 1) The existence of massive graviton will have some contribution to the dark matter; 2) If the gravitational magnetic field is strong inside a celestial system, the gravitational Lorentz force will provide additional centripetal force for circular motion of a celestial object; 3) The existence of a factor which violate inverse square law of classical gravity. Combining general relativity and gravitational gauge theory the cosmological constant is determined theoretically. The cosmological constant is related to the average vacuum energy of the gravitational gauge field. Because the vacuum energy of the gravitational gauge field is negative, the cosmological constant is positive what generates repulsive force on stars to make the expansion rate of the Universe accelerated. A rough estimation of it gives out its magnitude order 10 -52 m -2 , which is well consistent with experimental results. (authors)
International Nuclear Information System (INIS)
Martin, J.
2012-01-01
This article aims at discussing the cosmological constant problem at a pedagogical but fully technical level. We review how the vacuum energy can be regularized in flat and curved space-time and how it can be understood in terms of Feynman bubble diagrams. In particular, we show that the properly renormalized value of the zero-point energy density today (for a free theory) is in fact far from being 122 orders of magnitude larger than the critical energy density, as often quoted in the literature. We mainly consider the case of scalar fields but also treat the cases of fermions and gauge bosons which allows us to discuss the question of vacuum energy in super-symmetry. Then, we discuss how the cosmological constant can be measured in cosmology and constrained with experiments such as measurements of planet orbits in our solar system or atomic spectra. We also review why the Lamb shift and the Casimir effect seem to indicate that the quantum zero-point fluctuations are not an artifact of the quantum field theory formalism. We investigate how experiments on the universality of free fall can constrain the gravitational properties of vacuum energy and we discuss the status of the weak equivalence principle in quantum mechanics, in particular the Colella, Overhauser and Werner experiment and the quantum Galileo experiment performed with a Salecker-Wigner-Peres clock. Finally, we briefly conclude with a discussion on the solutions to the cosmological constant problem that have been proposed so far. (author)
Earth’s gravity and the cosmological constant: a worked example
International Nuclear Information System (INIS)
Pereira, J A M
2016-01-01
The cosmological constant regained the attention of the scientific community following the recent discovery of the accelerated expansion of the Universe. Consequently, interest in the subject increased amongst the public such that it now often appears in the classroom and popular science publications. The purpose of this article is to use basic concepts of Newtonian mechanics, like dynamics, kinetic energy and potential energy diagrams, in a scenario where the cosmological constant’s action, considered as being an inertial force driven by the accelerated expansion of the Universe, could counteract Earth’s gravity. The effect that the cosmological constant might have near the Earth’s surface is discussed showing how everyday life would change. This is done in such a way that makes it accessible to students in their first year of college. Finally, the modern interpretation of the cosmological constant, associated with the existence of dark energy, is briefly discussed along with upper limit estimations for its value based on the anthropic principle. (paper)
Acceleration-enlarged symmetries in nonrelativistic space-time with a cosmological constant TH1"-->
Lukierski, J.; Stichel, P. C.; Zakrzewski, W. J.
2008-05-01
By considering the nonrelativistic limit of de Sitter geometry one obtains the nonrelativistic space-time with a cosmological constant and Newton Hooke (NH) symmetries. We show that the NH symmetry algebra can be enlarged by the addition of the constant acceleration generators and endowed with central extensions (one in any dimension (D) and three in D=(2+1)). We present a classical Lagrangian and Hamiltonian framework for constructing models quasi-invariant under enlarged NH symmetries that depend on three parameters described by three nonvanishing central charges. The Hamiltonian dynamics then splits into external and internal sectors with new noncommutative structures of external and internal phase spaces. We show that in the limit of vanishing cosmological constant the system reduces to the one, which possesses acceleration-enlarged Galilean symmetries.
Gravitational lensing limits on the cosmological constant in a flat universe
International Nuclear Information System (INIS)
Turner, E.L.
1990-01-01
Inflationary cosmological theories predict, and some more general aesthetic criteria suggest, that the large-scale spatial curvature of the universe k should be accurately zero (i.e., flat), a condition which is satisfied when the universe's present mean density and the value of the cosmological constant Lambda have certain pairs of values. Available data on the frequency of multiple image-lensing of high-redshift quasars by galaxies suggest that the cosmological constant cannot make a dominant contribution to producing a flat universe. In particular, if the mean density of the universe is as small as the baryon density inferred from standard cosmic nucleosynthesis calculations or as determined from typical dynamical studies of galaxies and galaxy clusters, then a value of Lambda large enough to produce a k = 0 universe would result in a substantially higher frequency of multiple-image lensing of quasars than has been observed so far. Shortcomings of the available lens data and uncertainties concerning galaxy properties allow some possibility of escaping this conclusion, but systematic searches for a gravitational lenses and continuing investigations of galaxy mass distributions should soon provide decisive information. It is also noted that nonzero-curvature cosmological models can account for the observed frequency of galaxy-quasar lens systems and for a variety of other constraints. 61 refs
Deformation of the Engle-Livine-Pereira-Rovelli spin foam model by a cosmological constant
Bahr, Benjamin; Rabuffo, Giovanni
2018-04-01
In this article, we consider an ad hoc deformation of the Engle-Livine-Pereira-Rovelli model for quantum gravity by a cosmological constant term. This sort of deformation was first introduced by Han for the case of the 4-simplex. In this article, we generalize the deformation to the case of arbitrary vertices, and compute its large-j asymptotics. We show that, if the boundary data correspond to a four-dimensional polyhedron P , then the asymptotic formula gives the usual Regge action plus a cosmological constant term. We pay particular attention to the determinant of the Hessian matrix, and show that it can be related to that of the undeformed vertex.
Gauss-Bonnet models with cosmological constant and non zero spatial curvature in D = 4
Energy Technology Data Exchange (ETDEWEB)
Armaleo, Juan Manuel [UBA, Departamento de Fisica, Buenos Aires (Argentina); Osorio Morales, Juliana; Santillan, Osvaldo P. [UBA CONICET, Departamento de Matematicas Luis Santalo (IMAS), Buenos Aires (Argentina)
2018-02-15
In the present paper the possibility of eternal universes in Gauss-Bonnet theories of gravity in four dimensions is analysed. It is shown that, for zero spatial curvature and zero cosmological constant, if the coupling is such that 0 < f{sup '}(φ) ≤ c exp((√(8))/(√(10))φ), then there are solutions that are eternal. Similar conclusions are found when a cosmological constant turned on. These conclusions are not generalized for the case when the spatial curvature is present, but we are able to find some general results about the possible nature of the singularities. The presented results correct some dubious arguments in Santillan (JCAP 7:008, 2017), although the same conclusions are reached. On the other hand, these past results are considerably generalized to a wide class of situations which were not considered in Santillan (JCAP 7:008, 2017). (orig.)
Propagator with positive cosmological constant in the 3D Euclidean quantum gravity toy model
International Nuclear Information System (INIS)
Bunting, William E; Rovelli, Carlo
2014-01-01
We study the propagator on a single tetrahedron in a three-dimensional toy model of quantum gravity with positive cosmological constant. The cosmological constant is included in the model via q-deformation of the spatial symmetry algebra, that is, we use the Turaev–Viro amplitude. The expected repulsive effect of dark energy is recovered in numerical and analytic calculations of the propagator at large scales comparable to the infrared cutoff. However, due to the simplicity of the model, we do not obtain the exact Newton limit of the propagator. This is a first step toward the similar calculation in the full 3+1 dimensional theory with larger numbers of simplicies. (paper)
Effect of the cosmological constant on the deflection angle by a rotating cosmic string
Jusufi, Kimet; Övgün, Ali
2018-03-01
We report the effect of the cosmological constant and the internal energy density of a cosmic string on the deflection angle of light in the spacetime of a rotating cosmic string with internal structure. We first revisit the deflection angle by a rotating cosmic string and then provide a generalization using the geodesic equations and the Gauss-Bonnet theorem. We show there is an agreement between the two methods when employing higher-order terms of the linear mass density of the cosmic string. By modifying the integration domain for the global conical topology, we resolve the inconsistency between these two methods previously reported in the literature. We show that the deflection angle is not affected by the rotation of the cosmic string; however, the cosmological constant Λ strongly affects the deflection angle, which generalizes the well-known result.
International Nuclear Information System (INIS)
Landriau, M.; Shellard, E.P.S.
2004-01-01
In this paper, we present results for large-angle cosmic microwave background anisotropies generated from high resolution simulations of cosmic string networks in a range of flat Friedmann-Robertson-Walker universes with a cosmological constant. Using an ensemble of all-sky maps, we compare with the Cosmic Background Explorer data to infer a normalization (or upper bound) on the string linear energy density μ. For a flat matter-dominated model (Ω M =1) we find Gμ/c 2 ≅0.7x10 -6 , which is lower than previous constraints probably because of the more accurate inclusion of string small-scale structure. For a cosmological constant within an observationally acceptable range, we find a relatively weak dependence with Gμ/c 2 less than 10% higher
Holographic dark energy with varying gravitational constant in Hořava-Lifshitz cosmology
Energy Technology Data Exchange (ETDEWEB)
Setare, M.R. [Department of Physics, University of Kurdistan, Pasdaran Ave., Sanandaj (Iran, Islamic Republic of); Jamil, Mubasher, E-mail: rezakord@ipm.ir, E-mail: mjamil@camp.nust.edu.pk [Center for Advanced Mathematics and Physics, National University of Sciences and Technology, Rawalpindi, 46000 (Pakistan)
2010-02-01
We investigate the holographic dark energy scenario with a varying gravitational constant in a flat background in the context of Hořava-Lifshitz gravity. We extract the exact differential equation determining the evolution of the dark energy density parameter, which includes G variation term. Also we discuss a cosmological implication of our work by evaluating the dark energy equation of state for low redshifts containing varying G corrections.
Null strings and complex Einstein-Maxwell fields with cosmological constant
International Nuclear Information System (INIS)
Garcia, A.; Plebanski, J.F.; Robinson, I.
1977-01-01
Previous results of Plebanski and Robinson (Phys. Rev. Lett.; 37:493 (1976)) concerning left-degenerate Einstein-flat complex space-times and preliminary results concerning the electromagnetic field, are here generalized and worked out in some detail for the system of Einstein-Maxwell equations with a cosmological constant. On the assumption that there exists a congruence of totally null surfaces, the system is reduced to a pair of equations for the two unknown functions. (author)
International Nuclear Information System (INIS)
Moutsopoulos, George
2013-01-01
We solve the equations of topologically massive gravity (TMG) with a potentially non-vanishing cosmological constant for homogeneous metrics without isotropy. We only reproduce known solutions. We also discuss their homogeneous deformations, possibly with isotropy. We show that de Sitter space and hyperbolic space cannot be infinitesimally homogeneously deformed in TMG. We clarify some of their Segre–Petrov types and discuss the warped de Sitter spacetime. (paper)
Moutsopoulos, George
2013-06-01
We solve the equations of topologically massive gravity (TMG) with a potentially non-vanishing cosmological constant for homogeneous metrics without isotropy. We only reproduce known solutions. We also discuss their homogeneous deformations, possibly with isotropy. We show that de Sitter space and hyperbolic space cannot be infinitesimally homogeneously deformed in TMG. We clarify some of their Segre-Petrov types and discuss the warped de Sitter spacetime.
Academic Training Lectures | The Cosmological Constant Problem | 12-13 November
2015-01-01
Please note that the next series of Academic Training Lectures will take place on the 12 and 13 November. The lectures will be given by Antonio Padilla (University of Nottingham, UK). The Cosmological Constant Problem (1/2) on Thursday, 12 November from 11:00 a.m. to 12:30 p.m. https://indico.cern.ch/event/453187/ The Cosmological Constant Problem (2/2) on Friday, 13 November from 11:00 a.m. to 12:30 p.m. https://indico.cern.ch/event/453188/ at CERN, Council Chamber (503-1-001) Description: I will review the cosmological constant problem as a serious challenge to our notion of naturalness in Physics. Weinberg’s no go theorem is worked through in detail. I review a number of proposals possibly including Linde's universe multiplication, Coleman's wormholes, the fat graviton, and SLED, to name a few. Large distance modifications of gravity are also discussed, with causality considerations pointi...
The Cosmological Constant and Domain Walls in Orientifold Field Theories and N=1 Gluodynamics
Armoni, Adi
2003-01-01
We discuss domain walls and vacuum energy density (cosmological constant) in N=1 gluodynamics and in non-supersymmetric large N orientifold field theories which have been recently shown to be planar equivalent (in the boson sector) to N=1 gluodynamics. A relation between the vanishing force between two parallel walls and vanishing cosmological constant is pointed out. This relation may explain why the cosmological constant vanishes in the orientifold field theory at leading order although the hadronic spectrum of this theory does not contain fermions in the limit N-->infinity. The cancellation is among even and odd parity bosonic contributions, due to NS-NS and R-R cancellations in the annulus amplitude of the underlying string theory. We use the open-closed string channel duality to describe interaction between the domain walls which is interpreted as the exchange of composite ``dilatons'' and ``axions'' coupled to the walls. Finally, we study some planar equivalent pairs in which both theories in the parent...
The Turning Point for the Recent Acceleration of the Universe with a Cosmological Constant
Directory of Open Access Journals (Sweden)
Zhang T. X.
2012-04-01
Full Text Available The turning point and acceleration expansion of the universe are investigated according to the standard cosmological theory with a non-zero cosmological constant. Choosing the Hubble constant H 0 , the radius of the present universe R 0 , and the density parameter in matter Ω M , 0 as three independent parameters, we have analytically examined the other properties of the universe such as the density parameter in dark energy, the cosmologi- cal constant, the mass of the universe, the turning point redshift, the age of the present universe, and the time-dependent radius, expansion rate, velocity, and acceleration pa- rameter of the universe. It is shown that the turning point redshift is only dependent of the density parameter in matter, not explicitly on the Hubble constant and the radius of the present universe. The universe turned its expansion from past deceleration to recent acceleration at the moment when its size was about 3 / 5 of the present size if the density parameter in matter is about 0.3 (or the turning point redshift is 0.67. The expansion rate is very large in the early period and decreases with time to approach the Hubble constant at the present time. The expansion velocity exceeds the light speed in the early period. It decreases to the minimum at the turning point and then increases with time. The minimum and present expansion velocities are determined with the independent parameters. The solution of time-dependent radius shows the universe expands all the time. The universe with a larger present radius, smaller Hubble constant, and / or smaller density parameter in matter is elder. The universe with smaller density parameter in matter accelerates recently in a larger rate but less than unity.
International Nuclear Information System (INIS)
Nielsen, Holger B.; Ninomiya, Masao
2006-01-01
We seek to unify the second law of thermodynamics with other physical laws, or, at least to find a law underlying the second law of thermodynamics. Assuming no fine tuning, using a random Hamiltonian, we argue just from the equations of motion - without the second law - that entropy cannot first increase and then decrease except with the rather strict restriction S large ≤ S small1 + S small2 . Here S large is the large' entropy in the intermediate era, while S small1 and S small2 are the entropies at certain times before and after the S large era. From this theorem asserting that there can exist no strong maximum for the entropy, we argue that an S 1 cyclic time model world could have entropy that varies by at most a factor of two and would not be phenomenologically realistic. With an open ended time axis (-∞, ∞)=R, some law underlying the second law of thermodynamics is needed if the entropy is not maximal (i.e. that heat death having y occurred at the start). We derive such a law behind the second law - or a unification of the second law with other laws - by assigning a probability weight P for finding the world/system in various places in phase space. In such a model, P is almost unified with the rest as P=exp(-2S Im ), with S Im being the imaginary part of the action. We quite naturally derive the second law for practical purposes, a Big Bang with two-sided time directions, and find that there is a need for a Hamiltonian density with a well-defined bottom. Assuming that the cosmological constant is a dynamical variable in the sense that it is counted as on 'initial condition', we even solve in our model the cosmological constant problem without using the anthropic principle. (author)
International Nuclear Information System (INIS)
Ayissi, Raoul Domingo; Noutchegueme, Norbert
2015-01-01
Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the
Landscape predictions from cosmological vacuum selection
Energy Technology Data Exchange (ETDEWEB)
Bousso, Raphael; Bousso, Raphael; Yang, Sheng
2007-04-23
In Bousso-Polchinski models with hundreds of fluxes, we compute the effects of cosmological dynamics on the probability distribution of landscape vacua. Starting from generic initial conditions, we find that most fluxes are dynamically driven into a different and much narrower range of values than expected from landscape statistics alone. Hence, cosmological evolution will access only a tiny fraction of the vacua with small cosmological constant. This leads to a host of sharp predictions. Unlike other approaches to eternal inflation, the holographic measure employed here does not lead to staggering, an excessive spread of probabilities that would doom the string landscape as a solution to the cosmological constant problem.
Landscape predictions from cosmological vacuum selection
International Nuclear Information System (INIS)
Bousso, Raphael; Yang, I-S.
2007-01-01
In Bousso-Polchinski models with hundreds of fluxes, we compute the effects of cosmological dynamics on the probability distribution of landscape vacua. Starting from generic initial conditions, we find that most fluxes are dynamically driven into a different and much narrower range of values than expected from landscape statistics alone. Hence, cosmological evolution will access only a tiny fraction of the vacua with small cosmological constant. This leads to a host of sharp predictions. Unlike other approaches to eternal inflation, the holographic measure employed here does not lead to staggering, an excessive spread of probabilities that would doom the string landscape as a solution to the cosmological constant problem
Surface Casimir densities and induced cosmological constant on parallel branes in AdS spacetime
International Nuclear Information System (INIS)
Saharian, Aram A.
2004-01-01
Vacuum expectation value of the surface energy-momentum tensor is evaluated for a massive scalar field with general curvature coupling parameter subject to Robin boundary conditions on two parallel branes located on (D+1)-dimensional anti-de Sitter bulk. The general case of different Robin coefficients on separate branes is considered. As a regularization procedure the generalized zeta function technique is used, in combination with contour integral representations. The surface energies on the branes are presented in the form of the sums of single brane and second brane-induced parts. For the geometry of a single brane both regions, on the left (L-region) and on the right (R-region), of the brane are considered. The surface densities for separate L- and R-regions contain pole and finite contributions. For an infinitely thin brane taking these regions together, in odd spatial dimensions the pole parts cancel and the total surface energy is finite. The parts in the surface densities generated by the presence of the second brane are finite for all nonzero values of the interbrane separation. It is shown that for large distances between the branes the induced surface densities give rise to an exponentially suppressed cosmological constant on the brane. In the Randall-Sundrum braneworld model, for the interbrane distances solving the hierarchy problem between the gravitational and electroweak mass scales, the cosmological constant generated on the visible brane is of the right order of magnitude with the value suggested by the cosmological observations
Newton-Hooke spacetimes, Hpp-waves and the cosmological constant
International Nuclear Information System (INIS)
Gibbons, G W; Patricot, C E
2003-01-01
We show explicitly how the Newton-Hooke groups N ± 10 act as symmetries of the equations of motion of non-relativistic cosmological models with a cosmological constant. We give the action on the associated non-relativistic spacetimes M ± 4 and show how these may be obtained from a null reduction of five-dimensional homogeneous pp-wave Lorentzian spacetimes M ± 5 . This allows us to realize the Newton-Hooke groups and their Bargmann-type central extensions as subgroups of the isometry groups of M ± 5 . The extended Schroedinger-type conformal group is identified and its action on the equations of motion given. The non-relativistic conformal symmetries also have applications to time-dependent harmonic oscillators. Finally we comment on a possible application to Gao's generalization of the matrix model
Cosmological Parameters and Hyper-Parameters: The Hubble Constant from Boomerang and Maxima
Lahav, Ofer
Recently several studies have jointly analysed data from different cosmological probes with the motivation of estimating cosmological parameters. Here we generalise this procedure to allow freedom in the relative weights of various probes. This is done by including in the joint likelihood function a set of `Hyper-Parameters', which are dealt with using Bayesian considerations. The resulting algorithm, which assumes uniform priors on the log of the Hyper-Parameters, is very simple to implement. We illustrate the method by estimating the Hubble constant H0 from different sets of recent CMB experiments (including Saskatoon, Python V, MSAM1, TOCO, Boomerang and Maxima). The approach can be generalised for a combination of cosmic probes, and for other priors on the Hyper-Parameters. Reference: Lahav, Bridle, Hobson, Lasenby & Sodre, 2000, MNRAS, in press (astro-ph/9912105)
Inflation, the Higgs field and the resolution of the Cosmological Constant Paradox
De Martini, Francesco
2017-08-01
The nature of the scalar field responsible for the cosmological inflation, the ”inflaton”, is found to be rooted in the most fundamental concept of the Weyl’s differential geometry: the parallel displacement of vectors in curved space-time. Within this novel dynamical scenario, the standard electroweak theory of leptons based on the SU(2) L ⊗ U(1) Y as well as on the conformal groups of spacetime Weyl’s transformations is analyzed within the framework of a general-relativistic, co-covariant scalar-tensor theory that includes the electromagnetic and the Yang-Mills fields. A Higgs mechanism within a spontaneous symmetry breaking process is identified and this offers formal connections between some relevant properties of the elementary particles and the dark energy content of the Universe. An ”Effective Cosmological Potential”: Veff is expressed in terms of the dark energy potential: {V}{{Λ }}\\equiv {M}{{Λ }}2 via the ”mass reduction parameter”: \\zeta \\equiv \\sqrt{\\frac{|{V}eff|}{|{V}{{Λ }}|}}, a general property of the Universe. The mass of the Higgs boson, which is considered a ”free parameter” by the standard electroweak theory, by our theory is found to be proportional to the geometrical mean: {M}H\\propto \\sqrt{{M}eff× {M}P} of the Planck mass, MP and of the mass {M}eff\\equiv \\sqrt{|{V}eff|} which accounts for the measured Cosmological Constant, i.e. the measured content of vacuum-energy in the Universe. The experimental result obtained by the ATLAS and CMS Collaborations at CERN in the year 2012: MH = 125.09(GeV/c 2) leads by our theory to a value: Meff ~ 3.19 · 10-6(eV/c 2). The peculiar mathematical structure of Veff offers a clue towards the resolution of a most intriguing puzzle of modern quantum field theory, the ”Cosmological Constant Paradox”.
The varying cosmological constant: a new approximation to the Friedmann equations and universe model
Öztaş, Ahmet M.; Dil, Emre; Smith, Michael L.
2018-05-01
We investigate the time-dependent nature of the cosmological constant, Λ, of the Einstein Field Equation (EFE). Beginning with the Einstein-Hilbert action as our fundamental principle we develop a modified version of the EFE allowing the value of Λ to vary as a function of time, Λ(t), indirectly, for an expanding universe. We follow the evolving Λ presuming four-dimensional space-time and a flat universe geometry and present derivations of Λ(t) as functions of the Hubble constant, matter density, and volume changes which can be traced back to the radiation epoch. The models are more detailed descriptions of the Λ dependence on cosmological factors than previous, allowing calculations of the important parameters, Ωm and Ωr, to deep lookback times. Since we derive these without the need for extra dimensions or other special conditions our derivations are useful for model evaluation with astronomical data. This should aid resolution of several difficult problems of astronomy such as the best value for the Hubble constant at present and at recombination.
Cosmic no-hair theorem with a varying cosmological constant on brane scenario
Chakraborty, S
2002-01-01
In this work, we have studied cosmic no-hair theorem for homogeneous anisotropic Bianchi models with a varying cosmological constant (LAMBDA) in Randall-Sundrum braneworld-type scenarios. The matter fields are confined over the 3-brane onto which the five-dimensional Weyl tensor has a non-vanishing projection. The variation of LAMBDA is taken to be the recently proposed form of Vishwakarma and its generalization. In the first case, the universe will isotropize after power-law inflation while there is exponential expansion in the second case.
Mavromatos, Nick E
2016-01-01
On the occasion of a century from the proposal of General relativity by Einstein, I attempt to tackle some open issues in modern cosmology, via a toy but non-trivial model. Specifically, I would like to link together: (i) the smallness of the cosmological constant today, (ii) the evolution of the universe from an inflationary era after the big-bang till now, and (iii) local supersymmetry in the gravitational sector (supergravity) with a broken spectrum at early eras, by making use of the concept of the "running vacuum" in the context of a simple toy model of four-dimensional N=1 supergravity. The model is characterised by dynamically broken local supersymmetry, induced by the formation of gravitino condensates in the early universe. As I will argue, there is a Starobinsky-type inflationary era characterising the broken supersymmetry phase in this model, which is compatible with the current cosmological data, provided a given constraint is satisfied among some tree-level parameters of the model and the renorma...
Spin foam propagator: A new perspective to include the cosmological constant
Han, Muxin; Huang, Zichang; Zipfel, Antonia
2018-04-01
In recent years, the calculation of the first nonvanishing order of the metric 2-point function or graviton propagator in a semiclassical limit has evolved as a standard test for the credibility of a proposed spin foam model. The existing results of spin foam graviton propagators rely heavily on the so-called double scaling limit where spins j are large and the Barbero-Immirzi parameter γ is small such that the area A ∝j γ is approximately constant. However, it seems that this double scaling limit is bound to break down in models including a cosmological constant. We explore this in detail for the recently proposed model [7 H. M. Haggard, M. Han, W. Kaminski, and A. Riello, Nucl. Phys. B900, 1 (2015), 10.1016/j.nuclphysb.2015.08.023.] by Haggard, Han, Kaminski, and Riello and discuss alternative definitions of a graviton propagator, in which the double scaling limit can be avoided.
On the mass of static metrics with positive cosmological constant: I
Borghini, Stefano; Mazzieri, Lorenzo
2018-06-01
In this paper we prove a new uniqueness result for the de Sitter solution. Our theorem is based on a new notion of mass, whose well-posedness is discussed and established in the realm of static spacetimes with positive cosmological constant that are bounded by Killing horizons. This new definition is formulated in terms of the surface gravities of the Killing horizons and agrees with the usual notion when the Schwarzschild–de Sitter solutions are considered. A positive mass statement is also shown to hold in this context. The corresponding rigidity statement coincides with the above mentioned characterization of the de Sitter solution as the only static vacuum metric with zero mass. Finally, exploiting some particular features of our formalism, we show how the same analysis can be fruitfully employed to treat the case of negative cosmological constant, leading to a new uniqueness theorem for the anti-de Sitter spacetime, which holds under a very feeble assumption on the asymptotic behavior of the solution.
The hierarchy problem and the cosmological constant problem in the Standard Model
International Nuclear Information System (INIS)
Jegerlehner, Fred
2015-03-01
We argue that the SM in the Higgs phase does not suffer form a ''hierarchy problem'' and that similarly the ''cosmological constant problem'' resolves itself if we understand the SM as a low energy effective theory emerging from a cut-off medium at the Planck scale. We discuss these issues under the condition of a stable Higgs vacuum, which allows to extend the SM up to the Planck length. The bare Higgs boson mass then changes sign below the Planck scale, such the the SM in the early universe is in the symmetric phase. The cut-off enhanced Higgs mass term as well as the quartically enhanced cosmological constant term trigger the inflation of the early universe. The coefficients of the shift between bare and renormalized Higgs mass as well as of the shift between bare and renormalized vacuum energy density exhibit close-by zeros at some point below the Planck scale. The zeros are matching points between short distance and the renormalized low energy quantities. Since inflation tunes the total energy density to take the critical value of a flat universe Ω tot =ρ tot /ρ crit =Ω Λ +Ω matter +Ω radiation =1 it is obvious that Ω Λ today is of order Ω tot given that 1>Ω matter , Ω radiation >0, which saturate the total density to about 26 % only, the dominant part being dark matter(21%).
Heterotic M-theory, warped geometry and the cosmological constant problem
International Nuclear Information System (INIS)
Krause, A.
2001-01-01
The first part of this thesis analyzes whether a locally flat background represents a stable vacuum for the proposed heterotic M-theory. A calculation of the leading order supergravity exchange diagrams leads to the conclusion that the locally flat vacuum cannot be stable. Afterwards a comparison with the corresponding weakly coupled heterotic string amplitudes is made. Next, we consider compactifications of heterotic M-theory on a Calabi-Yau threefold, including a non-vanishing G-flux. The ensuing warped-geometry is determined completely and used to show that the variation of the Calabi-Yau volume along the orbifold direction varies quadratically with distance instead linearly as suggested by an earlier first order approximation. In the second part of this thesis we propose a mechanism for obtaining a small cosmological constant. This mechanism consists of the separation of two domain-walls, which together constitute our world, up to a distance 2l ≅1/M GUT . The resulting warped-geometry leads to an exponential suppression of the cosmological constant, which thereby can obtain its observed value without introducing a large hierarchy. An embedding of this set-up into IIB string-theory entails an SU(6) grand unified theory with a natural explanation of the Higgs doublet-triplet splitting. Finally, we examine to what extent the string-theory T-duality can influence curvature. To this aim we derive the full transformation of the curvature-tensor under T-duality. (orig.)
Two-loop superstrings IV The cosmological constant and modular forms
International Nuclear Information System (INIS)
D'Hoker, E.; Phong, D.H.
2002-01-01
The slice-independent gauge-fixed superstring chiral measure in genus 2 derived in the earlier papers of this series for each spin structure is evaluated explicitly in terms of theta-constants. The slice-independence allows an arbitrary choice of superghost insertion points q 1 ,q 2 in the explicit evaluation, and the most effective one turns out to be the split gauge defined by S δ (q 1 ,q 2 )=0. This results in expressions involving bilinear theta-constants M. The final formula in terms of only theta-constants follows from new identities between M and theta-constants which may be interesting in their own right. The action of the modular group Sp(4,Z) is worked out explicitly for the contribution of each spin structure to the superstring chiral measure. It is found that there is a unique choice of relative phases which insures the modular invariance of the full chiral superstring measure, and hence a unique way of implementing the GSO projection for even spin structure. The resulting cosmological constant vanishes, not by a Riemann identity, but rather by the genus 2 identity expressing any modular form of weight 8 as the square of a modular form of weight 4. The degeneration limits for the contribution of each spin structure are determined, and the divergences, before the GSO projection, are found to be the ones expected on physical grounds
Barvinsky, A O
2007-08-17
The density matrix of the Universe for the microcanonical ensemble in quantum cosmology describes an equipartition in the physical phase space of the theory (sum over everything), but in terms of the observable spacetime geometry this ensemble is peaked about the set of recently obtained cosmological instantons limited to a bounded range of the cosmological constant. This suggests the mechanism of constraining the landscape of string vacua and a possible solution to the dark energy problem in the form of the quasiequilibrium decay of the microcanonical state of the Universe.
Mass generation, the cosmological constant problem, conformal symmetry, and the Higgs boson
Mannheim, Philip D.
2017-05-01
In 2013 the Nobel Prize in Physics was awarded to Francois Englert and Peter Higgs for their work in 1964 along with the late Robert Brout on the mass generation mechanism (the Higgs mechanism) in local gauge theories. This mechanism requires the existence of a massive scalar particle, the Higgs boson, and in 2012 the Higgs boson was finally discovered at the Large Hadron Collider after being sought for almost half a century. In this article we review the work that led to the discovery of the Higgs boson and discuss its implications. We approach the topic from the perspective of a dynamically generated Higgs boson that is a fermion-antifermion bound state rather than an elementary field that appears in an input Lagrangian. In particular, we emphasize the connection with the Bardeen-Cooper-Schrieffer theory of superconductivity. We identify the double-well Higgs potential not as a fundamental potential but as a mean-field effective Lagrangian with a dynamical Higgs boson being generated through a residual interaction that accompanies the mean-field Lagrangian. We discuss what we believe to be the key challenge raised by the discovery of the Higgs boson, namely determining whether it is elementary or composite, and through study of a conformal invariant field theory model as realized with critical scaling and anomalous dimensions, suggest that the width of the Higgs boson might serve as a suitable diagnostic for discriminating between an elementary Higgs boson and a composite one. We discuss the implications of Higgs boson mass generation for the cosmological constant problem, as the cosmological constant receives contributions from the very mechanism that generates the Higgs boson mass in the first place. We show that the contribution to the cosmological constant due to a composite Higgs boson is more tractable and under control than the contribution due to an elementary Higgs boson, and is potentially completely under control if there is an underlying conformal
International Nuclear Information System (INIS)
Zanzi, Andrea
2010-01-01
The chameleonic behavior of the string theory dilaton is suggested. Some of the possible consequences of the chameleonic string dilaton are analyzed in detail. In particular, (1) we suggest a new stringy solution to the cosmological constant problem and (2) we point out the nonequivalence of different conformal frames at the quantum level. In order to obtain these results, we start taking into account the (strong coupling) string loop expansion in the string frame (S-frame), therefore the so-called form factors are present in the effective action. The correct dark energy scale is recovered in the Einstein frame (E-frame) without unnatural fine-tunings and this result is robust against all quantum corrections, granted that we assume a proper structure of the S-frame form factors in the strong coupling regime. At this stage, the possibility still exists that a certain amount of fine-tuning may be required to satisfy some phenomenological constraints. Moreover in the E-frame, in our proposal, all the interactions are switched off on cosmological length scales (i.e., the theory is IR-free), while higher derivative gravitational terms might be present locally (on short distances) and it remains to be seen whether these facts clash with phenomenology. A detailed phenomenological analysis is definitely necessary to clarify these points.
Confronting the relaxation mechanism for a large cosmological constant with observations
International Nuclear Information System (INIS)
Basilakos, Spyros; Bauer, Florian; Solà, Joan
2012-01-01
In order to deal with a large cosmological constant a relaxation mechanism based on modified gravity has been proposed recently. By virtue of this mechanism the effect of the vacuum energy density of a given quantum field/string theory (no matter how big is its initial value in the early universe) can be neutralized dynamically, i.e. without fine tuning, and hence a Big Bang-like evolution of the cosmos becomes possible. Remarkably, a large class (F n m ) of models of this kind, namely capable of dynamically adjusting the vacuum energy irrespective of its value and size, has been identified. In this paper, we carefully put them to the experimental test. By performing a joint likelihood analysis we confront these models with the most recent observational data on type Ia supernovae (SNIa), the Cosmic Microwave Background (CMB), the Baryonic Acoustic Oscillations (BAO) and the high redshift data on the expansion rate, so as to determine which ones are the most favored by observations. We compare the optimal relaxation models F n m found by this method with the standard or concordance ΛCDM model, and find that some of these models may appear as almost indistinguishable from it. Interestingly enough, this shows that it is possible to construct viable solutions to the tough cosmological fine tuning problem with models that display the same basic phenomenological features as the concordance model
De Sitter universe described by a binary mixture with a variable cosmological constant λ
Biswal, S. K.
2018-04-01
We have constructed a self-consistent system of Bianchi Type VI0 cosmology, and mingling of perfect fluid and dark energy in five dimensions. The usual equation of state p = γ ρ with γ \\in [0, 1] is chosen by the perfect fluid. The dark energy assumed to be chosen is taken into consideration to be either the quintessence or Chaplygin gas. The same solutions pertaining to the corresponding the field equations of Einstein are obtained as a quadrature. State parameter's equations for dark energy ω is found to be consistent enough with the recent observations of SNe Ia data (SNe Ia data with CMBR anisotropy) and galaxy clustering statistics. Here our models predict that the rate of expansion of Universe would increase with passage of time. The cosmological constant Λ is traced as a declining function of time and it gets nearer to a small positive value later on which is supported by the results from the current supernovae Ia observations. Also a detail discussion is made on the physical and geometrical aspects of the models.
International Nuclear Information System (INIS)
Contopoulos, G.; Kotsakis, D.
1987-01-01
An extensive first part on a wealth of observational results relevant to cosmology lays the foundation for the second and central part of the book; the chapters on general relativity, the various cosmological theories, and the early universe. The authors present in a complete and almost non-mathematical way the ideas and theoretical concepts of modern cosmology including the exciting impact of high-energy particle physics, e.g. in the concept of the ''inflationary universe''. The final part addresses the deeper implications of cosmology, the arrow of time, the universality of physical laws, inflation and causality, and the anthropic principle
More on non-supersymmetric asymmetric orbifolds with vanishing cosmological constant
International Nuclear Information System (INIS)
Sugawara, Yuji; Wada, Taiki
2016-01-01
We explore various non-supersymmetric type II string vacua constructed based on asymmetric orbifolds of tori with vanishing cosmological constant at the one loop. The string vacua we present are modifications of the models studied in http://dx.doi.org/10.1007/JHEP02(2016)184, of which orbifold group is just generated by a single element. We especially focus on two types of modifications: (i) the orbifold twists include different types of chiral reflections not necessarily removing massless Rarita-Schwinger fields in the 4-dimensional space-time, (ii) the orbifold twists do not include the shift operator. We further discuss the unitarity and stability of constructed non-supersymmetric string vacua, with emphasizing the common features of them.
Modified Dispersion Relations: from Black-Hole Entropy to the Cosmological Constant
Garattini, Remo
2012-07-01
Quantum Field Theory is plagued by divergences in the attempt to calculate physical quantities. Standard techniques of regularization and renormalization are used to keep under control such a problem. In this paper we would like to use a different scheme based on Modified Dispersion Relations (MDR) to remove infinities appearing in one loop approximation in contrast to what happens in conventional approaches. In particular, we apply the MDR regularization to the computation of the entropy of a Schwarzschild black hole from one side and the Zero Point Energy (ZPE) of the graviton from the other side. The graviton ZPE is connected to the cosmological constant by means of of the Wheeler-DeWitt equation.
Cosmological constant in SUGRA models with Planck scale SUSY breaking and degenerate vacua
International Nuclear Information System (INIS)
Froggatt, C.D.; Nevzorov, R.; Nielsen, H.B.; Thomas, A.W.
2014-01-01
The empirical mass of the Higgs boson suggests small to vanishing values of the quartic Higgs self-coupling and the corresponding beta function at the Planck scale, leading to degenerate vacua. This leads us to suggest that the measured value of the cosmological constant can originate from supergravity (SUGRA) models with degenerate vacua. This scenario is realised if there are at least three exactly degenerate vacua. In the first vacuum, associated with the physical one, local supersymmetry (SUSY) is broken near the Planck scale while the breakdown of the SU(2) W ×U(1) Y symmetry takes place at the electroweak (EW) scale. In the second vacuum local SUSY breaking is induced by gaugino condensation at a scale which is just slightly lower than Λ QCD in the physical vacuum. Finally, in the third vacuum local SUSY and EW symmetry are broken near the Planck scale
Fluctuation-dissipation theorem in general relativity and the cosmological constant
International Nuclear Information System (INIS)
Mottola, E.
1992-01-01
Vacuum fluctuations are an essential feature of quantum field theory. Yet, the smallness of the scalar curvature of our universe suggests that the zero-point energy associated with these fluctuations does not curve spacetime. A possible way out of this paradox is suggested by the fact that microscopic fluctuations are generally accompanied by dissipative behavior in macroscopic systems. The intimate relation between the two is expressed by a fluctuation-dissipation theorem which extends to general relativity. The connection between quantum fluctuations and dissipation suggests a mechanism for the conversion of coherent stresses in the curvature of space into ordinary matter or radiation, thereby relaxing the effective cosmological ''constant'' to zero over time. The expansion of the universe may be the effect of this time-asymmetric relaxation process
International Nuclear Information System (INIS)
Csaki, Csaba; Erlich, Joshua; Grojean, Christophe
2001-01-01
Brane worlds are theories with extra spatial dimensions in which ordinary matter is localized on a (3+1) dimensional submanifold. Such theories could have interesting consequences for particle physics and gravitational physics. In this essay we concentrate on the cosmological constant (CC) problem in the context of brane worlds. We show how extra-dimensional scenarios may violate Lorentz invariance in the gravity sector of the effective 4D theory, while particle physics remains unaffected. In such theories the usual no-go theorems for adjustment of the CC do not apply, and we indicate a possible explanation of the smallness of the CC. Lorentz violating effects would manifest themselves in gravitational waves travelling with a speed different from light, which can be searched for in gravitational wave experiments
Surface Casimir densities and induced cosmological constant in higher dimensional braneworlds
International Nuclear Information System (INIS)
Saharian, Aram A.
2006-01-01
We investigate the vacuum expectation value of the surface energy-momentum tensor for a massive scalar field with general curvature coupling parameter obeying the Robin boundary conditions on two codimension one parallel branes in a (D+1)-dimensional background spacetime AdS D 1 +1 xΣ with a warped internal space Σ. These vacuum densities correspond to a gravitational source of the cosmological constant type for both subspaces of the branes. Using the generalized zeta function technique in combination with contour integral representations, the surface energies on the branes are presented in the form of the sum of single-brane and second-brane-induced parts. For the geometry of a single brane both regions, on the left and on the right of the brane, are considered. At the physical point the corresponding zeta functions contain pole and finite contributions. For an infinitely thin brane taking these regions together, in odd spatial dimensions the pole parts cancel and the total zeta function is finite. The renormalization procedure for the surface energies and the structure of the corresponding counterterms are discussed. The parts in the surface densities generated by the presence of the second brane are finite for all nonzero values of the interbrane separation and are investigated in various asymptotic regions of the parameters. In particular, it is shown that for large distances between the branes the induced surface densities give rise to an exponentially suppressed cosmological constant on the brane. The total energy of the vacuum including the bulk and boundary contributions is evaluated by the zeta function technique and the energy balance between separate parts is discussed
Cosmological dynamics with non-minimally coupled scalar field and a constant potential function
International Nuclear Information System (INIS)
Hrycyna, Orest; Szydłowski, Marek
2015-01-01
Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of the dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory
Cosmological dynamics with non-minimally coupled scalar field and a constant potential function
Energy Technology Data Exchange (ETDEWEB)
Hrycyna, Orest [Theoretical Physics Division, National Centre for Nuclear Research, Hoża 69, 00-681 Warszawa (Poland); Szydłowski, Marek, E-mail: orest.hrycyna@ncbj.gov.pl, E-mail: marek.szydlowski@uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244 Kraków (Poland)
2015-11-01
Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of the dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory.
The cosmological constant in the brane world of string theory on S{sup 1}/Z{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Wang Anzhong [GCAP-CASPER, Department of Physics, Baylor University, Waco, TX 76798-7316 (United States); Department of Theoretical Physics, State University of Rio de Janeiro, RJ (Brazil); LERMA/CNRS-FRE 2460, Universite Pierre et Marie Curie, ERGA, Boite 142, 4 Place Jussieu, 75005 Paris cedex 05 (France)], E-mail: anzhong_wang@baylor.edu; Santos, N.O. [LERMA/CNRS-FRE 2460, Universite Pierre et Marie Curie, ERGA, Boite 142, 4 Place Jussieu, 75005 Paris cedex 05 (France); School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS (United Kingdom); Laboratorio Nacional de Computacao Cientifica, 25651-070 Petropolis RJ (Brazil)
2008-11-06
Orbifold branes in string theory are investigated, and the general field equations both outside and on the branes are given explicitly for type II and heterotic string. The radion stability is studied using the Goldberger-Wise mechanism, and shown explicitly that it is stable. It is also found that the effective cosmological constant on each of the two branes can be easily lowered to its current observational value, using large extra dimensions. This is also true for type I string. Therefore, brane world of string theory provides a viable and built-in mechanism for solving the long-standing cosmological constant problem. Applying the formulas to cosmology, we obtain the generalized Friedmann equations on the branes.
Predicting the cosmological constant with the scale-factor cutoff measure
International Nuclear Information System (INIS)
De Simone, Andrea; Guth, Alan H.; Salem, Michael P.; Vilenkin, Alexander
2008-01-01
It is well known that anthropic selection from a landscape with a flat prior distribution of cosmological constant Λ gives a reasonable fit to observation. However, a realistic model of the multiverse has a physical volume that diverges with time, and the predicted distribution of Λ depends on how the spacetime volume is regulated. A very promising method of regulation uses a scale-factor cutoff, which avoids a number of serious problems that arise in other approaches. In particular, the scale-factor cutoff avoids the 'youngness problem' (high probability of living in a much younger universe) and the 'Q and G catastrophes' (high probability for the primordial density contrast Q and gravitational constant G to have extremely large or small values). We apply the scale-factor cutoff measure to the probability distribution of Λ, considering both positive and negative values. The results are in good agreement with observation. In particular, the scale-factor cutoff strongly suppresses the probability for values of Λ that are more than about 10 times the observed value. We also discuss qualitatively the prediction for the density parameter Ω, indicating that with this measure there is a possibility of detectable negative curvature.
Revisiting the decoupling effects in the running of the Cosmological Constant
International Nuclear Information System (INIS)
Antipin, Oleg; Melic, Blazenka
2017-01-01
We revisit the decoupling effects associated with heavy particles in the renormalization group running of the vacuum energy in a mass-dependent renormalization scheme. We find the running of the vacuum energy stemming from the Higgs condensate in the entire energy range and show that it behaves as expected from the simple dimensional arguments meaning that it exhibits the quadratic sensitivity to the mass of the heavy particles in the infrared regime. The consequence of such a running to the fine-tuning problem with the measured value of the Cosmological Constant is analyzed and the constraint on the mass spectrum of a given model is derived. We show that in the Standard Model (SM) this fine-tuning constraint is not satisfied while in the massless theories this constraint formally coincides with the well known Veltman condition. We also provide a remarkably simple extension of the SM where saturation of this constraint enables us to predict the radiative Higgs mass correctly. Generalization to constant curvature spaces is also given. (orig.)
Revisiting the decoupling effects in the running of the Cosmological Constant
Energy Technology Data Exchange (ETDEWEB)
Antipin, Oleg; Melic, Blazenka [Rudjer Boskovic Institute, Division of Theoretical Physics, Zagreb (Croatia)
2017-09-15
We revisit the decoupling effects associated with heavy particles in the renormalization group running of the vacuum energy in a mass-dependent renormalization scheme. We find the running of the vacuum energy stemming from the Higgs condensate in the entire energy range and show that it behaves as expected from the simple dimensional arguments meaning that it exhibits the quadratic sensitivity to the mass of the heavy particles in the infrared regime. The consequence of such a running to the fine-tuning problem with the measured value of the Cosmological Constant is analyzed and the constraint on the mass spectrum of a given model is derived. We show that in the Standard Model (SM) this fine-tuning constraint is not satisfied while in the massless theories this constraint formally coincides with the well known Veltman condition. We also provide a remarkably simple extension of the SM where saturation of this constraint enables us to predict the radiative Higgs mass correctly. Generalization to constant curvature spaces is also given. (orig.)
Bounds on area and charge for marginally trapped surfaces with a cosmological constant
International Nuclear Information System (INIS)
Simon, Walter
2012-01-01
We sharpen the known inequalities AΛ ≤ 4π(1 - g) (Hayward et al 1994 Phys. Rev. D 49 5080, Woolgar 1999 Class. Quantum Grav. 16 3005) and A ≤ 4πQ 2 (Dain et al 2012 Class. Quantum Grav. 29 035013) between the area A and the electric charge Q of a stable marginally outer-trapped surface (MOTS) of genus g in the presence of a cosmological constant Λ. In particular, instead of requiring stability we include the principal eigenvalue λ of the stability operator. For Λ* Λ+λ > 0, we obtain a lower and an upper bound for Λ*A in terms of Λ*Q 2 , as well as the upper bound Q≤1/(2√(Λ * )) for the charge, which reduces to Q≤1/(2√(Λ)) in the stable case λ ≥ 0. For Λ* < 0, there only remains a lower bound on A. In the spherically symmetric, static, stable case, one of our area inequalities is saturated iff the surface gravity vanishes. We also discuss implications of our inequalities for 'jumps' and mergers of charged MOTS. (fast track communication)
Directory of Open Access Journals (Sweden)
Lorenzo Iorio
2018-03-01
Full Text Available Independent tests aiming to constrain the value of the cosmological constant Λ are usually difficult because of its extreme smallness ( Λ ≃ 1 × 10 - 52 m - 2 , or 2 . 89 × 10 - 122 in Planck units . Bounds on it from Solar System orbital motions determined with spacecraft tracking are currently at the ≃ 10 - 43 – 10 - 44 m - 2 ( 5 – 1 × 10 - 113 in Planck units level, but they may turn out to be optimistic since Λ has not yet been explicitly modeled in the planetary data reductions. Accurate ( σ τ p ≃ 1 – 10 μ s timing of expected pulsars orbiting the Black Hole at the Galactic Center, preferably along highly eccentric and wide orbits, might, at least in principle, improve the planetary constraints by several orders of magnitude. By looking at the average time shift per orbit Δ δ τ ¯ p Λ , an S2-like orbital configuration with e = 0 . 8839 , P b = 16 yr would permit a preliminarily upper bound of the order of Λ ≲ 9 × 10 - 47 m - 2 ≲ 2 × 10 - 116 in Planck units if only σ τ p were to be considered. Our results can be easily extended to modified models of gravity using Λ -type parameters.
Grafting and Poisson Structure in (2+1)-Gravity with Vanishing Cosmological Constant
Meusburger, C.
2006-09-01
We relate the geometrical construction of (2+1)-spacetimes via grafting to phase space and Poisson structure in the Chern-Simons formulation of (2+1)-dimensional gravity with vanishing cosmological constant on manifolds of topology mathbb{R} × S_g, where S g is an orientable two-surface of genus g>1. We show how grafting along simple closed geodesics λ is implemented in the Chern-Simons formalism and derive explicit expressions for its action on the holonomies of general closed curves on S g .We prove that this action is generated via the Poisson bracket by a gauge invariant observable associated to the holonomy of λ. We deduce a symmetry relation between the Poisson brackets of observables associated to the Lorentz and translational components of the holonomies of general closed curves on S g and discuss its physical interpretation. Finally, we relate the action of grafting on the phase space to the action of Dehn twists and show that grafting can be viewed as a Dehn twist with a formal parameter θ satisfying θ2 = 0.
A Positive Cosmological Constant as Centrifugal Force in an Expanding Kantian Model of the Universe
Sternglass, E. J.
1998-05-01
Recent redshift measurements of distant Type Ia supernovae appear to indicate that cosmic expansion has speeded up since these distant stars exploded, rather than slowing down under the action of gravity. These results suggest the existence of a repulsive force as originally assumed by Einstein through the introduction of the lambda constant. Such a repulsive force arises naturally as centrifugal force in the evolution of a hierarchically organized cosmological model involving a series of rotating structures of increasing size as originally suggested by Kant in the 18th century when combined with the idea of Lemaitre, according to which the universe and the observed systems arose in the course of repeated divisions by two of a primeval atom. As described in the AIP Conference Proceedings 254,105 (1992), if this atom is assumed to be a highly relativistic form of positronium or "quarkonium" at the Planck density one avoids an initial singularity and requires no other particles. The division process takes place in 27 stages of 10 divisions each beginning with a lower mass excited state of the original Lemaitre atom that forms a central cluster in which a quarter of the particles are initially retained. One then arrives at a model in which all structures are laid down in the form of massive "cold dark matter" during a period of exponential growth or inflation before the Big Bang, leading to an ultimately stable, closed "flat" universe of finite mass that explains the masses, sizes, rotational and expansion velocities and thus the Hubble constants of the various systems as well as the age of the universe since the Big Bang in good agreement with observations, using only e, mo, c and h.
Vittorio, Nicola
2018-01-01
Modern cosmology has changed significantly over the years, from the discovery to the precision measurement era. The data now available provide a wealth of information, mostly consistent with a model where dark matter and dark energy are in a rough proportion of 3:7. The time is right for a fresh new textbook which captures the state-of-the art in cosmology. Written by one of the world's leading cosmologists, this brand new, thoroughly class-tested textbook provides graduate and undergraduate students with coverage of the very latest developments and experimental results in the field. Prof. Nicola Vittorio shows what is meant by precision cosmology, from both theoretical and observational perspectives.
Study of Antigravity in an F(R) Model and in Brans-Dicke Theory with Cosmological Constant
Oikonomou, V. K.; Karagiannakis, N.
2014-01-01
We study antigravity, that is having an effective gravitational constant with a negative sign, in scalar-tensor theories originating from $F(R)$-theory and in a Brans-Dicke model with cosmological constant. For the $F(R)$ theory case, we obtain the antigravity scalar-tensor theory in the Jordan frame by using a variant of the Lagrange multipliers method and we numerically study the time dependent effective gravitational constant. As we shall demonstrate by using a specific $F(R)$ model, altho...
Energy Technology Data Exchange (ETDEWEB)
Edgar, S Brian [Department of Mathematics, Linkoepings Universitet Linkoeping, S-581 83 (Sweden); Ramos, M P Machado [Departamento de Matematica para a Ciencia e Tecnologia, Azurem 4800-058 Guimaraes, Universidade do Minho (Portugal)
2007-05-15
We demonstrate an integration procedure for the generalised invariant formalism by obtaining a subclass of conformally flat pure radiation spacetimes with a negative cosmological constant. The method used is a development of the methods used earlier for pure radiation spacetimes of Petrov types O and N respectively. This subclass of spacetimes turns out to have one degree of isotropy freedom, so in this paper we have extended the integration procedure for the generalised invariant formalism to spacetimes with isotropy freedom,.
International Nuclear Information System (INIS)
Edgar, S Brian; Ramos, M P Machado
2007-01-01
We demonstrate an integration procedure for the generalised invariant formalism by obtaining a subclass of conformally flat pure radiation spacetimes with a negative cosmological constant. The method used is a development of the methods used earlier for pure radiation spacetimes of Petrov types O and N respectively. This subclass of spacetimes turns out to have one degree of isotropy freedom, so in this paper we have extended the integration procedure for the generalised invariant formalism to spacetimes with isotropy freedom,
Neutrino mass from cosmology: impact of high-accuracy measurement of the Hubble constant
Energy Technology Data Exchange (ETDEWEB)
Sekiguchi, Toyokazu [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582 (Japan); Ichikawa, Kazuhide [Department of Micro Engineering, Kyoto University, Kyoto 606-8501 (Japan); Takahashi, Tomo [Department of Physics, Saga University, Saga 840-8502 (Japan); Greenhill, Lincoln, E-mail: sekiguti@icrr.u-tokyo.ac.jp, E-mail: kazuhide@me.kyoto-u.ac.jp, E-mail: tomot@cc.saga-u.ac.jp, E-mail: greenhill@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
2010-03-01
Non-zero neutrino mass would affect the evolution of the Universe in observable ways, and a strong constraint on the mass can be achieved using combinations of cosmological data sets. We focus on the power spectrum of cosmic microwave background (CMB) anisotropies, the Hubble constant H{sub 0}, and the length scale for baryon acoustic oscillations (BAO) to investigate the constraint on the neutrino mass, m{sub ν}. We analyze data from multiple existing CMB studies (WMAP5, ACBAR, CBI, BOOMERANG, and QUAD), recent measurement of H{sub 0} (SHOES), with about two times lower uncertainty (5 %) than previous estimates, and recent treatments of BAO from the Sloan Digital Sky Survey (SDSS). We obtained an upper limit of m{sub ν} < 0.2eV (95 % C.L.), for a flat ΛCDM model. This is a 40 % reduction in the limit derived from previous H{sub 0} estimates and one-third lower than can be achieved with extant CMB and BAO data. We also analyze the impact of smaller uncertainty on measurements of H{sub 0} as may be anticipated in the near term, in combination with CMB data from the Planck mission, and BAO data from the SDSS/BOSS program. We demonstrate the possibility of a 5σ detection for a fiducial neutrino mass of 0.1 eV or a 95 % upper limit of 0.04 eV for a fiducial of m{sub ν} = 0 eV. These constraints are about 50 % better than those achieved without external constraint. We further investigate the impact on modeling where the dark-energy equation of state is constant but not necessarily -1, or where a non-flat universe is allowed. In these cases, the next-generation accuracies of Planck, BOSS, and 1 % measurement of H{sub 0} would all be required to obtain the limit m{sub ν} < 0.05−0.06 eV (95 % C.L.) for the fiducial of m{sub ν} = 0 eV. The independence of systematics argues for pursuit of both BAO and H{sub 0} measurements.
International Nuclear Information System (INIS)
Rybak, M.; Krygier, B.; Krempec-Krygier, J.
1985-01-01
The Hubble-Sandage diagrams for the Dirac cosmology have been discussed in the case of the modified dependence of luminosity upon the gravitational parameter G and mass. It is shown that the observational data for galaxies and the brightest quasars can be explained by the Dirac cosmology with the reasonably chosen changes of the gravitational parameter and of mass with the time. 41 refs., 2 figs. (author)
Totani, Tomonori
2017-10-01
In standard general relativity the universe cannot be started with arbitrary initial conditions, because four of the ten components of the Einstein's field equations (EFE) are constraints on initial conditions. In the previous work it was proposed to extend the gravity theory to allow free initial conditions, with a motivation to solve the cosmological constant problem. This was done by setting four constraints on metric variations in the action principle, which is reasonable because the gravity's physical degrees of freedom are at most six. However, there are two problems about this theory; the three constraints in addition to the unimodular condition were introduced without clear physical meanings, and the flat Minkowski spacetime is unstable against perturbations. Here a new set of gravitational field equations is derived by replacing the three constraints with new ones requiring that geodesic paths remain geodesic against metric variations. The instability problem is then naturally solved. Implications for the cosmological constant Λ are unchanged; the theory converges into EFE with nonzero Λ by inflation, but Λ varies on scales much larger than the present Hubble horizon. Then galaxies are formed only in small Λ regions, and the cosmological constant problem is solved by the anthropic argument. Because of the increased degrees of freedom in metric dynamics, the theory predicts new non-oscillatory modes of metric anisotropy generated by quantum fluctuation during inflation, and CMB B -mode polarization would be observed differently from the standard predictions by general relativity.
International Nuclear Information System (INIS)
Ivashchuk, V.D.; Kobtsev, A.A.
2015-01-01
A D-dimensional gravitational model with Gauss.Bonnet term is considered. When an ansatz with diagonal cosmological type metrics is adopted, we find solutions with an exponential dependence of the scale factors (with respect to a @gsynchronous-like@h variable) which describe an exponential expansion of @gour@h 3-dimensional factor space and obey the observational constraints on the temporal variation of effective gravitational constant G. Among them there are two exact solutions in dimensions D = 22, 28 with constant G and also an infinite series of solutions in dimensions D ≥ 2690 with the variation of G obeying the observational data. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ivashchuk, V.D. [VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation); Peoples' Friendship University of Russia, Institute of Gravitation and Cosmology, Moscow (Russian Federation); Kobtsev, A.A. [Peoples' Friendship University of Russia, Institute of Gravitation and Cosmology, Moscow (Russian Federation)
2015-05-15
A D-dimensional gravitational model with Gauss.Bonnet term is considered. When an ansatz with diagonal cosmological type metrics is adopted, we find solutions with an exponential dependence of the scale factors (with respect to a @gsynchronous-like@h variable) which describe an exponential expansion of @gour@h 3-dimensional factor space and obey the observational constraints on the temporal variation of effective gravitational constant G. Among them there are two exact solutions in dimensions D = 22, 28 with constant G and also an infinite series of solutions in dimensions D ≥ 2690 with the variation of G obeying the observational data. (orig.)
Ivanov, A. N.; Wellenzohn, M.
2016-09-01
We analyse the Einstein-Cartan gravity in its standard form { R }=R+{{ K }}2, where { R } {and} R are the Ricci scalar curvatures in the Einstein-Cartan and Einstein gravity, respectively, and {{ K }}2 is the quadratic contribution of torsion in terms of the contorsion tensor { K }. We treat torsion as an external (or background) field and show that its contribution to the Einstein equations can be interpreted in terms of the torsion energy-momentum tensor, local conservation of which in a curved spacetime with an arbitrary metric or an arbitrary gravitational field demands a proportionality of the torsion energy-momentum tensor to a metric tensor, a covariant derivative of which vanishes owing to the metricity condition. This allows us to claim that torsion can serve as an origin for the vacuum energy density, given by the cosmological constant or dark energy density in the universe. This is a model-independent result that may explain the small value of the cosmological constant, which is a long-standing problem in cosmology. We show that the obtained result is valid also in the Poincaré gauge gravitational theory of Kibble, where the Einstein-Hilbert action can be represented in the same form: { R }=R+{{ K }}2.
CERN. Geneva
2007-01-01
The understanding of the Universe at the largest and smallest scales traditionally has been the subject of cosmology and particle physics, respectively. Studying the evolution of the Universe connects today's large scales with the tiny scales in the very early Universe and provides the link between the physics of particles and of the cosmos. This series of five lectures aims at a modern and critical presentation of the basic ideas, methods, models and observations in today's particle cosmology.
Observable cosmology and cosmological models
International Nuclear Information System (INIS)
Kardashev, N.S.; Lukash, V.N.; Novikov, I.D.
1987-01-01
Modern state of observation cosmology is briefly discussed. Among other things, a problem, related to Hibble constant and slowdown constant determining is considered. Within ''pancake'' theory hot (neutrino) cosmological model explains well the large-scale structure of the Universe, but does not explain the galaxy formation. A cold cosmological model explains well light object formation, but contradicts data on large-scale structure
Asymptotic structure of space-time with a positive cosmological constant
Kesavan, Aruna
In general relativity a satisfactory framework for describing isolated systems exists when the cosmological constant Lambda is zero. The detailed analysis of the asymptotic structure of the gravitational field, which constitutes the framework of asymptotic flatness, lays the foundation for research in diverse areas in gravitational science. However, the framework is incomplete in two respects. First, asymptotic flatness provides well-defined expressions for physical observables such as energy and momentum as 'charges' of asymptotic symmetries at null infinity, [special character omitted] +. But the asymptotic symmetry group, called the Bondi-Metzner-Sachs group is infinite-dimensional and a tensorial expression for the 'charge' integral of an arbitrary BMS element is missing. We address this issue by providing a charge formula which is a 2-sphere integral over fields local to the 2-sphere and refers to no extraneous structure. The second, and more significant shortcoming is that observations have established that Lambda is not zero but positive in our universe. Can the framework describing isolated systems and their gravitational radiation be extended to incorporate this fact? In this dissertation we show that, unfortunately, the standard framework does not extend from the Lambda = 0 case to the Lambda > 0 case in a physically useful manner. In particular, we do not have an invariant notion of gravitational waves in the non-linear regime, nor an analog of the Bondi 'news tensor', nor positive energy theorems. In addition, we argue that the stronger boundary condition of conformal flatness of intrinsic metric on [special character omitted]+, which reduces the asymptotic symmetry group from Diff([special character omitted]) to the de Sitter group, is insufficient to characterize gravitational fluxes and is physically unreasonable. To obtain guidance for the full non-linear theory with Lambda > 0, linearized gravitational waves in de Sitter space-time are analyzed in
International Nuclear Information System (INIS)
Raychaudhuri, A.K.
1979-01-01
The subject is covered in chapters, entitled; introduction; Newtonian gravitation and cosmology; general relativity and relativistic cosmology; analysis of observational data; relativistic models not obeying the cosmological principle; microwave radiation background; thermal history of the universe and nucleosynthesis; singularity of cosmological models; gravitational constant as a field variable; cosmological models based on Einstein-Cartan theory; cosmological singularity in two recent theories; fate of perturbations of isotropic universes; formation of galaxies; baryon symmetric cosmology; assorted topics (including extragalactic radio sources; Mach principle). (U.K.)
Srivastava, S. K.
2008-01-01
Here, cosmology is obtained from the variable gravitational constant $ G \\propto \\phi^{-2}$ with $ \\phi(x) $ being a scalar and its fluctuations around the ground state. The gravitational action contains Einstein-Hilbert like term with variable $ G $, kinetic energy and self-interaction potential for $ \\phi(x) $. Two phase transitions take place in this model. The first one takes place at the GUT (grand unified theory) scale $ \\sim 2.45 \\times 10^{14}{\\rm GeV} $, when the early universe exits...
International Nuclear Information System (INIS)
Amore, Paolo; Aranda, Alfredo; Cervantes, Mayra; Diaz-Cruz, J. L.; Fernandez, Francisco M.
2007-01-01
The quantization of the Friedmann-Robertson-Walker spacetime in the presence of a negative cosmological constant was used in a recent paper to conclude that there are solutions that avoid singularities (big bang-big crunch) at the quantum level. We show that a proper study of their model does not indicate that it prevents the occurrence of singularities at the quantum level, in fact the quantum probability of such event is larger than the classical one. Our numerical simulations based on the powerful variational sinc collocation method (VSCM) also show that the precision of the results of that paper is much lower than the 20 significant digits reported by the authors
De Martini, Francesco
2017-10-01
The nature of the scalar field responsible for the cosmological inflation is found to be rooted in the most fundamental concept of Weyl's differential geometry: the parallel displacement of vectors in curved space-time. Within this novel geometrical scenario, the standard electroweak theory of leptons based on the SU(2)L⊗U(1)Y as well as on the conformal groups of space-time Weyl's transformations is analysed within the framework of a general-relativistic, conformally covariant scalar-tensor theory that includes the electromagnetic and the Yang-Mills fields. A Higgs mechanism within a spontaneous symmetry breaking process is identified and this offers formal connections between some relevant properties of the elementary particles and the dark energy content of the Universe. An `effective cosmological potential': Veff is expressed in terms of the dark energy potential: via the `mass reduction parameter': , a general property of the Universe. The mass of the Higgs boson, which is considered a `free parameter' by the standard electroweak theory, by our theory is found to be proportional to the mass which accounts for the measured cosmological constant, i.e. the measured content of vacuum-energy in the Universe. The non-integrable application of Weyl's geometry leads to a Proca equation accounting for the dynamics of a φρ-particle, a vector-meson proposed as an an optimum candidate for dark matter. On the basis of previous cosmic microwave background results our theory leads, in the condition of cosmological `critical density', to the assessment of the average energy content of the φρ-excitation. The peculiar mathematical structure of Veff offers a clue towards a very general resolution of a most intriguing puzzle of modern quantum field theory, the `Cosmological Constant Paradox' (here referred to as the `Λ-Paradox'). Indeed, our `universal' theory offers a resolution of the Λ-Paradox for all exponential inflationary potentials: VΛ(T,φ)∝e-nφ, and for all
De Martini, Francesco
2017-11-13
The nature of the scalar field responsible for the cosmological inflation is found to be rooted in the most fundamental concept of Weyl's differential geometry: the parallel displacement of vectors in curved space-time. Within this novel geometrical scenario, the standard electroweak theory of leptons based on the SU (2) L ⊗ U (1) Y as well as on the conformal groups of space-time Weyl's transformations is analysed within the framework of a general-relativistic, conformally covariant scalar-tensor theory that includes the electromagnetic and the Yang-Mills fields. A Higgs mechanism within a spontaneous symmetry breaking process is identified and this offers formal connections between some relevant properties of the elementary particles and the dark energy content of the Universe. An 'effective cosmological potential': V eff is expressed in terms of the dark energy potential: [Formula: see text] via the 'mass reduction parameter': [Formula: see text], a general property of the Universe. The mass of the Higgs boson, which is considered a 'free parameter' by the standard electroweak theory, by our theory is found to be proportional to the mass [Formula: see text] which accounts for the measured cosmological constant, i.e. the measured content of vacuum-energy in the Universe. The non-integrable application of Weyl's geometry leads to a Proca equation accounting for the dynamics of a ϕ ρ -particle, a vector-meson proposed as an an optimum candidate for dark matter. On the basis of previous cosmic microwave background results our theory leads, in the condition of cosmological 'critical density', to the assessment of the average energy content of the ϕ ρ -excitation. The peculiar mathematical structure of V eff offers a clue towards a very general resolution of a most intriguing puzzle of modern quantum field theory, the 'Cosmological Constant Paradox' (here referred to as the ' Λ -Paradox'). Indeed, our 'universal' theory offers a resolution of the Λ -Paradox
International Nuclear Information System (INIS)
Meusburger, C.; Schroers, B. J.
2008-01-01
Each of the local isometry groups arising in three-dimensional (3d) gravity can be viewed as a group of unit (split) quaternions over a ring which depends on the cosmological constant. In this paper we explain and prove this statement and use it as a unifying framework for studying Poisson structures associated with the local isometry groups. We show that, in all cases except for the case of Euclidean signature with positive cosmological constant, the local isometry groups are equipped with the Poisson-Lie structure of a classical double. We calculate the dressing action of the factor groups on each other and find, among others, a simple and unified description of the symplectic leaves of SU(2) and SL(2,R). We also compute the Poisson structure on the dual Poisson-Lie groups of the local isometry groups and on their Heisenberg doubles; together, they determine the Poisson structure of the phase space of 3d gravity in the so-called combinatorial description
Energy Technology Data Exchange (ETDEWEB)
Garattini, Remo [Univ. degli Studi di Bergamo, Dalmine (Italy). Dept. of Engineering and Applied Sciences; I.N.F.N., Sezione di Milano, Milan (Italy); De Laurentis, Mariafelicia [Tomsk State Pedagogical Univ. (Russian Federation). Dept. of Theoretical Physics; INFN, Sezione di Napoli (Italy); Complutense Univ. di Monte S. Angelo, Napoli (Italy)
2017-01-15
In the framework of a Varying Speed of Light theory, we study the eigenvalues associated with the Wheeler-DeWitt equation representing the vacuum expectation values associated with the cosmological constant. We find that the Wheeler-DeWitt equation for the Friedmann-Lemaitre-Robertson-Walker metric is completely equivalent to a Sturm-Liouville problem provided that the related eigenvalue and the cosmological constant be identified. The explicit calculation is performed with the help of a variational procedure with trial wave functionals related to the Bessel function of the second kind K{sub ν}(x). After having verified that in ordinary General Relativity no eigenvalue appears, we find that in a Varying Speed of Light theory this is not the case. Nevertheless, instead of a single eigenvalue, we discover the existence of a family of eigenvalues associated to a negative power of the scale. A brief comment on what happens at the inflationary scale is also included. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
de Martini, Francesco
The nature of the scalar field responsible for the cosmological inflation is found to be rooted in the most fundamental concept of the Weyl’s differential geometry: the parallel displacement of vectors in curved spacetime. Within this novel geometrical scenario, the standard electroweak theory of leptons based on the SU(2)L⊗U(1)Y as well as on the conformal groups of spacetime Weyl’s transformations is analyzed within the framework of a general-relativistic, conformally-covariant scalar-tensor theory that includes the electromagnetic and the Yang-Mills fields. A Higgs mechanism within a spontaneous symmetry breaking process is identified and this offers formal connections between some relevant properties of the elementary particles and the dark energy content of the Universe. An “effective cosmological potential”: Veff is expressed in terms of the dark energy potential: |VΛ| via the “mass reduction parameter”: |ζ|≡|Veff||VΛ|, a general property of the Universe. The mass of the Higgs boson, which is considered a “free parameter” by the standard electroweak theory, by our theory is found to be proportional to the mass MU≡|Veff| which contributes to the measured Cosmological Constant, i.e. the measured content of vacuum-energy in the Universe. The nonintegrable application of the Weyl’s geometry leads to a Proca equation accounting for the dynamics of a ϕρ-particle, a vector-meson proposed as an optimum candidate for Dark Matter. The peculiar mathematical structure of Veff offers a clue towards a very general resolution in 4-D of a most intriguing puzzle of modern quantum field theory, the “cosmological constant paradox”(here referred to as: “Λ-paradox”). Indeed, our “universal” theory offers a resolution of the “Λ-paradox” for all exponential inflationary potentials: VΛ(ϕ)∝e‑nϕ, and for all linear superpositions of these potentials, where n belongs to the mathematical set of the “real numbers”. An explicit
The cosmological constant and Pioneer anomaly from Weyl spacetimes and Mach's principle
International Nuclear Information System (INIS)
Castro, Carlos
2009-01-01
It is shown how Weyl's geometry and Mach's holographic principle furnishes both the magnitude and sign (towards the sun) of the Pioneer anomalous acceleration a P ∼-c 2 /R Hubble firstly observed by Anderson et al. Weyl's geometry can account for both the origins and the value of the observed vacuum energy density (dark energy). The source of dark energy is just the dilaton-like Jordan-Brans-Dicke scalar field that is required to implement Weyl invariance of the most simple of all possible actions. A nonvanishing value of the vacuum energy density of the order of 10 -123 M Planck 4 is found consistent with observations. Weyl's geometry accounts also for the phantom scalar field in modern Cosmology in a very natural fashion.
Stompor, Radoslaw; Gorski, Krzysztof M.
1994-01-01
We obtain predictions for cosmic microwave background anisotropies at angular scales near 1 deg in the context of cold dark matter models with a nonzero cosmological constant, normalized to the Cosmic Background Explorer (COBE) Differential Microwave Radiometer (DMR) detection. The results are compared to those computed in the matter-dominated models. We show that the coherence length of the Cosmic Microwave Background (CMB) anisotropy is almost insensitive to cosmological parameters, and the rms amplitude of the anisotropy increases moderately with decreasing total matter density, while being most sensitive to the baryon abundance. We apply these results in the statistical analysis of the published data from the UCSB South Pole (SP) experiment (Gaier et al. 1992; Schuster et al. 1993). We reject most of the Cold Dark Matter (CDM)-Lambda models at the 95% confidence level when both SP scans are simulated together (although the combined data set renders less stringent limits than the Gaier et al. data alone). However, the Schuster et al. data considered alone as well as the results of some other recent experiments (MAX, MSAM, Saskatoon), suggest that typical temperature fluctuations on degree scales may be larger than is indicated by the Gaier et al. scan. If so, CDM-Lambda models may indeed provide, from a point of view of CMB anisotropies, an acceptable alternative to flat CDM models.
International Nuclear Information System (INIS)
Ishak, Mustapha
2008-01-01
The contributions of the cosmological constant to the deflection angle and the time delays are derived from the integration of the gravitational potential as well as from Fermat's principle. The findings are in agreement with recent results using exact solutions to Einstein's equations and reproduce precisely the new Λ term in the bending angle and the lens equation. The consequences on time-delay expressions are explored. While it is known that Λ contributes to the gravitational time delay, it is shown here that a new Λ term appears in the geometrical time delay as well. Although these newly derived terms are perhaps small for current observations, they do not cancel out as previously claimed. Moreover, as shown before, at galaxy cluster scale, the Λ contribution can be larger than the second-order term in the Einstein deflection angle for several cluster lens systems.
Cosmological constraints on variations of the fine structure constant at the epoch of recombination
International Nuclear Information System (INIS)
Menegoni, E; Galli, S; Archidiacono, M; Calabrese, E; Melchiorri, A
2013-01-01
In this brief work we investigate any possible variation of the fine structure constant at the epoch of recombination. The recent measurements of the Cosmic Microwave Background anisotropies at arcminute angular scales performed by the ACT and SPT experiments are probing the damping regime of Cosmic Microwave Background fluctuations. We study the role of a mechanism that could affect the shape of the Cosmic Microwave Background angular fluctuations at those scales, namely a change in the recombination process through variations in the fine structure constant α
Bounds on the possible evolution of the gravitational constant from cosmological type-Ia supernovae
International Nuclear Information System (INIS)
Gaztanaga, E.; Garcia-Berro, E.; Isern, J.; Bravo, E.; Dominguez, I.
2002-01-01
Recent high-redshift type-Ia supernovae results can be used to set new bounds on a possible variation of the gravitational constant G. If the local value of G at the space-time location of distant supernovae is different, it would change both the kinetic energy release and the amount of 56 Ni synthesized in the supernova outburst. Both effects are related to a change in the Chandrasekhar mass M Ch ∝G -3/2 . In addition, the integrated variation of G with time would also affect the cosmic evolution and therefore the luminosity distance relation. We show that the later effect in the magnitudes of type-Ia supernovae is typically several times smaller than the change produced by the corresponding variation of the Chandrasekhar mass. We investigate in a consistent way how a varying G could modify the Hubble diagram of type-Ia supernovae and how these results can be used to set upper bounds to a hypothetical variation of G. We find G/G 0 (less-or-similar sign)1.1 and G/G(less-or-similar sign)10 -11 yr -1 at redshifts z≅0.5. These new bounds extend the currently available constraints on the evolution of G all the way from solar and stellar distances to typical scales of Gpc/Gyr, i.e., by more than 15 orders of magnitude in time and distance
Energy Technology Data Exchange (ETDEWEB)
Romano, Antonio Enea [University of Crete, Department of Physics and CCTP, Heraklion (Greece); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia); Vallejo, Sergio Andres [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia)
2016-04-15
In order to estimate the effects of a local structure on the Hubble parameter we calculate the low-redshift expansion for H(z) and (δH)/(H) for an observer at the center of a spherically symmetric matter distribution in the presence of a cosmological constant. We then test the accuracy of the formulas comparing them with fully relativistic non-perturbative numerical calculations for different cases for the density profile. The low-redshift expansion we obtain gives results more precise than perturbation theory since it is based on the use of an exact solution of Einstein's field equations. For larger density contrasts the low-redshift formulas accuracy improves respect to the perturbation theory accuracy because the latter is based on the assumption of a small density contrast, while the former does not rely on such an assumption. The formulas can be used to take into account the effects on the Hubble expansion parameter due to the monopole component of the local structure. If the H(z) observations will show deviations from the ΛCDM prediction compatible with the formulas we have derived, this could be considered an independent evidence of the existence of a local inhomogeneity, and the formulas could be used to determine the characteristics of this local structure. (orig.)
DEFF Research Database (Denmark)
Hansen, Morten Tranberg
2011-01-01
Debugging embedded wireless systems can be cumbersome due to low visibility. To ease the task of debugging this paper present TinyDebug which is a multi-purpose passive debugging framework for developing embedded wireless sys- tems. TinyDebug is designed to be used throughout the entire system...... logging to extraction and show how the frame- work improves upon existing message based and event log- ging debugging techniques while enabling distributed event processing. We also present a number of optional event anal- ysis tools demonstrating the generality of the TinyDebug debug messages....
International Nuclear Information System (INIS)
Santos, Nuno Loureiro; Dias, Oscar J.C.; Lemos, Jose P.S.
2004-01-01
We study the matching between the Hawking temperature of a large class of static D-dimensional black holes and the Unruh temperature of the corresponding higher dimensional Rindler spacetime. In order to accomplish this task we find the global embedding of the D-dimensional black holes into a higher dimensional Minkowskian spacetime, called the global embedding Minkowskian spacetime procedure (GEMS procedure). These global embedding transformations are important on their own, since they provide a powerful tool that simplifies the study of black hole physics by working instead, but equivalently, in an accelerated Rindler frame in a flat background geometry. We discuss neutral and charged Tangherlini black holes with and without cosmological constant, and in the negative cosmological constant case, we consider the three allowed topologies for the horizons (spherical, cylindrical/toroidal, and hyperbolic)
International Nuclear Information System (INIS)
Gong Yungui; Wang Anzhong; Wu Qiang
2008-01-01
Orbifold branes are studied in the framework of the 11-dimensional Horava-Witten heterotic M-theory. It is found that the effective cosmological constant can be easily lowered to its current observational value by the mechanism of large extra dimensions. The domination of this constant over the evolution of the universe is only temporary. Due to the interaction of the bulk and the branes, the universe will be in its decelerating expansion phase again in the future, whereby all problems connected with a far future de Sitter universe are resolved
International Nuclear Information System (INIS)
Urano, Miho; Tomimatsu, Akira; Saida, Hiromi
2009-01-01
The mechanical first law (MFL) of black hole spacetimes is a geometrical relation which relates variations of the mass parameter and horizon area. While it is well known that the MFL of an asymptotic flat black hole is equivalent to its thermodynamical first law, however we do not know the detail of the MFL of black hole spacetimes with a cosmological constant which possess a black hole and cosmological event horizons. This paper aims to formulate an MFL of the two-horizon spacetimes. For this purpose, we try to include the effects of two horizons in the MFL. To do so, we make use of the Iyer-Wald formalism and extend it to regard the mass parameter and the cosmological constant as two independent variables which make it possible to treat the two horizons on the same footing. Our extended Iyer-Wald formalism preserves the existence of the conserved Noether current and its associated Noether charge, and gives an abstract form of the MFL of black hole spacetimes with a cosmological constant. Then, as a representative application of this formalism, we derive the MFL of the Schwarzschild-de Sitter (SdS) spacetime. Our MFL of the SdS spacetime relates the variations of three quantities: the mass parameter, the total area of the two horizons and the volume enclosed by the two horizons. If our MFL is regarded as a thermodynamical first law of the SdS spacetime, it offers a thermodynamically consistent description of the SdS black hole evaporation process: the mass decreases while the volume and the entropy increase. In our suggestion, a generalized second law is not needed to ensure the second law of SdS thermodynamics for its evaporation process.
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 5. The Tiny Terminators - Mosquitoes and Diseases. P K Sumodan. General Article Volume 6 Issue 5 May 2001 pp 48-55. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/05/0048-0055 ...
Thompson, Rodger I.
2018-04-01
This investigation explores using the beta function formalism to calculate analytic solutions for the observable parameters in rolling scalar field cosmologies. The beta function in this case is the derivative of the scalar ϕ with respect to the natural log of the scale factor a, β (φ )=d φ /d ln (a). Once the beta function is specified, modulo a boundary condition, the evolution of the scalar ϕ as a function of the scale factor is completely determined. A rolling scalar field cosmology is defined by its action which can contain a range of physically motivated dark energy potentials. The beta function is chosen so that the associated "beta potential" is an accurate, but not exact, representation of the appropriate dark energy model potential. The basic concept is that the action with the beta potential is so similar to the action with the model potential that solutions using the beta action are accurate representations of solutions using the model action. The beta function provides an extra equation to calculate analytic functions of the cosmologies parameters as a function of the scale factor that are that are not calculable using only the model action. As an example this investigation uses a quintessence cosmology to demonstrate the method for power and inverse power law dark energy potentials. An interesting result of the investigation is that the Hubble parameter H is almost completely insensitive to the power of the potentials and that ΛCDM is part of the family of quintessence cosmology power law potentials with a power of zero.
DEFF Research Database (Denmark)
Bonnet, Philippe; Culler, David; Estrin, Deborah
2006-01-01
This memo describes the goals and organization structure of the TinyOS Alliance. It covers membership, the working group forums for contribution, intellectual property, source licensing, and the TinyOS Steering Committee (TSC)....
International Nuclear Information System (INIS)
Miyazaki, A.
1979-01-01
The perturbation by a spherical rotating shell is investigated in a closed homogeneous and isotropic cosmological model of the Brans-Dicke theory to first order in an angular velocity of the shell. This model has a negative coupling parameter of the scalar field and satisfies the relation G (t) M/c 2 a (t) = π. The inertial frame at the origin is dragged completely with the same angular velocity when the rotating shell covers the whole universe. By a similar perturbation method, the distance dependence of the contribution from matter to the scalar field at the origin is obtained in this model. The contribution from nearby matter is negative because of the negative coupling constant, but the contribution from the whole universe is positive. The gravitational ''constant'' is almost determined by matter in the distant region
International Nuclear Information System (INIS)
Goldreich, P.; Nicholson, P.
1977-01-01
Reference is made to Dermott and Gold (Nature 267: 590 (1977)) who proposed a resonance model for the rings of Uranus. They assumed that the rings are composed of small particles librating about stable resonances determined by pairs of satellites, either Ariel and Titania or Ariel and Oberon. They dismissed as insignificant resonances involving 'tiny Miranda'. It is reported here that, by a wide margin, the strongest resonances are all associated with Miranda. It is also shown that the hypothesis that the rings are made up of librating particles, whilst original and ingenious, is incorrect. (author)
Phantom cosmologies and fermions
International Nuclear Information System (INIS)
Chimento, Luis P; Forte, Monica; Devecchi, Fernando P; Kremer, Gilberto M
2008-01-01
Form invariance transformations can be used for constructing phantom cosmologies starting with conventional cosmological models. In this work we reconsider the scalar field case and extend the discussion to fermionic fields, where the 'phantomization' process exhibits a new class of possible accelerated regimes. As an application we analyze the cosmological constant group for a fermionic seed fluid
International Nuclear Information System (INIS)
Langer, M.
2007-01-01
This is a very concise introductory lecture to Cosmology. We start by reviewing the basics of homogeneous and isotropic cosmology. We then spend some time on the description of the Cosmic Microwave Background. Finally, a small section is devoted to the discussion of the cosmological constant and of some of the related problems
Dimensional cosmological principles
International Nuclear Information System (INIS)
Chi, L.K.
1985-01-01
The dimensional cosmological principles proposed by Wesson require that the density, pressure, and mass of cosmological models be functions of the dimensionless variables which are themselves combinations of the gravitational constant, the speed of light, and the spacetime coordinates. The space coordinate is not the comoving coordinate. In this paper, the dimensional cosmological principle and the dimensional perfect cosmological principle are reformulated by using the comoving coordinate. The dimensional perfect cosmological principle is further modified to allow the possibility that mass creation may occur. Self-similar spacetimes are found to be models obeying the new dimensional cosmological principle
Costa, João L.; Girão, Pedro M.; Natário, José; Silva, Jorge Drumond
2018-03-01
In this paper we study the spherically symmetric characteristic initial data problem for the Einstein-Maxwell-scalar field system with a positive cosmological constant in the interior of a black hole, assuming an exponential Price law along the event horizon. More precisely, we construct open sets of characteristic data which, on the outgoing initial null hypersurface (taken to be the event horizon), converges exponentially to a reference Reissner-Nördstrom black hole at infinity. We prove the stability of the radius function at the Cauchy horizon, and show that, depending on the decay rate of the initial data, mass inflation may or may not occur. In the latter case, we find that the solution can be extended across the Cauchy horizon with continuous metric and Christoffel symbols in {L^2_{loc}} , thus violating the Christodoulou-Chruściel version of strong cosmic censorship.
Anderson, David; Yunes, Nicolás
2017-09-01
Scalar-tensor theories of gravity modify general relativity by introducing a scalar field that couples nonminimally to the metric tensor, while satisfying the weak-equivalence principle. These theories are interesting because they have the potential to simultaneously suppress modifications to Einstein's theory on Solar System scales, while introducing large deviations in the strong field of neutron stars. Scalar-tensor theories can be classified through the choice of conformal factor, a scalar that regulates the coupling between matter and the metric in the Einstein frame. The class defined by a Gaussian conformal factor with a negative exponent has been studied the most because it leads to spontaneous scalarization (i.e. the sudden activation of the scalar field in neutron stars), which consequently leads to large deviations from general relativity in the strong field. This class, however, has recently been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study whether this remains the case when the exponent of the conformal factor is positive, as well as in another class of theories defined by a hyperbolic conformal factor. We find that in both of these scalar-tensor theories, Solar System tests are passed only in a very small subset of coupling parameter space, for a large set of initial conditions compatible with big bang nucleosynthesis. However, while we find that it is possible for neutron stars to scalarize, one must carefully select the coupling parameter to do so, and even then, the scalar charge is typically 2 orders of magnitude smaller than in the negative-exponent case. Our study suggests that future work on scalar-tensor gravity, for example in the context of tests of general relativity with gravitational waves from neutron star binaries, should be carried out within the positive coupling parameter class.
Energy Technology Data Exchange (ETDEWEB)
Zhang Yuanzhong
2002-06-21
This book is one of a series in the areas of high-energy physics, cosmology and gravitation published by the Institute of Physics. It includes courses given at a doctoral school on 'Relativistic Cosmology: Theory and Observation' held in Spring 2000 at the Centre for Scientific Culture 'Alessandro Volta', Italy, sponsored by SIGRAV-Societa Italiana di Relativita e Gravitazione (Italian Society of Relativity and Gravitation) and the University of Insubria. This book collects 15 review reports given by a number of outstanding scientists. They touch upon the main aspects of modern cosmology from observational matters to theoretical models, such as cosmological models, the early universe, dark matter and dark energy, modern observational cosmology, cosmic microwave background, gravitational lensing, and numerical simulations in cosmology. In particular, the introduction to the basics of cosmology includes the basic equations, covariant and tetrad descriptions, Friedmann models, observation and horizons, etc. The chapters on the early universe involve inflationary theories, particle physics in the early universe, and the creation of matter in the universe. The chapters on dark matter (DM) deal with experimental evidence of DM, neutrino oscillations, DM candidates in supersymmetry models and supergravity, structure formation in the universe, dark-matter search with innovative techniques, and dark energy (cosmological constant), etc. The chapters about structure in the universe consist of the basis for structure formation, quantifying large-scale structure, cosmic background fluctuation, galaxy space distribution, and the clustering of galaxies. In the field of modern observational cosmology, galaxy surveys and cluster surveys are given. The chapter on gravitational lensing describes the lens basics and models, galactic microlensing and galaxy clusters as lenses. The last chapter, 'Numerical simulations in cosmology', deals with spatial and
International Nuclear Information System (INIS)
Wesson, P.S.
1979-01-01
The Cosmological Principle states: the universe looks the same to all observers regardless of where they are located. To most astronomers today the Cosmological Principle means the universe looks the same to all observers because density of the galaxies is the same in all places. A new Cosmological Principle is proposed. It is called the Dimensional Cosmological Principle. It uses the properties of matter in the universe: density (rho), pressure (p), and mass (m) within some region of space of length (l). The laws of physics require incorporation of constants for gravity (G) and the speed of light (C). After combining the six parameters into dimensionless numbers, the best choices are: 8πGl 2 rho/c 2 , 8πGl 2 rho/c 4 , and 2 Gm/c 2 l (the Schwarzchild factor). The Dimensional Cosmological Principal came about because old ideas conflicted with the rapidly-growing body of observational evidence indicating that galaxies in the universe have a clumpy rather than uniform distribution
A varying-α brane world cosmology
International Nuclear Information System (INIS)
Youm, Donam
2001-08-01
We study the brane world cosmology in the RS2 model where the electric charge varies with time in the manner described by the varying fine-structure constant theory of Bekenstein. We map such varying electric charge cosmology to the dual variable-speed-of-light cosmology by changing system of units. We comment on cosmological implications for such cosmological models. (author)
Cosmological evolution of vacuum and cosmic acceleration
International Nuclear Information System (INIS)
Kaya, Ali
2010-01-01
It is known that the unregularized expressions for the stress-energy tensor components corresponding to subhorizon and superhorizon vacuum fluctuations of a massless scalar field in a Friedmann-Robertson-Walker background are characterized by the equation of state parameters ω = 1/3 and ω = -1/3, which are not sufficient to produce cosmological acceleration. However, the form of the adiabatically regularized finite stress-energy tensor turns out to be completely different. By using the fact that vacuum subhorizon modes evolve nearly adiabatically and superhorizon modes have ω = -1/3, we approximately determine the regularized stress-energy tensor, whose conservation is utilized to fix the time dependence of the vacuum energy density. We then show that vacuum energy density grows from zero up to H 4 in about one Hubble time, vacuum fluctuations give positive acceleration of the order of H 4 /M 2 p and they can completely alter the cosmic evolution of the universe dominated otherwise by the cosmological constant, radiation or pressureless dust. Although the magnitude of the acceleration is tiny to explain the observed value today, our findings indicate that the cosmological backreaction of vacuum fluctuations must be taken into account in early stages of cosmic evolution.
International Nuclear Information System (INIS)
Surdin, M.
1980-01-01
It is shown that viewed from the 'outside', our universe is a black hole. Hence the 'inside' cosmology considered is termed as the Bright Universe Cosmology. The model proposed avoids the singularities of cosmologies of the Big Bang variety, it gives a good account of the redshifts, the cosmic background radiation, the number counts; it also gives a satisfactory explanation of the 'large numbers coincidence' and of the variation in time of fundamental constants. (Auth.)
International Nuclear Information System (INIS)
Klebanov, I.; Susskind, L.
1988-10-01
We review Coleman's wormhole mechanism for the vanishing of the cosmological constant. We find a discouraging result that wormholes much bigger than the Planck size are generated. We also consider the implications of the wormhole theory for cosmology. 7 refs., 2 figs
Classical and quantum cosmology
Calcagni, Gianluca
2017-01-01
This comprehensive textbook is devoted to classical and quantum cosmology, with particular emphasis on modern approaches to quantum gravity and string theory and on their observational imprint. It covers major challenges in theoretical physics such as the big bang and the cosmological constant problem. An extensive review of standard cosmology, the cosmic microwave background, inflation and dark energy sets the scene for the phenomenological application of all the main quantum-gravity and string-theory models of cosmology. Born of the author's teaching experience and commitment to bridging the gap between cosmologists and theoreticians working beyond the established laws of particle physics and general relativity, this is a unique text where quantum-gravity approaches and string theory are treated on an equal footing. As well as introducing cosmology to undergraduate and graduate students with its pedagogical presentation and the help of 45 solved exercises, this book, which includes an ambitious bibliography...
Cosmological applications in Kaluza—Klein theory
International Nuclear Information System (INIS)
Wanas, M.I.; Nashed, Gamal G. L.; Nowaya, A.A.
2012-01-01
The field equations of Kaluza—Klein (KK) theory have been applied in the domain of cosmology. These equations are solved for a flat universe by taking the gravitational and the cosmological constants as a function of time t. We use Taylor's expansion of cosmological function, Λ(t), up to the first order of the time t. The cosmological parameters are calculated and some cosmological problems are discussed. (geophysics, astronomy, and astrophysics)
International Nuclear Information System (INIS)
Wainwright, J.
1990-01-01
The workshop on mathematical cosmology was devoted to four topics of current interest. This report contains a brief discussion of the historical background of each topic and a concise summary of the content of each talk. The topics were; the observational cosmology program, the cosmological perturbation program, isotropic singularities, and the evolution of Bianchi cosmologies. (author)
International Nuclear Information System (INIS)
Nojiri, S; Odintsov, S D; Oikonomou, V K
2016-01-01
We combine the unimodular gravity and mimetic gravity theories into a unified theoretical framework, which is proposed to provide a suggestive proposal for a framework that may assist in the discussion and search for a solution to the cosmological constant problem and the dark matter issue. After providing the formulation of the unimodular mimetic gravity and investigating all the new features that the vacuum unimodular gravity implies, by using the underlying reconstruction method, we realize some well known cosmological evolutions, with some of these being exotic for the ordinary Einstein–Hilbert gravity. Specifically we provide the vacuum unimodular mimetic gravity description of the de Sitter cosmology and of the perfect fluid with constant equation of state cosmology. As we demonstrate, these cosmologies can be realized by vacuum mimetic unimodular gravity, without the existence of any matter fluid source. Moreover, we investigate how cosmologically viable cosmologies, which are compatible with the recent observational data, can be realized by the vacuum unimodular mimetic gravity. Since in some cases, a graceful exit from inflation problem might exist, we provide a qualitative description of the mechanism that can potentially generate the graceful exit from inflation in these theories, by searching for the unstable de Sitter solutions in the context of unimodular mimetic theories of gravity. (paper)
International Nuclear Information System (INIS)
Novikov, I.D.
1999-01-01
In this talk a brief survey has been carried out on the development of cosmology from the days Leopold Infeld was active in the field up to the present. Attention in particular is paid to the history of our knowledge of Hubble's expansion, of the cosmological constant, of the average density of matter and its distribution, and of the related issue of possible types of matter in the Universe. (author)
Conformal Cosmology and Supernova Data
Behnke, Danilo; Blaschke, David; Pervushin, Victor; Proskurin, Denis
2000-01-01
We define the cosmological parameters $H_{c,0}$, $\\Omega_{m,c}$ and $\\Omega_{\\Lambda, c}$ within the Conformal Cosmology as obtained by the homogeneous approximation to the conformal-invariant generalization of Einstein's General Relativity theory. We present the definitions of the age of the universe and of the luminosity distance in the context of this approach. A possible explanation of the recent data from distant supernovae Ia without a cosmological constant is presented.
International Nuclear Information System (INIS)
Landsberg, P.T.; Evans, D.A.
1977-01-01
The subject is dealt with in chapters, entitled: cosmology -some fundamentals; Newtonian gravitation - some fundamentals; the cosmological differential equation - the particle model and the continuum model; some simple Friedmann models; the classification of the Friedmann models; the steady-state model; universe with pressure; optical effects of the expansion according to various theories of light; optical observations and cosmological models. (U.K.)
Tiny plastic lung mimics human pulmonary function
Careers Inclusion & Diversity Work-Life Balance Career Resources Apply for a Job Postdocs Students Goals Recycling Green Purchasing Pollution Prevention Reusing Water Resources Environmental Management Releases - 2016 Â» April Â» Tiny plastic lung mimics human pulmonary function Tiny plastic lung mimics
Zhang Yuan Zhong
2002-01-01
This book is one of a series in the areas of high-energy physics, cosmology and gravitation published by the Institute of Physics. It includes courses given at a doctoral school on 'Relativistic Cosmology: Theory and Observation' held in Spring 2000 at the Centre for Scientific Culture 'Alessandro Volta', Italy, sponsored by SIGRAV-Societa Italiana di Relativita e Gravitazione (Italian Society of Relativity and Gravitation) and the University of Insubria. This book collects 15 review reports given by a number of outstanding scientists. They touch upon the main aspects of modern cosmology from observational matters to theoretical models, such as cosmological models, the early universe, dark matter and dark energy, modern observational cosmology, cosmic microwave background, gravitational lensing, and numerical simulations in cosmology. In particular, the introduction to the basics of cosmology includes the basic equations, covariant and tetrad descriptions, Friedmann models, observation and horizons, etc. The ...
Jones, Bernard J. T.
2017-04-01
Preface; Notation and conventions; Part I. 100 Years of Cosmology: 1. Emerging cosmology; 2. The cosmic expansion; 3. The cosmic microwave background; 4. Recent cosmology; Part II. Newtonian Cosmology: 5. Newtonian cosmology; 6. Dark energy cosmological models; 7. The early universe; 8. The inhomogeneous universe; 9. The inflationary universe; Part III. Relativistic Cosmology: 10. Minkowski space; 11. The energy momentum tensor; 12. General relativity; 13. Space-time geometry and calculus; 14. The Einstein field equations; 15. Solutions of the Einstein equations; 16. The Robertson-Walker solution; 17. Congruences, curvature and Raychaudhuri; 18. Observing and measuring the universe; Part IV. The Physics of Matter and Radiation: 19. Physics of the CMB radiation; 20. Recombination of the primeval plasma; 21. CMB polarisation; 22. CMB anisotropy; Part V. Precision Tools for Precision Cosmology: 23. Likelihood; 24. Frequentist hypothesis testing; 25. Statistical inference: Bayesian; 26. CMB data processing; 27. Parametrising the universe; 28. Precision cosmology; 29. Epilogue; Appendix A. SI, CGS and Planck units; Appendix B. Magnitudes and distances; Appendix C. Representing vectors and tensors; Appendix D. The electromagnetic field; Appendix E. Statistical distributions; Appendix F. Functions on a sphere; Appendix G. Acknowledgements; References; Index.
Tiny Molybdenites Tell Diffusion Tales
Stein, H. J.; Hannah, J. L.
2014-12-01
Diffusion invokes micron-scale exchange during crystal growth and dissolution in magma chambers on short time-scales. Fundamental to interpreting such data are assumptions on magma-fluid dynamics at all scales. Nevertheless, elemental diffusion profiles are used to estimate time scales for magma storage, eruption, and recharge. An underutilized timepiece to evaluate diffusion and 3D mobility of magmatic fluids is high-precision Re-Os dating of molybdenite. With spatially unique molybdenite samples from a young ore system (e.g., 1 Ma) and a double Os spike, analytical errors of 1-3 ka unambiguously separate events in time. Re-Os ages show that hydrous shallow magma chambers locally recharge and expel Cu-Mo-Au-silica as superimposed stockwork vein networks at time scales less than a few thousand years [1]. Re-Os ages provide diffusion rates controlled by a dynamic crystal mush, accumulation and expulsion of metalliferous fluid, and magma reorganization after explosive crystallization events. Importantly, this approach has broad application far from ore deposits. Here, we use Re-Os dating of molybdenite to assess time scales for generating and diffusing metals through the deep crust. To maximize opportunity for chemical diffusion, we use a continental-scale Sveconorwegian mylonite zone for the study area. A geologically constrained suite of molybdenite samples was acquired from quarry exposures. Molybdenite, previously unreported, is extremely scarce. Tiny but telling molybdenites include samples from like occurrences to assure geologic accuracy in Re-Os ages. Ages range from mid-Mesoproterozoic to mid-Neoproterozoic, and correspond to early metamorphic dehydration of a regionally widespread biotite-rich gneiss, localized melting of gneiss to form cm-m-scale K-feldspar ± quartz pods, development of vapor-rich, vuggy mm stringers that serve as volatile collection surfaces in felsic leucosomes, and low-angle (relative to foliation) cross-cutting cm-scale quartz veins
International Nuclear Information System (INIS)
Stabell, R.
1979-01-01
Einstein applied his gravitation theory to a universe model with positively curved space in 1917. In order to maintain a static universe he introduced the cosmological constant, which in the light of later nonstatic universe models, he described as his life's greatest mistake. The best known such model is the Einstein-de Sitter model, which is here discussed in some detail. The 'big bang' theory is also discussed leading to the cosmic background radiation. The early phase of the 'big bang' cosmology, the first ten seconds, and the first minutes are discussed, leading to the transparent stage. (JIW)
Cosmological models without singularities
International Nuclear Information System (INIS)
Petry, W.
1981-01-01
A previously studied theory of gravitation in flat space-time is applied to homogeneous and isotropic cosmological models. There exist two different classes of models without singularities: (i) ever-expanding models, (ii) oscillating models. The first class contains models with hot big bang. For these models there exist at the beginning of the universe-in contrast to Einstein's theory-very high but finite densities of matter and radiation with a big bang of very short duration. After short time these models pass into the homogeneous and isotropic models of Einstein's theory with spatial curvature equal to zero and cosmological constant ALPHA >= O. (author)
International Nuclear Information System (INIS)
2006-01-01
This year's Nobel prize is welcome recognition for cosmology. Back in the 1960s, according to Paul Davies' new book The Goldilocks Enigma (see 'Seeking anthropic answers' in this issue), cynics used to quip that there is 'speculation, speculation squared - and cosmology'. Anyone trying to understand the origin and fate of the universe was, in other words, dealing with questions that were simply impractical - or even impossible - to answer. But that has all changed with the development of new telescopes, satellites and data-processing techniques - to the extent that cosmology is now generally viewed as a perfectly acceptable branch of science. If anyone was in any doubt of cosmology's new status, the Royal Swedish Academy of Sciences last month gave the subject welcome recognition with the award of this year's Nobel prize to John Mather and George Smoot (see pp6-7; print version only). The pair were the driving force behind the COBE satellite that in 1992 produced the now famous image of the cosmic microwave background. The mission's data almost certainly proved that the universe started with a Big Bang, while tiny fluctuations in the temperature signal between different parts of the sky were shown to be the seeds of the stars and galaxies we see today. These results are regarded by many as the start of a new era of 'precision cosmology'. But for cosmologists, the job is far from over. There are still massive holes in our understanding of the cosmos, notably the nature of dark matter and dark energy, which together account for over 95% of the total universe. Indeed, some regard dark energy and matter as just ad hoc assumptions needed to fit the data. (Hypothetical particles called 'axions' are one possible contender for dark matter (see pp20-23; print version only), but don't bet your house on it.) Some physicists even think it makes more sense to adjust Newtonian gravity rather than invoke dark matter. But the notion that cosmology is in crisis, as argued by some
Multi-dimensional cosmology and GUP
Energy Technology Data Exchange (ETDEWEB)
Zeynali, K.; Motavalli, H. [Department of Theoretical Physics and Astrophysics, University of Tabriz, 51666-16471, Tabriz (Iran, Islamic Republic of); Darabi, F., E-mail: k.zeinali@arums.ac.ir, E-mail: f.darabi@azaruniv.edu, E-mail: motavalli@tabrizu.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, 53714-161, Tabriz (Iran, Islamic Republic of)
2012-12-01
We consider a multidimensional cosmological model with FRW type metric having 4-dimensional space-time and d-dimensional Ricci-flat internal space sectors with a higher dimensional cosmological constant. We study the classical cosmology in commutative and GUP cases and obtain the corresponding exact solutions for negative and positive cosmological constants. It is shown that for negative cosmological constant, the commutative and GUP cases result in finite size universes with smaller size and longer ages, and larger size and shorter age, respectively. For positive cosmological constant, the commutative and GUP cases result in infinite size universes having late time accelerating behavior in good agreement with current observations. The accelerating phase starts in the GUP case sooner than the commutative case. In both commutative and GUP cases, and for both negative and positive cosmological constants, the internal space is stabilized to the sub-Planck size, at least within the present age of the universe. Then, we study the quantum cosmology by deriving the Wheeler-DeWitt equation, and obtain the exact solutions in the commutative case and the perturbative solutions in GUP case, to first order in the GUP small parameter, for both negative and positive cosmological constants. It is shown that good correspondence exists between the classical and quantum solutions.
Multi-dimensional cosmology and GUP
International Nuclear Information System (INIS)
Zeynali, K.; Motavalli, H.; Darabi, F.
2012-01-01
We consider a multidimensional cosmological model with FRW type metric having 4-dimensional space-time and d-dimensional Ricci-flat internal space sectors with a higher dimensional cosmological constant. We study the classical cosmology in commutative and GUP cases and obtain the corresponding exact solutions for negative and positive cosmological constants. It is shown that for negative cosmological constant, the commutative and GUP cases result in finite size universes with smaller size and longer ages, and larger size and shorter age, respectively. For positive cosmological constant, the commutative and GUP cases result in infinite size universes having late time accelerating behavior in good agreement with current observations. The accelerating phase starts in the GUP case sooner than the commutative case. In both commutative and GUP cases, and for both negative and positive cosmological constants, the internal space is stabilized to the sub-Planck size, at least within the present age of the universe. Then, we study the quantum cosmology by deriving the Wheeler-DeWitt equation, and obtain the exact solutions in the commutative case and the perturbative solutions in GUP case, to first order in the GUP small parameter, for both negative and positive cosmological constants. It is shown that good correspondence exists between the classical and quantum solutions
Sanders, RH; Papantonopoulos, E
2005-01-01
I discuss the classical cosmological tests, i.e., angular size-redshift, flux-redshift, and galaxy number counts, in the light of the cosmology prescribed by the interpretation of the CMB anisotropies. The discussion is somewhat of a primer for physicists, with emphasis upon the possible systematic
Inhomogeneous anisotropic cosmology
International Nuclear Information System (INIS)
Kleban, Matthew; Senatore, Leonardo
2016-01-01
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
Cosmological horizons, quintessence and string theory
International Nuclear Information System (INIS)
Kaloper, Nemanja
2003-01-01
String theory is presently the best candidate for a quantum theory of gravity unified with other forces. It is natural to hope that applications of string theory to cosmology may shed new light on the cosmological conundra, such as singularities, initial conditions, cosmological constant problem and the origin of inflation. Before we can apply string theory to cosmology, there are important conceptual and practical problems which must be addressed. We have reviewed here some of these problems, related to how one defines string theory in a cosmological setting. (author)
International Nuclear Information System (INIS)
Leibundgut, B.
2005-01-01
Supernovae have developed into a versatile tool for cosmology. Their impact on the cosmological model has been profound and led to the discovery of the accelerated expansion. The current status of the cosmological model as perceived through supernova observations will be presented. Supernovae are currently the only astrophysical objects that can measure the dynamics of the cosmic expansion during the past eight billion years. Ongoing experiments are trying to determine the characteristics of the accelerated expansion and give insight into what might be the physical explanation for the acceleration. (author)
Precision cosmology and the landscape
International Nuclear Information System (INIS)
Bousso, Raphael; Bousso, Raphael
2006-01-01
After reviewing the cosmological constant problem--why is Lambda not huge?--I outline the two basic approaches that had emerged by the late 1980s, and note that each made a clear prediction. Precision cosmological experiments now indicate that the cosmological constant is nonzero. This result strongly favors the environmental approach, in which vacuum energy can vary discretely among widely separated regions in the universe. The need to explain this variation from first principles constitutes an observational constraint on fundamental theory. I review arguments that string theory satisfies this constraint, as it contains a dense discretuum of metastable vacua. The enormous landscape of vacua calls for novel, statistical methods of deriving predictions, and it prompts us to reexamine our description of spacetime on the largest scales. I discuss the effects of cosmological dynamics, and I speculate that weighting vacua by their entropy production may allow for prior-free predictions that do not resort to explicitly anthropic arguments
Bimetric gravity is cosmologically viable
Directory of Open Access Journals (Sweden)
Yashar Akrami
2015-09-01
Full Text Available Bimetric theory describes gravitational interactions in the presence of an extra spin-2 field. Previous work has suggested that its cosmological solutions are generically plagued by instabilities. We show that by taking the Planck mass for the second metric, Mf, to be small, these instabilities can be pushed back to unobservably early times. In this limit, the theory approaches general relativity with an effective cosmological constant which is, remarkably, determined by the spin-2 interaction scale. This provides a late-time expansion history which is extremely close to ΛCDM, but with a technically-natural value for the cosmological constant. We find Mf should be no larger than the electroweak scale in order for cosmological perturbations to be stable by big-bang nucleosynthesis. We further show that in this limit the helicity-0 mode is no longer strongly-coupled at low energy scales.
Brane cosmology in teleparallel and f (T ) gravity
International Nuclear Information System (INIS)
Atazadeh, K; Eghbali, A
2015-01-01
We consider the cosmology of a brane-world scenario in the framework of teleparallel and f(T) gravity in a way that matter is localized on the brane. We show that the cosmology of such branes is different from the standard cosmology in teleparallelism. In particular, we obtain a class of new solutions with a constant five-dimensional radius and cosmologically evolving brane in the context of constant torsion f(T) gravity. (paper)
Quantum cosmology on the worldsheet
International Nuclear Information System (INIS)
Cooper, A.R.; Susskind, L.; Thorlacius, L.
1991-08-01
Two-dimensional quantum gravity coupled to conformally invariant matter central c > 25 provides a toy model for quantum gravity in four dimensions. Two-dimensional quantum cosmology can thus be studied in terms of string theory in background fields. The large scale cosmological constant depends on non-linear dynamics in the string theory target space and does not appear to be suppressed by wormhole effects. 13 refs
International Nuclear Information System (INIS)
Berstein, J.
1984-01-01
These lectures offer a self-contained review of the role of neutrinos in cosmology. The first part deals with the question 'What is a neutrino.' and describes in a historical context the theoretical ideas and experimental discoveries related to the different types of neutrinos and their properties. The basic differences between the Dirac neutrino and the Majorana neutrino are pointed out and the evidence for different neutrino 'flavours', neutrino mass, and neutrino oscillations is discussed. The second part summarizes current views on cosmology, particularly as they are affected by recent theoretical and experimental advances in high-energy particle physics. Finally, the close relationship between neutrino physics and cosmology is brought out in more detail, to show how cosmological constraints can limit the various theoretical possibilities for neutrinos and, more particularly, how increasing knowledge of neutrino properties can contribute to our understanding of the origin, history, and future of the Universe. The level is that of the beginning graduate student. (orig.)
International Nuclear Information System (INIS)
Khalatnikov, I.M.; Belinskij, V.A.
1984-01-01
Application of the qualitative theory of dynamic systems to analysis of homogeneous cosmological models is described. Together with the well-known cases, requiring ideal liquid, the properties of cosmological evolution of matter with dissipative processes due to viscosity are considered. New cosmological effects occur, when viscosity terms being one and the same order with the rest terms in the equations of gravitation or even exceeding them. In these cases the description of the dissipative process by means of only two viscosity coefficients (volume and shift) may become inapplicable because all the rest decomposition terms of dissipative addition to the energy-momentum in velocity gradient can be large application of equations with hydrodynamic viscosty should be considered as a model of dissipative effects in cosmology
Lesgourgues, Julien; Miele, Gennaro; Pastor, Sergio
2013-01-01
The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.
International Nuclear Information System (INIS)
Zeldovich, Y.B.
1983-01-01
This paper fives a general review of modern cosmology. The following subjects are discussed: hot big bang and periodization of the evolution; Hubble expansion; the structure of the universe (pancake theory); baryon asymmetry; inflatory universe. (Auth.)
International Nuclear Information System (INIS)
Zeldovich, Ya.
1984-01-01
The knowledge is summed up of contemporary cosmology on the universe and its development resulting from a great number of highly sensitive observations and the application of contemporary physical theories to the entire universe. The questions are assessed of mass density in the universe, the structure and origin of the universe, its baryon asymmetry and the quantum explanation of the origin of the universe. Physical problems are presented which should be resolved for the future development of cosmology. (Ha)
Energy Technology Data Exchange (ETDEWEB)
Klimek, Z.
1981-01-01
The evolution of Friedman models with bulk viscosity in the plane ''Hubble's constant'' - energy density is presented. The general conclusions are: viscosity leads to intense energy production - energy density increases in spite of expansion; if the above result can be regarded as non-physical, the bulk viscosity can produce cosmological models without the initial singularity only for flat universes; the results do not essentially depend on the equation of state.
International Nuclear Information System (INIS)
Klimek, Z.
1981-01-01
The evolution of Friedman models with bulk viscosity in the plane ''Hubble's constant'' - energy density is presented. The general conclusions are: viscosity leads to intense energy production - energy density increases in spite of expansion; if the above result be regarded as non-physical, the bulk viscosity can produce cosmological models without the initial singularity only for flat universes; the results do not essentially depend on the equation of state. (author)
Physicists tackles questions of tiny dimensions
Moran, Barbara
2003-01-01
Today's physicists have a dilemna: they are using two separate theories to describe the universe. General relativity, which describes gravity, works for large objects like planets. Quantum mechanics, which involves the other forces, works for tiny objects like atoms. Unfortunately, the two theories don't match up.
A 'tiny-orange' spectrometer for electrons
International Nuclear Information System (INIS)
Silva, N.C. da.
1990-01-01
An tiny-orange electron spectrometer was designed and constructed using flat permanent magnets and a surface barrier detector. The transmission functions of different system configurations were determined for energies in the 200-1100 KeV range. A mathematical model for the system was developed. (L.C.J.A.)
Leros: A Tiny Microcontroller for FPGAs
DEFF Research Database (Denmark)
Schoeberl, Martin
2011-01-01
Leros is a tiny microcontroller that is optimized for current low-cost FPGAs. Leros is designed with a balanced logic to on-chip memory relation. The design goal is a microcontroller that can be clocked in about half of the speed a pipelined on-chip memory and consuming less than 300 logic cells...
Cosmological string solutions by dimensional reduction
International Nuclear Information System (INIS)
Behrndt, K.; Foerste, S.
1993-12-01
We obtain cosmological four dimensional solutions of the low energy effective string theory by reducing a five dimensional black hole, and black hole-de Sitter solution of the Einstein gravity down to four dimensions. The appearance of a cosmological constant in the five dimensional Einstein-Hilbert produces a special dilaton potential in the four dimensional effective string action. Cosmological scenarios implement by our solutions are discussed
Rajantie, Arttu
2018-03-06
The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).
Rajantie, Arttu
2018-01-01
The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.
Quintessence, Cosmic Coincidence, and the Cosmological Constant
International Nuclear Information System (INIS)
Zlatev, I.; Wang, L.; Steinhardt, P.J.; Steinhardt, P.J.
1999-01-01
Recent observations suggest that a large fraction of the energy density of the Universe has negative pressure. One explanation is vacuum energy density; another is quintessence in the form of a scalar field slowly evolving down a potential. In either case, a key problem is to explain why the energy density nearly coincides with the matter density today. The densities decrease at different rates as the Universe expands, so coincidence today appears to require that their ratio be set to a specific, infinitesimal value in the early Universe. In this paper, we introduce the notion of a open-quotes tracker field,close quotes a form of quintessence, and show how it may explain the coincidence, adding new motivation for the quintessence scenario. copyright 1999 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Sefusatti, Emiliano; /Fermilab /CCPP, New York; Crocce, Martin; Pueblas, Sebastian; Scoccimarro, Roman; /CCPP, New York
2006-04-01
The present spatial distribution of galaxies in the Universe is non-Gaussian, with 40% skewness in 50 h{sup -1} Mpc spheres, and remarkably little is known about the information encoded in it about cosmological parameters beyond the power spectrum. In this work they present an attempt to bridge this gap by studying the bispectrum, paying particular attention to a joint analysis with the power spectrum and their combination with CMB data. They address the covariance properties of the power spectrum and bispectrum including the effects of beat coupling that lead to interesting cross-correlations, and discuss how baryon acoustic oscillations break degeneracies. They show that the bispectrum has significant information on cosmological parameters well beyond its power in constraining galaxy bias, and when combined with the power spectrum is more complementary than combining power spectra of different samples of galaxies, since non-Gaussianity provides a somewhat different direction in parameter space. In the framework of flat cosmological models they show that most of the improvement of adding bispectrum information corresponds to parameters related to the amplitude and effective spectral index of perturbations, which can be improved by almost a factor of two. Moreover, they demonstrate that the expected statistical uncertainties in {sigma}s of a few percent are robust to relaxing the dark energy beyond a cosmological constant.
Solitons in relativistic cosmologies
International Nuclear Information System (INIS)
Pullin, J.
1988-08-01
The application to the construction of solitonic cosmologies in General Relativity of the Inverse Scattering Technique of Belinskii an Zakharov is analyzed. Three improvements to the mentioned technique are proposed: the inclusion of higher order poles in the scattering matrix, a new renormalization technique for diagonal metrics and the extension of the technique to include backgrounds with material content by means of a Kaluza-Klein formalism. As a consequence of these improvements, three new aspects can be analyzed: a) The construction of anisotropic and inhomogeneous cosmological models which can mimic the formation of halos and voids, due to the presence of a material content. The new renormalization technique allows to construct an exact perturbation theory. b) The analysis of the dynamics of models with cosmological constant (inflationary models) and their perturbations. c) The study of interaction of gravitational solitonic waves on material backgrounds. Moreover, some additional works, connected with the existance of 'Crack of doom' type singularities in Kaluza-Klein cosmologies, stochastic perturbations in inflationary universes and inflationary phase transitions in rotating universes are described. (Author) [es
Modified geodetic brane cosmology
International Nuclear Information System (INIS)
Cordero, Rubén; Cruz, Miguel; Molgado, Alberto; Rojas, Efraín
2012-01-01
We explore the cosmological implications provided by the geodetic brane gravity action corrected by an extrinsic curvature brane term, describing a codimension-1 brane embedded in a 5D fixed Minkowski spacetime. In the geodetic brane gravity action, we accommodate the correction term through a linear term in the extrinsic curvature swept out by the brane. We study the resulting geodetic-type equation of motion. Within a Friedmann–Robertson–Walker metric, we obtain a generalized Friedmann equation describing the associated cosmological evolution. We observe that, when the radiation-like energy contribution from the extra dimension is vanishing, this effective model leads to a self-(non-self)-accelerated expansion of the brane-like universe in dependence on the nature of the concomitant parameter β associated with the correction, which resembles an analogous behaviour in the DGP brane cosmology. Several possibilities in the description for the cosmic evolution of this model are embodied and characterized by the involved density parameters related in turn to the cosmological constant, the geometry characterizing the model, the introduced β parameter as well as the dark-like energy and the matter content on the brane. (paper)
A new two-faced scalar solution and cosmological SUSY breaking
International Nuclear Information System (INIS)
Shmakova, Marina
2010-01-01
We propose a possible new way to resolve the long standing problem of strong supersymmetry breaking coexisting with a small cosmological constant. We consider a scalar component of a minimally coupled N = 1 supermultiplet in a general Friedmann-Robertson-Walker (FRW) expanding universe. We argue that a tiny term, proportional to H 2 ∼ 10 -122 in Plank's units, appearing in the field equations due to this expansion will provide both, the small vacuum energy and the heavy mass of the scalar supersymmetric partner. We present a non-perturbative solution for the scalar field with an unusual dual-frequency behavior. This solution has two characteristic mass scales related to the Hubble parameter as H 1/4 and H 1/2 measured in Plank's units.
Sanders, Robert H
2016-01-01
The advent of sensitive high-resolution observations of the cosmic microwave background radiation and their successful interpretation in terms of the standard cosmological model has led to great confidence in this model's reality. The prevailing attitude is that we now understand the Universe and need only work out the details. In this book, Sanders traces the development and successes of Lambda-CDM, and argues that this triumphalism may be premature. The model's two major components, dark energy and dark matter, have the character of the pre-twentieth-century luminiferous aether. While there is astronomical evidence for these hypothetical fluids, their enigmatic properties call into question our assumptions of the universality of locally determined physical law. Sanders explains how modified Newtonian dynamics (MOND) is a significant challenge for cold dark matter. Overall, the message is hopeful: the field of cosmology has not become frozen, and there is much fundamental work ahead for tomorrow's cosmologis...
International Nuclear Information System (INIS)
Dickau, Jonathan J.
2009-01-01
The use of fractals and fractal-like forms to describe or model the universe has had a long and varied history, which begins long before the word fractal was actually coined. Since the introduction of mathematical rigor to the subject of fractals, by Mandelbrot and others, there have been numerous cosmological theories and analyses of astronomical observations which suggest that the universe exhibits fractality or is by nature fractal. In recent years, the term fractal cosmology has come into usage, as a description for those theories and methods of analysis whereby a fractal nature of the cosmos is shown.
No hair theorem for inhomogeneous cosmologies
International Nuclear Information System (INIS)
Jensen, L.G.; Stein-Schabes, J.A.
1986-03-01
We show that under very general conditions any inhomogeneous cosmological model with a positive cosmological constant, that can be described in a synchronous reference system will tend asymptotically in time towards the de Sitter solution. This is shown to be relevant in the context of inflationary models as it makes inflation very weakly dependent on initial conditions. 8 refs
International Nuclear Information System (INIS)
Fliche, H.-H.; Souriau, J.-M.
1978-03-01
On the basis of colorimetric data a composite spectrum of quasars is established from the visible to the Lyman's limit. Its agreement with the spectrum of the quasar 3C273, obtained directly, confirms the homogeneity of these objects. The compatibility of the following hypotheses: negligible evolution of quasars, Friedmann type model of the universe with cosmological constant, is studied by means of two tests: a non-correlation test adopted to the observation conditions and the construction of diagrams (absolute magnitude, volume) using the K-correction deduced from the composite spectrum. This procedure happens to give relatively well-defined values of the parameters; the central values of the density parameter, the reduced curvature and the reduced cosmological constant are: Ω 0 =0.053, k 0 =0.245, lambda-zero=1.19, which correspond to a big bang model, eternally expanding, spatially finite, in which Hubble's parameter H is presently increasing. This model responds well to different cosmological tests: density of matter, diameter of radio sources, age of the universe. Its characteristics suggest various cosmogonic mechanisms, espacially mass formation by growth of empty spherical bubbles [fr
International Nuclear Information System (INIS)
Anchordoqui, Luis; Nawata, Satoshi; Goldberg, Haim; Nunez, Carlos
2007-01-01
We explore the cosmological content of Salam-Sezgin six-dimensional supergravity, and find a solution to the field equations in qualitative agreement with observation of distant supernovae, primordial nucleosynthesis abundances, and recent measurements of the cosmic microwave background. The carrier of the acceleration in the present de Sitter epoch is a quintessence field slowly rolling down its exponential potential. Intrinsic to this model is a second modulus which is automatically stabilized and acts as a source of cold dark matter, with a mass proportional to an exponential function of the quintessence field (hence realizing varying mass particle models within a string context). However, any attempt to saturate the present cold dark matter component in this manner leads to unacceptable deviations from cosmological data--a numerical study reveals that this source can account for up to about 7% of the total cold dark matter budget. We also show that (1) the model will support a de Sitter energy in agreement with observation at the expense of a miniscule breaking of supersymmetry in the compact space; (2) variations in the fine structure constant are controlled by the stabilized modulus and are negligible; (3) ''fifth'' forces are carried by the stabilized modulus and are short range; (4) the long time behavior of the model in four dimensions is that of a Robertson-Walker universe with a constant expansion rate (w=-1/3). Finally, we present a string theory background by lifting our six-dimensional cosmological solution to ten dimensions
Advances in developing TiNi nanoparticles
International Nuclear Information System (INIS)
Castro, A. Torres; Cuellar, E. Lopez; Mendez, U. Ortiz; Yacaman, M. Jose
2006-01-01
The elaboration of nanoparticles has become a field of great interest for many scientists. Nanoparticles possess different properties than those ones shown in bulk materials. Shape memory alloys have the exceptional ability to recuperate its original shape by simple heating after being 'plastically' deformed. When this process is originated, important changes in properties, as mechanical and electrical, are developed in bulk material. If there is possible to obtain nanoparticles with shape memory effects, these nanoparticles could be used in the elaboration of nanofluids with the ability to change their electrical and thermal conductivity with temperature changes, i.e., smart nanofluids. In this work, some recent results and discussion of TiNi nanoparticles obtained by ion beam milling directly from a TiNi wire with shape memory are presented. The nanoparticles obtained by this process are about 2 nm of diameter with a composition of Ti-41.0 at.% Ni. Synthesized nanoparticles elaborated by this method have an ordered structure
Tiny Devices Project Sharp, Colorful Images
2009-01-01
Displaytech Inc., based in Longmont, Colorado and recently acquired by Micron Technology Inc. of Boise, Idaho, first received a Small Business Innovation Research contract in 1993 from Johnson Space Center to develop tiny, electronic, color displays, called microdisplays. Displaytech has since sold over 20 million microdisplays and was ranked one of the fastest growing technology companies by Deloitte and Touche in 2005. Customers currently incorporate the microdisplays in tiny pico-projectors, which weigh only a few ounces and attach to media players, cell phones, and other devices. The projectors can convert a digital image from the typical postage stamp size into a bright, clear, four-foot projection. The company believes sales of this type of pico-projector may exceed $1.1 billion within 5 years.
From tiny microalgae to huge biorefineries
Gouveia, L.
2014-01-01
Microalgae are an emerging research field due to their high potential as a source of several biofuels in addition to the fact that they have a high-nutritional value and contain compounds that have health benefits. They are also highly used for water stream bioremediation and carbon dioxide mitigation. Therefore, the tiny microalgae could lead to a huge source of compounds and products, giving a good example of a real biorefinery approach. This work shows and presents examples of experimental...
Partial rip scenario - a cosmology with a growing cosmological term
International Nuclear Information System (INIS)
Stefancic, H.
2004-01-01
A cosmology with the growing cosmological term is considered. If there is no exchange of energy between vacuum and matter components, the requirement of general covariance implies the time dependence of the gravitational constant G. Irrespectively of the exact functional form of the cosmological term growth, the universe ends in a de Sitter regime with a constant asymptotic Λ, but vanishing G. Although there is no divergence of the scale factor in finite time, such as in the 'Big Rip' scenario, gravitationally bound systems eventually become unbound. In the case of systems bound by non-gravitational forces, there is no unbounding effect, as the asymptotic Λ is insufficiently large to disturb these systems
Solid-state reaction in Ti/Ni multilayered films studied by using magneto-optical spectroscopy
Lee, Y P; Kim, K W; Kim, C G; Kudryavtsev, Y V; Nemoshkalenko, V V; Szymanski, B
2000-01-01
A comparative study of the solid-state reaction (SSR) in a series of Ti/Ni multilayered films (MLDs) with bilayer periods of 0.65-22.2 nm and a constant Ti to Ni sublayer thickness ratio was performed by using experimental and computer-simulated magneto-optical (MO) spectroscopy based on different models of MLFs, as well as x-ray diffraction (XRD). The spectral and sublayer thickness dependences of the MO properties of the Ti/Ni MLFs were explained on the basis of the electromagnetic theory. The existence of a threshold nominal Ni-sublayer thickness of about 3 nm for the as-deposited Ti/Ni MLF to observe of the equatorial Kerr effect was explained by a solid-state reaction which formed nonmagnetic alloyed regions between pure components during the MLF deposition. The SSR in the Ti/Ni MLFs, which was caused by the low temperature annealing, led to the formation of an amorphous Ti-Ni alloy and took place mainly in the Ti/Ni MLFs with ''thick'' sublayers. For the caes of Ti/Ni MLFs, the MO approach turned out to...
Enqvist, K
2012-01-01
The very basics of cosmological inflation are discussed. We derive the equations of motion for the inflaton field, introduce the slow-roll parameters, and present the computation of the inflationary perturbations and their connection to the temperature fluctuations of the cosmic microwave background.
Ellis, G F R
1993-01-01
Many topics were covered in the submitted papers, showing much life in this subject at present. They ranged from conventional calculations in specific cosmological models to provocatively speculative work. Space and time restrictions required selecting from them, for summarisation here; the book of Abstracts should be consulted for a full overview.
International Nuclear Information System (INIS)
Chow, Nathan; Khoury, Justin
2009-01-01
We study the cosmology of a galileon scalar-tensor theory, obtained by covariantizing the decoupling Lagrangian of the Dvali-Gabadadze-Poratti (DGP) model. Despite being local in 3+1 dimensions, the resulting cosmological evolution is remarkably similar to that of the full 4+1-dimensional DGP framework, both for the expansion history and the evolution of density perturbations. As in the DGP model, the covariant galileon theory yields two branches of solutions, depending on the sign of the galileon velocity. Perturbations are stable on one branch and ghostlike on the other. An interesting effect uncovered in our analysis is a cosmological version of the Vainshtein screening mechanism: at early times, the galileon dynamics are dominated by self-interaction terms, resulting in its energy density being suppressed compared to matter or radiation; once the matter density has redshifted sufficiently, the galileon becomes an important component of the energy density and contributes to dark energy. We estimate conservatively that the resulting expansion history is consistent with the observed late-time cosmology, provided that the scale of modification satisfies r c > or approx. 15 Gpc.
Towards a superstring cosmology
International Nuclear Information System (INIS)
Taylor, J.G.
1987-01-01
If superstring theory is a theory of everything then it must give a satisfactory description of the very early evolution of the universe. Since the very early universe is not directly observable, then by satisfactory it is mean that the later evolution following the earlier (pre-Planck time era) phase leads to agreement with prediction for the various observable phenomena such as (B-bar B), inflation, galaxy structure, the cosmological constant (infimum), etc. Moreover it is to be hoped that the initial singularity of classical general relativistic cosmology is also avoided. It is clear that superstring theory is not yet able to tackle these problems. This paper describes what has been done so far to construct very simplified versions of string theory relevant to the early universe, and discusses the critical questions still to be answered
Homogenization and isotropization of an inflationary cosmological model
International Nuclear Information System (INIS)
Barrow, J.D.; Groen, Oe.; Oslo Univ.
1986-01-01
A member of the class of anisotropic and inhomogeneous cosmological models constructed by Wainwright and Goode is investigated. It is shown to describe a universe containing a scalar field which is minimally coupled to gravitation and a positive cosmological constant. It is shown that this cosmological model evolves exponentially rapidly towards the homogeneous and isotropic de Sitter universe model. (orig.)
Grant, E.; Murdin, P.
2000-11-01
During the early Middle Ages (ca 500 to ca 1130) scholars with an interest in cosmology had little useful and dependable literature. They relied heavily on a partial Latin translation of PLATO's Timaeus by Chalcidius (4th century AD), and on a series of encyclopedic treatises associated with the names of Pliny the Elder (ca AD 23-79), Seneca (4 BC-AD 65), Macrobius (fl 5th century AD), Martianus ...
Cosmology of a charged universe
International Nuclear Information System (INIS)
Barnes, A.
1979-01-01
The Proca generalization of electrodynamics admits the possibility that the universe could possess a net electric charge uniformly distributed throughout space, while possessing no electric field. A charged intergalactic (and intragalactic) medium of this kind could contain enough energy to be of cosmological importance. A general-relativistic model of cosmological expansion dominated by such a charged background has been calculated, and is consistent with present observational limits on the Hubble constant, the decleration parameter, and the age of the universe. However, if this cosmology applied at the present epoch, the very early expansion of the universe would have been much more rapid than in conventional ''big bang'' cosmologies, too rapid for cosmological nucleosynthesis or thermalization of the background radiation to have occurred. Hence, domination of the present expansion by background charge appears to be incompatible with the 3 K background and big-bang production of light elements. If the present background charge density were sufficiently small (but not strictly zero), expansion from the epoch of nucleosynthesis would proceed according to the conventional scenario, but the energy due to the background charge would have dominated at some earlier epoch. This last possibility leads to equality of pressure and energy density in the primordial universe, a condition of special significance in certain cosmological theories
International Nuclear Information System (INIS)
Partridge, R.B.
1977-01-01
Some sixty years after the development of relativistic cosmology by Einstein and his colleagues, observations are finally beginning to have an important impact on our views of the Universe. The available evidence seems to support one of the simplest cosmological models, the hot Big Bang model. The aim of this paper is to assess the observational support for certain assumptions underlying the hot Big Bang model. These are that the Universe is isobaric and homogeneous on a large scale; that it is expanding from an initial state of high density and temperature; and that the proper theory to describe the dynamics of the Universe is unmodified General Relativity. The properties of the cosmic microwave background radiation and recent observations of the abundance of light elements, in particular, support these assumptions. Also examined here are the data bearing on the related questions of the geometry and the future of the Universe (is it ever-expanding, or fated to recollapse). Finally, some difficulties and faults of the standard model are discussed, particularly various aspects of the 'initial condition' problem. It appears that the simplest Big Bang cosmological model calls for a highly specific set of initial conditions to produce the presently observed properties of the Universe. (Auth.)
the Universe About Cosmology Planck Satellite Launched Cosmology Videos Professor George Smoot's group conducts research on the early universe (cosmology) using the Cosmic Microwave Background radiation (CMB science goals regarding cosmology. George Smoot named Director of Korean Cosmology Institute The GRB
Cosmology from quantum potential
Energy Technology Data Exchange (ETDEWEB)
Farag Ali, Ahmed, E-mail: ahmed.ali@fsc.bu.edu.eg [Center for Fundamental Physics, Zewail City of Science and Technology, Giza, 12588 (Egypt); Dept. of Physics, Faculty of Sciences, Benha University, Benha, 13518 (Egypt); Das, Saurya, E-mail: saurya.das@uleth.c [Department of Physics and Astronomy, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4 (Canada)
2015-02-04
It was shown recently that replacing classical geodesics with quantal (Bohmian) trajectories gives rise to a quantum corrected Raychaudhuri equation (QRE). In this article we derive the second order Friedmann equations from the QRE, and show that this also contains a couple of quantum correction terms, the first of which can be interpreted as cosmological constant (and gives a correct estimate of its observed value), while the second as a radiation term in the early universe, which gets rid of the big-bang singularity and predicts an infinite age of our universe.
Leibundgut, B.; Sullivan, M.
2018-03-01
The primary agent for Type Ia supernova cosmology is the uniformity of their appearance. We present the current status, achievements and uncertainties. The Hubble constant and the expansion history of the universe are key measurements provided by Type Ia supernovae. They were also instrumental in showing time dilation, which is a direct observational signature of expansion. Connections to explosion physics are made in the context of potential improvements of the quality of Type Ia supernovae as distance indicators. The coming years will see large efforts to use Type Ia supernovae to characterise dark energy.
International Nuclear Information System (INIS)
Kleinschmidt, Axel; Nicolai, Hermann
2006-01-01
We construct simple exact solutions to the E 10 /K(E 10 ) coset model by exploiting its integrability. Using the known correspondences with the bosonic sectors of maximal supergravity theories, these exact solutions translate into exact cosmological solutions. In this way, we are able to recover some recently discovered solutions of M-theory exhibiting phases of accelerated expansion, or, equivalently, S-brane solutions, and thereby accommodate such solutions within the E 10 /K(E 10 ) model. We also discuss the situation regarding solutions with non-vanishing (constant) curvature of the internal manifold
International Nuclear Information System (INIS)
Desert, F.-Xavier
2004-01-01
After an introduction comprising some definitions, an historical overview, and a discussion of the paradoxical Universe, this course proposes a presentation of fundamental notions and theories, i.e. the restrained relativity and the universal gravitation. The next part addresses the general relativity with the following notions: space-time metrics and principle of generalised covariance, basics of tensor analysis, geodesics, energy-pulse tensor, curvature, Einstein equations, Newtonian limit, Schwarzschild metrics, gravitational waves, gravitational redshift. The next part addresses the standard cosmology with the Friedmann-Robertson-Walker metrics and the Friedmann-Lemaitre equations of the evolution of the Universe. The Universe expansion is then addressed: distances and horizons, Hubble law, determination of the Hubble constant. The next chapter deals with the constituents of the Universe: light matter, baryonic dark matter, black matter, supernovae, Universe acceleration and black energy. Then comes the nuclear evolution of the Universe: thermodynamics of the primordial Universe, the matter-antimatter asymmetry, from quarks to atoms, cosmic abundance, neutron cosmological background, matter-radiation equality, cosmo-chronology or the age of the Universe. The next chapter addresses the cosmological background at 3 K: sky electromagnetic spectrum, measurement of CMB anisotropies, interpretation of anisotropies, growth of perturbations. The last chapter addresses the quantum field theory and inflation: paradoxes of the standard Big Bang, the simple inflation, noticeable consequences
Inflation and quantum cosmology
International Nuclear Information System (INIS)
Linde, A.
1990-01-01
We investigate an interplay between elementary particle physics, quantum cosmology and inflation. These results obtained within this approach are compared with the results obtained in the context of Euclidean quantum cosmology. In particular, we discuss relations between the stochastic approach to inflationary cosmology and the approaches based on the investigation of the Hartle-Hawking and tunneling wave functions of the universe. We argue that neither of these wave functions can be used for a complete description of the inflationary universe, but in certain cases they can be used for a description of some particular stages of inflation. It is shown that if the present vacuum energy density ρ υ exceeds some extremely small critical value ρ c (ρ c ∼ 10 -107 ) g cm -3 for chaotic inflation in the theory 1/2m 2 φ 2 ), then the lifetime of mankind in the inflationary universe should be finite, even though the universe as a whole will exist without end. A possible way to justify the anthropic principle in the context of the baby universe theory and to apply it to the evaluation of masses of elementary particles, of their coupling constants and of the vacuum energy density is also discussed. (author)
How fabulous is Fab 5 cosmology?
International Nuclear Information System (INIS)
Linder, Eric V.
2013-01-01
Extended gravity origins for cosmic acceleration can solve some fine tuning issues and have useful characteristics, but generally have little to say regarding the cosmological constant problem. Fab 5 gravity can be ghost free and stable, have attractor solutions in the past and future, and possess self tuning that solves the original cosmological constant problem. Here we show however it does not possess all these qualities at the same time. We also demonstrate that the self tuning is so powerful that it not only cancels the cosmological constant but also all other energy density, and we derive the scalings of its approach to a renormalized de Sitter cosmology. While this strong cancellation is bad for the late universe, it greatly eases early universe inflation
How fabulous is Fab 5 cosmology?
Energy Technology Data Exchange (ETDEWEB)
Linder, Eric V., E-mail: evlinder@lbl.gov [Berkeley Center for Cosmological Physics and Berkeley Lab, University of California, Berkeley, CA, 94720 (United States)
2013-12-01
Extended gravity origins for cosmic acceleration can solve some fine tuning issues and have useful characteristics, but generally have little to say regarding the cosmological constant problem. Fab 5 gravity can be ghost free and stable, have attractor solutions in the past and future, and possess self tuning that solves the original cosmological constant problem. Here we show however it does not possess all these qualities at the same time. We also demonstrate that the self tuning is so powerful that it not only cancels the cosmological constant but also all other energy density, and we derive the scalings of its approach to a renormalized de Sitter cosmology. While this strong cancellation is bad for the late universe, it greatly eases early universe inflation.
Quantum cosmology of classically constrained gravity
International Nuclear Information System (INIS)
Gabadadze, Gregory; Shang Yanwen
2006-01-01
In [G. Gabadadze, Y. Shang, hep-th/0506040] we discussed a classically constrained model of gravity. This theory contains known solutions of General Relativity (GR), and admits solutions that are absent in GR. Here we study cosmological implications of some of these new solutions. We show that a spatially-flat de Sitter universe can be created from 'nothing'. This universe has boundaries, and its total energy equals to zero. Although the probability to create such a universe is exponentially suppressed, it favors initial conditions suitable for inflation. Then we discuss a finite-energy solution with a nonzero cosmological constant and zero space-time curvature. There is no tunneling suppression to fluctuate into this state. We show that for a positive cosmological constant this state is unstable-it can rapidly transition to a de Sitter universe providing a new unsuppressed channel for inflation. For a negative cosmological constant the space-time flat solutions is stable.
Brandenberger, Robert H.
2008-01-01
String gas cosmology is a string theory-based approach to early universe cosmology which is based on making use of robust features of string theory such as the existence of new states and new symmetries. A first goal of string gas cosmology is to understand how string theory can effect the earliest moments of cosmology before the effective field theory approach which underlies standard and inflationary cosmology becomes valid. String gas cosmology may also provide an alternative to the curren...
Magnetohydrodynamic cosmologies
International Nuclear Information System (INIS)
Portugal, R.; Soares, I.D.
1991-01-01
We analyse a class of cosmological models in magnetohydrodynamic regime extending and completing the results of a previous paper. The material content of the models is a perfect fluid plus electromagnetic fields. The fluid is neutral in average but admits an electrical current which satisfies Ohm's law. All models fulfil the physical requirements of near equilibrium thermodynamics and can be favourably used as a more realistic description of the interior of a collapsing star in a magnetohydrodynamic regime with or without a magnetic field. (author)
Bardeen, J. M.
The last several years have seen a tremendous ferment of activity in astrophysical cosmology. Much of the theoretical impetus has come from particle physics theories of the early universe and candidates for dark matter, but what promise to be even more significant are improved direct observations of high z galaxies and intergalactic matter, deeper and more comprehensive redshift surveys, and the increasing power of computer simulations of the dynamical evolution of large scale structure. Upper limits on the anisotropy of the microwave background radiation are gradually getting tighter and constraining more severely theoretical scenarios for the evolution of the universe.
International Nuclear Information System (INIS)
Bardeen, J.M.
1986-01-01
The last several years have seen a tremendous ferment of activity in astrophysical cosmology. Much of the theoretical impetus has come from particle physics theories of the early universe and candidates for dark matter, but what promise to be even more significant are improved direct observations of high z galaxies and intergalactic matter, deeper and more comprehensive redshift surveys, and the increasing power of computer simulations of the dynamical evolution of large scale structure. Upper limits on the anisotropy of the microwave background radiation are gradually getting tighter and constraining more severely theoretical scenarios for the evolution of the universe. 47 refs
Boeyens, Jan CA
2010-01-01
The composition of the most remote objects brought into view by the Hubble telescope can no longer be reconciled with the nucleogenesis of standard cosmology and the alternative explanation, in terms of the LAMBDA-Cold-Dark-Matter model, has no recognizable chemical basis. A more rational scheme, based on the chemistry and periodicity of atomic matter, opens up an exciting new interpretation of the cosmos in terms of projective geometry and general relativity. The response of atomic structure to environmental pressure predicts non-Doppler cosmical redshifts and equilibrium nucleogenesis by alp
Page, Don N.
2006-01-01
A complete model of the universe needs at least three parts: (1) a complete set of physical variables and dynamical laws for them, (2) the correct solution of the dynamical laws, and (3) the connection with conscious experience. In quantum cosmology, item (2) is the quantum state of the cosmos. Hartle and Hawking have made the `no-boundary' proposal, that the wavefunction of the universe is given by a path integral over all compact Euclidean 4-dimensional geometries and matter fields that hav...
Religion, theology and cosmology
Directory of Open Access Journals (Sweden)
John T. Fitzgerald
2013-10-01
Full Text Available Cosmology is one of the predominant research areas of the contemporary world. Advances in modern cosmology have prompted renewed interest in the intersections between religion, theology and cosmology. This article, which is intended as a brief introduction to the series of studies on theological cosmology in this journal, identifies three general areas of theological interest stemming from the modern scientific study of cosmology: contemporary theology and ethics; cosmology and world religions; and ancient cosmologies. These intersections raise important questions about the relationship of religion and cosmology, which has recently been addressed by William Scott Green and is the focus of the final portion of the article.
International Nuclear Information System (INIS)
Chimento, L P; Forte, M; Devecchi, F P; Kremer, G M; Ribas, M O; Samojeden, L L
2011-01-01
In this work we review if fermionic sources could be responsible for accelerated periods during the evolution of a FRW universe. In a first attempt, besides the fermionic source, a matter constituent would answer for the decelerated periods. The coupled differential equations that emerge from the field equations are integrated numerically. The self-interaction potential of the fermionic field is considered as a function of the scalar and pseudo-scalar invariants. It is shown that the fermionic field could behave like an inflaton field in the early universe, giving place to a transition to a matter dominated (decelerated) period. In a second formulation we turn our attention to analytical results, specifically using the idea of form-invariance transformations. These transformations can be used for obtaining accelerated cosmologies starting with conventional cosmological models. Here we reconsider the scalar field case and extend the discussion to fermionic fields. Finally we investigate the role of a Dirac field in a Brans-Dicke (BD) context. The results show that this source, in combination with the BD scalar, promote a final eternal accelerated era, after a matter dominated period.
International Nuclear Information System (INIS)
Niedermann, Florian; Schneider, Robert
2015-01-01
We derive the modified Friedmann equations for a generalization of the Dvali-Gabadadze-Porrati (DGP) model in which the brane has one additional compact dimension. The main new feature is the emission of gravitational waves into the bulk. We study two classes of solutions: first, if the compact dimension is stabilized, the waves vanish and one exactly recovers DGP cosmology. However, a stabilization by means of physical matter is not possible for a tension-dominated brane, thus implying a late time modification of 4D cosmology different from DGP. Second, for a freely expanding compact direction, we find exact attractor solutions with zero 4D Hubble parameter despite the presence of a 4D cosmological constant. The model hence constitutes an explicit example of dynamical degravitation at the full nonlinear level. Without stabilization, however, there is no 4D regime and the model is ruled out observationally, as we demonstrate explicitly by comparing to supernova data
Quantum gravity and quantum cosmology
Papantonopoulos, Lefteris; Siopsis, George; Tsamis, Nikos
2013-01-01
Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe. While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models. ...
Nanocellulose, a tiny fiber with huge applications.
Abitbol, Tiffany; Rivkin, Amit; Cao, Yifeng; Nevo, Yuval; Abraham, Eldho; Ben-Shalom, Tal; Lapidot, Shaul; Shoseyov, Oded
2016-06-01
Nanocellulose is of increasing interest for a range of applications relevant to the fields of material science and biomedical engineering due to its renewable nature, anisotropic shape, excellent mechanical properties, good biocompatibility, tailorable surface chemistry, and interesting optical properties. We discuss the main areas of nanocellulose research: photonics, films and foams, surface modifications, nanocomposites, and medical devices. These tiny nanocellulose fibers have huge potential in many applications, from flexible optoelectronics to scaffolds for tissue regeneration. We hope to impart the readers with some of the excitement that currently surrounds nanocellulose research, which arises from the green nature of the particles, their fascinating physical and chemical properties, and the diversity of applications that can be impacted by this material. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cosmological production of noncommutative black holes
International Nuclear Information System (INIS)
Mann, Robert B.; Nicolini, Piero
2011-01-01
We investigate the pair creation of noncommutative black holes in a background with a positive cosmological constant. As a first step we derive the noncommutative geometry inspired Schwarzschild-de Sitter solution. By varying the mass and the cosmological constant parameters, we find several spacetimes compatible with the new solution: positive-mass spacetimes admit one cosmological horizon and two, one, or no black hole horizons, while negative-mass spacetimes have just a cosmological horizon. These new black holes share the properties of the corresponding asymptotically flat solutions, including the nonsingular core and thermodynamic stability in the final phase of the evaporation. As a second step we determine the action which generates the matter sector of gravitational field equations and we construct instantons describing the pair production of black holes and the other admissible topologies. As a result we find that for current values of the cosmological constant the de Sitter background is quantum mechanically stable according to experience. However, positive-mass noncommutative black holes and solitons would have plentifully been produced during inflationary times for Planckian values of the cosmological constant. As a special result we find that, in these early epochs of the Universe, Planck size black holes production would have been largely disfavored. We also find a potential instability for production of negative-mass solitons.
Cosmic curvature from de Sitter equilibrium cosmology.
Albrecht, Andreas
2011-10-07
I show that the de Sitter equilibrium cosmology generically predicts observable levels of curvature in the Universe today. The predicted value of the curvature, Ω(k), depends only on the ratio of the density of nonrelativistic matter to cosmological constant density ρ(m)(0)/ρ(Λ) and the value of the curvature from the initial bubble that starts the inflation, Ω(k)(B). The result is independent of the scale of inflation, the shape of the potential during inflation, and many other details of the cosmology. Future cosmological measurements of ρ(m)(0)/ρ(Λ) and Ω(k) will open up a window on the very beginning of our Universe and offer an opportunity to support or falsify the de Sitter equilibrium cosmology.
International Nuclear Information System (INIS)
Hawking, S.W.
1984-01-01
The subject of these lectures is quantum effects in cosmology. The author deals first with situations in which the gravitational field can be treated as a classical, unquantized background on which the quantum matter fields propagate. This is the case with inflation at the GUT era. Nevertheless the curvature of spacetime can have important effects on the behaviour of the quantum fields and on the development of long-range correlations. He then turns to the question of the quantization of the gravitational field itself. The plan of these lectures is as follows: Euclidean approach to quantum field theory in flat space; the extension of techniques to quantum fields on a curved background with the four-sphere, the Euclidean version of De Sitter space as a particular example; the GUT era; quantization of the gravitational field by Euclidean path integrals; mini superspace model. (Auth.)
Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguñá, Marián
2012-01-01
Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.
Loop quantum cosmology and singularities.
Struyve, Ward
2017-08-15
Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.
Narlikar, Jayant Vishnu
2002-01-01
The third edition of this successful textbook is fully updated and includes important recent developments in cosmology. It begins with an introduction to cosmology and general relativity, and goes on to cover the mathematical models of standard cosmology. The physical aspects of cosmology, including primordial nucleosynthesis, the astroparticle physics of inflation, and the current ideas on structure formation are discussed. Alternative models of cosmology are reviewed, including the model of Quasi-Steady State Cosmology, which has recently been proposed as an alternative to Big Bang Cosmology.
Nonsingular cosmology from evolutionary quantum gravity
Cianfrani, Francesco; Montani, Giovanni; Pittorino, Fabrizio
2014-11-01
We provide a cosmological implementation of the evolutionary quantum gravity, describing an isotropic Universe, in the presence of a negative cosmological constant and a massive (preinflationary) scalar field. We demonstrate that the considered Universe has a nonsingular quantum behavior, associated to a primordial bounce, whose ground state has a high occupation number. Furthermore, in such a vacuum state, the super-Hamiltonian eigenvalue is negative, corresponding to a positive emerging dust energy density. The regularization of the model is performed via a polymer quantum approach to the Universe scale factor and the proper classical limit is then recovered, in agreement with a preinflationary state of the Universe. Since the dust energy density is redshifted by the Universe de Sitter phase and the cosmological constant does not enter the ground state eigenvalue, we get a late-time cosmology, compatible with the present observations, endowed with a turning point in the far future.
International Nuclear Information System (INIS)
Nottale, Laurent
2003-01-01
The principle of relativity, when it is applied to scale transformations, leads to the suggestion of a generalization of fundamental dilations laws. These new special scale-relativistic resolution transformations involve log-Lorentz factors and lead to the occurrence of a minimal and of a maximal length-scale in nature, which are invariant under dilations. The minimal length-scale, that replaces the zero from the viewpoint of its physical properties, is identified with the Planck length l P , and the maximal scale, that replaces infinity, is identified with the cosmic scale L=Λ -1/2 , where Λ is the cosmological constant.The new interpretation of the Planck scale has several implications for the structure and history of the early Universe: we consider the questions of the origin, of the status of physical laws at very early times, of the horizon/causality problem and of fluctuations at recombination epoch.The new interpretation of the cosmic scale has consequences for our knowledge of the present universe, concerning in particular Mach's principle, the large number coincidence, the problem of the vacuum energy density, the nature and the value of the cosmological constant. The value (theoretically predicted ten years ago) of the scaled cosmological constant Ω Λ =0.75+/-0.15 is now supported by several different experiments (Hubble diagram of Supernovae, Boomerang measurements, gravitational lensing by clusters of galaxies).The scale-relativity framework also allows one to suggest a solution to the missing mass problem, and to make theoretical predictions of fundamental energy scales, thanks to the interpretation of new structures in scale space: fractal/classical transitions as Compton lengths, mass-coupling relations and critical value 4π 2 of inverse couplings. Among them, we find a structure at 3.27+/-0.26x10 20 eV, which agrees closely with the observed highest energy cosmic rays at 3.2+/-0.9x10 20 eV, and another at 5.3x10 -3 eV, which corresponds to the
International Nuclear Information System (INIS)
Copeland, Edmund J.; Padilla, Antonio; Saffin, Paul M.
2012-01-01
We have recently proposed a novel self tuning mechanism to alleviate the famous cosmological constant problem, based on the general scalar tensor theory proposed by Horndeski. The self-tuning model ends up consisting of four geometric terms in the action, with each term containing a free potential function of the scalar field; the four together being labeled as the Fab-Four. In this paper we begin the important task of deriving the cosmology associated with the Fab-Four Lagrangian. Performing a phase plane analysis of the system we are able to obtain a number of fixed points for the system, with some remarkable new solutions emerging from the trade-off between the various potentials. As well as obtaining inflationary solutions we also find conventional radiation/matter-like solutions, but in regimes where the energy density is dominated by a cosmological constant, and where we do not have any explicit forms of radiation or matter. Stability conditions for matter solutions are obtained and we show how it is possible for there to exist an extended period of 'matter domination' opening up the possibility that we can generate cosmological structures, and recover a consistent cosmology even in the presence of a large cosmological constant
Multiverse understanding of cosmological coincidences
International Nuclear Information System (INIS)
Bousso, Raphael; Hall, Lawrence J.; Nomura, Yasunori
2009-01-01
There is a deep cosmological mystery: although dependent on very different underlying physics, the time scales of structure formation, of galaxy cooling (both radiatively and against the CMB), and of vacuum domination do not differ by many orders of magnitude, but are all comparable to the present age of the universe. By scanning four landscape parameters simultaneously, we show that this quadruple coincidence is resolved. We assume only that the statistical distribution of parameter values in the multiverse grows towards certain catastrophic boundaries we identify, across which there are drastic regime changes. We find order-of-magnitude predictions for the cosmological constant, the primordial density contrast, the temperature at matter-radiation equality, the typical galaxy mass, and the age of the universe, in terms of the fine structure constant and the electron, proton and Planck masses. Our approach permits a systematic evaluation of measure proposals; with the causal patch measure, we find no runaway of the primordial density contrast and the cosmological constant to large values.
Constraints on cosmological parameters in power-law cosmology
International Nuclear Information System (INIS)
Rani, Sarita; Singh, J.K.; Altaibayeva, A.; Myrzakulov, R.; Shahalam, M.
2015-01-01
In this paper, we examine observational constraints on the power law cosmology; essentially dependent on two parameters H 0 (Hubble constant) and q (deceleration parameter). We investigate the constraints on these parameters using the latest 28 points of H(z) data and 580 points of Union2.1 compilation data and, compare the results with the results of ΛCDM . We also forecast constraints using a simulated data set for the future JDEM, supernovae survey. Our studies give better insight into power law cosmology than the earlier done analysis by Kumar [arXiv:1109.6924] indicating it tuning well with Union2.1 compilation data but not with H(z) data. However, the constraints obtained on i.e. H 0 average and q average using the simulated data set for the future JDEM, supernovae survey are found to be inconsistent with the values obtained from the H(z) and Union2.1 compilation data. We also perform the statefinder analysis and find that the power-law cosmological models approach the standard ΛCDM model as q → −1. Finally, we observe that although the power law cosmology explains several prominent features of evolution of the Universe, it fails in details
Cosmology and particle physics
International Nuclear Information System (INIS)
Turner, M.S.
1985-01-01
The author reviews the standard cosmology, focusing on primordial nucleosynthesis, and discusses how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is examined in which the B, C, CP violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and the present baryon-to-baryon ratio. Monoposes, cosmology and astrophysics are reviewed. The author also discusses supersymmetry/supergravity and cosmology, superstrings and cosmology in extra dimensions, and axions, astrophics, and cosmology
Cosmology in Poincaré gauge gravity with a pseudoscalar torsion
Energy Technology Data Exchange (ETDEWEB)
Lu, Jianbo; Chee, Guoying [Department of Physics, Liaoning Normal University,Dalian 116029 (China)
2016-05-04
A cosmology of Poincare{sup ´} gauge theory is developed, where several properties of universe corresponding to the cosmological equations with the pseudoscalar torsion function are investigated. The cosmological constant is found to be the intrinsic torsion and curvature of the vacuum universe and is derived from the theory naturally rather than added artificially, i.e. the dark energy originates from geometry and includes the cosmological constant but differs from it. The cosmological constant puzzle, the coincidence and fine tuning problem are relieved naturally at the same time. By solving the cosmological equations, the analytic cosmological solution is obtained and can be compared with the ΛCDM model. In addition, the expressions of density parameters of the matter and the geometric dark energy are derived, and it is shown that the evolution of state equations for the geometric dark energy agrees with the current observational data. At last, the full equations of linear cosmological perturbations and the solutions are obtained.
Structural analysis of an off-grid tiny house
Calluari, Karina Arias; Alonso-Marroquín, Fernando
2017-06-01
The off-grid technologies and tiny house movement have experimented an unprecedented growth in recent years. Putting both sides together, we are trying to achieve an economic and environmental friendly solution to the higher cost of residential properties. This solution is the construction of off-grid tiny houses. This article presents a design for a small modular off-grid house made by pine timber. A numerical analysis of the proposed tiny house was performed to ensure its structural stability. The results were compared with the suggested serviceability limit state criteria, which are contended in the Australia Guidelines Standards making this design reliable for construction.
International Nuclear Information System (INIS)
Gaisser, T.K.; Shafi, Q.; Barr, S.M.; Seckel, D.; Rusjan, E.; Fletcher, R.S.
1991-01-01
This report discusses research of professor at Bartol research institute in the following general areas: particle phenomenology and non-accelerator physics; particle physics and cosmology; theories with higher symmetry; and particle astrophysics and cosmology
International Nuclear Information System (INIS)
Heller, M.
1985-01-01
Two Friedman's cosmological papers (1922, 1924) and his own interpretation of the obtained results are briefly reviewed. Discussion follows of Friedman's role in the early development of relativistic cosmology. 18 refs. (author)
Kunze, Kerstin E.
2016-12-20
Cosmology is becoming an important tool to test particle physics models. We provide an overview of the standard model of cosmology with an emphasis on the observations relevant for testing fundamental physics.
Struggling to Hear? Tiny Devices Can Keep You Connected
... Human Services Search form Search Site Menu Home Latest Issue Past Issues Special Issues Subscribe May 2018 Print this issue Struggling to Hear? Tiny Devices Can Keep You Connected En español Send us ...
Roos, Matts
2015-01-01
The Fourth Edition of Introduction to Cosmology provides a concise, authoritative study of cosmology at an introductory level. Starting from elementary principles and the early history of cosmology, the text carefully guides the student on to curved spacetimes, special and general relativity, gravitational lensing, the thermal history of the Universe, and cosmological models, including extended gravity models, black holes and Hawking's recent conjectures on the not-so-black holes.
Particle physics and cosmology
International Nuclear Information System (INIS)
Turner, M.S.; Schramm, D.N.
1985-01-01
During the past year, the research of the members of our group has spanned virtually all the topics at the interface of cosmology and particle physics: inflationary Universe scenarios, astrophysical and cosmological constraints on particle properties, ultra-high energy cosmic ray physics, quantum field theory in curved space-time, cosmology with extra dimensions, superstring cosmology, neutrino astronomy with large, underground detectors, and the formation of structure in the Universe
Behavior of varying-alpha cosmologies
International Nuclear Information System (INIS)
Barrow, John D.; Sandvik, Haavard Bunes; Magueijo, Joao
2002-01-01
We determine the behavior of a time-varying fine structure 'constant' α(t) during the early and late phases of universes dominated by the kinetic energy of changing α(t), radiation, dust, curvature, and lambda, respectively. We show that after leaving an initial vacuum-dominated phase during which α increases, α remains constant in universes such as our own during the radiation era, and then increases slowly, proportional to a logarithm of cosmic time, during the dust era. If the universe becomes dominated by a negative curvature or a positive cosmological constant then α tends rapidly to a constant value. The effect of an early period of de Sitter or power-law inflation is to drive α to a constant value. Various cosmological consequences of these results are discussed with reference to recent observational studies of the value of α from quasar absorption spectra and to the existence of life in expanding universes
Particle physics and cosmology
International Nuclear Information System (INIS)
Schramm, D.N.; Turner, M.S.
1982-06-01
work is described in these areas: cosmological baryon production; cosmological production of free quarks and other exotic particle species; the quark-hadron transition in the early universe; astrophysical and cosmological constraints on particle properties; massive neutrinos; phase transitions in the early universe; and astrophysical implications of an axion-like particle
. ______________________________________________________________________________________ Nobelist George Smoot to Direct Korean Cosmology Institute Nobel Laureate George Smoot has been appointed director of a new cosmology institute in South Korea that will work closely with the year-old Berkeley the Early Universe (IEU) at EWHA Womans University in Seoul, Korea will provide cosmology education
International Nuclear Information System (INIS)
Davies, P.
1991-01-01
The main concepts of cosmology are discussed, and some of the misconceptions are clarified. The features of big bang cosmology are examined, and it is noted that the existence of the cosmic background radiation provides welcome confirmation of the big bang theory. Calculations of relative abundances of the elements conform with observations, further strengthening the confidence in the basic ideas of big bang cosmology
CERN. Geneva. Audiovisual Unit
2001-01-01
Cosmology and particle physics have enjoyed a useful relationship over the entire histories of both subjects. Today, ideas and techniques in cosmology are frequently used to elucidate and constrain theories of elementary particles. These lectures give an elementary overview of the essential elements of cosmology, which is necessary to understand this relationship.
CERN. Geneva
1999-01-01
Cosmology and particle physics have enjoyed a useful relationship over the entire histories of both subjects. Today, ideas and techniques in cosmology are frequently used to elucidate and constrain theories of elementary particles. These lectures give an elementary overview of the essential elements of cosmology, which is necessary to understand this relationship.
Regular and Chaotic Regimes in Scalar Field Cosmology
Directory of Open Access Journals (Sweden)
Alexey V. Toporensky
2006-03-01
Full Text Available A transient chaos in a closed FRW cosmological model with a scalar field is studied. We describe two different chaotic regimes and show that the type of chaos in this model depends on the scalar field potential. We have found also that for sufficiently steep potentials or for potentials with large cosmological constant the chaotic behavior disappears.
Higgs field and cosmological parameters in the fractal quantum system
Directory of Open Access Journals (Sweden)
Abramov Valeriy
2017-01-01
Full Text Available For the fractal model of the Universe the relations of cosmological parameters and the Higgs field are established. Estimates of the critical density, the expansion and speed-up parameters of the Universe (the Hubble constant and the cosmological redshift; temperature and anisotropy of the cosmic microwave background radiation were performed.
Anisotropic Bianchi-I universe with phantom field and cosmological ...
Indian Academy of Sciences (India)
We study an anisotropic Bianchi-I universe in the presence of a phantom field and a cosmological constant. Cosmological solutions are obtained when the kinetic energy of the phantom field is of the order of anisotropy and dominates over the potential energy of the field. The anisotropy of the universe decreases and the ...
Primordial nucleosynthesis: A cosmological point of view
International Nuclear Information System (INIS)
Mathews, G. J.; Kajino, T.; Yamazaki, D.; Kusakabe, M.; Cheoun, M.-K.
2014-01-01
Primordial nucleosynthesis remains as one of the pillars of modern cosmology. It is the test-ing ground upon which all cosmological models must ultimately rest. It is our only probe of the universe during the first few minutes of cosmic expansion and in particular during the important radiation-dominated epoch. These lectures review the basic equations of space-time, cosmology, and big bang nucleosynthesis. We will then review the current state of observational constraints on primordial abundances along with the key nuclear reactions and their uncertainties. We summarize which nuclear measure-ments are most crucial during the big bang. We also review various cosmological models and their constraints. In particular, we summarize the constraints that big bang nucleosynthesis places upon the possible time variation of fundamental constants, along with constraints on the nature and origin of dark matter and dark energy, long-lived supersymmetric particles, gravity waves, and the primordial magnetic field
Fluid observers and tilting cosmology
International Nuclear Information System (INIS)
Coley, A A; Hervik, S; Lim, W C
2006-01-01
We study perfect fluid cosmological models with a constant equation of state parameter γ in which there are two naturally defined timelike congruences, a geometrically defined geodesic congruence and a non-geodesic fluid congruence. We establish an appropriate set of boost formulae relating the physical variables, and consequently the observed quantities, in the two frames. We study expanding spatially homogeneous tilted perfect fluid models, with an emphasis on future evolution with extreme tilt. We show that for ultra-radiative equations of state (i.e. γ > 4/3), generically the tilt becomes extreme at late times and the fluid observers will reach infinite expansion within a finite proper time and experience a singularity similar to that of the big rip. In addition, we show that for sub-radiative equations of state (i.e. γ < 4/3), the tilt can become extreme at late times and give rise to an effective quintessential equation of state. To establish the connection with phantom cosmology and quintessence, we calculate the effective equation of state in the models under consideration and we determine the future asymptotic behaviour of the tilting models in the fluid frame variables using the boost formulae. We also discuss spatially inhomogeneous models and tilting spatially homogeneous models with a cosmological constant
International Nuclear Information System (INIS)
Lukash, V.N.
1983-01-01
Information discussed at the 18th General Assembly of the International Astronomical Union and Symposium on ''Early Universe Evolution and Its Modern Structure'' on the problems of relic radiation, Hubble expansion, spatial structure and physics of the early Universe is presented. The spectrum of relic radioemission differs but slightly from the equilibrium one in the maximum range. In G. Smith (USA) opinion such difference may be caused by any radiosources radiating in the same wave range. The absence of unanimous opinion of astronomers on Hubble constant value is pointed out. G.Tam-man (Switzerland) estimates the Hubble constant 50+-7 km/s. J. Voculer (USA) gives a twice greater value. Such divergence is ca sed by various methods of determining distances up to remote galaxies and galaxy clusters. Many reports deal with large-scale Universe structure. For the first time considered are the processes which occurred in the epoch at times about 10 -35 c from the beginning of the Universe expansion. Such possibility is presented by the theory of ''great unification'' which permits to explain some fundamental properties of the Universe: spatial uniformity of isotropic expansion, existence of small primary density perturbations
Chamcham, Khalil; Silk, Joseph; Barrow, John D.; Saunders, Simon
2017-04-01
Part I. Issues in the Philosophy of Cosmology: 1. Cosmology, cosmologia and the testing of cosmological theories George F. R. Ellis; 2. Black holes, cosmology and the passage of time: three problems at the limits of science Bernard Carr; 3. Moving boundaries? - comments on the relationship between philosophy and cosmology Claus Beisbart; 4. On the question why there exists something rather than nothing Roderich Tumulka; Part II. Structures in the Universe and the Structure of Modern Cosmology: 5. Some generalities about generality John D. Barrow; 6. Emergent structures of effective field theories Jean-Philippe Uzan; 7. Cosmological structure formation Joel R. Primack; 8. Formation of galaxies Joseph Silk; Part III. Foundations of Cosmology: Gravity and the Quantum: 9. The observer strikes back James Hartle and Thomas Hertog; 10. Testing inflation Chris Smeenk; 11. Why Boltzmann brains do not fluctuate into existence from the de Sitter vacuum Kimberly K. Boddy, Sean M. Carroll and Jason Pollack; 12. Holographic inflation revised Tom Banks; 13. Progress and gravity: overcoming divisions between general relativity and particle physics and between physics and HPS J. Brian Pitts; Part IV. Quantum Foundations and Quantum Gravity: 14. Is time's arrow perspectival? Carlo Rovelli; 15. Relational quantum cosmology Francesca Vidotto; 16. Cosmological ontology and epistemology Don N. Page; 17. Quantum origin of cosmological structure and dynamical reduction theories Daniel Sudarsky; 18. Towards a novel approach to semi-classical gravity Ward Struyve; Part V. Methodological and Philosophical Issues: 19. Limits of time in cosmology Svend E. Rugh and Henrik Zinkernagel; 20. Self-locating priors and cosmological measures Cian Dorr and Frank Arntzenius; 21. On probability and cosmology: inference beyond data? Martin Sahlén; 22. Testing the multiverse: Bayes, fine-tuning and typicality Luke A. Barnes; 23. A new perspective on Einstein's philosophy of cosmology Cormac O
Axions in astrophysics and cosmology
International Nuclear Information System (INIS)
Sikivie, P.
1984-07-01
Axion models often have a spontaneously broken exact discrete symmetry. In that case, they have discretely degenerate vacua and hence domain walls. The properties of the domain walls, the cosmological catastrophe they produce and the ways in which this catastrophe may be avoided are explained. Cosmology and astrophysics provide arguments that imply the axion decay constant should lie in the range 10 8 GeV less than or equal to f/sub a/ less than or equal to 10 12 GeV. Reasons are given why axions are an excellent candidate to constitute the dark matter of galactic halos. Using the coupling of the axions to the electromagnetic field, detectors are described to look for axions floating about in the halo of our galaxy and for axions emitted by the sun
Attractor behaviour in ELKO cosmology
International Nuclear Information System (INIS)
Basak, Abhishek; Bhatt, Jitesh R.; Shankaranarayanan, S.; Varma, K.V. Prasantha
2013-01-01
We study the dynamics of ELKO in the context of accelerated phase of our universe. To avoid the fine tuning problem associated with the initial conditions, it is required that the dynamical equations lead to an early-time attractor. In the earlier works, it was shown that the dynamical equations containing ELKO fields do not lead to early-time stable fixed points. In this work, using redefinition of variables, we show that ELKO cosmology admits early-time stable fixed points. More interestingly, we show that ELKO cosmology admit two sets of attractor points corresponding to slow and fast-roll inflation. The fast-roll inflation attractor point is unique for ELKO as it is independent of the form of the potential. We also discuss the plausible choice of interaction terms in these two sets of attractor points and constraints on the coupling constant
Variable-speed-of-light cosmology and second law of thermodynamics
International Nuclear Information System (INIS)
Youm, Donam
2002-01-01
We examine whether cosmologies with a varying speed of light (VSL) are compatible with the second law of thermodynamics. We find that the VSL cosmology with a varying fundamental constant is severely constrained by the second law of thermodynamics, whereas the bimetric cosmological models are less constrained
Variable-speed-of-light cosmology and second law of thermodynamics
International Nuclear Information System (INIS)
Youm, Donam
2002-03-01
We examine whether the cosmologies with varying speed of light (VSL) are compatible with the second law of thermodynamics. We find that the VSL cosmology with varying fundamental constant is severely constrained by the second law of thermodynamics, whereas the bimetric cosmological models are less constrained. (author)
Philosophical Roots of Cosmology
Ivanovic, M.
2008-10-01
We shall consider the philosophical roots of cosmology in the earlier Greek philosophy. Our goal is to answer the question: Are earlier Greek theories of pure philosophical-mythological character, as often philosophers cited it, or they have scientific character. On the bases of methodological criteria, we shall contend that the latter is the case. In order to answer the question about contemporary situation of the relation philosophy-cosmology, we shall consider the next question: Is contemporary cosmology completely independent of philosophical conjectures? The answer demands consideration of methodological character about scientific status of contemporary cosmology. We also consider some aspects of the relation contemporary philosophy-cosmology.
Holographic cosmology and its relevant degrees of freedom
International Nuclear Information System (INIS)
Dawid, Richard
1999-01-01
We reconsider the options for cosmological holography. We suggest that a global and time-symmetric version of the Fischler-Susskind bound is the most natural generalization of the holographic bound encountered in AdS and De Sitter space. A consistent discussion of cosmological holography seems to imply an understanding of the notion of ''number of degrees of freedom'' that deviates from its simple definition as the entropy of the current state. The introduction of a more adequate notion of degree of freedom makes the suggested variation of the Fischler-Susskind bound look like a stringent and viable bound in all 4-dimensional cosmologies without a cosmological constant
Directory of Open Access Journals (Sweden)
Neal Jackson
2015-09-01
Full Text Available I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H_0 values of around 72–74 km s^–1 Mpc^–1, with typical errors of 2–3 km s^–1 Mpc^–1. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67–68 km s^–1 Mpc^–1 and typical errors of 1–2 km s^–1 Mpc^–1. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.
Bianchi type II brane-world cosmologies (U≥0)
International Nuclear Information System (INIS)
Hoogen, R.J. van den; Ibanez, J.
2003-01-01
The asymptotic properties of the Bianchi type II cosmological model in the brane-world scenario are investigated. The matter content is assumed to be a combination of a perfect fluid and a minimally coupled scalar field that is restricted to the brane. The isotropic brane-world solution is determined to represent the initial singularity in all brane-world cosmologies. Additionally, it is shown that it is the kinetic energy of the scalar field which dominates the initial dynamics in these brane-world cosmologies. It is important to note that the dynamics of these brane-world cosmologies is not necessarily asymptotic to general relativistic cosmologies to the future in the case of a zero four-dimensional cosmological constant
Cosmological measure with volume averaging and the vacuum energy problem
Astashenok, Artyom V.; del Popolo, Antonino
2012-04-01
In this paper, we give a possible solution to the cosmological constant problem. It is shown that the traditional approach, based on volume weighting of probabilities, leads to an incoherent conclusion: the probability that a randomly chosen observer measures Λ = 0 is exactly equal to 1. Using an alternative, volume averaging measure, instead of volume weighting can explain why the cosmological constant is non-zero.
Cosmological measure with volume averaging and the vacuum energy problem
International Nuclear Information System (INIS)
Astashenok, Artyom V; Del Popolo, Antonino
2012-01-01
In this paper, we give a possible solution to the cosmological constant problem. It is shown that the traditional approach, based on volume weighting of probabilities, leads to an incoherent conclusion: the probability that a randomly chosen observer measures Λ = 0 is exactly equal to 1. Using an alternative, volume averaging measure, instead of volume weighting can explain why the cosmological constant is non-zero. (paper)
On the gravitational constant change
International Nuclear Information System (INIS)
Milyukov, V.K.
1986-01-01
The nowadays viewpoint on the problem of G gravitational constant invariability is presented in brief. The methods and results of checking of the G dependence on the nature of substance (checking of the equivalence principle), G dependepce on distance (checking of Newton gravity law) and time (cosmological experiments) are presented. It is pointed out that all performed experiments don't give any reasons to have doubts in G constancy in space and time and G independence on the nature of the substance
Finite canonical measure for nonsingular cosmologies
International Nuclear Information System (INIS)
Page, Don N.
2011-01-01
The total canonical (Liouville-Henneaux-Gibbons-Hawking-Stewart) measure is finite for completely nonsingular Friedmann-Lemaître-Robertson-Walker classical universes with a minimally coupled massive scalar field and a positive cosmological constant. For a cosmological constant very small in units of the square of the scalar field mass, most of the measure is for nearly de Sitter solutions with no inflation at a much more rapid rate. However, if one restricts to solutions in which the scalar field energy density is ever more than twice the equivalent energy density of the cosmological constant, then the number of e-folds of rapid inflation must be large, and the fraction of the measure is low in which the spatial curvature is comparable to the cosmological constant at the time when it is comparable to the energy density of the scalar field. The measure for such classical FLRWΛ-φ models with both a big bang and a big crunch is also finite. Only the solutions with a big bang that expand forever, or the time-reversed ones that contract from infinity to a big crunch, have infinite measure
Cosmological models in the generalized Einstein action
International Nuclear Information System (INIS)
Arbab, A.I.
2007-12-01
We have studied the evolution of the Universe in the generalized Einstein action of the form R + β R 2 , where R is the scalar curvature and β = const. We have found exact cosmological solutions that predict the present cosmic acceleration. These models predict an inflationary de-Sitter era occurring in the early Universe. The cosmological constant (Λ) is found to decay with the Hubble constant (H) as, Λ ∝ H 4 . In this scenario the cosmological constant varies quadratically with the energy density (ρ), i.e., Λ ∝ ρ 2 . Such a variation is found to describe a two-component cosmic fluid in the Universe. One of the components accelerated the Universe in the early era, and the other in the present era. The scale factor of the Universe varies as a ∼ t n = 1/2 in the radiation era. The cosmological constant vanishes when n = 4/3 and n =1/2. We have found that the inclusion of the term R 2 mimics a cosmic matter that could substitute the ordinary matter. (author)
Astrophysics, cosmology and high energy physics
International Nuclear Information System (INIS)
Rees, M.J.
1983-01-01
A brief survey is given of some topics in astrophysics and cosmology, with special emphasis on the inter-relation between the properties of the early Universe and recent ideas in high energy physics, and on simple order-of-magnitude arguments showing how the scales and dimensions of cosmic phenomena are related to basic physical constants. (orig.)
Brane world cosmologies with varying speed of light
International Nuclear Information System (INIS)
Youm, Donam
2001-02-01
We study cosmologies in the Randall-Sundrum models, incorporating the possibility of time-varying speed of light and Newton's constant. The cosmologies with varying speed of light (VSL) were proposed by Moffat and by Albrecht and Magueijo as an alternative to inflation for solving the cosmological problems. We consider the case in which the speed of light varies with time after the radion or the scale of the extra dimension has been stabilized. We elaborate on the conditions under which the flatness problem and the cosmological constant problem can be resolved. Particularly, the VSL cosmologies may provide a possible mechanism for bringing the quantum corrections to the fine-tuned brane tensions after the SUSY breaking under control. (author)
Cosmological acceleration. Dark energy or modified gravity?
International Nuclear Information System (INIS)
Bludman, S.
2006-05-01
We review the evidence for recently accelerating cosmological expansion or ''dark energy'', either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any constituent Dark Energy. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of ''dark energy'' cannot be derived from the homogeneous expansion history alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, but also allow nearly static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish between static and ''dynamic'' ''dark energy''. But, cosmologically distinguishing the Concordance Model ΛCDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of Einstein gravity may also be detected in refined observations in the solar system (Lue and Starkman) or at the intermediate Vainstein scale (Iorio) in isolated galaxy clusters. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence (''Why so small now?'') without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity. (Orig.)
Cosmological acceleration. Dark energy or modified gravity?
Energy Technology Data Exchange (ETDEWEB)
Bludman, S
2006-05-15
We review the evidence for recently accelerating cosmological expansion or ''dark energy'', either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any constituent Dark Energy. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of ''dark energy'' cannot be derived from the homogeneous expansion history alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, but also allow nearly static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish between static and ''dynamic'' ''dark energy''. But, cosmologically distinguishing the Concordance Model {lambda}CDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of Einstein gravity may also be detected in refined observations in the solar system (Lue and Starkman) or at the intermediate Vainstein scale (Iorio) in isolated galaxy clusters. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence (''Why so small now?'') without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity. (Orig.)
Dark energy cosmologies for codimension-two branes
International Nuclear Information System (INIS)
Schwindt, Jan-Markus; Wetterich, Christof
2005-01-01
A six-dimensional universe with two branes in the 'football-shaped' geometry leads to an almost realistic cosmology. We describe a family of exact solutions with time-dependent characteristic size of internal space. After a short inflationary period the late cosmology is either of quintessence type or turns to a radiation-dominated Friedmann universe where the cosmological constant appears as a free integration constant of the solution. The radiation-dominated universe with relativistic fermions is analyzed in detail, including its dimensional reduction
Extending cosmology: the metric approach
Mendoza, S.
2012-01-01
Comment: 2012, Extending Cosmology: The Metric Approach, Open Questions in Cosmology; Review article for an Intech "Open questions in cosmology" book chapter (19 pages, 3 figures). Available from: http://www.intechopen.com/books/open-questions-in-cosmology/extending-cosmology-the-metric-approach
International Nuclear Information System (INIS)
Foos, J.
1999-01-01
This paper is written in two tables. The first one describes the different particles (bosons and fermions). The second one gives the isotopes nuclear constants of the different elements, for Z = 1 to 56. (A.L.B.)
International Nuclear Information System (INIS)
Foos, J.
2000-01-01
This paper is written in two tables. The first one describes the different particles (bosons and fermions). The second one gives the isotopes nuclear constants of the different elements, for Z = 56 to 68. (A.L.B.)
International Nuclear Information System (INIS)
Foos, J.
1998-01-01
This paper is made of two tables. The first table describes the different particles (bosons and fermions) while the second one gives the nuclear constants of isotopes from the different elements with Z = 1 to 25. (J.S.)
International Nuclear Information System (INIS)
Foos, J.
1999-01-01
This paper is written in two tables. The first one describes the different particles (bosons and fermions). The second one gives the isotopes nuclear constants of the different elements, for Z = 56 to 68. (A.L.B.)
Averaging Robertson-Walker cosmologies
International Nuclear Information System (INIS)
Brown, Iain A.; Robbers, Georg; Behrend, Juliane
2009-01-01
The cosmological backreaction arises when one directly averages the Einstein equations to recover an effective Robertson-Walker cosmology, rather than assuming a background a priori. While usually discussed in the context of dark energy, strictly speaking any cosmological model should be recovered from such a procedure. We apply the scalar spatial averaging formalism for the first time to linear Robertson-Walker universes containing matter, radiation and dark energy. The formalism employed is general and incorporates systems of multiple fluids with ease, allowing us to consider quantitatively the universe from deep radiation domination up to the present day in a natural, unified manner. Employing modified Boltzmann codes we evaluate numerically the discrepancies between the assumed and the averaged behaviour arising from the quadratic terms, finding the largest deviations for an Einstein-de Sitter universe, increasing rapidly with Hubble rate to a 0.01% effect for h = 0.701. For the ΛCDM concordance model, the backreaction is of the order of Ω eff 0 ≈ 4 × 10 −6 , with those for dark energy models being within a factor of two or three. The impacts at recombination are of the order of 10 −8 and those in deep radiation domination asymptote to a constant value. While the effective equations of state of the backreactions in Einstein-de Sitter, concordance and quintessence models are generally dust-like, a backreaction with an equation of state w eff < −1/3 can be found for strongly phantom models
Cosmological aspects of spontaneous baryogenesis
Energy Technology Data Exchange (ETDEWEB)
Simone, Andrea De; Kobayashi, Takeshi [SISSA,Via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste,Via Bonomea 265, 34136 Trieste (Italy)
2016-08-24
We investigate cosmological aspects of spontaneous baryogenesis driven by a scalar field, and present general constraints that are independent of the particle physics model. The relevant constraints are obtained by studying the backreaction of the produced baryons on the scalar field, the cosmological expansion history after baryogenesis, and the baryon isocurvature perturbations. We show that cosmological considerations alone provide powerful constraints, especially for the minimal scenario with a quadratic scalar potential. Intriguingly, we find that for a given inflation scale, the other parameters including the reheat temperature, decoupling temperature of the baryon violating interactions, and the mass and decay constant of the scalar are restricted to lie within ranges of at most a few orders of magnitude. We also discuss possible extensions to the minimal setup, and propose two ideas for evading constraints on isocurvature perturbations: one is to suppress the baryon isocurvature with nonquadratic scalar potentials, another is to compensate the baryon isocurvature with cold dark matter isocurvature by making the scalar survive until the present.
Directory of Open Access Journals (Sweden)
Balbi Amedeo
2013-09-01
Full Text Available Time has always played a crucial role in cosmology. I review some of the aspects of the present cosmological model which are more directly related to time, such as: the definition of a cosmic time; the existence of typical timescales and epochs in an expanding universe; the problem of the initial singularity and the origin of time; the cosmological arrow of time.
Inflation and quantum cosmology
International Nuclear Information System (INIS)
Linde, A.
1991-01-01
In this article a review of the present status of inflationary cosmology is given. We start with a discussion of the simplest version of the chaotic inflation scenario. Then we discuss some recent develoments in the inflationary cosmology, including the theory of a self-reproducing inflationary universe (eternal chaotic inflation). We do it with the help of stochastic approach to inflation. The results obtained within this approach are compared with the results obtained in the context of Euclidean quantum cosmology. (WL)
Roberts, Alex
2016-08-01
Recently, a new framework for describing the multiverse has been proposed which is based on the principles of quantum mechanics. The framework allows for well-defined predictions, both regarding global properties of the universe and outcomes of particular experiments, according to a single probability formula. This provides complete unification of the eternally inflating multiverse and many worlds in quantum mechanics. We elucidate how cosmological parameters can be calculated in this framework, and study the probability distribution for the value of the cosmological constant. We consider both positive and negative values, and find that the observed value is consistent with the calculated distribution at an order of magnitude level. In particular, in contrast to the case of earlier measure proposals, our framework prefers a positive cosmological constant over a negative one. These results depend only moderately on how we model galaxy formation and life evolution therein. We explore supersymmetric theories in which the Higgs mass is boosted by the non-decoupling D-terms of an extended U(1) X gauge symmetry, defined here to be a general linear combination of hypercharge, baryon number, and lepton number. Crucially, the gauge coupling, gX, is bounded from below to accommodate the Higgs mass, while the quarks and leptons are required by gauge invariance to carry non-zero charge under U(1)X. This induces an irreducible rate, sigmaBR, for pp → X → ll relevant to existing and future resonance searches, and gives rise to higher dimension operators that are stringently constrained by precision electroweak measurements. Combined, these bounds define a maximally allowed region in the space of observables, (sigmaBR, mX), outside of which is excluded by naturalness and experimental limits. If natural supersymmetry utilizes non-decoupling D-terms, then the associated X boson can only be observed within this window, providing a model independent 'litmus test' for this broad
International Nuclear Information System (INIS)
Feng, Jonathan L.
2005-01-01
Cosmology now provides unambiguous, quantitative evidence for new particle physics. I discuss the implications of cosmology for supersymmetry and vice versa. Topics include: motivations for supersymmetry; supersymmetry breaking; dark energy; freeze out and WIMPs; neutralino dark matter; cosmologically preferred regions of minimal supergravity; direct and indirect detection of neutralinos; the DAMA and HEAT signals; inflation and reheating; gravitino dark matter; Big Bang nucleosynthesis; and the cosmic microwave background. I conclude with speculations about the prospects for a microscopic description of the dark universe, stressing the necessity of diverse experiments on both sides of the particle physics/cosmology interface
International Nuclear Information System (INIS)
Sasaki, Misao
1983-01-01
We review the recent status of the inflationary cosmology. After exhibiting the essence of difficulties associated with the horizon, flatness and baryon number problems in the standard big-bang cosmology, we discuss that the inflationary universe scenario is one of the most plausible solutions to these fundamental cosmological problems. Since there are two qualitatively different versions of the inflationary universe scenario, we review each of them separately and discuss merits and demerits of each version. The Hawking radiation in de Sitter space is also reviewed since it may play an essential role in the inflationary cosmology. (author)
Roos, Matts
2003-01-01
The Third Edition of the hugely successful Introduction to Cosmology provides a concise, authoritative study of cosmology at an introductory level. Starting from elementary principles and the history of cosmology, the text carefully guides the student on to curved spacetimes, general relativity, black holes, cosmological models, particles and symmetries, and phase transitions. Extensively revised, this latest edition includes broader and updated coverage of distance measures, gravitational lensing and waves, dark energy and quintessence, the thermal history of the Universe, inflation,
Axions in inflationary cosmology
International Nuclear Information System (INIS)
Linde, A.
1991-01-01
The problem of the cosmological constraints on the axion mass is re-examined. It is argued that in the context of inflationary cosmology the constraint m a > or approx.10 -5 eV can be avoided even when the axion perturbations produced during inflation are taken into account. It is shown also that in most axion models the effective parameter f a rapidly changes during inflation. This modifies some earlier statements concerning isothermal perturbations in the axion cosmology. A hybrid inflation scenario is proposed which combines some advantages of chaotic inflation with specific features of new and/or extended inflation. Its implications for the axion cosmology are discussed. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
Energy Technology Data Exchange (ETDEWEB)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
Cosmology with exponential potentials
International Nuclear Information System (INIS)
Kehagias, Alex; Kofinas, Georgios
2004-01-01
We examine in the context of general relativity the dynamics of a spatially flat Robertson-Walker universe filled with a classical minimally coupled scalar field φ of exponential potential V(φ) ∼ exp(-μφ) plus pressureless baryonic matter. This system is reduced to a first-order ordinary differential equation for Ω φ (w φ ) or q(w φ ), providing direct evidence on the acceleration/deceleration properties of the system. As a consequence, for positive potentials, passage into acceleration not at late times is generically a feature of the system for any value of μ, even when the late-times attractors are decelerating. Furthermore, the structure formation bound, together with the constraints Ω m0 ∼ 0.25 - 0.3, -1 ≤ w φ0 ≤ -0.6, provides, independently of initial conditions and other parameters, the necessary condition 0 N , while the less conservative constraint -1 ≤ w φ ≤ -0.93 gives 0 N . Special solutions are found to possess intervals of acceleration. For the almost cosmological constant case w φ ∼ -1, the general relation Ω φ (w φ ) is obtained. The generic (nonlinearized) late-times solution of the system in the plane (w φ , Ω φ ) or (w φ , q) is also derived
International Nuclear Information System (INIS)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the Ω = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ''cold'' and ''hot'' non-baryonic candidates is shown to depend on the assumed ''seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed
International Nuclear Information System (INIS)
Buchbinder, Evgeny I.; Khoury, Justin; Ovrut, Burt A.
2007-01-01
In this paper, we present a new scenario of the early universe that contains a pre-big bang ekpyrotic phase. By combining this with a ghost condensate, the theory explicitly violates the null energy condition without developing any ghostlike instabilities. Thus the contracting universe goes through a nonsingular bounce and evolves smoothly into the expanding post-big bang phase. The curvature perturbation acquires a scale-invariant spectrum well before the bounce in this scenario. It is sourced by the scale-invariant entropy perturbation engendered by two ekpyrotic scalar fields, a mechanism recently proposed by Lehners et al. Since the background geometry is nonsingular at all times, the curvature perturbation remains nearly constant on superhorizon scales. It emerges from the bounce unscathed and imprints a scale-invariant spectrum of density fluctuations in the matter-radiation fluid at the onset of the hot big bang phase. The ekpyrotic potential can be chosen so that the spectrum has a red tilt, in accordance with the recent data from WMAP. As in the original ekpyrotic scenario, the model predicts a negligible gravity wave signal on all observable scales. As such ''new ekpyrotic cosmology'' provides a consistent and distinguishable alternative to inflation to account for the origin of the seeds of large-scale structure
On the effect of renormalization group improvement on the cosmological power spectrum
Energy Technology Data Exchange (ETDEWEB)
Moti, R. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Shojai, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of)
2018-01-15
Asymptotically safe quantum gravity predicts running gravitational and cosmological constants, while it remains a meaningful quantum field theory because of the existence of a finite number of non-Gaussian ultraviolet fixed points. We have investigated the effect of such running couplings on the cosmological perturbations. We have obtained the improved Mukhanov-Sassaki equation and solved it for two models. The effect of such running of the coupling constants on the cosmological power spectrum is also studied. (orig.)
Are fundamental constants really constant
International Nuclear Information System (INIS)
Norman, E.B.
1986-01-01
Reasons for suspecting that fundamental constants might change with time are reviewed. Possible consequences of such variations are examined. The present status of experimental tests of these ideas is discussed
Cosmology of a covariant Galilean field.
De Felice, Antonio; Tsujikawa, Shinji
2010-09-10
We study the cosmology of a covariant scalar field respecting a Galilean symmetry in flat space-time. We show the existence of a tracker solution that finally approaches a de Sitter fixed point responsible for cosmic acceleration today. The viable region of model parameters is clarified by deriving conditions under which ghosts and Laplacian instabilities of scalar and tensor perturbations are absent. The field equation of state exhibits a peculiar phantomlike behavior along the tracker, which allows a possibility to observationally distinguish the Galileon gravity from the cold dark matter model with a cosmological constant.
Planck 2015 results: XIII. Cosmological parameters
DEFF Research Database (Denmark)
Ade, P. A R; Aghanim, N.; Arnaud, M.
2016-01-01
is constrained to w =-1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints...... of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to â'mν
Holographic (de)confinement transitions in cosmological backgrounds
International Nuclear Information System (INIS)
Erdmenger, Johanna; Ghoroku, Kazuo; Meyer, Rene
2011-01-01
For type IIB supergravity with a running axio-dilaton, we construct bulk solutions which admit a cosmological background metric of Friedmann-Robertson-Walker type. These solutions include both a dark radiation term in the bulk as well as a four-dimensional (boundary) cosmological constant, while gravity at the boundary remains nondynamical. We holographically calculate the stress-energy tensor, showing that it consists of two contributions: The first one, generated by the dark radiation term, leads to the thermal fluid of N=4 SYM theory, while the second, the conformal anomaly, originates from the boundary cosmological constant. Conservation of the boundary stress-tensor implies that the boundary cosmological constant is time-independent, such that there is no exchange between the two stress-tensor contributions. We then study (de)confinement by evaluating the Wilson loop in these backgrounds. While the dark radiation term favors deconfinement, a negative cosmological constant drives the system into a confined phase. When both contributions are present, we find an oscillating universe with negative cosmological constant which undergoes periodic (de)confinement transitions as the scale of three-space expands and recontracts.
The importance of local measurements for cosmology
Verde, Licia; Jimenez, Raul
2013-01-01
We explore how local, cosmology-independent measurements of the Hubble constant and the age of the Universe help to provide a powerful consistency check of the currently favored cosmological model (flat LambdaCDM) and model-independent constraints on cosmology. We use cosmic microwave background (CMB) data to define the model-dependent cosmological parameters, and add local measurements to assess consistency and determine whether extensions to the model are justified. At current precision, there is no significant tension between the locally measured Hubble constant and age of the Universe (with errors of 3% and 5% respectively) and the corresponding parameters derived from the CMB. However, if errors on the local measurements could be decreased by a factor of two, one could decisively conclude if there is tension or not. We also compare the local and CMB data assuming simple extensions of the flat, $\\Lambda$CDM model (including curvature, dark energy with a constant equation of state parameter not equal to -1...
Combined cosmological tests of a bivalent tachyonic dark energy scalar field model
International Nuclear Information System (INIS)
Keresztes, Zoltán; Gergely, László Á.
2014-01-01
A recently investigated tachyonic scalar field dark energy dominated universe exhibits a bivalent future: depending on initial parameters can run either into a de Sitter exponential expansion or into a traversable future soft singularity followed by a contraction phase. We also include in the model (i) a tiny amount of radiation, (ii) baryonic matter (Ω b h 2 = 0.022161, where the Hubble constant is fixed as h = 0.706) and (iii) cold dark matter (CDM). Out of a variety of six types of evolutions arising in a more subtle classification, we identify two in which in the past the scalar field effectively degenerates into a dust (its pressure drops to an insignificantly low negative value). These are the evolutions of type IIb converging to de Sitter and type III hitting the future soft singularity. We confront these background evolutions with various cosmological tests, including the supernova type Ia Union 2.1 data, baryon acoustic oscillation distance ratios, Hubble parameter-redshift relation and the cosmic microwave background (CMB) acoustic scale. We determine a subset of the evolutions of both types which at 1σ confidence level are consistent with all of these cosmological tests. At perturbative level we derive the CMB temperature power spectrum to find the best agreement with the Planck data for Ω CDM = 0.22. The fit is as good as for the ΛCDM model at high multipoles, but the power remains slightly overestimated at low multipoles, for both types of evolutions. The rest of the CDM is effectively generated by the tachyonic field, which in this sense acts as a combined dark energy and dark matter model
Preliminary investigations on TINI based distributed instrumentation systems
International Nuclear Information System (INIS)
Bezboruah, T.; Kalita, M.
2006-04-01
A prototype web enabled distributed instrumentation system is being proposed in the Department of Electronics Science, Gauhati University, Assam, India. The distributed instrumentation system contains sensors, legacy hardware, TCP/IP protocol converter, TCP/IP network Ethernet, Database Server, Web/Application Server and Client PCs. As part of the proposed work, Tiny Internet Interface (TINI, TBM390: Dallas Semiconductor) has been deployed as TCP/IP stack, and java programming language as software tools. A feature supported by Java, that is particularly relevant to the distributed system is its applet. An applet is a java class that can be downloaded from the web server and can be run in a context application such as web browser or an applet viewer. TINI has been installed as TCP/IP stack, as it is the best suited embedded system with java programming language and it has been uniquely designed for communicating over One Wire Devices (OWD) over network. Here we will discuss the hardware and software aspects of TINI with OWD for the present system. (author)
Virginia Tech researchers find tiny bubbles a storehouse of knowledge
Trulove, Susan
2005-01-01
Fluid inclusions -- tiny bubbles of fluid or vapor trapped inside rock as it forms-- are clues to the location of ores and even petroleum; and they are time capsules that contain insights on the power of volcanos and hints of life in the universe.
An infrared divergence in the cosmological measure theory and the anthropic reasoning
International Nuclear Information System (INIS)
Yurov, A.V.; Astashenok, A.V.; Shpilevoi, A.A.; Yurov, V.A.
2011-01-01
An anthropic principle has made it possible to answer the difficult question of why the observable value of cosmological constant (Λ∝10 -47 GeV 4 ) is so disconcertingly tiny compared to the predicted value of vacuum energy density ρ SUSY ∝10 12 GeV 4 . Unfortunately, there is a darker side to this argument; being combined with the cosmic heat death scenario, it consequently leads to another absurd prediction: the probability of randomly selected observer observing Λ=0 ends up being exactly equal to 1. We shall call this controversy an infrared divergence problem. It is shown that the IRD prediction can be avoided with the help of a singular runaway measure coupled with the calculation of relative Bayesian probabilities by the means of the doomsday argument. Moreover, it is shown that while the IRD problem occurs for the prediction stage of value of Λ, it disappears at the explanatory stage when Λ has already been measured by the observer. (orig.)
Particle physics and cosmology
International Nuclear Information System (INIS)
Ellis, J.; Nanopoulos, D.
1983-01-01
The authors describe the connection between cosmology and particle physics in an introductory way. In this connection the big bang theory and unified gauge models of strong, electromagnetic, and weak interactions are considered. Furthermore cosmological nucleosynthesis is discussed in this framework, and the problem of cosmic neutrinos is considered with special regards to its rest mass. (HSI).
Cosmology and particle physics
International Nuclear Information System (INIS)
Turner, M.S.
1986-01-01
Progress in cosmology has become linked to progress in elementary particle physics. In these six lectures, the author illustrates the two-way nature of the interplay between these fields by focusing on a few selected topics. In the next section the author reviews the standard cosmology, especially concentrating on primordial nucleosynthesis and discusses how the standard cosmology has been used to place constraints on the properties of various particles. Grand Unification makes two striking predictions: (i) B non-conservation; (ii) the existence of stable, superheavy magnetic monopoles. Both have had great cosmological impact. In the following section the author discusses baryogenesis, the very attractive scenario in which the B,C,CP violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and the present baryon-to-photon ratio. Monopoles are a cosmological disaster and an astrophysicist's delight. In Section 4 discusses monopoles, cosmology, and astrophysics. In the fourth lecture the author discusses how a very early (t≤10/sup -34/ sec) phase transition associated with spontaneous symmetry breaking (SSB) has the potential to explain a handful of very fundamental cosmological facts, facts which can be accommodated by the standard cosmology, but which are not ''explained'' by it. The fifth lecture is devoted to a discussion of structure formation in the universe
van de Weygaert, Rien; van Albada, Tjeerd S.
1996-01-01
A detailed account of the ways in which a square kilometer array could further cosmological research. Observational and theoretical studies of the large scale structure and morphology of the local universe are reviewed against the potential capabilities of a new generation telescope. Cosmological
Barkana, Rennan; Tsujikawa, Shinji; Kim, Jihn E; Nagamine, Kentaro
2018-01-01
The Encyclopedia of Cosmology, in four volumes, is a major, long-lasting, seminal reference at the graduate student level, laid out by the most prominent, respected researchers in the general field of Cosmology. These volumes will be a comprehensive review of the most important concepts and current status in the field, covering both theory and observation.
Astroparticle physics and cosmology
International Nuclear Information System (INIS)
Senjanovic, G.; Smirnov, A.Yu.; Thompson, G.
2001-01-01
In this volume a wide spectrum of topics of modern astroparticle physics, such as neutrino astrophysics, dark matter of the universe, high energy cosmic rays, topological defects in cosmology, γ-ray bursts, phase transitions at high temperatures, is covered. The articles written by top level experts in the field give a comprehensive view of the state-of-the-art of modern cosmology
Energy Technology Data Exchange (ETDEWEB)
Vilenkin, Alexander, E-mail: vilenkin@cosmos.phy.tufts.ed [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)
2010-01-01
The 'new standard cosmology', based on the theory of inflation, has very impressive observational support. I review some outstanding problems of the new cosmology and the global view of the universe - the multiverse - that it suggests. I focus in particular on prospects for further observational tests of inflation and of the multiverse.
International Nuclear Information System (INIS)
Vilenkin, Alexander
2010-01-01
The n ew standard cosmology , based on the theory of inflation, has very impressive observational support. I review some outstanding problems of the new cosmology and the global view of the universe - the multiverse - that it suggests. I focus in particular on prospects for further observational tests of inflation and of the multiverse.
Astroparticle physics and cosmology
Energy Technology Data Exchange (ETDEWEB)
Senjanovic, G; Smirnov, A Yu; Thompson, G [eds.
2001-11-15
In this volume a wide spectrum of topics of modern astroparticle physics, such as neutrino astrophysics, dark matter of the universe, high energy cosmic rays, topological defects in cosmology, {gamma}-ray bursts, phase transitions at high temperatures, is covered. The articles written by top level experts in the field give a comprehensive view of the state-of-the-art of modern cosmology.
International Nuclear Information System (INIS)
Stecker, F.W.
1989-01-01
This paper discusses two aspects of antimatter and cosmology: 1. the fundamental cosmological question as to whether antimatter plays an equally important role as matter in the universe (overall baryon symmetry), and 2. cosmic-ray antimatter tests for the nature of the dark matter in the universe. (orig.)
High temperature annealing effect on structural and magnetic properties of Ti/Ni multilayers
International Nuclear Information System (INIS)
Bhatt, Pramod; Ganeshan, V.; Reddy, V.R.; Chaudhari, S.M.
2006-01-01
High temperature annealing effect on structural and magnetic properties of Ti/Ni multilayer (ML) up to 600 deg. C have been studied and reported in this paper. Ti/Ni multilayer samples having constant layer thicknesses of 50 A each are deposited on float glass and Si(1 1 1) substrates using electron-beam evaporation technique under ultra-high vacuum (UHV) conditions at room temperatures. The micro-structural parameters and their evolution with temperature for as-deposited as well as annealed multilayer samples up to 600 deg. C in a step of 100 deg. C for 1 h are determined by using X-ray diffraction (XRD) and grazing incidence X-ray reflectivity techniques. The X-ray diffraction pattern recorded at 300 deg. C annealed multilayer sample shows interesting structural transformation (from crystalline to amorphous) because of the solid-state reaction (SSR) and subsequent re-crystallization at higher temperatures of annealing, particularly at ≥400 deg. C due to the formation of TiNi 3 and Ti 2 Ni alloy phases. Sample quality and surface morphology are examined by using atomic force microscopy (AFM) technique for both as-deposited as well as annealed multilayer samples. In addition to this, a temperature dependent dc resistivity measurement is also used to study the structural transformation and subsequent alloy phase formation due to annealing treatment. The corresponding magnetization behavior of multilayer samples after each stage of annealing has been investigated by using Magneto-Optical Kerr Effect (MOKE) technique and results are interpreted in terms of observed micro-structural changes
Lesgourgues, Julien
2012-01-01
Neutrinos can play an important role in the evolution of the Universe, modifying some of the cosmological observables. In this contribution we summarize the main aspects of cosmological relic neutrinos and we describe how the precision of present cosmological data can be used to learn about neutrino properties, in particular their mass, providing complementary information to beta decay and neutrinoless double-beta decay experiments. We show how the analysis of current cosmological observations, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure, provides an upper bound on the sum of neutrino masses of order 1 eV or less, with very good perspectives from future cosmological measurements which are expected to be sensitive to neutrino masses well into the sub-eV range.
International Nuclear Information System (INIS)
Verde, L.
2011-01-01
This is the summary of two lectures that aim to give an overview of cosmology. I will not try to be toa rigorous in derivations, nor to give a full historical overview. The idea is to provide a 'taste' of cosmology and some of the interesting topics it covers. The standard cosmological model is presented and I highlight the successes of cosmology over the past decade or so. Keys to the development of the standard cosmological model are observations of the cosmic microwave background and of large-scale structure, which are introduced. Inflation and dark energy and the outlook for the future are also discussed. Slides from the lectures are available from the school web site: physicschool.web.cern.ch/PhysicSchool/CLASHEP/CLASHEP2011/. (author)
Verde, L.
2013-06-27
This is the summary of two lectures that aim to give an overview of cosmology. I will not try to be too rigorous in derivations, nor to give a full historical overview. The idea is to provide a "taste" of cosmology and some of the interesting topics it covers. The standard cosmological model is presented and I highlight the successes of cosmology over the past decade or so. Keys to the development of the standard cosmological model are observations of the cosmic microwave background and of large-scale structure, which are introduced. Inflation and dark energy and the outlook for the future are also discussed. Slides from the lectures are available from the school website: physicschool.web.cern.ch/PhysicSchool/CLASHEP/CLASHEP2011/.
International Nuclear Information System (INIS)
Gekman, O.
1982-01-01
The brief essay of the development of the main ideas of relativistic cosmology is presented. The Einstein's cosmological work about the Universe - ''Cosmological considerations in connection with the general relativity theory'' - gave the basis to all further treatments in this field. In 1922 A. Friedman's work appeared, in which the first expanding Universe model was proposed as a solution of the Einstein field equations. The model was spherically closed, but its curvature radius was a function of time. About 1955 the searches for anisotropic homogeneous solutions to Einstein field equation began. It turned out that isotropic cosmological models are unstable in general. The predominant part of them transform to anisotropic at insignificant breaking of isotropy. The discovery of isotropic background cosmic radiation in 1965, along with the Hubble low of the Universe expansion, served as the direct confirmation of cosmology based on the Einstein theory
A perturbative RS I cosmological phase transition
Energy Technology Data Exchange (ETDEWEB)
Bunk, Don [Skidmore College, Department of Physics, Saratoga Springs, NY (United States); Hubisz, Jay [Syracuse University, Department of Physics, Syracuse, NY (United States); Jain, Bithika [Korea Institute for Advanced Study, School of Physics, Seoul (Korea, Republic of)
2018-01-15
We identify a class of Randall-Sundrum type models with a successful first order cosmological phase transition during which a 5D dual of approximate conformal symmetry is spontaneously broken. Our focus is on soft-wall models that naturally realize a light radion/dilaton and suppressed dynamical contribution to the cosmological constant. We discuss phenomenology of the phase transition after developing a theoretical and numerical analysis of these models both at zero and finite temperature. We demonstrate a model with a TeV-Planck hierarchy and with a successful cosmological phase transition where the UV value of the curvature corresponds, via AdS/CFT, to an N of 20, where 5D gravity is expected to be firmly in the perturbative regime. (orig.)
Conformal symmetries of FRW accelerating cosmologies
International Nuclear Information System (INIS)
Kehagias, A.; Riotto, A.
2014-01-01
We show that any accelerating Friedmann–Robertson–Walker (FRW) cosmology with equation of state w<−1/3 (and therefore not only a de Sitter stage with w=−1) exhibits three-dimensional conformal symmetry on future constant-time hypersurfaces if the bulk theory is invariant under bulk conformal Killing vectors. We also offer an alternative derivation of this result in terms of conformal Killing vectors and show that long wavelength comoving curvature perturbations of the perturbed FRW metric are just conformal Killing motions of the FRW background. We then extend the boundary conformal symmetry to the bulk for accelerating cosmologies. Our findings indicate that one can easily generate perturbations of scalar fields which are not only scale invariant, but also fully conformally invariant on super-Hubble scales. Measuring a scale-invariant power spectrum for the cosmological perturbation does not automatically imply that the universe went through a de Sitter stage
International Nuclear Information System (INIS)
Anon.
1994-01-01
The high energies of particle collisions recreate conditions similar to those a tiny fraction of a second after the Big Bang. Clues from these collisions help reconstruct how the infant Universe was moulded. One cosmic possibility, suggested in the 1970s by Yakov Zeldovich, I. Kobzarev and Lev Okun in Russia, and by Tom Kibble of London's Imperial College, is that the initial phase transition in the proto-Universe could have contained defects - tiny regions of space trapped in the 'old' high energy phase
A curious explanation of some cosmological phenomena
International Nuclear Information System (INIS)
Vishwakarma, Ram Gopal
2013-01-01
Although observational cosmology has shown tremendous growth over the last decade, deep mysteries continue to haunt our theoretical understanding of the ingredients of the concordance cosmological model, which are mainly ‘dark’. More than 95% of the content of the energy–stress tensor has to be in the form of the inflaton field, dark matter and dark energy, which do not have any non-gravitational or laboratory evidence and remain unidentified. Moreover, the dark energy poses a serious confrontation between fundamental physics and cosmology. This makes a strong case to discover alternative theories that do not require the dark sectors of the standard approach to explain the observations. In the present situation, it would be important to gain insight about the requirements of the ‘would-be’ final theory from all possible means. In this context, this paper highlights some, hitherto unnoticed, interesting coincidences that may prove useful to develop insight about the ‘holy grail’ of gravitation. It appears that the requirement of the speculative dark sectors by the energy–stress tensor is indicative of a possible way out of the present crisis appearing in the standard cosmology, in terms of a theory wherein the energy–stress tensor does not play a direct role in the dynamics. It is shown that various cosmological observations can be explained satisfactorily in the framework of one such theory—the Milne model, without requiring the dark sectors of the standard approach. Moreover, the model evades the horizon, flatness and the cosmological constant problems afflicting the standard cosmology. Although Milne's theory is an incomplete, phenomenological theory, and cannot be the final theory of gravitation, nevertheless, it would be worthwhile to study these coincidences, which may help us develop insight about the would-be final theory. (paper)
A curious explanation of some cosmological phenomena
Gopal Vishwakarma, Ram
2013-05-01
Although observational cosmology has shown tremendous growth over the last decade, deep mysteries continue to haunt our theoretical understanding of the ingredients of the concordance cosmological model, which are mainly ‘dark’. More than 95% of the content of the energy-stress tensor has to be in the form of the inflaton field, dark matter and dark energy, which do not have any non-gravitational or laboratory evidence and remain unidentified. Moreover, the dark energy poses a serious confrontation between fundamental physics and cosmology. This makes a strong case to discover alternative theories that do not require the dark sectors of the standard approach to explain the observations. In the present situation, it would be important to gain insight about the requirements of the ‘would-be’ final theory from all possible means. In this context, this paper highlights some, hitherto unnoticed, interesting coincidences that may prove useful to develop insight about the ‘holy grail’ of gravitation. It appears that the requirement of the speculative dark sectors by the energy-stress tensor is indicative of a possible way out of the present crisis appearing in the standard cosmology, in terms of a theory wherein the energy-stress tensor does not play a direct role in the dynamics. It is shown that various cosmological observations can be explained satisfactorily in the framework of one such theory—the Milne model, without requiring the dark sectors of the standard approach. Moreover, the model evades the horizon, flatness and the cosmological constant problems afflicting the standard cosmology. Although Milne's theory is an incomplete, phenomenological theory, and cannot be the final theory of gravitation, nevertheless, it would be worthwhile to study these coincidences, which may help us develop insight about the would-be final theory.
Is there evidence for additional neutrino species from cosmology?
Feeney, Stephen M.; Verde, Licia
2013-01-01
It has been suggested that recent cosmological and flavor-oscillation data favor the existence of additional neutrino species beyond the three predicted by the Standard Model of particle physics. We apply Bayesian model selection to determine whether there is indeed any evidence from current cosmological datasets for the standard cosmological model to be extended to include additional neutrino flavors. The datasets employed include cosmic microwave background temperature, polarization and lensing power spectra, and measurements of the baryon acoustic oscillation scale and the Hubble constant. We also consider other extensions to the standard neutrino model, such as massive neutrinos, and possible degeneracies with other cosmological parameters. The Bayesian evidence indicates that current cosmological data do not require any non-standard neutrino properties.
International Nuclear Information System (INIS)
Kehagias, A.; Riotto, A.
2016-01-01
Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.
Energy Technology Data Exchange (ETDEWEB)
Kehagias, A. [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Riotto, A. [Department of Theoretical Physics,24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland); Center for Astroparticle Physics (CAP),24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)
2016-05-25
Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.
Cosmological evolution as squeezing: a toy model for group field cosmology
Adjei, Eugene; Gielen, Steffen; Wieland, Wolfgang
2018-05-01
We present a simple model of quantum cosmology based on the group field theory (GFT) approach to quantum gravity. The model is formulated on a subspace of the GFT Fock space for the quanta of geometry, with a fixed volume per quantum. In this Hilbert space, cosmological expansion corresponds to the generation of new quanta. Our main insight is that the evolution of a flat Friedmann–Lemaître–Robertson–Walker universe with a massless scalar field can be described on this Hilbert space as squeezing, familiar from quantum optics. As in GFT cosmology, we find that the three-volume satisfies an effective Friedmann equation similar to the one of loop quantum cosmology, connecting the classical contracting and expanding solutions by a quantum bounce. The only free parameter in the model is identified with Newton’s constant. We also comment on the possible topological interpretation of our squeezed states. This paper can serve as an introduction into the main ideas of GFT cosmology without requiring the full GFT formalism; our results can also motivate new developments in GFT and its cosmological application.
Neutrino properties from cosmology
DEFF Research Database (Denmark)
Hannestad, S.
2013-01-01
In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such as their decoupling history and possible non......-standard interactions, can also be probed using observations of cosmic structure. Here, I review the current status of cosmological bounds on neutrino properties and discuss the potential of future observations, for example by the recently approved EUCLID mission, to precisely measure neutrino properties....
Cosmology and particle physics
International Nuclear Information System (INIS)
Barrow, J.D.
1982-01-01
A brief overview is given of recent work that integrates cosmology and particle physics. The observational data regarding the abundance of matter and radiation in the Universe is described. The manner in which the cosmological survival density of stable massive particles can be calculated is discussed along with the process of cosmological nucleosynthesis. Several applications of these general arguments are given with reference to the survival density of nucleons, neutrinos and unconfined fractionally charge particles. The use of nucleosynthesis to limit the number of lepton generations is described together with the implications of a small neutrino mass for the origin of galaxies and clusters. (Auth.)
Cosmology and particle physics
Energy Technology Data Exchange (ETDEWEB)
Steigman, G [California Univ., Santa Barbara (USA). Inst. for Theoretical Physics; Bartol Research Foundation, Newark, Delaware (USA))
1982-01-29
The cosmic connections between physics on the very largest and very smallest scales are reviewed with an emphasis on the symbiotic relation between elementary particle physics and cosmology. After a review of the early Universe as a cosmic accelerator, various cosmological and astrophysical constraints on models of particle physics are outlined. To illustrate this approach to particle physics via cosmology, reference is made to several areas of current research: baryon non-conservation and baryon asymmetry; free quarks, heavy hadrons and other exotic relics; primordial nucleosynthesis and neutrino masses.
Neutrino properties from cosmology
CERN. Geneva
2013-01-01
Future, massive large-scale structure survey have been presented and approved.On the theory side, a significant effort has bene devoted to achieve better modeling of small scale clustering that is of cosmological non-linearities. As a result it has become clear that forthcoming cosmological data have enough statitsical power to detect the effect of non-zero neutrino mass (even at the lower mass scale limit imposed by oscillations) and to constrain the absolute neutrino mass scale.Cosmological data can also constrain the numb...
The Relation between Cosmological Redshift and Scale Factor for Photons
Energy Technology Data Exchange (ETDEWEB)
Tian, Shuxun, E-mail: tshuxun@mail.bnu.edu.cn [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Department of Physics, Wuhan University, Wuhan 430072 (China)
2017-09-10
The cosmological constant problem has become one of the most important ones in modern cosmology. In this paper, we try to construct a model that can avoid the cosmological constant problem and have the potential to explain the apparent late-time accelerating expansion of the universe in both luminosity distance and angular diameter distance measurement channels. In our model, the core is to modify the relation between cosmological redshift and scale factor for photons. We point out three ways to test our hypothesis: the supernova time dilation; the gravitational waves and its electromagnetic counterparts emitted by the binary neutron star systems; and the Sandage–Loeb effect. All of this method is feasible now or in the near future.
Origins of tiny neutrino mass and large flavor mixings
International Nuclear Information System (INIS)
Haba, Naoyuki
2015-01-01
Active neutrino masses are extremely smaller than those of other quarks and leptons, and there are large flavor mixings in the lepton sector, contrary to the quark sector. They are great mysteries in the standard model, but also excellent hints of new physics beyond the standard model. Thus, questions 'What is an origin of tiny neutrino mass?' and 'What is an origin of large lepton flavor mixings?' are very important. In this paper, we overview various attempts to solve these big questions. (author)
Transformation-Induced Relaxation and Stress Recovery of TiNi Shape Memory Alloy
Directory of Open Access Journals (Sweden)
Kohei Takeda
2014-03-01
Full Text Available The transformation-induced stress relaxation and stress recovery of TiNi shape memory alloy (SMA in stress-controlled subloop loading were investigated based on the local variation in temperature and transformation band on the surface of the tape in the tension test. The results obtained are summarized as follows. (1 In the loading process, temperature increases due to the exothermic martensitic transformation (MT until the holding strain and thereafter temperature decreases while holding the strain constant, resulting in stress relaxation due to the MT; (2 In the unloading process, temperature decreases due to the endothermic reverse transformation until the holding strain and thereafter temperature increases while holding the strain constant, resulting in stress recovery due to the reverse transformation; (3 Stress varies markedly in the initial stage followed by gradual change while holding the strain constant; (4 If the stress rate is high until the holding strain in the loading and unloading processes, both stress relaxation and stress recovery are large; (5 It is important to take into account this behavior in the design of SMA elements, since the force of SMA elements varies even if the atmospheric temperature is kept constant.
Singular perturbations of empty Robertson-Walker cosmologies
International Nuclear Information System (INIS)
Newman, R.P.A.C.
1979-02-01
An investigation is presented which concerns a class of cosmological models defined by McVittie (1931): the universe is envisaged as a set of galaxies, idealised as point particles, which provide singular perturbations of Robertson-Walker cosmologies. The perturbations are considered only to first order in the gravitational coupling constant (8πG)/c 2 . Attention will only be given to such perturbations of empty Robertson-Walker cosmologies. Chapter 1 summarises the observational support for the type of model employed and for the smallness of the quantities to be used as perturbation coefficients. Chapter 2 provides the prerequisite analysis of Robertson-Walker cosmologies. Perturbations of empty Robertson-Walker cosmologies of non-vanishing cosmical constant are considered in general in Chapter 3. The structure of McVittie's singularly perturbed Robertson-Walker cosmologies are considered in detail in Chapter 4. The remaining chapters seek to investigate them further by way of their optical properties. Chapter 5 provides the necessary theory of geometric optics with particular regard to the intensity and distortion of a beam of light, and Chapter 6 applies this theory to the McVittie cosmologies. Chapter 7 sees the definition of an averaging procedure which leads to expressions for the intensity and distortion of a typical beam of light from a point source. (author)
Cosmology in time asymmetric extensions of general relativity
International Nuclear Information System (INIS)
Leon, Genly; Saridakis, Emmanuel N.
2015-01-01
We investigate the cosmological behavior in a universe governed by time asymmetric extensions of general relativity, which is a novel modified gravity based on the addition of new, time-asymmetric, terms on the Hamiltonian framework, in a way that the algebra of constraints and local physics remain unchanged. Nevertheless, at cosmological scales these new terms can have significant effects that can alter the universe evolution, both at early and late times, and the freedom in the choice of the involved modification function makes the scenario able to produce a huge class of cosmological behaviors. For basic ansatzes of modification, we perform a detailed dynamical analysis, extracting the stable late-time solutions. Amongst others, we find that the universe can result in dark-energy dominated, accelerating solutions, even in the absence of an explicit cosmological constant, in which the dark energy can be quintessence-like, phantom-like, or behave as an effective cosmological constant. Moreover, it can result to matter-domination, or to a Big Rip, or experience the sequence from matter to dark energy domination. Additionally, in the case of closed curvature, the universe may experience a cosmological bounce or turnaround, or even cyclic behavior. Finally, these scenarios can easily satisfy the observational and phenomenological requirements. Hence, time asymmetric cosmology can be a good candidate for the description of the universe
Searching for sterile neutrinos in dynamical dark energy cosmologies
Feng, Lu; Zhang, Jing-Fei; Zhang, Xin
2018-05-01
We investigate how the dark energy properties change the cosmological limits on sterile neutrino parameters by using recent cosmological observations. We consider the simplest dynamical dark energy models, the wCDM model and the holographic dark energy (HDE) model, to make an analysis. The cosmological observations used in this work include the Planck 2015 CMB temperature and polarization data, the baryon acoustic oscillation data, the type Ia supernova data, the Hubble constant direct measurement data, and the Planck CMB lensing data. We find that, m v,terile ff energy properties could significantly influence the constraint limits of sterile neutrino parameters.
Kantowski--Sachs cosmological models as big-bang models
International Nuclear Information System (INIS)
Weber, E.
1985-01-01
In the presence of a nonzero cosmological constant Λ, we classify the anisotropic cosmological models of the Kantowski--Sachs type by means of the quantities epsilon 2 0 , q 0 , summation 0 corresponding, respectively, to the relative root-mean-square deviation from isotropy, the deceleration parameter, and the density parameter of the perfect fluid at a given time t = t 0 . We obtain for Λ>0 a set of big-bang models of zero measure as well as a set of cosmological models of nonzero measure evolving toward the de Sitter solution
Generalized supersymmetric cosmological term in N=1 supergravity
Energy Technology Data Exchange (ETDEWEB)
Concha, P.K.; Rodríguez, E.K. [Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino,Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Torino,Via Pietro Giuria 1, 10125 Torino (Italy); Salgado, P. [Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile)
2015-08-04
An alternative way of introducing the supersymmetric cosmological term in a supergravity theory is presented. We show that the AdS-Lorentz superalgebra allows to construct a geometrical formulation of supergravity containing a generalized supersymmetric cosmological constant. The N=1, D=4 supergravity action is built only from the curvatures of the AdS-Lorentz superalgebra and corresponds to a MacDowell-Mansouri like action. The extension to a generalized AdS-Lorentz superalgebra is also analyzed.
Time in contemporary cosmology
International Nuclear Information System (INIS)
Mavrides, Stamatia
1980-01-01
Cosmological time is defined, as is coordinated universal time against local times of special relativity. The problems of time and matter, age of the universe, Goedel models, arrow of time, are also discussed [fr
International Nuclear Information System (INIS)
Coule, D H
2005-01-01
We contrast the initial condition requirements of various contemporary cosmological models including inflationary and bouncing cosmologies. Canonical quantization of general relativity is used, as a first approximation to full quantum gravity, to determine whether suitable initial conditions are present. Various proposals such as Hartle-Hawking's 'no boundary' or tunnelling boundary conditions are assessed on grounds of naturalness and fine tuning. Alternatively, a quiescent initial state or an initial closed timelike curve 'time machine' is considered. Possible extensions to brane models are also addressed. Further ideas about universe creation from a meta-universe are outlined. Semiclassical and time asymmetry requirements of cosmology are briefly discussed and contrasted with the black-hole final-state proposal. We compare the recent loop quantum cosmology of Bojowald and co-workers with these earlier schemes. A number of possible difficulties and limitations are outlined. (topical review)
Cosmological Probes for Supersymmetry
Directory of Open Access Journals (Sweden)
Maxim Khlopov
2015-05-01
Full Text Available The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.
International Nuclear Information System (INIS)
Turner, Michael S.
1999-01-01
For two decades the hot big-bang model as been referred to as the standard cosmology - and for good reason. For just as long cosmologists have known that there are fundamental questions that are not answered by the standard cosmology and point to a grander theory. The best candidate for that grander theory is inflation + cold dark matter. It holds that the Universe is flat, that slowly moving elementary particles left over from the earliest moments provide the cosmic infrastructure, and that the primeval density inhomogeneities that seed all the structure arose from quantum fluctuations. There is now prima facie evidence that supports two basic tenets of this paradigm. An avalanche of high-quality cosmological observations will soon make this case stronger or will break it. Key questions remain to be answered; foremost among them are: identification and detection of the cold dark matter particles and elucidation of the dark-energy component. These are exciting times in cosmology!
International Nuclear Information System (INIS)
Senjanovic, G.; Virginia Polytechnic Inst. and State Univ., Blacksburg
1984-07-01
Extended supersymmetry, Kaluza-Klein theory and family unification all suggest the existence of mirror fermions, with same quantum numbers but opposite helicities from ordinary fermions. The laboratory and especially cosmological implications of such particles are reviewed and summarized. (author)
Lachieze-Rey, Marc
This book delivers a quantitative account of the science of cosmology, designed for a non-specialist audience. The basic principles are outlined using simple maths and physics, while still providing rigorous models of the Universe. It offers an ideal introduction to the key ideas in cosmology, without going into technical details. The approach used is based on the fundamental ideas of general relativity such as the spacetime interval, comoving coordinates, and spacetime curvature. It provides an up-to-date and thoughtful discussion of the big bang, and the crucial questions of structure and galaxy formation. Questions of method and philosophical approaches in cosmology are also briefly discussed. Advanced undergraduates in either physics or mathematics would benefit greatly from use either as a course text or as a supplementary guide to cosmology courses.
Ryden, Barbara
2017-01-01
This second edition of Introduction to Cosmology is an exciting update of an award-winning textbook. It is aimed primarily at advanced undergraduate students in physics and astronomy, but is also useful as a supplementary text at higher levels. It explains modern cosmological concepts, such as dark energy, in the context of the Big Bang theory. Its clear, lucid writing style, with a wealth of useful everyday analogies, makes it exceptionally engaging. Emphasis is placed on the links between theoretical concepts of cosmology and the observable properties of the universe, building deeper physical insights in the reader. The second edition includes recent observational results, fuller descriptions of special and general relativity, expanded discussions of dark energy, and a new chapter on baryonic matter that makes up stars and galaxies. It is an ideal textbook for the era of precision cosmology in the accelerating universe.
Tensors, relativity, and cosmology
Dalarsson, Mirjana
2015-01-01
Tensors, Relativity, and Cosmology, Second Edition, combines relativity, astrophysics, and cosmology in a single volume, providing a simplified introduction to each subject that is followed by detailed mathematical derivations. The book includes a section on general relativity that gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes and Penrose processes), and considers the energy-momentum tensor for various solutions. In addition, a section on relativistic astrophysics discusses stellar contraction and collapse, neutron stars and their equations of state, black holes, and accretion onto collapsed objects, with a final section on cosmology discussing cosmological models, observational tests, and scenarios for the early universe. This fully revised and updated second edition includes new material on relativistic effects, such as the behavior of clocks and measuring rods in m...
Constraints on Λ(t)-cosmology with power law interacting dark sectors
International Nuclear Information System (INIS)
Poitras, Vincent
2012-01-01
Motivated by the cosmological constant and the coincidence problems, we consider a cosmological model where the cosmological constant Λ 0 is replaced by a cosmological term Λ(t) which is allowed to vary in time. More specifically, we are considering that this dark energy term interacts with dark matter through the phenomenological decay law ρ-dot Λ = −Qρ Λ n . We have constrained the model for the range n element of [0,10] using various observational data (SNeIa, GRB, CMB, BAO, OHD), emphasizing the case where n = 3/2. This case is the only one where the late-time value for the ratio of dark energy density and matter energy density ρ Λ /ρ m is constant, which could provide an interesting explanation to the coincidence problem. We obtain strong limits on the model parameters which however exclude the region where the coincidence or the cosmological constant problems are significantly ameliorated
Inflationary cosmology from quantum conformal gravity
International Nuclear Information System (INIS)
Jizba, Petr; Kleinert, Hagen; Scardigli, Fabio
2015-01-01
We analyze the functional integral for quantum conformal gravity and show that, with the help of a Hubbard-Stratonovich transformation, the action can be broken into a local quadratic-curvature theory coupled to a scalar field. A one-loop effective-action calculation reveals that strong fluctuations of the metric field are capable of spontaneously generating a dimensionally transmuted parameter which, in the weak-field sector of the broken phase, induces a Starobinsky-type f(R)-model with a gravi-cosmological constant. A resulting non-trivial relation between Starobinsky's parameter and the gravi-cosmological constant is highlighted and implications for cosmic inflation are briefly discussed and compared with the recent PLANCK and BICEP2 data. (orig.)
Phantom cosmology without Big Rip singularity
Energy Technology Data Exchange (ETDEWEB)
Astashenok, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation); Nojiri, Shin' ichi, E-mail: nojiri@phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, Sergei D. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Institucio Catalana de Recerca i Estudis Avancats - ICREA and Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Facultat de Ciencies, Torre C5-Par-2a pl, E-08193 Bellaterra (Barcelona) (Spain); Tomsk State Pedagogical University, Tomsk (Russian Federation); Yurov, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation)
2012-03-23
We construct phantom energy models with the equation of state parameter w which is less than -1, w<-1, but finite-time future singularity does not occur. Such models can be divided into two classes: (i) energy density increases with time ('phantom energy' without 'Big Rip' singularity) and (ii) energy density tends to constant value with time ('cosmological constant' with asymptotically de Sitter evolution). The disintegration of bound structure is confirmed in Little Rip cosmology. Surprisingly, we find that such disintegration (on example of Sun-Earth system) may occur even in asymptotically de Sitter phantom universe consistent with observational data. We also demonstrate that non-singular phantom models admit wormhole solutions as well as possibility of Big Trip via wormholes.
Magnetohydrodynamics and Plasma Cosmology
Kleidis, Kostas; Kuiroukidis, Apostolos; Papadopoulos, Demetrios; Vlahos, Loukas
2007-09-01
We study the linear magnetohydrodynamic (MHD) equations, both in the Newtonian and the general-relativistic limit, as regards a viscous magnetized fluid of finite conductivity and discuss instability criteria. In addition, we explore the excitation of cosmological perturbations in anisotropic spacetimes, in the presence of an ambient magnetic field. Acoustic, electromagnetic (e/m) and fast-magnetosonic modes, propagating normal to the magnetic field, can be excited, resulting in several implications of cosmological significance.
Cosmological phase transitions
International Nuclear Information System (INIS)
Kolb, E.W.
1993-10-01
If modern ideas about the role of spontaneous symmetry breaking in fundamental physics are correct, then the Universe should have undergone a series of phase transitions early in its history. The study of cosmological phase transitions has become an important aspect of early-Universe cosmology. In this lecture I review some very recent work on three aspects of phase transitions: the electroweak transition, texture, and axions
Directory of Open Access Journals (Sweden)
Daywitt W. C.
2009-04-01
Full Text Available Both the big-bang and the quasi-steady-state cosmologies originate in some type of Planck state. This paper presents a new cosmological theory based on the Planck- vacuum negative-energy state, a state consisting of a degenerate collection of negative- energy Planck particles. A heuristic look at the Einstein field equation provides a con- vincing argument that such a vacuum state could provide a theoretical explanation for the visible universe.
Cosmological evidence for leptonic asymmetry after Planck
Energy Technology Data Exchange (ETDEWEB)
Caramete, A.; Popa, L.A., E-mail: acaramete@spacescience.ro, E-mail: lpopa@spacescience.ro [Institute of Space Science, 409 Atomistilor Street, Magurele, Ilfov 077125 (Romania)
2014-02-01
Recently, the PLANCK satellite found a larger and most precise value of the matter energy density, that impacts on the present values of other cosmological parameters such as the Hubble constant H{sub 0}, the present cluster abundances S{sub 8}, and the age of the Universe t{sub U}. The existing tension between PLANCK determination of these parameters in the frame of the base ΛCDM model and their determination from other measurements generated lively discussions, one possible interpretation being that some sources of systematic errors in cosmological measurements are not completely understood. An alternative interpretation is related to the fact that the CMB observations, that probe the high redshift Universe are interpreted in terms of cosmological parameters at present time by extrapolation within the base ΛCDM model that can be inadequate or incomplete. In this paper we quantify this tension by exploring several extensions of the base ΛCDM model that include the leptonic asymmetry. We set bounds on the radiation content of the Universe and neutrino properties by using the latest cosmological measurements, imposing also self-consistent BBN constraints on the primordial helium abundance. For all asymmetric cosmological models we find the preference of cosmological data for smaller values of active and sterile neutrino masses. This increases the tension between cosmological and short baseline neutrino oscillation data that favors a sterile neutrino with the mass of around 1 eV. For the case of degenerate massive neutrinos, we find that the discrepancies with the local determinations of H{sub 0}, and t{sub U} are alleviated at ∼ 1.3σ level while S{sub 8} is in agreement with its determination from CFHTLenS survey data at ∼ 1σ and with the prediction of cluster mass-observation relation at ∼ 0.5σ. We also find 2σ statistical preference of the cosmological data for the leptonic asymmetric models involving three massive neutrino species and neutrino direct
Cosmological Models and Stability
Andersson, Lars
Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Jiří Bičák at this conference, Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed in the later part of this paper.
BOOK REVIEW: Observational Cosmology Observational Cosmology
Howell, Dale Andrew
2013-04-01
Observational Cosmology by Stephen Serjeant fills a niche that was underserved in the textbook market: an up-to-date, thorough cosmology textbook focused on observations, aimed at advanced undergraduates. Not everything about the book is perfect - some subjects get short shrift, in some cases jargon dominates, and there are too few exercises. Still, on the whole, the book is a welcome addition. For decades, the classic textbooks of cosmology have focused on theory. But for every Sunyaev-Zel'dovich effect there is a Butcher-Oemler effect; there are as many cosmological phenomena established by observations, and only explained later by theory, as there were predicted by theory and confirmed by observations. In fact, in the last decade, there has been an explosion of new cosmological findings driven by observations. Some are so new that you won't find them mentioned in books just a few years old. So it is not just refreshing to see a book that reflects the new realities of cosmology, it is vital, if students are to truly stay up on a field that has widened in scope considerably. Observational Cosmology is filled with full-color images, and graphs from the latest experiments. How exciting it is that we live in an era where satellites and large experiments have gathered so much data to reveal astounding details about the origin of the universe and its evolution. To have all the latest data gathered together and explained in one book will be a revelation to students. In fact, at times it was to me. I've picked up modern cosmological knowledge through a patchwork of reading papers, going to colloquia, and serving on grant and telescope allocation panels. To go back and see them explained from square one, and summarized succinctly, filled in quite a few gaps in my own knowledge and corrected a few misconceptions I'd acquired along the way. To make room for all these graphs and observational details, a few things had to be left out. For one, there are few derivations
Quintom cosmology: Theoretical implications and observations
International Nuclear Information System (INIS)
Cai Yifu; Saridakis, Emmanuel N.; Setare, Mohammad R.; Xia Junqing
2010-01-01
We review the paradigm of quintom cosmology. This scenario is motivated by the observational indications that the equation-of-state of dark energy across the cosmological constant boundary is mildly favored, although the data are still far from being conclusive. As a theoretical setup we introduce a no-go theorem existing in quintom cosmology, and based on it we discuss the conditions for the equation-of-state of dark energy realizing the quintom scenario. The simplest quintom model can be achieved by introducing two scalar fields with one being quintessence and the other phantom. Based on the double-field quintom model we perform a detailed analysis of dark energy perturbations and we discuss their effects on current observations. This type of scenario usually suffers from a manifest problem due to the existence of a ghost degree-of-freedom, and thus we review various alternative realizations of the quintom paradigm. The developments in particle physics and string theory provide potential clues indicating that a quintom scenario may be obtained from scalar systems with higher derivative terms, as well as from non-scalar systems. Additionally, we construct a quintom realization in the framework of braneworld cosmology, where the cosmic acceleration and the phantom divide crossing result from the combined effects of the field evolution on the brane and the competition between four- and five-dimensional gravity. Finally, we study the outsets and fates of a universe in quintom cosmology. In a scenario with null energy condition violation one may obtain a bouncing solution at early times and therefore avoid the Big Bang singularity. Furthermore, if this occurs periodically, we obtain a realization of an oscillating universe. Lastly, we comment on several open issues in quintom cosmology and their connection to future investigations.
Growth of matter perturbation in quintessence cosmology
Mulki, Fargiza A. M.; Wulandari, Hesti R. T.
2017-01-01
Big bang theory states that universe emerged from singularity with very high temperature and density, then expands homogeneously and isotropically. This theory gives rise standard cosmological principle which declares that universe is homogeneous and isotropic on large scales. However, universe is not perfectly homogeneous and isotropic on small scales. There exist structures starting from clusters, galaxies even to stars and planetary system scales. Cosmological perturbation theory is a fundamental theory that explains the origin of structures. According to this theory, the structures can be regarded as small perturbations in the early universe, which evolves as the universe expands. In addition to the problem of inhomogeneities of the universe, observations of supernovae Ia suggest that our universe is being accelerated. Various models of dark energy have been proposed to explain cosmic acceleration, one of them is cosmological constant. Because of several problems arise from cosmological constant, the alternative models have been proposed, one of these models is quintessence. We reconstruct growth of structure model following quintessence scenario at several epochs of the universe, which is specified by the effective equation of state parameters for each stage. Discussion begins with the dynamics of quintessence, in which exponential potential is analytically derived, which leads to various conditions of the universe. We then focus on scaling and quintessence dominated solutions. Subsequently, we review the basics of cosmological perturbation theory and derive formulas to investigate how matter perturbation evolves with time in subhorizon scales which leads to structure formation, and also analyze the influence of quintessence to the structure formation. From analytical exploration, we obtain the growth rate of matter perturbation and the existence of quintessence as a dark energy that slows down the growth of structure formation of the universe.
2002 astroparticle physics and cosmology
International Nuclear Information System (INIS)
Dvali, G.; Perez-Lorenzana, A.; Senjanovic, G.; Thompson, G.; Vissani, F.
2003-01-01
The 2002 Summer School on Astroparticle Physics and Cosmology was held at ICTP, in the three weeks from June 17 to July 5. As in previous Schools in this series, the main topics were covered by sets of 3-5 lectures (regular courses); some special topics were presented in dedicated sessions (special lectures); and emphasis was given to the discussion sessions. The main aim of the School was to give an updated survey of astroparticle physics and cosmology, with an emphasis on theoretical aspects. W. Hu introduced and discussed the theory of structure formation, and the most important features of the cosmic microwave background radiation. A closely connected topic, inflation, was reviewed in detail in the lectures of A. Riotto. The connection between dark matter and particle physics was outlined by R. Bernabei. The search for other dark matter candidates, such as monopoles and axions, was discussed by G. Giacomelli and E. Masso. Dark energy and the cosmological constant - the most puzzling aspect of particle and astroparticle physics, according to many - were the topics of the lectures of G. Dvali, who offered many stimulating proposals and speculations. G. Gabadadze reviewed the physics of large extra dimensions, and suggested a number of applications of these ideas in cosmology. Field theory at finite temperature has been presented by M. Laine. S. Sarkar and P. Tinyakov addressed the cosmic rays of ultra-high energies and discussed the puzzles they pose to astrophysics and particle physics. The lectures of W. Buchmueller provided an overview of current ideas about baryogenesis, and in particular the mechanism of leptogenesis - which draws a connection with neutrino masses. A.Yu. Smirnov discussed the status of the solar neutrino problem. An introduction to neutrino astronomy was given by F. Vissani. Finally, L. Rezzolla gave a detailed discussion of the status and perspectives for gravitational wave detection (of great interest for interferometers like VIRGO and
2002 astroparticle physics and cosmology
Energy Technology Data Exchange (ETDEWEB)
Dvali, G [New York Univ. (United States); Perez-Lorenzana, A [Instituto Politecnico Nacional (Mexico); Senjanovic, G; Thompson, G [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Vissani, F [Istituto Nazionale di Fisica Nucleare (Italy)
2003-08-15
The 2002 Summer School on Astroparticle Physics and Cosmology was held at ICTP, in the three weeks from June 17 to July 5. As in previous Schools in this series, the main topics were covered by sets of 3-5 lectures (regular courses); some special topics were presented in dedicated sessions (special lectures); and emphasis was given to the discussion sessions. The main aim of the School was to give an updated survey of astroparticle physics and cosmology, with an emphasis on theoretical aspects. W. Hu introduced and discussed the theory of structure formation, and the most important features of the cosmic microwave background radiation. A closely connected topic, inflation, was reviewed in detail in the lectures of A. Riotto. The connection between dark matter and particle physics was outlined by R. Bernabei. The search for other dark matter candidates, such as monopoles and axions, was discussed by G. Giacomelli and E. Masso. Dark energy and the cosmological constant - the most puzzling aspect of particle and astroparticle physics, according to many - were the topics of the lectures of G. Dvali, who offered many stimulating proposals and speculations. G. Gabadadze reviewed the physics of large extra dimensions, and suggested a number of applications of these ideas in cosmology. Field theory at finite temperature has been presented by M. Laine. S. Sarkar and P. Tinyakov addressed the cosmic rays of ultra-high energies and discussed the puzzles they pose to astrophysics and particle physics. The lectures of W. Buchmueller provided an overview of current ideas about baryogenesis, and in particular the mechanism of leptogenesis - which draws a connection with neutrino masses. A.Yu. Smirnov discussed the status of the solar neutrino problem. An introduction to neutrino astronomy was given by F. Vissani. Finally, L. Rezzolla gave a detailed discussion of the status and perspectives for gravitational wave detection (of great interest for interferometers like VIRGO and
Cosmological tests of general relativity
International Nuclear Information System (INIS)
Hut, P.
1977-01-01
It is stated that the general relativity theory could be tested on a cosmological scale by measuring the Hubble constant and the deceleration parameter, if, in addition, everything could be known about the matter filling the universe. If, on the other hand, nothing could be presupposed about the matter content of the universe general relativity could not be tested by measuring any number of time derivatives of the scale factor. But upon making the assumption of a universe filled with non-interacting mixture of non-relativistic matter and radiation general relativity can in principle be tested by measuring the first five derivatives of the scale factor. Some general relations are here presented using this assumption. (author)
Cosmology with decaying vacuum energy
International Nuclear Information System (INIS)
Freese, K.; Adams, F.; Frieman, J.; Mottola, E.
1987-09-01
Motivated by recent attempts to solve the cosmological constant problem, we examine the observational consequences of a vacuum energy density which decays in time. For all times later than t ∼ 1 sec, the ratio of the vacuum to the total energy density of the universe must be small. Although the vacuum cannot provide the ''missing mass'' required to close the universe today, its presence earlier in the history of the universe could have important consequences. We discuss restrictions on the vacuum energy arising from primordial nucleosynthesis, the microwave and gamma ray background spectra, and galaxy formation. A small vacuum component at the era of nucleosynthesis, 0.01 5, but in some cases would severely distort the microwave spectrum. 9 refs., 3 figs
Cosmological implications of Heisenberg's principle
Gonzalo, Julio A
2015-01-01
The aim of this book is to analyze the all important implications of Heisenberg's Uncertainty Principle for a finite universe with very large mass-energy content such as ours. The earlier and main contributors to the formulation of Quantum Mechanics are briefly reviewed regarding the formulation of Heisenberg's Principle. After discussing “indeterminacy” versus ”uncertainty”, the universal constants of physics are reviewed and Planck's units are given. Next, a novel set of units, Heisenberg–Lemaitre units, are defined in terms of the large finite mass of the universe. With the help of Heisenberg's principle, the time evolution of the finite zero-point energy for the universe is investigated quantitatively. Next, taking advantage of the rigorous solutions of Einstein's cosmological equation for a flat, open and mixed universe of finite mass, the most recent and accurate data on the “age” (to) and the expansion rate (Ho) of the universe and their implications are reconsidered.
Fine-structure constant: Is it really a constant
International Nuclear Information System (INIS)
Bekenstein, J.D.
1982-01-01
It is often claimed that the fine-structure ''constant'' α is shown to be strictly constant in time by a variety of astronomical and geophysical results. These constrain its fractional rate of change alpha-dot/α to at least some orders of magnitude below the Hubble rate H 0 . We argue that the conclusion is not as straightforward as claimed since there are good physical reasons to expect alpha-dot/α 0 . We propose to decide the issue by constructing a framework for a variability based on very general assumptions: covariance, gauge invariance, causality, and time-reversal invariance of electromagnetism, as well as the idea that the Planck-Wheeler length (10 -33 cm) is the shortest scale allowable in any theory. The framework endows α with well-defined dynamics, and entails a modification of Maxwell electrodynamics. It proves very difficult to rule it out with purely electromagnetic experiments. In a cosmological setting, the framework predicts an alpha-dot/α which can be compatible with the astronomical constraints; hence, these are too insensitive to rule out α variability. There is marginal conflict with the geophysical constraints: however, no firm decision is possible because of uncertainty about various cosmological parameters. By contrast the framework's predictions for spatial gradients of α are in fatal conflict with the results of the Eoetvoes-Dicke-Braginsky experiments. Hence these tests of the equivalence principle rule out with confidence spacetime variability of α at any level
Cosmological models with Gurzadyan-Xue dark energy
International Nuclear Information System (INIS)
Vereshchagin, G V; Yegorian, G
2006-01-01
The formula for dark energy density derived by Gurzadyan and Xue is the only formula which provides (without a free parameter) a value for dark energy density in remarkable agreement with current cosmological datasets, unlike numerous phenomenological scenarios where the corresponding value is postulated. This formula suggests the possibility of variation of physical constants such as the speed of light and the gravitational constant. Considering several cosmological models based on that formula and deriving the cosmological equations for each case, we show that in all models source terms appear in the continuity equation. So, on one hand, GX models make up a rich set covering a lot of currently proposed models of dark energy; on the other hand, they reveal hidden symmetries, with a particular role of the separatrix Ω m = 2/3, and link with the issue of the content of physical constants
The geometry of plane waves in spaces of constant curvature
International Nuclear Information System (INIS)
Tran, H.V.
1988-01-01
We examined the geometry of possible plane wave fronts in spaces of constant curvature for three cases in which the cosmological constant is positive, zero, or negative. The cosmological constant and a second-order invariant determined by a congruence of null rays were used in the investigation. We embedded the spaces under investigation in a flat five-dimensional space, and studied the null hyperplanes passing through the origin of the flat five-dimensional space. The embedded spaces are represented by quadrics in the five-dimensional space. The plane wave fronts are represented by the intersection of the quadric with null hyperplanes passing through the origin of the five-dimensional space. We concluded that in Minkowski spaces (zero cosmological constant), the plane-fronted waves will intersect if and only if the second-order invariant mentioned above is non-zero. For deSitter spaces (positive cosmological constant), plane-fronted waves will always intersect. For anti-deSitter spaces (negative cosmological constant), plane-fronted waves may but need not intersect
On the cosmological gravitational waves and cosmological distances
Belinski, V. A.; Vereshchagin, G. V.
2018-03-01
We show that solitonic cosmological gravitational waves propagated through the Friedmann universe and generated by the inhomogeneities of the gravitational field near the Big Bang can be responsible for increase of cosmological distances.
International Nuclear Information System (INIS)
Schramm, D.N.; Fields, B.; Thomas, D.
1992-01-01
The possible implications of the quark-hadron transition for cosmology are explored. Possible surviving signatures are discussed. In particular, the possibility of generating a dark matter candidate such as strange nuggets or planetary mass black holes is noted. Much discussion is devoted to the possible role of the transition for cosmological nucleosynthesis. It is emphasized that even an optimized first order phase transition will not significantly alter the nucleosynthesis constraints on the cosmological baryon density nor on neutrino counting. However, it is noted that Be and B observations in old stars may eventually be able to be a signature of a cosmologically significant quark-hadron transition. It is pointed out that the critical point in this regard is whether the observed B/Be ratio can be produced by spallation processes or requires cosmological input. Spallation cannot produce a B/Be ratio below 7.6. A supporting signature would be Be and B ratios to oxygen that greatly exceed galactic values. At present, all data is still consistent with a spallagenic origin
Laser welding of Ti-Ni type shape memory alloy
International Nuclear Information System (INIS)
Hirose, Akio; Araki, Takao; Uchihara, Masato; Honda, Keizoh; Kondoh, Mitsuaki.
1990-01-01
The present study was undertaken to apply the laser welding to the joining of a shape memory alloy. Butt welding of a Ti-Ni type shape memory alloy was performed using 10 kW CO 2 laser. The laser welded specimens showed successfully the shape memory effect and super elasticity. These properties were approximately identical with those of the base metal. The change in super elasticity of the welded specimen during tension cycling was investigated. Significant changes in stress-strain curves and residual strain were not observed in the laser welded specimen after the 50-time cyclic test. The weld metal exhibited the celler dendrite. It was revealed by electron diffraction analysis that the phase of the weld metal was the TiNi phase of B2 structure which is the same as the parent phase of base metal and oxide inclusions crystallized at the dendrite boundary. However, oxygen contamination in the weld metal by laser welding did not occur because there was almost no difference in oxygen content between the base metal and the weld metal. The transformation temperatures of the weld metal were almost the same as those of the base metal. From these results, laser welding is applicable to the joining of the Ti-Ni type shape memory alloy. As the application of laser welding to new shape memory devices, the multiplex shape memory device of welded Ti-50.5 at % Ni and Ti-51.0 at % Ni was produced. The device showed two-stage shape memory effects due to the difference in transformation temperature between the two shape memory alloys. (author)
The Cosmological Dependence of Galaxy Cluster Morphologies
Crone, Mary Margaret
1995-01-01
Measuring the density of the universe has been a fundamental problem in cosmology ever since the "Big Bang" model was developed over sixty years ago. In this simple and successful model, the age and eventual fate of the universe are determined by its density, its rate of expansion, and the value of a universal "cosmological constant". Analytic models suggest that many properties of galaxy clusters are sensitive to cosmological parameters. In this thesis, I use N-body simulations to examine cluster density profiles, abundances, and degree of subclustering to test the feasibility of using them as cosmological tests. The dependence on both cosmology and initial density field is examined, using a grid of cosmologies and scale-free initial power spectra P(k)~ k n. Einstein-deSitter ( Omegao=1), open ( Omegao=0.2 and 0.1) and flat, low density (Omegao=0.2, lambdao=0.8) models are studied, with initial spectral indices n=-2, -1 and 0. Of particular interest are the results for cluster profiles and substructure. The average density profiles are well fit by a power law p(r)~ r ^{-alpha} for radii where the local density contrast is between 100 and 3000. There is a clear trend toward steeper slopes with both increasing n and decreasing Omegao, with profile slopes in the open models consistently higher than Omega=1 values for the range of n examined. The amount of substructure in each model is quantified and explained in terms of cluster merger histories and the behavior of substructure statistics. The statistic which best distinguishes models is a very simple measure of deviations from symmetry in the projected mass distribution --the "Center-of-Mass Shift" as a function of overdensity. Some statistics which are quite sensitive to substructure perform relatively poorly as cosmological indicators. Density profiles and the Center-of-Mass test are both well-suited for comparison with weak lensing data and galaxy distributions. Such data are currently being collected and should
Where does cosmological perturbation theory break down?
International Nuclear Information System (INIS)
Armendariz-Picon, Cristian; Fontanini, Michele; Penco, Riccardo; Trodden, Mark
2009-01-01
It is often assumed that initial conditions for the evolution of a cosmological mode should be set at the time its physical wavelength reaches a cut-off of the order of the Planck length. Beyond that scale, trans-Planckian corrections to the dispersion relation are supposed to become dominant, leading to the breakdown of cosmological perturbation theory. In this paper, we apply the effective field theory approach to the coupled metric-inflaton system in order to calculate the corrections to the power spectrum of scalar and tensor perturbations induced by higher-dimension operators at short wavelengths. These corrections can be interpreted as modifications of the dispersion relation, and thus open a window to probe the validity of cosmological perturbation theory. Both for scalars and tensors, the modifications become important when the Hubble parameter is of the order of the Planck mass, or when the physical wave number of a cosmological perturbation mode approaches the square of the Planck mass divided by the Hubble constant. Thus, the cut-off length at which such a breakdown occurs is finite, but much smaller than the Planck length.
The science of tiny things: physics at the nanoscale
Energy Technology Data Exchange (ETDEWEB)
Copp, Stacy Marla [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-06-07
Nanoscience is the study of tiny objects that are only a billionth of a meter in size, or about 1,000 to 10,000 times smaller than a human hair. From the electronics in your smartphone to the molecular motors that are in your body’s cells, nanoscientists study and design materials that span a huge range of subjects, from physics to chemistry to biology. I will talk about some of what we do at LANL’s Center for Integrated Technologies, as well as how I first got interested in nanoscience and how I became a nanoscientist at LANL.
Belinski, Vladimir
2018-01-01
Written for researchers focusing on general relativity, supergravity, and cosmology, this is a self-contained exposition of the structure of the cosmological singularity in generic solutions of the Einstein equations, and an up-to-date mathematical derivation of the theory underlying the Belinski–Khalatnikov–Lifshitz (BKL) conjecture on this field. Part I provides a comprehensive review of the theory underlying the BKL conjecture. The generic asymptotic behavior near the cosmological singularity of the gravitational field, and fields describing other kinds of matter, is explained in detail. Part II focuses on the billiard reformulation of the BKL behavior. Taking a general approach, this section does not assume any simplifying symmetry conditions and applies to theories involving a range of matter fields and space-time dimensions, including supergravities. Overall, this book will equip theoretical and mathematical physicists with the theoretical fundamentals of the Big Bang, Big Crunch, Black Hole singula...
Tomaschitz, R
1994-01-01
Spinor fields are studied in infinite, topologically multiply connected Robertson-Walker cosmologies. Unitary spinor representations for the discrete covering groups of the spacelike slices are constructed. The spectral resolution of Dirac's equation is given in terms of horospherical elementary waves, on which the treatment of spin and energy is based in these cosmologies. The meaning of the energy and the particle-antiparticle concept is explained in the context of this varying cosmic background. Discrete symmetries, in particular inversions of the multiply connected spacelike slices, are studied. The violation of the unitarity of the parity operator, due to self-interference of P-reflected wave packets, is discussed. The violation of the CP and CPT invariance - already on the level of the free Dirac equation on this cosmological background - is pointed out.
DEFF Research Database (Denmark)
Skaanes, Thea
2015-01-01
Abstract: This article concerns Hadza cosmology examined through objects, rituals and the Hadza concept of epeme. A brief background to the Hadza and the eldwork that informs this study is followed by a close analysis of three key objects that are central to the argument presented. The objects...... are intimately linked to women and to aspects of the social and cosmological identity of the individual makers. one object is a materi- alisation of the woman’s name and it leads to an examination by interview of naming practices more generally. Naming a child gives it a spirit and places the child in a strong...... of ethnographic research indicating the potential and need for further examination of the power and role of objects in Hadza society. Keywords: Hadza, epeme, ritual, cosmology, power objects...
Silk, Joseph; Barrow, John D; Saunders, Simon
2017-01-01
Following a long-term international collaboration between leaders in cosmology and the philosophy of science, this volume addresses foundational questions at the limit of science across these disciplines, questions raised by observational and theoretical progress in modern cosmology. Space missions have mapped the Universe up to its early instants, opening up questions on what came before the Big Bang, the nature of space and time, and the quantum origin of the Universe. As the foundational volume of an emerging academic discipline, experts from relevant fields lay out the fundamental problems of contemporary cosmology and explore the routes toward finding possible solutions. Written for graduates and researchers in physics and philosophy, particular efforts are made to inform academics from other fields, as well as the educated public, who wish to understand our modern vision of the Universe, related philosophical questions, and the significant impacts on scientific methodology.
Classical and quantum cosmology of minimal massive bigravity
International Nuclear Information System (INIS)
Darabi, F.; Mousavi, M.
2016-01-01
In a Friedmann–Robertson–Walker (FRW) space–time background we study the classical cosmological models in the context of recently proposed theory of nonlinear minimal massive bigravity. We show that in the presence of perfect fluid the classical field equations acquire contribution from the massive graviton as a cosmological term which is positive or negative depending on the dynamical competition between two scale factors of bigravity metrics. We obtain the classical field equations for flat and open universes in the ordinary and Schutz representation of perfect fluid. Focusing on the Schutz representation for flat universe, we find classical solutions exhibiting singularities at early universe with vacuum equation of state. Then, in the Schutz representation, we study the quantum cosmology for flat universe and derive the Schrodinger–Wheeler–DeWitt equation. We find its exact and wave packet solutions and discuss on their properties to show that the initial singularity in the classical solutions can be avoided by quantum cosmology. Similar to the study of Hartle–Hawking no-boundary proposal in the quantum cosmology of de Rham, Gabadadze and Tolley (dRGT) massive gravity, it turns out that the mass of graviton predicted by quantum cosmology of the minimal massive bigravity is large at early universe. This is in agreement with the fact that at early universe the cosmological constant should be large.
The Hubble IR cutoff in holographic ellipsoidal cosmologies
Energy Technology Data Exchange (ETDEWEB)
Cataldo, Mauricio [Universidad del Bio-Bio, Departamento de Fisica, Facultad de Ciencias, Concepcion (Chile); Cruz, Norman [Grupo de Cosmologia y Gravitacion-UBB, Concepcion (Chile)
2018-01-15
It is well known that for spatially flat FRW cosmologies, the holographic dark energy disfavors the Hubble parameter as a candidate for the IR cutoff. For overcoming this problem, we explore the use of this cutoff in holographic ellipsoidal cosmological models, and derive the general ellipsoidal metric induced by a such holographic energy density. Despite the drawbacks that this cutoff presents in homogeneous and isotropic universes, based on this general metric, we developed a suitable ellipsoidal holographic cosmological model, filled with a dark matter and a dark energy components. At late time stages, the cosmic evolution is dominated by a holographic anisotropic dark energy with barotropic equations of state. The cosmologies expand in all directions in accelerated manner. Since the ellipsoidal cosmologies given here are not asymptotically FRW, the deviation from homogeneity and isotropy of the universe on large cosmological scales remains constant during all cosmic evolution. This feature allows the studied holographic ellipsoidal cosmologies to be ruled by an equation of state ω = p/ρ, whose range belongs to quintessence or even phantom matter. (orig.)
Classical and quantum cosmology of minimal massive bigravity
Energy Technology Data Exchange (ETDEWEB)
Darabi, F., E-mail: f.darabi@azaruniv.edu; Mousavi, M., E-mail: mousavi@azaruniv.edu
2016-10-10
In a Friedmann–Robertson–Walker (FRW) space–time background we study the classical cosmological models in the context of recently proposed theory of nonlinear minimal massive bigravity. We show that in the presence of perfect fluid the classical field equations acquire contribution from the massive graviton as a cosmological term which is positive or negative depending on the dynamical competition between two scale factors of bigravity metrics. We obtain the classical field equations for flat and open universes in the ordinary and Schutz representation of perfect fluid. Focusing on the Schutz representation for flat universe, we find classical solutions exhibiting singularities at early universe with vacuum equation of state. Then, in the Schutz representation, we study the quantum cosmology for flat universe and derive the Schrodinger–Wheeler–DeWitt equation. We find its exact and wave packet solutions and discuss on their properties to show that the initial singularity in the classical solutions can be avoided by quantum cosmology. Similar to the study of Hartle–Hawking no-boundary proposal in the quantum cosmology of de Rham, Gabadadze and Tolley (dRGT) massive gravity, it turns out that the mass of graviton predicted by quantum cosmology of the minimal massive bigravity is large at early universe. This is in agreement with the fact that at early universe the cosmological constant should be large.
Cosmology and the early universe
Di Bari, Pasquale
2018-01-01
This book discusses cosmology from both an observational and a strong theoretical perspective. The first part focuses on gravitation, notably the expansion of the universe and determination of cosmological parameters, before moving onto the main emphasis of the book, the physics of the early universe, and the connections between cosmological models and particle physics. Readers will gain a comprehensive account of cosmology and the latest observational results, without requiring prior knowledge of relativistic theories, making the text ideal for students.
Non equilibrium relativistic cosmology
International Nuclear Information System (INIS)
Novello, M.; Salim, J.M.
1982-01-01
A certain systematization through the discussion of results already known on cosmology and the presentation of new ones is given. In section 2 a brief review of the necessary mathematical background is also given. The theory of perturbation of Friedmann-like Universes is presented in section 3. The reduction of Einstein's equations for homogeneous Universes to an autonomous planar system of differential equations is done in section 4. Finally in section 5 the alternative gravitational non-minimal coupling and its consequences to cosmology are discussed. (Author) [pt
CERN. Geneva
2000-01-01
Most of the puzzles with standard big bang cosmology can be avoided if the big bang is NOT identified with the beginning of time. The short-distance cutoff and duality symmetries of superstring theory suggest a new (so-called pre-big bang) cosmology in which the birth of our Universe is the result of a long classical evolution characterized by a gravitational instability. I will motivate and describe this heretical scenario and compare its phenomenological implications with those of ortodox (post-big bang) inflation.
Exploring Cosmology with Supernovae
DEFF Research Database (Denmark)
Li, Xue
distribution of strong gravitational lensing is developed. For Type Ia supernova (SNe Ia), the rate is lower than core-collapse supernovae (CC SNe). The rate of SNe Ia declines beyond z 1:5. Based on these reasons, we investigate a potential candidate to measure cosmological distance: GRB......-SNe. They are a subclass of CC SNe. Light curves of GRB-SNe are obtained and their properties are studied. We ascertain that the properties of GRB-SNe make them another candidate for standardizable candles in measuring the cosmic distance. Cosmological parameters M and are constrained with the help of GRB-SNe. The first...
2012-01-01
This volume tells of the quest for cosmology as seen by some of the finest cosmologists in the world. It starts with "Galaxy Formation from Start to Finish" and ends with "The First Supermassive Black Holes in the Universe," exploring in between the grand themes of galaxies, the early universe, expansion of the universe, dark matter and dark energy. This up-to-date collection of review articles offers a general introduction to cosmology and is intended for all probing into the profound questions on where we came from and where we are going.
Silk, Joseph
2011-01-01
Horizons of Cosmology: Exploring Worlds Seen and Unseen is the fourth title published in the Templeton Science and Religion Series, in which scientists from a wide range of fields distill their experience and knowledge into brief tours of their respective specialties. In this volume, highly esteemed astrophysicist Joseph Silk explores the vast mysteries and speculations of the field of cosmology in a way that balances an accessible style for the general reader and enough technical detail for advanced students and professionals. Indeed, while the p
Relativistic Cosmology Revisited
Directory of Open Access Journals (Sweden)
Crothers S. J.
2007-04-01
Full Text Available In a previous paper the writer treated of particular classes of cosmological solutions for certain Einstein spaces and claimed that no such solutions exist in relation thereto. In that paper the assumption that the proper radius is zero when the line-element is singular was generally applied. This general assumption is unjustified and must be dropped. Consequently, solutions do exist in relation to the aforementioned types, and are explored herein. The concept of the Big Bang cosmology is found to be inconsistent with General Relativity