WorldWideScience

Sample records for tini-50rtm brazed joints

  1. Induction brazing of complex joints

    DEFF Research Database (Denmark)

    Henningsen, Poul; Zhang, Wenqi; Bay, Niels

    2003-01-01

    , or if the hottest area is located outside the joint interface, a number of defects may appear: the braze metal may flow away from the joint, the flux may burn off, poor binding of the braze metal may appear or the braze metal may be overheated. Joint geometry as well as electro-magnetic properties of the work piece...... presents a combined numerical and experimental method for fast determination of appropriate coil geometry and position in induction brazing tube-to-plate joints of different ratios between tube and plate thickness and different combinations of the materials stainless steel, brass and copper. The method has...... proven to give successful results in brazing tube-plate joints of copper-brass, copper-stainless steel, stainless steel-brass, and stainless steel-stainless steel....

  2. Fabrication of high-quality brazed joints

    International Nuclear Information System (INIS)

    Orlov, A.V.

    1980-01-01

    Problem of ensuring of joint high-quality when brazing different parts in power engineering is considered. To obtain high-quality joints it is necessary to correctly design brazed joint and to choose a gap width, overlap length and fillet radius; to clean up carefully the surfaces to be brazed and fix them properly one relative to another; to apply a solder so as to provide its flowing into the gap and sticking in it; to exactly regulate thermal conditions of brazing. High quality and reliability of brazed joints are ensured by the application of solders based on noble metals, and cheap solders based on nickel, manganese and copper. Joints brazed with nickel base solders may operate at temperatures as high as 888 deg C

  3. Interfacial microstructure and joining properties of Titanium–Zirconium–Molybdenum alloy joints brazed using Ti–28Ni eutectic brazing alloy

    Energy Technology Data Exchange (ETDEWEB)

    Song, X.G., E-mail: songxg@hitwh.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Shandong Provincial Key Lab of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Tian, X. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Shandong Provincial Key Lab of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Zhao, H.Y. [Shandong Provincial Key Lab of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Si, X.Q.; Han, G.H.; Feng, J.C. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Shandong Provincial Key Lab of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China)

    2016-01-20

    Vacuum brazing of Titanium–Zirconium–Molybdenum (Abbreviated as TZM) alloy using Ti–28Ni (wt%) eutectic brazing alloy was successfully achieved in this study. Reliable TZM brazed joints were obtained at the temperatures ranging from 1000 °C to 1160 °C for 600 s. The interfacial microstructure of TZM joints was characterized by employing SEM, EDS and XRD. The effects of brazing temperature on interfacial microstructure and joining properties were investigated in details. TZM brazed joints mainly consisted of δ-Ti{sub 2}Ni phase and Ti-based solid solution (Ti(s,s)). The interfacial microstructure of TZM joints was influenced obviously by brazing temperature. Both the thickness of brazing seam and the amount of δ-Ti{sub 2}Ni phase was reduced with the increasing brazing temperature, while the Ti(s,s) layer did not change significantly. The maximum average shear strength of TZM joints reached 107 MPa when brazed at 1080 °C. The presence of δ-Ti{sub 2}Ni intermetallic phase and crack-like structure in joints deteriorated the joining properties, which resulted in the formation of brittle fracture after shear test. In addition, fracture locations were related to the brazing temperature. When the brazing temperature was relatively low, cracks initiated and propagated in the continuous δ-Ti{sub 2}Ni layer. However, the fracture locations preferred to locating at the interface between TZM substrate and brazing seam when brazing temperature exceeded 1080 °C.

  4. The effect of brazing parameters on corrosion behavior of brazed aluminum joints

    Science.gov (United States)

    Ghasimakbari, Farzam; Hadian, Ali Mohammad; Ershadrad, Soheil; Omidazad, Amir Mansour

    2018-01-01

    Fluid transmission pipes made of aluminum are widely used in petrochemical industries. For many applications, they have to be brazed to each other. The brazed joints, in many cases, are encountered with corrosive medias. This paper reports a part of a work to investigate the corrosion behavior of brazed AA6061 using AA4047 as filler metal with and without the use of flux under different brazing atmospheres. The samples brazed under air, vacuum, argon, and hydrogen atmospheres. The interfacial area of the joints was examined to ensure being free of any defects. The sides of each test piece were covered with an insulator and the surface of the joint was encountered to polarization test. The results revealed a significant difference of corrosion resistance. The samples that brazed under argon and hydrogen atmospheres had better corrosion resistance than other samples. The microstructure of the corroded joints revealed that the presence of defects, impurities due to use of flux and depth of filter metal penetration in base metal are crucial variables on the corrosion resistance of the joints.

  5. Evaluation of brazing joint of graphites and molybdenum

    International Nuclear Information System (INIS)

    Ishiyama, Shintarou; Kodaira, Tsuneo; Oku, Tatsuo

    1991-01-01

    Bonding test of six kinds of graphites to molybdenum was performed in the following conditions: Brazing elements was obtained by mixing of titanium nickel and copper in the range of 90∼51w%, 40∼10w%, 31∼0w%, respectively. Nonpressed brazing was performed at maximum temperature 1,000degC in a vacuum. Strength tests of these brazed joints were done in the conditions of at high temperature up to, 1,100degC in a vacuum, after 200 heat cycles from room temperature to about 900degC. Optical observation were performed before and after electron beam tests at 3.0 kW/cm 2 ·0.1 s·5 shots. The following results were derived: (1) The good mixing condition was found for titanium, nickel and copper brazing material at 64, 23 and 13w%, respectively. (2) Bending strengths of the brazed joints at room temperature were found to be proportional to the bending strengths of the graphite. (3) Bending strengths of the brazed joints shows no change until tested temperature reached 900degC in a vacuum. (4) Bending strength of the brazed joints showed no change after 200 heat cycles in the temperature range of room ∼ about 900degC and the electron beam tests. (author)

  6. Influence of brazing conditions on the strength of brazed joints of alumina dispersion-strengthened copper to 316 stainless steel

    International Nuclear Information System (INIS)

    Nishi, H.; Kikuchi, K.

    1998-01-01

    Brazing of alumina dispersion-strengthened copper (DS Cu) to 316 stainless steel were conducted in order to investigate the influence of filler metals and brazing conditions on the joint strength. The brazing were performed with a silver-base (BAg-8) and three kinds of gold-base (BAu-2.4.11) filler metals with varying brazing joint clearance and brazing time. The filler metal had a greater effect on the joint strength than the brazing joint clearance and brazing time. The joint with BAu-2 was superior to the joint with other filler metals. The tensile strength of the joint with BAu-2 was as large as that of DS Cu, however, the Charpy and low cycle fatigue strength were lower than those of DS Cu. The DS Cu melted near the brazed zone, consequently recrystallization and agglomeration of alumina occurred in the diffusion layer for all filler metals. The grain size after the recrystallization was small in order of BAu-2. BAu-4 and BAu-11, that was in accordance with the order of the brazing temperature. The excellent fracture strength for the joint with BAu-2 was attributed to the smallest grain size. (orig.)

  7. Analysis of nature of brazed joints fracture under operating conditions

    International Nuclear Information System (INIS)

    Orlov, A.V.; Gura, P.M.

    1985-01-01

    Technique establishing causes leading to brazed joint fracture in pressure boundary components, operating under heavy conditions of high temperature and corrosive medium is described. Some cases of tube brazed joint fractures in a superheater of 12Kh1MF and 08Kh18N10T steels are considered. The attention is paid on using metallography for determination of mechanical or corrosion fracture properties. The diagram is developed permitting to take into account the interrelation between the fracture area in the given zone and its strength

  8. Brazing

    CERN Document Server

    Schwartz, Mel M

    2003-01-01

    Text provides information needed to braze materials that will be used in the 21st century. Revised to include lessons learned on tooling, design, materials, atmospheres, processing, and equipment. For brazing technologists and engineers.

  9. Ultrasonic guided wave inspection of Inconel 625 brazed lap joints

    Science.gov (United States)

    Comot, Pierre; Bocher, Philippe; Belanger, Pierre

    2016-04-01

    The aerospace industry has been investigating the use of brazing for structural joints, as a mean of reducing cost and weight. There therefore is a need for a rapid, robust, and cost-effective non-destructive testing method for evaluating the structural integrity of the joints. The mechanical strength of brazed joints depends mainly on the amount of brittle phases in their microstructure. Ultrasonic guided waves offer the possibility of detecting brittle phases in joints using spatio-temporal measurements. Moreover, they offer the opportunity to inspect complex shape joints. This study focused on the development of a technique based on ultrasonic guided waves for the inspection of Inconel 625 lap joints brazed with BNi-2 filler metal. A finite element model of a lap joint was used to optimize the inspection parameters and assess the feasibility of detecting the amount of brittle phases in the joint. A finite element parametric study simulating the input signal shape, the center frequency, and the excitation direction was performed. The simulations showed that the ultrasonic guided wave energy transmitted through, and reflected from, the joints was proportional to the amount of brittle phases in the joint.

  10. In Situ Synthesis of Al-Si-Cu Alloy During Brazing Process and Mechanical Property of Brazing Joint

    Directory of Open Access Journals (Sweden)

    LONG Wei-min

    2016-06-01

    Full Text Available The Al-Si-Cu alloy system is considered to be a promising choice of filler metal for aluminium alloys brazing due to its high strength and low melting point. The greatest obstacle is its lack of plastic forming ability and being difficult to be processed by conventional methods. This disadvantage is ascribed to the considerable amount of brittle CuAl2 intermetallic compound which forms when alloy composition is around the ternary eutectic point. In order to overcome this deficiency, authors of this article proposed to synthesize Al-Si-Cu filler metal by using in situ synthesis method, and the structure and properties of brazing joints were studied. The results show that AlSi alloy is used as the wrap layer, and CuAl alloy is used as the powder core in the composite brazing wire, the two alloys have similar melting points. The machinability of the composite brazing wire is much superior to the traditional Al-Si-Cu filler metal. During the induction brazing of 3A21 alloy, when using AlSi-CuAl composite filler wire, AlSi and CuAl alloys melt almost simultaneously, then after short time holding, Al-Si-Cu braze filler is obtained, the brazing seam has uniform composition and good bonding interface, also, the shearing strength of the brazing joints is higher than the joint brazed by conventional Al-Si-Cu filler metal.

  11. Microstructure and Mechanical Properties of Stainless Steel/Brass Joints Brazed by Sn-Electroplated Ag Brazing Filler Metals

    Science.gov (United States)

    Wang, Xingxing; Peng, Jin; Cui, Datian

    2018-05-01

    To develop a high-Sn-content AgCuZnSn brazing filler metal, the BAg50CuZn was used as the base filler metal and a Sn layer was electroplated upon it. Then, the 304 stainless steel and the H62 brass were induction-brazed with the Sn-plated brazing filler metals. The microstructures of the joints were examined with an optical microscope, a scanning electron microscope and an x-ray diffractometer. The corresponding mechanical properties were obtained with a universal tensile testing machine. The results indicated that the induction brazed joints consisted of the Ag phase, the Cu phase and the CuZn phase. When the content of Sn in the Sn-plated Ag brazing filler metal was 6.0 or 7.2 wt.%, the Cu5Zn8, the Cu41Sn11 and the Ag3Sn phases appeared in the brazed joint. The tensile strength of the joints brazed with the Sn-plated filler metal was higher compared to the joints with the base filler metal. When the content of Sn was 6.0 wt.%, the highest tensile strength of the joint reached to 395 MPa. The joint fractures presented a brittle mode, mixed with a low amount of ductile fracture, when the content of Sn exceeded 6.0 wt.%.

  12. Determination of brazed joint constitutive law by inverse method

    International Nuclear Information System (INIS)

    Lovato, G.; Moret, F.; Gallo, P. le; Cailletaud, G.; Pilvin, P.

    1993-01-01

    An important parameter often neglected for the calculation of residual stresses in brazed ceramic/metal assemblies is the joint constitutive law. In situ camber measurements on a model system (axisymmetric TZM/InCuSil ABA/316L samples) performed using a special vertical dilatometer during the whole brazing thermal cycle are compared with results of FEM calculations based on published filler metal constitutive laws. A strong disagreement is observed. Actual constitutive law of the joint is determined from these measurements using a numerical inverse method. Calculated displacements are fully consistent with experimental ones. True solidification temperature of the joint is determined. The identified constitutive law of the joint exhibits a low flow stress from solidification temperature to 320 C. (orig.)

  13. High-temperature brazing for reliable tungsten-CFC joints

    International Nuclear Information System (INIS)

    Koppitz, Th; Pintsuk, G; Reisgen, U; Remmel, J; Hirai, T; Sievering, R; Rojas, Y; Casalegno, V

    2007-01-01

    The joining of tungsten and carbon-based materials is demanding due to the incompatibility of their chemical and thermophysical properties. Direct joining is unfeasible by the reason of brittle tungsten carbide formation. High-temperature brazing has been investigated in order to find a suitable brazing filler metal (BFM) which successfully acts as an intermediary between the incompatible properties of the base materials. So far only low Cr-alloyed Cu-based BFMs provide the preferential combination of good wetting action on both materials, tolerable interface reactions, and a precipitation free braze joint. Attempts to implement a higher melting metal (e.g. Pd, Ti, Zr) as a BFM have failed up to now, because the formation of brittle precipitations and pores in the seam were inevitable. But the wide metallurgical complexity of this issue is regarded to offer further joining potential

  14. High heat flux performance of W-Eurofer brazed joints

    Science.gov (United States)

    de Prado, J.; Sánchez, M.; Wirtz, M.; Pintsuk, G.; Du, J.; Linke, J.; Ureña, A.

    2018-02-01

    The qualification process of the materials and components for the next generation of fusion reactors makes it necessary to expose them to similar service conditions as expected during the service life of the reactor. In the present work, W-Eurofer brazed joints (tungsten block: 8 × 8 × 4 mm; steel block: 8 × 8 × 4 mm; joined to an actively cooled copper heat sink) were exposed to steady state heat loads to study the effect of the thermal fatigue on their microstructure and mechanical integrity. Three different W surface temperatures were tested (400, 500 and 600 °C) varying the number of applied cycles (100 and 1000). The results allowed identifying a braze temperature of 359 °C as threshold condition under which the brazed joints could be used without deterioration. The increase of the surface temperature deteriorated the mechanical integrity of the joints in comparison to those analyzed after the brazing process and accordingly reduced the refrigeration capabilities.

  15. Structural Performance of Inconel 625 Superalloy Brazed Joints

    Science.gov (United States)

    Chen, Jianqiang; Demers, Vincent; Cadotte, Eve-Line; Turner, Daniel; Bocher, Philippe

    2017-02-01

    The purpose of this work was to investigate tensile and fatigue behaviors of Inconel 625 superalloy brazed joints after transient liquid-phase bonding process. Brazing was performed in a vacuum furnace using a nickel-based filler metal in a form of paste to join wrought Inconel 625 plates. Mechanical tests were carried out on single-lap joints under various lap distance-to-thickness ratios. The fatigue crack initiation and crack growth modes were examined via metallographic analysis, and the effect of local stress on fatigue life was assessed by finite element simulations. The fatigue results show that fatigue strength and endurance limit increase with overlap distance, leading to a relatively large scatter of results. Fatigue cracks nucleated in the high-stressed region of the weld fillets from brittle eutectic phases or from internal brazing cavities. The present work proposes to rationalize the results by using the local stress at the brazing fillet. When using this local stress, all fatigue-obtained results find themselves on a single S- N curve, providing a design curve for any joint configuration in fatigue solicitation.

  16. Brazing

    International Nuclear Information System (INIS)

    Roemer, J.C.

    1979-10-01

    This report is a compilation of published literature on high temperature brazing covering the period 1973-1978. The references are listed alphabetically with regard to the base material or combination of base materials to be brazed. Trade names are treated as base materials. The report contains approximately 1500 references, of which 300 are to patents

  17. Investigation into mechanical properties of joints of heterogeneous materials brazed with high-temperature solders

    International Nuclear Information System (INIS)

    Lomenko, V.I.; Merkushev, V.P.; Borodina, L.M.; Sycheva, T.S.; Tokhtina, O.A.; Frolov, N.N.

    1988-01-01

    Mechanical properties of copper joints with copper, 12Kh18M10T steel and KhD50 composite obtained by vacuum brazing by copper-titanium solder as compared with properties of joints brazed by PSr 72 and PMFOTsr 6-4-0.03 solders in hydrogen are studied. Dependences of joints strength on temperature of contact - reactive vacuum brazing are obtained. Possible applications of joints of dissimilar materials in electrovacuum devices subjected to the effect of dynamic loadings are established

  18. Comparison of brazed joints made with BNi-1 and BNi-7 nickel-base brazing alloys

    Directory of Open Access Journals (Sweden)

    Zorc, Borut

    2000-04-01

    Full Text Available Kinetics of the processes are different with different types of brazing alloys. Precipitation processes in the parent metal close to the brazing gap are of great importance. They control the mechanical properties of the joint area when the brittle eutectic has disappeared from the gap. A comparative study of brazed joints on austenitic stainless alloys made with BNi-7 (Ni-P type and BNi-1 (Ni-Si-B type brazing alloys was made. Brazing alloys containing phosphorus behave in a different manner to those containing boron.

    Las aleaciones de níquel se producen mediante tres sistemas de aleación: Ni-P, Ni-Si y Ni-B. Durante las reacciones metalúrgicas con el metal de base, la eutéctica frágil en la separación soldada puede transformarse en la solución dúctil-sólida con todas aleaciones. La cinética del proceso varía según el tipo de aleación. Los procesos de precipitación en el metal de base cerca de la separación soldada son de mucha importancia, ya que controlan las propiedades mecánicas de la área de unión después de desaparecer la eutéctica frágil de la separación. Se ha hecho un análisis comparativo de uniones soldadas en aleaciones austeníticas inoxidables realizadas con aleaciones BNi-7 (tipo Ni-P y BNi-1 (tipo Ni-Si-B. Las aleaciones que contienen fósforo se comportan de una manera diferente, tanto con el cambio de la eutéctica a la solución sólida, como con los procesos de precipitación en el metal de base cerca de la unión soldada.

  19. Effect of alumina strengthening particles on brazed joints of GlidCop Al-15 copper alloy

    International Nuclear Information System (INIS)

    Chen, S.; Liu, J.Y.; Chin, B.A.

    1994-01-01

    Brazed joints of the alumina dispersion-strengthened copper alloy were developed using resistance heating brazing with BCuP-3 braze alloy. Experimental results show that tensile strength and fatigue properties are a function of the brazing process temperature cycle. Maximum tensile and fatigue properties can be obtained by choice of an optimal braze time and temperature. However, in both tensile and fatigue tests the brazed joints exhibited low ductility. Metallography of the fractured tensile and fatigue samples showed that cracks always initiated in and propagated along the interface between the transition layer and the braze metal. EDS analysis across the joint showed that P diffused very quickly into base metal along grain boundaries. A strong Al peak (associated with the detection of Al 2 O 3 ) was found that corresponded with the transition layer. Fractography showed an intergranular fracture pattern across this transition zone indicating that the observed segregation of alumina particles reduces the ductility of this region. ((orig.))

  20. Microstructure investigation of bronze/steel brazed joints proposed for HHF components of ITER manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, G.M. [Research and Development Institute of Power Engineering, P.O. Box 788, Moscow 101000 (Russian Federation)], E-mail: gmk@nikiet.ru; Krestnikov, N.S. [Research and Development Institute of Power Engineering, P.O. Box 788, Moscow 101000 (Russian Federation); Jarovinskiy, Yu.L.; Makhin, I.D.; Nikolaev, V.V. [Rocket and Space Corporation ' Energia' , Korolev, Lenina Street 4-a, Moscow 141070 (Russian Federation); Skladnov, K.S.; Strebkov, Yu.S.; Zolotarev, V.B. [Research and Development Institute of Power Engineering, P.O. Box 788, Moscow 101000 (Russian Federation)

    2008-12-15

    Brazing is considered as one of the perspective option of high heat flux components of ITER manufacturing. CuCrZr bronze, austenitic steel AISI 321-type and PM-17-type (Ni-Mn-Fe-Si-Sn-B alloy) brazed material were used for the development of brazing technology. Two type of brazing have been studied within the framework of recent investigation: - Hot isostatic pressing (HIP)-assisted brazing. - Furnace-assisted brazing (with uniaxial compression loading). For the hydrostatic pressing (HIP) the brazed components were pressed out for about 175 MPa during 2.5 h at the temperature 1035-1040 deg. C. For the furnace-assisted brazing all components were inserted into the sealed can, vacuumed and heated up to brazing temperature {approx}950 deg. C. Fast cooling and ageing heat treatment (500 deg. C and 4 h) were applied to provide high strength of CuCrZr bronze. Microsections of specimens cut from the joints were studied by optical microscopy and by scanning electron microscopy (SEM). The microstructure, distribution of alloying elements of base metals and of brazed material components were studied in the joints. Results of these studies are discussed in this paper. The data shows that there is a potential for using more simple and cheap (in comparison with common HIP) technologies of bronze to steel joining with satisfactory quality.

  1. Mechanical properties of brazing joints of alumina dispersion strengthened copper to 316 stainless steel for fusion reactor divertor

    International Nuclear Information System (INIS)

    Nishi, Hiroshi; Araki, Toshiaki.

    1994-01-01

    Brazing of alumina dispersion strengthened copper to 316 stainless steel was carried out with the brazing parameters such as brazing alloy, clearance and time to investigate the influence of brazing conditions on the joint strength. Tensile and Charpy impact tests of the joint specimens were performed to evaluate their strength. Microstructure and hardness of the brazed zone were examined with an optical microscope and a Vickers hardness tester. The excellent brazing joint strength was achieved with BAu-2 brazing alloy. The tensile strength of the joint with the brazing clearance of 0.2mm and the brazing time of 300s was as large as that of the diffusion bonding joint. However, Charpy absorbed energy of the brazing was lower than that of the diffusion bonding. Alumina dispersion strengthened copper remelted near the brazed zone because of diffusion of the brazing alloy, and the specimens fractured at the remelted zone. The brazed zone included many voids, which caused a scattering of the strength. (author)

  2. Strength of vacuum brazed joints for repair; Haallfasthet hos reparationer utfoerda med vakuumloedning

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, Leif [Siemens Industrial Turbomachinery AB, Finspaang (Sweden)

    2005-04-01

    Strength data are missing for braze joints. Repaired components cannot fully make use of the strength of the braze, and lifetime will be underestimated. The goal of the project was to generate material data to be able to prolong the lifetime of the components. Two different material combinations were tested, 12% Chromium steel brazed with BNi-2, and a nickel base alloy, IN792 brazed with BNi-5. Tensile testing at room temperature and elevated temperature was performed in the project. Target group is purchasers and suppliers of repaired components. A tensile test specimen with butt joint was developed in the project. The used test specimen worked well for the 12% Chromium steel. The results from testing show that proof stress and tensile strength are strongly depending on the joint gap, particularly at room temperature. High strength, close to base material strength, was achieved with joint gaps smaller than 50{mu}m. For wider joint gaps, strength was lower. Strength was approximately 25% of base material strength for joint gaps over 100{mu}m. The results can be explained by changes in microstructure. Joint gaps wider than 50{mu}m showed evidence of two-phase structure. At 500 deg C, the results also showed a connection between joint gap, microstructure and strength. The generated strength data can be used for calculations of lifetime for repaired components. Two different process errors were discovered in the manufacturing process of the brazed IN792 test specimens. The generated material data are therefor erroneous. The reason for this was two manufacturing errors. The tack welding was done with too high heat input. The surfaces of the joint gap became oxidised and the oxide hindered wetting of the braze. The second reason was that the brazing was done without the prescribed hold time at maximum temperature. The melting of the braze was therefor not completed when cooling started. As a result, the strength of the IN792 specimens was low at both temperatures.

  3. Multi-Scale Computational Modeling of Ni-Base Superalloy Brazed Joints for Gas Turbine Applications

    Science.gov (United States)

    Riggs, Bryan

    Brazed joints are commonly used in the manufacture and repair of aerospace components including high temperature gas turbine components made of Ni-base superalloys. For such critical applications, it is becoming increasingly important to account for the mechanical strength and reliability of the brazed joint. However, material properties of brazed joints are not readily available and methods for evaluating joint strength such as those listed in AWS C3.2 have inherent challenges compared with testing bulk materials. In addition, joint strength can be strongly influenced by the degree of interaction between the filler metal (FM) and the base metal (BM), the joint design, and presence of flaws or defects. As a result, there is interest in the development of a multi-scale computational model to predict the overall mechanical behavior and fitness-for-service of brazed joints. Therefore, the aim of this investigation was to generate data and methodology to support such a model for Ni-base superalloy brazed joints with conventional Ni-Cr-B based FMs. Based on a review of the technical literature a multi-scale modeling approach was proposed to predict the overall performance of brazed joints by relating mechanical properties to the brazed joint microstructure. This approach incorporates metallurgical characterization, thermodynamic/kinetic simulations, mechanical testing, fracture mechanics and finite element analysis (FEA) modeling to estimate joint properties based on the initial BM/FM composition and brazing process parameters. Experimental work was carried out in each of these areas to validate the multi-scale approach and develop improved techniques for quantifying brazed joint properties. Two Ni-base superalloys often used in gas turbine applications, Inconel 718 and CMSX-4, were selected for study and vacuum furnace brazed using two common FMs, BNi-2 and BNi-9. Metallurgical characterization of these brazed joints showed two primary microstructural regions; a soft

  4. Development of brazing process for W-EUROFER joints using Cu-based fillers

    Science.gov (United States)

    de Prado, J.; Sánchez, M.; Ureña, A.

    2016-02-01

    A successful joint between W and EUROFER using high temperature brazing technique has been achieved for structural application in future fusion power plants. Cu-based powder alloy mixed with a polymeric binder has been used as filler. Microstructural analysis of the joints revealed that the joint consisted mainly of primary phases and acicular structures in a Cu matrix. Interaction between EUROFER and filler took place at the interface giving rise to several Cu-Ti-Fe rich layers. A loss of hardness at the EUROFER substrate close to the joint due to a diffusion phenomenon during brazing cycle was measured; however, the joints had an adequate shear strength value.

  5. Experimental and thermodynamic assessment of beryllium-replacement materials for CANDU brazed joints

    Energy Technology Data Exchange (ETDEWEB)

    Potter, K.N.; Ferrier, G.A.; Corcoran, E.C., E-mail: Kieran.Potter@rmc.ca [Royal Military College of Canada, Kingston ON, (Canada); Dimayuga, F.C. [Canadian Nuclear Laboratories, Chalk River, ON (Canada)

    2015-07-01

    Currently, appendages are joined to CANDU fuel elements via a brazing process, with beryllium as the filler material. A potential reduction in the occupational limit on airborne beryllium particulates has motivated research into alternative brazing materials. To this end, the Canadian nuclear industry has funded an initiative to identify and evaluate the suitability of several candidate brazing materials. This work describes contributions toward the assessment of alternative brazing materials from the Royal Military College of Canada (RMCC). An impact testing method was developed to evaluate the mechanical strength of candidate braze joints.Thermodynamic modelling was performed to predict the aqueous behaviour of each candidate material in CANDU coolant conditions characteristic of reactor shutdown, and corrosion experiments are underway to support modelling predictions.The results of these activities will assist in selecting a suitable replacement material for beryllium. (author)

  6. Experimental Investigation on High-Cycle Fatigue of Inconel 625 Superalloy Brazed Joints

    Science.gov (United States)

    Chen, Jianqiang; Demers, Vincent; Turner, Daniel P.; Bocher, Philippe

    2018-04-01

    The high-cycle fatigue performance and crack growth pattern of transient liquid phase-brazed joints in a nickel-based superalloy Inconel 625 were studied. Assemblies with different geometries and types of overlaps were vacuum-brazed using the brazing paste Palnicro-36M in conditions such as to generate eutectic-free joints. This optimal microstructure provides the brazed assemblies with static mechanical strength corresponding to that of the base metal. However, eutectic micro-constituents were observed in the fillet region of the brazed assembly due to an incomplete isothermal solidification within this large volume of filler metal. The fatigue performance increased significantly with the overlap distance for single-lap joints, and the best performance was found for double-lap joints. It was demonstrated that these apparent changes in fatigue properties according to the specimen geometry can be rationalized when looking at the fatigue data as a function of the local stress state at the fillet radii. Fatigue cracks were nucleated from brittle eutectic phases located at the surface of the fillet region. Their propagation occurred through the bimodal microstructure of fillet and the diffusion region to reach the base metal. High levels of crack path tortuosity were observed, suggesting that the ductile phases found in the microstructure may act as a potential crack stopper. The fillet region must be considered as the critical region of a brazed assembly for fatigue applications.

  7. Reversible brazing process

    Science.gov (United States)

    Pierce, Jim D.; Stephens, John J.; Walker, Charles A.

    1999-01-01

    A method of reversibly brazing surfaces together. An interface is affixed to each surface. The interfaces can be affixed by processes such as mechanical joining, welding, or brazing. The two interfaces are then brazed together using a brazing process that does not defeat the surface to interface joint. Interfaces of materials such as Ni-200 can be affixed to metallic surfaces by welding or by brazing with a first braze alloy. The Ni-200 interfaces can then be brazed together using a second braze alloy. The second braze alloy can be chosen so that it minimally alters the properties of the interfaces to allow multiple braze, heat and disassemble, rebraze cycles.

  8. Interfacial microstructure and mechanical properties of brazed aluminum / stainless steel - joints

    Science.gov (United States)

    Fedorov, V.; Elßner, M.; Uhlig, T.; Wagner, G.

    2017-03-01

    Due to the demand of mass and cost reduction, joints based on dissimilar metals become more and more interesting. Especially there is a high interest for joints between stainless steel and aluminum, often necessary for example for automotive heat exchangers. Brazing offers the possibilities to manufacture several joints in one step at, in comparison to fusion welding, lower temperatures. In the recent work, aluminum / stainless steel - joints are produced by induction brazing using an AlSi10 filler and a non-corrosive flux. The mechanical properties are determined by tensile shear tests as well as fatigue tests at ambient and elevated temperatures. The microstructure of the brazed joints and the fracture surfaces of the tested samples are investigated by SEM.

  9. Microstructure and interfacial behaviour of Alumina/Inconel 600 joints prepared by brazing route

    International Nuclear Information System (INIS)

    Laik, A.; Mishra, P.; Bhanumurthy, K.; Kashyap, B.P.

    2010-01-01

    Joining of metals to ceramics remains a technological challenge due to the wide difference in the physical and mechanical properties of the two classes of materials. Attempt was made to produce leak tight joints between Inconel-600 and alumina using the brazing route with Au-Ni brazing alloy. Alumina tubes were metallised following the Mo-Mn route and then coated with Ni. The metallised alumina tubes were brazed to Inconel-600 ferrules using Au-18%Ni brazing alloy under vacuum, at optimised process parameters. In order to study the effect of prolong annealing on the microstructural stability and the micro-chemistry of the brazing zone, brazed joints were subjected to prolong annealing at 400 deg C and 560 deg C for 8000 hrs each. Detailed analysis of the interfacial structure of the brazing zones was done using an electron probe microanalyser (EPMA). X-ray maps of the elements Fe, Ni, Cr, Al, Au, Mo and Mn along with BSE images of the brazing zone are given. These X-ray maps precisely reveal the micro-chemistry of the brazing zones. The various phases formed were identified. The distribution of the various elements across the interfaces was also obtained, which helps to reveal the chemical behaviour of the individual elements during the process of brazing. Two phases appear very distinctly in the brazement, one is rich in Au and the other is rich in Ni. Depending upon their affinity, rest of the elements shows a partitioning in these two phases. While Fe, Cr and Mo get dissolved in the Ni-rich phase, Mn seems to partition in the Au-rich phase. The microstructure and the X-ray maps of the couple annealed at 400 deg C shows that the spatial variation in the composition throughout the brazing zone gets homogenised due to diffusion at high temperatures. This effect is even more pronounced on annealing at 560 deg C. Moreover, the transport of Cr from the Inconel side to the surface of alumina is very evident. On annealing at 560 deg C, a region rich in Cr, was found to

  10. Improving contour accuracy and strength of reactive air brazed (RAB) ceramic/metal joints by controlling interface microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chichi; Kuhn, Bernd; Brandenberg, Joerg; Beck, Tilmann; Singheiser, Lorenz [Forschungszentrum Juelich GmbH, Institute for Energy and Climate Research (IEK), Microstructure and Properties of Materials (IEK-2), 52425 Juelich (Germany); Bobzin, Kirsten; Bagcivan, Nazlim; Kopp, Nils [Surface Engineering Institute (IOT), RWTH Aachen University, Kackertstr. 15, 52072 Aachen (Germany)

    2012-06-15

    The development of high-temperature electrochemical devices such as solid oxide fuel cells, oxygen, and hydrogen separators and gas reformers poses a great challenge in brazing technology of metal/ceramic joints. To maintain the integrity of such equipment, the resulting seals have to be stable and hermetic during continuous and cyclic high temperature operation. As a solution for joining metal and ceramic materials, reactive air brazing has gained increasing interest in recent years. This paper compares joints brazed by different filler alloys: pure Ag, AgCu, and AgAl in three different aspects: contour accuracy, room temperature delamination resistance, and corresponding microstructures of the as-brazed and fractured brazed joints. Discussion focuses on fracture mechanism and associated delamination resistance. AgAl brazed joints exhibit the most promising mechanical properties and contour accuracy. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Microstructure and Mechanical Property of 3003 Aluminum Alloy Joint Brazed with Al-Si-Cu-Zn Filler Metal

    Directory of Open Access Journals (Sweden)

    LI Xiao-qiang

    2016-09-01

    Full Text Available Al-Si-Cu-Zn filler metal was developed to braze 3003 aluminum alloy. The microstructure and fracture surface of the joint were analyzed by XRD, SEM and EDS, and the effects of brazing temperature on microstructure and property of the joint were investigated. The results show that good joints are obtained at brazing temperature of 540-580℃ for 10min. The brazed joint consists of α(Al solid solution, θ(Al2Cu intermetallic compound, fine silicon phase and AlCuFeMn+Si phase in the central zone of brazed seam, and α(Al solid solution and element diffusion layers at both the sides of brazed seam, and the base metal. The room temperature (RT shear fracture of the joint occurs at the interface between the teeth shape α(Al in the diffusion layer and the center zone of brazed seam, which is mainly characterized as brittle cleavage. As the brazing temperature increases, α(Al solid solution crystals in the diffusion zone grow up, and the interfacial bonding of the joint is in the form of interdigitation. Brazing at 560℃ for 10min, the RT shear strength of the joint reaches the maximum value of 92.3MPa, which is about 62.7% of the base material.

  12. Mechanical design of ceramic beam tube braze joints for NOvA kicker magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ader, C.R.; Reilly, R.E.; Wilson, J.H.; /Fermilab

    2010-05-01

    The NO?A Experiment will construct a detector optimized for electron neutrino detection in the existing NuMI neutrino beam. The NuMI beam line is capable of operating at 400 kW of primary beam power and the upgrade will allow up to 700 kW. Ceramic beam tubes are utilized in numerous kicker magnets in different accelerator rings at Fermi National Accelerator Laboratory. Kovar flanges are brazed onto each beam tube end, since kovar and high alumina ceramic have similar expansion curves. The tube, kovar flange, end piece, and braze foil alloy brazing material are stacked in the furnace and then brazed. The most challenging aspect of fabricating kicker magnets in recent years have been making hermetic vacuum seals on the braze joints between the ceramic and flange. Numerous process variables can influence the robustness of conventional metal/ceramic brazing processes. The ceramic-filler metal interface is normally the weak layer when failure does not occur within the ceramic. Differences between active brazing filler metal and the moly-manganese process will be discussed along with the applicable results of these techniques used for Fermilab production kicker tubes.

  13. Brazing technology of Ti alloy/stainless steel dissimilar metal joint at system integrated modular advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sang Chul; Kim, Sung Ho; Kim, Yong Wan; Kim, Jong In

    2001-02-01

    For the technoldogy development of brazing Ti alloy to stainless steel joints used at SMART, the status of brazing technology development, brazing processes, and the brazing technology of Ti alloy and stainless steel are reviewed. Because fusion welding process cannot be applied due to the formation of intermetallic compounds in the weld metal, brazing joint was selected at the design. The joint part is assembled with a thread composed with male part of Ti alloy tube and female part of stainless tube. The gap in the thread will be filled with brazing filler metal. However, brittle Ti-Fe intermetallic compounds are formed at the surface of stainless steel through the diffusion of Ti at the melt. Brazing conditions should be set-up to reduce the formation of intermetallic compounds. For that, 3 kinds of Ag filler metals were selected as the candidates and heating will be done with induction and electric furnaces. Through measuring of joint strength according to the control of pre- and post-braze treatment, heating rate and heating time, optimal brazing method will be fixed. To qualify the brazing procedure and performance and to check defects in final product, the inspection plan will be established according to the req2wuirements of AWS and ASME.

  14. Brazing technology of Ti alloy/stainless steel dissimilar metal joint at system integrated modular advanced reactor

    International Nuclear Information System (INIS)

    Kwon, Sang Chul; Kim, Sung Ho; Kim, Yong Wan; Kim, Jong In

    2001-02-01

    For the technoldogy development of brazing Ti alloy to stainless steel joints used at SMART, the status of brazing technology development, brazing processes, and the brazing technology of Ti alloy and stainless steel are reviewed. Because fusion welding process cannot be applied due to the formation of intermetallic compounds in the weld metal, brazing joint was selected at the design. The joint part is assembled with a thread composed with male part of Ti alloy tube and female part of stainless tube. The gap in the thread will be filled with brazing filler metal. However, brittle Ti-Fe intermetallic compounds are formed at the surface of stainless steel through the diffusion of Ti at the melt. Brazing conditions should be set-up to reduce the formation of intermetallic compounds. For that, 3 kinds of Ag filler metals were selected as the candidates and heating will be done with induction and electric furnaces. Through measuring of joint strength according to the control of pre- and post-braze treatment, heating rate and heating time, optimal brazing method will be fixed. To qualify the brazing procedure and performance and to check defects in final product, the inspection plan will be established according to the req2wuirements of AWS and ASME

  15. Induction Brazing

    DEFF Research Database (Denmark)

    Henningsen, Poul

    , or if the hottest area is located outside the joint interface, a number of defects may appear: the braze metal may flow away from the joint, the flux may burn off, poor binding of the braze metal may appear or the braze metal may be overheated. Joint geometry as well as electro-magnetic properties of the work piece...... presents a combined numerical and experimental method for determination of appropriate/optimiged coil geometry and position in induction brazing tube-to-plate joints of different ratios between tube and plate thickness and different combinations of the materials stainless steel, brass and copper....... The method has proven to give successful results in brazing tube-plate joints of copper-brass, copper-stainless steel, stainless steel-brass, and stainless steel-stainless steel. A new design of an adjustable flux concentrator for induction heating tube-to-plate joints is proposed and tested on a variety...

  16. Pre- and postirradiation properties of brazed joints of AISI 316L stainless steel

    International Nuclear Information System (INIS)

    Brossa, M.; Franconi, E.; Guerreschi, U.; Pierazzi, L.; Poggi, P.; Rustia, V.

    1994-01-01

    An extensive test campaign has been performed to verify the reliability and the endurance of brazed joints between AISI 316L parts for structural applications in the nuclear field. The tests, conducted for comparison with three different high melting temperature alloys, included tensile tests (normal and shear), fatigue tests (fatigue crack propagation, low cycle fatigue, 4-point bending fatigue) and impact tests; besides, tensile tests have been performed with both unirradiated and irradiated specimens. Generally, the tests demonstrated satisfactory mechanical properties of the joints and revealed occasionally strong differences in the behaviour of the different brazing alloys, thus providing important design indications. ((orig.))

  17. Microstructure characteristics of vacuum glazing brazing joints using laser sealing technique

    Science.gov (United States)

    Liu, Sixing; Yang, Zheng; Zhang, Jianfeng; Zhang, Shanwen; Miao, Hong; Zhang, Yanjun; Zhang, Qi

    2018-05-01

    Two pieces of plate glass were brazed into a composite of glazing with a vacuum chamber using PbO-TiO2-SiO2-RxOy powder filler alloys to develop a new type of vacuum glazing. The brazing process was carried out by laser technology. The interface characteristics of laser brazed joints formed between plate glass and solder were investigated using optical microscope, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The results show that the inter-diffusion of Pb/Ti/Si/O elements from the sealing solder toward the glass and O/Al/Si elements from the glass toward the solder, resulting in a reaction layer in the brazed joints. The microstructure phases of PbTiO3, AlSiO, SiO2 and PbO in the glass/solder interface were confirmed by XRD analysis. The joining of the sealing solder to the glass was realized by the reaction products like fibrous structures on interface, where the wetting layer can help improve the bonding performance and strength between the sealing solder and the plate glass during the laser brazing process.

  18. Wide gap active brazing of ceramic-to-metal-joints for high temperature applications

    Science.gov (United States)

    Bobzin, K.; Zhao, L.; Kopp, N.; Samadian Anavar, S.

    2014-03-01

    Applications like solid oxide fuel cells and sensors increasingly demand the possibility to braze ceramics to metals with a good resistance to high temperatures and oxidative atmospheres. Commonly used silver based active filler metals cannot fulfill these requirements, if application temperatures higher than 600°C occur. Au and Pd based active fillers are too expensive for many fields of use. As one possible solution nickel based active fillers were developed. Due to the high brazing temperatures and the low ductility of nickel based filler metals, the modification of standard nickel based filler metals were necessary to meet the requirements of above mentioned applications. To reduce thermally induced stresses wide brazing gaps and the addition of Al2O3 and WC particles to the filler metal were applied. In this study, the microstructure of the brazed joints and the thermo-chemical reactions between filler metal, active elements and WC particles were analyzed to understand the mechanism of the so called wide gap active brazing process. With regard to the behavior in typical application oxidation and thermal cycle tests were conducted as well as tensile tests.

  19. Microstructure and properties of nickel base superalloy joints brazed with Ni-Cr-Co-B and BNi-1a filler metals

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, H. [Beijing Univ. of Aeronautics and Astronautics (China); Liu, W. [Dalian Railway Inst. (China). Welding Div.

    1995-12-31

    In this study, the kind and compositions of brittle phases formed in joints of a nickel-base superalloy brazed with the Ni-Cr-Co-B and BNi-1a (Ni-Cr-B-Si) filler metals were investigated. Their brittle-phase-free maximum brazing clearances (MBC) were characterized in dependence on the brazing conditions. The improvement on joint structures by post-braze heat treatment was also examined. (orig./MM)

  20. Complex investigation of several silver-less brazed Be/CuCrZr joints

    Energy Technology Data Exchange (ETDEWEB)

    Komarov, A.; Gervash, A.; Komarov, V.; Mazul, I.; Litounovski, N. [Efremov Inst., St Petersburg (Russian Federation); Fedotov, V.; Sevrukov, O. [Moscow Physical Engineering Inst. (Russian Federation); Ganenko, A. [CRISM Prometey, St Petersburg (Russian Federation)

    1998-07-01

    One of the main problems for ITER divertor target technology is to provide a reliable joint between Be as armour material and copper alloy as heat-sink structure. Such joints should satisfy the different requirements. In particular, these joints should successfully withstand cyclic heat fluxes and should have good properties under neutron irradiation. To study such complex of problems several investigation stages were planned in Russia. This paper presents the results of complex investigation of several silver-less brazed Be/CuCrZr joint candidates. (author)

  1. Complex investigation of several silver-less brazed Be/CuCrZr joints

    International Nuclear Information System (INIS)

    Komarov, A.; Gervash, A.; Komarov, V.; Mazul, I.; Litounovski, N.; Fedotov, V.; Sevrukov, O.; Ganenko, A.

    1998-01-01

    One of the main problems for ITER divertor target technology is to provide a reliable joint between Be as armour material and copper alloy as heat-sink structure. Such joints should satisfy the different requirements. In particular, these joints should successfully withstand cyclic heat fluxes and should have good properties under neutron irradiation. To study such complex of problems several investigation stages were planned in Russia. This paper presents the results of complex investigation of several silver-less brazed Be/CuCrZr joint candidates. (author)

  2. The stress-corrosion behaviour in water media containing chlorine of the brazing joint of grids for PWR fuel element

    International Nuclear Information System (INIS)

    Zhang Weijie; Li Wenqing.

    1985-01-01

    This paper details the testing results of the stress-corrosion behaviour in the 150 deg C water media containing chlorine for the brazing joints made from three alloy systems, which are Ni-Cr-Si, Ni-Cr-P and Ni-P, including 16 compositions. The test results indicate that, in the Ni-Cr-Si system, Ni-Cr-Si-Ge brazing joint is the best, to resist stress-corrosion, while Ni-Cr-Si-P-Ge-Pd and BNi5 brazing joints are better. In the Ni-Cr-P system, only the Ni-Cr-P-Mo-Zr brazing joint has an excellent resistance to stress-corrosion

  3. Microstructure evolution and mechanical properties of Ti−22Al−25Nb alloy joints brazed with Ti−Ni−Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Cai, X.Q.; Yang, Z.W., E-mail: tjuyangzhenwen@163.com; Qiu, Q.W.; Wang, D.P.; Liu, Y.C.

    2016-10-01

    Ti{sub 45}Ni{sub 45}Nb{sub 10} (at.%) brazing alloy, fabricated by arc melting, was successfully used to braze Ti−22Al−25Nb (at.%) alloy. The microstructures of Ti{sub 45}Ni{sub 45}Nb{sub 10} brazing alloy and Ti−22Al−25Nb alloy brazed joints were analyzed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and micro-area X-ray diffraction (XRD). The effects of the brazing parameters on the interfacial microstructure and mechanical properties of the Ti−22Al−25Nb alloy brazed joints were investigated. The results showed that the joint was primarily comprised of two characteristic zones: diffusion zone I and central zone II, and the reaction phases formed in the brazed joint were the B2, O, τ{sub 3}, and Ti{sub 2}Ni phase. The crystal orientation of B2 phase in diffusion zone I was consistent with that in the Ti−22Al−25Nb substrate. The O phase was precipitated from the B2 phase. As the brazing temperature or holding time increased, τ{sub 3} was gradually replaced by the B2 phase, and the Ti{sub 2}Ni phase decreased and ultimately disappeared. The maximum shear strength achieved at room temperature was 318 MPa when the joint was brazed at 1180 °C for 20 min, whereas it was 278 MPa at 650 °C. Crack primarily propagated in the τ{sub 3} compound, which was extremely hard and brittle, and partially traversed the B2 and O phases. - Highlights: • Ti{sub 45}Ni{sub 45}Nb{sub 10} alloy was successfully developed to braze Ti−22Al−25Nb alloy. • Ti−22Al−25Nb alloy was transformed from B2 phase into the O + B2 duplex phase after brazing. • Crystal orientation of B2 in joint was dependent on metal substrate. • Correlation between joint microstructure and mechanical properties was revealed. • Ti−22Al−25Nb brazed joint had excellent ambient and high temperature strength.

  4. Effects of brazing temperature on microstructure and mechanical performance of Al{sub 2}O{sub 3}/AgCuTi/Fe–Ni–Co brazed joints

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yongtong; Yan, Jiazhen, E-mail: yanjiazhen@scu.edu.cn; Li, Ning; Zheng, Yi; Xin, Chenglai

    2015-11-25

    Al{sub 2}O{sub 3}/Fe–Ni–Co joints are achieved using Ag–Cu–8Ti filler alloy, and the dependence of the joint microstructure and mechanical performance on the brazing temperature has been studied by means of SEM, EDS, XRD and tensile test. The results show that the brazing seam is composed of TiO, Ti{sub 3}Al, Ag (s, s), Cu (s, s), (Cu, Ni) and Ni{sub 4}Ti{sub 3} phases. A layer of Ti{sub 3}Al and TiO products is observed at the Al{sub 2}O{sub 3}/AgCuTi interface and the fracture testing indicates that the thickness of the reaction layer plays a critical role in the joint strength. The joint strength firstly increases and then declines with the thickness of the (Ti{sub 3}Al + TiO) layer increasing, and the formation of the cracks is ascribed to the existence of Ti{sub 3}Al phase. The thermokinetic analysis for the interfacial reaction between Al{sub 2}O{sub 3} and AgCuTi show that the Gibbs free energy equals −88.939 kJ/mol for forming Ti{sub 3}Al and TiO phases, and the growth rate of the reaction layer mainly depends on the diffusion rate of Ti across the formed reaction layer. Meanwhile, the quantitative relationship among brazing temperature, holding time and reaction layer thickness has been established. - Graphical abstract: The theoretical curve of brazing time and thickness is close proximity to the measured values, which means the extracted mathematical relationship (X = 2.2616 × 10{sup −1} exp (−143.85 × 10{sup 3}/8.314 T) × t{sup 0.5}) relatively closed to the actual situation. The growth rate of reaction layer declines with the increase of brazing time, and this phenomenon indicates that the diffusion rate of Ti atoms across the reaction layer is less than the rate of the chemical reaction during brazing, that is, the growth rate of reaction layer mainly depends on the diffusion rate of Ti atoms across the formed reaction layer. - Highlights: • The dependence of seam microstructure on brazing temperature is discussed. • Thermokinetic

  5. Single-step brazing process for mono-block joints and mechanical testing

    International Nuclear Information System (INIS)

    Casalegno, V.; Ferraris, M.; Salvo, M.; Rizzo, S.; Merola, M.

    2007-01-01

    Full text of publication follows: Plasma facing components act as actively cooled thermal shields to sustain thermal and particle loads during normal and transient operations in ITER (International Thermonuclear Experimental Reactor). The plasma-facing layer is referred to as 'armour', which is made of either carbon fibre reinforced carbon composite (CFC) or tungsten (W). CFC is the reference design solution for the lower part of the vertical target of the ITER divertor. The armour is joined onto an actively cooled substrate, the heat sink, made of precipitation hardened copper alloy CuCrZr through a thin pure copper interlayer to decrease, by plastic deformation, the joint interface stresses; in fact, the CFC to Cu joint is affected by the CTE mismatch between the ceramic and metallic material. A new method of joining CFC to copper and CFC/Cu to CuCrZr alloy was effectively developed for the flat-type configuration; the feasibility of this process also for mono-block geometry and the development of a procedure for testing mono-block-type mock-ups is described in this work. The mono-block configuration consists of copper alloy pipe shielded by CFC blocks. It is worth noting that in mono-block configuration, the large thermal expansion mismatch between CFC and copper alloy is more significant than for flat-tile configuration, due to curved interfaces. The joining technique foresees a single-step brazing process: the brazing of the three materials (CFC-Cu-CuCrZr) can be performed in a single heat treatment using the same Cu/Ge based braze. The composite surface was modified by solid state reaction with chromium with the purpose of increasing the wettability of CFC by the brazing alloy. The CFC substrate reacts with Cr which, forming a carbide layer, allows a large reduction of the contact angle; then, the brazing of CFC to pure copper and pure copper to CuCrZr by the same treatment is feasible. This process allows to obtain good joints using a non-active brazing

  6. Single-step brazing process for mono-block joints and mechanical testing

    Energy Technology Data Exchange (ETDEWEB)

    Casalegno, V.; Ferraris, M.; Salvo, M.; Rizzo, S. [Politecnico di Torino, Materials Science and Chemical Engineering Dept., Torino (Italy); Merola, M. [ITER International Team, llER Joint Work Site, Cadarache, 13 - St Paul Lez Durance (France)

    2007-07-01

    Full text of publication follows: Plasma facing components act as actively cooled thermal shields to sustain thermal and particle loads during normal and transient operations in ITER (International Thermonuclear Experimental Reactor). The plasma-facing layer is referred to as 'armour', which is made of either carbon fibre reinforced carbon composite (CFC) or tungsten (W). CFC is the reference design solution for the lower part of the vertical target of the ITER divertor. The armour is joined onto an actively cooled substrate, the heat sink, made of precipitation hardened copper alloy CuCrZr through a thin pure copper interlayer to decrease, by plastic deformation, the joint interface stresses; in fact, the CFC to Cu joint is affected by the CTE mismatch between the ceramic and metallic material. A new method of joining CFC to copper and CFC/Cu to CuCrZr alloy was effectively developed for the flat-type configuration; the feasibility of this process also for mono-block geometry and the development of a procedure for testing mono-block-type mock-ups is described in this work. The mono-block configuration consists of copper alloy pipe shielded by CFC blocks. It is worth noting that in mono-block configuration, the large thermal expansion mismatch between CFC and copper alloy is more significant than for flat-tile configuration, due to curved interfaces. The joining technique foresees a single-step brazing process: the brazing of the three materials (CFC-Cu-CuCrZr) can be performed in a single heat treatment using the same Cu/Ge based braze. The composite surface was modified by solid state reaction with chromium with the purpose of increasing the wettability of CFC by the brazing alloy. The CFC substrate reacts with Cr which, forming a carbide layer, allows a large reduction of the contact angle; then, the brazing of CFC to pure copper and pure copper to CuCrZr by the same treatment is feasible. This process allows to obtain good joints using a non

  7. Determinants of the quality of brazed joints of nickel-based superalloys

    Directory of Open Access Journals (Sweden)

    Katarzyna Strzelczak

    2017-10-01

    Full Text Available In the aerospace industry, passenger safety depends on proper quality control at each production stage. The main responsibility for the correct operation of the aircraft lies within a gas turbine. A proper and rigorous selection of the gas turbine construction material is required, and in a further step, the method of joining the construction parts. Nickel superalloys due to the high heat resistance, strength and creep resistance at high temperatures, toughness and corrosion resistance, are very often used for the construction of a gas turbine engine. In the next step, the selection of joining method is necessary. This method must be able to achieve high-quality connections, resistant to work at high temperatures and corrosive environments. The most effective bonding method that meets the above conditions is brazing. In this study non-destructive (visual test and destructive (metallographic test of brazed joint of Inconel 718 and Inconel 625 were conducted.

  8. A New Vacuum Brazing Route for Niobium-316L Stainless Steel Transition Joints for Superconducting RF Cavities

    Science.gov (United States)

    Kumar, Abhay; Ganesh, P.; Kaul, R.; Bhatnagar, V. K.; Yedle, K.; Ram Sankar, P.; Sindal, B. K.; Kumar, K. V. A. N. P. S.; Singh, M. K.; Rai, S. K.; Bose, A.; Veerbhadraiah, T.; Ramteke, S.; Sridhar, R.; Mundra, G.; Joshi, S. C.; Kukreja, L. M.

    2015-02-01

    The paper describes a new approach for vacuum brazing of niobium-316L stainless steel transition joints for application in superconducting radiofrequency cavities. The study exploited good wettability of titanium-activated silver-base brazing alloy (CuSil-ABA®), along with nickel as a diffusion barrier, to suppress brittle Fe-Nb intermetallic formation, which is well reported during the established vacuum brazing practice using pure copper filler. The brazed specimens displayed no brittle intermetallic layers on any of its interfaces, but instead carried well-distributed intermetallic particles in the ductile matrix. The transition joints displayed room temperature tensile and shear strengths of 122-143 MPa and 80-113 MPa, respectively. The joints not only exhibited required hermeticity (helium leak rate high vacuum but also withstood twelve hour degassing heat treatment at 873 K (suppresses Q-disease in niobium cavities), without any noticeable degradation in the microstructure and the hermeticity. The joints retained their leak tightness even after undergoing ten thermal cycles between the room temperature and the liquid nitrogen temperature, thereby establishing their ability to withstand service-induced low cycle fatigue conditions. The study proposes a new lower temperature brazing route to form niobium-316L stainless steel transition joints, with improved microstructural characteristics and acceptable hermeticity and mechanical properties.

  9. Multi-layer SiC ceramics/Mo joints brazed using high-temperature solders

    International Nuclear Information System (INIS)

    Olesinska, W.; Kesik, J.

    2003-01-01

    The paper presents the results of studies on joining SiC ceramics with molybdenum, with the ceramic surface being activated by titanium, chromium or copper. Titanium or chromium were deposited by the sputtering technique, and copper - by the electro-chemical method. The microstructures of the SiC/Mo joints brazed with the CuMn13Ni3 solder and copper in a nitrogen atmosphere were examined and the results discussed. The joints, in which the ceramic surface was activated in addition with chromium, do not contain mechanical defects caused by the joining process, and the ceramic surface is covered with a continuous layer of the solder. A phase analysis of the interface surface identified an MeSiC phase. The mechanical strength of the joints in which the ceramic surface was modified by the Ti, Cr and Cu layers was markedly greater than that of the joints brazed directly to the uncoated ceramics with the use of active solders. (author)

  10. Strength of joints brazed with two-phase solders

    International Nuclear Information System (INIS)

    Shnyakin, N.S.; Parfenova, L.V.; Ekatova, A.S.; Prilepskaya, I.V.

    1976-01-01

    Dependence of the structure and strength of soldered joints upon a gap size in case of 1Kh18N10T stainless steel soldering with a double-phase solder of Ni-Zn-Cu system is described. Butt and lap joints have been subjected to soldering with gas-flame and induction heating. The optimum conditions of the solder crystallization are determined with wedge-gap samples. The studies show that the character of distribution of a fusible β-phase in metal depends upon a gap size. With gaps up to 0.1 mm the β-phase enriched with a fusible component (zinc) runs as a continuous thin interlayer in the middle of the seam. As a result of zinc evaporation from the β-phase this interlayer becomes internally oxidized. After the sample is broken an oxidized fracture gives one the impression of a poor fusion in the middle part of the joint. The ultimate strength of butt joints is 15-20 kgf/sq.mm. A value of thermal expansion of 1Kh18N10T steel samples, 1-5 mm thick, has been experimentally determined for butt soldering. The elongation of two halves of the sample is measured by an indicator and proved to be 0.89 mm for a 50x50x2 mm sample at a soldering temperature of 1.100 deg C. The paper presents methods for the calculation of an optimal gap value for butt soldering with a local gas-flame and induction heating

  11. Influences of Nozzle Material on Laser Droplet Brazing Joints with Cu89Sn11 Preforms

    Science.gov (United States)

    Stein, Stefan; Heberle, Johannes; Gürtler, Franz Josef; Cvecek, Kristian; Roth, Stephan; Schmidt, Michael

    This paper presents latest results on the influences of nozzle material and geometry on the electromechanical contacting of sensitive piezoceramic actuator modules. Two nozzle types have been investigated,a standard WC/Co nozzle which is used for soldering applications and a novelceramic nozzle. Applications for active piezoceramic components integrated in structural parts are e.g. active damping, energy harvesting, or monitoring of vibrations and material failure. Anup to now unsolved problem is the electrical contacting of such components without damaging the conductor or the metallization of the ceramic substrate. Since piezoelectric components are to be integrated into structures made of casted aluminum, requirements are high mechanical strength and temperature resistance. Within this paper a method forcontacting piezoceramic modules is presented. A spherical braze preform of tin bronze Cu89Sn11 with a diameter of 600 μm is located in a ceramic nozzle and is subsequently melted by a laser pulse. The liquid solder is ejected from the nozzlevia nitrogen overpressure and wets the surface of the metallization pad and the Cu-wire, resulting in a brazing joint after solidification. The process is called laser droplet brazing (LDB). To asses the thermal evolution during one cycle WC/Co and ZTA have been simulated numerically for two different geometries enabling a proposition weather the geometry or the material properties have a significant influence on the thermal load during one cycle. To evaluate the influence of the nozzle on the joint the positioning accuracy, joint height and detachment times have been evaluated. Results obtained with the ZTA nozzle show comparable positioning accuracies to a WC/Co nozzle with a lower standard deviation of solder detachment time.

  12. Development of W-composites/EUROFER brazed joints for the first wall component of future fusion reactors

    Science.gov (United States)

    de Prado, J.; Sánchez, M.; Antusch, S.; Ureña, A.

    2017-12-01

    The present work describes a joining procedure between two different tungsten composite materials (W-2Y2O3 and W-1TiC) with reduced activation ferritic-martensitic steel (Eurofer). The results indicated the achievement, in both cases, of high quality W-composites/Eurofer joints using 80Cu-20Ti as filler material. The braze is constituted by several ternary Cu-Ti-Fe phases distributed along a Cu-matrix, which acts as ductile phase capable of relieving the residual stresses, which could be produced during the service life of the component. Some cracks growing from W-braze interface into the base material have been detected. They are originated by the stresses produced during the cooling stage of the brazing cycle. Regarding the strength of the joints, similar shear strengths of both joints were obtained (˜105 MPa). These values were slightly lower than the ones obtained when pure tungsten was used as the base metal.

  13. Compressive Strength Evaluation in Brazed ZrO2/Ti6Al4V Joints Using Finite Element Analysis

    Science.gov (United States)

    Sharma, Ashutosh; Kee, Se Ho; Jung, Flora; Heo, Yongku; Jung, Jae Pil

    2016-05-01

    This study aims to synthesize and evaluate the compressive strength of the ZrO2/Ti-6Al-4V joint brazed using an active metal filler Ag-Cu-Sn-Ti, and its application to dental implants assuring its reliability to resist the compressive failure in the actual oral environment. The brazing was performed at a temperature of 750 °C for 30 min in a vacuum furnace under 5 × 10-6 Torr atmosphere. The microstructure of the brazed joint showed the presence of an Ag-rich matrix and a Cu-rich phase, and Cu-Ti intermetallic compounds were observed along the Ti-6Al-4V bonded interface. The compressive strength of the brazed ZrO2/Ti-6Al-4V joint was measured by EN ISO 14801 standard test method. The measured compressive strength of the joint was ~1477 MPa—a value almost five times that of existing dental cements. Finite element analysis also confirmed the high von Mises stress values. The compressive strains in the samples were found concentrated near the Ti-6Al-4V position, matching with the position of the real fractured sample. These results suggest extremely significant compressive strength in ZrO2/Ti-6Al-4V joints using the Ag-Cu-Sn-Ti filler. It is believed that a highly reliable dental implant can be processed and designed using the results of this study.

  14. Mechanics of brazed joints and compliant layers in high heat flux components

    International Nuclear Information System (INIS)

    Lovato, G.; Moret, F.; Chaumat, G.; Cailletaud, G.; Pilvin, P.

    1995-01-01

    Soft layers are of great interest for the joining of dissimilar materials like beryllium, tungsten or carbone base refractory tiles for plasma interface and cooled structures made of copper or molybdenum. Soft layers reduce the residual and in-service stress/strain level without reducing the thermal capability. Thin soft layers interfaces are produced during the brazing or HIP bonding cycles. However, the numerical modelling of the mechanical effect of such soft layers remains largely inaccurate. The camber of [CFC tiles (A05, N11, N112)/Ag-Cu-Ti filler metal/OFHC or TZM substrate] assemblies is recorded during the whole brazing thermal cycle and subsequent thermal fatigue cycles using a special vertical dilatometer. An inverse method based on Finite Element modelling of the samples is used to determine the joint constitutive law. Then, by comparing experiments and FEM calculations, the effects of distributed damage of the CFC and of the strain hardening and thermal softening of OFHC on the in-service stress/strain state of the component are observed. (orig.)

  15. Mechanics of brazed joints and compliant layers in high heat flux components

    International Nuclear Information System (INIS)

    Lovato, G.; Moret, F.; Chaumat, G.

    1994-01-01

    Soft layers are of great interest for the joining of dissimilar materials like beryllium, tungsten or carbon base refractory tiles for plasma interface and cooled structures made of copper or molybdenum. Soft layers reduce the residual and in-service stress/strain level without reducing the thermal capability. Thin soft layers interfaces are produced during the brazing or HIP bonding cycles. However, the numerical modelling of the mechanical effect of such soft layers remains largely inaccurate. The camber of [CFC tiles (A05, N11, N112)/Ag-Cu-Ti filler metal/OFHC or TZM substrate] assemblies is recorded during the whole brazing thermal cycle and subsequent thermal fatigue cycles using a special vertical dilatometer. An inverse method based on Finite Element modelling of the samples is used to determine the joint constitutive law. Then, by comparing experiments and FEM calculations, the effects of distributed damage of the CFC and of the strain hardening and thermal softening of OFHC on the in-service stress/strain state of the component are observed. (authors). 5 refs., 7 figs

  16. TETIG diagrams - a new way to optimise the design parameters and heat treatment of joints made in high-temperature brazing alloys. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R. (UKAEA Springfields Nuclear Power Development Labs.)

    1982-12-01

    The applications and problems of brazing are reviewed. Phase studies with the braze filler metal chosen for the LMFBR 9% Cr 1% Mo tube-in-tube joint work (BNi4), are discussed, with special reference to the problem of how to eliminate the centre-line eutectics containing hard, brittle compounds. A TETIG diagram is explained with reference to the variables (1) temperature of brazing operation; (2) time of soaking at temperature; and (3) the gap within the joints. Experiments are reported on brazing specimens of AISI 321 stainless steel, using braze filler metals containing various proportions of boron and silicon as the melting point temperature depressant. TETIG diagrams are constructed and used to predict how to optimize further joints. Micrographs show the effects of the variables on the microstructures.

  17. TETIG diagrams - a new way to optimise the design parameters and heat treatment of joints made in high-temperature brazing alloys

    International Nuclear Information System (INIS)

    Johnson, R.

    1982-01-01

    The applications and problems of brazing are reviewed. Phase studies with the braze filler metal chosen for the LMFBR 9% Cr 1% Mo tube-in-tube joint work (BNi4), are discussed, with special reference to the problem of how to eliminate the centre-line eutectics containing hard, brittle compounds. A TETIG diagram is explained with reference to the variables (1) temperature of brazing operation; (2) time of soaking at temperature; and (3) the gap within the joints. Experiments are reported on brazing specimens of AISI 321 stainless steel, using braze filler metals containing various proportions of boron and silicon as the melting point temperature depressant. TETIG diagrams are constructed and used to predict how to optimize further joints. Micrographs show the effects of the variables on the microstructures. (UK)

  18. Interfacial microstructure and shear strength of reactive air brazed oxygen transport membrane ceramic-metal alloy joints

    Science.gov (United States)

    FR, Wahid Muhamad; Yoon, Dang-Hyok; Raju, Kati; Kim, Seyoung; Song, Kwang-sup; Yu, Ji Haeng

    2018-01-01

    To fabricate a multi-layered structure for maximizing oxygen production, oxygen transport membrane (OTM) ceramics need to be joined or sealed hermetically metal supports for interfacing with the peripheral components of the system. Therefore, in this study, Ag-10 wt% CuO was evaluated as an effective filler material for the reactive air brazing of dense Ce0.9Gd0.1O2-δ-La0.7Sr0.3MnO3±δ (GDC-LSM) OTM ceramics. Thermal decomposition in air and wetting behavior of the braze filler was performed. Reactive air brazing was performed at 1050 °C for 30 min in air to join GDC-LSM with four different commercially available high temperature-resistant metal alloys, such as Crofer 22 APU, Inconel 600, Fecralloy, and AISI 310S. The microstructure and elemental distribution of the ceramic-ceramic and ceramic-metal interfaces were examined from polished cross-sections. The mechanical shear strength at room temperature for the as-brazed and isothermally aged (800 °C for 24 h) joints of all the samples was compared. The results showed that the strength of the ceramic-ceramic joints was decreased marginally by aging; however, in the case of metal-ceramic joints, different decreases in strengths were observed according to the metal alloy used, which was explained based on the formation of different oxide layers at the interfaces.

  19. Effect of processing parameters on the formation of Cf/LAS composites/Ag−Cu−Ti/TC4 brazed joint

    International Nuclear Information System (INIS)

    Liu, Duo; Niu, Hongwei; Liu, Jihou; Song, Xiaoguo; Xia, Long; Feng, Jicai

    2016-01-01

    C f /LAS composites were successfully jointed to TC4 alloy with Ag−Cu−Ti filler by vacuum brazing. The interfacial microstructure of TC4/C f /LAS composites joints was characterized by employing scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-diffraction (XRD) and transmission electron microscopy (TEM). The determination of the thin interfacial reaction layer (TiSi 2 + TiC layer) was realized by TEM. The effect of holding time on the interfacial microstructure and shear strength were investigated. With the increasing holding time, the thickness of diffusion layer, Ti 3 Cu 4 layer, and TiSi 2 + TiC layer increased obviously, on the contrary, that of Ti−Cu intermetallic compound layers decreased gradually. Besides, blocky Ti 3 Cu 4 phase was coarsened when the joint was brazed at 890 °C for 20 min, which deteriorated the mechanical properties of the joint dramatically. The interfacial evolution of TC4/C f /LAS composites joint and the formation of TiSi 2 , TiC, Ti 3 Cu 4 , TiCu and Ti 2 Cu phases were expounded. The maximum shear strength of 26.4 MPa was obtained when brazed at 890 °C for 10 min. - Highlights: •The thin interface reaction layer was determined to be TiSi 2 + TiC layer by TEM. •Holding time had influence on the interfacial microstructure and joint properties. •Microstructural evolution mechanism and reactions of brazed joints were expounded.

  20. High temperature brazing of reactor materials

    International Nuclear Information System (INIS)

    Orlov, A.V.; Nechaev, V.A.; Rybkin, B.V.; Ponimash, I.D.

    1990-01-01

    Application of high-temperature brazing for joining products of such materials as molybdenum, tungsten, zirconium, beryllium, magnesium, nickel and aluminium alloys, graphite ceramics etc. is described. Brazing materials composition and brazed joints properties are presented. A satisfactory strength of brazed joints is detected under reactor operation temperatures and coolant and irradiation effect

  1. Finite element modelling for thermal analysis of stud-to-plate laser brazing for a dissimilar metal joint

    International Nuclear Information System (INIS)

    Park, Jun Soo; Kim, Jong Min

    1996-06-01

    A finite element model was developed for the thermal analysis of a stud-to-plate laser brazing joint, and the transient temperature fields were analysed by using a three-dimensional model. The finite element program ABAQUS, together with a few user subroutines, was employed to perform the numerical approximation. Temperature-dependent thermal properties, effect of latent heat, and the convection and radiative heat losses were considered. The brazing parts used were AISI 304 stainless steel stud and aluminium A1 5052 plate, and the brazing alloy 88 A1-12 Si was used as filler metal. A pseudo-TM 01 mode of the cw CO 2 laser beam was used as heat source, for which TM 00 mode generated by beam oscillator was optically modulated using axicon lens. Re-location of the filler metal during the brazing process including its wetting and spreading was examined by using a high speed motion analyser, and the results were incorporated inn the FEM modelling for defining the solution domain and boundary conditions. The numerical results were obtained for typical process parameters, and were compared with experimental ones determined by using the infrared and thermocouple measurements. 11 figs., 30 refs. (Author)

  2. Brazing handbook

    CERN Document Server

    American Welding Society

    2007-01-01

    By agreement between the American Welding Society C3 Committee on Brazing and Soldering and the ASM Handbook Committee, the AWS Brazing Handbook has been formally adopted as part of the ASM Handbook Series. Through this agreement, the brazing content in the ASM Handbook is significantly updated and expanded. The AWS Brazing Handbook, 5th Edition provides a comprehensive, organized survey of the basics of brazing, processes, and applications. Addresses the fundamentals of brazing, brazement design, brazing filler metals and fluxes, safety and health, and many other topics. Includes new chapters on induction brazing and diamond brazing.

  3. Investigation on localized corrosion of 304 stainless steel joints brazed using Sn-plated Ag alloy filler in NaCl aqueous solution

    Science.gov (United States)

    Wang, Xingxing; Li, Shuai; Peng, Jin

    2018-03-01

    Novel AgCuZnSn filler metal with high Sn contents was prepared from BAg50CuZn filler metal by a process of electroplating and thermal diffusion, and the prepared filler metal was applied to induction brazing of 304 stainless steel. The corrosion behavior of the brazed joints was evaluated based on localized corrosion analysis, the morphology of the joints were analyzed by SEM after immersion in a 3.5 vol% NaCl aqueous solution. The results indicated that corrosion groove occurred near the interface between the stainless steel base metal and the brazing seam. A wide range of defects such as holes and cracks appeared on the surface of the base metal, while the brazing seam zone almost no corrosion defects occur. With the increase of corrosion time, the corrosion rates of both the brazing seam and the base metal first exhibited an increasing trend, followed by a decreasing trend, and the corrosion rate of the base metal was slightly greater than that of the brazing seam. The corrosion potential of the brazing seam and 304 stainless steel were -0.7758 V and -0.7863 V, respectively.

  4. Microstructure and mechanical properties of SiO2-BN ceramic and Invar alloy joints brazed with Ag–Cu–Ti+TiH2+BN composite filler

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2016-03-01

    Full Text Available Ag–Cu–Ti + TiH2+BN composite filler was prepared to braze SiO2-BN ceramic and Invar alloy. The interfacial microstructure, mechanical properties, and residual stress distribution of the brazed joints were investigated. The results show that a wave-like Fe2Ti–Ni3Ti structure appears in the Invar substrate and a thin TiN–TiB2 reaction layer forms adjacent to the SiO2-BN ceramic. The added BN particles react with Ti to form TiN–TiB fine-particles, which is beneficial to refine the microstructure of the brazing seam and to greatly inhibit the brittle compounds formation. The interfacial microstructure at various brazing temperatures was analyzed, and the mechanism for the interfacial reactions responsible for the bonding was proposed. The maximum shear strength of the joints brazed with the composite filler at 880 °C for 10 min is 39 MPa, which is 30% greater than that brazed with Ag–Cu–Ti alloy. The improvement of the joint strength is attributed to the variation of joint microstructure and the reduction of tensile stresses induced in the SiO2-BN ceramic. The finite element analysis indicates that the peak tensile stress decreases from 230 to 142 MPa due to the addition of BN particles in the ceramic.

  5. Microstructure and mechanical properties of MoSi2–MoSi2 joints brazed by Ag–Cu–Zr interlayer

    International Nuclear Information System (INIS)

    Hatami Ramsheh, H.; Faghihi Sani, M.A.; Kokabi, A.H.

    2013-01-01

    Highlights: ► Brazing of MoSi 2 –MoSi 2 using Ag–Cu–Zr interlayer at different temperatures. ► Investigation of shear strength and microstructure of the joint by SEM and XRD. ► Formation of Ag-rich solid solution and various Cu–Zr–Si intermetallic compounds. ► Maximum shear strength for the sample with 830 °C brazing temperature. ► Various fracture path and morphology at different brazing temperatures. - Abstract: The present work investigates joining of two MoSi 2 parts through Cusil/Zr/Cusil interlayer with Cusil being a commercial eutectic of Cu–Ag alloy. The joining operation was implemented in an inert gas tube furnace by brazing. The brazing temperature ranged from 800 to 930 °C while the operation lasted for 60 min. Evaluation of joints strength through shear loading identified the maximum strength 60.31 MPa for the brazed sample at 830 °C. Interfacial microstructure was studied by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD) techniques. Applying the temperature of 830 °C was led to a uniform dense joint consisting of various phases with excellent bonding within the interfaces. XRD and EDS results revealed different phases such as Mo 5 Si 3 , Ag-rich solid solution and Cu 10 Zr 7 at the interface. At higher brazing temperatures the amount of intemetallic compounds and residual stresses increased and therefore, mechanical properties of the joint degraded. The fracture analysis by SEM revealed various fracture path and morphology for different brazing temperatures

  6. Microstructure evolution and shear strength of vacuum brazed joint for super-Ni/NiCr laminated composite with Ni–Cr–Si–B amorphous interlayer

    International Nuclear Information System (INIS)

    Wu, Na; Li, Yajiang; Ma, Qunshuang

    2014-01-01

    Highlights: • Divorced eutectic of γ-Ni and Ni 3 B formed in the brazed region. • The detailed isothermal solidification mechanism was proposed. • Borides formed at the interfaces at different temperatures were identified. • Effect of brazing temperatures on microstructure and shear strength was investigated. • Excellent joint with shear strength of 191 MPa was obtained at 1100 °C for 20 min. - Abstract: Vacuum brazing of super-Ni/NiCr laminated composite and Cr18–Ni8 steel was carried out with Ni–Cr–Si–B amorphous interlayer at different temperatures (1060–1150 °C). The effects of brazing temperature on the microstructure evolution and shear strength of the joints were investigated. Microstructure, chemical composition and microhardness of the joints were studied using field emission scanning electron microscope, energy dispersive spectroscopy, X-ray diffraction and microsclerometer. Shear strength of the joints were measured by the electromechanical universal testing machine. Diffusion of B was the controlling factor for microstructure evolution. The detailed isothermal solidification mechanism was proposed in this study. The fracture morphology of the joint made at 1100 °C exhibited plastic feature and the shear strength reached 191 MPa. Bulky Ni 3 B formed in super-Ni cover layer near the brazed region when performed at 1060–1100 °C while Ni–B eutectic formed instead at 1150 °C

  7. Microstructure and mechanical properties of joints in sintered SiC fiber-bonded ceramics brazed with Ag-Cu-Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mrityunjay [Ohio Aerospace Institute, Cleveland, OH 44142 (United States); Matsunaga, Tadashi [R and D Division, Ube Industries, Ltd., Ube-shi, Yamaguchi 755-8633 (Japan); Lin, Hua-Tay [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6068 (United States); Asthana, Rajiv, E-mail: asthanar@uwstout.edu [Department of Engineering and Technology, 326 Fryklund Hall, University of Wisconsin-Stout, Menomonie, WI 54751 (United States); Ishikawa, Toshihiro [R and D Division, Ube Industries, Ltd., Ube-shi, Yamaguchi 755-8633 (Japan)

    2012-11-15

    Active metal brazing of a new high thermal conductivity sintered SiC-polycrystalline fiber-bonded ceramic (SA-Tyrannohex{sup Registered-Sign }) has been carried out using a Ti-containing Ag-Cu active braze alloy (Cusil-ABA{sup Registered-Sign }). The brazed composite joints were characterized using scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM-EDS). The results show that this material can be successfully joined using judiciously selected off-the shelf active braze alloys to yield metallurgically sound joints possessing high integrity. Uniform and continuous joints were obtained irrespective of differences in the fiber orientation in the substrate material. Detailed interfacial microanalysis showed that the titanium reacts with C and Si to form TiC layer and a Ti-Si compound, respectively. Furthermore, the evaluation of shear strength of the joints was also conducted at ambient and elevated temperatures in air using the single-lap offset (SLO) shear test. The perpendicular-type SA-Tyrannohex joints exhibited apparent shear strengths of about 42 MPa and 25 MPa at 650 Degree-Sign C and 750 Degree-Sign C, respectively. The fracture at the higher temperature occurred at the interface between the reaction-formed TiC layer and braze. This might be caused by generation of stress intensity when a shear stress was applied, according to {mu}-FEA simulation results.

  8. Advances in brazing science, technology and applications

    CERN Document Server

    2013-01-01

    Brazing processes offer enhanced control, adaptability and cost-efficiency in the joining of materials. Unsurprisingly, this has lead to great interest and investment in the area. Drawing on important research in the field, Advances in brazing provides a clear guide to the principles, materials, methods and key applications of brazing. Part one introduces the fundamentals of brazing, including molten metal wetting processes, strength and margins of safety of brazed joints, and modeling of associated physical phenomena. Part two goes on to consider specific materials, such as super alloys, filler metals for high temperature brazing, diamonds and cubic boron nitride, and varied ceramics and intermetallics. The brazing of carbon-carbon (C/C) composites to metals is also explored before applications of brazing and brazed materials are discussed in part three. Brazing of cutting materials, use of coating techniques, and metal-nonmetal brazing for electrical, packaging and structural applications are reviewed, alon...

  9. Vacuum brazing of OFE Copper-316L stainless steel transition joints without electroplating stainless steel part for application in particle accelerators

    International Nuclear Information System (INIS)

    Yadav, D.P.; Kumar, Abhay; Ganesh, P.

    2015-01-01

    Brazed transition Joints between OFE copper and type 316L austenitic stainless steel (SS) find extensive applications in particle accelerators all over the world. In contrast to excellent wettability of OFE copper, austenitic SS is well known for its poor wettability for BVAg-8 ( 72 Ag/ 28 Cu; melting point: 1052 K) braze filler metal (BFM). High surface wettability is believed to be necessary to drag molten BFM into the capillary gap between mating metallic surfaces. Therefore, the widely accepted practice for vacuum brazing of such transition joints involves electroplating of SS parts with nickel or copper to enhance its wettability. A recently concluded in-house study, involving Nb to Ni-plated 316L SS brazing, has demonstrated that satisfactory ingress of BFM into a capillary joint between two dissimilar metals is possible if the poor wettability of one of the mating surfaces is compensated by good wettability of its counterpart. In the light of these observations, the present study was undertaken to explicitly evaluate the requirement of electroplating the SS part for establishment of sound OFE copper-316L SS brazed joints suitable for service in ultra-high vacuum (UHV) of particle accelerators

  10. Comparative strength analysis and thermal fatigue testing of Be/CuCrZr and Be/GlidCop joints produced by fast brazing

    International Nuclear Information System (INIS)

    Gervash, A.; Mazul, I.; Yablokov, N.; Barabash, V.; Ganenko, A.

    2000-01-01

    Proposing beryllium as plasma facing armour this paper presents the recent results obtained in Russia in the frame of such activities. Last year testing of actively cooled mock-ups produced by fast brazing of Be onto Cu-alloy heat sink allows to consider mentioned Russian method as promising for both PH-copper like CuCrZr and DS-copper like GlidCop. Summarizing recent experimental results with their previous data authors attempt to comparatively investigate a behaviour of Be/CuCrZr and Be/GlidCop joints in ITER relevant conditions. Mechanical properties, brazing zone microstructure and thermal response were taken for comparison. The shear strength for both types of joints was found as 150-200 MPa and did not depend on testing temperature. The brazing zone morphology and microhardness are presented, the thermal fatigue behaviour of investigated joints is described. All main results as well as the nearest future plans are discussed. (orig.)

  11. Experimental and thermodynamic studies of beryllium replacement materials for CANDU brazed joints

    Energy Technology Data Exchange (ETDEWEB)

    Potter, K.N.; Ferrier, G.A.; Corcoran, E.C., E-mail: Kieran.Potter@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2015-07-01

    Currently, appendages are joined to CANDU fuel elements via a brazing process, which uses beryllium as the filler material. A potential reduction in the occupational limit on airborne beryllium particulates has motivated research into alternative brazing materials. To this end, the Canadian nuclear industry has funded an initiative to identify and evaluate the suitability of several candidate materials. This work describes contributions toward the assessment of alternative brazing materials from the Royal Military College of Canada. Thermodynamic modelling was performed to predict the aqueous behaviour of each candidate material in CANDU coolant conditions characteristic of reactor shutdown, and experiments are underway to support modelling predictions. These results will assist in selecting a suitable replacement material for beryllium. (author)

  12. Weld-brazing - a new joining process. [combination resistance spot welding and brazing of titanium alloys

    Science.gov (United States)

    Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.

    1972-01-01

    A joining process designated weld brazing which combines resistance spot welding and brazing has been developed. Resistance spot welding is used to position and align the parts as well as to establish a suitable faying surface gap for brazing. Fabrication is then completed by capillary flow of the braze alloy into the joint. The process has been used successfully to fabricate Ti-6Al-4V titanium alloy joints using 3003 aluminum braze alloy. Test results obtained on single overlap and hat-stiffened structural specimens show that weld brazed joints are superior in tensile shear, stress rupture, fatigue, and buckling than joint fabricated by spotwelding or brazing. Another attractive feature of the process is that the brazed joints is hermetically sealed by the braze material.

  13. In Situ SEM Observations of Fracture Behavior of Laser Welded-Brazed Al/Steel Dissimilar Joint

    Science.gov (United States)

    Xia, Hongbo; Tan, Caiwang; Li, Liqun; Ma, Ninshu

    2018-03-01

    Laser welding-brazing of 6061-T6 aluminum alloy to DP590 dual-phase steel with Al-Si12 flux-cored filler wire was performed. The microstructure at the brazing interface was characterized. Fracture behavior was observed and analyzed by in situ scanning electron microscope. The microstructure of the brazing interface showed that inhomogeneous intermetallic compounds formed along the thickness direction, which had a great influence on the crack initiation and propagation. In the top region, the reaction layer at the interface consisted of scattered needle-like Fe(Al,Si)3 and serration-shaped Fe1.8Al7.2Si. In the middle region, the compound at the interface was only serration-shaped Fe1.8Al7.2Si. In the bottom region, the interface was composed of lamellar-shaped Fe1.8Al7.2Si. The cracks were first detected in the bottom region and propagated from bottom to top along the interface. At the bottom region, the crack initiated and propagated along the Fe1.8Al7.2Si/weld seam interface during the in situ tensile test. When the crack propagated into the middle region, a deflection of crack propagation appeared. The crack first propagated along the steel/Fe1.8Al7.2Si interface and then moved along the weld seam until the failure of the joint. The tensile strength of the joint was 146.5 MPa. Some micro-cracks were detected at Fe(Al,Si)3 and the interface between the steel substrate and Fe(Al,Si)3 in the top region while the interface was still connected.

  14. Correlation between microstructure and mechanical properties of active brazed C{sub f}/SiC composite joints using Ti-Zr-Be

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Dongyu; Huang, Jihua, E-mail: jhhuang62@sina.com; Sun, Xiaowei; Yang, Jian; Chen, Shuhai; Zhao, Xingke

    2016-06-14

    C{sub f}/SiC composites were successfully active brazed by Ti-Zr-Be filler foil. The microstructure of the brazed joints was investigated by auger electron spectroscopy (AES) and scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS). The phase structure was determined by X-ray diffraction (XRD). The mechanical property was measured by mechanical testing machine. The results indicate that the brazed joint consisted of TiC, Ti{sub 3}SiC{sub 2}, ZrC, Be{sub 2}C, Be{sub 17}Ti{sub 2} and Ti-based solid solution (β-Ti). TiC+Ti{sub 3}SiC{sub 2}/ZrC+Ti(Zr)-Si-C+Be{sub 2}C reaction layers were formed near C{sub f}/SiC composite side while the reaction layer of β-Ti+Be{sub 17}Ti{sub 2}+Ti(Zr){sub 3}SiC{sub 2} with a small amount of ZrC, TiSi{sub 2}, Be{sub 2}C particles was formed in the center of the joint. With the increase of the brazing temperature or holding time, the amount of β-Ti compound in the interlayer decreased gradually while the thickness of reaction layer increased gradually. When the brazing temperature was 1000 °C and the holding time was 15 min, the maximum room temperature shear strength of the brazed joint can be achieved, which was 136.63 MPa. The joints with the parameters of 950 °C/30 min, 1000 °C/15 min and 1050 °C/5 min could resist a pressure of 5 MPa at 1200 °C for 5 min.

  15. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    Science.gov (United States)

    Lee, Jung Gu; Lee, Gyoung-Ja; Park, Jin-Ju; Lee, Min-Ku

    2017-05-01

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments.

  16. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Gu, E-mail: jglee88@ulsan.ac.kr [School of Materials Science and Engineering, University of Ulsan, Ulsan 44610 (Korea, Republic of); Lee, Gyoung-Ja; Park, Jin-Ju [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 34057 (Korea, Republic of); Lee, Min-Ku, E-mail: leeminku@kaeri.re.kr [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 34057 (Korea, Republic of)

    2017-05-15

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments. - Highlights: •Corrosion of Zircaloy-4 joints brazed with Zr-Cu-X filler alloys was investigated. •Alloyed Al deteriorated the overall nobility of joints by microgalvanic reaction. •Compositional gradient of Al in joints was the driving force for galvanic corrosion. •Cu and Fe did not influence the electrochemical stability of joints. •Zr-Cu-Fe filler alloy yielded excellent high-temperature corrosion resistance.

  17. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    International Nuclear Information System (INIS)

    Lee, Jung Gu; Lee, Gyoung-Ja; Park, Jin-Ju; Lee, Min-Ku

    2017-01-01

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments. - Highlights: •Corrosion of Zircaloy-4 joints brazed with Zr-Cu-X filler alloys was investigated. •Alloyed Al deteriorated the overall nobility of joints by microgalvanic reaction. •Compositional gradient of Al in joints was the driving force for galvanic corrosion. •Cu and Fe did not influence the electrochemical stability of joints. •Zr-Cu-Fe filler alloy yielded excellent high-temperature corrosion resistance.

  18. Influence of the brazing parameters on microstructure and mechanical properties of brazed joints of Hastelloy B2 nickel base alloy; Influencia de los parametros de soldeo fuerte en la microestructura y propiedades mecanicas de la union de la aleacion base niquel Hastelloy B2

    Energy Technology Data Exchange (ETDEWEB)

    Sotelo, J. C.; Gonzalez, M.; Porto, E.

    2014-07-01

    A study of the high vacuum brazing process of solid solution strengthened Hastelloy B2 nickel alloy has been done. A first stage of research has focused on the selection of the most appropriate brazing filler metal to the base material and vacuum furnace brazing process. The influence of welding parameters on joint microstructure constituents, relating the microstructure of the joint to its mechanical properties, has been evaluated. Two gaps of 50 and 200 micrometers, and two dwell times at brazing temperature of 10 and 90 minutes were studied. The braze joint mainly consists of the nickel rich matrix, nickel silicide and ternary compounds. Finally, the results of this study have shown the high bond strength for small gaps and increased dwell times of 90 minutes. (Author)

  19. HIGH TEMPERATURE BRAZING ALLOY FOR JOINT Fe-Cr-Al MATERIALS AND AUSTENITIC AND FERRITIC STAINLESS STEELS

    Science.gov (United States)

    Cost, R.C.

    1958-07-15

    A new high temperature brazing alloy is described that is particularly suitable for brazing iron-chromiumaluminum alloys. It consists of approximately 20% Cr, 6% Al, 10% Si, and from 1.5 to 5% phosphorus, the balance being iron.

  20. Numerical investigation of a brazed joint between W-1%La{sub 2}O{sub 3} and ODS EUROFER components

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, J. [Forschungszentrum Karlsruhe GmbH, Institute for Materials Research III, P.O. Box 3640, 76021 Karlsruhe (Germany)], E-mail: Jens.Reiser@imf.fzk.de; Norajitra, P.; Ruprecht, R. [Forschungszentrum Karlsruhe GmbH, Institute for Materials Research III, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2008-12-15

    A modular helium-cooled divertor design HEMJ (helium-cooled modular divertor concept with multiple-jet cooling) for the 'post-ITER' demonstration (DEMO) fusion reactor has been developed at the Forschungszentrum Karlsruhe. The design goal is to withstand a surface heat flux of at least 10 MW/m{sup 2} at an acceptable pumping power. A conical design of a brazed joint between two structural components of the HEMJ finger module which are made of different materials has been investigated. This new transition piece design should withstand at least 1000 temperature load cycles between operating and room temperatures. Due to the large mismatch of the thermal expansion coefficients (TECs) of the different materials used, high thermal stresses caused by the thermocyclic loads could lead to the plasticization of both materials in the joint region. To demonstrate the feasibility of this transition piece design, a systematic investigation is required, which includes a numerical simulation, the choice of the brazing material, a study of the brazing technology, and thermocyclic tests of the finger mock-up. This paper shall present a method of numerical investigation as the first step of investigation. Plastic stress calculations are performed using the commercial software ANSYS taking into account thermocyclic as well as internal pressure loads. The calculation results, in particular the plastic behavior of the brazed joint, will be discussed.

  1. Process for forming unusually strong joints between metals and ceramics by brazing at temperatures that do no exceed 750 degree C.

    Science.gov (United States)

    Hammond, Joseph P.; David, Stan A.; Woodhouse, John J.

    1986-01-01

    This invention is a process for joining metals to ceramics to form very strong bonds using low brazing temperature, i.e., less than 750.degree. C., and particularly for joining nodular cast iron to partially stabilized zirconia. The process provides that the ceramic be coated with an active metal, such as titanium, that can form an intermetallic with a low melting point brazing alloy such as 60Ag-30Cu-10Sn. The nodular cast iron is coated with a noncarbon containing metal, such as copper, to prevent carbon in the nodular cast iron from dissolving in the brazing alloy. These coated surfaces can be brazed together with the brazing alloy between at less than 750.degree. C. to form a very strong joint. An even stronger bond can be formed if a transition piece is used between the metal and ceramic. It is preferred for the transition piece to have a coefficient of thermal compatible with the coefficient of thermal expansion of the ceramic, such as titanium.

  2. Strengthening of the brazed joint for single-crystalline molybdenum by using Mo-40%Ru-B alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hiraoka, Y. [Okayama Univ. of Science (Japan). Department of Applied Physics; Igarashi, T. [Tokyo Tungsten Co. Ltd., Toyama (Japan). Research and Development Division

    1998-12-01

    In this study, the bend properties of the single-crystalline molybdenum brazed by using Mo-40%Ru alloys containing boron of 1-6 mass%Ru alloy for the improvement of the joint strength was determined. (orig.) [Deutsch] Durchgefuehrt wurde die Herstellung von Verbindungen aus einkristallinem Molybdaen. Hierbei kamen Mo-40%Ru-Legierungen mit 1 bis 6 Gew.-% Bor als Lotmaterialien zum Einsatz. Festigkeit und Duktilitaet der Verbindungen wurden mittels 3-Punkt-Biegepruefung bei Raumtemperatur und unter fluessigem Stickstoff ermittelt. Die Bruchflaechen der Proben wurden mit Hilfe eines Rasterelektronenmikroskopes untersucht. Die Ergebnisse lassen sich wie folgt zusammenfassen: Der optimale Borgehalt bezueglich Festigkeit und Duktilitaet der geloeteten Verbindung liegt bei 2 Gew.-%. Die entsprechende Probe hat bei einem Biegewinkel von 100 bei Raumtemperatur nicht versagt. Auch unter fluessigem Stickstoff zeigte diese Probe eine Festigkeit in der Groessenordnung des einkristallinen Vollmaterials. (orig.)

  3. High-temperature brazing of graphite using aluminium as brazing alloy

    International Nuclear Information System (INIS)

    Anikin, L.T.; Kravetskij, G.A.; Dergunova, V.S.

    1977-01-01

    The possibility of enhancing the strength of brazed joints, as well as the effect of the parameters of resistance heating of graphite VPP with PA-4 aluminium on the structure, composition and strength of the joint have been studied. It has been established that brazing of graphite materials, using an aluminium solder will produce a heat-resistant joint of a graphitic composition if the brazing temperature exceeds 2200 deg C. Thermocycling in the course of brazing results in a substantial (1.5-fold) increase in the strength of brazed joints

  4. Effect of processing parameters on the formation of C{sub f}/LAS composites/Ag−Cu−Ti/TC4 brazed joint

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Duo; Niu, Hongwei [Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Liu, Jihou [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Song, Xiaoguo, E-mail: songxg@hitwh.edu.cn [Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Xia, Long [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Feng, Jicai [Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China)

    2016-10-15

    C{sub f}/LAS composites were successfully jointed to TC4 alloy with Ag−Cu−Ti filler by vacuum brazing. The interfacial microstructure of TC4/C{sub f}/LAS composites joints was characterized by employing scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-diffraction (XRD) and transmission electron microscopy (TEM). The determination of the thin interfacial reaction layer (TiSi{sub 2} + TiC layer) was realized by TEM. The effect of holding time on the interfacial microstructure and shear strength were investigated. With the increasing holding time, the thickness of diffusion layer, Ti{sub 3}Cu{sub 4} layer, and TiSi{sub 2} + TiC layer increased obviously, on the contrary, that of Ti−Cu intermetallic compound layers decreased gradually. Besides, blocky Ti{sub 3}Cu{sub 4} phase was coarsened when the joint was brazed at 890 °C for 20 min, which deteriorated the mechanical properties of the joint dramatically. The interfacial evolution of TC4/C{sub f}/LAS composites joint and the formation of TiSi{sub 2}, TiC, Ti{sub 3}Cu{sub 4}, TiCu and Ti{sub 2}Cu phases were expounded. The maximum shear strength of 26.4 MPa was obtained when brazed at 890 °C for 10 min. - Highlights: •The thin interface reaction layer was determined to be TiSi{sub 2} + TiC layer by TEM. •Holding time had influence on the interfacial microstructure and joint properties. •Microstructural evolution mechanism and reactions of brazed joints were expounded.

  5. Finding Brazing Voids by Holography

    Science.gov (United States)

    Galluccio, R.

    1986-01-01

    Vibration-induced interference fringes reveal locations of defects. Holographic apparatus used to view object while vibrated ultrasonically. Interference fringes in hologram reveal brazing defects. Holographic technique locates small voids in large brazed joints. Identifies unbrazed regions 1 in. to second power (6 cm to the second power) or less in area.

  6. Microstructure of Vacuum-Brazed Joints of Super-Ni/NiCr Laminated Composite Using Nickel-Based Amorphous Filler Metal

    Science.gov (United States)

    Ma, Qunshuang; Li, Yajiang; Wu, Na; Wang, Juan

    2013-06-01

    Vacuum brazing of super-Ni/NiCr laminated composite and Cr18-Ni8 stainless steel was carried out using Ni-Cr-Si-B amorphous filler metal at 1060, 1080, and 1100 °C, respectively. Microstructure and phase constitution were investigated by means of optical and scanning electron microscopy, energy-dispersive spectroscopy, x-ray diffraction, and micro-hardness tester. When brazed at 1060-1080 °C, the brazed region can be divided into two distinct zones: isothermally solidified zone (ISZ) consisting of γ-Ni solid solution and athermally solidified zone (ASZ) consisting of Cr-rich borides. Micro-hardness of the Cr-rich borides formed in the ASZ was as high as 809 HV50 g. ASZ decreased with increase of the brazing temperature. Isothermal solidification occurred sufficiently at 1100 °C and an excellent joint composed of γ-Ni solid solution formed. The segregation of boron from ISZ to residual liquid phase is the reason of Cr-rich borides formed in ASZ. The formation of secondary precipitates in diffusion-affected zone is mainly controlled by diffusion of B.

  7. METHOD OF BRAZING BERYLLIUM

    Science.gov (United States)

    Hanks, G.S.; Keil, R.W.

    1963-05-21

    A process is described for brazing beryllium metal parts by coating the beryllium with silver (65- 75 wt%)-aluminum alloy using a lithium fluoride (50 wt%)-lithium chloride flux, and heating the coated joint to a temperature of about 700 un. Concent 85% C for about 10 minutes. (AEC)

  8. Critical Issues for Producing UHTC-Brazed Joints: Wetting and Reactivity

    Science.gov (United States)

    Passerone, A.; Muolo, M. L.; Valenza, F.

    2016-08-01

    A brief survey is presented of the most important interaction phenomena occurring at the solid-liquid interfaces in metal-ceramic systems at high temperatures, with special attention to the most recent developments concerning wetting and joining transition metals diborides. These phenomena are described and discussed from both the experimental and theoretical points of view in relation to joining ceramic and metal-ceramic systems by means of processes in the presence of a liquid phase (brazing, TLPB etc.). It is shown that wetting and the formation of interfacial dissolution regions are the results of the competition between different phenomena: dissolution of the ceramic in the liquid phase, reaction and formation of new phases at the solid-liquid interface, and drop spreading along the substrate surface. We emphasize the role of phase diagrams to support both the design of the experiments and the choice of active alloying elements, and to interpret the evolution of the system in relation to temperature and composition. In this respect, the sessile-drop technique has been shown to be helpful in assessing critical points of newly calculated phase diagrams. These studies are essential for the design of joining processes, for the creation of composite materials, and are of a particular relevance when applied to UHTC materials.

  9. Brazing graphite to graphite

    International Nuclear Information System (INIS)

    Peterson, G.R.

    1976-01-01

    Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of graphite

  10. Brazing Inconel 625 Using the Copper Foil

    Science.gov (United States)

    Chen, Wen-Shiang; Wang, Cheng-Yen; Shiue, Ren-Kae

    2013-12-01

    Brazing Inconel 625 (IN-625) using the copper foil has been investigated in this research. The brazed joint is composed of nanosized CrNi3 precipitates and Cr/Mo/Nb/Ni quaternary compound in the Cu/Ni-rich matrix. The copper filler 50 μm in thickness is enough for the joint filling. However, the application of Cu foil 100 μm in thickness has little effect on the shear strength of the brazed joint. The specimen brazed at 1433 K (1160 °C) for 1800 seconds demonstrates the best shear strength of 470 MPa, and its fractograph is dominated by ductile dimple fracture with sliding marks. Decreasing the brazing temperature slightly decreases the shear strength of the brazed joint due to the presence of a few isolated solidification shrinkage voids smaller than 15 μm. Increasing the brazing temperature, especially for the specimen brazed at 1473 K (1200 °C), significantly deteriorates the shear strength of the joint below 260 MPa because of coalescence of isothermal solidification shrinkage voids in the joint. The Cu foil demonstrates potential in brazing IN-625 for industrial application.

  11. Evolution of the interfacial phases in Al2O3-Kovar® joints brazed using a Ag-Cu-Ti-based alloy

    Science.gov (United States)

    Ali, Majed; Knowles, Kevin M.; Mallinson, Phillip M.; Fernie, John A.

    2017-04-01

    A systematic investigation of the brazing of Al2O3 to Kovar® (Fe-29Ni-17Co wt.%) using the active braze alloy (ABA) Ag-35.25Cu-1.75Ti wt.% has been undertaken to study the chemical reactions at the interfaces of the joints. The extent to which silica-based secondary phases in the Al2O3 participate in the reactions at the ABA/Al2O3 interface has been clarified. Another aspect of this work has been to determine the influence of various brazing parameters, such as the peak temperature, Tp, and time at Tp, τ, on the resultant microstructure. As a consequence, the microstructural evolution of the joints as a function of Tp and τ is discussed in some detail. The formation of a Fe2Ti layer on the Kovar® and its growth, along with adjacent Ni3Ti particles in the ABA, dominate the microstructural developments at the ABA/Kovar® interface. The presence of Kovar® next to the ABA does not change the intrinsic chemical reactions occurring at the ABA/Al2O3 interface. However, the extent of these reactions is limited if the purity of the Al2O3 is high, and so it is necessary to have some silica-rich secondary phase in the Al2O3 to facilitate the formation of a Ti3Cu3O layer on the Al2O3. Breakdown of the Ti3Cu3O layer, together with fracture of the Fe2Ti layer and separation of this layer from the Kovar®, has been avoided by brazing at temperatures close to the liquidus temperature of the ABA for short periods of time, e.g., for Tp between 820 and 830 °C and τ between 2 and 8 min.

  12. Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr-Ti-Cu-Ni amorphous alloy ribbon

    Science.gov (United States)

    Kim, K. H.; Lim, C. H.; Lee, J. G.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr48Ti16Cu17Ni19 (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr2Ni and particulate Zr2Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr2Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr2Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C).

  13. Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr–Ti–Cu–Ni amorphous alloy ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.H. [University of Science and Technology, Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Lim, C.H. [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Lee, J.G., E-mail: jglee88@kaeri.re.kr [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Lee, M.K.; Rhee, C.K. [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of)

    2013-10-15

    The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr{sub 48}Ti{sub 16}Cu{sub 17}Ni{sub 19} (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr{sub 2}Ni and particulate Zr{sub 2}Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr{sub 2}Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr{sub 2}Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C)

  14. Metal/not metal joints: analysis of graphite junction for electric use of titanium by direct brazing with reactive alloy

    International Nuclear Information System (INIS)

    Guimaraes, A.S.; Rebello, J.M.A.

    1988-01-01

    The usual techniques of joining graphite (for electrical use) and titanium by brazing with zirconium alloys are described. The morphological and the chemical aspects obtained by X-ray diffraction analysis are also presented. (C.G.C.) [pt

  15. Study on alumina-alumina brazing for application in vacuum chambers of proton synchrotron

    International Nuclear Information System (INIS)

    Yadav, D.P.; Kaul, R.; Ganesh, P.; Shiroman, Ram; Tiwari, Pragya; Sridhar, R.; Kukreja, L.M.

    2013-01-01

    The paper describes an experimental study to standardize vacuum brazing process to obtain satisfactory high purity alumina brazed joints for application in rapid cycle proton synchrotron machine. Two different brazing routes, adopted for making alumina-alumina brazed joints, included (i) multi-step Mo-Mn metallization and brazing with BVAg-8 alloy and (ii) advanced single-step active brazing with CuSil-ABA alloy. Brazed alumina specimens, prepared by both the routes, yielded ultra high vacuum compatible, helium leak tight and bakeable joints. Active-brazed specimens exhibited satisfactory strength values in tensile and four-point bend tests. Metallized-brazed specimens, although exhibited relatively lower tensile strength than the targeted value, displayed satisfactory flexural strength in four-point bend test. The results of the study demonstrated that active brazing is the simple and cost effective alternative to conventional metallization route for producing satisfactory brazed joints for application in rapid cycle proton synchrotron machine. (author)

  16. Method for brazing together planar and nonplanar metal members

    International Nuclear Information System (INIS)

    Hammersand, F.G.; Witkowski, A.J.

    1985-01-01

    The invention relates to a method and apparatus for brazing two metal members together, at least one of which is nonplanar, in a brazing furnace using a substantially pure brazing material. The method comprises the steps of utilizing a brazing fixture to hold the two metal members in tangential relation to one another along a portion of each member so that a cavity is formed adjacent to the contacting portions. A braze material is then positioned within the cavity. The braze fixture, the metal members, and the braze material are then placed in a brazing furnace. A heat shield is then placed over the braze fixture, the metal members, and the braze material to shield the braze material from direct furnace radiation. The furnace temperature is linearly increased at a rate of about 180 0 C. per hour until a temperature of 350 0 C. is achieved. Heat is transferred by conduction from the metal members to the braze material to cause the braze material to melt. Some material from the metal members slowly diffuses into the braze material forming a braze joint. The furnace is rapidly cooled to room temperature using nitrogen gas. The brazed assemblies made according to this method are superior to assemblies formed by heliarc welding

  17. Microstructural evolution and characterisation of interfacial phases in Al2O3/Ag–Cu–Ti/Al2O3 braze joints

    International Nuclear Information System (INIS)

    Ali, Majed; Knowles, Kevin M.; Mallinson, Phillip M.; Fernie, John A.

    2015-01-01

    Alumina ceramics with different levels of purity have been joined to themselves using an active braze alloy (ABA) Ag–35.3Cu–1.8Ti wt.% and brazing cycles that peak at temperatures between 815 °C and 875 °C for 2 to 300 min. The microstructures of the joints have been studied using scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy. A limited number of joints prepared with the ABA Ag–26.7Cu–4.5Ti wt.% have also been studied. In terms of characterising the interfacial phases, efforts were made to understand the interfacial reactions, and to determine the influence of various brazing parameters, such as the peak temperature (T p ) and time at T p (τ), on the microstructure. In addition, the extent to which impurities in the alumina affect the interfacial microstructure has been determined. Ti 3 Cu 3 O has been identified as the main product of the reactions at the ABA/alumina interfaces. At the shortest joining time used, this phase was observed in the form of a micron-size continuous layer in contact with the ABA, alongside a nanometre-size layer on the alumina that was mostly composed of γ-TiO grains. Occasionally, single grains of Ti 3 O 2 were observed in the thin layer on alumina. In the joints prepared with Ag–35.3Cu–1.8Ti wt.%, the interfacial structure evolved considerably with joining time, eventually leading to a high degree of inhomogeneity across the length of the joint at the highest T p . The level of purity of alumina was not found to affect the overall interfacial microstructure, which is attributed to the formation of various solid solutions. It is suggested that Ti 3 Cu 3 O forms initially on the alumina. Diffusion of Ti occurs subsequently to form titanium oxide at the Ti 3 Cu 3 O/alumina interface

  18. Interfacial microstructure and mechanical property of Ti6Al4V/A6061 dissimilar joint by direct laser brazing without filler metal and groove

    International Nuclear Information System (INIS)

    Song, Zhihua; Nakata, Kazuhiro; Wu, Aiping; Liao, Jinsun

    2013-01-01

    Laser brazing of Ti6Al4V and A6061-T6 alloys with 2 mm thickness was conducted by focusing laser beam on aluminum alloy side, and the effect of laser offset distance on microstructure and mechanical properties of the dissimilar butt joint was investigated. Laser offset has a great influence on the thickness of interfacial intermetallic compound (IMC) layer and the mechanical property of joint. The thickness of interfacial IMC layer is less than 500 nm, and the average tensile strength of the joint reaches 64% of aluminum base material strength, when suitable welding conditions are used. The interfacial IMC is TiAl 3 . The formation of interfacial IMC layer and its effect on mechanical property of the joint are discussed in the present study.

  19. Comparison of microstructural and mechanical properties of joints developed by high temperature brazing, GTAW and laser welding methods on AISI 316 L stainless steel for specific applications in nuclear components

    International Nuclear Information System (INIS)

    Venkatesu, Sadu; Saxena, Rajesh; Ravi Kumar, R.; Chaurasia, P.K; Murugan, S.; Venugopal, S.

    2016-01-01

    Fabrication of instrumented irradiation capsule for evaluating the irradiation performance of fuel and structural materials in a nuclear reactor requires development of thin wall joints capable of withstanding high temperature and/or internal pressure. Thin wall joints for high temperature (∼550℃) applications can be made by laser beam welding (LBW), gas tungsten Arc welding (GTAW) and High Temperature Brazing (HLT) method

  20. Development and Evaluation of Wide Clearance Braze Joints in Gamma Prime Alloys.

    Science.gov (United States)

    1982-03-01

    process , it also cleans crack surfaces, and this opens a way to repair the very costly parts. Since the alloys contain aluminum and titanium , post- weld ...assembly was comr Let ,d by weld tacking the ends of the T-bar with a TIG torch. Sufficient T-bars of each parent alloy were prepared so that each surface...fluorocarbon cleaning process (FCP). For the right filler metal combination (Ren6 80 with D 15 alloy ) joint tensile strengths rivalled the base metal

  1. Studies of valve lifter for automotive heavy duty diesel engine by ceramic materials. I. Development of ceramic-metal joint by brazing method

    Energy Technology Data Exchange (ETDEWEB)

    Yun, H W [Technical Centre of KIA-ASIA MOTORS (Korea, Republic of); Han, I S [Korea Institute of Energy Research, Tajeon (Korea, Republic of); Lim, Y S; Chung, Y J [Myong Ji University (Korea, Republic of)

    1998-02-01

    Continuously contacting with camshaft, the face of Valve Lifter, made of cast iron, brings about abnormal wear such as unfair wear or early wear because it is heavily loaded in the valve train system as the engine gets more powered. This abnormal sear becomes a defect namely over-clearance when the valve is lifting so that the fuel gas imperfectly combusted by unsuitable open or close action of engine valve in the combustion chamber. The imperfect combustion, in the end, results in the major causes of air pollution and decrease of the engine output. Consequently, to prevent this wear, this study was to develop the valve lifter which is joined by brazing process with SCM435H and a tip by manufacturing the face as a superhardened ceramics alloy which has high wear resistance. Having the excellent surface hardness with Hv1100-1200, the sintered body developed with superhardened alloy(WC) can endure the severe face loading in the valve train system. We experienced with various brazing alloys and obtained the excellent joining strength to the joint had 150 MPa shear strength. Interface analysis and microstructure in a joint were examined through SEM and EDS, Optical microscope. Also, 2,500 hours, high speed(3,000{approx}4,000 rpm) and continuous (1step 12hr) engine dynamo testing was carried out to the casting valve lifter and ceramics-metal joint valve lifter so that the abnormal wears were compared and evaluated.

  2. Brazing, high temperature brazing and diffusion welding

    International Nuclear Information System (INIS)

    1989-01-01

    Brazing and high temperature brazing is a major joining technology within the economically important fields of energy technology, aerospace and automotive engineering, that play a leading role for technical development everywhere in the world. Moreover diffusion welding has gained a strong position especially in advanced technologies due to its specific advantages. Topics of the conference are: 1. high-temperature brazing in application; 2. basis of brazing technology; 3. brazing of light metals; 4. nondestructive testing; 5. diffusion welding; 6. brazing of hard metals and other hard materials; and 7. ceramic-metal brazing. 28 of 20 lectures and 20 posters were recorded separately for the database ENERGY. (orig./MM) [de

  3. High-temperature brazing, state and development trends

    International Nuclear Information System (INIS)

    Lugscheider, E.

    1980-01-01

    The advantages of higher-temperature brazing as compared to welding methods are to be increasingly found in the field of applications, not merely in highly specialized fabriaction branches but also in common fields. Problems on basic materials, brazing construction, brazing method and testing of the joints as well as examples of application are treated. (orig./IHOE) [de

  4. Simulation based analysis of laser beam brazing

    Science.gov (United States)

    Dobler, Michael; Wiethop, Philipp; Schmid, Daniel; Schmidt, Michael

    2016-03-01

    Laser beam brazing is a well-established joining technology in car body manufacturing with main applications in the joining of divided tailgates and the joining of roof and side panels. A key advantage of laser brazed joints is the seam's visual quality which satisfies highest requirements. However, the laser beam brazing process is very complex and process dynamics are only partially understood. In order to gain deeper knowledge of the laser beam brazing process, to determine optimal process parameters and to test process variants, a transient three-dimensional simulation model of laser beam brazing is developed. This model takes into account energy input, heat transfer as well as fluid and wetting dynamics that lead to the formation of the brazing seam. A validation of the simulation model is performed by metallographic analysis and thermocouple measurements for different parameter sets of the brazing process. These results show that the multi-physical simulation model not only can be used to gain insight into the laser brazing process but also offers the possibility of process optimization in industrial applications. The model's capabilities in determining optimal process parameters are exemplarily shown for the laser power. Small deviations in the energy input can affect the brazing results significantly. Therefore, the simulation model is used to analyze the effect of the lateral laser beam position on the energy input and the resulting brazing seam.

  5. Interracial Structure and Formation Mechanism of Ultrasonic-assisted Brazed Joint of SiC Ceramics with Al-12Si Filler Metals in Air

    Institute of Scientific and Technical Information of China (English)

    Xiaoguang Chen; Ruishan Xie; Zhiwei Lai; Lei Liu; Jiuchun Yan; Guisheng Zou

    2017-01-01

    Ultrasonic-assisted brazing of SiC ceramics was performed by filling with an Al--12Si alloy at a low temperature of 620 ℃ in air.The interfacial characteristics and formation mechanism were investigated.The joint shear strength reached 84-94 MPa using the ultrasonic time of 2-16 s.The fracture morphology showed that the fracture path initiated and propagated in the joint alloy.The thin film of amorphous SiO2 that formed on the SiC surface was non-uniformly decomposed and diffused into the liquid Al-12Si alloy under the cavitation erosion effect of ultrasound.Abnormal isolated blocks of Al2SiO5 compounds formed at the interface between Al--12Si and a thicker SiO2 layer formed during the thermal oxidation treatment of the SiC ceramic.The SiO2 layer on the SiC ceramic did not hinder or impair the wetting and bonding process,and a stronger bond could form between Al-12Si and SiO2 or SiC in ultrasonicassisted brazing.

  6. Interfacial microstructure of Si{sub 3}N{sub 4}/Si{sub 3}N{sub 4} brazing joint with Cu-Zn-Ti filler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)], E-mail: hitzhangjie@hit.edu.cn; Zhang, X.M.; Zhou, Y. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Naka, M. [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Svetlana, Atroshenko [Faculty of Mathematics and Mechanics, Saint-Petersburg State University (Russian Federation)

    2008-11-15

    In this study, Si{sub 3}N{sub 4} ceramic was jointed by a brazing technique with a Cu-Zn-Ti filler alloy. The interfacial microstructure between Si{sub 3}N{sub 4} ceramic and filler alloy in the Si{sub 3}N{sub 4}/Si{sub 3}N{sub 4} joint was observed and analyzed by using electron-probe microanalysis, X-ray diffraction and transmission electron microscopy. The results indicate that there are two reaction layers at the ceramic/filler interface in the joint, which was obtained by brazing at a temperature and holding time of 1223 K and 15 min, respectively. The layer nearby the Si{sub 3}N{sub 4} ceramic is a TiN layer with an average grain size of 100 nm, and the layer nearby the filler alloy is a Ti{sub 5}Si{sub 3}N{sub x} layer with an average grain size of 1-2 {mu}m. Thickness of the TiN and Ti{sub 5}Si{sub 3}N{sub x} layers is about 1 {mu}m and 10 {mu}m, respectively. The formation mechanism of the reaction layers was discussed. A model showing the microstructure from Si{sub 3}N{sub 4} ceramic to filler alloy in the Si{sub 3}N{sub 4}/Si{sub 3}N{sub 4} joint was provided as: Si{sub 3}N{sub 4} ceramic/TiN reaction layer/Ti{sub 5}Si{sub 3}N{sub x} reaction layer/Cu-Zn solution.

  7. Automatic-Control System for Safer Brazing

    Science.gov (United States)

    Stein, J. A.; Vanasse, M. A.

    1986-01-01

    Automatic-control system for radio-frequency (RF) induction brazing of metal tubing reduces probability of operator errors, increases safety, and ensures high-quality brazed joints. Unit combines functions of gas control and electric-power control. Minimizes unnecessary flow of argon gas into work area and prevents electrical shocks from RF terminals. Controller will not allow power to flow from RF generator to brazing head unless work has been firmly attached to head and has actuated micro-switch. Potential shock hazard eliminated. Flow of argon for purging and cooling must be turned on and adjusted before brazing power applied. Provision ensures power not applied prematurely, causing damaged work or poor-quality joints. Controller automatically turns off argon flow at conclusion of brazing so potentially suffocating gas does not accumulate in confined areas.

  8. Metallographic quality control of welding and brazing

    International Nuclear Information System (INIS)

    Slaughter, G.M.

    1979-01-01

    The value of metallography in assuring integrity in the fabrication of metal and components in energy systems is summarized. Metallography also plays an integral role in quality control of welded and brazed joints

  9. Electroplating eliminates gas leakage in brazed areas

    Science.gov (United States)

    Leigh, J. D.

    1966-01-01

    Electroplating method seals brazed or welded joints against gas leakage under high pressure. Any conventional electroplating process with many different metal anodes can be used, as well as the build up of layers of different metals to any required thickness.

  10. Manufacturing and testing of actively cooled test limiters for TEXTOR made of the brazed joint SEPCARB-N11/TZM

    International Nuclear Information System (INIS)

    Hohenauer, W.; Bolt, H.; Koppitz, T.; Linke, J.; Lison, R.; You, J.H.; Nickel, H.

    1998-01-01

    To investigate the erosion and redepositon phenomena of fusion-related materials under stationary conditions, actively cooled test limiters were developed for TEXTOR (Tokamak Experiment for Technology Orientated Research). They allow experiments under stationary conditions within the plasma pulse length of 10 s. Heat loads of typically 10 MW m<-2 are removed by pressurised water: volume flow is 10 m 3 h -1, pressure 15 bar and the minimum coefficient of heat transfer is about 75000 W m-2 K. Prototype limiters were built as brazed composites of a C/C material (SEPCARB-N11) and a TZM substrate. The samples were successfully tested in screening tests in the ion beam facility MARION (Material Research Ion Beam Test Facility) with hydrogen beams. Maximum heat loads of up to 22 MW m<-2 were applied without any failure of the cooling system. Steady state of the surface temperature was measured within 5 s. An advanced brazing technique enabled the joining of hemispherically shaped C/C shells to a TZM heat sink without failure. An optimised test limiter was tested in TEXTOR. Analytical and numerical models describing the effects of the heat load distribution, spatial temperatures and stresses were experimentally verified. (orig.)

  11. Direct metal brazing to cermet feedthroughs

    International Nuclear Information System (INIS)

    Hopper, A.C. Jr.

    1984-01-01

    An improved method for brazing metallic components to a cermet surface in an alumina substrate eliminates the prior art metallized layer over the cermet via and adjoining alumina surfaces. Instead, a nickel layer is applied over the cermet surface only and metallic components are brazed directly to this nickel coated cermet surface. As a result, heretofore unachievable tensile strength joints are produced. In addition, cermet vias with their brazed metal components can be spaced more closely in the alumina substrate because of the elimination of the prior art metallized alumina surfaces

  12. Ductility of brazing assemblies with high-temperature materials

    International Nuclear Information System (INIS)

    Colbus, J.; De Paoli, A.

    1977-01-01

    Brazing assemblies with the high temperature materials X8CrNiNb1613, X12CrNiMo12 and X8NiCrAlTiMo7020 have been produced using different solder metals. These brazing assemblies have been studied with the emphasis on the interrelation between microstructure and ductility. Besides the ordinary impact bend tests of notched and unnotched brazed joints, the impact bend tests of unnotched brazed joints with drawing of a Strength-Way-Diagram have been added for better results. (GSC) [de

  13. Vacuum-brazed joints made from carbon-based materials and metals for the nuclear fusion research

    International Nuclear Information System (INIS)

    Koppitz, T.; Lison, R.; Bolt, H.; Hohenauer, W.

    1998-01-01

    The stationary operation of fusion plants may involve power fluxes of up to 5 MW/m2 in the region of the surfaces of plasma-facing components. In the case of disruptions, these power fluxes can reach 30 MW/m2 at exposed locations within a few milliseconds. Special materials with fusion capability are required to cope with loads arising at these locations due to thermal fatigue, physical and chemical erosion as well as thermal evaporation or sublimation. Such materials, so-called low-Z materials, include carbon-based materials such as graphites, carbon fibre reinforced carbon, boron carbides and others. The exposure of these materials to the above power fluxes for experimental purposes requires particular water-cooled components of different geometry with a materials-connected interface between the carbon-based material and the water-cooled component of TZM or copper. The application of high-temperature brazing for a largely defect-free fabrication of such components with different geometry will be presented in the following. (orig.)

  14. Influence of brazing parameters and alloy composition on interface morphology of brazed diamond

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, Ulrich E. [Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Joining and Interface Technology, Uberlandstrasse 129, CH-8600 Duebendorf (Switzerland)], E-mail: klotz@fem-online.de; Liu Chunlei [Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Joining and Interface Technology, Uberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Khalid, Fazal A. [Faculty of Metallurgy and Materials Engineering, GIK Institute, Topi, NWFP (Pakistan); Elsener, Hans-Rudolf [Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Joining and Interface Technology, Uberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2008-11-15

    Active brazing is an effective technique for joining diamond or cBN grit to metallic substrates. This technique is currently used to manufacture superabrasive, high-performance tools. The investigation of interface reactions between diamond and active brazing alloys plays an important role in understanding and improving the brazing process and the resultant tool performance. Focused ion beam (FIB) milling enabled the high resolution investigation of these extremely difficult to prepare metal-diamond joints. The interfacial nanostructure is characterized by the formation of two layers of TiC with different morphologies. First a cuboidal layer forms directly on the diamond and reaches a thickness of approximately 70 nm. Then a second layer with columnar TiC crystals grows on the first layer into the brazing filler metal by a diffusion-controlled process. The combined thickness of both TiC layers varies between 50 nm and 600 nm depending on the brazing temperature and holding time.

  15. Fluxless aluminum brazing

    Science.gov (United States)

    Werner, W.J.

    1974-01-01

    This invention relates to a fluxless brazing alloy for use in forming brazed composites made from members of aluminum and its alloys. The brazing alloy consists of 35-55% Al, 10--20% Si, 25-60% Ge; 65-88% Al, 2-20% Si, 2--18% In; 65--80% Al, 15-- 25% Si, 5- 15% Y. (0fficial Gazette)

  16. Microstructure evolution of the Si{sub 3}N{sub 4}/Si{sub 3}N{sub 4} joints brazed using Au-Ni-V filler alloys with different V content

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhang, J., E-mail: hitzhangjie@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhang, H.W.; Fan, G.H.; He, Y.M. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2011-08-18

    Highlights: > Si{sub 3}N{sub 4} ceramic was brazed using Au-Ni-V filler alloy with different V content. > The microstructure evolution of the joint was study in detail in the paper. > The polygonal Ni{sub 2}SiV{sub 3} and Ni{sub 3}V phase in the joint were investigated by TEM. > The formation of different compounds and alloys in joint was detailed discussed. - Abstract: Au-Ni-V filler alloys with different vanadium contents were designed to braze Si{sub 3}N{sub 4} ceramic at 1373 K for 30 min, and the microstructures of brazing seams were investigated by SEM and TEM. When the Au-Ni-V filler alloy contains 5 at.% V, round-like Ni[Si, V, Au] precipitates form in the Au[Ni] solid solution matrix and a VN reaction layer with 0.5 {mu}m thickness appears on Si{sub 3}N{sub 4} interface. When the V content increases to 10 at.%, a new polygonal Ni{sub 2}SiV{sub 3} phase occurs in the seam, and the Ni[Si, V, Au] precipitate coarsens and VN layer thickens. With increase of V contents to 15 and 20 at.%, laminar Ni[Au] and polygonal Ni{sub 3}V precipitates form. With 25 at.% V content in the filler alloy, the Ni{sub 2}SiV{sub 3} and Ni{sub 3}V precipitates distribute homogenously in the brazing seam. These microstructure evolutions were attributed to the reaction between Si{sub 3}N{sub 4} and vanadium, which forms VN reaction layer and releases Si into the molten alloy.

  17. Brazing Inconel 625 Using Two Ni/(Fe)-Based Amorphous Filler Foils

    Science.gov (United States)

    Chen, Wen-Shiang; Shiue, Ren-Kae

    2012-07-01

    For MBF-51 filler, the brazed joint consists of interfacial grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr-rich matrix. In contrast, the VZ-2106 brazed joint is composed of interfacial Nb6Ni16Si7 precipitates as well as grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr/Fe-rich matrix. The maximum tensile strength of 443 MPa is obtained from the MBF-51 brazed specimen. The tensile strengths of VZ-2106 brazed joints are approximately 300 MPa. Both amorphous filler foils demonstrate potential in brazing IN-625 substrate.

  18. Brazing molybdenum and tungsten for high temperature service

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Turner, W.C.; Hoffman, C.G.

    1978-01-01

    Investigations were conducted to develop vacuum brazes for molybdenum and tungsten which can be used in seal joint applications up to 1870 K (1597 C, 2907 F). Joints were attempted in molybdenum, tungsten and tungsten--molybdenum. The braze materials included: Ti--10Cr powder, Ti--30V wire, Ti--65V wire, V wire, Ni electroplate, MoB--50MoC powder mixture, V--50Mo powder mixture, Mo--15MoB 2 powder mixture and Mo--49V--15MoB 2 powder mixture. Braze temperature ranged from 1900 K (1627 C, 2961 F) to 2530 K, (2257 C, 4095 F), and leak-tight joints were made with all braze materials except Ti--10Cr. After heat treatments up to 1870 K (1597 C, 2907 F) Kirkendall voiding was found to cause leakage of some of the joints made with only substitutional alloying elements. However, adding base metal powders to the braze or narrowing the root opening eliminated this problem. Kirkendall voiding was not a problem when interstitial elements were a major ingredient in the braze material. Shear testing of Ti--65V, V, MoB--50MoC and V--50Mo brazed molybdenum at 1670 K (1397 C, 2547 F) indicated strengths equal to or better than the base metal. Ti--65V, V--50Mo and MoB--50MoC brazed joints were exposed to basalt at 1670 K (1397 C, 2547 F) for 3 h without developing leaks

  19. Thermally stable diamond brazing

    Science.gov (United States)

    Radtke, Robert P [Kingwood, TX

    2009-02-10

    A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

  20. Microwave-assisted brazing of alumina ceramics for electron tube ...

    Indian Academy of Sciences (India)

    The brazed joints were characterizedby X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, Vickers microhardness evaluation, brazing strength measurement and helium leak test. X-ray diffraction analysis confirmed the formationof Ti-based compounds at the substrate-filler alloy interfaces of ...

  1. Improved Assembly for Gas Shielding During Welding or Brazing

    Science.gov (United States)

    Gradl, Paul; Baker, Kevin; Weeks, Jack

    2009-01-01

    An improved assembly for inert-gas shielding of a metallic joint is designed to be useable during any of a variety of both laser-based and traditional welding and brazing processes. The basic purpose of this assembly or of a typical prior related assembly is to channel the flow of a chemically inert gas to a joint to prevent environmental contamination of the joint during the welding or brazing process and, if required, to accelerate cooling upon completion of the process.

  2. Hydrogen and deuterium plasma interactions with brazed first wall elements

    International Nuclear Information System (INIS)

    Smid, I. and others.

    1991-09-01

    Four different high temperature brazes (Zr, 90wt%Ni.10%Ti, 90Cu.10Ti and 70Ag.27Cu.3Ti, nominal composition prior to brazing) were used to join isotropic fine grain graphite and TZM, a high temperature alloy of molybdenum. The general response of the brazes to a high flux deuterium plasma bombardement was examined using samples whose exposed surface intersected the braze line. Only in the case of Zr, which is known for its hydride forming properties, near-surface layers chipped off in the braze region directly exposed to the plasma. However, in graphite-shielded Zr-braze regions no disintegration of the interface was observed. The other brazes showed no visible attack at all. The interaction of a hydrogen plasma and a braze surface was studied in more detail by bombarding specimens in the PISCES-B facility. In this case the graphite was removed completely to enable an exaggerated plasma attack onto the bare braze. Even under these testing conditions the brazes CuTi and NiTi showed no particular sensitivity towards hydrogen. To prove the thermal stability of the brazed joints each quality was heat treated for 1 hr and 10 hrs, respectively, 50 o below the softening temperature of the braze in 1 bar of Ar or 96vol%Ar/4%H 2 . After the heat treatment no changes or damages were observed in the brazes AgCuTi and CuTi, whereas interstices are found in the widened NiTi-interlayer after 10 hrs in both, Ar and Ar/H 2 . Zr suffers different microstructural changes in particular after treatment in Ar/H 2 atmosphere. (Authors) (also appeared in Fusion Technology 1990, p. 411-415)

  3. Hydrogen and deuterium plasma interactions with brazed first wall elements

    International Nuclear Information System (INIS)

    Smid, I.; Wallura, E.; Winter, J.; Nickel, H.; Doerner, R.; Hirooka, Y.; Chevalier, G.; Conn, R. W.; Jaeger, W.; Grasserbauer, M.; Kny, E.; Reheis, N.

    1995-01-01

    Four different high temperature brazes (Zr, 90wt%Ni.10%Ti, 90Cu.10Ti and 70Ag.27Cu.3Ti, nominal composition prior to brazing) were used to join isotropic fine grain graphite and TZM, a high temperature alloy of molybdenum. The general response of the brazes to a high flux deuterium plasma bombardement was examined using samples whose exposed surface intersected the braze line. Only in the case of Zr, which is known for its hydride forming properties, near-surface layers chipped off in the braze region directly exposed to the plasma. However, in graphite-shielded Zr-braze regions no disintegration of the interface was observed. The other brazes showed no visible attack at all. The interaction of a hydrogen plasma and a braze surface was studied in more detail by bombarding specimens in the PISCES-B facility. In this case the graphite was removed completely to enable an exaggerated plasma attack onto the bare braze. Even under these testing conditions the brazes CuTi and NiTi showed no particular sensitivity towards hydrogen. To prove the thermal stability of the brazed joints each quality was heat treated for 1 hr and 10 hrs, respectively, 50 degree below the softening temperature of the braze in 1 bar of Ar or 96 vol % Ar / 4 % H 2 . After the heat treatment no changes or damages were observed in the brazes AgCuTi and CuTi, whereas interstices are found in the widened NiTi-interlayer after 10 hrs in both, Ar and Ar/H 2 . Zr suffers different microstructural changes in particular after treatment in Ar/H 2 atmosphere. (author)

  4. Investigations into the high temperature brazing of type NiCr20Ti nickel alloy under vacuum conditions

    International Nuclear Information System (INIS)

    Zaremba, P.

    1977-01-01

    Joints made from NiCr20Ti material brazed in a vacuum furnace (brazing gap width 10, 30 and 50 μm, brazing temperature 1,040 0 C and 1,100 0 C) were tensile tested and subjected to metallographic investigation. Furthermore, the angle of wetting and the pattern of hardness across the brazed joint was established. The results obtained showed that, amongst other things, a relationship existed between the micro-hardness at the centre of the joint and the tensile strength of the brazed joint itself. (orig.) [de

  5. Corrosion Behavior of Brazed Zinc-Coated Structured Sheet Metal

    Directory of Open Access Journals (Sweden)

    A. Nikitin

    2017-01-01

    Full Text Available Arc brazing has, in comparison to arc welding, the advantage of less heat input while joining galvanized sheet metals. The evaporation of zinc is reduced in the areas adjacent to the joint and improved corrosion protection is achieved. In the automotive industry, lightweight design is a key technology against the background of the weight and environment protection. Structured sheet metals have higher stiffness compared to typical automobile sheet metals and therefore they can play an important role in lightweight structures. In the present paper, three arc brazing variants of galvanized structured sheet metals were validated in terms of the corrosion behavior. The standard gas metal arc brazing, the pulsed arc brazing, and the cold metal transfer (CMT® in combination with a pulsed cycle were investigated. In experimental climate change tests, the influence of the brazing processes on the corrosion behavior of galvanized structured sheet metals was investigated. After that, the corrosion behavior of brazed structured and flat sheet metals was compared. Because of the selected lap joint, the valuation of damage between sheet metals was conducted. The pulsed CMT brazing has been derived from the results as the best brazing method for the joining process of galvanized structured sheet metals.

  6. Pressure brazing of ceramics to metals with copper solder

    International Nuclear Information System (INIS)

    Pavlova, M.A.; Metelkin, I.I.

    1986-01-01

    The effect on the quality of joints brazed with copper of different non metallized aluminooxide dielectrics with metals and alloys of a series of technological parameters (temperature, pressure, holding, and medium) in the course of pressure brazing is investigated. It is shown that in case of brazing with kovar and nickel the character of dependences is identical, however in all cases the joints with nickel are more durable. For the ceramics - molybdenum system characterized by weak interaction with copper solder kinetic dependences have no maximum and only under holding of more than 20 min the constant strength of 150-190 MPa is attained

  7. WRC bulletin. High-temperature brazing

    International Nuclear Information System (INIS)

    Pattee, H.E.

    1974-01-01

    Significant research is discussed and representative procedures for producing sound, reliable joints are reviewed from the standpoint of base metal, filler metal, brazing atmosphere and cycle, etc. Domestic and foreign developments since 1950 are emphasized. Materials include stainless steels, Ni-base alloys, superalloys, reactive metals (Ti, Be, Zr), and refractory metals (Nb, Mo, Ta, W). 30 tables, 9 figures, 165 references

  8. Self-brazing Mechanism of Aluminum Alloy at Medium Temperature

    Directory of Open Access Journals (Sweden)

    CHENG Fang-jie

    2018-01-01

    Full Text Available ZnCl2 and SnCl2 were added to the AlF3-CsF eutectic flux, which can be used for connecting aluminum alloy sheet by self-brazing at medium temperature. The influence of the amount of ZnCl2 and SnCl2 and the size of the T-joint area on the interface microstructure and the self-brazing joint mechanical properties was investigated. The interface microstructure, chemical compositions, defects and tensile fractography of the self-brazing joints were analyzed by metallographic microscope, scanning electron microscope and energy dispersive spectroscopy. The results show that the joints are soundly bonded when both the mass fractions of ZnCl2 and SnCl2 are about 4%; the replacement reactions between Zn2+, Sn2+ of flux and Al atoms of base metal occur during brazing, then the liquid metals of Sn and Zn appear, a great degree of Zn which has high solid solution with Al spreads rapidly to the base metal; Sn is distributed along the interface forming a low melting point metal layer with Zn and Al; the brazing of joints with small area can be realized easily; there are a lot of dimples on the fracture surface and the tensile strength of the brazing joint reaches (58±5MPa.

  9. Laser brazing of hard metal on steel; Laserstrahlloeten von Hartmetall an Stahl

    Energy Technology Data Exchange (ETDEWEB)

    Haferkamp, H.; Frohmann, A.; Block, B.; Goede, M. [Laser Zentrum Hannover e.V., Hannover (Germany); Muenz, U. [Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Remscheid (Germany)

    2001-07-01

    Topic of the investigations presented here is the laser beam brazing of hardmetal plates onto tool steel. Three different kinds of laser beam sources are comparatively used, a diode laser, a Nd:YAG laser and a CO{sub 2} laser. The investigations concentrate on the variation of two process parameters: brazing time and laser performance. Following the brazing process both visual observation as well as hardness measurements and shear tests are made. The investigations show that by brazing, high seam qualities can be achieved, which withstand the comparison with inductively brazed joints. (orig.)

  10. Vacuum brazing techniques for irradiation devices at TRIGA research reactor

    International Nuclear Information System (INIS)

    Savu, M.; Valeca, S. C.; Amzoi, A.

    2016-01-01

    Metallic thin-walled thermocouples are required for monitoring the temperature value for experiments that are conducted in a nuclear research reactor. The different location wall crossing is made by instrumented passage. Such a passage produced by vacuum brazing using a BNi-7 alloy, represents the proper way to obtain a sealed joint, which can withstand corrosion and high temperatures, having in the same time a small neutron cross section. This paper presents the brazing experiments of K-type thermocouples with stainless steel and Inconel 600 sheath. The sheaths brittleness, hardness changing in joint.s vicinity and structural modification emphasized by metallographic analysis are aspects treated by comparing different samples obtained in brazing laboratory. For finding the correct answer regarding the attenuation of negative effects which are occurring during brazing procedure using Inconel 600 - BNi-7 combination, one can assess both the adopted solution used in designing instrumented passage and thermal regime parameters and its precisely control. (authors)

  11. Amorphous filler metal foils for brazing zirconium grid plates

    International Nuclear Information System (INIS)

    Plyushchev, A.N.; Kalin, B.A.; Fedotov, V.T.; Sevryukov, O.N.; Mamedova, T.T.; Shestakov, E.F.; Timoshin, S.N.

    2001-01-01

    A new amorphous ribbon filler metal of Zr-5.5 Fe-2.5 Be-1.0 Nb-8.0 Cu-2.0 Sn-0.4 Cr (mass %) with the temperature of melting onset of 745-750 deg C is designed to braze spacer grids of zirconium base alloys. The brazing conditions (780-790 deg C, 40-45 s) are determined which provide minimal standing at temperatures above 700 deg C (∼ 1.5 min) for spacer grids. Mechanical tests show that tensile strength of brazed joints is 55-59 kgf what is twice that of analogous welded joints. In addition, the brazed joints exhibit high corrosion resistance when testing in a distilled steam-water mixture at a temperature of 350 deg C and 16.5 MPa pressure for 10000 h [ru

  12. process controller for induction vacuum brazing

    International Nuclear Information System (INIS)

    Aldea, A.

    2016-01-01

    A brazing operation involves joining two parts made of different materials, using a filler material that has a melting temperature lower than the base materials used. The temperature of the process must be carefully controlled, sometimes with an accuracy of about 1°C, because overshooting the prescribed temperature results in detrimental metallurgic phenomena and joints of poor quality. The brazing system is composed of an operating cabinet, a mid-frequency generator, a vacuum chamber with an induction coil inside and the parts that have to be brazed. Until now, to operate this system two operators were required: one to continuously read the temperature with an optical pyrometer and another to manually adjust the current in the induction coil according to his intuition and prediction gained only by experience. The improvement that we made to the system involved creating an automatic temperature control unit, using a PID closed loop controller that reads the temperature of the parts and adjusts automatically the current in the coil. Using the PID controller, the brazing engineer can implement a certain temperature slope for the current brazing process. (authors)

  13. Active metal brazing of titanium to high-conductivity carbon-based sandwich structures

    International Nuclear Information System (INIS)

    Singh, M.; Morscher, Gregory N.; Shpargel, Tarah P.; Asthana, Rajiv

    2008-01-01

    Reactive brazing technology was developed and processing parameters were optimized for the bonding of titanium tubes, graphite foam, and high-conductivity carbon-carbon composite face sheets using the active braze Cusil-ABA paste and foils. The microstructure and composition of the joints, examined using scanning electron microscopy coupled with energy-dispersive spectroscopy, showed good bonding and braze penetration in all systems when braze paste was used. The hardness values of the brazed joints were consistent for the different specimen stacking configurations. Mechanical testing of Ti tube/foam/C-C composite structures both in tension and shear showed that failure always occurred in the foam material demonstrating that the brazed joint was sufficient for these types of sandwich structures

  14. Some problems of brazing technology for the divertor plate manufacturing

    Science.gov (United States)

    Prokofiev, Yu. G.; Barabash, V. R.; Khorunov, V. F.; Maksimova, S. V.; Gervash, A. A.; Fabritsiev, S. A.; Vinokurov, V. F.

    1992-09-01

    Among the different design options of the ITER reactor divertor, the joints of the carbon-based materials and molybdenum alloys and joints of tungsten and copper alloys are considered. High-temperature brazing is one of the most promising joining methods for the plasma facing and heat sink materials. The use of brazing for creation of W-Cu and graphite-Mo joints are given here. In addition, the investigation results of microstructure, microhardness and mechanical properties of the joints are presented. For W-Cu samples an influence of the neutron irradiation on the joining strength was studied.

  15. Some problems of brazing technology for the divertor plate manufacturing

    International Nuclear Information System (INIS)

    Prokofiev, Yu.G.; Barabash, V.R.; Gervash, A.A.; Khorunov, V.F.; Maksimova, S.V.; Vinokurov, V.F.; Fabritsiev, S.A.

    1992-01-01

    Among the different design options of the ITER reactor divertor, the joints of the carbon-based materials and molybdenum alloys and joints of tungsten and copper alloys are considered. High-temperature brazing is one of the most promising joining methods for the plasma facing and heat sink materials. The use of brazing for creation of W-Cu and graphite-Mo joints are given here. In addition, the investigation results of microstructure, microhardness and mechanical properties of the joints are presented. For W-Cu samples an influence of the neutron irradiation on the joining strength was studied. (orig.)

  16. Some problems of brazing technology for the divertor plate manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Prokofiev, Yu.G.; Barabash, V.R.; Gervash, A.A. (D.V. Efremov Scientific Research Inst. of Electrophysical Apparatus, St. Petersburg (Russia)); Khorunov, V.F.; Maksimova, S.V. (E.O. Paton Inst. of Electronwelding, Kiev (Ukraine)); Vinokurov, V.F. (Central Scientific Research Inst. of Structural Materials ' Prometey' , St. Petersburg (Russia)); Fabritsiev, S.A.

    1992-09-01

    Among the different design options of the ITER reactor divertor, the joints of the carbon-based materials and molybdenum alloys and joints of tungsten and copper alloys are considered. High-temperature brazing is one of the most promising joining methods for the plasma facing and heat sink materials. The use of brazing for creation of W-Cu and graphite-Mo joints are given here. In addition, the investigation results of microstructure, microhardness and mechanical properties of the joints are presented. For W-Cu samples an influence of the neutron irradiation on the joining strength was studied. (orig.).

  17. Mechanical properties and dual atmosphere tolerance of Ag-Al based braze

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Yong; Choi, Jung-Pyung; Scott Weil, K. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2008-07-15

    In this paper, the effects of aluminum on the microstructure, mechanical properties, and high temperature dual atmosphere tolerance of silver and silver-copper oxide filler metals were investigated. It was found that joints brazed with binary Ag-Al braze foils containing more than 2 at% Al retained a metallic form of aluminum within the metallic braze filler matrix after brazing at 1000 C in air. The bend strengths of these joints decreased with increasing aluminum content due to the formation of interfacial aluminum oxide. However, the existence of metallic aluminum in the braze filler matrix appeared to enhance the high-temperature dual atmosphere tolerance of the silver-based braze filler, which displayed measurably less porosity after 1000h of exposure at 800 C in a dual reducing/oxidizing atmosphere environment than unalloyed silver. A series of binary and ternary braze pastes based on the Ag-Al(-Cu) system were also formulated as potential pSOFC (planar solid oxide fuel cell) sealants. Model alumina joints brazed with these pastes exhibited an increase in bend strength with increasing copper content. However, unlike the binary Ag-Al filler metals, the ternary compositions often retained no protective metallic aluminum after brazing. Thus, while the addition of copper improves filler metal wettability and, therefore, joint strength in the Ag-Al alloys, it appears to reduce the dual atmosphere tolerance of these filler metals. (author)

  18. Microgalvanic Corrosion Behavior of Cu-Ag Active Braze Alloys Investigated with SKPFM

    Directory of Open Access Journals (Sweden)

    Armen Kvryan

    2016-04-01

    Full Text Available The nature of microgalvanic couple driven corrosion of brazed joints was investigated. 316L stainless steel samples were joined using Cu-Ag-Ti and Cu-Ag-In-Ti braze alloys. Phase and elemental composition across each braze and parent metal interface was characterized and scanning Kelvin probe force microscopy (SKPFM was used to map the Volta potential differences. Co-localization of SKPFM with Energy Dispersive Spectroscopy (EDS measurements enabled spatially resolved correlation of potential differences with composition and subsequent galvanic corrosion behavior. Following exposure to the aggressive solution, corrosion damage morphology was characterized to determine the mode of attack and likely initiation areas. When exposed to 0.6 M NaCl, corrosion occurred at the braze-316L interface preceded by preferential dissolution of the Cu-rich phase within the braze alloy. Braze corrosion was driven by galvanic couples between the braze alloys and stainless steel as well as between different phases within the braze microstructure. Microgalvanic corrosion between phases of the braze alloys was investigated via SKPFM to determine how corrosion of the brazed joints developed.

  19. The story of laser brazing technology

    Science.gov (United States)

    Hoffmann, Peter; Dierken, Roland

    2012-03-01

    This article gives an overview on the development of laser brazing technology as a new joining technique for car body production. The story starts with fundamental research work at German institutes in 1993, continues with the first implementations in automobile production in 1998, gives examples of applications since then and ends with an outlook. Laser brazing adapted design of joints and boundary conditions for a safe processing are discussed. Besides a better understanding for the sensitivity of the process against joint irregularities and misalignment, the key to successful launch was an advanced system technology. Different working heads equipped with wire feeding device, seam tracking system or tactile sensors for an automated teaching are presented in this paper. Novel laser heads providing a two beam technology will allow improved penetration depth of the filler wire and a more ecological processing by means of energy consumption.

  20. Wetting and spreading behavior of molten brazing filler metallic alloys on metallic substrate

    Science.gov (United States)

    Kogi, Satoshi; Kajiura, Tetsurou; Hanada, Yukiakira; Miyazawa, Yasuyuki

    2014-08-01

    Wetting and spreading of molten brazing filler material are important factors that influence the brazing ability of a joint to be brazed. Several investigations into the wetting ability of a brazing filler alloy and its surface tension in molten state, in addition to effects of brazing time and temperature on the contact angle, have been carried out. In general, dissimilar-metals brazing technology and high-performance brazed joint are necessities for the manufacturing field in the near future. Therefore, to address this requirement, more such studies on wetting and spreading of filler material are required for a deeper understanding. Generally, surface roughness and surface conditions affect spreading of molten brazing filler material during brazing. Wetting by and interfacial reactions of the molten brazing filler material with the metallic substrate, especially, affect strongly the spreading of the filler material. In this study, the effects of surface roughness and surface conditions on the spreading of molten brazing filler metallic alloys were investigated. Ag-(40-x)Cu-xIn and Ag- (40-x)Cu-xSn (x=5, 10, 15, 20, 25) alloys were used as brazing filler materials. A mild-steel square plate (S45C (JIS); side: 30 mm; thickness: 3mm) was employed as the substrate. A few surfaces with varying roughness were prepared using emery paper. Brazing filler material and metallic base plate were first washed with acetone, and then a flux was applied to them. The filler, 50 mg, was placed on the center of the metallic base with the flux. A spreading test was performed under Ar gas using an electrically heated furnace, after which, the original spreading area, defined as the sessile drop area, and the apparent spreading area, produced by the capillary grooves, were both evaluated. It was observed that the spreading area decreased with increasing In and Sn content.

  1. Analysis on High Temperature Aging Property of Self-brazing Aluminum Honeycomb Core at Middle Temperature

    Directory of Open Access Journals (Sweden)

    ZHAO Huan

    2016-11-01

    Full Text Available Tension-shear test was carried out on middle temperature self-brazing aluminum honeycomb cores after high temperature aging by micro mechanical test system, and the microstructure and component of the joints were observed and analyzed using scanning electron microscopy and energy dispersive spectroscopy to study the relationship between brazing seam microstructure, component and high temperature aging properties. Results show that the tensile-shear strength of aluminum honeycomb core joints brazed by 1060 aluminum foil and aluminum composite brazing plate after high temperature aging(200℃/12h, 200℃/24h, 200℃/36h is similar to that of as-welded joints, and the weak part of the joint is the base metal which is near the brazing joint. The observation and analysis of the aluminum honeycomb core microstructure and component show that the component of Zn, Sn at brazing seam is not much affected and no compound phase formed after high temperature aging; therefore, the main reason for good high temperature aging performance of self-brazing aluminum honeycomb core is that no obvious change of brazing seam microstructure and component occurs.

  2. Microwave-assisted brazing of alumina ceramics for electron tube ...

    Indian Academy of Sciences (India)

    Vickers microhardness measurement indicated reliable joint performance for the microwave-assisted brazed joints during ... Alumina ceramics are used in wide range of applications due to their .... temperature were recorded by DAQSOFT software in a sep- .... Tubes: Design and Development Capabilities (MTDDC)',.

  3. Solidification phenomena in nickel base brazes containing boron and silicon

    International Nuclear Information System (INIS)

    Tung, S.K.; Lim, L.C.; Lai, M.O.

    1996-01-01

    Nickel base brazes containing boron and/or silicon as melting point depressants are used extensively in the repair and joining of aero-engine hot-section components. These melting point depressants form hard and brittle intermetallic compounds with nickel which are detrimental to the mechanical properties of brazed joints. The present investigation studied the microstructural evolution in nickel base brazes containing boron and/or silicon as melting point depressant(s) in simple systems using nickel as the base metal. The basic metallurgical reactions and formation of intermetallic compounds uncovered in these systems will be useful as a guide in predicting the evolution of microstructures in similar brazes in more complex systems involving base metals of nickel base superalloys. The four filler metal systems investigated in this study are: Ni-Cr-Si; Ni-Cr-B; Ni-Si-B and Ni-Cr-Fe-Si-B

  4. Experimental study of W-Eurofer laser brazing for divertor application

    Energy Technology Data Exchange (ETDEWEB)

    Munez, C.J., E-mail: claudio.munez@urjc.es [Dept. de Tecnologia Mecanica, ESCET, Universidad Rey Juan Carlos, C/Tulipan s/n, Mostoles 28933, Madrid (Spain); Garrido, M.A. [Dept. de Tecnologia Mecanica, ESCET, Universidad Rey Juan Carlos, C/Tulipan s/n, Mostoles 28933, Madrid (Spain); Rams, J.; Urena, A. [Dept. de Ciencia e Ingenieria de Materiales, ESCET, Universidad Rey Juan Carlos, C/Tulipan s/n, Mostoles 28933, Madrid (Spain)

    2011-11-15

    Highlights: > Laser brazing system as a suitable technique to joint W and Eurofer alloys. > High residual stresses at the bonding were produced. > Laser brazing of powder metallurgy W alloys added porosity in the solidified pool. > The CSM methodology as a suitable technique to discriminate zones of welding joints. - Abstract: This work can be considered as a preliminary evaluation of the potential of laser brazing for joining tungsten based alloys to reduced activation ferritic-martensitic steels (Eurofer). Brazing of tungsten and EUROFER alloys using a 55Ni-45Ti alloy as a brazer and a high power diode laser (HPDL) as a power source has been investigated. The brazed joints showed solidified pools with good superficial aspect and a high degree of wettability with the both parent sheets, presumably because of the active effect of titanium. Metallurgical brazeability was investigated and nanoindentation measurements were done to evaluate local hardening and stiffness effects associated to dilution phenomena.

  5. Microstructure and phase constitution near the interface of Cu/3003 torch brazing using Al Si La Sr filler

    International Nuclear Information System (INIS)

    Yan, Fei; Wang, Chun Ming; Wang, Ya Jun; Xu, Dao Rong; Wu, S.C.; Sun, Qin De

    2012-01-01

    It has been mainly studied in this paper on brazing of Cu to Al using Al.Si filler metal. The optimized scanning rate of 2.5 mm/s is first obtained through simulating the temperature field of Cu Al brazing process based on ANSYS software. Then the brazing of Cu C11000 to Al 3003 using Al.Si.La.Sr filler is carried out by torch brazing technology. It is found that the brazing seam region is mainly consisted of α Al solid solution and CuAl2 IMC. Further experimental results also show that the rare earth element La in filler metal can not only refine the grain, but also promote the dispersion of intermetallic compounds into the brazing seam, which significantly improves the brazing seam microstructure and mechanical properties of the joints

  6. Annular beam shaping system for advanced 3D laser brazing

    Science.gov (United States)

    Pütsch, Oliver; Stollenwerk, Jochen; Kogel-Hollacher, Markus; Traub, Martin

    2012-10-01

    As laser brazing benefits from advantages such as smooth joints and small heat-affected zones, it has become established as a joining technology that is widely used in the automotive industry. With the processing of complex-shaped geometries, recent developed brazing heads suffer, however, from the need for continuous reorientation of the optical system and/or limited accessibility due to lateral wire feeding. This motivates the development of a laser brazing head with coaxial wire feeding and enhanced functionality. An optical system is designed that allows to generate an annular intensity distribution in the working zone. The utilization of complex optical components avoids obscuration of the optical path by the wire feeding. The new design overcomes the disadvantages of the state-of-the-art brazing heads with lateral wire feeding and benefits from the independence of direction while processing complex geometries. To increase the robustness of the brazing process, the beam path also includes a seam tracking system, leading to a more challenging design of the whole optical train. This paper mainly discusses the concept and the optical design of the coaxial brazing head, and also presents the results obtained with a prototype and selected application results.

  7. The Application of 40Ti-35Ni-25Nb Filler Foil in Brazing Commercially Pure Titanium

    Directory of Open Access Journals (Sweden)

    Shan-Bo Wang

    2018-03-01

    Full Text Available The clad ternary 40Ti-35Ni-25Nb (wt % foil has been applied in brazing commercially pure titanium (CP-Ti. The wavelength dispersive spectroscope (WDS was utilized for quantitative chemical analyses of various phases/structures, and electron back scattered diffraction (EBSD was used for crystallographic analyses in the brazed joint. The microstructure of brazed joint relies on the Nb and Ni distributions across the joint. For the β-Ti alloyed with high Nb and low Ni contents, the brazed zone (BZ, consisting of the stabilized β-Ti at room temperature. In contrast, eutectoid decomposition of the β-Ti into Ti2Ni and α-Ti is widely observed in the transition zone (TZ of the joint. Although average shear strengths of joints brazed at different temperatures are approximately the same level, their standard deviations decreased with increasing the brazing temperature. The presence of inherent brittle Ti2Ni intermetallics results in higher standard deviation in shear test. Because the Ni content is lowered in TZ at a higher brazing temperature, the amount of eutectoid is decreased in TZ. The fracture location is changed from TZ into BZ mixed with α and β-Ti.

  8. A review of oxide, silicon nitride, and silicon carbide brazing

    International Nuclear Information System (INIS)

    Santella, M.L.; Moorhead, A.J.

    1987-01-01

    There is growing interest in using ceramics for structural applications, many of which require the fabrication of components with complicated shapes. Normal ceramic processing methods restrict the shapes into which these materials can be produced, but ceramic joining technology can be used to overcome many of these limitations, and also offers the possibility for improving the reliability of ceramic components. One method of joining ceramics is by brazing. The metallic alloys used for bonding must wet and adhere to the ceramic surfaces without excessive reaction. Alumina, partially stabilized zirconia, and silicon nitride have high ionic character to their chemical bonds and are difficult to wet. Alloys for brazing these materials must be formulated to overcome this problem. Silicon carbide, which has some metallic characteristics, reacts excessively with many alloys, and forms joints of low mechanical strength. The brazing characteristics of these three types of ceramics, and residual stresses in ceramic-to-metal joints are briefly discussed

  9. Vacuum-brazed joints made from carbon-based materials and metals for the nuclear fusion research; Loetverbindungen zwischen Kohlenstoffwerkstoffen und metallischen Werkstoffen fuer die Fusionsforschung

    Energy Technology Data Exchange (ETDEWEB)

    Koppitz, T. [Forschungszentrum Juelich GmbH (Germany); Lison, R.; Bolt, H.; Hohenauer, W.

    1998-12-01

    The stationary operation of fusion plants may involve power fluxes of up to 5 MW/m2 in the region of the surfaces of plasma-facing components. In the case of disruptions, these power fluxes can reach 30 MW/m2 at exposed locations within a few milliseconds. Special materials with fusion capability are required to cope with loads arising at these locations due to thermal fatigue, physical and chemical erosion as well as thermal evaporation or sublimation. Such materials, so-called low-Z materials, include carbon-based materials such as graphites, carbon fibre reinforced carbon, boron carbides and others. The exposure of these materials to the above power fluxes for experimental purposes requires particular water-cooled components of different geometry with a materials-connected interface between the carbon-based material and the water-cooled component of TZM or copper. The application of high-temperature brazing for a largely defect-free fabrication of such components with different geometry will be presented in the following. (orig.)

  10. Microstructural development of diffusion-brazed austenitic stainless steel to magnesium alloy using a nickel interlayer

    International Nuclear Information System (INIS)

    Elthalabawy, Waled M.; Khan, Tahir I.

    2010-01-01

    The differences in physical and metallurgical properties of stainless steels and magnesium alloys make them difficult to join using conventional fusion welding processes. Therefore, the diffusion brazing of 316L steel to magnesium alloy (AZ31) was performed using a double stage bonding process. To join these dissimilar alloys, the solid-state diffusion bonding of 316L steel to a Ni interlayer was carried out at 900 deg. C followed by diffusion brazing to AZ31 at 510 deg. C. Metallographic and compositional analyses show that a metallurgical bond was achieved with a shear strength of 54 MPa. However, during the diffusion brazing stage B 2 intermetallic compounds form within the joint and these intermetallics are pushed ahead of the solid/liquid interface during isothermal solidification of the joint. These intermetallics had a detrimental effect on joint strengths when the joint was held at the diffusion brazing temperature for longer than 20 min.

  11. Influence of time presetting procedure for rapid local heat;.ng on brazing temperature conditions

    International Nuclear Information System (INIS)

    Lezhnin, G.P.; Tul'skikh, V.E.

    1985-01-01

    Correlation of known and suggested presetting procedures for heating period during induction brazing was conducted. It is shown that brazing time must be established considering heat propagation during heating in order to obtain the assigned joint temperature regardless of heating rate change. Methods for temperature calculation in assigned zones of the joint are suggested. The suggested presetting procedure for heating time was applied for induction vacuum brazing of a tube of 12Kh18N10T steel to a pipe connection of VT20 alloy

  12. PDS 1-5. Divertor heat sink materials pre- and post-neutron irradiation. Tensile and fatigue tests of brazed joints of molybdenum alloys and 316L stainless steel

    International Nuclear Information System (INIS)

    Lind, Anders.

    1994-01-01

    Tensile specimens from brazed joints of molybdenum alloys (TZM or Mo-5%Re) and Type 316L austenitic stainless steel tubes have been tested at ambient temperature and 127 degrees C before and after neutron irradiation at about 40 degrees C to approximately 0.2 dpa. The unirradiated specimens showed generally ductile behaviour, but the irradiated specimens were notch sensitive and failed in a brittle manner with zero elongation; in all cases the fracture occurred in the molybdenum alloy. The brittle behaviour is consistent with previously published data and results from the increase in strength (radiation hardening) and the associated increase in the ductile-brittle transition temperature (radiation embrittlement) induced in the body-centered-cubic (BCC) molybdenum alloys by irradiation to relatively low displacement doses. The same type of irradiated specimens were also used in fatigue tests. However, the results from the fatigue tests are too limited and complementary studies are needed. During exposure to water locally up to 25% of the wall thickness of the Mo-alloys has corroded away. These observations cast serious doubts on the viability of the molybdenum alloys for divertor applications in fusion systems. 8 refs, 29 figs

  13. Joining of beryllium by braze welding technique: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Banaim, P.; Abramov, E. [Ben-Gurion Univ. of the Negev, Beersheba (Israel); Zalkind, S.; Eden, S.

    1998-01-01

    Within the framework of some applications, there is a need to join beryllium parts to each other. Gas Tungsten Arc Braze Welds were made in beryllium using 0.3 mm commercially Aluminum (1100) shim preplaced at the joint. The welds exhibited a tendency to form microcracks in the Fusion Zone and Heat Affected Zone. All the microcracks were backfilled with Aluminum. (author)

  14. Development of Zn50 Brazing Alloy for Joining Mild Steel to Mild Steel (SAE1018

    Directory of Open Access Journals (Sweden)

    S.C. Nwigbo

    2014-09-01

    Full Text Available This work has developed new brazing alloys for joining mild steel to mild steel (SAE1018 at a lower temperature. The alloys blends and error analysis were done by experimental design software (Design Expert 8.0.7.1. Design of experiments was done by Scheffe quadratic mixture method. The liquidus temperatures were predicted by calculation of phase diagrams of the alloying metals. The brazing alloys were produced by gravity technique and melted using silicon carbide graphite crucible. The quality of the brazing alloys was analyzed by optical microscopy (OM, atomic absorption spectroscopy (AAS and fourier transform infrared spectroscopy (FT-IR. Brazed joints were produced by torch method with a commercial flux. Brazing temperatures (liquidus were tracked by a digital infrared/laser pyrometer. Some mechanical properties studied were tensile strength and hardness. Finally, brazed joints produced from the developed brazing alloys were compared to that produced from muntz brass. Six (6 brazing alloys were successfully developed. Zinc and manganese were the main components, to which were added; 3 to 4 %wt silver and 11 to15 %wt modifying element. The microstructure showed a typical eutectic structure with zinc-rich phase distributed uniformly in the matrix with a combination of different sizes of dendrite, rounded blocks of compounds and hypoeutectic structures. AAS results indicated minimal out-gassing of zinc and FT-IR results indicated very low presence of atmospheric gas. The range of brazing temperature for best results was recorded from 690.90 to 735.10 0C. The joints produced from the developed brazing alloys had acceptable strengths with improved stress-strain behaviour compared to muntz brass.

  15. Joining of molybdenum disilicide to stainless steel using amorphous metal brazes - residual stress analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, R.U.; Gallegos, D.E.; Kautz, D.D. [Los Alamos National Lab. (United States)

    2007-07-01

    Molybdenum disilicide (MoSi{sub 2})/stainless steel 316 L joints were produced by high temperature brazing using a cobalt-based metallic-glass (METGLAS trademark 2714A). Successful joining was completed in two different ways; either by feeding excess braze into the braze gap upon heating or by constraining the MoSi{sub 2}/stainless steel assembly with an alumina (Al{sub 2}O{sub 3}) fixture during the heating cycle. These steps were necessary to ensure the production of a high quality void free joint. Residual stress measurements were completed on these joints. Indentation results show higher tensile residual stresses in the stainless steel for the joint with the external constraint, in comparison to the unconstrained state. In contrast, the compressive residual stresses in the MoSi{sub 2} (as measured by X-ray diffraction) were lower in the constrained state relative to the unconstrained state. These results and a lack of residual stress balance indicate that the stress state in the braze is significantly different under the two joining conditions and the volume of the braze plays an important role in the development of the residual stresses. Push-out tests carried out on these joints gave higher joint strengths in the unconstrained as compared to the constrained condition. The results of this study have important implications on the selection of the appropriate joining process (use of constraint versus extra braze). (orig.)

  16. Orifice jet brazing process development, qualification, and initial application

    International Nuclear Information System (INIS)

    1971-05-01

    Experiments were carried out to develop acceptable procedures for brazing molybdenum alloy orifices to fuel element channel inlets of the NERVA R-1 reactor core. Results achieved with various procedures are described, and qualification tests of the selected process are documented. The recommended procedure includes preplacing of Au-Ni-Cr alloy washers and induction heating to 1600 0 F, holding two minutes, heating further to 2400 0 F, holding one minute, and allowing to cool. Inert atmosphere is used, and fixturing maintains proper positioning of the orifices. Leak testing of the joints has demonstrated reproducibly satisfactory sealing. Repair brazing is feasible if needed. (auth)

  17. Adiabatic surface thermometer for improved production braze quality

    International Nuclear Information System (INIS)

    Dittbenner, G.R.

    1975-01-01

    An adiabatic surface thermometer was developed to control automatically the critical temperature-time cycle of a production vacuum-brazing process. Investigations revealed that optimum braze-joint strength required precise control of the brazing temperature. Spot-welded thermocouples could not be used because the spot welds cause surface damage. This thermometer touches the surface and uses a differential thermocouple and heater to measure surface temperature without heat flow, thereby eliminating large errors caused by conduction losses common to conventional spring-loaded thermocouples. Temperatures in air or vacuum are measured to 800 0 C with errors less than 5 0 C. This thermometer has minimized the rejection of production parts, resulting in a cost saving to the U. S. Energy Research and Development Administration

  18. A preliminary study of cladding steel with NiTi by microwave-assisted brazing

    International Nuclear Information System (INIS)

    Chiu, K.Y.; Cheng, F.T.; Man, H.C.

    2005-01-01

    Nickel titanium (NiTi) plate of 1.2 mm thickness was successfully clad on AISI 316L stainless steel substrate by a microwave-assisted brazing process. Brazing was conducted in a multimode microwave oven in air using a copper-based brazing material in tape form. The brazing material was melted in a few minutes by microwave-induced plasma initiated by conducting wires surrounding the brazing assembly. Metallographic study by scanning-electron microscopy (SEM) and compositional analysis by energy-dispersive spectroscopy (EDS) of the brazed joint revealed metallurgical bonding formed via inter-diffusion between the brazing filler and the adjacent materials. A shear bonding strength in the range of 100-150 MPa was recorded in shear tests of the brazed joint. SEM and X-ray diffractometry (XRD) analysis for the surface of as-received NiTi plate and NiTi cladding showed similar microstructure and phase composition. Nanoindentation tests also indicated that the superelastic properties of NiTi were essentially retained. The cavitation erosion resistance of the NiTi cladding was essentially the same as that of as-received NiTi plate, and higher than that obtained in laser or TIG (tungsten-inert gas) surfacing. The high resistance could be attributed to avoidance of dilution and defect formation in the NiTi clad since the cladding did not undergo melting and solidification in the brazing process. Electrochemical tests also recorded similar corrosion resistance in both as-received NiTi and NiTi cladding. Thus, the present study indicates that microwave-assisted brazing is a simple, economical, and feasible process for cladding NiTi on 316L stainless steel for enhancing cavitation erosion resistance

  19. Development of vacuum brazing furnace

    International Nuclear Information System (INIS)

    Singh, Rajvir; Yedle, Kamlesh; Jain, A.K.

    2005-01-01

    In joining of components where welding process is not possible brazing processes are employed. Value added components, high quality RF systems, UHV components of high energy accelerators, carbide tools etc. are produced using different types of brazing methods. Furnace brazing under vacuum atmosphere is the most popular and well accepted method for production of the above mentioned components and systems. For carrying out vacuum brazing successfully it is essential to have a vacuum brazing furnace with latest features of modern vacuum brazing technology. A vacuum brazing furnace has been developed and installed for carrying out brazing of components of copper, stainless steel and components made of dissimilar metals/materials. The above furnace has been designed to accommodate jobs of 700mm diameter x 2000mm long sizes with job weight of 500kgs up to a maximum temperature of 1250 degC at a vacuum of 5 x 10 -5 Torr. Oil diffusion pumping system with a combination of rotary and mechanical booster pump have been employed for obtaining vacuum. Molybdenum heating elements, radiation shield of molybdenum and Stainless Steel Grade 304 have been used. The above furnace is computer controlled with manual over ride facility. PLC and Pentium PC are integrated together to maneuver steps of operation and safety interlocks of the system. Closed loop water supply provides cooling to the system. The installation of the above system is in final stage of completion and it will be ready for use in next few months time. This paper presents insights of design and fabrication of a modern vacuum brazing furnace and its sub-system. (author)

  20. Development of a Cu-Sn based brazing system with a low brazing and a high remelting temperature

    Science.gov (United States)

    Schmieding, M.; Holländer, U.; Möhwald, K.

    2017-03-01

    Objective of the project presented is the development of a joining process for hot working steel components at low brazing temperatures leading to a bond with a much higher remelting temperature. This basically is achieved by the use of a Cu-Sn melt spinning foil combined with a pure Cu foil. During brazing, the Sn content of the foil is decreased by diffusion of Sn into the additional Cu resulting in a homogenious joint with a increased remelting temperature of the filler metal. Within this project specimens were brazed and diffusion annealed in a vacuum furnace at 850 °C varying the processing times (0 - 10 h). The samples prepared were studied metallographically and diffusion profiles of Sn were recorded using EDX line scans. The results are discussed in view of further investigations and envisaged applications.

  1. Assessing braze quality in the actively cooled Tore Supra phase III outboard pump limiter

    International Nuclear Information System (INIS)

    Hygren, R.; Lutz, T.; Miller, J.

    1994-01-01

    This paper discusses the assessment of quality of brazing of pyrolytic graphite (PG) armor brazed to copper tubes in Tore Supra's Phase III Outboard Pump Limiter (OPL). The limiter head is a bank of 14 water-cooled copper tubes with several hundred brazed PG tiles. Braze quality was first assessed through pre-service qualification testing of individual copper/tiles assemblies. The quality of brazes was evaluated using (non-destructive) transient heating (open-quotes hot waterclose quotes) tests performed in the high temperature, high pressure flow loop at Sandia's Plasma Materials Test Facility. The surface temperatures of tiles were monitored with an infra-red (IR) camera as water at 120 degrees C water at about 2.07 MPa (300 psi) passed through a tube assembly initially at 30 degrees C. For tiles with braze voids or cracks, the surface temperatures lagged behind those of adjacent well bonded tiles. Temperature lags were correlated with flaw sizes observed during repairs using a detailed 2-D heat transfer analyses. open-quotes Badclose quotes tiles, i.e., temperature lags of 10-20 degrees C depending upon tile's size, were easy to detect and, when removed, revealed braze voids of roughly 50% of the joint area. 11 of the 14 tubes were rebrazed after bad tiles were detected and removed. Three tubes were re-brazed twice

  2. Microstructure Evolution During Stainless Steel-Copper Vacuum Brazing with a Ag/Cu/Pd Filler Alloy: Effect of Nickel Plating

    Science.gov (United States)

    Choudhary, R. K.; Laik, A.; Mishra, P.

    2017-03-01

    Vacuum brazing of stainless steel and copper plates was done using a silver-based filler alloy. In one set of experiments, around 30-µm-thick nickel coatings were electrochemically applied on stainless steel plates before carrying out the brazing runs and its effect in making changes in the braze-zone microstructure was studied. For brazing temperature of 830 °C, scanning electron microscopy examination of the braze-zone revealed that relatively sound joints were obtained when brazing was done with nickel-coated stainless steel than with uncoated one. However, when brazing of nickel-coated stainless steel and copper plates was done at 860 °C, a wide crack appeared in the braze-zone adjacent to copper side. Energy-dispersive x-ray analysis and electron microprobe analysis confirmed that at higher temperature, the diffusion of Cu atoms from copper plate towards the braze-zone was faster than that of Ni atoms from nickel coating. Helium leak rate of the order 10-11 Pa m3/s was obtained for the crack-free joint, whereas this value was higher than 10-4 Pa m3/s for the joint having crack. The shear strength of the joint was found to decrease considerably due to the presence of crack.

  3. High-temperature brazing, present situation and development trends - brazing alloys

    International Nuclear Information System (INIS)

    Lugscheider, E.

    1980-01-01

    The range of application of high-temperature brazing is described. The process is defined. High-temperature nickel-base brazing alloys (alloying constituents, types of products. properties of the brazing alloys) and high-temperature brazing alloys for special metals and ceramics are dealt with. (orig.) [de

  4. Diffusion bonding and brazing of high purity copper for linear collider accelerator structures

    Directory of Open Access Journals (Sweden)

    J. W. Elmer

    2001-05-01

    Full Text Available Diffusion bonding and brazing of high purity copper were investigated to develop procedures for joining precision machined copper components for the Next Linear Collider (NLC. Diffusion bonds were made over a range of temperatures from 400 °C to 1000 °C, under two different loading conditions [3.45 kPa (0.5 psi and 3.45 MPa (500 psi], and on two different diamond machined surface finishes. Brazes were made using pure silver, pure gold, and gold-nickel alloys, and different heating rates produced by both radiation and induction heating. Braze materials were applied by both physical vapor deposition (PVD and conventional braze alloy shims. Results of the diffusion bonding experiments showed that bond strengths very near that of the copper base metal could be made at bonding temperatures of 700 °C or higher at 3.45 MPa bonding pressure. At lower temperatures, only partial strength diffusion bonds could be made. At low bonding pressures (3.45 kPa, full strength bonds were made at temperatures of 800 °C and higher, while no bonding (zero strength was observed at temperatures of 700 °C and lower. Observations of the fracture surfaces of the diffusion bonded samples showed the effects of surface finish on the bonding mechanism. These observations clearly indicate that bonding began by point asperity contact, and flatter surfaces resulted in a higher percentage of bonded area under similar bonding conditions. Results of the brazing experiments indicated that pure silver worked very well for brazing under both conventional and high heating rate scenarios. Similarly, pure silver brazed well for both the PVD layers and the braze alloy shims. The gold and gold-containing brazes had problems, mainly due to the high diffusivity of gold in copper. These problems led to the necessity of overdriving the temperature to ensure melting, the presence of porosity in the joint, and very wide braze joints. Based on the overall findings of this study, a two

  5. Microstructure, mechanical properties and chemical degradation of brazed AISI 316 stainless steel/alumina systems

    International Nuclear Information System (INIS)

    Paiva, O.C.; Barbosa, M.A.

    2008-01-01

    The main aims of the present study are simultaneously to relate the brazing parameters with: (i) the correspondent interfacial microstructure, (ii) the resultant mechanical properties and (iii) the electrochemical degradation behaviour of AISI 316 stainless steel/alumina brazed joints. Filler metals on such as Ag-26.5Cu-3Ti and Ag-34.5Cu-1.5Ti were used to produce the joints. Three different brazing temperatures (850, 900 and 950 deg. C), keeping a constant holding time of 20 min, were tested. The objective was to understand the influence of the brazing temperature on the final microstructure and properties of the joints. The mechanical properties of the metal/ceramic (M/C) joints were assessed from bond strength tests carried out using a shear solicitation loading scheme. The fracture surfaces were studied both morphologically and structurally using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The degradation behaviour of the M/C joints was assessed by means of electrochemical techniques. It was found that using a Ag-26.5Cu-3Ti brazing alloy and a brazing temperature of 850 deg. C, produces the best results in terms of bond strength, 234 ± 18 MPa. The mechanical properties obtained could be explained on the basis of the different compounds identified on the fracture surfaces by XRD. On the other hand, the use of the Ag-34.5Cu-1.5Ti brazing alloy and a brazing temperature of 850 deg. C produces the best results in terms of corrosion rates (lower corrosion current density), 0.76 ± 0.21 μA cm -2 . Nevertheless, the joints produced at 850 deg. C using a Ag-26.5Cu-3Ti brazing alloy present the best compromise between mechanical properties and degradation behaviour, 234 ± 18 MPa and 1.26 ± 0.58 μA cm -2 , respectively. The role of Ti diffusion is fundamental in terms of the final value achieved for the M/C bond strength. On the contrary, the Ag and Cu distribution along the brazed interface seem to

  6. Metal-ceramic joint assembly

    Science.gov (United States)

    Li, Jian

    2002-01-01

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  7. Gas-Flame Brazing of Metals

    National Research Council Canada - National Science Library

    Asinovskaya, G

    1964-01-01

    ...), with subsequent crystallization of the latter, is called brazing or soldering; according to the Webster definition, brazing properly applies only to high- temperature soldering, soldering both to high and low-temperature work...

  8. Thermal cycling tests of actively cooled beryllium copper joints

    Energy Technology Data Exchange (ETDEWEB)

    Roedig, M.; Duwe, R.; Linke, J.; Schuster, A.; Wiechers, B. [Forschungszentrum Juelich GmbH (Germany)

    1998-01-01

    Screening tests (steady state heating) and thermal fatigue tests with several kinds of beryllium-copper joints have been performed in an electron beam facility. Joining techniques under investigation were brazing with silver containing and silver-free braze materials, hot isostatic pressing (HIP) and diffusion bonding (hot pressing). Best thermal fatigue performance was found for the brazed samples. (author)

  9. Brazing process in nuclear fuel element fabrication

    International Nuclear Information System (INIS)

    Katam, K.; Sudarsono

    1982-01-01

    The purpose of the brazing process is to join the spacers and pads of fuel pins, so that the process is meant as a soldering technique and not only as a hardening or reinforcing process such as in common brazing purposes. There are some preliminary processes before executing the brazing process such as: materials preparation, sand blasting, brazing metal coating tack welding the spacers and pads on the fuel cladding. The metal brazing used is beryllium in strip form which will be evaporated in vacuum condition to coat the spacers and pads. The beryllium vapor and dust is very hazardous to the workers, so all the line process of brazing needs specials safety protection and equipment to protect the workers and the processing area. Coating process temperature is 2470 deg C with a vacuum pressure of 10 -5 mmHg. Brazing process temperature process is 1060 deg C with a vacuum pressure of 10 -6 mmHg. The brazing process with beryllium coating probably will give metallurgical structural change in the fuel cladding metal at the locations of spacers and pads. The quality of brazing is highly influenced by and is depending on the chemical composition of the metal and the brazing metal, materials preparations, temperature, vacuum pressure, time of coating and brazing process. The quality control of brazing could be performed with methods of visuality geometry, radiography and metallography. (author)

  10. Features of Pd-Ni-Fe solder system for vacuum brazing of low alloy steels

    International Nuclear Information System (INIS)

    Radzievskij, V.N.; Kurochko, R.S.; Lotsmanov, S.N.; Rymar', V.I.

    1975-01-01

    The brazing solder of the Pd-Ni-Fe alloyed with copper and lithium, in order to decrease the melting point and provide for a better spreading, when soldered in vacuum ensures a uniform strength of soldered joints with the base metal of low-alloyed steels of 34KHNIM-type. The properties of low-alloyed steel joints brazed with the Pd-Ni-Fe-system solder little depend on the changes in the soldering parameters. The soldered joint keeps a homogeneous structure after all the stages of heat treatment (annealing, quenching and tempering)

  11. Manufacturing and testing in reactor relevant conditions of brazed plasma facing components of the ITER divertor

    International Nuclear Information System (INIS)

    Bisio, M.; Branca, V.; Marco, M. Di; Federici, A.; Grattarola, M.; Gualco, G.; Guarnone, P.; Luconi, U.; Merola, M.; Ozzano, C.; Pasquale, G.; Poggi, P.; Rizzo, S.; Varone, F.

    2005-01-01

    A fabrication route based on brazing technology has been developed for the realization of the high heat flux components for the ITER vertical target and Dome-Liner. The divertor vertical target is armoured with carbon fiber reinforced carbon and tungsten in the lower straight part and in the upper curved part, respectively. The armour material is joined to heat sinks made of precipitation hardened copper-chromium-zirconium alloy. The plasma facing units of the dome component are based on a tungsten flat tile design with hypervapotron cooling. An innovative brazing technique based on the addition of carbon fibers to the active brazing alloy, developed by Ansaldo Ricerche for applications in the field of the energy production, has been used for the carbon fiber composite to copper joint to reduce residual stresses. The tungsten-copper joint has been realized by direct casting. A proper brazing thermal cycle has been studied to guarantee the required mechanical properties of the precipitation hardened alloy after brazing. The fabrication route of plasma facing components for the ITER vertical target and dome based on the brazing technology has been proved by means of thermal fatigue tests performed on mock-ups in reactor relevant conditions

  12. A Review of Research Progress on Dissimilar Laser Weld-Brazing of Automotive Applications

    Science.gov (United States)

    Krishnaja, Devireddy; Cheepu, Muralimohan; Venkateswarlu, D.

    2018-03-01

    In recent years, a rapidly growing demand for laser brazing in the transportation industry for automotive parts joining to improve the productivity, quality of the joints and cost efficiency reasons. Due to this, laser brazing technology is extensively used in the major manufacturing companies such as Volkswagen group, General Motors Europe, BMW and Ford manufacturing groups as their openingbulk production solicitation on various parts of vehicles. Laser brazing is different from the welding processes and it will block upanopeningamongst two substrates by mixture of a filler wire on condition that by a concentrated laser beam or any other heat source. Among the all joining processes, laser brazing technique is an alternative and in effect method for welding of dissimilar metals which have large difference in their melting points. It is important to understand therelationsof these phenomena of the fillers of brazing with the substrate surfaces to obtain a high quality joints. The aim of this study is to address the contemporaryenquiriesand its progress on laser-brazing, its importance to the industrial applications and to bring more awareness to the manufacturers about the research results of this technique from various research groups to enhance the research progress and developing new things from this review report.

  13. Brazing of AlN to SiC by a Pr silicide: Physicochemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Koltsov, A. [SIMAP - UMR CNRS 5266, INP Grenoble-UJF, Domaine Universitaire, BP 75, 1130 rue de la Piscine, 38402 Saint Martin d' Heres, Cedex (France)], E-mail: alexey.koltsov@arcelor.com; Hodaj, F.; Eustathopoulos, N. [SIMAP - UMR CNRS 5266, INP Grenoble-UJF, Domaine Universitaire, BP 75, 1130 rue de la Piscine, 38402 Saint Martin d' Heres, Cedex (France)

    2008-11-15

    In view of their very different thermomechanical properties, joining of metals to ceramics by brazing is usually performed by means of one or more interlayers. In a recent investigation AlN was chosen as interlayer material for brazing SiC to a superalloy. The aim of the present study is to determine an alloy with a high melting point (close to 1200 deg. C) enabling brazing of AlN to SiC. Two types of experiments are performed with a Si-17 at.% Pr eutectic alloy (T{sub m} = 1212 deg. C): sessile drop experiments to determine wetting and brazing of AlN and SiC plates to determine gap filling. Experiments are carried out in high vacuum to promote deoxidation. Interfacial reactivity, joint microstructure and type of failure occurring during cooling are examined by optical and scanning electron microscopy.

  14. Brazing of AlN to SiC by a Pr silicide: Physicochemical aspects

    International Nuclear Information System (INIS)

    Koltsov, A.; Hodaj, F.; Eustathopoulos, N.

    2008-01-01

    In view of their very different thermomechanical properties, joining of metals to ceramics by brazing is usually performed by means of one or more interlayers. In a recent investigation AlN was chosen as interlayer material for brazing SiC to a superalloy. The aim of the present study is to determine an alloy with a high melting point (close to 1200 deg. C) enabling brazing of AlN to SiC. Two types of experiments are performed with a Si-17 at.% Pr eutectic alloy (T m = 1212 deg. C): sessile drop experiments to determine wetting and brazing of AlN and SiC plates to determine gap filling. Experiments are carried out in high vacuum to promote deoxidation. Interfacial reactivity, joint microstructure and type of failure occurring during cooling are examined by optical and scanning electron microscopy

  15. Braze Welding TIG of Titanium and Aluminium Alloy Type Al – Mg

    Directory of Open Access Journals (Sweden)

    Winiowski A.

    2016-03-01

    Full Text Available The article presents the course and the results of technological tests related to TIG-based arc braze welding of titanium and AW-5754 (AlMg3 aluminium alloy. The tests involved the use of an aluminium filler metal (Al99.5 and two filler metals based on Al-Si alloys (AlSi5 and AlSi12. Braze welded joints underwent tensile tests, metallographic examinations using a light microscope as well as structural examinations involving the use of a scanning electron microscope and an X-ray energy dispersive spectrometer (EDS. The highest strength and quality of welds was obtained when the Al99.5 filler metal was used in a braze welding process. The tests enabled the development of the most convenient braze welding conditions and parameters.

  16. Brazing and diffusion bonding processes as available repair techniques for gas turbine blades and nozzles

    International Nuclear Information System (INIS)

    Mazur, Z.

    1997-01-01

    The conventionally welding methods are not useful for repair of heavily damaged gas turbine blades and nozzles. It includes thermal fatigue and craze cracks, corrosion, erosion and foreign object damage, which extend to the large areas. Because of required extensive heat input and couponing, it can cause severe distortion of the parts and cracks in the heat affected zone, and can made the repair costs high. For these cases, the available repair methods of gas turbine blades and nozzles, include brazing and diffusion bonding techniques are presented. Detailed analysis of the brazing and diffusion bonding processes applied for gas turbine blades repair with all elements which presented. Detailed analysis of the brazing and diffusion bonding processes applied for gas turbine blades repair with all elements which have influence to get sound joint is carried out. Depend of kind of blades and nozzle damage or deterioration registered a different methods of brazing and diffusion bonding applicability is presented. (Author) 65 refs

  17. Deposition of thin film of titanium on ceramic substrate using the discharge for hollow cathode for Al2O3/Al2O3 indirect brazing

    Directory of Open Access Journals (Sweden)

    Mary Roberta Meira Marinho

    2009-01-01

    Full Text Available Thin films of titanium were deposited onto Al2O3 substrate by hollow cathode discharge method for the formation of a ceramic-ceramic joint using indirect brazing method. An advantage of using this technique is that a relatively small amount of titanium is required for the metallization of the ceramic surface when compared with other conventional methods. Rapidly solidified brazing filler of Cu49Ag45Ce6 in the form of ribbons was used. The thickness of deposited titanium layer and the brazing temperature/time were varied. The quality of the brazed joint was evaluated through the three point bending flexural tests. The brazed joints presented high flexural resistance values up to 176 MPa showing the efficiency of the technique.

  18. Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Prado, J. de, E-mail: javier.deprado@urjc.es; Sánchez, M.; Ureña, A.

    2017-07-15

    80Cu-20Ti powders were evaluated for their use as filler alloy for high temperature brazing of tungsten to a reduced activation ferritic/martensitic steel (Eurofer), and its application for the first wall of the DEMO fusion reactor. The use of alloyed powders has not been widely considered for brazing purposes and could improve the operational brazeability of the studied system due to its narrower melting range, determined by DTA analysis, which enhances the spreading capabilities of the filler. Ti contained in the filler composition acts as an activator element, reacting and forming several interfacial layers at the Eurofer-braze, which enhances the wettability properties and chemical interaction at the brazing interface. Brazing thermal cycle also activated the diffusion phenomena, which mainly affected to the Eurofer alloying elements causing in it a softening band of approximately 400 μm of thickness. However, this softening effect did not degrade the shear strength of the brazed joints (94 ± 23 MPa), because failure during testing was always located at the tungsten-braze interface. - Highlights: •W-Eurofer brazed joints, manufactured using Cu-based mechanically alloyed powders as filler is proposed. •The benefits derivate from the alloyed composition could improve the operational brazeability of the studied system. •Tested pre-alloyed fillers have a more homogeneous melting stage which enhances its spreading and flowing capabilities. •This behaviour could lead to work with higher heating rates and lower brazing temperatures.

  19. Joining mechanism of Ti/Al dissimilar alloys during laser welding-brazing process

    International Nuclear Information System (INIS)

    Chen Shuhai; Li Liqun; Chen Yanbin; Huang Jihua

    2011-01-01

    Research highlights: → The microstructures of interfacial zones were confirmed in detail by transmission electron microscope (TEM). Interfacial reaction layers of brazing joint were composed of α-Ti, nanosize granular Ti 7 Al 5 Si 12 and serration-shaped TiAl 3 . For the first time, obvious stacking fault structure in intermetallic phase TiAl 3 was found when the thickness of the reaction layer was very thin (approximately below 1 μm). → Metallurgical characteristics for laser welding-brazing process in the environment of far from equilibrium was expounded by microstructures of the joints, the characteristics of thermal process and element diffusion behavior. - Abstract: Joining mechanism of Ti/Al dissimilar alloys was investigated during laser welding-brazing process with automated wire feed. The microstructures of fusion welding and brazing zones were analysed in details by transmission electron microscope (TEM). It was found that microstructures of fusion welding zone consist of α-Al grains and ternary near-eutectic structure with α-Al, Si and Mg 2 Si. Interfacial reaction layers of brazing joint were composed of α-Ti, nanosize granular Ti 7 Al 5 Si 12 and serration-shaped TiAl 3 . For the first time, apparent stacking fault structure in intermetallic phase TiAl 3 was found when the thickness of the reaction layer was very thin (approximately less than 1 μm). Furthermore, crystallization behavior of fusion zone and mechanism of interfacial reaction were discussed in details.

  20. Diffusion brazing of Ti–6Al–4V and austenitic stainless steel using silver-based interlayer

    International Nuclear Information System (INIS)

    Soltani Tashi, R.; Akbari Mousavi, S.A.A.; Mazar Atabaki, M.

    2014-01-01

    Highlights: • Ti–6Al–4V and stainless steel 316L were successfully joined by diffusion brazing. • The wettability of the filler alloy was escalated by increasing the temperature. • By increasing the brazing temperature various intermetallic compounds were formed. • There is a noteworthy effect of the brazing temperature on the fracture footpath. - Abstract: In the present study, vacuum brazing was applied to join Ti–6Al–4V and stainless steel using AgCuZn filler metal. The bonds were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction analysis. Mechanical strengths of the joints were evaluated by the shear test and microhardness showed that shear strength decreased with increasing the brazing temperature and time. The results showed that the wettability of the filler alloy was increased by enhancing the wetting test temperature. It was shown that by increasing the brazing temperature various intermetallic compounds were formed in the bond area. These intermetallic compounds were mainly a combination of CuTi and Fe–Cu–Ti. The shear test results verified the influence of the bonding temperature on the strength of the joints based on the formation of different intermetallics in the bond zone. The fracture analysis also revealed different fracture footpath and morphology for the different brazing temperatures

  1. Effects of service environments on aluminum-brazed titanium (ABTi)

    Science.gov (United States)

    Cotton, W. L.

    1978-01-01

    Aluminum brazed titanium (ABTi) structures were evaluated during prolonged exposure to extreme environments: elevated temperature exposure to airline service fluids, hydraulic fluid, and seawater, followed by laboratory corrosion tests. Solid-face and perforated face honeycomb sandwich panel specimens, stressed panel assemblies, and faying surface brazed joints were tested. The corrosion resistance of ABTi is satisfactory for commercial airline service. Unprotected ABTi proved inherently resistant to attack by all of the extreme service aircraft environments except: seawater at 700 K (800 F) and above, dripping phosphate ester hydraulic fluid at 505 K (450 F), and a marine environment at ambient temperature. The natural oxides and deposits present on titanium surfaces in airline service provide protection against hot salt corrosion pitting. Coatings are required to protect titanium dripping phosphate ester fluid at elevated temperatures and to protect exposed acoustic honeycomb parts against corrosion in a marine environment.

  2. New hermetic sealing material for vacuum brazing of stainless steels

    International Nuclear Information System (INIS)

    Hildebrandt, S; Wiehl, G; Silze, F

    2016-01-01

    For vacuum brazing applications such as in vacuum interrupter industry Hermetic Sealing Materials (HSM) with low partial pressure are widely used. AgCu28 dominates the hermetic sealing market, as it has a very good wetting behavior on copper and metallized ceramics. Within recent decades wetting on stainless steel has become more and more important. However, today the silver content of HSMs is more in focus than in the past decades, because it has the biggest impact on the material prices. Umicore Technical Materials has developed a new copper based HSM, CuAg40Ga10. The wettability on stainless steel is significantly improved compared to AgCu28 and the total silver content is reduced by almost 44%. In this article the physical properties of the alloy and its brazed joints will be presented compared to AgCu28. (paper)

  3. Surface preparation for high purity alumina ceramics enabling direct brazing in hydrogen atmospheres

    Science.gov (United States)

    Cadden, Charles H.; Yang, Nancy Yuan Chi; Hosking, Floyd M.

    2001-01-01

    The present invention relates to a method for preparing the surface of a high purity alumina ceramic or sapphire specimen that enables direct brazing in a hydrogen atmosphere using an active braze alloy. The present invention also relates to a method for directly brazing a high purity alumina ceramic or sapphire specimen to a ceramic or metal member using this method of surface preparation, and to articles produced by this brazing method. The presence of silicon, in the form of a SiO.sub.2 -containing surface layer, can more than double the tensile bond strength in alumina ceramic joints brazed in a hydrogen atmosphere using an active Au-16Ni-0.75 Mo-1.75V filler metal. A thin silicon coating applied by PVD processing can, after air firing, produce a semi-continuous coverage of the alumina surface with a SiO.sub.2 film. Room temperature tensile strength was found to be proportional to the fraction of air fired surface covered by silicon-containing films. Similarly, the ratio of substrate fracture versus interface separation was also related to the amount of surface silicon present prior to brazing. This process can replace the need to perform a "moly-manganese" metallization step.

  4. Diffusion Brazing of Ti-6Al-4V and Stainless Steel 316L Using AgCuZn Filler Metal

    Directory of Open Access Journals (Sweden)

    R. Soltani Tashi

    2013-09-01

    Full Text Available In the present study, vacuum brazing was applied to join Ti-6Al-4V and stainless steel using AgCuZn filler metal. The bonds were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction analysis. Mechanical strengths of the joints were evaluated by the shear test and microhardness. It has been shown that shear strength decreased with increasing the brazing temperature and time. The wettability of the filler alloy was increased by enhancing the wetting test temperature. By increasing the brazing temperature various intermetallic compounds were formed in the bond area. These intermetallic compounds were mainly a combination of CuTi and Fe-Cu-Ti. The shear test results verified the influence of the bonding temperature on the strength of the joints based on the formation of different intermetallics in the bond zone. The fracture analysis also revealed different fracture footpath and morphology for different brazing temperatures.

  5. Pre-qualification of brazed plasma facing components of divertor target elements for ITER like tokamak application

    International Nuclear Information System (INIS)

    Singh, K.P.; Pandya, Santosh P.; Khirwadkar, S.S.; Patel, Alpesh; Patil, Y.; Buch, J.J.U.; Khan, M.S.; Tripathi, Sudhir; Pandya, Shwetang; Govindrajan, J.; Jaman, P.M.; Rathore, Devendra; Rangaraj, L.; Divakar, C.

    2011-01-01

    Qualification of tungsten (W) and graphite (C) based brazed plasma facing components (PFCs) is an important R and D area in fusion research. Pre-qualification tests for brazed joints between W-CuCrZr and C-CuCrZr using NDT (IR thermography and ultrasonic test) and thermal fatigue test are attempted. Mockups having good quality brazed joints of W and C based PFCs were identified using NDT. Subsequently, thermal fatigue test was performed on the identified mockups. All brazed tiles of W based PFC mockups could withstand thermal fatigue test, however, few tiles of C based PFC mockup were found detached. Thermal analyses of mockups are performed using finite element analysis (ANSYS) software to simulate the thermal hydraulic condition with 10 MW/m 2 uniform heat flux. Details about experimental and computational work are presented here.

  6. Pre-qualification of brazed plasma facing components of divertor target elements for ITER like tokamak application

    Energy Technology Data Exchange (ETDEWEB)

    Singh, K.P., E-mail: kpsingh@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat (India); Pandya, Santosh P.; Khirwadkar, S.S.; Patel, Alpesh; Patil, Y.; Buch, J.J.U.; Khan, M.S.; Tripathi, Sudhir; Pandya, Shwetang; Govindrajan, J. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat (India); Jaman, P.M.; Rathore, Devendra; Rangaraj, L.; Divakar, C. [Materials Science Division, National Aerospace Laboratories, CSIR, Bangalore, Karnataka (India)

    2011-10-15

    Qualification of tungsten (W) and graphite (C) based brazed plasma facing components (PFCs) is an important R and D area in fusion research. Pre-qualification tests for brazed joints between W-CuCrZr and C-CuCrZr using NDT (IR thermography and ultrasonic test) and thermal fatigue test are attempted. Mockups having good quality brazed joints of W and C based PFCs were identified using NDT. Subsequently, thermal fatigue test was performed on the identified mockups. All brazed tiles of W based PFC mockups could withstand thermal fatigue test, however, few tiles of C based PFC mockup were found detached. Thermal analyses of mockups are performed using finite element analysis (ANSYS) software to simulate the thermal hydraulic condition with 10 MW/m{sup 2} uniform heat flux. Details about experimental and computational work are presented here.

  7. Micro-nano filler metal foil on vacuum brazing of SiCp/Al composites

    Science.gov (United States)

    Wang, Peng; Gao, Zeng; Niu, Jitai

    2016-06-01

    Using micro-nano (Al-5.25Si-26.7Cu)- xTi (wt%, x = 1.0, 1.5, 2.0, 2.5 and 3.0) foils as filler metal, the research obtained high-performance joints of aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process and Ti content on joint properties was investigated, respectively. The experimental results indicate that void free dense interface between SiC particle and metallic brazed seam with C-Al-Si-Ti product was readily obtained, and the joint shear strength enhanced with increasing brazing temperature from 560 to 580 °C or prolonging soaking time from 10 to 90 min. Sound joints with maximum shear strength of 112.5 MPa was achieved at 580 °C for soaking time of 90 min with (Al-5.25Si-26.7Cu)-2Ti filler, where Ti(AlSi)3 intermetallic is in situ strengthening phase dispersed in the joint and fracture occured in the filler metal layer. In this research, the beneficial effect of Ti addition into filler metal on improving wettability between SiC particle and metallic brazed seam was demonstrated, and capable welding parameters were broadened for SiCp/Al-MMCs with high SiC particle content.

  8. Microstructural control of thin-film diffusion-brazed titanium

    International Nuclear Information System (INIS)

    Wells, R.R.

    1976-01-01

    This study was designed to determine what parameters should be controlled to achieve quality joints of good toughness and high strength in titanium alloys. Emphasis was placed upon studying those parameters which provided tough joints compatible with the titanium base metal being joined. This paper is concerned with thin-film diffusion brazing based upon the eutectic system formed between copper and titanium. In order to control the joint microstructure, the copper diffusion rates and the beta-phase decomposition kinetics were studied. This information was used to produce various types of microstructures in test specimens. These were then evaluated to select the best microstructures for toughness and strength which were compatible with the titanium alloys. Results show that it is possible to accurately control properties of joints produced by thin-film diffusion brazing. This is done by controlling the initial copper content and the time-temperature parameters used in processing. Alloys studied were Ti--8Al--1Mo--1V and Ti--6Al--4V

  9. Joining of aluminum and stainless steel using AlSi10 brazing filler: Microstructure and mechanical properties

    Science.gov (United States)

    Fedorov, Vasilii; Uhlig, Thomas; Wagner, Guntram

    2017-07-01

    Joining of dissimilar materials like stainless steel and aluminum is of special interest for automotive applications. Due to the different properties of these materials, suitable joining techniques are required. Brazing offers the possibilities to manufacture high performance joints in one step and at low joining temperatures. However, these joints often need to withstand a high number of high cyclic loads during application. Therefore, in addition to the monotonic properties, the fatigue behavior of the produced joints must be considered and evaluated. In the present work, specimens are manufactured by induction brazing using an AlSi10 filler and a non-corrosive flux. The mechanical properties are determined by tensile shear tests as well as in fatigue tests at ambient and elevated temperatures. The microstructure of the brazed joints and the fracture surfaces of the tested samples are investigated by SEM.

  10. Fluxless furnace brazing and its theoretical fundamentals

    International Nuclear Information System (INIS)

    Lison, R.

    1979-01-01

    In this paper the theoretical fundamental of fluxless furnace brazing are described. The necessary conditions for a wetting in the vacuum, under a inert-gas and with a reducing gas are discussed. Also other methods to reduce the oxygen partial pressure are described. Some applications of fluxless furnace brazing are outlined. (orig.) [de

  11. METHODS FOR BRAZING UNUSUAL METAL COMBINATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bertossa, Robert C.

    1963-10-15

    A method for vacuum pressure braze cladding is described. Application of the method to Mo-OFHC Cu-type 316L stainlcss steel, Ta cladding on OFHC Cu, Nb with Ni, Ti and Zr on steels, and pure Be brazing to austenitic stalnless steel are discussed. The advantages of vacuumpressure bonding are also discussed. (P.C.H.)

  12. Copper-silver-titanium-tin filler metal for direct brazing of structural ceramics

    Science.gov (United States)

    Moorhead, Arthur J.

    1988-04-05

    A method of joining ceramics and metals to themselves and to one another at about 800.degree. C. is described using a brazing filler metal consisting essentially of 35 to 50 at. % copper, 40 to 50 at. % silver, 1 to 15 at. % titanium, and 2 to 8 at. % tin. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  13. Copper-silver-titanium filler metal for direct brazing of structural ceramics

    Science.gov (United States)

    Moorhead, Arthur J.

    1987-01-01

    A method of joining ceramics and metals to themselves and to one another is described using a brazing filler metal consisting essentially of 35 to 50 atomic percent copper, 15 to 50 atomic percent silver and 10 to 45 atomic percent titanium. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  14. Brazing of molybdenum- and tungsten based refractory materials with copper and graphite

    International Nuclear Information System (INIS)

    Boutes, J.; Falbriard, P.; Rochette, P.; Nicolas, G.

    1989-01-01

    Molybdenum and Tungsten base refractory metals and alloys have been brazed 1. to copper between 800 0 C and 900 0 C with silver base metal; 2. to graphite, with CVD coatings between 800 0 C and 900 0 C with silver base metal and between 1100 0 C and 1200 0 C with copper base metal; 3. to graphite between 800 0 C and 1100 0 C with silver or nickel base metal. The brazed joints have been characterized by micrographic observations before and after bending tests from room temperature to 800 0 C. 2 tabs., 9 figs. (Author)

  15. In-situ quality monitoring during laser brazing

    Science.gov (United States)

    Ungers, Michael; Fecker, Daniel; Frank, Sascha; Donst, Dmitri; Märgner, Volker; Abels, Peter; Kaierle, Stefan

    Laser brazing of zinc coated steel is a widely established manufacturing process in the automotive sector, where high quality requirements must be fulfilled. The strength, impermeablitiy and surface appearance of the joint are particularly important for judging its quality. The development of an on-line quality control system is highly desired by the industry. This paper presents recent works on the development of such a system, which consists of two cameras operating in different spectral ranges. For the evaluation of the system, seam imperfections are created artificially during experiments. Finally image processing algorithms for monitoring process parameters based the captured images are presented.

  16. Tensile Creep Properties of the 50Au-50Cu Braze Alloy

    International Nuclear Information System (INIS)

    Stephens, J.J.

    1999-01-01

    The 50Au-50CU (wt.%) alloy is a solid-solution strengthened braze alloy used extensively in conventional, hermetic metal/ceramic brazing applications where low vapor pressure is a requirement. Typical metal/ceramic base materials would be Kovar TM alloy and metallized and Ni-plated 94% alumina ceramic. The elevated temperature mechanical properties are important for permitting FEA evaluation of residual stresses in metal/ceramic brazes given specific geometries and braze cooldown profiles. For material with an atomic composition of 76.084 at.% CL 23.916 Au (i.e., on the Cu-rich side of Cu 3 Au) that was annealed for 2 hr. at 750 ampersand deg;C and water quenched a Garofalo sinh equation was found to adequately characterize the minimum strain rate data over the temperature mnge 450-850 ampersand deg;C. At lower temperatures (250 arid 350 ampersand deg;C), a conventional power law equation was found to characterize the data. For samples held long periods of time at 375 ampersand deg;C (96 hrs.) and slowly cooled to room temperature, a slight strengthening reaction was observed: with the stress necessary to reach the same strain rate increasing by about 15% above the baseline annealed and quenched data. X-ray diffiction indicates that the 96 hr at 375 ampersand deg;C + slow cool condition does indeed order. The microhardness of the ordered samples indicates a value of 94.5 VHN, compared to 93.7 VHN for the baseline annealed and quenched (disordered FCC) samples. From a brazing perspective, the relative sluggishness of this ordering reaction does not appear to pose a problem for braze joints cooled at reasonable rates following brazing

  17. Repairs of Damaged Castings Made of Graphitic Cast Iron by Means of Brazing

    Directory of Open Access Journals (Sweden)

    Mičian M.

    2017-09-01

    Full Text Available The article summarizes the theoretical knowledge from the field of brazing of graphitic cast iron, especially by means of conventional flame brazing using a filler metal based on CuZn (CuZn40SnSi – brass alloy. The experimental part of the thesis presents the results of performance assessment of brazed joints on other than CuZn basis using silicone (CuSi3Mn1 or aluminium bronze (CuAl10Fe. TIG electrical arc was used as a source of heat to melt these filler materials. The results show satisfactory brazed joints with a CuAl10Fe filler metal, while pre-heating is not necessary, which favours this method greatly while repairing sizeable castings. The technological procedure recommends the use of AC current with an increased frequency and a modified balance between positive and negative electric arc polarity to focus the heat on a filler metal without melting the base material. The suitability of the joint is evaluated on the basis of visual inspection, mechanic and metallographic testing.

  18. Theory and modeling of active brazing.

    Energy Technology Data Exchange (ETDEWEB)

    van Swol, Frank B.; Miller, James Edward; Lechman, Jeremy B.; Givler, Richard C.

    2013-09-01

    Active brazes have been used for many years to produce bonds between metal and ceramic objects. By including a relatively small of a reactive additive to the braze one seeks to improve the wetting and spreading behavior of the braze. The additive modifies the substrate, either by a chemical surface reaction or possibly by alloying. By its nature, the joining process with active brazes is a complex nonequilibrium non-steady state process that couples chemical reaction, reactant and product diffusion to the rheology and wetting behavior of the braze. Most of the these subprocesses are taking place in the interfacial region, most are difficult to access by experiment. To improve the control over the brazing process, one requires a better understanding of the melting of the active braze, rate of the chemical reaction, reactant and product diffusion rates, nonequilibrium composition-dependent surface tension as well as the viscosity. This report identifies ways in which modeling and theory can assist in improving our understanding.

  19. High-temperature brazing of X5CrNi18 10 and NiCr20TiAl using the atmospherically plasma-sprayed L-Ni2 filler metal

    International Nuclear Information System (INIS)

    Wielage, B.; Drozak, J.

    1992-01-01

    The hybrid-technological combination of the atmospheric plasma spraying for the application of a high-temperature filler metal followed by a brazing process was analyzed in terms of structure and mechanical properties of X5CrNi18 10 and NiCr20TiAl brazing joints. The thickness of the filler metal layer was minimized at [de

  20. Corrosion Mechanisms in Brazed Al-Base Alloy Sandwich Structures as a Function of Braze Alloy and Process Variables

    Science.gov (United States)

    2013-02-01

    concerns. These braze alloys use a high Si content to produce a low melting Al-Si near eutectic alloy. The recommended 11 brazing temperature for A A...each successive dip enhancing the 21 high temperature Si enrichment outside of the braze gap and decreasing the Si content within the braze gap.6...Nevertheless equilibrium phases should be considered as a reference point for grain boundaries after high temperature brazing . Recent literature [22

  1. Basic principles of creating a new generation of high- temperature brazing filler alloys

    Science.gov (United States)

    Kalin, B. A.; Suchkov, A. N.

    2016-04-01

    The development of new materials is based on the formation of a structural-phase state providing the desired properties by selecting the base and the complex of alloying elements. The development of amorphous filler alloys for a high-temperature brazing has its own features that are due to the limited life cycle and the production method of brazing filler alloys. The work presents a cycle of analytical and experimental materials science investigations including justification of the composition of a new amorphous filler alloy for brazing the products from zirconium alloys at the temperature of no more than 800 °C and at the unbrazing temperature of permanent joints of more than 1200 °C. The experimental alloys have been used for manufacture of amorphous ribbons by rapid quenching, of which the certification has been made by X-ray investigations and a differential-thermal analysis. These ribbons were used to obtain permanent joints from the spacer grid cells (made from the alloy Zr-1% Nb) of fuel assemblies of the thermal nuclear reactor VVER-440. The brazed samples in the form of a pair of cells have been exposed to corrosion tests in autoclaves in superheated water at a temperature of 350 °C, a pressure of 160 MPa and duration of up to 6,000 h. They have been also exposed to destructive tests using a tensile machine. The experimental results obtained have made it possible to propose and patent a brazing filler alloy of the following composition: Zr-5.5Fe-(2.5-3.5)Be-1Nb-(5-8)Cu-2Sn-0.4Cr-(0.5-1.0)Ge. Its melting point is 780 °C and the recommended brazing temperature is 800°C.

  2. Titanium Brazing for Structures and Survivability

    National Research Council Canada - National Science Library

    Doherty, Kevin J; Tice, Jason R; Szewczyk, Steven T; Glide, Gary A

    2007-01-01

    .... While welding is the typical joining method for titanium, vacuum brazing is an option in areas that are difficult to access for welding as well as areas near other nonmetallic materials, such as ceramics...

  3. Gas-Flame Brazing of Metals

    National Research Council Canada - National Science Library

    Asinovskaya, G

    1964-01-01

    .... Since a gas flame implies the presence of considerable heat, the term brazing will be used in this translation save where low heats are specifically indicated, or where both high and low heats...

  4. On the Metallurgy of Active Brazing

    NARCIS (Netherlands)

    Paulasto, M.; Loo, van F.J.J.; Kivilahti, J.

    1996-01-01

    Advanced ceramics like silicon nitride are increasingly used as structural components in demanding high temperature applications as well as in electronics industry. Complex, multicomponent structures for engineering applications generally. The interfacial microstructures formed when Si3N4 is brazed

  5. Mechanical characterization and modeling of brazed tungsten and Cu-Cr-Zr alloy using stress relief interlayers

    Science.gov (United States)

    Qu, Dandan; Zhou, Zhangjian; Yum, Youngjin; Aktaa, Jarir

    2014-12-01

    A rapidly solidified foil-type Ti-Zr based amorphous filler with a melting temperature of 850 °C was used to braze tungsten to Cu-Cr-Zr alloy for water cooled divertors and plasma facing components application. Brazed joints of dissimilar materials suffer from a mismatch in coefficients of thermal expansion. In order to release the residual stress caused by the mismatch, brazed joints of tungsten and Cu-Cr-Zr alloy using different interlayers were studied. The shear strength tests of brazed W/Cu joints show that the average strength of the joint with a W70Cu30 composite plate interlayer reached 119.8 MPa, and the average strength of the joint with oxygen free high conductivity copper (OFHC Cu)/Mo multi-interlayers reached 140.8 MPa, while the joint without interlayer was only 16.6 MPa. Finite element method (FEM) has been performed to investigate the stress distribution and effect of stress relief interlayers. FEM results show that the maximum von Mises stress occurs in the tungsten/filler interface and that the filler suffers the peak residual stresses and becomes the weakest zone. And the use of OFHC Cu/Mo multi-interlayers can reduce the residual stress significantly, which agrees with the mechanical experiment data.

  6. Mechanical characterization and modeling of brazed tungsten and Cu–Cr–Zr alloy using stress relief interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Dandan, E-mail: dandan.qu@partner.kit.edu [School of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Zhou, Zhangjian, E-mail: zhouzhangjianustb@163.com [School of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Yum, Youngjin [School of Mechanical Engineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Aktaa, Jarir [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    A rapidly solidified foil-type Ti–Zr based amorphous filler with a melting temperature of 850 °C was used to braze tungsten to Cu–Cr–Zr alloy for water cooled divertors and plasma facing components application. Brazed joints of dissimilar materials suffer from a mismatch in coefficients of thermal expansion. In order to release the residual stress caused by the mismatch, brazed joints of tungsten and Cu–Cr–Zr alloy using different interlayers were studied. The shear strength tests of brazed W/Cu joints show that the average strength of the joint with a W70Cu30 composite plate interlayer reached 119.8 MPa, and the average strength of the joint with oxygen free high conductivity copper (OFHC Cu)/Mo multi-interlayers reached 140.8 MPa, while the joint without interlayer was only 16.6 MPa. Finite element method (FEM) has been performed to investigate the stress distribution and effect of stress relief interlayers. FEM results show that the maximum von Mises stress occurs in the tungsten/filler interface and that the filler suffers the peak residual stresses and becomes the weakest zone. And the use of OFHC Cu/Mo multi-interlayers can reduce the residual stress significantly, which agrees with the mechanical experiment data.

  7. Effect of Post-Braze Heat Treatment on the Microstructure and Shear Strength of Cemented Carbide and Steel Using Ag-Based Alloy

    Science.gov (United States)

    Winardi, Y.; Triyono; Muhayat, N.

    2018-03-01

    The aim of the present study was to investigate the effect temperature of heat treatment process on the interfacial microstructure and mechanical properties of cemented carbide/carbon steel single lap joint brazed using Ag based alloy filler metal. The brazing process was carried out using torch brazing. Heat treatment process was carried out in induction furnace on the temperature of 700, 725, and 750°C, for 30 minutes. Microstructural examinations and phase analysis were performed using scanning electron microscopy (SEM) equipped with energy dispersion spectrometry (EDS). Shear strength of the joints was measured by the universal testing machine. The results of the microstructural analyses of the brazed area indicate that the increase temperature of treatment lead to the increase of solid solution phase of enrichted Cu. Based on EDS test, the carbon elements spread to all brazed area, which is disseminated by base metals. Shear strength joint is increased with temperature treatment. The highest shear strength of the brazed joint was 214,14 MPa when the heated up at 725°C.

  8. Active vacuum brazing of CNT films to metal substrates for superior electron field emission performance

    Science.gov (United States)

    Longtin, Rémi; Sanchez-Valencia, Juan Ramon; Shorubalko, Ivan; Furrer, Roman; Hack, Erwin; Elsener, Hansrudolf; Gröning, Oliver; Greenwood, Paul; Rupesinghe, Nalin; Teo, Kenneth; Leinenbach, Christian; Gröning, Pierangelo

    2015-02-01

    The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag-Cu-Ti alloy and at 880 °C with a Cu-Sn-Ti-Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 μA was drawn from the brazed nanotubes at an applied electric field of 0.6 V μm-1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected.

  9. Brazing of zirconia to titanium using Ag-Cu and Au-Ni filler alloys

    Directory of Open Access Journals (Sweden)

    Jean S. Pimenta

    2013-12-01

    Full Text Available Advanced ceramic is usually joined to metal by the well-known direct brazing process, where costly active filler alloys can be considered a limitation. Brazing using active-metal-free filler alloy as insert between the joint components is an attempt to overcome it. The active metal diffusion from the titanium member through the bulk of molten filler to the ceramic was responsible to produce an active filler alloy in loco and promote reduction of the zirconium oxide to improve wetting on the ceramic surface. Unalloyed titanium was joined in a high-vacuum furnace (<3x10-5 mbar to yttria-tetragonal zirconia polycristals (Y-TZP and zirconia partially stabilized with magnesia (Mg-PSZ, where commercial fillers Ag-28Cu and Au-18Ni with respective thermal cycles were evaluated. Helium gas leak detection test was performed at the ceramic/metal interface at room temperature; samples from reliable vacuum tight joints were examined by microstructural analysis techniques and energy dispersive X-ray analysis at the joint cross-section. Tight joints were produced with eutectic Ag-Cu filler, revealing an intermetallic layer and a dark reaction layer near the ceramic surface; titanium diffusion was efficient for superficial chemical interactions between individual components. Brazing joints were also tested using three-point flexure testing.

  10. Mechanical characteristics of heterogeneous structures obtained by high-temperature brazing of corrosion-resistant steels with rapidly quenched non-boron nickel-based alloys

    Science.gov (United States)

    Kalin, B.; Penyaz, M.; Ivannikov, A.; Sevryukov, O.; Bachurina, D.; Fedotov, I.; Voennov, A.; Abramov, E.

    2018-01-01

    Recently, the use rapidly quenched boron-containing nickel filler metals for high temperature brazing corrosion resistance steels different classes is perspective. The use of these alloys leads to the formation of a complex heterogeneous structure in the diffusion zone that contains separations of intermediate phases such as silicides and borides. This structure negatively affects the strength characteristics of the joint, especially under dynamic loads and in corrosive environment. The use of non-boron filler metals based on the Ni-Si-Be system is proposed to eliminate this structure in the brazed seam. Widely used austenitic 12Cr18Ni10Ti and ferrite-martensitic 16Cr12MoSiWNiVNb reactor steels were selected for research and brazing was carried out. The mechanical characteristics of brazed joints were determined using uniaxial tensile and impact toughness tests, and fractography was investigated by electron microscopy.

  11. Improved corrosion resistance of aluminum brazing sheet by a post-brazing heat treatment

    NARCIS (Netherlands)

    Norouzi Afshar, F.; Tichelaar, F.D.; Glenn, A. M.; Taheri, P.; Sababi, M.; Terryn, H.A.; Mol, J.M.C.

    2017-01-01

    This work studies the influence of the microstructure on the corrosion mechanism and susceptibility of as-brazed aluminum sheet. Various microstructures are obtained using postbrazing heat treatments developed to enhance the corrosion resistance of an AA4xxx/AA3xxx brazing sheet. The heat

  12. Design of a braze alloy for fast epitaxial brazing of superalloys

    Science.gov (United States)

    Piegert, S.; Laux, B.; Rösier, J.

    2012-07-01

    For the repair of directionally solidified turbine components made of nickel-based superalloys, a new high-temperature brazing method has been developed. Utilising heterogeneous nucleation on the crack surface, the microstructure of the base material can be reproduced, i.e. single crystallinity can be maintained. In contrast to commonly used eutectic braze alloys, such as nickel-boron or nickel-silicon systems, the process is not diffusion controlled but works with a consolute binary base system. The currently applied epitaxial brazing methods rely on isothermal solidification diffusing the melting point depressants into the base material until their concentration is reduced so that the liquid braze solidifies. Contrary, the identified Ni-Mn consolute system enables a temperature driven epitaxial solidification resulting in substantially reduced process duration. The development of the braze alloys was assisted using the CALPHAD software Thermo-Calc. The solidification behaviour was estimated by kinetic calculations with realistic boundary conditions. Finally, the complete system, including braze alloy as well as substrate material, was modelled by means of DICTRA. Subsequently, the thermodynamic properties of the braze alloys were experimentally analysed by DSC measurements. For brazing experiments 300 μm wide parallel gaps were used. Complete epitaxial solidification, i.e. the absence of high-angle grain boundaries, could be achieved within brazing times being up to two orders of magnitude shorter compared to diffusion brazing processes. Theoretically and experimentally evaluated process windows reveal similar shapes. However, a distinct shift has to be stated which can be ascribed to the limited accuracy of the underlying thermodynamic databases.

  13. Improving Casing Integrity by Induction Brazing of Casing Connections

    NARCIS (Netherlands)

    Ernens, Dennis; Hariharan, Hari; van Haaften, Willem Maarten; Pasaribu, Rihard; Jabs, Matthew; McKim, Richard

    2017-01-01

    Brazing technology allows metallurgical joining of dissimilar materials using a filler material. In this paper brazing technology applied to casing connections is presented. The initial application was triggered by challenges with mechanical and pressure integrity after expansion of casing

  14. The development of brazing filler for ITER thermal anchor attachment

    International Nuclear Information System (INIS)

    Lee, P.Y.; Sun, Z.C.; Pan, C.J.; Hou, B.L.; Han, S.L.; Pei, Y.Y.; Long, W.M.

    2011-01-01

    Magnet supports is one of the key components to sustain the ITER superconductor magnet coils, which operate at several K low temperature. Cooling of the supports is needed for maintaining temperature balance. It is suggested to use brazing connection to attach the thermal anchor to the support which made from SS 316LN plates. In this study, several kinds of brazing filler were developed as candidates, including Sn-Pb brazing filler, Ag-based and Cu-based brazing filler. The test result shows that Ag-based brazing filler has the best weldability with 316LN, but Cu-based alloy shows the best mechanical properties at both room temperature and 77 K. Even though the Sn-Pb alloy shows the lowest strength, it can be easily brazed due to the low brazing temperature. Detail of the brazing filler selection is suggested and discussed in this article.

  15. Tungsten wire and tubing joined by nickel brazing

    Science.gov (United States)

    1965-01-01

    Thin tungsten wire and tungsten tubing are brazed together using a contacting coil of nickel wire heated to its melting point in an inert-gas atmosphere. This method is also effective for brazing tungsten to tungsten-rhenium parts.

  16. Combined scale effects for effective brazing at low temperatures

    Directory of Open Access Journals (Sweden)

    Bartout D.

    2012-12-01

    Full Text Available In modern joining technology, the focus is on effective brazing and soldering of temperature sensitive materials. Here, as well as in diffusion welding processes the needed thermal energy is externally realized in the joint zone. This produces a heating of the whole joining parts, since in laminar joining the thermal energy is transported in interior by thermal conduction. An excess of critical temperatures or tolerable impact periods in wide parts of materials and respectively components is often not avoidable. This leads to thermal damages. In this point of view nanotechnology shows promising possibilities as scale effects and their resulting thermophysical effects such as melting temperature reduction and high diffusion rates can be used for providing a self-propagating high-temperature synthesis at room temperature. After ignition by an external energy source a self-propagating exothermic reaction is started. By producing a multilayer system with alternately arranged nanoscaled layers of e.g. Al and Ni the resulting thin foil can be used as heat source for melting the braze or solder material within the joining zone without any external preheating. Due to the high process velocities up to 30 m/s and the local heat input significant thermal influences on the joined parts are not detectable.

  17. Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel

    Science.gov (United States)

    de Prado, J.; Sánchez, M.; Ureña, A.

    2017-07-01

    80Cu-20Ti powders were evaluated for their use as filler alloy for high temperature brazing of tungsten to a reduced activation ferritic/martensitic steel (Eurofer), and its application for the first wall of the DEMO fusion reactor. The use of alloyed powders has not been widely considered for brazing purposes and could improve the operational brazeability of the studied system due to its narrower melting range, determined by DTA analysis, which enhances the spreading capabilities of the filler. Ti contained in the filler composition acts as an activator element, reacting and forming several interfacial layers at the Eurofer-braze, which enhances the wettability properties and chemical interaction at the brazing interface. Brazing thermal cycle also activated the diffusion phenomena, which mainly affected to the Eurofer alloying elements causing in it a softening band of approximately 400 μm of thickness. However, this softening effect did not degrade the shear strength of the brazed joints (94 ± 23 MPa), because failure during testing was always located at the tungsten-braze interface.

  18. Brazing of sensors for high-temperature steam instrumentation systems

    International Nuclear Information System (INIS)

    Moorhead, A.J.; Morgan, C.S.; Woodhouse, J.J.; Reed, R.W.

    1981-01-01

    Procedures are developed for brazing a ceramic-to-metal seal and for laser welding of sensor subassemblies into tube walls, induction brazing thermocouples through a tube wall, and furnace brazing triaxial cables, thermocouples, and a vent tube to a guide tube

  19. Capillary Flow of Liquid Metals in Brazing

    Science.gov (United States)

    Dehsara, Mohammad

    Capillary flow is driven or controlled by capillary forces, exerted at the triple line where the fluid phases meet the solid boundary. Phase field (PF) models naturally accommodate diffusive triple line motion with variable contact angle, thus allowing for the no-slip boundary condition without the stress singularities. Moreover, they are uniquely suited for modeling of topological discontinuities which often arise during capillary flows. In this study, we consider diffusive triple line motion within two PF models: the compositionally compressible (CC) and the incompressible (IC) models. We derive the IC model as a systematic approximation to the CC model, based on a suitable choice of continuum velocity field. The CC model, applied to the fluids of dissimilar mass densities, exhibits a computational instability at the triple line. The IC model perfectly represents the analytic equilibria. We develop the parameter identification procedure and show that the triple line kinetics can be well represented by the IC model's diffusive boundary condition. The IC model is first tested by benchmarking the phase-field and experimental kinetics of water, and silicone oil spreading over the glass plates in which two systems do not interact with the substrate. Then, two high-temperature physical settings involving spreading of the molten Al-Si alloy: one over a rough wetting substrate, the other over a non-wetting substrate are modeled in a T-joint structure which is a typical geometric configuration for many brazing and soldering applications. Surface roughness directly influences the spreading of the molten metal by causing break-ups of the liquid film and trapping the liquid away from the joint. In the early stages of capillary flow over non-wetting surface, the melting and flow are concurrent, so that the kinetics of wetting is strongly affected by the variations in effective viscosity of the partially molten metal. We define adequate time-dependent functions for the

  20. Brazing of special metallic materials and material combinations using a special material

    International Nuclear Information System (INIS)

    Lison, R.

    1981-01-01

    The special materials include metals of groups IVa, Va and VIa of the periodic tables and their alloys. Their particular properties have won them applications in many highly specialized industries. For these materials to be used, mastery of thermal joining methods appropriate to their characteristics is necessary. High-temperature brazing is one such method for joining special materials. This paper presents variants of this technique suitable for each individual special material. Compatibility tests between various brazing metals and various special materials have been carried out by simulating the temperature/time cycle involved in brazing procedures. Special materials are relatively expensive, and their special properties are not required at every point in a structure: elsewhere they can be replaced by a different special material or by other metals or alloys. This means that joints must be made between two special materials or between a special material and a conventional material. When certain conditions are fulfilled, such joins can be made by high-temperature brazing. This paper also shows the extent to which the geometry of the join determines the choice of process. Example of applications are also given. (orig.)

  1. Gaseous Shielding Gas Additives as Flux Substitute for TIG Arc Brazing

    Directory of Open Access Journals (Sweden)

    Uwe Reisgen

    2015-09-01

    Full Text Available Abstract Brazing is one of the key technologies in the field of joining of metal components. To improve the wetting of brazing material and work-piece surface, it is often required to fall back on the use of flux. The application of these substances requires accuracy and is often connected with considerable expenditure and it is, just as the removal of flux residues, often an additional working step which has to be carried out manually. Within the framework of a DFG research project it has been investigated to which degree gaseous substances as addition to the shielding gas may replace conventional flux in TIG arc brazing. To this end, investigations have been carried out using different combinations of base and filler materials. Mainly monosilane as a gaseous flux substitute has been added in low concentrations to the shielding gas volume flow. The resulting brazed joints have been quantified with regard to their geometry, their fusion conditions and their chemical compositions. These qualities were then correlated and evaluated with the provided quantity of monosilane in order to identify dependencies.

  2. Assessing braze quality in the actively cooled Tore Supra Phase III outboard pump limiter

    International Nuclear Information System (INIS)

    Nygren, R.E.; Lutz, T.L.; Miller, J.D.; McGrath, R.; Dale, G.

    1994-01-01

    The quality of brazing of pyrolytic graphite armor brazed to copper tubes in Tore Supra's Phase III Outboard Pump Limiter was assessed through pre-service qualification testing of individual copper/tile assemblies. The evaluation used non-destructive, hot water transient heating tests performed in the high-temperature, high-pressure flow loop at Sandia's Plasma Materials Test Facility. Surface temperatures of tiles were monitored with an infrared camera as water at 120 degrees C at about 2.07 MPa (300 psi) passed through a tube assembly initially at 30 degrees C. For tiles with braze voids or cracks, the surface temperatures tagged behind those of adjacent well-bonded tiles. Temperature tags were correlated with flaw sizes observed during repairs based upon a detailed 2-D heat transfer analyses. open-quotes Badclose quotes tiles, i.e., temperature tags of 10-20 degrees C depending upon tile's size, were easy to detect and, when removed, revealed braze voids of roughly 50% of the joint area. Eleven of the 14 tubes were rebrazed after bad tiles were detected and removed. Three tubes were rebrazed twice

  3. Improved performance of brazed plate heat exchangers made of stainless steel type EN 1.4401 (UNS S31600) when using a iron-based braze filler

    Energy Technology Data Exchange (ETDEWEB)

    Sjoedin, P. [Alfa Laval Materials, Lund (Sweden)

    2004-07-01

    The mechanical properties of brazed plate heat exchangers, made of stainless steel plates type EN 1.4401, brazed with a new iron-based braze filler ''AlfaNova'', have been evaluated. The results were compared with heat exchangers brazed with a copper (pure copper) and a nickel-based (MBF 51) braze filler. Their resistance against pressure- and temperature fatigue, which are important for the lifetime of a heat exchanger, and the burst pressure, which is important for pressure vessel approvals, were tested and evaluated. It was found that the pressure fatigue resistance was extraordinary good for the heat exchangers brazed the iron-based filler and its temperature fatigue resistance was better than those brazed with nickel-based braze filler and slightly lower than those brazed with copper. The highest burst pressures were achieved for the copper brazed units followed by the iron-brazed units and rearmost the nickel-brazed units. (orig.)

  4. Fast brazing development for the joining of the beryllium armor layer for the ITER First Wall panels

    International Nuclear Information System (INIS)

    Buodot, C.; Boireau, B.; Lorenzetto, P.; Macel, D.

    2006-01-01

    In order to reduce cost and manufacturing time induction brazing is being developed as an alternative to Hot Isostatic Pressing for the joining of the beryllium armor onto the copper alloy heat sink material for the manufacture of First Wall panels for the ITER Blanket. The copper alloy that is currently adopted by ITER is a Copper Chromium Zirconium alloy. Its good mechanical properties are obtained by precipitation hardening by means of an ageing heat treatment at a temperature of about 480 o C. In order to avoid over-ageing and keep acceptable mechanical properties, brazing at higher temperatures must therefore be done as fast as possible. The flat geometry of a panel is not familiar for induction process; nevertheless, a development work was done validating the feasibility of joining beryllium tiles onto a copper chromium zirconium flat surface of a panel by induction brazing process. The development was done in 2 stages: validation of the capability of the induction process to realise a heat cycle on a dummy panel and in parallel, validation of the brazing parameters giving acceptable mechanical results on the beryllium CuCrZr joint. A flat pancake inductor was manufactured and tested on a dummy panel in an induction brazing vessel manufactured for this purpose. Several heating cycles were done with the aim of defining a cycle that gives uniform temperature at the interface of all the beryllium tiles on the entire panel surface. These cycles gave us a temperature range in which the brazing can be performed. A special device for brazing small mock up was also manufactured. This was for the metallurgical characterisation program. Many brazing samples where done and mechanically characterised. Unfortunately, this first metallurgical stage led to unacceptably low shear test values. A complete analysis of this non conformance put in evidence that the bad results were due to the braze material that was not adapted to this process. By changing the braze material

  5. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    Science.gov (United States)

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  6. Analysis for the brazing deformation of AFA3G spider

    International Nuclear Information System (INIS)

    Lin Feng

    2015-01-01

    Spider, the key component of the AFA3G cluster control assemblies (RCCA), is brazed with body, vanes and fingers. Vacuum brazing is crucial in the spider process and it is directly relevant to the final product quality. This paper analyze the deformation of the AFA3G spider in vacuum brazing procedure based on a large amount of data. The results indicate that the parallelism of the finger is most affected by the brazing and its deformation has obvious regularity. Deformation is mainly caused by the different contraction directions of components along with the interactions among them during cooling process. An optimized design of the brazing fixture based on the regularity and the value of the deformation greatly improves the parallelism of the fingers. Besides, the vacuum brazing procedure also affects the hole diameter of the finger, however, we could reduce the deformation by using columnar pin on the brazing fixture. (author)

  7. Development of rapidly quenched nickel-based non-boron filler metals for brazing corrosion resistant steels

    Science.gov (United States)

    Ivannikov, A.; Kalin, B.; Suchkov, A.; Penyaz, M.; Yurlova, M.

    2016-04-01

    Corrosion-resistant steels are stably applied in modern rocket and nuclear technology. Creating of permanent joints of these steels is a difficult task that can be solved by means of welding or brazing. Recently, the use rapidly quenched boron-containing filler metals is perspective. However, the use of such alloys leads to the formation of brittle borides in brazing zone, which degrades the corrosion resistance and mechanical properties of the compounds. Therefore, the development of non-boron alloys for brazing stainless steels is important task. The study of binary systems Ni-Be and Ni-Si revealed the perspective of replacing boron in Ni-based filler metals by beryllium, so there was the objective of studying of phase equilibrium in the system Ni-Be-Si. The alloys of the Ni-Si-Be with different contents of Si and Be are considered in this paper. The presence of two low-melting components is revealed during of their studying by methods of metallography analysis and DTA. Microhardness is measured and X-ray diffraction analysis is conducted for a number of alloys of Ni-Si-Be. The compositions are developed on the basis of these data. Rapidly quenched brazing alloys can be prepared from these compositions, and they are suitable for high temperature brazing of steels.

  8. Synthesis and characterization of Ni-Mo filler brazing alloy for Mo-W joining for microwave tube technology

    Directory of Open Access Journals (Sweden)

    Frank Ferrer Sene

    2013-04-01

    Full Text Available A brazing process based on Ni-Mo alloy was developed to join porous tungsten cathode bottom and dense molybdenum cathode body for microwave tubes manufacture. The Ni-Mo alloy was obtained by mixing and milling powders in the eutectic composition, and applied on the surface of the components. The brazing was made at 1400 °C by using induction heating in hydrogen for 5 minutes. Alumina surfaces were coated with the binder and analyzed by Energy Dispersive X-rays Fluorescence. The brazed samples were analyzed by Scanning Electron Microscopy coupled to Energy Dispersive Spectroscopy. Stress-strain tests were performed to determine the mechanical behavior of the joining. The quality of the brazing was evaluated by assuring the presence of a "meniscus" formed by the Ni-Mo alloy on the border of the tungsten and molybdenum joint, the absence of microstructural defects in the interface between the tungsten and molybdenum alloys, and the adhesion of the brazed components.

  9. Beryllium-metals joints for application in the plasma-facing components

    International Nuclear Information System (INIS)

    Barabash, V.R.; Gitarsky, L.S.; Ignakovskaya, G.S.; Prokofiev, Yu.G.

    1994-01-01

    The results of the technological development for Be joining with other metals for high heat flux application are presented. The different types of joining technology - high temperature brazing by using the different brazing alloys and solid state diffusion bonding are compared. The results of diffusion bonding technology development for Be-Cu and Be-dispersion strengthened copper alloys joinings are presented. It was shown that for the joining of Be with austenitic stainless steels, the vacuum high temperature brazing using the ternary brazing alloy of Ag-Cu-Me system is more preferable than common eutectic Ag-Cu alloy. The high temperature brazing technology for joining Be-Be using the Al brazing alloys was also analyzed. The problems of nondestructive examination of Be joints, the data on mechanical properties, microhardness testing and results of microstructural examination of Be joint are presented. ((orig.))

  10. Nickel-chromium-silicon brazing filler metal

    Science.gov (United States)

    Martini, Angelo J.; Gourley, Bruce R.

    1976-01-01

    A brazing filler metal containing, by weight percent, 23-35% chromium, 9-12% silicon, a maximum of 0.15% carbon, and the remainder nickel. The maximum amount of elements other than those noted above is 1.00%.

  11. High heat flux test of tungsten brazed mock-ups developed for KSTAR divertor

    Energy Technology Data Exchange (ETDEWEB)

    Song, J.H. [National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, K.M., E-mail: kyungmin@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Hong, S.H.; Kim, H.T.; Park, S.H.; Park, H.K.; Ahn, H.J. [National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, S.K.; Lee, D.W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    The tungsten (W) brazed flat type mock-up which consists of W, OFHC-Cu (oxygen-free high conductive copper) and CuCrZr alloy has been designed for KSTAR divertor in preparation for KSTAR upgrade with 17 MW heating power. For verification of the W brazed mock-up, the high heat flux test is performed at KoHLT-EB (Korea High Heat Load Test Facility-Electron Beam) in KAERI (Korea Atomic Energy Research Institute). Three mock-ups are tested for several thousand thermal cycles with absorbed heat flux up to 5 MW/m{sup 2} for 20 s duration. There is no evidence of the failure at the bonding joints of all mock-ups after HHF test. Finite element analysis (FEA) is performed to interpret the result of the test. As a result, it is considered that the local area in the water is in the subcooled boiling regime.

  12. Nanoparticle-Assisted Diffusion Brazing of Metal Microchannel Arrays: Nanoparticle Synthesis, Deposition, and Characterization

    Science.gov (United States)

    Eluri, Ravindranadh T.

    Microchannel process technology (MPT) offers several advantages to the field of nanomanufacturing: 1) improved process control over very short time intervals owing to shorter diffusional distances; and 2) reduced reactor size due to high surface area to volume ratios and enhanced heat and mass transfer. The objective of this thesis was to consider how nanomaterials, produced in part using MPT, could be used to solve problems associated with the fabrication of MPT devices. Specifically, many MPT devices are produced using transient liquid-phase brazing involving an electroplated interlayer consisting of a brazing alloy designed for melting temperature suppression. Unfortunately, these alloys can form brittle secondary phases which significantly reduce bond strength. In contrast, prior efforts have shown that it is possible to leverage the size-dependent properties of nanomaterials to suppress brazing temperatures. In this prior work, thin films of off-the-shelf elemental nanoparticles were used as interlayers yielding joints with improved mechanical properties. In the present investigation, efforts have been made to characterize the synthesis and deposition of various elemental nanoparticle suspensions for use in the transient liquid-phase brazing of aluminum and stainless steel. Advances were used to demonstrate the nanoparticle-assisted diffusion brazing of a microchannel array. In the first section, a silver nanoparticle (AgNP) interlayer was produced for the diffusion brazing of heat exchanger aluminum. Efforts are made to examine the effect of braze filler particle size (˜5 nm and ˜50 nm) and processing parameters (heating rate: 5ºC/min and 25ºC/min; brazing temperature: 550ºC and 570ºC) on thin coupons of diffusion-brazed 3003 Al. A tensile strength of 69.7 MPa was achieved for a sample brazed at 570°C for 30 min under 1 MPa with an interlayer thickness of approximately 7 microm. Further suppression of the brazing temperature to 500ºC was achieved by

  13. Effect of dual laser beam on dissimilar welding-brazing of aluminum to galvanized steel

    Science.gov (United States)

    Mohammadpour, Masoud; Yazdian, Nima; Yang, Guang; Wang, Hui-Ping; Carlson, Blair; Kovacevic, Radovan

    2018-01-01

    In this investigation, the joining of two types of galvanized steel and Al6022 aluminum alloy in a coach peel configuration was carried out using a laser welding-brazing process in dual-beam mode. The feasibility of this method to obtain a sound and uniform brazed bead with high surface quality at a high welding speed was investigated by employing AlSi12 as a consumable material. The effects of alloying elements on the thickness of intermetallic compound (IMC) produced at the interface of steel and aluminum, surface roughness, edge straightness and the tensile strength of the resultant joint were studied. The comprehensive study was conducted on the microstructure of joints by means of a scanning electron microscopy and EDS. Results showed that a dual-beam laser shape and high scanning speed could control the thickness of IMC as thin as 3 μm and alter the failure location from the steel-brazed interface toward the Al-brazed interface. The numerical simulation of thermal regime was conducted by the Finite Element Method (FEM), and simulation results were validated through comparative experimental data. FEM thermal modeling evidenced that the peak temperatures at the Al-steel interface were around the critical temperature range of 700-900 °C that is required for the highest growth rate of IMC. However, the time duration that the molten pool was placed inside this temperature range was less than 1 s, and this duration was too short for diffusion-control based IMC growth.

  14. High temperature sealing method : induction brazing for SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Y.H.; Lee, S.B.; Song, R.H.; Shin, D.R. [Korea Inst. of Energy Research, Daejeon (Korea, Republic of); Lim, T.H. [Korea Inst. of Energy Research, Daejeon (Korea, Republic of). Advanced Fuel Cell Research Center

    2009-07-01

    This study examined the use of induction brazing as a high temperature sealing method for solid oxide fuel cells (SOFCs). Nickel-based brazing alloys were modified using reactive titanium-hydride (TiH2). The gas sealing properties of the induction brazing process on anode-supported tubular SOFCs and ferritic stainless steel were evaluated. Brazing alloys BNi-2 and BNi-4 were not wetted in a yttria-silica-zircon (YSZ) electrolyte. The brazing alloy with added TiH2 showed good wettability with the YSZ electrolyte as a result of the formation of a TiOX layer. Only the BNi-4 alloy joined with the YSZ electrolyte. An open circuit voltage (OCV) value was used to estimate the gas tightness of the brazed cell. It was concluded that the BNi-4 TiH2 modified alloy is a suitable sealing material for SOFCs operating in temperatures up to 750 degrees C.

  15. Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components

    Science.gov (United States)

    Lian, Youyun; Liu, Xiang; Feng, Fan; Chen, Lei; Cheng, Zhengkui; Wang, Jin; Chen, Jiming

    2016-02-01

    Water-cooled flat-type W/CuCrZr plasma facing components with an interlayer of oxygen-free copper (OFC) have been developed by using vacuum brazing route. The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150 °C-1200 °C in a vacuum furnace. The W/OFC cast tiles were vacuum brazed to a CuCrZr heat sink at 940 °C using the silver-free filler material CuMnSiCr. The microstructure, bonding strength, and high heat flux properties of the brazed W/CuCrZr joint samples were investigated. The W/Cu joint exhibits an average tensile strength of 134 MPa, which is about the same strength as pure annealed copper. High heat flux tests were performed in the electron beam facility EMS-60. Experimental results indicated that the brazed W/CuCrZr mock-up experienced screening tests of up to 15 MW/m2 and cyclic tests of 9 MW/m2 for 1000 cycles without visible damage. supported by National Natural Science Foundation of China (No. 11205049) and the National Magnetic Confinement Fusion Science Program of China (No. 2011GB110004)

  16. Microstructure and Interfacial Reactions During Vacuum Brazing of Stainless Steel to Titanium Using Ag-28 pct Cu Alloy

    Science.gov (United States)

    Laik, A.; Shirzadi, A. A.; Sharma, G.; Tewari, R.; Jayakumar, T.; Dey, G. K.

    2015-02-01

    Microstructural evolution and interfacial reactions during vacuum brazing of grade-2 Ti and 304L-type stainless steel (SS) using eutectic alloy Ag-28 wt pct Cu were investigated. A thin Ni-depleted zone of -Fe(Cr, Ni) solid solution formed on the SS-side of the braze zone (BZ). Cu from the braze alloy, in combination with the dissolved Fe and Ti from the base materials, formed a layer of ternary compound , adjacent to Ti in the BZ. In addition, four binary intermetallic compounds, CuTi, CuTi, CuTi and CuTi formed as parallel contiguous layers in the BZ. The unreacted Ag solidified as islands within the layers of CuTi and CuTi. Formation of an amorphous phase at certain locations in the BZ could be revealed. The -Ti(Cu) layer, formed due to diffusion of Cu into Ti-based material, transformed to an -Ti + CuTi eutectoid with lamellar morphology. Tensile test showed that the brazed joints had strength of 112 MPa and failed at the BZ. The possible sequence of events that led to the final microstructure and the mode of failure of these joints were delineated.

  17. Performance of brazed graphite, carbon-fiber composite, and TZM materials for actively cooled structures: qualification tests

    International Nuclear Information System (INIS)

    Smid, I.; Croessmann, C. D.; Watson, R. D.; Linke, J.; Cardella, A.; Bolt, H.; Reheis, N.; Kny, E.

    1995-01-01

    The divertor of a near-term fusion device has to withstand high heat fluxes, heat shocks, and erosion caused by the plasma. Furthermore, it has to be maintainable through remote techniques. Above all, a good heat removal capability across the interface (low-Z armor/heat sink) plus overall integrity after many operational cycles are needed. To meet all these requirements, an active metal brazing technique is applied to bond graphite and carbon-fiber composite materials to a heat sink consisting of a Mo-41Re coolant tube through a TZM body. Plain brazed graphite and TZM tiles are tested for their fusion-relevant properties. The interfaces appear undamaged after thermal cycling when the melting point of the braze joint is not exceeded and when the graphite armor is > 4 mm thick. High heat flux tests are performed on three actively cooled divertor targets. The braze joints show no sign of failure after exposure to thermal loads ∼ 25 % higher than the design value surface heat flux of 10 MW/m 2 . (author)

  18. Furnace Brazing Parameters Optimized by Taguchi Method and Corrosion Behavior of Tube-Fin System of Automotive Condensers

    Science.gov (United States)

    Guía-Tello, J. C.; Pech-Canul, M. A.; Trujillo-Vázquez, E.; Pech-Canul, M. I.

    2017-08-01

    Controlled atmosphere brazing has a widespread industrial use in the production of aluminum automotive heat exchangers. Good-quality joints between the components depend on the initial condition of materials as well as on the brazing process parameters. In this work, the Taguchi method was used to optimize the brazing parameters with respect to corrosion performance for tube-fin mini-assemblies of an automotive condenser. The experimental design consisted of five factors (micro-channel tube type, flux type, peak temperature, heating rate and dwell time), with two levels each. The corrosion behavior in acidified seawater solution pH 2.8 was evaluated through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. Scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDS) were used to analyze the microstructural features in the joint zone. The results showed that the parameters that most significantly affect the corrosion rate are the type of flux and the peak temperature. The optimal conditions were: micro-channel tube with 4.2 g/m2 of zinc coating, standard flux, 610 °C peak temperature, 5 °C/min heating rate and 4 min dwell time. The corrosion current density value of the confirmation experiment is in excellent agreement with the predicted value. The electrochemical characterization for selected samples gave indication that the brazing conditions had a more significant effect on the kinetics of the hydrogen evolution reaction than on the kinetics of the metal dissolution reaction.

  19. PROSES BRAZING Cu-Ag BERBAHAN BAKAR BIOGAS TERMURNIKAN

    Directory of Open Access Journals (Sweden)

    Ali Kusrijadi

    2015-01-01

    Full Text Available Pemanfaatan biogas sebagai salah satu alternatif bahan bakar  pada proses brazing merupakan langkah diversifikasi biogas, yang diharapkan dapat meningkatkan tingkat efisiensi dan keramahan teknologi. Permasalahan yang bersifat teknis dan menjadi kendala dalam pemanfaatan biogas ini adalah rendahnya konsentrasi CH4 dikarenakan adanya pengotor utama berupa air, karbondioksida dan asam disulfida. Penelitian dilakukan melalui dua tahap yaitu  tahap  pressureized storage process meliputi pemisahan komponen pengotor yang terdapat dalam biogas melalui teknik absorbsi sehingga dihasilkan biogas yang berkualitas gas alam terbarukan dan proses injeksi ke dalam suatu tangki penyimpanan, dan tahap selanjutnya adalah menggunakan biogas tersebut pada proses brazing logam Cu (tembaga dengan bahan tambah Ag (silver. Analisis hasil brazing dilakukan melalui analisis struktur mikro (metalografi untuk melihat kualitas tampak dari hasil brazing, serta analisis kekerasan mikro dan analisis parameter fisik standar terhadap hasil proses brazing. Penelitian ini telah menghasilkan perangkat alat pemurnian biogas yang dapat memurnikan biogas menjadi metana mendekati 100% dan sistem pengemasan (storage system  biogas bertekanan hingga 2 bar. Dari hasil analisis struktur mikro dan uji kekerasan mikro diketahui bahwa hasil proses brazing dengan biogas menghasilkan kualitas yang sama dengan hasil proses brazing dengan gas acetylene sehingga disimpulkan bahwa biogas dapat menjadi bahan bakar alternatif untuk proses brazing, khususnya untuk logam Cu dengan bahan tambah Ag.  Kata kunci : Biogas, Pressureized Storage, Brazing

  20. Joining of Si3N4 ceramic using PdCo(NiSiB–V system brazing filler alloy and interfacial reactions

    Directory of Open Access Journals (Sweden)

    Huaping Xiong

    2014-02-01

    Full Text Available The wettability of V-active PdCo-based alloys on Si3N4 ceramic was studied with the sessile drop method. And the alloy of Pd50.0–Co33.7–Ni4.0–Si2.0–B0.7–V9.6 (wt%, was developed for Si3N4 ceramic joining in the present investigation. The rapidly-solidified brazing foils were fabricated by the alloy Pd50.0–Co33.7–Ni4.0–Si2.0–B0.7–V9.6. The average room-temperature three-point bend strength of the Si3N4/Si3N4 joints brazed at 1453 K for 10 min was 205.6 MPa, and the newly developed braze gives joint strengths of 210.9 MPa, 206.6 MPa and 80.2 MPa at high temperatures of 973 K, 1073 K and 1173 K respectively. The interfacial reaction products in the Si3N4/Si3N4 joint brazed at 1453 K for 10 min were identified to be VN and Pd2Si by XRD analysis. Based on the XEDS analysis result, the residual brazing alloy existing at the central part of the joint was verified as Co-rich phases, in which the concentration of element Pd was high up to 18.0–19.1 at%. The mechanism of the interfacial reactions was discussed. Pd should be a good choice as useful alloying element in newer high-temperature braze candidates for the joining of Si-based ceramics.

  1. Vacuum brazing of aluminium metal matrix composite (55 vol.% SiC{sub p}/A356) using aluminium-based filler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Jitai, E-mail: niujitai@163.com [Harbin Institute of Technology (China); Zhengzhou University (China); Luo, Xiangwei; Tian, Hao [Zhengzhou University (China); Brnic, Josip [University of Rijka (Croatia)

    2012-11-20

    Highlights: Black-Right-Pointing-Pointer The proper filler metal has been developed, especially for contents of Mg and Si. Black-Right-Pointing-Pointer The pressure device has been designed for specimen in vacuum brazing process. Black-Right-Pointing-Pointer The accurate measurement method for shear strength of lap joint has been found. Black-Right-Pointing-Pointer The brazing temperature of 560 Degree-Sign C has been optimised. Black-Right-Pointing-Pointer The micro-mechanism has been discussed for SiC{sub p}/Al composites' brazing joint. - Abstract: Aluminium matrix composites with high volume fractions of SiC particles, as the reinforcements, are potentially suitable materials for electronic packaging. These composites, due to their poor weldability, however, have very limited applications. The microstructure and shear strengths of the bonds made in 55 vol.% SiC{sub p}/A356 composite, using an aluminium based filler alloy containing Cu, Si, Mg and Ni, were investigated in this paper. The brazing temperature had a clear effect on the bond integrity, and the samples brazed at 560 Degree-Sign C demonstrated good bonding between the filler alloy and the SiC particles. The maximum shear strength achieved in this work was 102 MPa.

  2. Preparation of W/CuCrZr monoblock test mock-up using vacuum brazing technique

    International Nuclear Information System (INIS)

    Singh, Kongkham Premjit; Khirwadkar, Samir S.; Bhope, Kedar; Patel, Nikunj; Mokaria, Prakash K.; Mehta, Mayur

    2015-01-01

    Development of the joining for W/CuCrZr monoblock PFC test mock-up is an interest area in Fusion R and D. W/Cu bimetallic material has prepared using OFHC copper casting approach on the radial surface of W monoblock tile surface. The W/Cu bimetallic material has been joined with CuCrZr tube (heat sink) material with the vacuum brazing route. Vacuum brazing of W/Cu-CuCrZr has been performed @ 970 °C for 10 mins using NiCuMn-37 filler material under deep vacuum environment (10 -6 mbar). Graphite fixtures were used for OFHC copper casting and vacuum brazing experiments. The joint integrity of W/Cu-CuCrZr monoblock mock-up on W/Cu and Cu-CuCrZr has been checked using ultrasonic immersion technique. Micro-structural examination and Spot-wise elemental analysis have been carried out using HR-SEM and EDAX. The results of the experimental work will be discussed in the paper. (author)

  3. Novel Approach to Increase the Energy-related Process Efficiency and Performance of Laser Brazing

    Science.gov (United States)

    Mittelstädt, C.; Seefeld, T.; Radel, T.; Vollertsen, F.

    Although laser brazing is well established, the energy-related efficiency of this joining method is quite low. That is because of low absorptivity of solid-state laser radiation, especially when copper base braze metals are used. Conventionally the laser beam is set close to the vertical axis and the filler wire is delivered under a flat angle. Therefore, the most of the utilized laser power is reflected and thus left unexploited. To address this situation an alternative processing concept for laser brazing, where the laser beam is leading the filler wire, has been investigated intending to make use of reflected shares of the laser radiation. Process monitoring shows, that the reflection of the laser beam can be used purposefully to preheat the substrate which is supporting the wetting and furthermore increasing the efficiency of the process. Experiments address a standard application from the automotive industry joining zinc coated steels using CuSi3Mn1 filler wire. Feasibility of the alternative processing concept is demonstrated, showing that higher processing speeds can be attained, reducing the required energy per unit length while maintaining joint properties.

  4. Liquid Film Migration in Warm Formed Aluminum Brazing Sheet

    Science.gov (United States)

    Benoit, M. J.; Whitney, M. A.; Wells, M. A.; Jin, H.; Winkler, S.

    2017-10-01

    Warm forming has previously proven to be a promising manufacturing route to improve formability of Al brazing sheets used in automotive heat exchanger production; however, the impact of warm forming on subsequent brazing has not previously been studied. In particular, the interaction between liquid clad and solid core alloys during brazing through the process of liquid film migration (LFM) requires further understanding. Al brazing sheet comprised of an AA3003 core and AA4045 clad alloy, supplied in O and H24 tempers, was stretched between 0 and 12 pct strain, at room temperature and 523K (250 °C), to simulate warm forming. Brazeability was predicted through thermal and microstructure analysis. The rate of solid-liquid interactions was quantified using thermal analysis, while microstructure analysis was used to investigate the opposing processes of LFM and core alloy recrystallization during brazing. In general, liquid clad was consumed relatively rapidly and LFM occurred in forming conditions where the core alloy did not recrystallize during brazing. The results showed that warm forming could potentially impair brazeability of O temper sheet by extending the regime over which LFM occurs during brazing. No change in microstructure or thermal data was found for H24 sheet when the forming temperature was increased, and thus warm forming was not predicted to adversely affect the brazing performance of H24 sheet.

  5. Thermochemistry of brazing ceramics and metals in air

    Energy Technology Data Exchange (ETDEWEB)

    Bobzin, Kirsten; Schlaefer, Thomas; Kopp, Nils [RWTH Aachen (DE). Surface Engineering Inst. (IOT)

    2011-08-15

    Reactive air brazing offers economically and technologically advantageous joining of ceramics to metals. Solid oxide fuel cells and membranes for oxyfuel combustion are recent fields of application. However, it remains a problem that strong metallurgical reactions between brazes and base materials occur. These reactions were analysed by differential scanning calorimetry tests to get a better understanding. Therefore, three braze alloys (Ag8Cu, Ag8Cu0.5Ti and Ag4Cu4Ni) and five base materials (alumina, 3YSZ partially stabilised zirconia, BSCF perovskite ceramic, X1CrTi-La22 and X15CrNiSi25-20) were investigated. The reaction peaks correlate with the formation of reaction layers, which were observed in metallographic analysis of brazed specimens. The results help to explain the reaction mechanisms and allow optimised selection of filler metals and brazing temperature. (orig.)

  6. Brazing of the Tore Supra actively cooled Phase III Limiter

    International Nuclear Information System (INIS)

    Nygren, R.E.; Walker, C.A.; Lutz, T.J.; Hosking, F.M.; McGrath, R.T.

    1993-01-01

    The head of the water-cooled Tore Supra Phase 3 Limiter is a bank of 14 round OFHC copper tubes, curved to fit the plasma radius, onto which several hundred pyrolytic graphite (PG) tiles and a lesser number of carbon fiber composite tiles are brazed. The small allowable tolerances for fitting the tiles to the tubes and mating of compound curvatures made the brazing and fabrication extremely challenging. The paper describes the fabrication process with emphasis on the procedure for brazing. In the fixturing for vacuum furnace brazing, the tiles were each independently clamped to the tube with an elaborate set of window frame clamps. Braze quality was evaluated with transient heating tests. Some rebrazing was necessary

  7. Brazing copper to dispersion-strengthened copper

    Science.gov (United States)

    Ryding, David G.; Allen, Douglas; Lee, Richard H.

    1996-11-01

    The advanced photon source is a state-of-the-art synchrotron light source that will produce intense x-ray beams, which will allow the study of smaller samples and faster reactions and processes at a greater level of detail than has ben possible to date. The beam is produced by using third- generation insertion devices in a 7-GeV electron/positron storage ring that is 1,104 meters in circumference. The heat load from these intense high-power devices is very high, and certain components must sustain total heat loads of 3 to 15 kW and heat fluxes of 30 W/mm$_2). Because the beams will cycle on and off many times, thermal shock and fatigue will be a problem. High heat flux impinging on a small area causes a large thermal gradient that results in high stress. GlidCop, a dispersion-strengthened copper, is the desired design material because of its high thermal conductivity and superior mechanical properties as compared to copper and its alloys. GlidCop is not amenable to joining by fusion welding, and brazing requires diligence because of high diffusivity. Brazing procedures were developed using optical and scanning electron microscopy.

  8. Coating system to permit direct brazing of ceramics

    Science.gov (United States)

    Cadden, Charles H.; Hosking, F. Michael

    2003-01-01

    This invention relates to a method for preparing the surface of a ceramic component that enables direct brazing using a non-active braze alloy. The present invention also relates to a method for directly brazing a ceramic component to a ceramic or metal member using this method of surface preparation, and to articles produced by using this brazing method. The ceramic can be high purity alumina. The method comprises applying a first coating of a silicon-bearing oxide material (e.g. silicon dioxide or mullite (3Al.sub.2 O.sub.3.2SiO.sub.2) to the ceramic. Next, a thin coating of active metal (e.g. Ti or V) is applied. Finally, a thicker coating of a non-active metal (e.g. Au or Cu) is applied. The coatings can be applied by physical vapor deposition (PVD). Alternatively, the active and non-active metals can be co-deposited (e.g. by sputtering a target made of mullite). After all of the coatings have been applied, the ceramic can be fired at a high temperature in a non-oxidizing environment to promote diffusion, and to enhance bonding of the coatings to the substrate. After firing, the metallized ceramic component can be brazed to other components using a conventional non-active braze alloy. Alternatively, the firing and brazing steps can be combined into a single step. This process can replace the need to perform a "moly-manganese" metallization step.

  9. Arc brazing of austenitic stainless steel to similar and dissimilar metals

    Science.gov (United States)

    Moschini, Jamie Ian

    There is a desire within both the stainless steel and automotive industries to introduce stainless steel into safety critical areas such as the crumple zone of modem cars as a replacement for low carbon mild steel. The two main reasons for this are stainless steel's corrosion resistance and its higher strength compared with mild steel. It has been anticipated that the easiest way to introduce stainless steel into the automotive industry would be to incorporate it into the existing design. The main obstacle to be overcome before this can take place is therefore how to join the stainless steel to the rest of the car body. In recent times arc brazil g has been suggested as a joining technique which will eliminate many of the problems associated with fusion welding of zinc coated mild steel to stainless steel.Similar and dissimilar parent material arc brazed joints were manufactured using three copper based filler materials and three shielding gases. The joints were tested in terms of tensile strength, impact toughness and fatigue properties. It was found that similar parent material stainless steel joints could be produced with a 0.2% proof stress in excess of the parent material and associated problems such as Liquid Metal Embrittlement were not experienced. Dissimilar parent material joints were manufactured with an ultimate tensile strength in excess of that of mild steel although during fatigue testing evidence of Liquid Metal Embrittlement was seen lowering the mean fatigue load.At the interface of the braze and stainless steel in the similar material butt joints manufactured using short circuit transfer, copper appeared to penetrate the grain boundaries of the stainless steel without embrittling the parent material. Further microscopic investigation of the interface showed that the penetration could be described by the model proposed by Mullins. However, when dissimilar metal butt joints were manufactured using spray arc transfer, penetration of copper into the

  10. Diamond brazing - interfacial reactions and wetting; Loeten von Diamant - Grenzflaechenreaktionen und Benetzung

    Energy Technology Data Exchange (ETDEWEB)

    Tillmann, W.; Osmanda, A.M.; Yurchenko, S. [Lehrstuhl fuer Werkstofftechnologie, Universitaet Dortmund, Leonhard-Euler-Str. 2, 44227 Dortmund (Germany); Theisen, W. [Ruhr-Universitaet Bochum, Lehrstuhl Werkstofftechnik (Germany)

    2005-08-01

    Diamond tools are increasingly gaining importance as cutting materials for various construction materials. The quality of synthetic diamonds, monocrystalline as well as polycrystalline or CVD-diamonds has been significantly improved over the last years. Integrating these cutting materials requires adequate joining technologies that produce sound joints without exposing the temperature sensitive diamond to too elevated temperatures. The paper highlights current developments in the joining of synthetic diamonds to steel and cemented carbide. Owing to their covalent atomic bonding diamonds cannot easily be wetted and joined by employing conventional brazing alloys. Hence, active agents are needed to foster an interfacial reaction. Different active filler concepts are presented and discussed regarding their joint formation. The brazing temperatures influence not only possible diamond degradation but also the interfacial decomposition of the diamond due to the formation of corresponding reaction layers.Active brazing, monocrystalline. (Abstract Copyright [2005], Wiley Periodicals, Inc.) [German] Diamantwerkstoffe erlangen zunehmend Bedeutung als Schneidmaterialien in Diamantwerkzeugen fuer die Bearbeitung verschiedener Konstruktionswerkstoffe. Die Qualitaet von synthetischen Diamanten, sowohl monokristallinen als auch polykristallinen oder CVD-Diamantschichten konnte in den letzten Jahren deutlich verbessert werden. Die Integration dieser Schneidstoffe erfordert eine angepasste Fuegetechnologie, die fehlerfreie Verbunde bereitstellt, ohne die gegenueber hohen Temperaturen empfindlichen Diamanten zu hohen Temperaturen auszusetzen. Der Beitrag zeigt aktuelle Entwicklungen in der Fuegetechnik von synthetischen Diamanten mit Stahl und Hartmetall auf. Infolge ihrer kovalenten atomaren Bindungen koennen Diamanten nicht ohne weiteres mit herkoemmlichen Lotwerkstoffen benetzt und gefuegt werden. Daher sind reaktive Elemente notwendig, die eine Grenzflaechenreaktion forcieren

  11. Soldering and brazing safety guide: A handbook on space practice for those involved in soldering and brazing

    Science.gov (United States)

    This manual provides those involved in welding and brazing with effective safety procedures for use in performance of their jobs. Hazards exist in four types of general soldering and brazing processes: (1) cleaning; (2) application of flux; (3) application of heat and filler metal; and (4) residue cleaning. Most hazards during those operations can be avoided by using care, proper ventilation, protective clothing and equipment. Specific process hazards for various methods of brazing and soldering are treated. Methods to check ventilation are presented as well as a check of personal hygiene and good maintenance practices are stressed. Several emergency first aid treatments are described.

  12. The development of argon arc brazing with Cu-based filler for ITER thermal anchor attachment

    International Nuclear Information System (INIS)

    Sun Zhenchao; Li Pengyuan; Pan Chuanjie; Hou Binglin; Han Shilei; Pei Yinyin; Long Weimin

    2012-01-01

    Thermal anchor is the key component of ITER magnet supports to maintain the low temperature for the nor mal operation of superconducting coils. During the advanced research of ITER thermal anchor attachment, dozens of brazing filler and several kinds of brazing technique have been developed and investigated. The test result shows that Cu-based alloy have the preferable mechanical properties at both room temperature and liquid nitrogen temperatures (77 K) for high brazing temperature. And it has a good weldability to 316LN. The brazing temperature of Cu-based filler is over 1000℃, but heat input is relatively low for shallower heating depth of argon arc brazing. Lower heat input is good for the control of brazing deformation. It is no need to clean after brazing because for argon arc brazing there is no bra- zing flux used. Arc brazing with Cu-based filler was chosen as the principal method for the attachment of thermal anchor. (authors)

  13. Effects of different brazing and welding methods on the fracture load of various orthodontic joining configurations.

    Science.gov (United States)

    Bock, Jens J; Bailly, Jacqueline; Fuhrmann, Robert A

    2009-06-01

    The aim of this study was to compare the fracture load of different joints made by conventional brazing, tungston inert gas (TIG) and laser welding. Six standardized joining configurations of spring hard quality orthodontic wire were investigated: end-to-end, round, cross, 3 mm length, 9 mm length and 6.5 mm to orthodontic band. The joints were made by five different methods: brazing with universal silver solder, two TIG and two laser welding devices. The fracture loads were measured with a universal testing machine (Zwick 005). Data were analysed with the Mann-Whitney-Wilcoxon and Kruskal-Wallis tests. The significance level was set at Pwelding (Pwelding (826 N). No differences between the various TIG or laser welding devices were demonstrated, although it was not possible to join an orthodontic wire to an orthodontic band using TIG welding. For orthodontic purposes laser and TIG welding are solder free alternatives. TIG welding and laser welding showed similar results. The laser technique is an expensive, but sophisticated and simple method.

  14. Brazing characteristics of a Zr-Ti-Cu-Fe eutectic alloy filler metal for Zircaloy-4

    Science.gov (United States)

    Lee, Jung G.; Lim, C. H.; Kim, K. H.; Park, S. S.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    A Zr-Ti-Cu-Fe quaternary eutectic alloy was employed as a new Be-free brazing filler metal for Zircaloy-4 to supersede physically vapor-deposited Be coatings used conventionally with several disadvantages. The quaternary eutectic composition of Zr58Ti16Cu10Fe16 (at.%) showing a low melting temperature range from 832 °C to 853 °C was designed by a partial substitution of Zr with Ti based on a Zr-Cu-Fe ternary eutectic system. By applying an alloy ribbon with the determined composition, a highly reliable joint was obtained with a homogeneous formation of predominantly grown α-Zr phases owing to a complete isothermal solidification, exhibiting strength higher than that of Zircaloy-4. The homogenization of the joint was rate-controlled by the diffusion of the filler elements (Ti, Cu, and Fe) into the Zircaloy-4 base metal, and the detrimental segregation of the Zr2Fe phase in the central zone was completely eliminated by an isothermal holding at a brazing temperature of 920 °C for 10 min.

  15. COMPARATION BETWEEN NONDESTRUCTIVE TESTING METHODS FOR THE ALUMINIUM BRAZED PIECES

    Directory of Open Access Journals (Sweden)

    Dan NIŢOI

    2014-05-01

    Full Text Available Presented paper refers to different control methods used in aluminium brazed joining because of possible defects. Low joining complexity permits exact damages position in relation with materials geometry.

  16. Quality assurance of brazed copper plates through advanced ultrasonic NDE

    OpenAIRE

    Segreto, T.; Caggiano, A.; Teti, R.

    2016-01-01

    Ultrasonic non-destructive methods have demonstrated great potential for the detection of flaws in a material under examination. In particular, discontinuities produced by welding, brazing, and soldering are regularly inspected through ultrasonic techniques. In this paper, an advanced ultrasonic non-destructive evaluation technique is applied for the quality control of brazed copper cells in order to realize an accelerometer prototype for cancer proton therapy. The cells are composed of two h...

  17. Brazing refractory metals used in high-temperature nuclear instrumentation

    International Nuclear Information System (INIS)

    Palmer, A. J.; Woolstenhulme, C. J.

    2009-01-01

    As part of the U. S. Department of Energy (DOE)-sponsored Next Generation Nuclear Project (NGNP) currently ongoing at Idaho National Laboratory (INL), the irradiation performance of candidate high-temperature gas reactor fuels and materials is being evaluated at INL's Advanced Test Reactor (ATR). The design of the first Advanced Gas Reactor (AGR-1) TRISO fuel experiment, currently being irradiated in the ATR, required development of special techniques for brazing niobium and molybdenum. Brazing is one technique used to join refractory metals to each other and to stainless steel alloys. Although brazing processes are well established, it is difficult to braze niobium, molybdenum, and most other refractory metals because they quickly develop adherent oxides when exposed to room-temperature air. Specialized techniques and methods were developed by INL to overcome these obstacles. This paper describes the techniques developed for removing these oxides, as well as the ASME Section IX-qualified braze procedures that were developed as part of the AGR-1 project. All brazes were made using an induction coil with an inert or reducing atmosphere at low pressure. Other parameters, such as filler metals, fluxes used, and general setup procedures, are also discussed. (authors)

  18. Brazing Refractory Metals Used In High-Temperature Nuclear Instrumentation

    International Nuclear Information System (INIS)

    Palmer, A.J.; Woolstenhulme, C.J.

    2009-01-01

    As part of the U. S. Department of Energy (DOE) sponsored Next Generation Nuclear Project (NGNP) currently ongoing at Idaho National Laboratory (INL), the irradiation performance of candidate high-temperature gas reactor fuels and materials is being evaluated at INL's Advanced Test Reactor (ATR). The design of the first Advanced Gas Reactor (AGR 1) experiment, currently being irradiated in the ATR, required development of special techniques for brazing niobium and molybdenum. Brazing is one technique used to join refractory metals to each other and to stainless steel alloys. Although brazing processes are well established, it is difficult to braze niobium, molybdenum, and most other refractory metals because they quickly develop adherent oxides when exposed to room-temperature air. Specialized techniques and methods were developed by INL to overcome these obstacles. This paper describes the techniques developed for removing these oxides, as well as the ASME Section IX-qualified braze procedures that were developed as part of the AGR-1 project. All brazes were made using an induction coil with an inert or reducing atmosphere at low pressure. Other parameters, such as filler metals, fluxes used, and general setup procedures, are also discussed

  19. Brazing refractory metals used in high-temperature nuclear instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A. J. [Idaho National Laboratory, MS 3840, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Woolstenhulme, C. J. [EG and G Services, Inc., (United States)

    2009-07-01

    As part of the U. S. Department of Energy (DOE)-sponsored Next Generation Nuclear Project (NGNP) currently ongoing at Idaho National Laboratory (INL), the irradiation performance of candidate high-temperature gas reactor fuels and materials is being evaluated at INL's Advanced Test Reactor (ATR). The design of the first Advanced Gas Reactor (AGR-1) TRISO fuel experiment, currently being irradiated in the ATR, required development of special techniques for brazing niobium and molybdenum. Brazing is one technique used to join refractory metals to each other and to stainless steel alloys. Although brazing processes are well established, it is difficult to braze niobium, molybdenum, and most other refractory metals because they quickly develop adherent oxides when exposed to room-temperature air. Specialized techniques and methods were developed by INL to overcome these obstacles. This paper describes the techniques developed for removing these oxides, as well as the ASME Section IX-qualified braze procedures that were developed as part of the AGR-1 project. All brazes were made using an induction coil with an inert or reducing atmosphere at low pressure. Other parameters, such as filler metals, fluxes used, and general setup procedures, are also discussed. (authors)

  20. Manufacture and Characterization of Silver-free Braze Material

    Energy Technology Data Exchange (ETDEWEB)

    Baffie, T.; Calapez, J.; Chabrol, C. [DRT/LITEN/DTH, CEA/GRENOBLE, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); De Vito, E. [UTEN/DTH/LCPEM, CEA/GRENOBLE, 17 Rue des Martyrs, 38054 Grenoble (France); Portra, T. [DRT/LITEN/DTH, CEA/GRENOBLE, 17 Rue des Martyrs, 38054 Grenoble CEDEX 9 (France); Peacock, A. [EFDA-Close Support Unit, Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse, 2, D-85748 Garching (Germany); Rigal, E. [CEA Grenoble, DRT/LITEN, F-38054 Grenoble (France)

    2007-07-01

    Full text of publication follows: Induction brazing is one of the most successful techniques for joining Beryllium (Be) armour tiles to CuCrZr heat sink material, used as High Heat Flux Components for ITER. In the early days of the development for Fusion, silver based brazes were used because of their appropriate liquidus and solidus temperatures and their wide application in different industrial fields. However, it is known that the use of silver containing brazes could have a negative impact on the vacuum systems in ITER because of the transmutation of silver into cadmium. Copper (Cu) based brazes were produced in ribbons form using melt spinning technique. Several compositions in the Cu-Sn-In-Ni-Mn system were elaborated and characterized using Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). All the ribbons obtained are micro crystallized. Foils are 8 mm wide and their thickness is between 60 and 90 {mu}m. Among the compositions studied, two were selected for Be/CuCrZr mock-ups brazing tests; their ribbons can be easily manipulated and their last transformations are close to 740 deg. C. The results of the braze trials on the mock-ups are also reported here. (authors)

  1. The dissimilar brazing of Kovar alloy to SiCp/Al composites using silver-based filler metal foil

    Science.gov (United States)

    Wang, Peng; Xu, Dongxia; Zhai, Yahong; Niu, Jitai

    2017-09-01

    Aluminum metal matrix composites with high SiC content (60 vol.% SiCp/Al MMCs) were surface metallized with a Ni-P alloy coating, and vacuum brazing between the composites and Kovar alloy were performed using rapidly cooled Ag-22.0Cu-15.9In-10.86Sn-1.84Ti (wt%) foil. The effects of Ni-P alloy coating and brazing parameters on the joint microstructures and properties were researched by SEM, EDS, and single lap shear test, respectively. Results show that Ag-Al intermetallic strips were formed in the 6063Al matrix and filler metal layer because of diffusion, and they were arranged regularly and accumulated gradually as the brazing temperature was increased ( T/°C = 550-600) or the soaking time was prolonged ( t/min = 10-50). However, excessive strips would destroy the uniformity of seams and lead to a reduced bonding strength (at most 70 MPa). Using a Ni-P alloy coating, void free joints without those strips were obtained at 560 °C after 20 min soaking time, and a higher shear strength of 90 MPa was achieved. The appropriate interface reaction ( 2 μm transition layer) that occurred along the Ni-P alloy coating/filler metal/Kovar alloy interfaces resulted in better metallurgical bonding. In this research, the developed Ag-based filler metal was suitable for brazing the dissimilar materials of Ni-P alloy-coated SiCp/Al MMCs and Kovar alloy, and capable welding parameters were also broadened.

  2. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    Science.gov (United States)

    Howard, Stanley R [Windsor, SC; Korinko, Paul S [Aiken, SC

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  3. Vacuum brazing of electroless Ni-P alloy-coated SiCp/Al composites using aluminum-based filler metal foil

    Science.gov (United States)

    Wang, Peng; Xu, Dongxia; Niu, Jitai

    2016-12-01

    Using rapidly cooled (Al-10Si-20Cu-0.05Ce)-1Ti (wt%) foil as filler metal, the research obtained high-performance joints of electroless Ni-P alloy-coated aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process on joint properties and the formation of Al-Ni and Al-Cu-Ni intermetallic compounds were investigated, respectively. Due to the presence of Ni-P alloy coating, the wettability of liquid filler metal on the composites was improved obviously and its contact angle was only 21°. The formation of Al3Ni2 and Al3(CuNi)2 intermetallic compounds indicated that well metallurgical bonding occurred along the 6063Al matrix alloy/Ni-P alloy layer/filler metal foil interfaces by mutual diffusion and dissolution. And the joint shear strength increased with increasing the brazing temperature from 838 to 843 K or prolonging the soaking time from 15 to 35 min, while it decreased a lot because of corrosion occurring in the 6063Al matrix at high brazing temperature of 848 K. Sound joints with maximum shear strength of 112.5 MPa were obtained at 843 K for soaking time of 35 min. In this research, the beneficial effect of surface metallization by Ni-P alloy deposits on improving wettability on SiCp/Al-MMCs was demonstrated, and capable welding parameters were broadened as well.

  4. THE INFLUENCE OF HIGH-TEMPERATURE BRAZING UPON INDICATORS OF MATERIAL BRAZEABILITY

    Directory of Open Access Journals (Sweden)

    Roman Koleňák

    2010-03-01

    Full Text Available The effect of both common and extreme parameters of AISI 321stainless steel high-temperature brazing using the NI 102 brazing alloy upon material brazeability indicators. The ascertainment of the wetting angle, the area over which Ni brazing alloy spreads, the width of AISI 321 steel's dissolubility band, and the width of Ni brazing alloy’s diffusion band into the basic material.

  5. Dissimilar Joining of Stainless Steel and 5083 Aluminum Alloy Sheets by Gas Tungsten Arc Welding-Brazing Process

    Science.gov (United States)

    Cheepu, Muralimohan; Srinivas, B.; Abhishek, Nalluri; Ramachandraiah, T.; Karna, Sivaji; Venkateswarlu, D.; Alapati, Suresh; Che, Woo Seong

    2018-03-01

    The dissimilar joining using gas tungsten arc welding - brazing of 304 stainless steel to 5083 Al alloy had been conducted with the addition of Al-Cu eutectic filler metal. The interface microstructure formation between filler metal and substrates, and spreading of the filler metal were studied. The interface microstructure between filler metal and aluminum alloy characterized that the formation of pores and elongated grains with the initiation of micro cracks. The spreading of the liquid braze filler on stainless steel side packed the edges and appeared as convex shape, whereas a concave shape has been formed on aluminum side. The major compounds formed at the fusion zone interface were determined by using X-ray diffraction techniques and energy-dispersive X-ray spectroscopy analysis. The micro hardness at the weld interfaces found to be higher than the substrates owing to the presence of Fe2Al5 and CuAl2 intermetallic compounds. The maximum tensile strength of the weld joints was about 95 MPa, and the tensile fracture occurred at heat affected zone on weak material of the aluminum side and/or at stainless steel/weld seam interface along intermetallic layer. The interface formation and its effect on mechanical properties of the welds during gas tungsten arc welding-brazing has been discussed.

  6. Microstructural Changes in Brazing Sheet due to Solid-Liquid Interaction

    NARCIS (Netherlands)

    Wittebrood, A.J.

    2009-01-01

    Aluminium brazing sheet is the material of choice to produce automotive heat exchangers. Although in Dutch the official translation of aluminium brazing sheet is “aluminium hardsoldeerplaat” the English name is used in the industry. Aluminium brazing sheet is basically a sandwich material and

  7. An experimental evaluation of joint electrical resistance on power lead thermal performance

    International Nuclear Information System (INIS)

    Datskov, V.I.; Demko, J.A.; Augustynowicz, S.D.; Hutton, R.D.

    1994-01-01

    The amount of electrical resistance in braze joints is not known for certain. In addition the annealing processes that occurs during a braze or solder operation can change the residual resistivity ratio (RRR) of the copper. The change in the electrical resistivity of samples of copper because of exposure to conditions that a high current lead would see during a brazing operation were experimentally investigated. A sample was taken from a manufacturing and brazing trial of the high current power leads for the Superconducting Super Collider (SSC), and from oxygen free high conductivity copper (OFHC) 101 rod similar to that used in the trial. The samples were heated under conditions that a current lead would undergo during the brazing process. Measurements were made of the electrical resistance of the copper specimens and across a braze joint in the manufacturing trial sample for temperatures ranging from liquid helium to room temperature. A prototype of the SSC high current lead is shown. This lead was fabricated from 5 sections that were brazed together. Some results for the measured residual resistivity ratio (RRR) along this lead are given

  8. Direct brazing of ceramics, graphite, and refractory metals

    International Nuclear Information System (INIS)

    Canonico, D.A.; Cole, N.C.; Slaughter, G.M.

    1976-03-01

    ORNL has been instrumental in the development of brazing filler metals for joining ceramics, graphite, and refractory metals for application at temperatures above 1000 0 C. The philosophy and techniques employed in the development of these alloys are presented. A number of compositions are discussed that have been satisfactorily used to braze ceramics, graphite, and refractory metals without a prior surface treatment. One alloy, Ti--25 percent Cr--21 percent V, has wet and flowed on aluminum oxide and graphite. Further, it has been utilized in making brazes between different combinations of the three subject materials. The excellent flowability of this alloy and alloys from the Ti--Zr--Ge system is evidenced by the presence of filler metal in the minute pores of the graphite and ceramics

  9. Corrosion in artificial saliva of a Ni-Cr-based dental alloy joined by TIG welding and conventional brazing.

    Science.gov (United States)

    Matos, Irma C; Bastos, Ivan N; Diniz, Marília G; de Miranda, Mauro S

    2015-08-01

    Fixed prosthesis and partial dental prosthesis frameworks are usually made from welded Ni-Cr-based alloys. These structures can corrode in saliva and have to be investigated to establish their safety. The purpose of this study was to evaluate the corrosion behavior of joints joined by tungsten inert gas (TIG) welding and conventional brazing in specimens made of commercial Ni-Cr alloy in Fusayama artificial saliva at 37°C (pH 2.5 and 5.5). Eighteen Ni-Cr base metal specimens were cast and welded by brazing or tungsten inert gas methods. The specimens were divided into 3 groups (base metal, 2 welded specimens), and the composition and microstructure were qualitatively evaluated. The results of potential corrosion and corrosion current density were analyzed with a 1-way analysis of variance and the Tukey test for pairwise comparisons (α=.05). Base metal and tungsten inert gas welded material showed equivalent results in electrochemical corrosion tests, while the air-torched specimens exhibited low corrosion resistance. The performance was worst at pH 2.5. These results suggest that tungsten inert gas is a suitable welding process for use in dentistry, because the final microstructure does not reduce the corrosion resistance in artificial saliva at 37°C, even in a corrosion-testing medium that facilitates galvanic corrosion processes. Moreover, the corrosion current density of brazed Ni-Cr alloy joints was significantly higher (P<.001) than the base metal and tungsten inert gas welded joints. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Influence of cyclic thermal loading on brazed composites for fusion applications

    Science.gov (United States)

    Šmid, I.; Kny, E.; Kneringer, G.; Reheis, N.

    1990-04-01

    Reactor grade graphite and molybdenum (TZM) were brazed with different high temperature brazes. The resulting tiles had a size of 50 × 50 mm2 with a graphite thickness of 10 mm and a TZM thickness of 5 mm. The brazed composites have been tested in electron beam simulation for their thermal fatigue properties. The parameters of these tests were chosen to match NET design specifications for normal operation and "slow" peak energy deposition. The resulting damage and microstructural changes on the graphites and the brazes are discussed. Additional information is supplied on X-ray diffraction data proving the presence of different phases in the brazes.

  11. Influence of cycling thermal loading on brazed composites for fusion applications

    International Nuclear Information System (INIS)

    Smid, I.; Kny, E.; Kneringer, G.; Reheis, N.

    1995-01-01

    Reactor grade graphite and molybdenum (TZM) were brazed with different high temperature brazes. The resulting tiles had a size of 50 x 50 mm 2 with a graphite thickness of 10 mm and a TZM thickness of 5 mm. The brazed composites have been tested in electron beam simulation for their thermal fatigue properties. The parameters of these tests were chosen to match NET design specifications for normal operation and 'slow' peak energy deposition. The resulting damage and microstructural changes on the graphites and the brazes are discussed. Additional information is supplied on X-ray diffraction data proving the presence of different phases in the brazes. (author)

  12. Evaluation of high temperature brazes for graphite first wall protection elements

    International Nuclear Information System (INIS)

    Smid, I.; Koizlik, K.; Linke, J.; Nickel, H.; Wallura, E.; Kny, E.

    1989-01-01

    Four different high temperature brazed with melting points from 800 to 1865degC have been used to braze a commercial reactor grade graphite to TZM substrates. Those brazes were Zr, 90Ni 10Ti, 99Cu 10Ti and 70Ag 27Cu 3Ti (wt %). The resulting composite tiles of 80 x 80 mm 2 with a graphite thickness of 10 mm brazed on a 8 mm TZM substrate have been tested in electron beam experiments for their thermal fatigue properties. The parameters of the electron beam testing were chosen to match NET design specificatios for normal operation and 'slow' peak energy deposition. The resulting damages and microstructural changes on the graphite and the brazes are discussed. Additional information is supplied on tensile test and thermal conductivity data of brazed composites. These measurements confirm that thermal contact between TZM-substrate and graphite is improved by brazing. (author). 6 refs.; 5 figs.; 2 tabs

  13. Evaluation of high temperature brazes for graphite first wall protection elements

    International Nuclear Information System (INIS)

    Smid, I.; Koizlik, K.; Linke, J.; Nickel, H.; Wallura, E.; Kny, E.

    1995-01-01

    Four different high temperature brazes with melting points from 800 to 1865 degree C have been used to braze a commercial reactor grade graphite to TZM substrates. Those brazes were Zr, 90Ni 10Ti, 90Cu 10Ti and 70Ag 27Cu 3Ti (wt %). The resulting composite tiles of 80 x 80 mm 2 with a graphite thickness of 10 mm brazed on a 3 mm TZM substrate have been tested in electron beam experiments for their thermal fatigue properties. The parameters of the electron beam testing were chosen to match NET design specifications for normal operation and 'slow' peak energy deposition. The resulting damages and microstructural changes on the graphite and the brazes are discussed. Additional information is supplied on tensile test and thermal conductivity data of brazed composites. These measurements confirm that thermal contact between TZM-substrate and graphite is improved by brazing. (author)

  14. Gas Shielding Technology for Welding and Brazing

    Science.gov (United States)

    Nunes, Arthur J.; Gradl, Paul R.

    2012-01-01

    Welding is a common method that allows two metallic materials to be joined together with high structural integrity. When joints need to be leak-tight, light-weight, or free of contaminant-trapping seams or surface asperities, welding tends to be specified. There are many welding techniques, each with its own advantages and disadvantages. Some of these techniques include Forge Welding, Gas Tungsten Arc Welding, Friction Stir Welding, and Laser Beam Welding to name a few. Whichever technique is used, the objective is a structural joint that meets the requirements of a particular component or assembly. A key practice in producing quality welds is the use of shielding gas. This article discusses various weld techniques, quality of the welds, and importance of shielding gas in each of those techniques. Metallic bonds, or joints, are produced when metals are put into intimate contact. In the solid-state "blacksmith welding" process, now called Forge Welding (FOW), the site to be joined is pounded into intimate contact. The surfaces to be joined usually need to be heated to make it easier to deform the metal. The surfaces are sprinkled with a flux to melt surface oxides and given a concave shape so that surface contamination can be squeezed out of the joint as the surfaces are pounded together; otherwise the surface contamination would be trapped in the joint and would weaken the weld. In solid-state welding processes surface oxides or other contamination are typically squeezed out of the joint in "flash."

  15. Field installed brazed thermocouple feedthroughs for high vacuum experiments

    International Nuclear Information System (INIS)

    Anderson, P.; Messick, C.

    1983-01-01

    In order to reduce the occurrence of vacuum leaks and to increase the availability of the DIII vacuum vessel for experimental operation, effort was applied to developing a vacuum-tight brazed feedthrough system for sheathed thermocouples, stainless steel sheathed conductor cables and tubes for cooling fluids. This brazed technique is a replacement for elastomer ''O'' ring sealed feedthroughs that have proven vulnerable to leaks caused by thermal cycling, etc. To date, about 200 feedthroughs have been used. Up to 91 were grouped on a single conflat flange mounted in a bulkhead connector configuration which facilitates installation and removal. Investigation was required to select a suitable braze alloy, flux and installation procedure. Braze alloy selection was challenging since the alloy was required to have: 1) Melting temperature in excess of the 250 0 C (482 0 F) bakeout temperature. 2) No high vapor pressure elements. 3) Good wetting properties when used in air with acceptable flux. 4) Good wettability to 300 series stainless steel and inconel

  16. A Brazing Defect Detection Using an Ultrasonic Infrared Imaging Inspection

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Choi, Young Soo; Jung, Seung Ho; Jung, Hyun Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-10-15

    When a high-energy ultrasound propagates through a solid body that contains a crack or a delamination, the two faces of the defect do not ordinarily vibrate in unison, and dissipative phenomena such as friction, rubbing and clapping between the faces will convert some of the vibrational energy to heat. By combining this heating effect with infrared imaging, one can detect a subsurface defect in material in real time. In this paper a realtime detection of the brazing defect of thin Inconel plates using the UIR (ultrasonic infrared imaging) technology is described. A low frequency (23 kHz) ultrasonic transducer was used to infuse the welded Inconel plates with a short pulse of sound for 280 ms. The ultrasonic source has a maximum power of 2 kW. The surface temperature of the area under inspection is imaged by an infrared camera that is coupled to a fast frame grabber in a computer. The hot spots, which are a small area around the bound between the two faces of the Inconel plates near the defective brazing point and heated up highly, are observed. And the weak thermal signal is observed at the defect position of brazed plate also. Using the image processing technology such as background subtraction average and image enhancement using histogram equalization, the position of defective brazing regions in the thin Inconel plates can be located certainly

  17. Vacuum brazing of TiAl48Cr2Nb2 casting alloys based on TiAl (γ intermetallic compound

    Directory of Open Access Journals (Sweden)

    Z. Mirski

    2010-01-01

    Full Text Available A growing interest in modern engineering materials characterised by increasingly better operational parameters combined with a necessity to obtain joints of such materials representing good operation properties create important research and technological problems of today. These issues include also titanium joints or joints of titanium alloys based on intermetallic compounds. Brazing is one of the basic and sometimes even the only available welding method used for joining the aforesaid materials in production of various systems, heat exchangers and, in case of titanium alloys based on intermetallic compounds, turbine elements and space shuttle plating etc. This article presents the basic physical and chemical properties as well as the brazability of alloys based on intermetallic compounds. The work also describes the principle and mechanisms of diffusion-brazed joint formation as well as reveals the results of metallographic and strength tests involving diffusion-welded joints of TiAl48Cr3Nb2 casting alloy based on TiAl (γ phase with the use of sandwich-type layers of silver-based parent metal (grade B- Ag72Cu-780 (AG 401 and copper (grade CF032A. Structural examination was performed by means of light microscopy, scanning electron microscope (SEM and energy dispersion spectrometer (EDS. Furthermore, the article reveals the results of shear strength tests involving the aforementioned joints.

  18. The experiment progress of bracket brazing to SSMIC for the ITER ELM prototype coil

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yi, E-mail: shiyi@ipp.ac.cn; Wu, Yu; Jin, Huan; Ren, Zhibin; Han, Houxiang; Qian, Jing; Qian, Li; Liu, Bo

    2014-11-15

    Highlights: • In this study, the experimental research of brackets brazing to stainless steel jacketed, Mineral Insulated Conductor (SSMIC) of the first Edge Localized Modes (ELMs) prototype coil for ITER has been made. • The technology for controlling the fluidity of silver-based brazing alloy is developed to meet the bracket brazing. • Brazing experiments to find the reason for cracks are carried out and the improved brazing technologies to restrain the cracks in the Inconel 625 jacket with silver-based alloy are developed. - Abstract: The first Edge Localized Modes (ELMs) prototype coil for International Thermonuclear Experimental Reactor (ITER) has been manufactured in the Institute of Plasma Physics, CAS (ASIPP) at 2014. The all 19 brackets need to braze to the stainless steel jacketed, Mineral Insulated Conductor (SSMIC) for transporting the nuclear heating in the brackets to the water-cooled SSMIC. Silver-based alloy is the only candidate brazing filler for the bracket brazing due to the limitation from melting point temperature and strength. In this paper, firstly, the experimental study for controlling the fluidity of silver-based brazing alloy is developed. And then, the brazing experiment of prototype bracket is introduced to develop the brazing process and some cracks in the Inconel 625 jackets surface appeared unexpectedly. The microstructures and tensile performance study of the cracked Inconel 625 jacket were made to explore the reason for cracks and the improved brazing technologies to suppress the cracks are developed. Finally, the bracket brazing experiment for the first ELM prototype coil is carried out, In spite of this, some cracks also appear in the Inconel 625 jackets.

  19. The experiment progress of bracket brazing to SSMIC for the ITER ELM prototype coil

    International Nuclear Information System (INIS)

    Shi, Yi; Wu, Yu; Jin, Huan; Ren, Zhibin; Han, Houxiang; Qian, Jing; Qian, Li; Liu, Bo

    2014-01-01

    Highlights: • In this study, the experimental research of brackets brazing to stainless steel jacketed, Mineral Insulated Conductor (SSMIC) of the first Edge Localized Modes (ELMs) prototype coil for ITER has been made. • The technology for controlling the fluidity of silver-based brazing alloy is developed to meet the bracket brazing. • Brazing experiments to find the reason for cracks are carried out and the improved brazing technologies to restrain the cracks in the Inconel 625 jacket with silver-based alloy are developed. - Abstract: The first Edge Localized Modes (ELMs) prototype coil for International Thermonuclear Experimental Reactor (ITER) has been manufactured in the Institute of Plasma Physics, CAS (ASIPP) at 2014. The all 19 brackets need to braze to the stainless steel jacketed, Mineral Insulated Conductor (SSMIC) for transporting the nuclear heating in the brackets to the water-cooled SSMIC. Silver-based alloy is the only candidate brazing filler for the bracket brazing due to the limitation from melting point temperature and strength. In this paper, firstly, the experimental study for controlling the fluidity of silver-based brazing alloy is developed. And then, the brazing experiment of prototype bracket is introduced to develop the brazing process and some cracks in the Inconel 625 jackets surface appeared unexpectedly. The microstructures and tensile performance study of the cracked Inconel 625 jacket were made to explore the reason for cracks and the improved brazing technologies to suppress the cracks are developed. Finally, the bracket brazing experiment for the first ELM prototype coil is carried out, In spite of this, some cracks also appear in the Inconel 625 jackets

  20. Simulation of Zr content in TiZrCuNi brazing filler metal for Ti6Al4V alloy

    International Nuclear Information System (INIS)

    Yue, Xishan; Xie, Zonghong; Jing, Yongjuan

    2017-01-01

    To optimize the Zr content in Ti-based filler metal, the covalent electron on the nearest atoms bond in unit cell (n_A"u"-"v) with Ti-based BCC structure was calculated, in which the brazing temperature was considered due to its influence on the lattice parameter. Based on EET theory (The Empirical Electron Theory for solid and molecules), n_A"u"-"v represents the strength of the unit cell with defined element composition and structure, which reflects the effect from solid solution strengthening on the strength of the unit cell. For Ti-Zr-15Cu-10Ni wt% filler metal, it kept constant as 0.3476 with Zr as 37.5 ∝ 45 wt% and decreased to 0.333 with Zr decreasing from 37.5 to 25 wt%. Finally, it increased up to 0.3406 with Zr as 2 ∝ 10 wt%. Thus, Ti-based filler metal with Zr content being 2 ∝ 10 wt% is suggested based on the simulation results. Moreover, the calculated covalent electron of n_A"u"-"v showed good agreement with the hardness of the joint by filler 37.5Zr and 10Zr. The composition of Ti-10Zr-15Cu-10Ni wt% was verified in this study with higher tensile strength of the brazing joint and uniform microstructure of the interface. (orig.)

  1. Simulation of Zr content in TiZrCuNi brazing filler metal for Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Xishan [Northwestern Polytechnical University, School of Astronautics, Xi' an (China); AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Aeronautical Key Laboratory for Welding and Joining Technology, Beijing (China); Xie, Zonghong [Northwestern Polytechnical University, School of Astronautics, Xi' an (China); Jing, Yongjuan [AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Aeronautical Key Laboratory for Welding and Joining Technology, Beijing (China)

    2017-07-15

    To optimize the Zr content in Ti-based filler metal, the covalent electron on the nearest atoms bond in unit cell (n{sub A}{sup u-v}) with Ti-based BCC structure was calculated, in which the brazing temperature was considered due to its influence on the lattice parameter. Based on EET theory (The Empirical Electron Theory for solid and molecules), n{sub A}{sup u-v} represents the strength of the unit cell with defined element composition and structure, which reflects the effect from solid solution strengthening on the strength of the unit cell. For Ti-Zr-15Cu-10Ni wt% filler metal, it kept constant as 0.3476 with Zr as 37.5 ∝ 45 wt% and decreased to 0.333 with Zr decreasing from 37.5 to 25 wt%. Finally, it increased up to 0.3406 with Zr as 2 ∝ 10 wt%. Thus, Ti-based filler metal with Zr content being 2 ∝ 10 wt% is suggested based on the simulation results. Moreover, the calculated covalent electron of n{sub A}{sup u-v} showed good agreement with the hardness of the joint by filler 37.5Zr and 10Zr. The composition of Ti-10Zr-15Cu-10Ni wt% was verified in this study with higher tensile strength of the brazing joint and uniform microstructure of the interface. (orig.)

  2. Active brazed diamond and cubic boron nitride interfacial nanostructure and application

    International Nuclear Information System (INIS)

    Klotz, U.E.; Elsener, H.R.; Elsener, H.R.

    2005-01-01

    Active brazing is an effective technique for joining diamond or cBN grit onto metallic substrates. Current use of this technique is being made for super abrasive, high performance tools. The lecture will give an overview over different aspects such as (i) tool performance in selected applications, (ii) interfacial nanostructure between super abrasive grit and brazing alloys matrix, (iii) attempts to computer model such interface reactions and (iv) recent improvements of the abrasion resistance of the brazing alloy itself. Super abrasive tools with outstanding performance in applications such as grinding, honing or stone cutting can be manufactured by a single-layer of brazed diamond or cBN grit. A method to obtain regular grit patterns will be presented. Examples of prototype tools and their performance in different applications will be shown. The investigation of interface reactions between diamond and active brazing alloys plays an important role to further improve the brazing process and resulting tool performance. The interfacial nanostructure is characterised by a thin reaction layer of Ti with diamond and cBN, respectively. Results for Ag- and Cu-based brazing alloys will be presented and discussed in view of the influence of brazing process parameters and brazing alloy matrix. Computer modelling of the thermodynamics and kinetics of the interface reactions may allow optimising the process parameters. This requires reliable databases currently being built up. The potential of such methods in ceramic to metal joining will be described. The abrasion resistance of brazing alloys itself plays an important role for tool performance. A new method to achieve a dispersion of nano sized TiC precipitates in the alloy matrix by addition of an organic binder, decomposing during brazing will be presented. In an outlook further applications of brazed diamond grit, such as thermal management materials will be discussed. (author)

  3. Numerical Simulation of Brazing TiC Cermet to Iron with TiZrNiCu Filler Metal

    Institute of Scientific and Technical Information of China (English)

    Lixia ZHANG; Jicai FENG

    2004-01-01

    The maximum thermal stress and stress concentration zones of iron/TiC cermet joint during cooling were studied in this paper. The results showed that the shear stress on iron/TiC cermet joint concentrates on the interface tip and the maximum shear stress appears on the left tip of iron/TiZrNiCu interlace. Positive tensile stress on TiC cermet undersurface concentrates on both sides of TiC cermet and its value decreases during cooling. Negative tensile stress on TiC cermet undersurface concentrates on the center of TiC cermet and its value increases during cooling. Brazing temperature has little effect on the development and maximum thermal stress.

  4. An unconventional set-up for fluxless brazing of aluminium

    CERN Document Server

    Loos, Robert

    1999-01-01

    In order to successfully braze aluminium alloy assemblies without the use of oxide-removing fluxes, an evironment with very low contaminant level is mandatory. This is mostly achieved by using a vacuum furnace. Brazing under inert gas of sufficient purity is also possible. The method reported upon here makes use of a stainless steel bag which can enter a traditional air furnace. The bag is evacuated, giving a well distributed mechanical pressure on the parts to join. The intrinsic handicap of poor vacuum is compensated by regular inert gas flushing, even at high temperatures. The set-up works rather well, and the idea is believed to yield a valuable strategic and economic option, for the realization of special equipment as well as for prototyping work. We intend to use the principle for the CMS Preshower cooling screens.

  5. Beryllium brazing considerations in CANDU fuel bundle manufacture

    International Nuclear Information System (INIS)

    Harmsen, J.; Pant, A.; Lewis, B.J.; Thompson, W.T.

    2010-01-01

    'Full text:' Appendages of CANDU fuel bundle elements are currently joined to zircaloy sheaths by vacuum beryllium brazing. Ongoing environmental and workplace concerns about beryllium combined with the continuous efforts by Cameco Fuel Manufacturing in its improvement process, initiated this study to find a substitute for pure beryllium. The presentation will review the necessary functionality of brazing alloy components and short list a series of alloys with the potential to duplicate the performance of pure beryllium. Modifications to current manufacturing processes based on in-plant testing will be discussed in relation to the use of these alloys. The presentation will conclude with a summary of the progress to date and further testing expected to be necessary.

  6. Brazing of Cu with Pd-based metallic glass filler

    Energy Technology Data Exchange (ETDEWEB)

    Terajima, Takeshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)], E-mail: terajima@jwri.osaka-u.ac.jp; Nakata, Kazuhiro [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Matsumoto, Yuji [Materials and Structures Laboratory, Tokyo Institute of Technology (Japan); Zhang, Wei; Kimura, Hisamichi; Inoue, Akihisa [Institute for Materials Research, Tohoku University (Japan)

    2008-02-25

    Metallic glass has several unique properties, including high mechanical strength, small solidification shrinkage, small elastic modulus and supercooling state, all of which are well suited as a residual stress buffer for metal and ceramic joining. In the present preliminary study, we demonstrated brazing of Cu rods with Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} metallic glass filler. The brazing was carried out at 873 K for 1 min in a vacuum atmosphere (1 x 10{sup -3} Pa), and then the specimens were quenched at the rate of 30 K/s by blowing He. The metallic glass brazing of Cu using Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} filler was successful, with the exception that several voids remained in the filler. According to micro-focused X-ray diffraction, no diffraction patterns were observed at both the center of the Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} filler and the Cu/Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} interface. The result showed that the Cu specimens were joined with Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} filler in the glassy state. The tensile fracture strength of the brazed specimens ranged from 20 to 250 MPa. The crack extension from the voids in the Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} filler may have caused the results to be uneven and very low compared to the strength of Pd-based bulk metallic glass.

  7. Welding and brazing of the JET machine components

    International Nuclear Information System (INIS)

    Walravens, M.J.

    1985-10-01

    The report covers the techniques used for joining the various parts of the machine. The difficulties encountered during the welding and brazing of similar and dissimilar metals are underlined and the solutions adopted to solve them are indicated. The vast experience gained by those involved in the processes of joining the various parts of the JET machine components, and the lessons learnt are summarized in this report. (author)

  8. Controlling phase formation during aluminium/steel Nd:YAG laser brazing

    Directory of Open Access Journals (Sweden)

    Rodriguez, L.

    2006-12-01

    Full Text Available The reduction of fuel consumption of internal combustion motors, imposed by the new anti-pollution and energy saving laws may be attained by reducing the weight of vehicles, introducing, for example, aluminium sections into the main steel car-body. Laser brazing is a process which can be used to perform such a junction. The main problem of welding this kind of materials combination with conventional processes is the potential formation of inter-metallic phases, which reduces the good performance of the joint. Laser brazing allows a very good control of the thermal development of the joint, with a limited precipitation of these brittle phases. This paper presents the results of a feasibility study made with ZnAl-30 as filler metal. The study shows that the type of configuration used for the assembly has a particular influence on the formation of brittle phases and consequently on the mechanical performance of the joint.

    La reducción en el consumo de combustibles fósiles y las emergentes leyes mundiales anti-contaminación, obligan a prever una reducción en el peso de los vehículos de transporte. Esta condición se puede cumplir por ejemplo, introduciendo componentes de Aluminio en el cuerpo de la carrocería principal de acero de los mencionados vehículos. El principal problema que se presenta al realizar este tipo de ensamblaje es la formación de fases íntermetálicas frágiles que pueden comprometer el buen desenvolvimiento de la unión. La soldadura con rayo láser permite un buen control de calor aportado y una formación muy limitada de este tipo de fases. Este trabajo presenta los resultados preliminares de los estudios realizados en uniones soldadas con ZnAl-30 como material de aportación. El estudio muestra que el tipo de configuración utilizada para realizar la soldadura tiene una influencia importante sobre la posibilidad de formación de estas fases ínter-metálicas.

  9. Characterization of intermetallics in aluminum to zinc coated interstitial free steel joining by pulsed MIG brazing for automotive application

    Energy Technology Data Exchange (ETDEWEB)

    Basak, Sushovan, E-mail: sushovanbasak@gmail.com [Metallurgical and Material Engineering Department, Jadavpur University, Kolkata–700032 (India); Das, Hrishikesh, E-mail: hrishichem@gmail.com [Metallurgical and Material Engineering Department, Jadavpur University, Kolkata–700032 (India); Pal, Tapan Kumar, E-mail: tkpal.ju@gmail.com [Metallurgical and Material Engineering Department, Jadavpur University, Kolkata–700032 (India); Shome, Mahadev, E-mail: mshome@tatasteel.com [Material Characterization & Joining Group, R & D, Tata Steel, Jamshedpur–831007 (India)

    2016-02-15

    In order to meet the demand for lighter and more fuel efficient vehicles, a significant attempt is currently being focused toward the substitution of aluminum for steel in the car body structure. It generates vital challenge with respect to the methods of joining to be used for fabrication. However, the conventional fusion joining has its own difficulty owing to formation of the brittle intermetallic phases. In this present study AA6061-T6 of 2 mm and HIF-GA steel sheet of 1 mm thick are metal inert gas (MIG) brazed with 0.8 mm Al–5Si filler wire under three different heat inputs. The effect of the heat inputs on bead geometry, microstructure and joint properties of MIG brazed Al-steel joints were exclusively studied and characterized by X-ray diffraction, field emission scanning electron microscopy (FESEM), electron probe micro analyzer (EPMA) and high resolution transmission electron microscopy (HRTEM) assisted X-ray spectroscopy (EDS) and selective area diffraction pattern. Finally microstructures were correlated with the performance of the joint. Diffusion induced intermetallic thickness measured by FESEM image and concentration profile agreed well with the numerically calculated one. HRTEM assisted EDS study was used to identify the large size FeAl{sub 3} and small size Fe{sub 2}Al{sub 5} type intermetallic compounds at the interface. The growth of these two phases in A2 (heat input: 182 J mm{sup −1}) is attributed to the slower cooling rate with higher diffusion time (~ 61 s) along the interface in comparison to the same for A1 (heat input: 155 J mm{sup −1}) with faster cooling rate and shorter diffusion time (~ 24 s). The joint efficiency as high as 65% of steel base metal is achieved for A2 which is the optimized parameter in the present study. - Highlights: • AA 6061 and HIF-GA could be successfully joined by MIG brazing. • Intermetallics are exclusively studied and characterized by XRD, FESEM and EPMA. • Intermetallic formation by diffusion is

  10. Laser Brazing Characteristics of Al to Brass with Zn-Based Filler

    Science.gov (United States)

    Tan, Caiwang; Liu, Fuyun; Sun, Yiming; Chen, Bo; Song, Xiaoguo; Li, Liqun; Zhao, Hongyun; Feng, Jicai

    2018-05-01

    Laser brazing of Al to brass in lap configuration with Zn-based filler was performed in this work. The process parameters including laser power, defocused distance were found to have a significant influence on appearance, microstructure and mechanical properties. The process parameters were optimized to be laser power of 2700 W and defocusing distance of + 40 mm from brass surface. In addition, preheating exerted great influence on wetting and spreading ability of Zn filler on brass surface. The microstructure observation showed the thickness of reaction layer (CuZn phase) at the interface of the brass side would grow with the increase in laser power and the decrease in the laser defocusing distance. Moreover, preheating could increase the spreading area of the filler metal and induced the growth of the reaction layer. The highest tensile-shear load of the joint could reach 2100 N, which was 80% of that of Al alloy base metal. All the joints fractured along the CuZn reaction layer and brass interface. The fracture morphology displayed the characteristics of the cleavage fracture when without preheating before welding, while it displayed the characteristics of the quasi-cleavage fracture with preheating before welding.

  11. Brazed thermocouple pass-through for sodium service in a liquid-metal-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Walker, D.E.

    1975-10-01

    Sensors installed in special fuel elements for the EBR-II reactor had 30-ft-long leads that would pass from the sodium environment through a sealed bulkhead. A hydrogen-atmosphere, induction-heated brazing furnace was constructed to simultaneously braze 20-26 separate sensor leads at one time. The brazed seals were leak-tight, and the sheath wall has less than 10 percent interaction with the braze alloy

  12. 75 FR 52037 - Welding, Cutting and Brazing Standard; Extension of the Office of Management and Budget's (OMB...

    Science.gov (United States)

    2010-08-24

    ...] Welding, Cutting and Brazing Standard; Extension of the Office of Management and Budget's (OMB) Approval... requirements contained in the Welding, Cutting and Brazing Standard (29 CFR part 1910, subpart Q). The information collected is used by employers and workers whenever welding, cutting and brazing are performed...

  13. Interfacial microstructure and performance of brazed diamond grits with Ni-Cr-P alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.Y. [Faculty of Mechanical and Electronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China)], E-mail: cywang@gdut.edu.cn; Zhou, Y.M.; Zhang, F.L.; Xu, Z.C. [Faculty of Mechanical and Electronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2009-05-12

    The reaction mechanism of the interface among diamond, commercial Ni-Cr-P alloy and steel substrate has been studied by optical microscopy, scanning electron microscope, X-ray diffraction and Raman spectroscopy. The reaction layers formed among diamond, brazing alloy and steel substrate produced good wettability of diamond grits for achieving better quality tools. The reaction layer between diamond and brazing alloy comprised a reaction layer of brazing alloy and a reaction layer of diamond. Cr{sub 7}C{sub 3} and Cr{sub 3}C{sub 2} formed in the reaction layer of brazing alloy was the main reason for improving the bonding strength of Ni-Cr alloy to the diamond grits. A reaction layer of diamond may be a graphitization layer formed on the surface of diamond under high temperature brazing. The reaction layer of brazing alloy and steel substrate was the co-diffusion of Ni, Cr and Fe between the brazing alloy and the steel substrate. The life and sharpness of brazed diamond boring drill bits fabricated in this study were superior to the electroplated one in the market owing to its high protrusion and bonding strength.

  14. Brazing process for beryllium pieces at a temperature lower than 800 deg

    International Nuclear Information System (INIS)

    Cerutti, R.; Flegeau, G.; Haas, C.

    1992-01-01

    This patent describes a brazing process of a beryllium plate with monel rod at a temperature lower than 1073 K under high vacuum. The brazing alloy is composed (% in weight) of silver (58 to 65%), copper (26 to 29%), indium (9 to 13%) and titanium (0 to 2%). (A.B.). 4 refs., 1 fig

  15. High temperature brazing of primary-system components in the nuclear field

    International Nuclear Information System (INIS)

    Belicic, M.; Fricker, H.W.; Iversen, K.; Leukert, W.

    1981-01-01

    Apart from the well-known welding procedures, high-temperature brazing is successfully applied in the manufacture of primary components in the field of nuclear reactor construction. This technique is applied in all cases where apart from sufficient resistance and high production safety importance is laid on dimensional stability without subsequent mechanical processing of the components. High-temperature brazing is therefore very important in the manufacture of fuel rod spacers or control rod guide tubes. In this context, during one brazing process many brazing seams have to be produced in extremely narrow areas and within small tolerances. As basic materials precipitation hardening alloys with a high nickel percentage, austenitic Cr-Ni-steels or the zirconium alloy Zry 4 are used. Generally applied are: boron free nickel or zirconium brazing filler metals. (orig.)

  16. Influence of cyclic thermal loading on brazed composites for fusion applications

    International Nuclear Information System (INIS)

    Smid, I.; Kny, E.; Kneringer, G.; Reheis, N.

    1990-01-01

    Reactor grade graphite and molybdenum (TZM) were brazed with different high temperature brazes (100Zr, 90Cu10Ti, 90Ni10Ti, 70Ag27Cu3Ti) The resulting tiles had a size of 50x50 mm 2 with a graphite thickness of 100 mm and a TZM thickness of 5 mm. The brazed composites have been tested in electron beam simulation for their thermal fatigue properties. The parameters of these tests were chosen to match NET design specifications for normal operation and ''slow'' peak energy deposition. The resulting damage and microstructural changes on the graphites and the brazes are discussed. Additional information is supplied on X-ray diffraction data proving the presence of different phases in the brazes. (orig./MM)

  17. Evaluation of mechanical strength of the joints in JT-60 toroidal field coil conductors

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Ohkubo, Monoru; Sasajima, Hiroshi

    1980-04-01

    Toroidal field (TF) coils of JT-60 produce a toroidal field of 45 kG at a plasma axis, they have an inner bore of 3.90 m and a weight of about 80 metric tons per coil. Eighteen TF coils are located around a torus axis at regular intervals. TF coil conductors are mostly jointed by high frequency induction brazing, the rest jointed by welding. In deciding the details of the jointing procedures, the conductor size and the requested mechanical strength are mainly taken into consideration. Described are non-destructive inspection methods for the brazed joints, strength evaluation, and the inspection criteria. Ultrasonic testing method is found to be the most effective in evaluation of mechanical properties of the brazed joints especially in terms of fatigue strength. In section 1, specifications of the TF coils are given. In section 2, the ultrasonic inspection method and the detectability of this apparatus are described in detail, the defects of known size are compared with the indication values and display figures. The apparatus developed for JT-60 is operated automatically also recording the inspectionresults. In section 3, mechanical strength of the brazed joints with initial defects is discussed on the basis of Fracture Mechanics theory and results of the fatigue crack growth test. The inspection criteria in accordance with the descriptions of section 2 and 3 are given in section 4. (author)

  18. Graphite to Inconel brazing using active filler metal

    International Nuclear Information System (INIS)

    King, J.F.; Baity, F.W.; Walls, J.C.; Hoffman, D.J.

    1989-01-01

    Ion cyclotron resonant frequency (ICRF) antennas are designed to supply large amounts of auxiliary heating power to fusion-grade plasmas in the Toroidal Fusion Test Reactor (TFTR) and Tore Supra fusion energy experiments. A single Faraday shield structure protects a pair of resonant double loops which are designed to launch up to 2 MW of power per loop. The shield consists of two tiers of actively cooled Inconel alloy tubes with the front tier being covered with semicircular graphite tiles. Successful operation of the antenna requires the making of high integrity bonds between the Inconel tubes and graphite tiles by brazing. This paper discusses this process

  19. Determination of phosphorus in gold or silver brazing alloys

    International Nuclear Information System (INIS)

    Antepenko, R.J.

    1976-01-01

    A spectrophotometric method has been devised for measuring microgram levels of phosphorus in brazing alloys of gold or silver alloys is normally measured by solid mass spectrometry, but the high nickel concentration produces a double ionized nickel spectral interference. The described procedures is based upon the formation of molybdovandophosphoric acid when a molybdate solution is added to an acidic solution containing orthophosphate and vanadate ions. The optimum acidity for forming the yellow colored product is 0.5 N hydrochloric acid. The working concentration range is from 0.1 to 1 ppm phosphorus using 100-mm cells and measuring the absorbance at 460 nm. The sample preparation procedure employs aqua regia to dissolve the alloy oxidize the phosphorus to orthophosphate. Cation-exchange chromatography is used to remove nickel ions and anion-exchange and chromatography to remove gold ions as the chloride complex. Excellent recoveries are obtained for standard phosphorus solutions run through the sample procedure. The procedure is applicable to a variety of gold or silver braze alloys requiring phosphorus analysis

  20. Braze welding of cobalt with a silver–copper filler

    Directory of Open Access Journals (Sweden)

    Everett M. Criss

    2015-01-01

    Full Text Available A new method of joining cobalt by braze-welding it with a silver–copper filler was developed in order to better understand the residual stresses in beryllium–aluminum/silicon weldments which are problematic to investigate because of the high toxicity of Be. The base and filler metals of this new welding system were selected to replicate the physical properties, crystal structures, and chemical behavior of the Be–AlSi welds. Welding parameters of this surrogate Co–AgCu system were determined by experimentation combining 4-point bending tests and microscopy. Final welds are 5 pass manual TIG (tungsten inert gas, with He top gas and Ar back gas. Control of the welding process produces welds with full penetration melting of the cobalt base. Microscopy indicates that cracking is minimal, and not through thickness, whereas 4-point bending shows failure is not by base-filler delamination. These welds improve upon the original Be–AlSi welds, which do not possess full penetration, and have considerable porosity. We propose that utilization of our welding methods will increase the strength of the Be–AlSi weldments. The specialized welding techniques developed for this study may be applicable not only for the parent Be–AlSi welds, but to braze welds and welds utilizing brittle materials in general. This concept of surrogacy may prove useful in the study of many different types of exotic welds.

  1. Joining technologies for the 1990s: Welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    Science.gov (United States)

    Buckley, John D. (Editor); Stein, Bland A. (Editor)

    1986-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Society, and Society of Manufacturing Engineers Conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  2. Laser Welding-Brazing of Immiscible AZ31B Mg and Ti-6Al-4V Alloys Using an Electrodeposited Cu Interlayer

    Science.gov (United States)

    Zhang, Zequn; Tan, Caiwang; Wang, Gang; Chen, Bo; Song, Xiaoguo; Zhao, Hongyun; Li, Liqun; Feng, Jicai

    2018-03-01

    Metallurgical bonding between immiscible system AZ31B magnesium (Mg) and Ti-6Al-4V titanium (Ti) was achieved by adding Cu interlayer using laser welding-brazing process. Effect of the laser power on microstructure evolution and mechanical properties of Mg/Cu-coated Ti joints was studied. Visually acceptable joints were obtained at the range of 1300 to 1500 W. The brazed interface was divided into three parts due to temperature gradient: direct irradiation zone, intermediate zone and seam head zone. Ti3Al phase was produced along the interface at the direct irradiation zone. Ti-Al reaction layer grew slightly with the increase in laser power. A small amount of Ti2(Cu,Al) interfacial compounds formed at the intermediate zone and the ( α-Mg + Mg2Cu) eutectic structure dispersed in the fusion zone instead of gathering when increasing the laser power at this zone. At the seam head zone, Mg-Cu eutectic structure was produced in large quantities under all cases. Joint strength first increased and then decreased with the variation of the laser power. The maximum fracture load of Mg/Cu-coated Ti joint reached 2314 N at the laser power of 1300 W, representing 85.7% joint efficiency when compared with Mg base metal. All specimens fractured at the interface. The feature of fracture surface at the laser power of 1100 W was characterized by overall smooth surface. Obvious tear ridge and Ti3Al particles were observed at the fracture surface with increase in laser power. It suggested atomic diffusion was accelerated with more heat input giving rise to the enhanced interfacial reaction and metallurgical bonding in direct irradiation zone, which determined the mechanical properties of the joint.

  3. Nano-Phase Powder Based Exothermic Braze Repair Technology For RCC Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — MRi is proposing, with its partner, Exotherm Corp (Camden, NJ) to demonstrate the feasibility of using exothermic brazing to join RCC (or C:SiC) composites to itself...

  4. Evaluation of the adhesion strength of diamond films brazed on K-10 type hard metal

    Directory of Open Access Journals (Sweden)

    Santos Sérgio Ivan dos

    2004-01-01

    Full Text Available The coating of cutting tools with diamond films considerably increases the tool performance due to the combination of the unique tribological properties of diamond with the bulk properties of the substrate (toughness. The tool performance, however, is strongly related to the adhesion strength between the film and the substrate. In this work our main goal was to propose and to test a procedure, based on a tensile strength test, to evaluate the adhesion strength of a diamond wafer brazed on a hard metal substrate, taking into account the effect of the brazing temperature and time. The temperature range studied was from 800 to 980 °C and the brazing time ranged from 3 to 40 min. The obtained results could be used to optimize the costs and time required to the production of high performance cutting tools with brazed diamond wafers.

  5. Development of Induction Brazing System for Sealing Instrumentation Feed through Part of Nuclear Fuel Test Rig

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jintae; Kim, Kahye; Heo, Sungho; Ahn, Sungho; Joung, Changyoung; Son, Kwangjae; Jung, Yangil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-12-15

    To test the performance of nuclear fuels, coolant needs to be circulated through the test rig installed in the test loop. Because the pressure and temperature of the coolant is 15.5 MPa and 300 .deg. C respectively, coolant sealing is one of the most important processes in fabricating a nuclear fuel test rig. In particular, 15 instrumentation cables installed in a test rig pass through the pressure boundary, and brazing is generally applied as a sealing method. In this study, an induction brazing system has been developed using a high frequency induction heater including a vacuum chamber. For application in the nuclear field, BNi2 should be used as a paste, and optimal process variables for Ni brazing have been found by several case studies. The performance and soundness of the brazed components has been verified by a tensile test, cross section test, and sealing performance test.

  6. Researches and studies regarding brazed aluminium alloys microstructure used in aeronautic industry

    Directory of Open Access Journals (Sweden)

    A. Dimitrescu

    2015-04-01

    Full Text Available Brazing is applied to the merge of the pieces which are most required, tensile strength of the solder can reach high values. By brazing there can be assembled pieces of most metals and ferrous and nonferrous alloys, with high melting temperature. This paper presents an analysis of the microstructure of materials from a brazed merge of aluminum alloy L103 which is often used to produce pieces of aeronautical industry. Brazing material was performed using several technologies, and after examination of the microstructure of materials from the merge area it was established as optimal technology the technology which consist of pickling in Aloclene 100 solution with the deposition of filler material on both sides of the base material and the use of spectral acetylene and neutral flame.

  7. Nano-Phase Powder Based Exothermic Braze Repair Technology For RCC Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase II project will advance innovative, cost effective and reliable nano-phase exothermic RCC joining processes (ExoBrazeTM) in order to be able to reinforce...

  8. Tensile tests and metallography of brazed AISI 316L specimens after irradiation

    International Nuclear Information System (INIS)

    Groot, P.; Franconi, E.

    1994-01-01

    Stainless steel type 316L tensile specimens were vacuum brazed with three kinds of alloys: BNi-5, BNi-6, and BNi-7. The specimens were irradiated up to 0.7 dpa at 353 K in the High Flux Reactor at JRC Petten, the Netherlands. Tensile tests were performed at a constant displacement rate of 10 -3 s -1 at room temperature in the ECN hot cell facility. BNi-5 brazed specimens showed ductile behaviour. Necking and fractures were localized in the plate material. BNi-6 and BNi-7 brazed specimens failed brittle in the brazed zone. This was preceded by uniform deformation of the plate material. Tensile test results of irradiated specimens showed higher stresses due to radiation hardening and a reduction of the elongation of the plate material compared to the reference. SEM examination of the irradiated BNi-6 and BNi-7 fracture surfaces showed nonmetallic phases. These phases were not found in the reference specimens. ((orig.))

  9. An Investigation on Corrosion Behavior of a Multi-layer Modified Aluminum Brazing Sheet

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2016-01-01

    Full Text Available The corrosion behavior of a multi-layer modified aluminum brazing sheet (AA4045/3003Mod./AA7072/AA4045 was investigated. The results shows that, the existence of BDP, which forms at the interface between clad and core layer during brazing, changes the corrosion form of the air side of the material from inter-granular corrosion to local exfoliation corrosion. The addition of anti-corrosion layer makes the corrosion form of the water side from inter-granular corrosion into uniform exfoliation corrosion. Compared to the normal triple-layer brazing sheet at the same thickness, the time to perforation of the modified four-layer brazing sheet is increased by more than 200%.

  10. Brazing techniques for side-coupled electron accelerator structures

    International Nuclear Information System (INIS)

    Hansborough, L.D.; Clark, W.L.; DePaula, R.A.; Martinez, F.A.; Roybal, P.L.; Wilkerson, L.C.; Young, L.M.

    1986-01-01

    The collaboration between the Los Alamos National Laboratory and the National Bureau of Standards (NBS), started in 1979, has led to the development of an advanced c-w microtron accelerator design. The four 2380-MHz NBS accelerating structures, containing a total of 184 accelerating cavities, have been fabricated and delivered. New fabrication methods, coupled with refinements of hydrogen-furnace brazing techniques described in this paper, allow efficient production of side-coupled structures. Success with the NBS RTM led to Los Alamos efforts on similar 2450-MHz accelerators for the microtron accelerator operated by the Nuclear Physics Department of the University of Illinois. Two accelerators (each with 17 cavities) have been fabricated; in 1986, a 45-cavity accelerator is being fabricated by private industry with some assistance from Los Alamos. Further private industry experience and refinement of the described fabrication techniques may allow future accelerators of this type to be completely fabricated by private industry

  11. A carbon-metal brazing for divertor plates in fusion devices

    International Nuclear Information System (INIS)

    Matsuda, T.; Matsumoto, T.; Miki, S.; Sogabe, T.; Okada, M.; Kubota, Y.; Sagara, A.; Noda, N.; Motojima, O.; Hino, T.; Yamashina, T.

    1993-01-01

    A divertor unit, which consists of carbon armors brazed to a copper cooling channel, is under development for fusion devices. Isotropic graphite (IG-430U) and CFC (CX-2002U) are used for the armor, and a copper for the cooling tube. A technique named as dissolution and deposit of base metal was employed for brazing. The reliability of the brazed components was evaluated both by 4-point bending test and thermal shock test. According to the results of a 4-point bending test under the temperature ranged from RT to 800 C in a vacuum, it was found that the strength of the brazed surface at RT was maintained up to the higher temperature, 600 C. High heat load test has been also performed on the brazed sample in order to find whether the samples meet the requirement of the divertor plates of LHD (Large Helical Device). Active Cooling Teststand (ACT:NIFS) with electron beam power of 100kW was used. In LHD, it is presumed that the maximum heat flux is 10MW/m 2 . In addition, the surface temperature of divertor has to be kept below 1,200 C to avoid RES, by active cooling. The heat load test showed that the brazing components of CX-2002U (flat plate type CFC-Cu brazed) was stable at 1,300 C under a heat flux of 10MW/m 2 , when the flow velocity of cooling water was 6m/s. No damage nor deterioration was found at the brazed zone after the heat load test

  12. Brazed graphite/refractory metal composites for first-wall protection elements

    Science.gov (United States)

    Šmid, I.; Croessmann, C. D.; Salmonson, J. C.; Whitley, J. B.; Kny, E.; Reheis, N.; Kneringer, G.; Nickel, H.

    1991-03-01

    The peak surface heat flux deposition on divertor elements of near term fusion devices is expected to exceed 10 MW/m 2. The needed reliability of brazed plasma interactive components, particularly under abnormal operating conditions with peak surface temperatures well beyond 1000°C, makes refractory metallic substrates and brazes with a high melting point very attractive. TZM, a high temperature alloy of molybdenum, and isotropic graphite, materials very closely matched in their thermal expansion, were brazed with four high-temperature brazes. The brazes used were Zr, 90Ni/10Ti, 90Cu/10Ti and 70Ag/27Cu/3Ti (nominal composition prior to brazing, wt%). The resulting composite tiles of 50 × 50 mm2 with a TZM thickness of 5 mm and a graphite thickness of 10 mm have been tested in high heat flux simulation for their thermal fatigue properties. Up to 600 loading cycles were carried out with an average heat flux of 10 MW/m 2 for 0.5 s pulses. The maximum surface temperature was 1100°C. In support of the experiment, the thermal response and temperature gradients of the samples were investigated using a finite element model.

  13. Brazed graphite/refractory metal composites for first-wall protection elements

    International Nuclear Information System (INIS)

    Smid, I.; Croessmann, C.D.; Salmonson, J.C.; Whitley, J.B.; Nickel, H.

    1991-01-01

    The peak surface heat flux deposition on divertor elements of near term fusion devices is expected to exceed 10 MW/m 2 . The needed reliability of brazed plasma interactive components, particularly under abnormal operating conditions with peak surface temperatures well beyond 1000deg C, makes refractory metallic substrates and brazes with a high melting point very attractive. TZM, a high temperature alloy of molybdenum, and isotropic graphite, materials very closely matched in their thermal expansion, were brazed with four high-temperature brazes. The brazes used were Zr, 90Ni/10Ti, 90Cu/10Ti and 70Ag/27Cu/3Ti (nominal composition prior to brazing, wt%). The resulting composite tiles of 50x50 mm 2 with a TZM thickness of 5 mm and a graphite thickness of 10 mm have been tested in high heat flux simulation for their thermal fatigue properties. Up to 600 loading cycles were carried out with an average heat flux of 10 MW/m 2 for 0.5 s pulses. The maximum surface temperature was 1100deg C. In support of the experiment, the thermal response and temperature gradients of the samples were investigated using a finite element model. (orig.)

  14. Brazed graphite/refractory metal composites for first-wall protection elements

    International Nuclear Information System (INIS)

    Smid, I.; Croessmann, C. D.; Salmonson, J. C.; Whitley, J. B.; Kny, E.; Reheis, N.; Kneringer, G.; Nickel, H.

    1995-01-01

    The peak surface heat flux deposition on divertor elements of near term fusion devices is expected to exceed 10 MW/m 2 . The needed reliability of brazed plasma interactive components, particularly under abnormal operating conditions with peak surface temperatures well beyond 1000 degree C, makes refractory metallic substrates and brazes with a high melting point very attractive. TZM, a high temperature alloy of molybdenum, and isotropic graphite, materials very closely matched in their thermal expansion, were brazed with four high-temperature brazes. The brazes used were Zr, 90Ni/10Ti, 90Cu/10Ti and 70Ag/27Cu/3Ti (nominal composition prior to brazing, wt%). The resulting composite tiles of 5O X 50 mm 2 with a TZM thickness of 5 mm and a graphite thickness of 10 mm have been tested in high heat flux simulation for their thermal fatigue properties. Up to 600 loading cycles were carried out with an average heat flux of 10 MW/m 2 for 0.5 s pulses. The maximum surface temperature was 1100 degree C. In support of the experiment, the thermal response and temperature gradients of the samples were investigated using a finite element model. (author)

  15. Brazed graphite/refractory metal composites for first wall protection elements

    International Nuclear Information System (INIS)

    Smid, I.; Croessmann, C. D.; Salmonson, J. C.; Whitley, J. B.; Kny, E.; Reheis, N; Kneringer, G.; Nickel, H.

    1995-01-01

    The peak surface heat flux deposition on divertor elements of near term fusion devices is expected to exceed 10 MW/m 2 . The needed reliability of brazed plasma interactive components, particularly under abnormal operating conditions with peak surface temperatures well beyond 1000 degree C, makes refractory metallic substrates and brazes with a high melting point very attractive. TZM, a high temperature alloy of molybdenum, and isotropic graphite, materials very closely matched in their thermal expansion, were brazed with four high-temperature brazes. The brazes used were Zr, 90Ni/10Ti, 90Cu/10Ti and 70Ag/27Cu/10Ti (nominal composition prior to brazing, wt%). The resulting composite tiles of 50 x 50 mm with a TZM thickness of 5 mm and a graphite thickness of 10 mm have been tested in high heat flux simulation for their thermal fatigue properties. Up to 600 loading cycles were carried out with the experimental parameters chosen to cover NET/ITER design specifications. In support of the experiment, the thermal response and temperature gradients of the samples were investigated using a finite element model. (author)

  16. Braze alloy process and strength characterization studies for 18 nickel grade 200 maraging steel with application to wind tunnel models

    Science.gov (United States)

    Bradshaw, James F.; Sandefur, Paul G., Jr.; Young, Clarence P., Jr.

    1991-01-01

    A comprehensive study of braze alloy selection process and strength characterization with application to wind tunnel models is presented. The applications for this study include the installation of stainless steel pressure tubing in model airfoil sections make of 18 Ni 200 grade maraging steel and the joining of wing structural components by brazing. Acceptable braze alloys for these applications are identified along with process, thermal braze cycle data, and thermal management procedures. Shear specimens are used to evaluate comparative shear strength properties for the various alloys at both room and cryogenic (-300 F) temperatures and include the effects of electroless nickel plating. Nickel plating was found to significantly enhance both the wetability and strength properties for the various braze alloys studied. The data are provided for use in selecting braze alloys for use with 18 Ni grade 200 steel in the design of wind tunnel models to be tested in an ambient or cryogenic environment.

  17. Pre-Brazed Casting and Hot Radial Pressing: A Reliable Process for the Manufacturing of CFC and W Monoblock Mockups

    International Nuclear Information System (INIS)

    Visca, E.; Libera, S.; Mancini, A.; Mazzone, G.; Pizzuto, A.; Testani, C.

    2006-01-01

    ENEA association is involved in the European International Thermonuclear Experimental Reactor (ITER) R-and-D activities and in particular for the manufacturing of high heat flux plasma-facing components (HHFC), such as the divertor targets, the baffles and the limiters: During the last years ENEA has manufactured actively cooled mock-ups by using different technologies, namely brazing, diffusion bonding and hot isostatic pressing (HIPping). A new manufacturing process has been set up and tested. It was successfully applied for the manufacturing of W armoured monoblock mockups. This technique is the HRP (Hot Radial Pressing) based on performing a radial diffusion bonding between the cooling tube and the armour tile by pressurizing only the internal tube and by keeping the joining zone in vacuum and at the required bonding temperature. The heating is obtained by a standard air furnace. The next step was to apply the HRP technique for the manufacturing of CFC armoured monoblock components. For this purpose some issues have to be solved like as the low CFC tensile strength, the pure copper interlayer between the heat sink and the armour necessary to mitigate the stress at the joint interface and the low wettability of the pure copper on the CFC matrix. This paper reports the research path followed to manufacture a medium scale vertical target CFC and W armoured mockup by HRP. An ad hoc rig able to maintain the CFC in a compressive constant condition was also designed and tested. The casting of a soft copper interlayer between the tube and the tile was performed by a new technique: the Pre-Brazed Casting (PBC, ENEA patent). Some mock-ups with three NB31 CFC tiles were successfully manufactured and tested to thermal fatigue using electron beam facilities. They all reached at least 1000 cycles at 20 MW/m 2 without suffering any damage. The manufactured medium scale vertical target mock-up is now under testing at the FE2000 (France) facility. (author)

  18. Production of ceramic-metal joints for high-vacuum applications and development of simulation program for discharge tube

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. H.; Chung, K. H. [Seoul National University, Seoul (Korea)

    2000-04-01

    To develop a ceramic-metal jointed tube for high-vacuum applications, metalizing process and active metal brazing were investigated. Active metal brazing was adopted as a joining process to produce a high-vacuum tube which had high joint strength and reliability. A possibility for the development of new composition of Mo-Mn paste was studied. Also, to improve the strength and reliability of active metal brazed joint, TiN coating was introduced as a diffusion barrier. It was revealed that TiN coating could improve the joint strength and reliability. 100mm {phi} tube joint was produced using incusil ABA brazing alloy. The strength and reliability of manufactured tube showed higher value than commercial one. The electric field distribution in ceramic tube under high voltage was analyzed. Two dimensional electric field distribution was investigated under the existence of charged particles. From this result, electric field distribution at the surface of ceramic tube and the location of high electric field was predicted. Finally, Arc discharge was simulated to analyze the effect of arc discharge on the discharge tube wall. The maximum temperature of arc was 12000-13000K. The wall temperature was increased 100-170K by the arc discharge. 45 refs., 57 figs., 4 tabs. (Author)

  19. Comparative thermal cyclic testing and strength investigation of different Be/Cu joints

    Energy Technology Data Exchange (ETDEWEB)

    Gervash, A.; Giniyatulin, R.; Komarov, V.; Mazul, I.; Litunovsky, N. [Research Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Ganenko, A.; Vainerman, A. [CRISM `Prometey`, 193167, St. Petersburg (Russian Federation); Fedotov, V. [Moscow Physical Engineering Institute, 123060, Moscow (Russian Federation); Davydov, D. [Bochvar Institute, 123060, Moscow (Russian Federation); Zalavutdinov, R. [Institute of Physical Chemistry, Moscow (Russian Federation)

    1998-09-01

    One of the main problems for ITER divertor target technology is to provide a reliable joint between Be as armour material and copper alloy heat-sink structure. Such joints are to satisfy numerous requirements. In particular these joints should successfully withstand cyclic hear fluxes and should have good properties after neutron irradiation. To study such a complex problem, several investigation stages were planed in Russia. This paper presents the results of comparative thermal cyclic testing of different Be/Cu candidates. Summarising the thermal cyclic test results and analysing the metallography of those joints it was found that the life-time of all tested joints is limited by rather thick brittle intermetallic layers in the bonding zone caused by relatively long brazing time using heating and cooling down in traditional ohmic furnace. This paper thus presents attempts of using a unique brazing technique with fast e-beam heating. Metallographic investigation as well as X-ray spectrometric analysis of joints produced using the new technique were done. The recent results of testing of Be/Cu joints produced by fast e-beam brazing are discussed and some ideas for the nearest future investigations are presented. (orig.) 5 refs.

  20. Comparative thermal cyclic testing and strength investigation of different Be/Cu joints

    International Nuclear Information System (INIS)

    Gervash, A.; Giniyatulin, R.; Komarov, V.; Mazul, I.; Litunovsky, N.; Ganenko, A.; Vainerman, A.; Fedotov, V.; Davydov, D.; Zalavutdinov, R.

    1998-01-01

    One of the main problems for ITER divertor target technology is to provide a reliable joint between Be as armour material and copper alloy heat-sink structure. Such joints are to satisfy numerous requirements. In particular these joints should successfully withstand cyclic hear fluxes and should have good properties after neutron irradiation. To study such a complex problem, several investigation stages were planed in Russia. This paper presents the results of comparative thermal cyclic testing of different Be/Cu candidates. Summarising the thermal cyclic test results and analysing the metallography of those joints it was found that the life-time of all tested joints is limited by rather thick brittle intermetallic layers in the bonding zone caused by relatively long brazing time using heating and cooling down in traditional ohmic furnace. This paper thus presents attempts of using a unique brazing technique with fast e-beam heating. Metallographic investigation as well as X-ray spectrometric analysis of joints produced using the new technique were done. The recent results of testing of Be/Cu joints produced by fast e-beam brazing are discussed and some ideas for the nearest future investigations are presented. (orig.)

  1. Mo-based compounds for SiC-SiC joints

    Energy Technology Data Exchange (ETDEWEB)

    Magnani, G.; Beaulardi, L.; Mingazzini, C. [ENEA-Faenza (Italy). New Material Div.; Marmo, E. [Fabbricazioni Nucleari S.p.A., Bosco Mavengo (Italy)

    2002-07-01

    New method to joint silicon carbide-based material was developed. It was based on mixture composed mainly by molybdenum silicides. This mixture was tested as brazing mixture with several types of silicon carbide-based material. Microstructural examination of the joint showed that brazing mixture reacted with substrate to form silicon carbide on the surface, while two different molybdenum silicides were identified inside the joint (MoSi{sub 2} and Mo{sub 4.8}Si{sub 3}C{sub 0.6}). Preliminary oxidation tests performed by means of TGA showed high oxidation resistance of this joint over 1000 C making it very promising for high temperature application like ceramic heat exchanger. (orig.)

  2. Study of an induction brazing process for the instrumentation feed through part

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jintae; Ahn, Sung Ho; Joung, Chang Young; Kim, Ka Hye; Heo, Sung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In general, brazing is used to seal out the feed through part of thin wires, and several studies in nuclear fields used brazing as a sealing method. However, previous techniques using a manual torch or an induction brazing by blowing Ar gas as a shield gas cannot avoid soot, which is difficult to remove. In addition, because their brazing quality is not uniform, instrumentation cables cannot deliver signals due to damage of excessive heat. In this study, an automatically controlled induction brazing system has been developed including a vacuum chamber to prevent generation of soot. A loop is a facility to carry out irradiation test for nuclear fuels and materials in a research reactor by measuring the irradiation behavior of them in a timely manner. Because flow condition of coolant in a loop should be the same with that of NPPs', highly pressurized (15.5 MPa) and highly heated (300 .deg. C) coolant is circulated through the loop. Therefore, sealing of the pressure boundary is one of the most important processes in fabricating the in-pile test section (IPS). In particular, sensors such as thermocouples, LVDTs and SPNDs are attached in a test rig and deliver signals to the measuring device at the outside of the reactor pool through instrumentation cables, which pass through the pressure boundary of the test rig. Therefore, it needs to seal out the instrumentation feed through part to not leak the coolant.

  3. Springback of aluminum alloy brazing sheet in warm forming

    Science.gov (United States)

    Han, Kyu Bin; George, Ryan; Kurukuri, Srihari; Worswick, Michael J.; Winkler, Sooky

    2017-10-01

    The use of aluminum is increasing in the automotive industry due to its high strength-to-weight ratio, recyclability and corrosion resistance. However, aluminum is prone to significant springback due to its low elastic modulus coupled with its high strength. In this paper, a warm forming process is studied to improve the springback characteristics of 0.2 mm thick brazing sheet with an AA3003 core and AA4045 clad. Warm forming decreases springback by lowering the flow stress. The parts formed have complex features and geometries that are representative of automotive heat exchangers. The key objective is to utilize warm forming to control the springback to improve the part flatness which enables the use of harder temper material with improved strength. The experiments are performed by using heated dies at several different temperatures up to 350 °C and the blanks are pre-heated in the dies. The measured springback showed a reduction in curvature and improved flatness after forming at higher temperatures, particularly for the harder temper material conditions.

  4. Elemental analysis of brazing alloy samples by neutron activation technique

    International Nuclear Information System (INIS)

    Eissa, E.A.; Rofail, N.B.; Hassan, A.M.; El-Shershaby, A.; Walley El-Dine, N.

    1996-01-01

    Two brazing alloy samples (C P 2 and C P 3 ) have been investigated by Neutron activation analysis (NAA) technique in order to identify and estimate their constituent elements. The pneumatic irradiation rabbit system (PIRS), installed at the first egyptian research reactor (ETRR-1) was used for short-time irradiation (30 s) with a thermal neutron flux of 1.6 x 10 1 1 n/cm 2 /s in the reactor reflector, where the thermal to epithermal neutron flux ratio is 106. Long-time irradiation (48 hours) was performed at reactor core periphery with thermal neutron flux of 3.34 x 10 1 2 n/cm 2 /s, and thermal to epithermal neutron flux ratio of 79. Activation by epithermal neutrons was taken into account for the (1/v) and resonance neutron absorption in both methods. A hyper pure germanium detection system was used for gamma-ray acquisitions. The concentration values of Al, Cr, Fe, Co, Cu, Zn, Se, Ag and Sb were estimated as percentages of the sample weight and compared with reported values. 1 tab

  5. Impairment induced by chronic occupational cadmium exposure during brazing process

    International Nuclear Information System (INIS)

    Anwar, S.M.; Aly, M.M.

    2002-01-01

    Cadmium (CD) is considered a metal of the 20 th century to which all inhabitants of develop societies are exposed. Long-term occupational and environmental exposure to CD often results in renal dysfunction as the kidney is considered the critical target organ. The aim of this work was to evalutate both resporatory and renal manifestations induced by occupational exposure to CD compounds during brazing process, and suggesting a protocol for prevention and control for CD- induced health effects. This study was conducted on 20 males occupationally exposed workers. They are divided into two groups: Group-1 included (10) exposed smokers and group-2 included (10) exposed non-smokers. Results of both groups were compared with those of 10 healthy age and sex matched non-smokers. All subjects were subjected to detailed history taking and laboratory investigations including blood and urinary CD, liver profile (SGOT, SGPT and alkline phosphates), kindey function tests (blood urea, creatinine and urinary beta 2 - microglobulin). The level of Cd in the atmosphere of the work plase air was also assessed to detect the degree of exposure as it was about 6 times greater than thesave level (1 mu /m 3 ). (1) This study demonstrated elevation levels of blood CD, urea, creatinine and urinary CD and beta 2 -microglobulin for both exposed worker groups than the controls. In additions no appreciable were noted for liver function tests, although the levels fell within normal range

  6. Elemental analysis of brazing alloy samples by neutron activation technique

    Energy Technology Data Exchange (ETDEWEB)

    Eissa, E A; Rofail, N B; Hassan, A M [Reactor and Neutron physics Department, Nuclear Research Centre, Atomic Energy Authority, Cairo (Egypt); El-Shershaby, A; Walley El-Dine, N [Physics Department, Faculty of Girls, Ain Shams Universty, Cairo (Egypt)

    1997-12-31

    Two brazing alloy samples (C P{sup 2} and C P{sup 3}) have been investigated by Neutron activation analysis (NAA) technique in order to identify and estimate their constituent elements. The pneumatic irradiation rabbit system (PIRS), installed at the first egyptian research reactor (ETRR-1) was used for short-time irradiation (30 s) with a thermal neutron flux of 1.6 x 10{sup 1}1 n/cm{sup 2}/s in the reactor reflector, where the thermal to epithermal neutron flux ratio is 106. Long-time irradiation (48 hours) was performed at reactor core periphery with thermal neutron flux of 3.34 x 10{sup 1}2 n/cm{sup 2}/s, and thermal to epithermal neutron flux ratio of 79. Activation by epithermal neutrons was taken into account for the (1/v) and resonance neutron absorption in both methods. A hyper pure germanium detection system was used for gamma-ray acquisitions. The concentration values of Al, Cr, Fe, Co, Cu, Zn, Se, Ag and Sb were estimated as percentages of the sample weight and compared with reported values. 1 tab.

  7. 78 FR 53159 - Standard for Welding, Cutting, and Brazing; Extension of the Office of Management and Budget's...

    Science.gov (United States)

    2013-08-28

    ...] Standard for Welding, Cutting, and Brazing; Extension of the Office of Management and Budget's (OMB... collection requirements contained in the Standard for Welding, Cutting, and Brazing (29 CFR Part 1910, Subpart Q). The information collected is used by employers and workers whenever welding, cutting, and...

  8. Effect of Thermal cycles and Dimensions of the Geometry on Residual stress of the Alumina-Kovar Joint

    Science.gov (United States)

    Mishra, Srishti; Pal, Snehanshu; Karak, Swapan Kumar; Shah, Sejal; Venakata Nagaraju, M.; Chakraborty, Arun Kumar

    2018-03-01

    Finite element method is employed to determine the effect of variation of residual stress with dimension and the stress generated under its working condition along the Kovar. 3 different dimensions of Alumina-Kovar joint with height to diameter ratio of 3/10, using TiCuSil as a filler material. Transient Structural Analysis is carried out for three different dimensions (diameter × height) (i) 60mm × 20mm (Geometry 1) (ii) 90mm × 20mm (Geometry 2) (iii) 120mm × 20mm (Geometry 3). A comparative study has been carried out between the residual stresses developed in the brazed joint that have undergone 5 thermal cycles subsequent to brazing and that between the brazed joint. The heating and cooling rates from the brazed temperature is 10°C/up to room temperature. The brazing temperature and holding time considered for the analysis are 900°C and 10 minutes. Representative Volume Element (RVE) model is used for simulation. Sparse Matrix Direct Solver method is used to evaluate the results, using Augmented Lagrange method formulation in the contact region. All the simulations are performed in ANSYS Workbench 15.0, using solver target Mechanical APDL. From, the above simulations it is observed high concentration of residual stress is observed along the filler region i.e. in between Alumina and Kovar, as a result of difference in coefficient of thermal expansion between Alumina and Kovar. The residual stress decreases with increasing dimensions of the geometry and upon application of thermal cycles, subsequent to brazing.

  9. Influence of liquid copper-silver brazing alloy on properties of high-strength and heat resistant alloys and steels

    International Nuclear Information System (INIS)

    Semenov, V.N.

    1999-01-01

    The influence of temperature, heating rate, microstructure, the duration of Cu-Ag melt attack during brazing, the thickness and the material of barrier coating on properties of materials (Ni-Cr alloys, Cr-Ni steals, a Fe-Ni base EhJ-702 alloy) being brazed is studied. The tests of specimens with a brazing alloy are carried out in the temperature range of 780-1000 deg C. It is revealed that heat resistant alloys under brazing conditions experience brittle fracture. Multiphase structure coarse grain, increased hydrogen content mechanical stress concentrators are found to intensity embrittlement of the materials. The use of barrier coating displaying a chemical affinity to the brazing alloy results in a decrease of the tendency to embrittlement

  10. Vacuum brazing of high volume fraction SiC particles reinforced aluminum matrix composites

    Science.gov (United States)

    Cheng, Dongfeng; Niu, Jitai; Gao, Zeng; Wang, Peng

    2015-03-01

    This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al-Si-Cu-Zn-Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.

  11. Brazing and machining of carbon based materials for plasma facing components

    International Nuclear Information System (INIS)

    Brossa, M.; Guerreschi, U.; Rossi, M.

    1994-01-01

    Carbon based materials in the recent years have often been considered and used as armour material in plasma facing components for several fusion devices, because of their low Z and good high temperature characteristics that are compatible with the operation of nuclear reactors. These materials are often connected (mechanically or by brazing) to metals, that allow the support and the cooling functions (heat sink materials). In the following the experience of Ansaldo Ricerche about the study and the manufacturing of plasma facing components and mockups is described with reference to the influence of the carbon materials in performing brazing junction with metals. It is interesting to observe how the different characteristics of the carbon materials influence the brazing process. ((orig.))

  12. Surface development of a brazing alloy during heat treatment-a comparison between UHV and APXPS

    Science.gov (United States)

    Rullik, L.; Johansson, N.; Bertram, F.; Evertsson, J.; Stenqvist, T.; Lundgren, E.

    2018-01-01

    In an attempt to bridge the pressure gap, APXPS was used to follow the surface development of an aluminum brazing sheet during heating in an ambient oxygen-pressure mimicking the environment of an industrial brazing furnace. The studied aluminum alloy brazing sheet is a composite material consisting of two aluminum alloy standards whose surface is covered with a native aluminum oxide film. To emphasize the necessity of studies of this system in ambient sample environments it is compared to measurements in UHV. Changes in thickness and composition of the surface oxide were followed after heating to 300 °C, 400 °C, and 500 °C. The two sets presented in this paper show that the surface development strongly depends on the environment the sample is heated in.

  13. Thermomechanical characterization of joints for blanket and divertor application processed by electrochemical plating

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Wolfgang; Lorenz, Julia; Konys, Jürgen; Basuki, Widodo; Aktaa, Jarir

    2016-11-01

    Highlights: • Electroplating is a relevant technology for brazing of blanket and divertor parts. • Tungsten, Eurofer and steel joints successfully fabricated. • Reactive interlayers improve adherence and reduce failure risks. • Qualification of joints performed by thermo-mechanical testing and aging. • Shear strength of joints comparable with conventionally brazing of steels. - Abstract: Fusion technology requires in the fields of first wall and divertor development reliable and adjusted joining processes of plasma facing tungsten to heat sinks or blanket structures. The components to be bonded will be fabricated from tungsten, steel or other alloys like copper. The parts have to be joined under functional and structural aspects considering the metallurgical interactions of alloys to be assembled and the filler materials. Application of conventional brazing showed lacks ranging from bad wetting of tungsten up to embrittlement of fillers and brazing zones. Thus, the deposition of reactive interlayers and filler components, e.g. Ni, Pd or Cu was initiated to overcome these metallurgical restrictions and to fabricate joints with aligned mechanical behavior. This paper presents results concerning the joining of tungsten, Eurofer and stainless steel for blanket and divertor application by applying electroplating technology. Metallurgical and mechanical characterization by shear testing were performed to analyze the joints quality and application limits in dependence on testing temperature between room temperature and 873 K and after thermal aging of up to 2000 h. The tested interlayers Ni and Pd enhanced wetting and enabled the processing of reliable joints with a shear strength of more than 200 MPa at RT.

  14. Large scale use of brazing and high temperature brazing for the fabrication of the 6.4 km long vacuum system of the HERA electron storage ring

    International Nuclear Information System (INIS)

    Ballion, R.; Boster, J.; Giesske, W.; Hartwig, H.; Jagnow, D.; Kouptsidis, J.; Pape, R.; Prohl, W.; Schumann, G.; Schwartz, M.; Iversen, K.; Mucklenbeck, J.

    1989-01-01

    The 6.4 km long vacuum system for electrons in the large storage ring HERA at Hamburg consists of about 1,400 components having lengths between .14 and 12 m. The vacuum components are mainly made from variously shaped tubes of the copper alloy CuSn2. This alloy combines sufficient mechanical strength with the high thermal conductivity needed to remove the 6 MW dissipated power of the synchrotron-light. The vacuum components consist additionally of parts made from stainless steel such as flanges, chambers for pumps, beam monitors, etc. All of these parts are connected in a vacuum tight manner and on a large scale by using brazing and high temperature brazing both in a vacuum or in a reducing gas atmosphere. (orig.)

  15. Braze Development of Graphite Fiber for Use in Phase Change Material Heat Sinks

    Science.gov (United States)

    Quinn, Gregory; Beringer, Woody; Gleason, Brian; Stephan, Ryan

    2011-01-01

    Hamilton Sundstrand (HS), together with NASA Johnson Space Center, developed methods to metallurgically join graphite fiber to aluminum. The goal of the effort was to demonstrate improved thermal conductance, tensile strength and manufacturability compared to existing epoxy bonded techniques. These improvements have the potential to increase the performance and robustness of phase change material heat sinks that use graphite fibers as an interstitial material. Initial work focused on evaluating joining techniques from four suppliers, each consisting of a metallization step followed by brazing or soldering of one inch square blocks of Fibercore graphite fiber material to aluminum end sheets. Results matched the strength and thermal conductance of the epoxy bonded control samples, so two suppliers were down-selected for a second round of braze development. The second round of braze samples had up to a 300% increase in strength and up to a 132% increase in thermal conductance over the bonded samples. However, scalability and repeatability proved to be significant hurdles with the metallization approach. An alternative approach was pursued which used a nickel braze allow to prepare the carbon fibers for joining with aluminum. Initial results on sample blocks indicate that this approach should be repeatable and scalable with good strength and thermal conductance when compared with epoxy bonding.

  16. Brazing retort manifold design concept may minimize air contamination and enhance uniform gas flow

    Science.gov (United States)

    Ruppe, E. P.

    1966-01-01

    Brazing retort manifold minimizes air contamination, prevents gas entrapment during purging, and provides uniform gas flow into the retort bell. The manifold is easily cleaned and turbulence within the bell is minimized because all manifold construction lies outside the main enclosure.

  17. Electrochemical depth profiling of multilayer metallic structures: An aluminum brazing sheet

    International Nuclear Information System (INIS)

    Afshar, F. Norouzi; Ambat, R.; Kwakernaak, C.; Wit, J.H.W. de; Mol, J.M.C.; Terryn, H.

    2012-01-01

    Highlights: ► Localized electrochemical cell and glow discharge optical emission spectrometry were used. ► An electrochemical depth profile of an aluminum brazing sheet was obtained. ► The electrochemical responses were correlated to the microstructural features. - Abstract: Combinatory localized electrochemical cell and glow discharge optical emission spectrometry (GDOES) measurements were performed to obtain a thorough in depth electrochemical characterization of an aluminum brazing sheet. By defining electrochemical criteria i.e. breakdown potential, corrosion potential, cathodic and anodic reactivities, and tracking their changes as a function of depth, the evolution of electrochemical responses through out the material thickness were analyzed and correlated to the corresponding microstructural features. Polarization curves in 1 wt% NaCl solution at pH 2.8 were obtained at different depths from the surface using controlled sputtering in a glow discharge optical emission spectrometer as a sample preparation technique. The anodic and cathodic reactivity of the top surface areas were significantly higher than that of the bulk, thus indicating these areas to be more susceptible to localized attack. Consistent with this, optical microscopy and scanning electron microscope analysis revealed a relatively high density of fine intermetallic and silicon particles at these areas. The corrosion mechanism of the top layers was identified to be intergranular and pitting corrosion, while lower sensitivity to these localized attacks were detected toward the brazing sheet core. The results highlight the successful application of the electrochemical depth profiling approach in prediction of the corrosion behavior of the aluminum brazing sheet and the importance of the electrochemical activity of the outer 10 μm in controlling the corrosion performance of the aluminum brazing sheet.

  18. Hermetic diamond capsules for biomedical implants enabled by gold active braze alloys.

    Science.gov (United States)

    Lichter, Samantha G; Escudié, Mathilde C; Stacey, Alastair D; Ganesan, Kumaravelu; Fox, Kate; Ahnood, Arman; Apollo, Nicholas V; Kua, Dunstan C; Lee, Aaron Z; McGowan, Ceara; Saunders, Alexia L; Burns, Owen; Nayagam, David A X; Williams, Richard A; Garrett, David J; Meffin, Hamish; Prawer, Steven

    2015-01-01

    As the field of biomedical implants matures the functionality of implants is rapidly increasing. In the field of neural prostheses this is particularly apparent as researchers strive to build devices that interact with highly complex neural systems such as vision, hearing, touch and movement. A retinal implant, for example, is a highly complex device and the surgery, training and rehabilitation requirements involved in deploying such devices are extensive. Ideally, such devices will be implanted only once and will continue to function effectively for the lifetime of the patient. The first and most pivotal factor that determines device longevity is the encapsulation that separates the sensitive electronics of the device from the biological environment. This paper describes the realisation of a free standing device encapsulation made from diamond, the most impervious, long lasting and biochemically inert material known. A process of laser micro-machining and brazing is described detailing the fabrication of hermetic electrical feedthroughs and laser weldable seams using a 96.4% gold active braze alloy, another material renowned for biochemical longevity. Accelerated ageing of the braze alloy, feedthroughs and hermetic capsules yielded no evidence of corrosion and no loss of hermeticity. Samples of the gold braze implanted for 15 weeks, in vivo, caused minimal histopathological reaction and results were comparable to those obtained from medical grade silicone controls. The work described represents a first account of a free standing, fully functional hermetic diamond encapsulation for biomedical implants, enabled by gold active alloy brazing and laser micro-machining. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A contribution to the study of metal-ceramic bonding by direct vacuum brazing with reactive metals

    International Nuclear Information System (INIS)

    Guimaraes, A.S.

    1988-01-01

    Wettability and bonding tests were utilized to evaluate the behaviour of various specials alloys, for work at high temperature under vacuum, for the inter-bonding of silicon carbide, alumina ceramic, graphite (for electrical applications) and petroleum coke and their joining with themselves as the metals titanium, molybdenum, nickel and copper. The joints exhibiting effective bonding were investigated by means of optical microscopy, scanning electron microscopy and X-rays diffraction. Elemental mapping of the constituents and quantitative chemical microanalysis were also undertaken, via the energy dispersive analysis of X-rays (SEM/EDS). On the basis of the results the possible mechanisms of bond-formation have been discussed. It was verified that: a) of the filler metals studied, those which exhibited effective wettability on all the above materials were: 49Cu-49Ti-2Be, Zircaloy4-5Be and a commercial alloy Ticusil, which consisted of a Cu-Ag eutectic with a small addition of pure Ti, of nominal composition 26.7Cu-68.8Ag-4.5Ti; b) the alloys with high levels of reactive metals such as Ti and Zr tended to form low ductility bonds due to the formation of hard, brittle phases; c) the copper suffered pronounced erosion when in direct contact with alloys of high Ti and Zr contents, due to the formation of phases whose melting points were below the brazing temperature of those materials; e) the compounds detected as reaction products were identified as, TiC in the samples rich in carbon, such as the SiC ceramic and graphite joints, or the oxides Cu2Ti2O5 and Cu3TiO4 in the bonding of alumina to alloys including Ti in their composition or in that of the filler metal, proving that the effectiveness of the bond is dependent upon an initial and indispensable chemical bonding. (author)

  20. Microstructure of the Transitional Area of the Connection of a High-temperature Ni-based Brazing Alloy and Stainless Steel AISI 321 (X6CrNiTi 18–10

    Directory of Open Access Journals (Sweden)

    R. Augustin

    2010-01-01

    Full Text Available This paper presents a detailed examination of the structure of the transitional area between a brazing alloy and the parent material, the dimensions of the diffusion zones that are created, and the influence on them of a change in the brazing parameters. Connections between Ni-based brazing alloys (NI 102 with a small content of B and AISI 321 stainless steel (X6CrNiTi 18–10 were created in a vacuum (10−2 Pa at various brazing temperatures and for various holding times at the brazing temperature. Various specimens were tested. First, the brazing alloys were wetted and the dependence of the wetting on the brazing parameters was assessed. Then a chemical microanalysis was made of the interface between the brazing alloy and the parent material. The individual diffusion zones were identified on pictures from a light microscope and REM, and their dimensions, together with their dependence on the brazing parameters, were determined.

  1. Oxidation resistant filler metals for direct brazing of structural ceramics

    Science.gov (United States)

    Moorhead, Arthur J.

    1986-01-01

    A method of joining ceramics and metals to themselves and to one another is described using essentially pure trinickel aluminide and trinickel aluminide containing small amounts of carbon. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  2. Development of technology and properties investigation of steel/bronze joints proposed for ITER HHF components manufacturing

    International Nuclear Information System (INIS)

    Kalinin, G.; Krestnikov, N.S.; Strebkov, Y.S.; Abramov, V.Y.; Gervash, A.; Mazul, I.; Zolotarev, V.B.; Fabritsiev, S.A.

    2007-01-01

    Full text of publication follows: During the development of ITER HHF components manufacturing it is necessary to provide reliable joints between heat sink material made of CuCrZr bronze and the supporting construction made of austenitic steel. Four different methods have been tried out: - Hot Isostatic Pressing (HIP), - HIP assisted brazing, - furnace assisted brazing, - Casting. The investigation of structure and properties of joints show that HIP and casting provide the better results than the other technologies. However, HIP is relatively expensive technology, and big size HIP furnace is required for the full scale components manufacturing that are not available n RF now. Therefore, casting was selected as a reference manufacturing technology for the primary wall of ITER modules n RF. The paper summarizes the results of bronze/steel joints manufacturing and investigation of their properties. (authors)

  3. Neutron irradiation test of copper alloy/stainless steel joint materials

    International Nuclear Information System (INIS)

    Yamada, Hirokazu; Kawamura, Hiroshi

    2006-01-01

    As a study about the joint technology of copper alloy and stainless steel for utilization as cooling piping in International Thermonuclear Experimental Reactor (ITER), Al 2 O 3 -dispersed strengthened copper or CuCrZr was jointed to stainless steel by three kinds of joint methods (casting joint, brazing joint and friction welding method) for the evaluation of the neutron irradiation effect on joints. A neutron irradiation test was performed to three types of joints and each copper alloy. The average value of fast neutron fluence in this irradiation test was about 2 x 10 24 n/m 2 (E>1 MeV), and the irradiation temperature was about 130degC. As post-irradiation examinations, tensile tests, hardness tests and observation of fracture surface after the tensile tests were performed. All type joints changed to be brittle by the neutron irradiation effect like each copper alloy material, and no particular neutron irradiation effect due to the effect of joint process was observed. On the casting and friction welding, hardness of copper alloy near the joint boundary changed to be lower than that of each copper alloy by the effect of joint procedure. However, tensile strength of joints was almost the same as that of each copper alloy before/after neutron irradiation. On the other hand, tensile strength of joints by brazing changed to be much lower than CuAl-25 base material by the effect of joint process before/after neutron irradiation. Results in this study showed that the friction welding method and the casting would be able to apply to the joint method of piping in ITER. This report is based on the final report of the ITER Engineering Design Activities (EDA). (author)

  4. Neutron diffraction study of internal stresses in brazed CFC/Mo divertor structures for NET/ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ceretti, M [Laboratoire Leon-Brillouin, CEA/CE Saclay, F-91191, Gif-sur-Yvette (France); Coppola, R [ENEA/Casaccia, INN-FIS, C.P. 2400, I-00100 Rome (Italy); Di Pietro, E [ENEA/Frascati, Dip. FUS, C.P. 2400, I-00100 Rome (Italy); Lodini, A [Laboratoire Leon-Brillouin, CEA/CE Saclay, F-91191, Gif-sur-Yvette (France) Universite de Champagne-Ardennes, Reims (France); Perrin, M [Laboratoire Leon-Brillouin, CEA/CE Saclay, F-91191, Gif-sur-Yvette (France); Piant, A [Laboratoire Leon-Brillouin, CEA/CE Saclay, F-91191, Gif-sur-Yvette (France); Rustichelli, F [Istituto di Scienze Fisiche, Universita di Ancona (Italy)

    1994-09-01

    This contribution presents the first results of a study, performed by neutron diffraction, on the internal stresses remaining after brazing at 860 C in graphite/molybdenum samples developed for NET/ITER. Samples of polycrystalline graphite and a carbon-fiber composite are considered. The deformation field is characterized close to the brazing interface, within a linear spatial resolution of approximately 2 mm. The results are discussed with reference to those obtainable by other methods and to theoretical considerations. ((orig.))

  5. Interfacial Microstructure and Shear Strength of Brazed Cu-Cr-Zr Alloy Cylinder and Cylindrical Hole by Au Based Solder

    Directory of Open Access Journals (Sweden)

    Zaihua Li

    2017-07-01

    Full Text Available Au-Ge-Ni solder was chosen for brazing of the Cu-Cr-Zr alloy cylinder and a part with a cylindrical hole (sleeve below 550 °C. The Au based solder was first sintered on the surface of the cylinder and then brazed to the inner surface of the sleeve. The effects of the heating process, the temperature and the holding time at the temperature on the microstructure of the sintered layer on the surface of the cylinder, the brazed interfacial microstructure, and the brazed shear strength between the cylinder and the sleeve were investigated by scanning electron microscope, energy dispersive X-ray spectroscopy analysis, and tensile shear tests. By approach of side solder melt feeding and brazing under proper parameters, the voids and micro cracks due to a lack of enough solder melt feeding are greatly lessened and the brazed shear strength of 100 MPa is ensured even with large clearances around 0.01 mm.

  6. Pre-brazed casting and hot radial pressing: A reliable process for the manufacturing of CFC and W monoblock mock-ups

    Energy Technology Data Exchange (ETDEWEB)

    Visca, Eliseo [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi, 45, IT-00044 Frascati, RM (Italy)], E-mail: visca@frascati.enea.it; Libera, S.; Mancini, A.; Mazzone, G.; Pizzuto, A. [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi, 45, IT-00044 Frascati, RM (Italy); Testani, C. [CSM S.p.A., IT-00128 Castel Romano, RM (Italy)

    2007-10-15

    ENEA is involved in the European International Thermonuclear Experimental Reactor (ITER) R and D activities and, in particular, for the manufacturing of high heat flux plasma-facing components (HHFC), such as the divertor targets, the baffles and the limiters. During last years, ENEA has manufactured actively cooled mock-ups by using different technologies, namely brazing, diffusion bonding and hot isostatic pressing (HIPping). A new manufacturing process has been set up and tested. It was successfully applied for the manufacturing of W armoured monoblock mock-ups. This technique is the HRP (hot radial pressing) based on performing a radial diffusion bonding between the cooling tube and the armour tile by pressurizing only internal tube and by keeping the joining zone in vacuum at the required bonding temperature. The heating is obtained by a standard air furnace. The HRP technique is now used for the manufacturing of CFC armoured monoblock components. For this purpose, some issues have to be faced, like the low CFC tensile strength, the pure copper interlayer between the heat sink and the armour necessary to mitigate the stress at the joint interface, and the low wettability of the pure copper on the CFC matrix. This paper reports the research path followed to manufacture a medium scale vertical target CFC and W armoured mock-up by HRP. A casting of a soft copper interlayer between the tube and the tile was obtained by a new technique: the pre-brazed casting (PBC, ENEA patent). Some preliminary mock-ups with three NB31 CFC tiles were successfully manufactured and tested to thermal fatigue using electron beam facilities. They all reached at least 1000 cycles at 20 MW/m{sup 2} without suffering any damage. The manufactured medium scale vertical target mock-up is now under testing at the FE2000 (France) facility. These activities were performed in the frame of ITER-EFDA contracts.

  7. Pre-brazed casting and hot radial pressing: A reliable process for the manufacturing of CFC and W monoblock mock-ups

    International Nuclear Information System (INIS)

    Visca, Eliseo; Libera, S.; Mancini, A.; Mazzone, G.; Pizzuto, A.; Testani, C.

    2007-01-01

    ENEA is involved in the European International Thermonuclear Experimental Reactor (ITER) R and D activities and, in particular, for the manufacturing of high heat flux plasma-facing components (HHFC), such as the divertor targets, the baffles and the limiters. During last years, ENEA has manufactured actively cooled mock-ups by using different technologies, namely brazing, diffusion bonding and hot isostatic pressing (HIPping). A new manufacturing process has been set up and tested. It was successfully applied for the manufacturing of W armoured monoblock mock-ups. This technique is the HRP (hot radial pressing) based on performing a radial diffusion bonding between the cooling tube and the armour tile by pressurizing only internal tube and by keeping the joining zone in vacuum at the required bonding temperature. The heating is obtained by a standard air furnace. The HRP technique is now used for the manufacturing of CFC armoured monoblock components. For this purpose, some issues have to be faced, like the low CFC tensile strength, the pure copper interlayer between the heat sink and the armour necessary to mitigate the stress at the joint interface, and the low wettability of the pure copper on the CFC matrix. This paper reports the research path followed to manufacture a medium scale vertical target CFC and W armoured mock-up by HRP. A casting of a soft copper interlayer between the tube and the tile was obtained by a new technique: the pre-brazed casting (PBC, ENEA patent). Some preliminary mock-ups with three NB31 CFC tiles were successfully manufactured and tested to thermal fatigue using electron beam facilities. They all reached at least 1000 cycles at 20 MW/m 2 without suffering any damage. The manufactured medium scale vertical target mock-up is now under testing at the FE2000 (France) facility. These activities were performed in the frame of ITER-EFDA contracts

  8. Laser hybrid brazing of oxide ceramics for high temperature gas sensing applications in (V)HTRS

    Energy Technology Data Exchange (ETDEWEB)

    Heilmann, F. [Robert Bosch GmbH, Stuttgart (Germany). Corporate Research and Advance Engineering; Technische Univ. Dresden (Germany). Chair of Hydrogen- and Nuclear Engineering; Rixecker, G. [Robert Bosch GmbH, Stuttgart (Germany). Corporate Research and Advance Engineering; Boerner, F.D.; Lippmann, W.; Hurtado, A. [Technische Univ. Dresden (Germany). Chair of Hydrogen- and Nuclear Engineering

    2009-07-01

    It has been shown that the use of halogen lamps to assist laser brazing reduces total energy and joining time. For parts with specific geometries not suitable for a rotation process, an assistive heating with halogen lamps might be even more beneficial, to alleviate temperature gradients and transients. Forsterite-based ceramics are highly suitable as a joining partner for ZrO{sub 2}, especially in a laser brazing process based on volume heating. By adding Fe{sub 2}O{sub 3} to the raw powder mixture, the absorptivity of the forsterite ceramic can be tuned with an optimum at 0.1 wt.% Fe, reducing the necessary laser energy input even more. (orig.)

  9. Electric strength of metal-ceramic brazed units of thermionic energy converters in cesium vapours

    International Nuclear Information System (INIS)

    Belousenko, A.P.; Vasilchenko, A.V.; Nikolaev, Y.V.

    1989-01-01

    The investigation of electric strength characteristics of the hollow metal-ceramic brazed units of thermionic energy converters with the insulator 1 = 10-50 mm from polycrystal aluminum oxide at the temperature T = 450-750 degrees and the cesium vapour pressure P Cs = 10 - 1 -10 3 Pa has been carried out. The experimental dependencies of the break-down voltage of the brazed units on the temperature, parameter P Cs · 1 and the value of surface electric resistance of the insulators are given as well as the empiric equations obtained with the help of experimental data for calculating the break-down voltage. A mechanism of ceramic insulator influence on electric strength characteristics of the cesium gap is investigated. A breakdown model explaining this influence is proposed

  10. High-power comparison among brazed, clamped and electroformed X-band cavities

    Energy Technology Data Exchange (ETDEWEB)

    Spataro, B., E-mail: bruno.spataro@lnf.infn.it [INFN-LNF, Via E. Fermi 40, 00044 Frascati, Rome (Italy); Alesini, D.; Chimenti, V. [INFN-LNF, Via E. Fermi 40, 00044 Frascati, Rome (Italy); Dolgashev, V. [SLAC, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Higashi, Y. [KEK 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan); Migliorati, M.; Mostacci, A. [University of Rome Sapienza, Department of Fundamental and Applied Science for Engineering, Via A. Scarpa 14, 00185 Rome (Italy); Parodi, R. [INFN-Genova, Via Dodecaneso 33, 16146 Genova (Italy); Tantawi, S.G.; Yeremian, A.D. [SLAC, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2011-11-21

    We report the building procedure of X-band copper structures using the electroforming and electroplating techniques. These techniques allow the deposition of copper layers on a suitable die and they can be used to build RF structures avoiding the high temperature brazing step in the standard technique. We show the constructed prototypes and low power RF measurements and discuss the results of the high power tests at SLAC National Accelerator Laboratory.

  11. Large Area Active Brazing of Multi-tile Ceramic-Metal Structures

    Science.gov (United States)

    2012-05-01

    metallurgical bonds. The major disadvantage of using active brazing for metals and ceramics is the high processing temperature required that results in...steels) and form strong, metallurgical bonds. However, the high processing temperatures result in large strain (stress) build-up from the inherent...metals such as titanium alloys and stainless steels) and form strong, metallurgical bonds. However, the high processing temperatures result in large

  12. Synchronous separation, seaming, sealing and sterilization (S4) using brazing for sample containerization and planetary protection

    Science.gov (United States)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart; Bao, Xiaoqi; Lindsey, Cameron; Kutzer, Thomas; Salazar, Eduardo

    2018-03-01

    The return of samples back to Earth in future missions would require protection of our planet from the risk of bringing uncontrolled biological materials back with the samples. This protection would require "breaking the chain of contact (BTC)", where any returned material reaching Earth for further analysis would have to be sealed inside a container with extremely high confidence. Therefore, the acquired samples would need to be contained while destroying any potential biological materials that may contaminate the external surface of the container. A novel process that could be used to contain returning samples has been developed and demonstrated in a quarter scale size. The process consists of brazing using non-contact induction heating that synchronously separates, seams, seals and sterilizes (S4) the container. The use of brazing involves melting at temperatures higher than 500°C and this level of heating assures sterilization of the exposed areas since all carbon bonds (namely, organic materials) are broken at this temperature. The mechanism consists of a double wall container with inner and outer shells having Earth-clean interior surfaces. The process consists of two-steps, Step-1: the double wall container halves are fabricated and brazed (equivalent to production on Earth); and Step-2 is the S4 process and it is the equivalent to the execution on-orbit around Mars. In a potential future mission, the double wall container would be split into two halves and prepared on Earth. The potential on-orbit execution would consist of inserting the orbiting sample (OS) container into one of the halves and then mated to the other half and brazed. The latest results of this effort will be described and discussed in this manuscript.

  13. Experimental Results For Hydrocarbon Refrigerant Vaporization In Brazed Plate Heat Exchangers at High Pressure

    OpenAIRE

    Desideri, Adriano; Schmidt Ommen, Torben; Wronski, Jorrit; Quoilin, Sylvain; Lemort, Vincent; Haglind, Fredrik

    2016-01-01

    In this contribution, the experimental heat transfer coefficient  and the pressure drop measured during HFC refrigerants vaporization inside small brazed plate heat exchanger (PHE) at typical evaporation temperature for organic Rankine cycle systems for low thermal energy quality applications are presented. Scientific work focusing on the heat transfer in PHEs has been carried out since the late 19th century. More recent publications have been focusing on vaporization and condensation of ref...

  14. Experimental results for hydrocarbon refrigerant vaporization in brazed plate heat exchangers at high pressure

    OpenAIRE

    Desideri, Adriano; Rhyl Kaern, Martin; Ommen Schmidt, Torben; Wronski, Jorrit; Quoilin, Sylvain; Lemort, Vincent; Haglind, Fredrik

    2016-01-01

    In recent years the interest in small capacity organic Rankine cycle (ORC) power systems for harvesting low quality waste thermal energy from industrial processes has been steadily growing. Micro ORC systems are normally equipped with brazed plate heat exchangers which allows for efficient heat transfer with a compact design. An accurate prediction of the heat transfer process characterizing these devices is required from the design phase to the development of model- based control strategies....

  15. Elastic-plastic-creep analysis of brazed carbon-carbon/OFHC divertor tile concepts for TPX

    International Nuclear Information System (INIS)

    Chin, E.; Reis, E.E.

    1995-01-01

    The 7.5 MW/m 2 heat flux requirements for the TPX divertor necessitate the use of high conductivity carbon-carbon (C-C) tiles that are brazed to annealed copper (OFHC) coolant tubes. Significant residual stresses are developed in the C-C tiles during the braze process due to large differences in the thermal expansion coefficients between these materials. Analyses which account for only the elastic-plastic strains developed in the OFHC tube may not accurately characterize the behavior of the tube during brazing. The elevated temperature creep behavior of the copper coolant tubes intuitively should reduce the calculated residual stresses in the C-C tiles. Two divertor tile concepts, the monoblock and the archblock, were analyzed for residual stress using 2-D finite element analysis for elastic-plastic-creep behavior of the OFHC tube during an assumed braze cooldown cycle. The results show that the inclusion of elevated temperature creep effects decrease the calculated residual stresses by only about 10% when compared to those analyses in which only elastic-plastic behavior of the OFHC is accounted for. The primary reason that creep effects at higher temperatures are not more significant is due to the low yield stress and nearly flat-top stress-strain curve of annealed OFHC. Since high temperature creep plays less of a role in the residual stress levels than previously thought, future scoping studies can be done in an elastic-plastic analysis with confidence that the stresses will be within approximately 10% of an elastic-plastic-creep analysis

  16. Heating and thermal control of brazing technique to break contamination path for potential Mars sample return

    Science.gov (United States)

    Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Campos, Sergio

    2017-04-01

    The potential return of Mars sample material is of great interest to the planetary science community, as it would enable extensive analysis of samples with highly sensitive laboratory instruments. It is important to make sure such a mission concept would not bring any living microbes, which may possibly exist on Mars, back to Earth's environment. In order to ensure the isolation of Mars microbes from Earth's Atmosphere, a brazing sealing and sterilizing technique was proposed to break the Mars-to-Earth contamination path. Effectively, heating the brazing zone in high vacuum space and controlling the sample temperature for integrity are key challenges to the implementation of this technique. The break-thechain procedures for container configurations, which are being considered, were simulated by multi-physics finite element models. Different heating methods including induction and resistive/radiation were evaluated. The temperature profiles of Martian samples in a proposed container structure were predicted. The results show that the sealing and sterilizing process can be controlled such that the samples temperature is maintained below the level that may cause damage, and that the brazing technique is a feasible approach to breaking the contamination path.

  17. Vacuum brazing of metals (1961); Brassure sous vide des metaux (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Lapujoulade, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    We have studied brazing in vacuum aiming its application for the making of containers and apparatus meant for high vacuum (p < 10{sup -8} torr). We first define the wettability of a brazing alloy on a metal and we remind the influence of the various parameters which act on this wettability (nature of the solid, of the liquid, geometrical and physicochemical state of the surface, metallurgical reactions occurring at the interface, temperature, time). We give then the results of the tests carried out in order to determine the conditions of wettability in vacuum of some brazing alloys on metals which can be used for the above mentioned apparatus (stainless steel, aluminium, bronze, titanium, zirconium, kovar, nickel, copper). (author) [French] Nous avons etudie la brasure sous vide en vue de son application a la construction d'enceintes et apparelilage destines a l'obtention des vides eleves (p < 10{sup -8} torr). Nous definissons d'abord la mouillabilite d'une brasure sur un metal et nous rappelons l'influence des differents parametres qui agissent sur cette mouillabilite (nature du solide, du liquide, etat geometrique et physico-chimique de la surface, reactions metallurgiques a l'interface, temperature, temps). Nous donnons ensuite les resultats des essais effectues dans le but de determiner les conditions de mouillabilite sous vide de certaines brassures sur des metaux utilisables dans les constructions mentionnees ci-dessus (acier inoxydable, bronze d'aluminium, titane, zirconium, kovar, nickel, cuivre). (auteur)

  18. Mechanical Design, Brazing and Assembly Procedures of the LINAC4 RFQ

    CERN Document Server

    Mathot, S; Briswalter, A; Callamand, Th; Carosone, J; Favre, N; Geisser, J M; Lombardi, A; Maire, V; Malabaila, M; Pugnat, D; Richerot, Ph; Riffaut, B; Rossi, C; Timmins, M; Vacca, A; Vandoni, G; Vretenar, M

    2010-01-01

    The Linac4 RFQ will accelerate the H- beam from the ion source to the energy of 3 MeV. The RFQ is composed of three sections of one meter each, assembled by means of ultra high vacuum flanges and adjustable centring rings. The complete 3-m long RFQ will be supported isostatically over 3 points like a simple beam in order to minimise the maximum deflection. The ridge line, used to feed the RF power into the RFQ, will be supported via springs and its position adjusted in such way that no strain is introduced into the RFQ at the moment of its connection. The mechanical design has been done at CERN where the modules are completely manufactured, heat treated and brazed also. In that way, all of the processes are carefully controlled and the influence, notably of the heat treatments, has been understood in a better way. Since 2002 several four vanes RFQ modules have been brazed at CERN for the TRASCO and IPHI projects. A two-step brazing procedure has been tested. This technique is actually used for the assembly of...

  19. Experimental evaluation of brazed molybdenum-graphite bonds for the divertor of the NET/ITER nuclear fusion device

    International Nuclear Information System (INIS)

    Smid, I.; Linke, J.; Nickel, H.; Kny, E.; Reheis, N.; Kneringer, G.; Bolt, H.

    1995-01-01

    Composites consisting of plasma-facing carbon material brazed to molybdenum (TZM) substrates are a promising system for the divertor of the Next European Torus (NET) and the International Thermonuclear Experimental Reactor (ITER). Isotropic graphite and a refractory metal (molybdenum or TZM, a high temperature alloy of molybdenum), two dissimilar substrate materials, yet closely matched in their thermal expansivities, were joined with the use of four different high-temperature brazes: Zr, 90Ni-10Ti, 90Cu- 10Ti, and 70Ag-27Cu-3Ti (compositions in wt%). A summary is given of experiments on mechanical strength, heat transfer capability, structural changes, and failure modes under high heat loads of brazed bonds. Tensile-strength tests on the brazing interface prove the suitability of the brazes up to their melting point. The expected enhancement in thermal contact compared with graphite is confirmed. Passively cooled tiles of dimensions 25 mm x 25 mm were subjected to thermal cycling in electron-beam simulations. Heat fluxes of up to 10 MW m -2 were applied. (author)

  20. Experimental evaluation of brazed molybdenum-graphite bonds for the divertor of the NET/ITER nuclear fusion device

    International Nuclear Information System (INIS)

    Smid, Ivica; Linke, Jochen; Nickel, Hubertus; Kny, Erich; Reheis, Nikolaus; Kneringer, Guenther; Bolt, Harald

    1990-01-01

    Composites consisting of plasma-facing carbon material brazed to molybdenum (TZM) substrates are a promising system for the divertor of the Next European Torus (NET) and the International Thermonuclear Experimental Reactor (ITER). Isotropic graphite and a refractory metal (molybdenum or TZM, a high temperature alloy of molybdenum), two dissimilar substrate materials, yet closely matched in their thermal expansivities, were joined with the use of four different high-temperature brazes: Zr,90Ni-10Ti,90Cu-10Ti, and 70Ag-27Cu-3Ti(compositions in wt%). A summary is given of experiments on mechanical strength, heat transfer capability, structural changes, and failure modes under high heat loads of brazed bonds. Tensile-strength tests on the brazing interface prove the suitability of the brazes up to their melting point. The expected enhancement in thermal contact compared with graphite is confirmed. Passively cooled tiles of dimensions 25 mm x 25 mm were subjected to thermal cycling in electron-beam simulations. Heat fluxes of up to 10 MW m -2 were applied. (author)

  1. The interaction of reaction-bonded silicon carbide and inconel 600 with a nickel-based brazing alloy

    Science.gov (United States)

    McDermid, J. R.; Pugh, M. D.; Drew, R. A. L.

    1989-09-01

    The objective of the present research was to join reaction-bonded silicon carbide (RBSC) to INCONEL 600 (a nickel-based superalloy) for use in advanced heat engine applications using either direct brazing or composite interlayer joining. Direct brazing experiments employed American Welding Society (AWS) BNi-5, a commercial nickel-based brazing alloy, as a filler material; composite interlayers consisted of intimate mixtures of α-SiC and BNi-5 powders. Both methods resulted in the liquid filler metal forming a Ni-Si liquid with the free Si in the RBSC, which, in turn, reacted vigorously with the SiC component of the RBSC to form low melting point constituents in both starting materials and Cr carbides at the metal-ceramic interface. Using solution thermodynamics, it was shown that a Ni-Si liquid of greater than 60 at. pct Ni will decompose a-SiC at the experimental brazing temperature of 1200 ‡C; these calculations are consistent with the experimentally observed composition profiles and reaction morphology within the ceramic. It was concluded that the joining of RBSC to INCONEL 600 using a nickel-based brazing alloy is not feasible due to the inevitability of the filler metal reacting with the ceramic, degrading the high-temperature properties of the base materials.

  2. Effects of Fabrication Parameters on Interface of Zirconia and Ti-6Al-4V Joints Using Zr55Cu30Al10Ni5 Amorphous Filler

    Science.gov (United States)

    Liu, Yuhua; Hu, Jiandong; Shen, Ping; Guo, Zuoxing; Liu, Huijie

    2013-09-01

    ZrO2 was brazed to Ti-6Al-4V using a Zr55Cu30Al10Ni5 (at.%) amorphous filler in a high vacuum at 1173-1273 K. The influences of brazing temperature, holding time, and cooling rate on the microstructure and shear strength of the joints were investigated. The interfacial microstructures can be characterized as ZrO2/ZrO2- x + TiO/(Zr,Ti)2(Cu,Ni)/(Zr,Ti)2(Cu,Ni,Al)/acicular Widmanstäten structure/Ti-6Al-4V. With the increase in the brazing temperature, both the thickness of the ZrO2- x + TiO layer and the content of the (Zr,Ti)2(Cu,Ni) phase decreased. However, the acicular Widmanstäten structure gradually increased. With the increase in the holding time, the (Zr,Ti)2(Cu,Ni) phase decreased, and the thickness of the (Zr,Ti)2(Cu,Ni) + (Zr,Ti)2(Cu,Ni,Al) layer decreased. In addition, cracks formed adjacent to the ZrO2 side under rapid cooling. The microstructures produced under various fabrication parameters directly influence the shear strength of the joints. When ZrO2 and Ti-6Al-4V couples were brazed at 1173 K for 10 min and then cooled at a rate of 5 K/min, the maximum shear strength of 95 MPa was obtained.

  3. Joint ventures

    DEFF Research Database (Denmark)

    Sørensen, Karsten Engsig

    Afhandlingen analysere de konkurrenceretlige og selskabsretlige regler som er bestemmende for hvordan et joint venture samarbejde er struktureret......Afhandlingen analysere de konkurrenceretlige og selskabsretlige regler som er bestemmende for hvordan et joint venture samarbejde er struktureret...

  4. Coracoclavicular joint

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kun Sang; Park, Chan Il; Ahn, Jae Doo; Lim, Chong Won [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1970-10-15

    The coracoclvicular joint, a rear abnormality which may be the cause of pain in the shoulder and limitation of motion of the shoulder joint, is discussed. A case of coracoclvicular joint with shoulder pain was observed in 65 yrs old Korean male.

  5. Adhesive bonding and brazing of nanocrystalline diamond foil onto different substrate materials

    Science.gov (United States)

    Lodes, Matthias A.; Sailer, Stefan; Rosiwal, Stefan M.; Singer, Robert F.

    2013-10-01

    Diamond coatings are used in heavily stressed industrial applications to reduce friction and wear. Hot-filament chemical vapour deposition (HFCVD) is the favourable coating method, as it allows a coating of large surface areas with high homogeneity. Due to the high temperatures occurring in this CVD-process, the selection of substrate materials is limited. With the desire to coat light materials, steels and polymers a new approach has been developed. First, by using temperature-stable templates in the HFCVD and stripping off the diamond layer afterwards, a flexible, up to 150 μm thick and free standing nanocrystalline diamond foil (NCDF) can be produced. Afterwards, these NCDF can be applied on technical components through bonding and brazing, allowing any material as substrate. This two-step process offers the possibility to join a diamond layer on any desired surface. With a modified scratch test and Rockwell indentation testing the adhesion strength of NCDF on aluminium and steel is analysed. The results show that sufficient adhesion strength is reached both on steel and aluminium. The thermal stress in the substrates is very low and if failure occurs, cracks grow undercritically. Adhesion strength is even higher for the brazed samples, but here crack growth is critical, delaminating the diamond layer to some extent. In comparison to a sample directly coated with diamond, using a high-temperature CVD interlayer, the brazed as well as the adhesively bonded samples show very good performance, proving their competitiveness. A high support of the bonding layer could be identified as crucial, though in some cases a lower stiffness of the latter might be acceptable considering the possibility to completely avoid thermal stresses which occur during joining at higher temperatures.

  6. Interfacial reactions between sapphire and Ag–Cu–Ti-based active braze alloys

    International Nuclear Information System (INIS)

    Ali, Majed; Knowles, Kevin M.; Mallinson, Phillip M.; Fernie, John A.

    2016-01-01

    The interfacial reactions between two commercially available Ag–Cu–Ti-based active braze alloys and sapphire have been studied. In separate experiments, Ag–35.3Cu–1.8Ti wt.% and Ag–26.7Cu–4.5Ti wt.% alloys have been sandwiched between pieces of R-plane orientated sapphire and heated in argon to temperatures between 750 and 900 °C for 1 min. The phases at the Ag–Cu–Ti/sapphire interfaces have been studied using selected area electron diffraction, energy dispersive X-ray spectroscopy and electron energy loss spectroscopy. Gradual and subtle changes at the Ag–Cu–Ti/sapphire interfaces were observed as a function of temperature, along with the formation of a transient phase that permitted wetting of the sapphire. Unequivocal evidence is shown that when the active braze alloys melt, titanium first migrates to the sapphire and reacts to dissolve up to ∼33 at.% oxygen, forming a nanometre-size polycrystalline layer with a chemical composition of Ti 2 O 1–x (x ≪ 1). Ti 3 Cu 3 O particles subsequently nucleate behind the Ti 2 O 1–x layer and grow to become a continuous micrometre-size layer, replacing the Ti 2 O 1–x layer. Finally at 845 °C, a nanometre-size γ-TiO layer forms on the sapphire to leave a typical interfacial structure of Ag–Cu/Ti 3 Cu 3 O/γ-TiO/sapphire consistent with that seen in samples of polycrystalline alumina joined to itself with these active braze alloys. These experimental observations have been used to establish a definitive bonding mechanism for the joining of sapphire with Ag–Cu alloys activated by small amounts of titanium.

  7. Review Article: recent advances in metal-ceramic brazing Artigo Revisão: avanços recentes em brasagem metal-cerâmica

    Directory of Open Access Journals (Sweden)

    R. M. do Nascimento

    2003-12-01

    Full Text Available Metal-ceramic joining has slowly but steadily become an important manufacturing step. The evolution of joining processes has allowed ceramics to be used in combination with metals in a number of hybrid devices from traditional light bulbs and seals to improved cutting tools and modern monitoring and measuring electronic devices. New joining methods and newer approaches to conventional methods have been developed aiming at joints characterized by improved reliability, and interfaces capable of withstanding high-temperature resistance with minimum residual stresses. A summary of recent improvements on alternative approaches to ceramic-metal joining as well as new developments on brazing are presented herein. The present review also focuses on recent advances towards brazing metallized ceramics and the selection of filler alloys, since in a scenario that includes joining by laser and direct bonding with liquid transient phases, brazing continues to be by far the most widely used approach to joining as a result of its low-cost and possibility to join intricate geometries for large-scale production. Finally, methods to evaluate the mechanical strength and residual thermal stresses are presented in addition to alternative approaches to minimize residual stresses and, consequently, improve joint reliability.O interesse no estudo de métodos de junção-cerâmica para aplicações industriais tem crescido gradativamente ao longo dos anos. A evolução dos processos de união tem permitido a utilização de cerâmicas em conjunto com metais na fabricação de diversos componentes híbridos incluindo lâmpadas tradicionais, juntas para vácuo, ferramentas de corte de alto desempenho e modernos dispositivos eletrônicos de medição e monitoramento. Novos métodos de união e aprimoramentos de métodos convencionais têm sido estudados com o intuito de produzir-se juntas com alta confiabilidade e interfaces capazes de suportar altas temperaturas de

  8. Structure of Cu-Ti brazing filler metal in amorphous and crystalline states

    Energy Technology Data Exchange (ETDEWEB)

    Maksymova, S; Khorunov, V [Paton Electric Welding Institute, NASU, 11 Bozhenko Str., Kyiv, 03680 (Ukraine); Zelinskaya, G [G.V. Kurdyumov Institute of Metal Physics, NASU, Kyiv, 03142 (Ukraine)], E-mail: maksymova@paton.kiev.ua

    2008-02-15

    Structure, chemical homogeneity and phase composition of rapidly quenched ribbons of brazing filler metal Ti{sub 57}Cu{sub 43} were investigated. The ribbons were found to be amorphous. The alloy components are uniformly distributed along the thickness of the strip. High-temperature differential thermal analysis was used to determine temperature ranges of the ribbons crystallization. X-ray diffraction analysis was performed to study phase composition of the rapidly quenched ribbons in the initial state and after their isothermal annealing. Two crystalline phases - {gamma}-CuTi and CuTi{sub 3} being identified in the latter case.

  9. Brazing of Sealing for Instrumentation Feed through of high Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, H. Y.; Ahn, S. H.; Joung, C. Y.; Lee, J. M.; Lee, C. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    Fuel Test Loop(FTL) is a facility which could conduct a fuel irradiation test at HANARO(High-flux Advanced Neutron Application Reactor). FTL simulates commercial NPP's operating conditions such as the pressure, temperature and neutron flux levels to conduct the irradiation and thermo-hydraulic tests. It is composed of an In-Pile test Section(IPS) and an Out- Pile System(OPS). The OPS contains a pressurizer, cooler, pump, heater and purification system which are necessary to maintain the proper fluid conditions. In addition, the OPS contains engineered safety systems that could safely shutdown both HANARO and FTL if an accident occurs. The IPS accommodating fuel pins has loaded IP-1 hole in HANARO has a double pressure vessel for the design conditions of 350 .deg. C, 17.5MPa and is composed of outer assembly and inner assembly. It has instruments such as a thermocouple, LVDT and SPND to measure the fuel performances during the test. FTL coolant is supplied to the IPS at the core of commercial nuclear power plants and the same temperature, pressure and flow conditions. Sensors installed on the inside of IPS to send a signal transmission MI-Cables to the outside for instrumentation is through the pressure boundary. Therefore, pressure boundary should be maintained in the sealing performance. Brazing is typically lower than the melting point of material without melting the material almost would be like welding when it is necessary to use. It is commonly used to use BAg(ASME II SFA-5.8 UNS-P07563) filler metal, but corrosion occurs containing a large quantity of copper in Bag, and when contact with the coolant, the coolant water quality is influenced. Therefore, using BNi-2(ASME II SFA-5.8 UNS-N99620) filler metal is considered. Brazing at the Sealing Plug in the top of IPS was considered for Mi-cable's integrity and to maintain the pressure boundary. After brazing is performed, brazing the Mi-cable integrity and pressure boundary sealing performance was

  10. Phase analysis of fume during arc weld brazing of steel sheets with protective coatings

    Directory of Open Access Journals (Sweden)

    J. Matusiak

    2016-04-01

    Full Text Available The article presents the results of research of the phase identification and of the quantitative phase analysis of fume generated during Cold Metal Transfer (CMT, ColdArc and Metal Inert Gas / Metal Active Gas (MIG / MAG weld brazing. Investigations were conducted for hot - dip coated steel sheets with zinc (Zn and zinc-iron (Zn - Fe alloy coatings. Arc shielding gases applied during the research-related tests were Ar + O2, Ar + CO2, Ar + H2 and Ar + CO2 + H2 gas mixtures. The analysis of the results covers the influence of the chemical composition of shielding gas on the chemical composition of welding fume.

  11. Control of microstructure in soldered, brazed, welded, plated, cast or vapor deposited manufactured components

    Science.gov (United States)

    Ripley, Edward B.; Hallman, Russell L.

    2015-11-10

    Disclosed are methods and systems for controlling of the microstructures of a soldered, brazed, welded, plated, cast, or vapor deposited manufactured component. The systems typically use relatively weak magnetic fields of either constant or varying flux to affect material properties within a manufactured component, typically without modifying the alloy, or changing the chemical composition of materials or altering the time, temperature, or transformation parameters of a manufacturing process. Such systems and processes may be used with components consisting of only materials that are conventionally characterized as be uninfluenced by magnetic forces.

  12. Brazing of Sealing for Instrumentation Feed through of high Pressure Vessel

    International Nuclear Information System (INIS)

    Jeong, H. Y.; Ahn, S. H.; Joung, C. Y.; Lee, J. M.; Lee, C. Y.

    2011-01-01

    Fuel Test Loop(FTL) is a facility which could conduct a fuel irradiation test at HANARO(High-flux Advanced Neutron Application Reactor). FTL simulates commercial NPP's operating conditions such as the pressure, temperature and neutron flux levels to conduct the irradiation and thermo-hydraulic tests. It is composed of an In-Pile test Section(IPS) and an Out- Pile System(OPS). The OPS contains a pressurizer, cooler, pump, heater and purification system which are necessary to maintain the proper fluid conditions. In addition, the OPS contains engineered safety systems that could safely shutdown both HANARO and FTL if an accident occurs. The IPS accommodating fuel pins has loaded IP-1 hole in HANARO has a double pressure vessel for the design conditions of 350 .deg. C, 17.5MPa and is composed of outer assembly and inner assembly. It has instruments such as a thermocouple, LVDT and SPND to measure the fuel performances during the test. FTL coolant is supplied to the IPS at the core of commercial nuclear power plants and the same temperature, pressure and flow conditions. Sensors installed on the inside of IPS to send a signal transmission MI-Cables to the outside for instrumentation is through the pressure boundary. Therefore, pressure boundary should be maintained in the sealing performance. Brazing is typically lower than the melting point of material without melting the material almost would be like welding when it is necessary to use. It is commonly used to use BAg(ASME II SFA-5.8 UNS-P07563) filler metal, but corrosion occurs containing a large quantity of copper in Bag, and when contact with the coolant, the coolant water quality is influenced. Therefore, using BNi-2(ASME II SFA-5.8 UNS-N99620) filler metal is considered. Brazing at the Sealing Plug in the top of IPS was considered for Mi-cable's integrity and to maintain the pressure boundary. After brazing is performed, brazing the Mi-cable integrity and pressure boundary sealing performance was tested

  13. Studies on Ta-Ni alloys as high-temperature braze for SiC-SiC joined products; Untersuchungen zu Ta-Ni-Legierungen als Hochtemperaturlot fuer SiC-SiC Verbunde

    Energy Technology Data Exchange (ETDEWEB)

    Triebert, Anke; Matthey, Bjoern; Martin, Hans-Peter [Fraunhofer Institut fuer Keramische Technologien und Systeme (IKTS), Dresden (Germany)

    2011-07-01

    Active metal brazes have been already established for a number of decades. The current progress of processing technologies and engineering require new and powerful materials also for high-temperature applications. Up to now there are little technically and industrially applicable brazing materials for operation temperatures above 800 C. The investigations described in this paper concerning the Ta-Ni system intend to be the start of a braze material development, which delivers ceramic-ceramic or ceramic-metal joined products. Besides principal considerations and experiments with regard to the investigated material system of Ta-Ni active metal brazing tests to join SIC-SIC components are presented. The joined ceramic component samples are characterized focusing on their materials structure within the joining zone, their crystalline phases of the braze and their mechanical strength at room temperature and high temperatures. The achieved properties demonstrate that Ta-Ni brazes have the potential for future high temperature brazes for ceramics materials. (orig.)

  14. Some properties of low-vapor-pressure braze alloys for thermionic converters

    Science.gov (United States)

    Bair, V. L.

    1978-01-01

    Density, dc electrical resistivity, thermal conductivity, and linear thermal expansion are measured for arc-melted rod-shaped samples of binary eutectics of Zr, Hf, Ru, Nb, Ir, Mo, Ta, Os, Re, and W selected as very-low-pressure braze fillers for thermionic converters. The first two properties are measured at 296 K for Zr-21.7 at% Ru, Zr-13 wt% W, Zr-19 wt% W, Zr-22.3 at% Nb, Nb-66.9 at% Ru, Hf-25.3 wt% Re, Zr-25.7 at% Ta, Hf-22.5 at% W, and Nb-35 wt% Mo. The last property is measured from 293 K to 2/3 melting point for specified alloys of different compositions. Resistivities of 0.000055 to 0.000181 ohm-cm are observed with the alloys having resistivities about ten times that of the less resistive constituent metal and about three times that of the more resistive constituent metal, except for Zr-19 wt% W and Nb-35 wt% Mo (greater resistivities). Thermal expansion coefficients vary from 0.000006 to 0.0000105/K. All brazes exhibit linear thermal expansion near that of their constituent metals.

  15. Development of multi-channel high power rectangular RF window for LHCD system employing high temperature vacuum brazing technique

    International Nuclear Information System (INIS)

    Sharma, P K; Ambulkar, K K; Parmar, P R; Virani, C G; Thakur, A L; Joshi, L M; Nangru, S C

    2010-01-01

    A 3.7 GHz., 120 kW (pulsed), lower hybrid current drive (LHCD) system is employed to drive non-inductive plasma current in ADITYA tokamak. The rf power is coupled to the plasma through grill antenna and is placed in vacuum environment. A vacuum break between the pressurized transmission line and the grill antenna is achieved with the help of a multi (eight) channel rectangular RF vacuum window. The phasing between adjacent channels of 8-channel window (arranged in two rows) is important for launching lower hybrid waves and each channel should have independent vacuum window so that phase information is retained. The geometrical parameter of the grill antenna, like periodicity (9mm), channel dimensions (cross sectional dimension of 76mm x 7mm), etc. is to be maintained. These design constraint demanded a development of a multi channel rectangular RF vacuum window. To handle rf losses and thermal effects, high temperature vacuum brazing techniques is desired. Based on the above requirements we have successfully developed a multi channel rectangular rf vacuum window employing high temperature vacuum brazing technique. During the development process we could optimize the chemical processing parameters, brazing process parameters, jigs and fixtures for high temperature brazing and leak testing, etc. Finally the window is tested for low power rf performance using VNA. In this paper we would present the development of the said window in detail along with its mechanical, vacuum and rf performances.

  16. Development of multi-channel high power rectangular RF window for LHCD system employing high temperature vacuum brazing technique

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, P K; Ambulkar, K K; Parmar, P R; Virani, C G; Thakur, A L [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Joshi, L M; Nangru, S C, E-mail: pramod@ipr.res.i [Central Electronics Engineering Research Institute, Pilani, Rajasthan 333 031 (India)

    2010-02-01

    A 3.7 GHz., 120 kW (pulsed), lower hybrid current drive (LHCD) system is employed to drive non-inductive plasma current in ADITYA tokamak. The rf power is coupled to the plasma through grill antenna and is placed in vacuum environment. A vacuum break between the pressurized transmission line and the grill antenna is achieved with the help of a multi (eight) channel rectangular RF vacuum window. The phasing between adjacent channels of 8-channel window (arranged in two rows) is important for launching lower hybrid waves and each channel should have independent vacuum window so that phase information is retained. The geometrical parameter of the grill antenna, like periodicity (9mm), channel dimensions (cross sectional dimension of 76mm x 7mm), etc. is to be maintained. These design constraint demanded a development of a multi channel rectangular RF vacuum window. To handle rf losses and thermal effects, high temperature vacuum brazing techniques is desired. Based on the above requirements we have successfully developed a multi channel rectangular rf vacuum window employing high temperature vacuum brazing technique. During the development process we could optimize the chemical processing parameters, brazing process parameters, jigs and fixtures for high temperature brazing and leak testing, etc. Finally the window is tested for low power rf performance using VNA. In this paper we would present the development of the said window in detail along with its mechanical, vacuum and rf performances.

  17. Study of physicochemical processes and parameters of regime of diffusion brazing of niobium with titanium, zirconium and vanadium

    International Nuclear Information System (INIS)

    Grishin, V.L.; Lashko, S.V.

    1986-01-01

    Physicochemical processes at diffusion brazing of niobium with titanium, zirconium and vanadium, producing continious series of solid solutions with niobium are studied. Diffusion coefficients, time of isothermal crystallization of soldered welds, as well as the duration of homogenized thermal treatment of soldered welds necessary to provide the given temperature of weld unsoldering

  18. Joining of CBN abrasive grains to medium carbon steel with Ag-Cu/Ti powder mixture as active brazing alloy

    International Nuclear Information System (INIS)

    Ding, W.F.; Xu, J.H.; Shen, M.; Su, H.H.; Fu, Y.C.; Xiao, B.

    2006-01-01

    In order to develop new generation brazed CBN grinding wheels, the joining experiments of CBN abrasive grains and medium carbon steel using the powder mixture of Ag-Cu alloy and pure Ti as active brazing alloy are carried out at elevated temperature under high vacuum condition. The relevant characteristics of the special powder mixture, the microstructure of the interfacial region, which are both the key factors for determining the joining behavior among the CBN grains, the filler layer and the steel substrate, are investigated extensively by means of differential thermal analysis (DTA), scanning electron microscope (SEM) and energy dispersion spectrometer (EDS), as well X-ray diffraction (XRD) analysis. The results show that, similar to Ag-Cu-Ti filler alloy, Ag-Cu/Ti powder mixture exhibits good soakage capability to CBN grains during brazing. Moreover, Ti in the powder mixture concentrates preferentially on the surface of the grains to form a layer of needlelike Ti-N and Ti-B compounds by chemical metallurgic interaction between Ti, N and B at high temperature. Additionally, based on the experimental results, the brazing and joining mechanism is deeply discussed in a view of thermodynamic criterion and phase diagram of Ti-B-N ternary system

  19. An Ag based brazing system with a tunable thermal expansion for the use as sealant for solid oxide cells

    DEFF Research Database (Denmark)

    Kiebach, Wolff-Ragnar; Engelbrecht, Kurt; Grahl-Madsen, Laila

    2016-01-01

    as a function of the operation temperature were measured. The thermal expansion coefficient in the Ag-Al2TiO5 system can be tailored by varying the amount of the ceramic filler. The brazing process can be carried out in air, the joining partners showed a good chemical stability and sufficient low leak rates...

  20. Temporomandibular joint

    International Nuclear Information System (INIS)

    Westesson, P.L.; Hatala, M.; Tallents, R.H.; Katzberg, R.W.; Musgrave, M.; Levitt, S.

    1990-01-01

    This paper determines the frequency of MR signs of abnormal temporomandibular joints (TMJs) in asymptomatic volunteers. Forty-two volunteers with 84 clinically normal TMJs were imaged in the sagittal and coronal planes with surface coil MR imaging. Sagittal closed and open and coronal closed views were obtained bilaterally in all volunteers. The images were classified as normal (superior disk position) or abnormal (disk displacement of degenerative joint disease). Eighteen joints in 11 volunteers were abnormal; 12 had disk displacement with reduction and six had disk displacement without reduction, with associated degenerative joint disease in three of the six. Asymptomatic internal derangement and degenerative joint disease occur in about one-fourth of asymptomatic volunteers

  1. Scanning Kelvin probe force microscopy as a means of predicting the electrochemical characteristics of the surface of a modified AA4xxx/AA3xxx (Al alloys) brazing sheet

    International Nuclear Information System (INIS)

    Afshar, F. Norouzi; Wit, J.H.W. de; Terryn, H.; Mol, J.M.C.

    2013-01-01

    Highlights: ► Macro- and micro-electrochemical surface properties of an aluminium brazing sheet were investigated. ► Electrochemical surface properties before and after brazing were studied and compared. ► Scanning Kelvin probe force microscopy and potentiodynamic polarization measurements were performed. ► The electrochemical responses were correlated to the pre- and post-brazing treatment microstructure. -- Abstract: Macro- and micro-electrochemical properties of clad and core surfaces of a modified AA4xxx/AA3xxx brazing sheet material, before and after brazing, have been evaluated and compared. By scanning Kelvin probe force microscopy (SKPFM), the Volta potential distribution over the brazed and non-brazed clad surfaces was measured. The changes in the Volta potential maps were correlated to the macro-electrochemical responses of the surfaces and the microstructural features that evolve as a result of brazing. By performing potentiodynamic polarization experiments and microscopic analysis of the corroded surfaces and cross sections, the suitability of SKPFM analysis for corrosion performance prediction of the aluminium brazing sheet material in a sea water acidified accelerated test (SWAAT) environment was confirmed. Considering the purity of Si phase in the structures of both brazed and non-brazed material, it is suggested that Si can be applied as a reliable local reference in both structures to compare the changes in Volta potential differences as the result of different heat treatments of aluminium brazing sheet. Increasing the copper content of the re-solidified clad material as a result of brazing treatment was found to increase the Volta potential of the matrix which in turn reduces the cathodic protection power of the re-solidified clad material towards the core material

  2. Analysis of two way fluid structure interaction and local material properties of brazed joints for estimation of mechanical integrity

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seok Hoon; Park, Sang Hu; Son, Chang Min; Ha, Man Young; Min, June Kee; Jeong, Ho Sung [Pusan Nat' l Univ., Busan (Korea, Republic of); Cho, Jongrae [Korea Maritime Univ., Busan (Korea, Republic of); Kim, Hyun Jun [Donghwa Entec Co., Ltd., Busan (Korea, Republic of)

    2013-01-15

    Recent years have witnessed a strong need for eco friendly and energy efficient systems owing to global environmental problems. A heat exchanger is a well known mechanical rig that has long been used in many energy systems. The use of a heat exchanger in an airplane engine has been attempted. In this case, the heat exchanger should be redesigned to be compact, lightweight, and highly reliable, and the issue of mechanical integrity gains importance. Therefore, in this study, we proposed a method for evaluating the mechanical integrity of a tube type heat exchanger. A U shaped single tube was used as an example, and its behavior and stress distribution were studied using fluid structure interaction (FSI) analysis.

  3. Development of non-destructive examination techniques for CFC-metal joints in annular geometry and their application to the manufacturing of plasma-facing components

    International Nuclear Information System (INIS)

    Di Pietro, E.; Visca, E.; Orsini, A.; Sacchetti, M.; Borruto, T.M.R.; Varone, P.; Vesprini, R.

    1995-01-01

    The design of plasma-facing components for ITER, as for any of the envisaged next-step machines, relies heavily on the use of brazed junctions to couple armour materials to the heat sink and cooling tubes. Moreover, the typical number of brazed components and the envisaged effects of local overheating due to failure in a single brazed junction stress the importance of having a set of NDE techniques developed that can ensure the flawless quality of the joint. The qualification and application of two NDE techniques (ultrasonic and thermographic analysis) for inspection of CFC-to-metal joints is described with particular regard to the annular geometry typical of macroblock/monoblock solutions for divertor high-heat-flux components. The results of the eddy current inspection are not reported. The development has been focused specifically on the joint between carbon-fiber composite and TZM molybdenum alloy; techniques for the production of reference defect samples have been devised and a set of reference defect samples produced. The comparative results of the NDE inspections are reported and discussed, also on the basis of the destructive examination of the samples. The nature and size of relevant and detectable defects are discussed together with hints for a possible NDE strategy for divertor high-heat-flux components

  4. Electrochemical depth profiling of multilayer metallic structures: An aluminum brazing sheet

    DEFF Research Database (Denmark)

    Afshar, F. Norouzi; Ambat, R.; Kwakernaak, C.

    2012-01-01

    Combinatory localized electrochemical cell and glow discharge optical emission spectrometry (GDOES) measurements were performed to obtain a thorough in depth electrochemical characterization of an aluminum brazing sheet. By defining electrochemical criteria i.e. breakdown potential, corrosion...... potential, cathodic and anodic reactivities, and tracking their changes as a function of depth, the evolution of electrochemical responses through out the material thickness were analyzed and correlated to the corresponding microstructural features. Polarization curves in 1wt% NaCl solution at pH 2.8 were...... obtained at different depths from the surface using controlled sputtering in a glow discharge optical emission spectrometer as a sample preparation technique. The anodic and cathodic reactivity of the top surface areas were significantly higher than that of the bulk, thus indicating these areas to be more...

  5. Metallographic anlaysis and strength investigation of different Be-Cu joints in the temperature range RT-3500C

    International Nuclear Information System (INIS)

    Gervash, A.A.; Giniatouline, R.N.; Mazul, I.V.

    1995-01-01

    The goal of this work is to estimate the strength and structure of different Be-Cu joining techniques. Brazing, diffusion bonding and joint rolling methods were chosen as ITER Be-Cu joint method candidates. Selected for ITER application Be-Cu joints were produced as technological plates (30-50 mm x 50-100 mm x thickness). AR samples for farther investigations were cutted out from initial technological plates. To compare mechanical strength of selected Be-Cu joints tensile and shearing tests of chosen candidates were carried out in the temperature range RT - 350 degrees C. The metallographic analysis of Be-Cu crosssection was also done. Preliminary results of these tests as well as metallographic analysis data are presented. The industrial possibilities of producing required for ITER full scale Be-Cu joints are discussed

  6. Newly developed active braze powders based on commercial nickel brazes using zirconium as active element for joining ceramic to metal; Entwicklung von neuen Aktivlotpulvern auf Basis kommerzieller Nickellote mit Zirkon als aktivelement zum Fuegen von Keramik-Metall-Verbunden

    Energy Technology Data Exchange (ETDEWEB)

    Bobzin, K.; Schlaefer, T.; Kopp, N.; Schlegel, A. [Institut fuer Oberflaechentechnik der RWTH Aachen (Germany)

    2010-06-15

    The increased requirements of highly stressed components, concerning the resistance to thermal-induced stresses, oxidation, corrosion, hardness as well as wear resistance make high-performance technical ceramics ideally suited for such applications. On the other hand they exhibit properties like high brittleness, partly low thermal shock resistance, low workability and consequential limitations in the engineering design. Hybrid material concepts, as combination of high-performance technical ceramics and metallic engineering materials, can offer interesting technological solutions, if suitable and joining technologies are available. Active brazing, which is a very flexible joining technology in respect of the material selection, arises for the development of new and innovative applications, such as high-temperature fuel cells. Currently silver/copper, copper and silver active brazing filler metals are already used in the industry and are characterised by a decrease of their mechanical strength at approx. 500 C. Referring to this, gold and palladium active brazing filler metals show better features, but because of their high price, they are seldom used. The aim of the reported investigations is the development of active brazing filler metals with reasonable raw materials costs for working temperatures above 500 C and moreover to be used in hydrocarbonated environments with better corrosion-resistance than silver/copper, copper and silver active brazing filler metals. Experimental brazing filler metals with zirconium as surface-active element has been manufactured on the basis of nickel brazing filler metals NI 102, NI 105 and NI 107. The modification of each nickel brazing filler metal was carried out on the one hand by powder metallurgy, whereby zirconium hydride has been mixed or mechanically alloyed. On the other hand the nickel brazing filler metals have been alloyed with zirconium by melting metallurgy. The content of active metal varied between 2 weight-% and

  7. Joint diseases

    International Nuclear Information System (INIS)

    Weissman, S.D.

    1989-01-01

    The authors discuss how x-ray examination is essential in the diagnosis and evaluation of the arthritides. Most arthritides are first suspected by the clinician, and x-ray evaluation of these entities along with laboratory testing is important for confirmation of the clinical diagnosis and in staging of the disease process. Several arthritides are often diagnosed first by the podiatrist on x-ray evaluation, including pseudogout, ankylosing spondylitis, early rheumatoid arthritis, degenerative joint disease, and tuberculosis of bone. The joint responds to insult in only a limited number of ways that become apparent on x-ray. The soft tissues surrounding the joint, the articulating bones, and alignment of the joint space may all be involved by the arthritic process. On roentgenographic examination, the soft tissues must be examined for edema, masses, calcifications, and atrophy. The articulating bones must be examined for demineralization, erosions, osteophytes, periosteal reaction, cysts and sclerosis

  8. Joint pain

    Science.gov (United States)

    ... or conditions. It may be linked to arthritis , bursitis , and muscle pain . No matter what causes it, ... Autoimmune diseases such as rheumatoid arthritis and lupus Bursitis Chondromalacia patellae Crystals in the joint: Gout (especially ...

  9. Joint Commission

    Science.gov (United States)

    ... for the latest publication of The Joint Commission Journal on Quality and Patient Safety (JQPS). . How We Work Process improvement program breeds quality culture, empowers staff An article in Quality Progress, June ...

  10. Brazing diamond/Cu composite to alumina using reactive Ag-Cu-Ti alloy%金刚石/铜复合材料与氧化铝陶瓷的Ag-Cu-Ti活性钎焊

    Institute of Scientific and Technical Information of China (English)

    吴茂; 曹车正; Rafi-ud-din; 何新波; 曲选辉

    2013-01-01

    The novel properties of diamond/Cu composites such as low thermal expansion coefficient and high thermal conductivity have rendered the composites a valuable packaging material. The reactive brazing of diamond/Cu composites and alumina was performed using the 97%(72Ag−28Cu)−3%Ti alloy. The reactive brazing alloy displays good wettability with alumina and diamond film, and the equilibrium contact angle on both the substrates is found to be less than 5º. The influence of main bonding conditions such as peak heating temperature and holding time was investigated in detail. It is found that Ti element concentrates at the surface of diamond particle resulting in the formation of TiC compound. The morphology of TiC compound exhibits a close relationship with the shear strength of brazing joint. It is surmised that an optimal thickness of TiC layer on the diamond particle surface can ameliorate the shear strength of brazing joint. However, on the contrary, the particle-like shaped TiC compound or a thicker TiC compound layer can impair the shear strength. The maximum shear strength is found to be 117 MPa.%金刚石/铜复合材料具有低膨胀系数和高热导率等优异性能,使其成为一种理想的电子封装材料。采用97%(72Ag−28Cu)−3%Ti 活性钎料对金刚石/铜复合材料和氧化铝陶瓷进行钎焊。发现活性钎料在氧化铝陶瓷和金刚石薄膜表面均具有良好的润湿性,在两者表面的平衡润湿角均小于5°。讨论了主要钎焊条件(如钎焊温度和保温时间等)对接头性能的影响。发现钎焊过程中Ti元素聚集在金刚石颗粒的表面形成TiC化合物,且TiC化合物的形貌与钎焊接头的剪切强度具有紧密联系。推测合适的TiC化合物层厚度可改善钎焊接头的剪切强度,而颗粒状的TiC化合物及过厚的TiC化合物层却会损害钎焊接头的性能。获得的最大剪切强度为117 MPa。

  11. Copper-to-silicon-carbide joints development for Future CLIC Hom Dampers

    CERN Document Server

    Gil Costa, Miguel

    2015-01-01

    Ceramic-to-metal joints have been of paramount importance for the nuclear and aeronautic industry since the last century. In this document, two different approaches to the Cu-to-SiC joining are briefly described and discussed. The first approach consists of an intermediate piece of lower Coefficient of Thermal Expansion than copper aiming to reduce the expansion mismatch with the ceramic during the brazing cycle. Soldering is selected as a second attempt, whose lower joining temperature reduces the absolute expansion difference between Cu and SiC. In addition, four SiC metallization processes are proposed and some of them have been also tested and discussed.

  12. A Special Pre-Service-Inspection Using Radiographic Testing(RT) for Brazing Fitting used in Aircraft Hydraulic System

    International Nuclear Information System (INIS)

    Kim, Gyu Ho

    2010-01-01

    Brazing fitting which is one of the aircraft hydraulic power system components is widely used for saving weight and achieving higher reliability. Any inherent defects or damage of fitting can cause system failure and/or physical damage of human body due to highly pressurized fluid. Radiographic testing(RT) technique and additional micro-structure investigation on cut-away surfaces have been accomplished to find out some defect-like-inhomogeneity in the fittings. The radiography results showed that some defect-like-inhomogeneity existed inside body. Additional micro-structure investigation on cut-away surface reveals that the inhomogeneity is due to internal voids. In this study, it can be is said that RT technique can be a useful tool for field acceptance test of hydraulic brazing fitting in short time

  13. Calculation procedure of temperature carditions of building-up and high frequency current brazing of articles of complex shape

    International Nuclear Information System (INIS)

    Ivnitskij, B.Ya.

    1984-01-01

    A technique of calculating the temperature regime of building-up and high frequency current brazing of articles of complex shape is suggested. The technique consists in division of complex detail into several simple components. Heat balances equation is compiled for each of them taking into account the heat exchange with other elements. It is possible to determine optimum regimes for heating and cooling rather efficiently using a computer

  14. Joint Intentionality

    Directory of Open Access Journals (Sweden)

    Koreň Ladislav

    2016-03-01

    Full Text Available According to the shared intentionality hypothesis proposed by Michael Tomasello, two cognitive upgrades – joint and collective intentionality, respectively – make human thinking unique. Joint intentionality, in particular, is a mindset supposed to account for our early, species-specific capacity to participate in collaborative activities involving two (or a few agents. In order to elucidate such activities and their proximate cognitive-motivational mechanism, Tomasello draws on philosophical accounts of shared intentionality. I argue that his deference to such cognitively demanding accounts of shared intentional activities is problematic if his theoretical ambition is in part to show that and how early (prelinguistic and precultural capacities for joint action contribute to the development of higher cognitive capacities.

  15. Microstructure and properties of diffusion bonded Ti-6Al-4V parts using brazing-assisted hot isostatic pressing

    International Nuclear Information System (INIS)

    Wu, Z.; Mei, J.; Voice, W.; Beech, Steve; Wu, X.

    2011-01-01

    Highlights: → A low cost method of diffusion bonding has been developed for complex-shaped components of Ti6Al4V. → Vacuum brazing has been used to seal the periphery to allow encapsulation-free HIPping. → The tensile properties of the bonds are comparable with those of the bulk material, but the fatigue life was slightly reduced. - Abstract: Ti-6Al-4V couples have been diffusion bonded by hot isostatic pressing (HIPping) after vacuum brazing was used to seal the periphery of the bonding samples so that no encapsulation was required during HIPping. Analytical scanning electron microscopy was used to assess the microstructure of the HIPped interface and tensile and fatigue properties of bonded samples were compared with those of the bulk starting material. The tensile properties of the bonds were shown to be comparable with those of the bulk material, but the fatigue life was slightly downgraded. The fatigue fractures were initiated by inclusions on the bonding interface, caused by contamination before bonding, but the fatigue cracks did not propagate along the bonding interface indicating a strong bond. It is concluded that this technique of vacuum brazing plus HIPping could be used for encapsulation-free HIPping to produce complex-shaped components.

  16. Crack repair welding by CMT brazing using low melting point filler wire for long-term used steam turbine cases of Cr-Mo-V cast steels

    Energy Technology Data Exchange (ETDEWEB)

    Kadoi, Kota, E-mail: kadoi@hiroshima-u.ac.jp [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan); Murakami, Aoi; Shinozaki, Kenji; Yamamoto, Motomichi [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan); Matsumura, Hideo [Chugoku Electric Power Co., 3-9-1 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan)

    2016-06-01

    Surface melting by gas tungsten arc (GTA) welding and overlaying by cold metal transfer (CMT) brazing using low melting point filler wire were investigated to develop a repair process for cracks in worn cast steel of steam turbine cases. Cr-Mo-V cast steel, operated for 188,500 h at 566 °C, was used as the base material. Silver and gold brazing filler wires were used as overlaying materials to decrease the heat input into the base metal and the peak temperature during the welding thermal cycle. Microstructural analysis revealed that the worn cast steel test samples contained ferrite phases with intragranular precipitates of Cr{sub 7}C{sub 3}, Mo{sub 2}C, and CrSi{sub 2} and grain boundary precipitates of Cr{sub 23}C{sub 6} and Mo{sub 2}C. CMT brazing using low melting point filler wire was found to decrease the heat input and peak temperature during the thermal cycle of the process compared with those during GTA surface melting. Thus, the process helped to inhibit the formation of hardened phases such as intermetallics and martensite in the heat affected zone (HAZ). Additionally, in the case of CMT brazing using BAg-8, the change in the hardness of the HAZ was negligible even though other processes such as GTA surface melting cause significant changes. The creep-fatigue properties of weldments produced by CMT brazing with BAg-8 were the highest, and nearly the same as those of the base metal owing to the prevention of hardened phase formation. The number of fracture cycles using GTA surface melting and CMT brazing with BAu-4 was also quite small. Therefore, CMT brazing using low melting point filler wire such as BAg-8 is a promising candidate method for repairing steam turbine cases. However, it is necessary to take alloy segregation during turbine operation into account to design a suitable filler wire for practical use.

  17. Joint imaging

    International Nuclear Information System (INIS)

    Hengst, W.

    1984-01-01

    Joint imaging is a proven diagnostic procedure which has become indispensable to the detection and treatment of different joint diseases in almost all disciplines. The method is suited for early diagnosis of joint affections both in soft tissue and bone which cannot be detected by X-ray or other procedures. The local activity accumulation depends on the rate of metabolism and is visualized in the scan, which in turn enables the extension and floridity of focal lesions to be evaluated and followed-up. Although joint scans may often give hints to probabilities relevant to differential diagnosis, the method is non-specific and only useful if based on the underlying clinical picture and X-ray finding, if possible. The radiation exposure is very low and does not represent a hazard in cases of adequate assessment of indication. In pregnant women and children the assessment of indication has to be based on very strict principles. The method is suited for out-patient diagnosis and can be applied in all installations equipped with a gamma camera and a technetium generator. (orig.) [de

  18. Joint purpose?

    DEFF Research Database (Denmark)

    Pristed Nielsen, Helene

    2013-01-01

    Starting from Crenshaw´s point that antiracism often fails to interrogate patriarchy and that feminism often reproduces racist practices (1991: 1252), this paper asks: What are the theoretical reasons for believing that feminism and anti-racism can be regarded as fighting for the joint purpose...

  19. Control of microstructure in brazed zone of Zircaloy-4 nuclear fuel sheathing by optimization of Σ(C+P+Si) contents and cooling schedules

    International Nuclear Information System (INIS)

    Quach, V.; Northwood, D.O.

    1985-01-01

    In the production of fuel elements for the CANDU-PHW reactor, induction brazing is used to attach appendages (bearing and split spacer pads) onto the outside wall of the Zircaloy-4 sheathing. The brazing process, 40 to 60 seconds at temperature in excess of 1000 0 C, produces 3 heat-affected zones amounting to about 30% of the thickness. These heat affected zones quite often contain large grains and either a basketweave or a parallel plate type of Widmanstatten structure. Small grains and a basketweave structure are preferred. Using simulated brazing treatments, it is demonstrated that by control of the impurity content, Σ(C+P+Si), and cooling rate from the brazing temperature, the desired microstructure can be obtained in the braze heat-affected zone. The formation of the basketweave structure is promoted by higher impurity contents, with the second phase impurity particles acting as nuclei for the basketweave structure in preference to the β-grain boundaries where the parallel plate structure is nucleated

  20. Effect of Temperature and Sheet Temper on Isothermal Solidification Kinetics in Clad Aluminum Brazing Sheet

    Science.gov (United States)

    Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky

    2016-09-01

    Isothermal solidification (IS) is a phenomenon observed in clad aluminum brazing sheets, wherein the amount of liquid clad metal is reduced by penetration of the liquid clad into the core. The objective of the current investigation is to quantify the rate of IS through the use of a previously derived parameter, the Interface Rate Constant (IRC). The effect of peak temperature and initial sheet temper on IS kinetics were investigated. The results demonstrated that IS is due to the diffusion of silicon (Si) from the liquid clad layer into the solid core. Reduced amounts of liquid clad at long liquid duration times, a roughened sheet surface, and differences in resolidified clad layer morphology between sheet tempers were observed. Increased IS kinetics were predicted at higher temperatures by an IRC model as well as by experimentally determined IRC values; however, the magnitudes of these values are not in good agreement due to deficiencies in the model when applied to alloys. IS kinetics were found to be higher for sheets in the fully annealed condition when compared with work-hardened sheets, due to the influence of core grain boundaries providing high diffusivity pathways for Si diffusion, resulting in more rapid liquid clad penetration.

  1. Enabling new sensor applications for (V)HTRS by laser hybrid brazing of oxide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Heilmann, F.; Rixecker, G. [Robert Bosch GmbH, Stuttgart (Germany). Corporate Research and Development; Herrmann, M.; Lippmann, W.; Hurtado, A. [Univ. of Technology, Dresden (Germany). Chair of Hydrogen- and Nuclear Engineering

    2008-07-01

    The use of (very) high temperature reactors ((V)HTRs) requires a sensor technology suitable to withstand thermal loads both in normal operation mode and under incident conditions which may appear during service. Especially ceramic sensors are ideal to suit this purpose. A special sensor type that is based upon oxide ceramics is the high temperature oxygen sensor. Base material for this application is yttria-doped zirconia. At elevated temperatures (above 450 C) the activation energy of oxygen ions is sufficient to migrate in the ZrO{sub 2} lattice following an oxygen partial pressure gradient. This diffusion process is facilitated by the trivalent yttrium ions which give rise to a high concentration of oxygen vacancies. The macroscopical effect of the migration of the oxygen ions can be detected as a Nernst voltage or, alternatively, as an electrical current. Thus it is possible to compare the oxygen content of measured media with that of a known reference gas. To be able to produce such sensors both efficiently and in the desired quality, joining technologies adapted to ceramics are necessary. Laser-based technologies for brazing with glass or glass-ceramic solders are especially suitable, as they combine high precision with high throughput. They thus enable cost efficient production processes both for large and small lot sizes. (orig.)

  2. Research and Development of Powder Brazing Filler Metals for Diamond Tools: A Review

    Directory of Open Access Journals (Sweden)

    Fei Long

    2018-05-01

    Full Text Available Powder brazing filler metals (PBFMs feature a number of comparative advantages. Among others, these include a low energy consumption, an accurate dosage, a good brazeability, a short production time, and a high production efficiency. These filler metals have been used in the aerospace, automobile, and electric appliances industries. The PBFMs are especially suitable for diamond tools bonding, which involves complex workpiece shapes and requires accurate dosage. The recent research of PBFMs for diamond tools is reviewed in this paper. The current applications are discussed. The CuSnTi and Ni-Cr-based PBFMs have been the two commonly used monolayer PBFMs. Thus, the bonding mechanism at the interface between both the monolayer PBFMs and a diamond tool are summarized first. The ways to improve the performance of the monolayer PBFMs for diamond tools are analyzed. Next, a research of PBFMs for impregnated diamond tools is reviewed. The technical problems that urgently need solutions are discussed. Finally, the challenges and opportunities involved with the PBFMs for diamond tools research and development are summarized, and corresponding prospects are suggested.

  3. Heat transfer and pressure drop during hydrocarbon refrigerant condensation inside a brazed plate heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Longo, Giovanni A. [University of Padova, Department of Management and Engineering, Str.lla S.Nicola 3, I-36100 Vicenza (Italy)

    2010-08-15

    This paper presents the heat transfer coefficients and pressure drop measured during HC-600a, HC-290 and HC-1270 saturated vapour condensation inside a brazed plate heat exchanger: the effects of refrigerant mass flux, saturation temperature (pressure) and fluid properties are investigated. The heat transfer coefficients show weak sensitivity to saturation temperature (pressure) and great sensitivity to refrigerant mass flux and fluid properties. A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 15-18 kg m{sup -2} s{sup -1}. In the forced convection condensation region the heat transfer coefficients show a 35-40% enhancement for a 60% increase of the refrigerant mass flux. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow. HC-1270 shows heat transfer coefficients 5% higher than HC-600a and 10-15% higher than HC-290, together with frictional pressure drop 20-25% lower than HC-290 and 50-66% lower than HC-600a. (author)

  4. Joint Operation Planning

    National Research Council Canada - National Science Library

    2006-01-01

    .... It sets forth joint doctrine to govern the joint operation planning activities and performance of the Armed Forces of the United States in joint operations, and provides the joint doctrinal basis...

  5. Investigations of glass sealing and reactive air brazing materials for joining high temperature solid oxide fuel cells by dilatometric examinations; Anwendung dilatometrischer Messungen bei der Entwicklung von Glasloten und reaktiven Metallloten zum Fuegen von Hochtemperaturbrennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Reichle, M.S. [Parker Hannifin GmbH, Bietigheim-Bissingen (Germany); Federmann, D. [Forschungszentrum Juelich GmbH, ZAT, Juelich (Germany); Reisgen, U. [RWTH Aachen University, ISF, Aachen (Germany); Koppitz, T.

    2011-03-15

    The principle of operation of solid oxide fuel cells (SOFCs) is very simple. However, the fact that very different materials are used for the individual components requires advanced thermal joining techniques to join them in a functional manner. Two very distinct designs have established themselves for the two different intended applications: decentralised power generation (stationary SOFCs) on the one hand, and power converters for vehicles (mobile SOFCs) on the other hand. As a consequence, alternative techniques for joining the individual components are also required. The principal joining process for the stationary SOFC design consists of joining individual steel plates with a glass sealant in an electrically insulating way so that they form an SOFC stack. For the mobile fuel cell design, the SOFC stack consists of individual thin steel cassettes. The window frame of the cassettes, which is made of ferritic chromium steel, is brazed to the ceramic layer of the zirconium oxide solid electrolyte using a filler metal. The material used is a silver-based brazing filler metal which contains only small amounts of copper oxide (CuO) and titanium hydride (TiH{sub 2}) as wetting agents. Both joining processes must be applicable in normal atmospheric air, i. e. under oxidative conditions. R and D activities continue for improving the efficiency and long-term operational stability of the technology to such an extent that SOFCs will become ready for the energy sector market. The two joining techniques described cannot yet be considered standard processes. They, too, will require continuous improvement with respect to reproducibility, endurance and strength of the joints. The Special Joining Techniques working group at Forschungszentrum Juelich uses specially modified dilatometric techniques as suitable quick replacement methods for studying and measuring the joining characteristics of the materials without having to manufacture complex and expensive SOFC stacks. The

  6. Investigation of Be/Cu joints via HHF tests of small-scale mockups

    Energy Technology Data Exchange (ETDEWEB)

    Giniatulin, R.; Gervash, A.; Komarov, V.L.; Litunovsky, N.; Mazul, I.; Yablokov, N. [Efremov Inst., St. Petersburg (Russian Federation)

    1998-01-01

    Beryllium-copper (Be/Cu) joints in divertor components work under cyclic heat loads. To develop reliable joints small-scale mockups are fabricated by divertor technologies and tested under the divertor conditions. One of the critical damaging factors that exist in the divertor and have to be simulated is thermocyclic heat loads in the range of 1-15 MW/m{sup 2}. This work presents the divertor mockups that have beryllium tiles with different dimensions (5 x 5 - 44 x 44) mm{sup 2} brazed with copper alloy heat sink. The electron beam was used to braze these mockups so as to decrease the formation of brittle intermetallic layers. The description of mockups design, geometry of armour tiles and fabrication techniques are presented in the paper. The results of screening and thermocyclic tests of these mockups in the heat flux range of 2-12 MW/m{sup 2} with a number of cycles {approx}10{sup 3} are presented. The results of metallographic analysis are also presented. The results of fabrication and testing with small-scale mockups for first wall application are also described. (author)

  7. Interfacial Reaction Characteristics and Mechanical Properties of Welding-brazing Bonding Between AZ31B Magnesium Alloy and PRO500 Ultra-high Strength Steel

    Directory of Open Access Journals (Sweden)

    CHEN Jian-hua

    2017-11-01

    Full Text Available Experiments were carried out with TIG welding-brazing of AZ31B magnesium alloy to PRO500 steel using TIG arc as heat source. The interfacial reaction characteristics and mechanical properties of the welding-brazing bonding were investigated. The results show that an effective bonding is achieved between AZ31B magnesium alloy and PRO500 steel by using TIG welding-brazing method. Some spontaneous oxidation reactions result in the formation of a transition zone containing AlFe3 phase with rich oxide. The micro-hardness value of the interfacial transition zone is between that of the AZ31B and the PRO500. Temper softening zone appears due to the welding thermal cycle nearby the bonding position in the interface. A higher heat input makes an increase of the brittle phases and leads to an obvious decrease of the bonding strength.

  8. Microstructure and Mechanical Performance of Cu-Sn-Ti-Based Active Braze Alloy Containing In Situ Formed Nano-Sized TiC Particles

    Science.gov (United States)

    Leinenbach, Christian; Transchel, Robert; Gorgievski, Klea; Kuster, Friedrich; Elsener, Hans Rudolf; Wegener, Konrad

    2015-05-01

    A Cu-Sn-Ti-based active brazing filler alloy was in situ reinforced with nanosized TiC particles by adding different amounts of a cellulose nitride-based binder. The TiC particles emanate from a reaction of the Ti within the filler alloy with the carbon from the binder that does not decompose completely during heating. The correlation between the microstructure and mechanical performance was studied. In addition, the effect of different binder amounts on the shear strength and cutting performance of brazed diamond grains was studied in shear tests and single grain cutting tests. The results clearly show that the mechanical performance of the brazed diamond grains can be improved by the formation of TiC particles. This is attributed to particle strengthening of the filler alloy matrix as well as to the decreasing grain size and more homogeneous distribution of the (Cu,Sn)3Ti5 phase with increasing amount of binder.

  9. Fabrication of divertor mock-up with ODS-Cu and W by the improved brazing technique

    Science.gov (United States)

    Tokitani, M.; Hamaji, Y.; Hiraoka, Y.; Masuzaki, S.; Tamura, H.; Noto, H.; Tanaka, T.; Muroga, T.; Sagara, A.; FFHR Design Group

    2017-07-01

    Copper alloy has been considered as a divertor cooling tube or heat sink not only in the helical reactor FFHR-d1 but also in the tokamak DEMO reactor, because it has a high thermal conductivity. This work focused on applying an oxide dispersion strengthened copper alloy (ODS-Cu), GlidCop® (Cu-0.3 wt%Al2O3) as the divertor heat sink material of FFHR-d1. This alloy has superior high temperature yield strength exceeding 300 MPa at room temperature even after annealing up to ~1000 °C. The change in material properties of Pure-Cu, GlidCop® and CuCrZr by neutron irradiation are summarized in this paper. A primary dose limit is the radiation-induced hardening/softening (~0.2 dpa/1-2 dpa) which has a temperature dependence. According to such an evaluation, the GlidCop® can be selected as the current best candidate material in the commercial base of the divertor heat sink, and its temperature should be maintained as close as possible to 300 °C during operation. Bonding between the W armour and the GlidCop® heat sink was successfully performed by using an improved brazing technique with BNi-6 (Ni-11%P) filler material. The bonding strength was measured by a three-point bending test and reached up to approximately 200 MPa. Surprisingly, several specimens showed an obvious yield point. This means that the BNi-6 brazing (bonding) layer caused relaxation of the applied stress. The small-scale divertor mock-up of the W/BNi-6/GlidCop® was successfully fabricated by using the improved brazing technique. The heat loading test was carried out by the electron beam device ACT2 in NIFS. The mock-up showed an excellent heat removal capability for use in the FFHR-d1 divertor.

  10. Non-destructive testing of assemblies by welding, brazing or bonding, and material to use for this process

    International Nuclear Information System (INIS)

    Benoit, J.

    1983-01-01

    The process consists in doing a neutron photography of the pieces assembled with the aid of a joining material containing a neutrophage element, such as gadolinium, samarium, europium, boron, cadmium. The neutrophage element, e.g. gadolinium, is dispersed in the joining material with contents between 0,5 and 7,5% of weight. Its granulometry must be less than 1000 MESH. The incorporation of a neutrophage element in the joining material of metallic pieces by welding or brazing, allows to visualize, among others, the following defects: blistering, cracks, slag inclusions, undercuts, bad distribution of the successive passes [fr

  11. Brasagem da zircônia metalizada com titânio à liga Ti-6Al-4V Brazing of metalized zirconia with titanium to Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    J. S. Pimenta

    2012-06-01

    Full Text Available Zircônia tetragonal estabilizada com ítria foi mecanicamente metalizada com titânio e a condição de molhamento avaliada com as ligas convencionais Ag-28Cu e Au-18Ni. Estas dissolveram o revestimento de titânio para uma completa distribuição deste metal ativo na superfície cerâmica, gerando uma liga ativa in situ e possibilitando adequadas ligações químicas ao metal base na temperatura de união. Os melhores resultados de molhamento foram selecionados para brasagem indireta em forno de alto-vácuo nas juntas ZrO2/Ti-6Al-4V. Testes de detecção de vazamento de gás hélio foram realizados na interface de união das juntas; amostras removidas na seção transversal de juntas estanques foram examinadas por técnicas de análise microestrutural. Formou-se uma camada escura adjacente à cerâmica metalizada, responsável pelo molhamento ocasionado pela liga Ag-28Cu. Entretanto, o uso da liga Au-18Ni resultou em precipitação de intermetálicos e microtrincamento interfacial. Perfis de microdureza através da interface resultante até onde a zircônia mostrou típico escurecimento não indicaram alternância significativa entre medições consecutivas; os resultados dos ensaios de resistência mecânica à flexão-3p foram considerados satisfatórios.Yttria tetragonal zirconia polycrystal was mechanically metallized with titanium and the wetting behavior on the ceramic surface was analyzed using the conventional fillers Ag-28Cu and Au-18Ni. These alloys had dissolved the active metal coating, which acts to zirconia reduction on its surface and promoting suitable chemical bonding to the metallic member. Better wetting results were selected for indirect brazing in a high-vacuum furnace for ZrO2/Ti-6Al-4V simple butt joints. Helium gas leak detection was made at the joints interface; samples were removed from the tight joints cross-section and examined by microstructural analysis techniques and EDX analysis. There was formation of a dark

  12. Research for Brazing Materials of High-Temperature Thermoelectric Modules with CoSb3 Thermoelectric Materials

    Science.gov (United States)

    Lee, Yu Seong; Kim, Suk Jun; Kim, Byeong Geun; Lee, Soonil; Seo, Won-Seon; Kim, Il-Ho; Choi, Soon-Mok

    2017-05-01

    Metallic glass (MG) can be a candidate for an alternative brazing material of high-temperature thermoelectric modules, since we can expect both a lower brazing temperature and a high operating temperature for the junction from the MG brazers. Another advantage of MG powders is their outstanding oxidation resistance, namely, high-temperature durability in atmosphere. We fabricated three compositions of Al-based MGs—Al-Y-Ni, Al-Y-Ni-Co, and Al-Y-Ni-Co-La—by using the melt spinning process, and their T gs were 273°C, 264°C, and 249°C, respectively. The electrical resistivity of the Al-Y-Ni MG ribbon dropped significantly after annealing at 300°C. The electrical resistivity of crystallized Al-Y-Ni reduced down to 0.03 mΩ cm, which is an order of magnitude lower than that of the amorphous one. After the MG ribbons were pulverized to sub-100 μm, the average particle size was about 400 μm.

  13. Compatibility between Co-Metallized PbTe Thermoelectric Legs and an Ag-Cu-In Brazing Alloy.

    Science.gov (United States)

    Ben-Ayoun, Dana; Sadia, Yatir; Gelbstein, Yaniv

    2018-01-10

    In thermoelectric (TE) generators, maximizing the efficiency of conversion of direct heat to electricity requires the reduction of any thermal and electrical contact resistances between the TE legs and the metallic contacts. This requirement is especially challenging in the development of intermediate to high-temperature TE generators. PbTe-based TE materials are known to be highly efficient up to temperatures of around 500 °C; however, only a few practical TE generators based on these materials are currently commercially available. One reason for that is the insufficient bonding techniques between the TE legs and the hot-side metallic contacts. The current research is focused on the interaction between cobalt-metallized n -type 9.104 × 10 -3 mol % PbI₂-doped PbTe TE legs and the Ag 0.32 Cu 0.43 In 0.25 brazing alloy, which is free of volatile species. Clear and fine interfaces without any noticeable formation of adverse brittle intermetallic compounds were observed following prolonged thermal treatment testing. Moreover, a reasonable electrical contact resistance of ~2.25 mΩmm² was observed upon brazing at 600 °C, highlighting the potential of such contacts while developing practical PbTe-based TE generators.

  14. Compatibility between Co-Metallized PbTe Thermoelectric Legs and an Ag–Cu–In Brazing Alloy

    Science.gov (United States)

    Ben-Ayoun, Dana; Sadia, Yatir; Gelbstein, Yaniv

    2018-01-01

    In thermoelectric (TE) generators, maximizing the efficiency of conversion of direct heat to electricity requires the reduction of any thermal and electrical contact resistances between the TE legs and the metallic contacts. This requirement is especially challenging in the development of intermediate to high-temperature TE generators. PbTe-based TE materials are known to be highly efficient up to temperatures of around 500 °C; however, only a few practical TE generators based on these materials are currently commercially available. One reason for that is the insufficient bonding techniques between the TE legs and the hot-side metallic contacts. The current research is focused on the interaction between cobalt-metallized n-type 9.104 × 10−3 mol % PbI2-doped PbTe TE legs and the Ag0.32Cu0.43In0.25 brazing alloy, which is free of volatile species. Clear and fine interfaces without any noticeable formation of adverse brittle intermetallic compounds were observed following prolonged thermal treatment testing. Moreover, a reasonable electrical contact resistance of ~2.25 mΩmm2 was observed upon brazing at 600 °C, highlighting the potential of such contacts while developing practical PbTe-based TE generators. PMID:29320430

  15. Joint Instability and Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Darryl Blalock

    2015-01-01

    Full Text Available Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA. Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA.

  16. Joint instability and osteoarthritis.

    Science.gov (United States)

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA.

  17. Diode Laser Welding/Brazing of Aluminum Alloy to Steel Using a Nickel Coating

    Directory of Open Access Journals (Sweden)

    Jin Yang

    2018-06-01

    Full Text Available Joining Al alloy to steel is of great interest for application in the automotive industry. Although a vast number of studies have been conducted to join Al to steel, the joining of Al to steel is still challenging due to the formation of brittle Fe–Al intermetallic compounds. In this work, the microstructure and mechanical properties of the dissimilar Al/steel joints with and without a nickel coating are comparatively investigated. A homogenous reaction layer composed of FeZn10 and Fe2Al5 is formed at the interface in the joints without Ni coating, and the joint facture load is only 743 N. To prevent the formation of brittle Fe2Al5, Ni electroplated coating is applied onto a steel surface. It has been shown that a nonhomogeneous reaction layer is observed at the interfacial region: Ni5Zn21 is formed at the direct irradiation zone, while Al3Ni is formed at the fusion zone root. The microhardness of the interfacial layer is reduced, which leads to the improvement of the joint mechanical properties. The average fracture load of the Al/Ni-coated steel joints reaches 930 N. In all of the cases, failure occurs at the Ni coating/fusion zone interface.

  18. Development of integrated insulation joint for cooling pipe in tokamak reactor

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Abe, Tetsuya; Kawamura, Masashi; Yamazaki, Seiichiro.

    1994-08-01

    In a tokamak fusion reactor, an electrically insulated part is needed for an in-vessel piping system in order to break an electric circuit loop. When a closed loop is formed in the piping system, large induced electromagnetic forces during a plasma disruption (rapid plasma current quench) could give damages on the piping system. Ceramic brazing joint is a conventional method for the electric circuit break, but an application to the fusion reactor is not feasible due to its brittleness. Here, a stainless steel/ceramics/stainless steel functionally gradient material (FGM) has been proposed and developed as an integrated insulation joint of the piping system. Both sides of the joint can be welded to the main pipes, and expected to be reliable even in the fusion reactor environment. When the FGM joint is manufactured by way of a sintering process, a residual thermal stress is the key issue. Through detailed computations of the residual thermal stress and several trial productions, tubular elements of FGM joints have been successfully manufactured. (author)

  19. International joint ventures

    DEFF Research Database (Denmark)

    Sørensen, Karsten Engsig

    2001-01-01

    The article analysis problems connected with corporate joint ventures. Among others the possible conflicts between the joint venture agreement and the statutes of the companies is examined, as well as certain problems connected to the fact that the joint venture partners have created commen control...... over their joint company....

  20. Studying the Issues in Laser Joining of Lightweight Materials in a Coach-Peel Joint Configuration

    Science.gov (United States)

    Yang, Guang

    In the automotive industry, aluminum alloys have been widely used and partially replaced the conventional steel structures in order to decrease the weight of a car and improve its fuel efficiency. This Thesis focuses on the development of laser joining of light-weight materials, such as aluminum alloys and high-strength galvanized steels. Among different joint types, the coach-peel configuration is of a specific design that requires a heat source capable of heating up a large surface area of the joint. Coach-peel joints applied on the visible exterior of a car require a smooth transition from the weld surface to the panel surface and low surface roughness without any need for post-processing. Although these joints are used as non-load-bearing components, a desirable strength of the weld is also needed. A fusion-brazing process using a dual-beam laser allows the automotive components such as the roof and side member panels to be joined in a coach-peel configuration with a high surface quality as well as an acceptable strength of the weld. To improve the weld surface quality, processing parameters such as laser beam configuration, laser-wire position, and shielding gas parameters were optimized for joining of aluminum alloy to aluminum alloy. Laser power was optimized for dual-beam laser joining of aluminum alloy to galvanized steel at high speed. The feasibility of joining as-received panels with lubricant was also explored. The identification of strain hardening models of aluminum alloys was conducted for the mechanical finite element analysis of the joint. Control of the molten pool solidification through the selection of laser beam configuration is one approach to improve joint quality. Laser joining of aluminum alloy AA 6111-T4 coach peel panels with the addition of AA 4047 filler wire was investigated using three configurations of laser beam: a single beam, dual beams in-line with the weld bead, and dual beams aligned perpendicular to the weld bead (herein

  1. Non-destructive testing of CFC/Cu joints

    International Nuclear Information System (INIS)

    Casalegno, V.; Ferraris, M.; Salvo, M.; Vesprini, R.; Merola, M.

    2006-01-01

    Reliable non-destructive tests (NDT) are fundamental for the manufacturing of ITER components, especially for high heat flux plasma facing components. NDT include various techniques, which allow inspection of a component without impairing serviceability; it's important to detect and characterize defects (type, size and position) as well as the set-up of acceptance standards in order to predict their influence on the component performance in service conditions. The present study shows a description of NDT used to assess the manufacturing quality of CFC (carbon fibre reinforced carbon matrix composites)/Cu/CuCrZr joints. In the ITER divertor, armor tiles made of CFC are joined to the cooling structure made of precipitation hardened copper alloy CuCrZr; a soft pure Cu interlayer is required between the heat sink and the armour in order to mitigate the stresses at the joint interface. NDT on CFC/Cu joint are difficult because of the different behavior of CFC and copper with regard to physical excitations (e.g. ultrasonic wave) used to test the component; furthermore the response to this input must be accurately studied to identify the detachment of CFC tiles from Cu alloy. The inspected CFC/Cu/CuCrZr joints were obtained through direct casting of pure Cu on modified CFC surface and subsequently through brazing of CFC/Cu joints to CuCrZr by a Cu-based alloy. Different non-destructive methods were used for inspecting these joints: lock-in thermography, ultrasonic inspections, microtomography and microradiography. The NDT tests were followed by metallographic investigation on the samples, since the reliability of a certain non destructive test can be only validated by morphological evidence of the detected defects. This study will undertake a direct comparison of NDT used on CFC/Cu joints in terms of real flaws presence. The purpose of this work is to detect defects at the joining interface as well as in the cast copper ( for instance voids). The experimental work was

  2. Joint Replacement (Finger and Wrist Joints)

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Joint Replacement Email to a friend * required fields ...

  3. Effect of Gold on the Microstructural Evolution and Integrity of a Sintered Silver Joint

    Science.gov (United States)

    Muralidharan, Govindarajan; Leonard, Donovan N.; Meyer, Harry M.

    2017-07-01

    There is a need for next-generation, high-performance power electronic packages and systems employing wide-bandgap devices to operate at high temperatures in automotive and electric grid applications. Sintered silver joints are currently being evaluated as an alternative to Pb-free solder joints. Of particular interest is the development of joints based on silver paste consisting of nano- or micron-scale particles that can be processed without application of external pressure. The microstructural evolution at the interface of a pressureless-sintered silver joint formed between a SiC die with Ti/Ni/Au metallization and an active metal brazed (AMB) substrate with Ag metallization at 250°C has been evaluated using scanning electron microscopy (SEM), x-ray microanalysis, and x-ray photoelectron spectroscopy (XPS). Results from focused ion beam (FIB) cross-sections show that, during sintering, pores in the sintered region near to the Au layer tend to be narrow and elongated with long axis oriented parallel to the interface. Further densification results in formation of many small, relatively equiaxed pores aligned parallel to the interface, creating a path for easy crack propagation. X-ray microanalysis results confirm interdiffusion between Au and Ag and that a region with poor mechanical strength is formed at the edge of this region of interdiffusion.

  4. Hip joint injection

    Science.gov (United States)

    ... medicine into the joint. The provider uses a real-time x-ray (fluoroscopy) to see where to place ... Wakefield RJ. Arthrocentesis and injection of joints and soft tissue. In: Firestein GS, Budd RC, Gabriel SE, ...

  5. Sacroiliac joint pain - aftercare

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000610.htm Sacroiliac joint pain - aftercare To use the sharing features on this page, please enable JavaScript. The sacroiliac joint (SIJ) is a term used to describe ...

  6. Reliability of Tubular Joints

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    In this paper the preliminary results obtained by tests on tubular joints are presented. The joints are T-joints and the loading is static. It is the intention in continuation of these tests to perform tests on other types of joints (e.g. Y-joints) and also with dynamic loading. The purpose...... of the test is partly to obtain empirical data for the ultimate load-carrying capacity of tubular T-joints and partly to obtain some experience in performing tests with tubular joints. It is well known that tubular joints are usually designed in offshore engineering on the basis of empirical formulas obtained...... by experimental test results. Therefore, there is a need for performing experimental tests in this area....

  7. Hip joint replacement - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100006.htm Hip joint replacement - series—Normal anatomy To use the ... to slide 5 out of 5 Overview The hip joint is made up of two major parts: ...

  8. Design of mechanical joints

    CERN Document Server

    Blake, Alexander

    2018-01-01

    A cornerstone publication that covers the basic principles and practical considerations of design methodology for joints held by rivets, bolts, weld seams, and adhesive materials, Design of Mechanical Joints gives engineers the practical results and formulas they need for the preliminary design of mechanical joints, combining the essential topics of joint mechanics...strength of materials...and fracture control to provide a complete treatment of problems pertinent to the field of mechanical connections.

  9. Managing Joint Production Motivation

    DEFF Research Database (Denmark)

    Lindenberg, Siegwart; Foss, Nicolai Juul

    2011-01-01

    We contribute to the microfoundations of organizational performance by proffering the construct of joint production motivation. Under such motivational conditions individuals see themselves as part of a joint endeavor, each with his or her own roles and responsibilities; generate shared...... representations of actions and tasks; cognitively coordinate cooperation; and choose their own behaviors in terms of joint goals. Using goal-framing theory, we explain how motivation for joint production can be managed by cognitive/symbolic management and organizational design....

  10. On the effect of brazing thermal cycle on the properties of niobium and its alloys

    International Nuclear Information System (INIS)

    Grishin, V.L.; Cherkasov, A.F.

    1975-01-01

    The effect of the main parameters of the soldering thermal cycle on the properties of Nb and its alloys was studied by heating the samples under modelled conditions of soldering. The studies were made on commercial VN-niobium, alloys of the Nb-Mo-Zr system VN2A, VN2AEHM) and alloys of the Nb-Mo-Zr-C system (VN5AEH,VN5A). The degree of a preliminary plastic deformation of samples 0.3 to 0.8 mm thick made up 60 to 80%. The heating was made in vacuum (10 -4 to 5x10 -5 mm Hg) or in argon by passing the electric current across the samples. After heating a metallographic study and X-ray electron-probe analysis were made. The studies have shown that the changes in the heating rate result in a proportional change in the recrystallization initiation temperature. At a heating rate 300 deg C/s the recrystallization initiation temperature of commercial Nb is 930 to 960 deg as soon as the heating rate increases up to 900 deg/c the recrystallization initiation temperature rises up to about 1200 deg C. The heating temperature effect on the mechanical characteristics of commercial Nb and alloys VN2, VN2AEH and VN5AEH is shown. It is found that soldered joints of Nb and its alloys could be made of good quality when observing the thermal cycles ensuring the minimum softening of the base material. The main factors affecting the properties of Nb and alloy-VN2 are the heating temperature and the extent of a preliminary cold deformation. In a more deformed material the annealing results in the activation of the recrystallization processes. The production of high-strength soldered joints of commercial Nb is possible at the soldering temperature equal to 1100 deg C, but of Nb-Mo-Zr alloys-at 1200 to 1300 deg C and hold-up periods not exceeding one hour. A heterophase structure of alloys of the Nb-Mo-Zr-C system and the presence of Mo- and Zr-carbide phases in them result in a considerable hardening of the alloys and the increase in their recrystallization temperature. The usage of alloys

  11. Experimental study on CO2 frosting and clogging in a brazed plate heat exchanger for natural gas liquefaction process

    Science.gov (United States)

    Wu, Jitan; He, Tianbiao; Ju, Yonglin

    2018-04-01

    The plate-fin heat exchanger (PFHE), which has been widely used in natural gas liquefaction (LNG) industry at present, has some disadvantages such as being sensitive to the impurities in the feed gas, such as water, CO2 and H2S. Compared with the PFHE, the brazed plate heat exchanger (BPHE), which has been applied in some boil off gas (BOG) recycling LNG plants of small to middle size, has simpler inherent structure and higher impurity tolerance. In this study the BPHE is suggested to replace the PFHE to simplify or even omit the massive CO2 purification equipment for the LNG process. A set of experimental apparatus is designed and constructed to investigate the influence of the CO2 concentration of the natural gas on solid precipitation inside a typical BPHE meanly by considering the flow resistance throughout the LNG process. The results show that the maximum allowable CO2 concentration of the natural gas liquefied in the BPHE is two orders of magnitude higher than that in the PFHE under the same condition. In addition, the solid-liquid separation for the CO2 impurity is studied and the reasonable separating temperature is obtained. The solid CO2 should be separated below 135 K under the pressure of 3 MPa.

  12. Fabrication of a superhydrophobic surface with fungus-cleaning properties on brazed aluminum for industrial application in heat exchangers

    Science.gov (United States)

    Lee, Jeong-Won; Hwang, Woonbong

    2018-06-01

    Extensive research has been carried out concerning the application of superhydrophobic coating in heat exchangers, but little is known about the application of this technique to brazed aluminum heat exchangers (BAHEs). In this work, we describe a new superhydrophobic coating method, which is suitable for BAHE use on an industrial scale. We first render the BAHE superhydrophobic by fabricating micro/nanostructures using solution dipping followed by fluorination. After the complete removal of the silicon residue, we verify using surface analysis that the BAHE surface is perfectly superhydrophobic. We also studied the fungus-cleaning properties of the superhydrophobic surface by growing fungus for 4 weeks in a moist environment on BAHE fins with and without superhydrophobic coating. We observed that, whereas the fungus grown on the untreated fins is extremely difficult to remove, the fungus on the fins with the superhydrophobic coating can be removed easily with only a modest amount of water. We also found that the coated BAHE fins exhibit excellent resistance to moisture. The superhydrophobic coating method that we propose is therefore expected to have a major impact in the heating, ventilating and air conditioning industry market.

  13. Mechanics of Suture Joints

    Science.gov (United States)

    Li, Yaning; Song, Juha; Ortiz, Christine; Boyce, Mary; Ortiz Group/DMSE/MIT Team; Boyce Group/ME/MIT Team

    2011-03-01

    Biological sutures are joints which connect two stiff skeletal or skeletal-like components. These joints possess a wavy geometry with a thin organic layer providing adhesion. Examples of biological sutures include mammalian skulls, the pelvic assembly of the armored fish Gasterosteus aculeatus (the three-spined stickleback), and the suture joints in the shell of the red-eared slider turtle. Biological sutures allow for movement and compliance, control stress concentrations, transmit loads, reduce fatigue stress and absorb energy. In this investigation, the mechanics of the role of suture geometry in providing a naturally optimized joint is explored. In particular, analytical and numerical micromechanical models of the suture joint are constructed. The anisotropic mechanical stiffness and strength are studied as a function of suture wavelength, amplitude and the material properties of the skeletal and organic components, revealing key insights into the optimized nature of these ubiquitous natural joints.

  14. Avaliação das propriedades mecânicas de juntas cerâmicas usando fitas amorfas como metal de adição Evaluation of the mechanical properties of ceramic joint using amorphous ribbons as filler metals

    Directory of Open Access Journals (Sweden)

    Danielton Gomes dos Santos

    2009-09-01

    Full Text Available Este trabalho teve como objetivo determinar os melhores parâmetros para brasagem de juntas cerâmicas de Al2O3 pré-metalizadas com Ti por processo a plasma utilizando fitas amorfas de ligas Cu49Ag45Cx e como metal de adição. As ligas foram preparadas em forno a arco, e, posteriormente processadas por melt-spinning, variando conteúdo Ce de 4-6. %. A brasagem foi realizada em forno à vácuo e as seguintes variáveis analisadas: tempo de deposição do filme de Ti e temperatura e tempo de brasagem , que foram relacionados com a resistência à flexão em 3 pontos da junta brazada. A equação de regressão linear foi obtida, e verificou-se a interação entre estes fatores. As superfícies cerâmicas metalizadas apresentaram excelente uniformidade e as juntas brasadas muito boa adesão atingindo valores de resistência à flexão de até 176,8 MPa.This work had as objective to establish de best brazing parameter to joint Al2O3 pre-metalized with Ti by plasma process using amorphous ribbons of Cu49g45Ce x alloys as filler metals. The alloys were prepared in arc furnace and processed by melt-spinning process varying the Ce percentiles from 4 to 6. % . The brazing was accomplished in vacuum furnace and the following variables analyzed: deposition time of Ti film, brazing temperature and brazing times which were related to the brazed joint 3-point bending resistance. The interaction between those factors was obtained by linear regression equation. The metalized ceramic surfaces presented an good uniformity and the joint a very good adhesion reaching bending resistance up to 176,8 MPa.

  15. Expansion joints for LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Dzenus, M.; Hundhausen, W.; Jansing, W.

    1979-10-15

    This discourse recounts efforts put into the SNR-2 project; specifically the development of compensation devices. The various prototypes of these compensation devices are described and the state of development reviewed. The expansion joints were developed on the basis of specific design criteria whereby differentiation is made between expansion joints of small and large nominal diameter. Expansion joints for installation in the sodium-filled primary piping are equipped with safety bellows in addition to the actual working bellows.

  16. Loading nature of the interfacial cracks in a joint component under fusion-relevant thermal loads

    International Nuclear Information System (INIS)

    You, J.H.

    1998-01-01

    One of the standard design concepts for divertor components in a fusion reactor is the bonded joint structure. Understanding the loading nature of interfacial cracks are significant for the assessment of structural integrity of divertor joint components. In this paper, the thermomechanical loading nature of interfacial cracks is discussed. A bi-material joint element consisting of the CFC/TZM system is considered. A typical fusion operation condition is simulated assuming a pulsed high heat flux loading. Stress singularities near the interfacial crack tips are characterized quantitatively in terms of the fracture mechanical parameters. The evolution of the stress intensity factors and the energy release rate during the given transient thermal load are determined. The difference in loading characteristics between the edge crack and the center crack is discussed. High heat flux cycling tests are performed on brazed CFC/TZM divertor elements in an electron beam test facility. The microstructures of the damaged interface agree with the predicted fracture modes. The loading nature and possible failure mechanisms are discussed for a fusion-relevant thermal loading. (orig.)

  17. The Study of the Impact of Surface Preparation Methods of Inconel 625 and 718 Nickel-Base Alloys on Wettability by BNi-2 and BNi-3 Brazing Filler Metals

    Directory of Open Access Journals (Sweden)

    Lankiewicz K.

    2015-04-01

    Full Text Available The article discusses the impact of surface preparation method of Inconel 625 and 718 nickel-base alloys in the form of sheets on wettability of the surface. The results of the investigations of surface preparation method (such as nicro-blasting, nickel plating, etching, degreasing, abrasive blasting with grit 120 and 220 and manually grinding with grit 120 and 240 on spreading of BNi-2 and BNi-3 brazing filler metals, widely used in the aerospace industry in high temperature vacuum brazing processes, are presented. Technological parameters of vacuum brazing process are shown. The macro- and microscopic analysis have shown that nicro-blasting does not bring any benefits of wettability of the alloys investigated.

  18. The Study Of The Impact Of Surface Preparation Methods Of Inconel 625 And 718 Nickel-Base Alloys On Wettability By BNi-2 And BNi-3 Brazing Filler Metals

    Directory of Open Access Journals (Sweden)

    Lankiewicz K.

    2015-06-01

    Full Text Available The article discusses the impact of surface preparation method of Inconel 625 and 718 nickel-base alloys in the form of sheets on wettability of the surface. The results of the investigations of surface preparation method (such as nicro-blasting, nickel plating, etching, degreasing, abrasive blasting with grit 120 and 220 and manually grinding with grit 120 and 240 on spreading of BNi-2 and BNi-3 brazing filler metals, widely used in the aerospace industry in high temperature vacuum brazing processes, are presented. Technological parameters of vacuum brazing process are shown. The macro- and microscopic analysis have shown that nicro-blasting does not bring any benefits of wettability of the alloys investigated.

  19. An experimental analysis of flow boiling and pressure drop in a brazed plate heat exchanger for organic Rankine cycle power systems

    DEFF Research Database (Denmark)

    Desideri, Adriano; Zhang, Ji; Kærn, Martin Ryhl

    2017-01-01

    Organic Rankine cycle power systems for low quality waste heat recovery applications can play a major role in achieving targets of increasing industrial processes efficiency and thus reducing the emissions of greenhouse gases. Low capacity organic Rankine cycle systems are equipped with brazed...... and pressure drop during vaporization at typical temperatures for low quality waste heat recovery organic Rankine cycle systems are presented for the working fluids HFC-245fa and HFO-1233zd. The experiments were carried out at saturation temperatures of 100°C, 115°C and 130°C and inlet and outlet qualities...

  20. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.

    1987-03-01

    The paper presents the progress report of the Joint European Torus (JET) Joint Undertaking, 1986. The report contains a survey of the scientific and technical achievements on JET during 1986; the more important articles referred to in this survey are reproduced as appendices to this Report. The last section discusses developments which might improve the overall performance of the machine. (U.K.)

  1. 13. Sacroiliac joint pain

    NARCIS (Netherlands)

    Vanelderen, P.; Szadek, K.M.; Cohen, S.P.; Witte, J.; Lataster, A.; Patijn, J.; Mekhail, N.; van Kleef, M.; van Zundert, J.

    2010-01-01

    The sacroiliac joint accounts for approximately 16% to 30% of cases of chronic mechanical low back pain. Pain originating in the sacroiliac joint is predominantly perceived in the gluteal region, although pain is often referred into the lower and upper lumbar region, groin, abdomen, and/ or lower

  2. Transversely Compressed Bonded Joints

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Schmidt, Jacob Wittrup; Stang, Henrik

    2012-01-01

    The load capacity of bonded joints can be increased if transverse pressure is applied at the interface. The transverse pressure is assumed to introduce a Coulomb-friction contribution to the cohesive law for the interface. Response and load capacity for a bonded single-lap joint was derived using...

  3. Joint Newspaper Operating Agreements.

    Science.gov (United States)

    Parsons, Marie

    The number of competing daily newspapers in American cities has dwindled until only about 50 cities boast two papers. Of the newspapers in those cities, 23 now maintain separate editorial operations but have joint printing, advertising, and circulation departments. The concept of joint operation is 50 years old, dating from the Depression years…

  4. Joint Hub Network Development

    NARCIS (Netherlands)

    Cruijssen, F.C.A.M.; Borm, P.E.M.; Dullaert, W.; Hamers, H.J.M.

    2007-01-01

    This paper introduces a framework for joint hub network development. Building a joint physical hub for transhipment of goods is expensive and therefore involves considerable risks for the cooperating companies. In a practical setting, it is unlikely that an entire network will be built at once.

  5. Elbow joint instability

    DEFF Research Database (Denmark)

    Olsen, Bo Sanderhoff; Henriksen, M G; Søjbjerg, Jens Ole

    1994-01-01

    The effect of simultaneous ulnar and radial collateral ligament division on the kinematics of the elbow joint is studied in a cadaveric model. Severance of the anterior part of the ulnar collateral ligament and the annular ligament led to significant elbow joint instability in valgus and varus...

  6. Bistable Articulated Joint

    Science.gov (United States)

    Graighead, Norwood D., II; Preliasco, R. J.; Hult, T. D.

    1986-01-01

    Joint with four-bar-linkage geometry has following attributes: Springs to fully extended fully folded positions. Automatically locks in its extended position. Joint combines zero backlash, positive locking, and centerline pivoting. Used in folding tool handles, portable antenna booms, and many other deployable structures.

  7. MP Joint Arthritis

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy MP Joint Arthritis Email to a friend * required ...

  8. Creep of timber joints

    NARCIS (Netherlands)

    Van de Kuilen, J.W.G.

    2008-01-01

    A creep analysis has been performed on nailed, toothed-plates and split-ring joints in a varying uncontrolled climate. The load levels varied between 30% and 50% of the average ultimate short term strength of these joints, tested in accordance with ISO 6891. The climate in which the tests were

  9. Influence of thickness of zinc coating on CMT welding-brazing with AlSi5 alloy wire

    Science.gov (United States)

    Jin, Pengli; Wang, Zhiping; Yang, Sinan; Jia, Peng

    2018-03-01

    Effect of thickness of zinc coating on Cold Mattel Transfer (CMT) brazing of aluminum and galvanized steel is investigated. The thickness of zinc coating is 10 μm, 30 μm, and 60 μm, respectively. A high-speed camera was used to capture images of welding process of different specimens; the microstructure and composition analyses of the welding seam were examined by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS); the mechanical properties were measured in the form of Nano-indentation experiments. The results showed that arc characteristics and metal transfer behavior were unsteady at the beginning of welding process and that became stable after two cycles of CMT. With the thickness of zinc coating thickening, arc characteristics and metal transfer behaviors were more deteriorated. Compared with 10 μm and 30 μm, clad appearance of 60 μm was straight seam edges and a smooth surface which wetting angle was 60°. Zinc-rich zone at the seam edges was formed by zinc dissolution and motel pool oscillating, and zinc content of 10 μm and 30 μm were 5.8% and 7.75%. Zinc content of 60 μm was 14.61%, and it was a belt between galvanized steel and welding seam. The thickness of intermetallic compounds layer was in the range of 1-8 μm, and it changed with the thickness of zinc coating. The average hardness of the reaction layer of 60 μm is 9.197 GPa.

  10. MR diagnosis of temporomandibular joint. A study of joint effusion

    International Nuclear Information System (INIS)

    Kaneda, Takashi; Yamashiro, Mitsuaki; Ozawa, Kaoru; Suzuki, Hiromi; Okada, Hiroyuki; Yamamoto, Hirotsugu

    1998-01-01

    The purposes of this study were to evaluate the relationship between correlation of MR joint effusion of the temporomandibular joint and disk position, to evaluate the relationship between joint effusion and aging, and to assess the frequency of MR joint effusion of bilateral temporomandibular joints. The temporomandibular joints of 192 patients with clinical symptoms of temporomandibular joint disorders were imaged bilaterally using high field, surface-coil MR imaging. Oblique sagittal and coronal proton density-weighted and T2-weighted images were obtained. Imaging findings of joint effusion were correlated with disk position, aging, and bilateral temporomandibular joints. MR showed effusion in 4% of the joints with normal superior disk position, 36% of the joints with disk displacement with reduction, and 45% of the joints with disk displacement without reduction. There were significant differences in the incidence of joint effusion between normal disk position and anterior disk displacement with or without reduction. Younger patients less than 40 years were significant higher the incidence of joint effusion than those of older patients. A significant association was seen between joint effusion and aging. MR showed effusion in 17% of the unilateral temporomandibular joint, 24% of the bilateral temporomandibular joints. There was no significant difference between unilateral and bilateral case. These results indicated that joint effusion using MR imaging was associated with varied temporomandibular joint pathologic states. (author)

  11. Generalised joint hypermobility and knee joint hypermobility

    DEFF Research Database (Denmark)

    Junge, Tina; Henriksen, Peter; Hansen, Sebrina

    2018-01-01

    . Respondents with GJHk and KJH reported lower HRQoL. CONCLUSION: GJHk and KJH were frequently reported in the Danish adult population, mostly in women. Respondents with GJHk and KJH were two times more likely to report knee joint-related symptoms such as pain, reduced performance of usual activity and lower...

  12. Effect Of Irradiation Temperature and Dose On Mechanical Properties And Fracture Characteristics Of Cu//SS Joints For ITER

    International Nuclear Information System (INIS)

    Fabritsiev, S.A.; Pokrovsky, A.S.; Peacock, A.; Roedig, M.; Linke, J.; Gervash, A.; Barabash, V.

    2007-01-01

    Full text of publication follows: By now, a number of technologies have been proposed for the production of Cu//SS joints for ITER, such as brazing, friction welding, HIP and cast-copper-to-steel (CC). The two last-mentioned technologies ensure sufficiently high mechanical properties and a high joint quality, when unirradiated. The data, however, on mechanical characteristics of irradiated of Cu//SS HIP joints are limited. In this paper, the authors present the results of investigations into the mechanical characteristics after irradiation of GlidCopAl25/316L(N) and Cu-Cr-Zr/316L(N)-type joints produced by the HIP and CC technologies. Specimens of the joints were irradiated in the RBT-6 reactor in the dose range of 10 -3 - 10 -1 dpa at T irr = 200 deg. C and 300 deg. C. The tensile stress-strain curves for irradiated and unirradiated joint specimens show deformation processes occurring in both the Cu and SS parts of the specimens. Irradiation at T irr = 200 deg. C causes strengthening of the joints specimens (by about 100 MPa at the maximum dose). The uniform elongation drops from 8% in the initial state to 2-3 %. But the total elongation remains at a relatively high level of ∼ 7%. Irradiation at T irr = 300 deg. C causes a slight strengthening of the joints specimens (∼30 MPa). The uniform elongation remains unchanged at ∼ 7%. The total elongation also maintains a relatively high level of ∼9-13%. SEM investigations revealed that fracture occurs only in the copper part of the irradiated specimens, and ductile trans-crystalline fracture predominates in the joints. 3D finite element analysis of the tensile test indicates that the concentration of stresses and deformations in the copper layer adjacent to the joint line is responsible for this typical failure of the irradiated joints specimens. Comparison of the behavior of the joints irradiated at T irr = 200 deg. C and 300 deg. C indicate an increased embrittlement at lower irradiation temperatures. At a

  13. Thermal and electrical joint test for the helical field coils in the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Brown, R.L.; Johnson, R.L.

    1985-01-01

    Initial feasibility studies of a number of configurations for the Advanced Toroidal Facility (ATF) resulted in the selection of a resistive copper continuous-coil torsatron as the optimum device considering the physics program, cost, and schedule. Further conceptual design work was directed toward optimization of this configuration and, if possible, a shorter schedule. It soon became obvious that in order to shorten the schedule, a number of design and fabrication activities should proceed in parallel. This was most critical for the vacuum vessel and the helical field (HF) coils. If the HF coils were wound in place on a completed vacuum vessel, the overall schedule would be significantly (greater than or equal to12 months) longer. The approach of parallel scheduel paths requires that the HF coils be segmented into parts of less than or equal to180 0 of poloidal angle and that joints be made on a turn-by-turn basis when the segments are installed. It was obvious from the outset that the compact and complex geometry of the joint design presented a special challenge in the areas of reliability, assembly, maintenance, disassembly, and cost. Also, electrical, thermal, and force excursions are significant for these joints. A number of soldered, welded, brazed, electroplated, and bolted joints were evaluated. The evaluations examined fabrication feasibility and complexity, thermal-electrical performance at approximately two-thirds of the steady-state design conditions, and installation and assembly processes. Results of the thermal-electrical tests were analyzed and extrapolated to predict performance at peak design parameters. The final selection was a lap-type joint clamped with insulated bolts that pass through the winding packing. 3 refs., 4 figs

  14. Joint Electromagnetic Spectrum Management Operations

    Science.gov (United States)

    2012-03-20

    promulgate command-specific policy and guidance for EMS use, the joint restricted frequency list (JRFL) process, the joint communications–electronics...joint communications–electronics operating instructions (JCEOI) and joint restricted frequency list (JRFL). Examples of FM include providing the...joint restricted frequency list Figure III-4. Joint Frequency Management Office Spectrum Management Process Chapter III III-10 JP 6-01 assignments

  15. Use of refractory-metal alloys in the Next European Torus divertor design, and comparative study of mechanical properties after disruptive heat loads or brazing and ageing treatment

    International Nuclear Information System (INIS)

    Moons, Frans; Falbriard, Patricia; Nicolas, Guy; Faron, Robert

    1990-01-01

    A limited comparative study of ten refractory metals and alloys has been made to evaluate materials for use in the divertor element of the Next European Torus (NET). Tensile tests up to 800 0 C were performed on sintered molybdenum, wrought molybdenum, Z6 (Mo-ZrO 2 ), Mo-5Re, Mo-41Re, sintered tungsten, wrought tungsten, W-5Re, and W-26Re, in delivery state and after ageing for 10 days at 600 0 C; the 10 days of ageing simulated the integrated divertor lifetime. Slow bend tests were done from room temperature to 800 0 C and 600 0 C respectively on samples of refractory metal previously brazed to graphite or to copper; the brazing process was representative of part of the manufacturing process. Finally, impact tests up to 800 0 C were carried out on samples disposed to high-energy flux deposition of 3 or 15 MJ m -2 by laser; this was to simulate the energy deposition that might occur on the material during a plasma disruption. The resulting ranking of materials is of course criteria-dependent, but generally speaking Mo-41Re scored the best as 'engineering' material, followed by TZM. (author)

  16. Joint Quantum Institute

    Data.gov (United States)

    Federal Laboratory Consortium — The Joint Quantum Institute (JQI) is pursuing that goal through the work of leading quantum scientists from the Department of Physics of the University of Maryland...

  17. Temporomandibular Joint Disorder

    Science.gov (United States)

    ... Baby Bottle Tooth Decay? Pacifiers Have Negative and Positive Effects What is Dental Amalgam (Silver Filling)? Check Menstrual Calendar for Tooth Extraction Temporomandibular Joint Disorder Learn what those dental words mean. Check out how your teeth and mouth ...

  18. Hip joint replacement

    Science.gov (United States)

    Hip arthroplasty; Total hip replacement; Hip hemiarthroplasty; Arthritis - hip replacement; Osteoarthritis - hip replacement ... Your hip joint is made up of 2 major parts. One or both parts may be replaced during surgery: ...

  19. Knee joint replacement

    Science.gov (United States)

    ... to make everyday tasks easier. Practice using a cane, walker , crutches , or a wheelchair correctly. On the ... ask your doctor Knee joint replacement - discharge Preventing falls Preventing falls - what to ask your doctor Surgical ...

  20. Concrete pavement joint deterioration.

    Science.gov (United States)

    2015-12-01

    Concrete pavements are an important part of our national infrastructure. In recent years the relatively small number of reported joints deteriorating prematurely in concrete pavements around Indiana has increased. Changes over the past 45 years in IN...

  1. Sacroiliac joint dysfunction.

    Science.gov (United States)

    Ilaslan, Hakan; Arslan, Ahmet; Koç, Omer Nadir; Dalkiliç, Turker; Naderi, Sait

    2010-07-01

    Sacroiliac joint dysfunction is a disorder presenting with low back and groin pain. It should be taken into consideration during the preoperative differential diagnosis of lumbar disc herniation, lumbar spinal stenosis and facet syndrome. Four cases with sacroiliac dysfunction are presented. The clinical and radiological signs supported the evidence of sacroiliac dysfunction, and exact diagnosis was made after positive response to sacroiliac joint block. A percutaneous sacroiliac fixation provided pain relief in all cases. The mean VAS scores reduced from 8.2 to 2.2. It is concluded that sacroiliac joint dysfunction diagnosis requires a careful physical examination of the sacroiliac joints in all cases with low back and groin pain. The diagnosis is made based on positive response to the sacroiliac block. Sacroiliac fixation was found to be effective in carefully selected cases.

  2. Joint Hub Network Development

    OpenAIRE

    Cruijssen, F.C.A.M.; Borm, P.E.M.; Dullaert, W.; Hamers, H.J.M.

    2007-01-01

    This paper introduces a framework for joint hub network development. Building a joint physical hub for transhipment of goods is expensive and therefore involves considerable risks for the cooperating companies. In a practical setting, it is unlikely that an entire network will be built at once. Rather, the partners will have a more cautious attitude and build the hub facilities one-by-one. In the proposed framework, every time a new hub is introduced, partners will have the opportunity to dec...

  3. Prosthetic Joint Infections

    Science.gov (United States)

    Aslam, Saima; Darouiche, Rabih O.

    2012-01-01

    Prosthetic joint infections represent a major therapeutic challenge for both healthcare providers and patients. This paper reviews the predisposing factors, pathogenesis, microbiology, diagnosis, treatment and prophylaxis of prosthetic joint infection. The most optimal management strategy should be identified based on a number of considerations including type and duration of infection, antimicrobial susceptibility of the infecting pathogen, condition of infected tissues and bone stock, patient wishes and functional status. PMID:22847032

  4. Benign joint hypermobility syndrome

    Directory of Open Access Journals (Sweden)

    Iwona Słowińska

    2014-11-01

    Full Text Available Benign joint hypermobility syndrome (BJHS, commonly known as loose ligament syndrome, is a non-inflammatory rheumatic condition. It is characterised by a greater than normal range of motion of the joints of the limbs and spine. The prevalence of the syndrome in preschool-age children is estimated to be between 2% and 30%, depending on ethnic background (with higher prevalence in Asian and African populations, occurring most often in families with a history of the condition and more frequently in girls. This paper presents a case report of a 12-year-old girl. A broad differential diagnostic approach to recurrent joint inflammation with joint effusion and pain made it possible to establish a diagnosis of benign joint hypermobility syndrome. The child met the Brighton criteria; her Beighton score was 7 out of 9. Patient education aimed at eliminating abnormal joint movement and an appropriate rehabilitation programme play key roles in the treatment of BJHS.

  5. Jointness for the Rest of Us: Reforming Joint Professional Development

    Science.gov (United States)

    2016-06-10

    transferred to the Joint Staff. 13 DOD’s instinct to “overly centralize planning, organization, and management.”20 The authors contend that this...2. 3 John F. Schank and others, Who is Joint? Reevaluating the Joint Duty Assignment List : A Study Prepared for the Joint Staff, by the RAND...and code those billets as such. Once identified, DOD must expand the Joint Duty Assignment List (JDAL) to include billets that offer enlisted personnel

  6. Acromioclavicular joint separation

    Directory of Open Access Journals (Sweden)

    Devan Pandya, BS

    2018-04-01

    Full Text Available History of present illness: A 30-year-old male was brought in by ambulance to the emergency department as a trauma activation after a motorcycle accident. The patient was the helmeted rider of a motorcycle traveling at an unknown speed when he lost control and was thrown off his vehicle. He denied loss of consciousness, nausea, or vomiting. The patient’s vital signs were stable and his only complaint was pain around his left shoulder. On exam, the patient had a prominent left clavicle without skin compromise. He had adequate range of motion in the left shoulder with moderate pain, and his left upper extremity was neurovascularly intact. Significant findings: Plain films of the left shoulder showed elevation of the left clavicle above the acromion. There was an increase in the acromioclavicular (AC and coracoclavicular (CC distances (increased joint distances marked with red and blue arrows, respectively. A normal AC joint measures 1-3 mm whereas a normal CC distance measures 11-13 mm.1 The injury was classified as a Rockwood type III AC joint separation. Discussion: The AC joint is a synovial joint between an oval facet on the acromion and a similar facet on the distal end of the clavicle. Horizontal stability is provided by the AC joint while axial stability is provided by the CC joint.2,3 AC joint injuries account for about 9%-12% of shoulder girdle injuries, and the most common mechanism is direct trauma.4,5 Initial evaluation with imaging includes plain films with three views: the anterior-posterior (AP view with the shoulder in internal and external rotation as well as an axillary, or scapula-Y view (sensitivity 40%, specificity 90% for all films.6,7 AC joint injuries are classified by the Rockwood system.8 Type I involves a sprain or incomplete tear of the AC ligaments with an intact CC ligament. The AC joint appears normal on X-ray, but can become widened with stress, achieved by having the patient hold a 10-15 pound weight from each

  7. Forming a multinational joint venture

    International Nuclear Information System (INIS)

    Bhatia, N.K.; Garb, R.H.; Statton, T.D.

    1990-01-01

    This paper discusses the basis and mechanics for forming a multinational joint venture. The topics of the paper include the motivations for a joint venture, selection of the appropriate co-venturer, management of the multinational joint venture, and the joint venture agreement. The authors state that a joint venture is not applicable or desirable in all instances and to be successful, must be carefully planned

  8. Facet joint syndrome

    International Nuclear Information System (INIS)

    Zigrai, M.; Zakovic, J.; Brezinova, M.; Pavlovicova, M.

    2002-01-01

    It is the purpose of the study to demonstrate the clinical relevance of degenerative changes in the facet joint of patients with low back pain irradiating to the lower extremities, and discuss some problems relating to diagnosis and different diagnosis. 119 patients presenting the listed bellow syndromes are covered by the study: scoliosis, polytopic pain vertebral syndrome, paresis and history of trauma. all patients undergo comprehensive neurological examination with special attention focused on the spine: CT and plain x-rays are taken of the lumbosacral segment to assess the condition of the facet joints. The neurological examination demonstrates in all cases pain syndrome in the lumbar spine referred to one or both lower extremities. In 56% it is a matter of persisting pain, and in 44% - recurrent. More than half of the patients complain of sacroiliac (SI) dislocation and palpatory pain. Unilateral or bilateral degenerative changes are documented by imaging studies in all patients, including: subchondral thickening, osteopathy narrowing the lateral or central part of the spinal canal with ensuing nerve root compression. The lumbosacral zygoapophyseal joints are source of pseudoradicular pain. A correlation between clinical picture and GT changes is noted in all patients with facet joint syndrome. CT is an indispensable method in diagnosing facet joint syndrome. (authors)

  9. Temporomandibular joint examination reviewed

    Directory of Open Access Journals (Sweden)

    L. Guarda Nardini

    2011-09-01

    Full Text Available The temporo-mandibular joint (TMJ it’s a joint closely related to the skull base, the spine, and the jaws; all these anatomical structures must be taken in consideration when evaluating pain involving the tmj. In order to detect patients affected by pathology or dysfunctions of the tmj, physical examination is of great value in orienting the diagnosis. Inspection must consider the symmetry of the body, the dental status and the type of occlusion. Palpation is a way to assess contractiont involving the muscles of the masticatory system and of the neck. Auscultation, based on articular noise provides means to determine whether we are dealing with degeneration of the joint or a dislocation of the intrarticular disc. In order to confirm the diagnosis obtained with the clinical evaluation, it’s useful to perform imaging techniques as opt, tomography and TC of the tmj and electromyokineosiography – index of the mandibular functionality and of the muscles status. MRI and dynamic MRI are among the non invasive exams which give the greatest amount of information, regarding the disc position and the joint degeneration. Arthroscopy is an invasive technique that allows early diagnosis of degeneration and is helpful to reveal early inflammatory processes of the joint.

  10. Distal radioulnar joint injuries

    Directory of Open Access Journals (Sweden)

    Binu P Thomas

    2012-01-01

    Full Text Available Distal radioulnar joint is a trochoid joint relatively new in evolution. Along with proximal radioulnar joint , forearm bones and interosseous membrane, it allows pronosupination and load transmission across the wrist. Injuries around distal radioulnar joint are not uncommon, and are usually associated with distal radius fractures,fractures of the ulnar styloid and with the eponymous Galeazzi or Essex_Lopresti fractures. The injury can be purely involving the soft tissue especially the triangular fibrocartilage or the radioulnar ligaments.The patients usually present with ulnar sided wrist pain, features of instability, or restriction of rotation. Difficulty in carrying loads in the hand is a major constraint for these patients. Thorough clinical examination to localize point of tenderness and appropriate provocative tests help in diagnosis. Radiology and MRI are extremely useful, while arthroscopy is the gold standard for evaluation. The treatment protocols are continuously evolving and range from conservative, arthroscopic to open surgical methods. Isolated dislocation are uncommon. Basal fractures of the ulnar styloid tend to make the joint unstable and may require operative intervention. Chronic instability requires reconstruction of the stabilizing ligaments to avoid onset of arthritis. Prosthetic replacement in arthritis is gaining acceptance in the management of arthritis.

  11. Formation of Exfoliation Joints

    Science.gov (United States)

    Martel, S. J.

    2004-12-01

    The Earth's internal stresses interact with the topographic surface to affect many phenomena. Exfoliation joints, or sheeting joints, are widespread manifestations of this interaction. These opening-mode fractures form subparallel to the Earth's surface, bounding roughly concentric slabs of rock that resemble the layers of an onion. They occur worldwide in all major bedrock types, attain in-plane dimensions of hundreds of meters, exert a strong influence on groundwater flow, and help produce spectacular scenery, as in Yosemite National Park. The mechanism that causes them has been enigmatic. They are widely regarded as forming in response to "removal of overburden", but large fractures do not open in rocks merely by relieving a compressive stress. High fluid pressures, thermal effects, rock heterogeneity, and weathering also are rejected as primary causes of these fractures. Tensile stresses normal to the surface are required for large exfoliation fractures to open. Intriguingly, high surface-parallel compressive stresses are widely documented where exfoliation joints occur. Both numerical and analytical solutions for two-dimensional elastic bodies show that localized tensile stresses perpendicular to the ground surface must develop beneath certain topographies subject to strong compressive stresses parallel to the surface. This highly non-intuitive effect reflects the profound influence that topography can have on stresses near the surface of the Earth, and it can explain how exfoliation joints open. The theoretical results also indicate that exfoliation joint distributions could be used to infer the horizontal stresses near the Earth's surface.

  12. The temporomandibular joint

    International Nuclear Information System (INIS)

    Campbell, W.

    1984-01-01

    Whilst the temporomandibular joint is in many ways unique, it is subject to all the diseases and disorders found in joints in other parts of the human skeleton. By far the most common disorder is injury, followed by arthropathy, acute and chronic dislocations, ankylosis, and in rare instances, neoplasms. The diagnosis and management of the temporomandibular joint are the primary responsibility of the oral surgeon. Nevertheless, this anatomical region is an area in which the cooperation of medical and dental disciplines may be required for the satisfactory conclusion of treatment. The more so when the disease process involves either associated psychosomatic illness or malignancy. The mainstay of the diagnosis is a careful radiological examination of the joint. There exists a delicate relationship between the dentition, the muscles of mastication, and the temporomandibular articulation, which is controlled by arthrokinetic reflex activity of the branches of the 5th cranial nerve. Imbalance between one or more of the components of this integrated system frequently leads to disturbances in function. Pain-dysfunction disorders constitute the larger part of temporomandibular joint disturbances generally encountered

  13. Total ankle joint replacement.

    Science.gov (United States)

    2016-02-01

    Ankle arthritis results in a stiff and painful ankle and can be a major cause of disability. For people with end-stage ankle arthritis, arthrodesis (ankle fusion) is effective at reducing pain in the shorter term, but results in a fixed joint, and over time the loss of mobility places stress on other joints in the foot that may lead to arthritis, pain and dysfunction. Another option is to perform a total ankle joint replacement, with the aim of giving the patient a mobile and pain-free ankle. In this article we review the efficacy of this procedure, including how it compares to ankle arthrodesis, and consider the indications and complications. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. JOINT INVOLVEMENT IN SYPHILIS

    Directory of Open Access Journals (Sweden)

    T. I. Zlobina

    2016-01-01

    Full Text Available Joint involvement in syphilis has been considered as casuistry in recent years. At the same time, the high incidence of primary syphilis and the notified cases of late neurosyphilis may suggest that joint involvement in this disease is by no means always verified. Traditionally there are two forms of syphilitic arthritis: primary synovial (involving the articular membranes and sac and primary bone (involving the articular bones and cartilages ones. The paper describes the authors' clinical case of the primary bone form of articular syphilis in a 34-year-old man. 

  15. Expansion joints for LMFBR

    International Nuclear Information System (INIS)

    Dzenus, M.; Hundhausen, W.; Jansing, W.

    1980-01-01

    This discourse recounts efforts put into the SNR-2 project; specifically the development of compensation devices. The various prototypes of these compensation devices are described and the state of the development reviewed. Large Na (sodium)-heat transfer systems require a lot of valuable space if the component lay-out does not include compensation devices. So, in order to condense the spatial requirement as much as possible, expansion joints must be integrated into the pipe system. There are two basic types to suit the purpose: axial expansion joints and angular expansion joints. The expansion joints were developed on the basis of specific design criteria whereby differentiation is made between expansion joints of small and large nominal diameter. Expansion joints for installation in the sodium-filled primary piping are equipped with safety bellows in addition to the actual working bellows. Expansion joints must be designed and mounted in a manner to completely withstand seismic forces. The design must exclude any damage to the bellows during intermittent operations, that is, when sodium is drained the bellows' folds must be completely empty; otherwise residual solidified sodium could destroy the bellows when restarting. The expansion joints must be engineered on the basis of the following design data for the secondary system of the SNR project: working pressure: 16 bar; failure mode pressure: 5 events; failure mode: 5 sec., 28.5 bar, 520 deg. C; working temperature: 520 deg. C; temperature transients: 30 deg. C/sec.; service life: 200,000 h; number of load cycles: 10 4 ; material: 1.4948 or 1.4919; layer thickness of folds: 0.5 mm; angular deflection (DN 800): +3 deg. C or; axial expansion absorption (DN 600): ±80 mm; calculation: ASME class. The bellows' development work is not handled within this scope. The bellows are supplied by leading manufacturers, and warrant highest quality. Multiple bellows were selected on the basis of maximum elasticity - a property

  16. Sacroiliac Joint Interventions.

    Science.gov (United States)

    Soto Quijano, David A; Otero Loperena, Eduardo

    2018-02-01

    Sacroiliac joint (SIJ) pain is an important cause of lower back problems. Multiple SIJ injection techniques have been proposed over the years to help in the diagnosis and treatment of this condition. However, the SIJ innervation is complex and variable, and truly intra-articular injections are sometimes difficult to obtain. Different sacroiliac joint injections have shown to provide pain relief in patients suffering this ailment. Various techniques for intraarticular injections, sacral branch blocks and radiofrequency ablation, both fluoroscopy guided and ultrasound guided are discussed in this paper. Less common techniques like prolotherapy, platelet rich plasma injections and botulism toxin injections are also discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Prosthetic Joint Infection

    Science.gov (United States)

    Tande, Aaron J.

    2014-01-01

    SUMMARY Prosthetic joint infection (PJI) is a tremendous burden for individual patients as well as the global health care industry. While a small minority of joint arthroplasties will become infected, appropriate recognition and management are critical to preserve or restore adequate function and prevent excess morbidity. In this review, we describe the reported risk factors for and clinical manifestations of PJI. We discuss the pathogenesis of PJI and the numerous microorganisms that can cause this devastating infection. The recently proposed consensus definitions of PJI and approaches to accurate diagnosis are reviewed in detail. An overview of the treatment and prevention of this challenging condition is provided. PMID:24696437

  18. Imaging findings of charcot joint

    International Nuclear Information System (INIS)

    Meng Quanfei; Zhou Chunxiang; Chen Yingming; Jiang Bo

    2003-01-01

    Objective: To analyze the MRI characters of Charcot joint, and to evaluate the diagnostic value of X-ray, CT, and MRI on Charcot joint. Methods: Eight patients with 8 Charcot joints underwent X-ray, CT, and MR examinations. 6 of them had syringomyelia, 1 patient had injury of the spinal cord, and 1 case had diabetes. All 8 patients had sensory reduction or deficit in the sick extremities. Results: There were two types of Charcot joint, hypertrophic and atrophic. Radiographic and CT features of hypertrophic joint (n=3) showed hyperostotic osteosclerosis and mammoth osteophytes in the sick bones, periarticular ossification, and articular disorganization. Radiographic and CT features of atrophic joint (n=5) showed extensive bone resorption (destruction), periarticular debris, and articular disorganization. Main MRI features of Charcot joint included hydrarthrosis within joint capsule, thickened, loose, and elongated joint capsule with para-joint, peri-diaphysis, and inter-muscular extension in a pseudopodia pattern. The irregular joint capsule wall was presented as mild hypointensity on T 1 WI, slight hyper-intensity on T 2 WI, and was markedly enhanced after Gd-DTPA was administrated, which was considered as a characteristic manifestation of the lesion. Soft tissue mass containing hypo-intense stripes on both T 1 WI and T 2 WI was commonly noted adjacent to the involved joint. Conclusion: X-rays plain film is the first choice for the diagnosis of Charcot joint, and MRI is pretty useful in the diagnosis of Charcot joint

  19. Characterization of crystallization kinetics of a Ni- (Cr, Fe, Si, B, C, P) based amorphous brazing alloy by non-isothermal differential scanning calorimetry

    International Nuclear Information System (INIS)

    Raju, S.; Kumar, N.S. Arun; Jeyaganesh, B.; Mohandas, E.; Mudali, U. Kamachi

    2007-01-01

    The thermal stability and crystallization kinetics of a Ni- (Cr, Si, Fe, B, C, P) based amorphous brazing foil have been investigated by non-isothermal differential scanning calorimetry. The glass transition temperature T g , is found to be 720 ± 2 K. The amorphous alloy showed three distinct, yet considerably overlapping crystallization transformations with peak crystallization temperatures centered around 739, 778 and 853 ± 2 K, respectively. The solidus and liquidus temperatures are estimated to be 1250 and 1300 ± 2 K, respectively. The apparent activation energies for the three crystallization reactions have been determined using model free isoconversional methods. The typical values for the three crystallization reactions are: 334, 433 and 468 kJ mol -1 , respectively. The X-ray diffraction of the crystallized foil revealed the presence of following compounds Ni 3 B (Ni 4 B 3 ), CrB, B 2 Fe 15 Si 3 , CrSi 2 , and Ni 4.5 Si 2 B

  20. An experimental study on single phase convection heat transfer and pressure drop in two brazed plate heat exchangers with different chevron shapes and hydraulic diameters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Man Bae; Park, Chang Yong [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2017-05-15

    An experimental study on heat transfer and pressure drop characteristics was performed at single phase flow in two Brazed plate heat exchangers (BPHEs) with different geometries. The corrugation density of one of the BPHE (Type II) was two times as high as that of the other BPHE (Type I). The hydraulic diameter of the type II BPHE was 2.13 mm, which was 38 % smaller than that of the type I BPHE. Also, the cross section shape of the flow channels for the type II BPHE was different from that for conventional BPHEs due to the unusual corrugation patterns and brazing points. The experimental conditions for temperatures were varied from 4.6 °C to 49.1 °C, and for mass flow rates were changed from 0.07 kg/s to 1.24 kg/s. The measured results showed that pressure drop in the type II BPHE was about 110 % higher than that in the type I BPHE. Nu of the type II was higher than that of the type I BPHE and the enhancement became larger with the increase of Re at the ranges above 800. New correlations for fF and Nu were proposed by this study and their prediction accuracy could be improved by considering the surface enlargement factor in the correlations. The performance evaluation of the two BPHEs was performed by (j/f{sub F}1{sup /3}) which represented the ratio of heat transfer and pressure drop performance. Also, a new parameter, the capacity compactness of PHE, was proposed and it presented the PHE capacity per unit volume and unit log mean temperature difference. The comparison showed that the two BPHEs had similar values of the (j/f{sub F}1{sup /3}), whereas they had significantly different values of the capacity compactness. The capacity compactness of the type II BPHE was 1.5 times higher than that for the type I BPHE.

  1. An experimental study on single phase convection heat transfer and pressure drop in two brazed plate heat exchangers with different chevron shapes and hydraulic diameters

    International Nuclear Information System (INIS)

    Kim, Man Bae; Park, Chang Yong

    2017-01-01

    An experimental study on heat transfer and pressure drop characteristics was performed at single phase flow in two Brazed plate heat exchangers (BPHEs) with different geometries. The corrugation density of one of the BPHE (Type II) was two times as high as that of the other BPHE (Type I). The hydraulic diameter of the type II BPHE was 2.13 mm, which was 38 % smaller than that of the type I BPHE. Also, the cross section shape of the flow channels for the type II BPHE was different from that for conventional BPHEs due to the unusual corrugation patterns and brazing points. The experimental conditions for temperatures were varied from 4.6 °C to 49.1 °C, and for mass flow rates were changed from 0.07 kg/s to 1.24 kg/s. The measured results showed that pressure drop in the type II BPHE was about 110 % higher than that in the type I BPHE. Nu of the type II was higher than that of the type I BPHE and the enhancement became larger with the increase of Re at the ranges above 800. New correlations for fF and Nu were proposed by this study and their prediction accuracy could be improved by considering the surface enlargement factor in the correlations. The performance evaluation of the two BPHEs was performed by (j/f F 1 /3 ) which represented the ratio of heat transfer and pressure drop performance. Also, a new parameter, the capacity compactness of PHE, was proposed and it presented the PHE capacity per unit volume and unit log mean temperature difference. The comparison showed that the two BPHEs had similar values of the (j/f F 1 /3 ), whereas they had significantly different values of the capacity compactness. The capacity compactness of the type II BPHE was 1.5 times higher than that for the type I BPHE.

  2. Temporomandibular Joint Septic Arthritis

    Directory of Open Access Journals (Sweden)

    Gianfranco Frojo, MD

    2018-01-01

    Full Text Available Summary:. Infection of the temporomandibular joint (TMJ is a rare pediatric condition resulting from the introduction of pathogens into the joint by hematogenous seeding, local extension, or trauma. Early recognition of the typical signs and symptoms including fever, trismus, preauricular swelling, and TMJ region tenderness are critical in order to initiate further evaluation and prevent feared complications of fibrosis, ankylosis, abnormal facial structure, or persistence of symptoms. Contrast-enhanced computed tomography with ancillary laboratory analysis including erythrocyte sedimentation rate, C-reactive protein, and white blood cell count are beneficial in confirming the suspected diagnosis and monitoring response to therapy. Initial intervention should include empiric parenteral antibiotics, early mandibular mobilization, and joint decompression to provide synovial fluid for analysis including cultures. This report describes a case of TMJ bacterial arthritis in a healthy 6-year-old male who was promptly treated nonsurgically with intravenous antibiotics and localized needle joint decompression with return to normal function after completion of oral antibiotics and physical therapy.

  3. Joint-Use Libraries

    Science.gov (United States)

    Casstevens, Susan

    2017-01-01

    The joint-use library is a place where people of all ages, interests, and income levels can find items of interest at no personal cost. The mission of A. H. Meadows Public and High School Library in Midlothian, Texas, is to offer what other public libraries provide: educational and entertainment resources to a community. Yet, the staff also wants…

  4. Keyed shear joints

    DEFF Research Database (Denmark)

    Hansen, Klaus

    This report gives a summary of the present information on the behaviour of vertical keyed shear joints in large panel structures. An attemp is made to outline the implications which this information might have on the analysis and design of a complete wall. The publications also gives a short...

  5. Jointness: A Selected Bibliography

    Science.gov (United States)

    2007-08-01

    AD-A431-767) http://handle.dtic.mil/100.2/ADA431767 Lamb , William L. Moving beyond Goldwater-Nichols: The Case for Continued Reform of the DoD...in Support of the Joint Force’." Army Aviation 55 (May 2006): 22-24. Magnuson, Stew . "Turf Battles: Strategic Command’s Expanded Portfolio

  6. Gonococcal Prosthetic Joint Infection.

    Science.gov (United States)

    Gassiep, Ian; Gilpin, Bradley; Douglas, Joel; Siebert, David

    2017-01-01

    Neisseria gonorrhoea is a common sexually transmitted infection worldwide. Disseminated gonococcal infection is an infrequent presentation and rarely can be associated with septic arthritis. Incidence of this infection is rising, both internationally and in older age groups. We present the first documented case of N. gonorrhoea prosthetic joint infection which was successfully treated with laparoscopic debridement and antimicrobial therapy.

  7. An analysis of a joint shear model for jointed media with orthogonal joint sets

    International Nuclear Information System (INIS)

    Koteras, J.R.

    1991-10-01

    This report describes a joint shear model used in conjunction with a computational model for jointed media with orthogonal joint sets. The joint shear model allows nonlinear behavior for both joint sets. Because nonlinear behavior is allowed for both joint sets, a great many cases must be considered to fully describe the joint shear behavior of the jointed medium. An extensive set of equations is required to describe the joint shear stress and slip displacements that can occur for all the various cases. This report examines possible methods for simplifying this set of equations so that the model can be implemented efficiently form a computational standpoint. The shear model must be examined carefully to obtain a computationally efficient implementation that does not lead to numerical problems. The application to fractures in rock is discussed. 5 refs., 4 figs

  8. Temporomandibular joint space in children without joint disease

    International Nuclear Information System (INIS)

    Larheim, T.A.

    1981-01-01

    Bilateral assessment of the temporomandibular joint space in children without joint disease is reported. Twenty-eight children were examined with conventional radiography and 23 with tomography. High prevalence of asymmetric joint spaces with both techniques indicated that great care should be taken when using narrowing or widening of the joint space as a diagnostic criterion in children with juvenile rheumatoid arthritis. Other signs, such as restricted translation of the mandibular head, and clinical symptoms should be evaluated. (Auth.)

  9. Anaerobic prosthetic joint infection.

    Science.gov (United States)

    Shah, Neel B; Tande, Aaron J; Patel, Robin; Berbari, Elie F

    2015-12-01

    In an effort to improve mobility and alleviate pain from degenerative and connective tissue joint disease, an increasing number of individuals are undergoing prosthetic joint replacement in the United States. Joint replacement is a highly effective intervention, resulting in improved quality of life and increased independence [1]. By 2030, it is predicted that approximately 4 million total hip and knee arthroplasties will be performed yearly in the United States [2]. One of the major complications associated with this procedure is prosthetic joint infection (PJI), occurring at a rate of 1-2% [3-7]. In 2011, the Musculoskeletal Infectious Society created a unifying definition for prosthetic joint infection [8]. The following year, the Infectious Disease Society of America published practice guidelines that focused on the diagnosis and management of PJI. These guidelines focused on the management of commonly encountered organisms associated with PJI, including staphylococci, streptococci and select aerobic Gram-negative bacteria. However, with the exception of Propionibacterium acnes, management of other anaerobic organisms was not addressed in these guidelines [1]. Although making up approximately 3-6% of PJI [9,10], anaerobic microorganisms cause devastating complications, and similar to the more common organisms associated with PJI, these bacteria also result in significant morbidity, poor outcomes and increased health-care costs. Data on diagnosis and management of anaerobic PJI is mostly derived from case reports, along with a few cohort studies [3]. There is a paucity of published data outlining factors associated with risks, diagnosis and management of anaerobic PJI. We therefore reviewed available literature on anaerobic PJI by systematically searching the PubMed database, and collected data from secondary searches to determine information on pathogenesis, demographic data, clinical features, diagnosis and management. We focused our search on five commonly

  10. Longitudinal joint specifications and performance.

    Science.gov (United States)

    2012-08-01

    Deterioration of longitudinal joints is widely recognized as one of the major factors contributing to failure of asphalt pavements. Finding : ways to improve the durability of longitudinal joints will lead to improved service lives and lower life cyc...

  11. Determination of Parachute Joint Factors using Seam and Joint Testing

    Science.gov (United States)

    Mollmann, Catherine

    2015-01-01

    This paper details the methodology for determining the joint factor for all parachute components. This method has been successfully implemented on the Capsule Parachute Assembly System (CPAS) for the NASA Orion crew module for use in determining the margin of safety for each component under peak loads. Also discussed are concepts behind the joint factor and what drives the loss of material strength at joints. The joint factor is defined as a "loss in joint strength...relative to the basic material strength" that occurs when "textiles are connected to each other or to metals." During the CPAS engineering development phase, a conservative joint factor of 0.80 was assumed for each parachute component. In order to refine this factor and eliminate excess conservatism, a seam and joint testing program was implemented as part of the structural validation. This method split each of the parachute structural joints into discrete tensile tests designed to duplicate the loading of each joint. Breaking strength data collected from destructive pull testing was then used to calculate the joint factor in the form of an efficiency. Joint efficiency is the percentage of the base material strength that remains after degradation due to sewing or interaction with other components; it is used interchangeably with joint factor in this paper. Parachute materials vary in type-mainly cord, tape, webbing, and cloth -which require different test fixtures and joint sample construction methods. This paper defines guidelines for designing and testing samples based on materials and test goals. Using the test methodology and analysis approach detailed in this paper, the minimum joint factor for each parachute component can be formulated. The joint factors can then be used to calculate the design factor and margin of safety for that component, a critical part of the design verification process.

  12. Swivel Joint For Liquid Nitrogen

    Science.gov (United States)

    Milner, James F.

    1988-01-01

    Swivel joint allows liquid-nitrogen pipe to rotate through angle of 100 degree with respect to mating pipe. Functions without cracking hard foam insulation on lines. Pipe joint rotates on disks so mechanical stress not transmitted to thick insulation on pipes. Inner disks ride on fixed outer disks. Disks help to seal pressurized liquid nitrogen flowing through joint.

  13. Joint audits - benefit or burden?

    DEFF Research Database (Denmark)

    Holm, Claus; Thinggaard, Frank

    a joint audit regime to a single auditor/voluntary joint audit regime. The dataset used in this paper has been collected for the full population of non-financial Danish companies listed on the Copenhagen Stock Exchange (CSE) in the years 2004 and 2005. We find that a majority of firms perceive joint...

  14. Joint International Accelerator School

    CERN Multimedia

    CERN Accelerator School

    2014-01-01

    The CERN and US Particle Accelerator Schools recently organised a Joint International Accelerator School on Beam Loss and Accelerator Protection, held at the Hyatt Regency Hotel, Newport Beach, California, USA from 5-14 November 2014. This Joint School was the 13th in a series of such schools, which started in 1985 and also involves the accelerator communities in Japan and Russia.   Photo courtesy of Alfonse Pham, Michigan State University.   The school attracted 58 participants representing 22 different nationalities, with around half from Europe and the other half from Asia and the Americas. The programme comprised 26 lectures, each of 90 minutes, and 13 hours of case study. The students were given homework each day and had an opportunity to sit a final exam, which counted towards university credit. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and quality of their lectures. Initial dis...

  15. Posterolateral elbow joint instability

    DEFF Research Database (Denmark)

    Olsen, Bo Sanderhoff; Søjbjerg, Jens Ole; Nielsen, K K

    1998-01-01

    Thirty-five osteoligamentous elbows were included in a study on the kinematics of posterolateral elbow joint instability during the pivot shift test (PST) before and after separate ligament cuttings in the lateral collateral ligament complex (LCLC). Division of the annular ligament or the lateral...... ulnar collateral ligament caused no laxity during the PST. Division of the lateral collateral ligament caused maximal laxity of 4 degrees and 23 degrees during forced PST in valgus and external rotation (supination), respectively. Cutting of the LCLC at the ulnar or the humeral insertion was necessary...... for any PST stressed elbow joint laxity to occur. Total division of the LCLC induced a maximal laxity of 7.9 degrees and 37 degrees during forced PST in valgus and external rotation (supination), respectively. This study suggests the lateral collateral ligament to be the primary soft tissue constraint...

  16. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.; Lallia, P.; O'Hara, G.W.; Pollard, I.E.

    1987-06-01

    The paper presents the annual report of the Joint European Torus (JET) Joint Undertaking, 1986. The report is divided into two parts: a part on the scientific and technical programme of the project, and a part setting out the administration and organisation of the Project. The first part includes: a summary of the main features of the JET apparatus, the JET experimental programme, the position of the Project in the overall Euratom programme, and how JET relates to other large fusion devices throughout the world. In addition, the technical status of JET is described, as well as the results of the JET operations in 1986. The final section of the first part outlines the proposed future programme of JET. (U.K.)

  17. Peripheral degenerative joint diseases

    Directory of Open Access Journals (Sweden)

    Nilzio Antonio da Silva

    2008-03-01

    Full Text Available Osteoarthritis, a degenerative joint disease, is the most commonrheumatic disorder mainly in a geriatric population. Manifestationsare pain, stiffness and functional loss in the affected joint.According to etiology it is classifi ed as primary (or idiopathicand secondary. Some risk factors for disease development aregenetics, race, age, sex, obesity, occupational activities andarticular biomechanics. Pathogenesis is the same for any cause orlocalization, being catabolic alterations, with synthesis, inhibitionand reparing intent of the cartilage matrix. Metalloproteinases andcytokines (IL-1,IL-6,TNF-α actions promote infl ammatory reactionand cartilage degradation. Pain, the most important symptom,does not correlate with radiologic fi ndings. Peripheral osteoarthritisoccurs predominantly in the knee, hip and hand. Diagnosis is basedon clinical features, laboratorial tests and radiological changes.Rheumatological associations’ guidelines for treatment includenon-pharmacologic (education, physiotherapy, assistive devices,and pharmacologic (analgesics, anti-infl ammatory drugs therapyand surgery. Arthroplasty seems to work better than medicines, butshould be used if other treatments have failed.

  18. Joint Counterdrug Operations

    Science.gov (United States)

    1998-02-17

    Chapter II Joint Pub 3-07.4 cocaine HCL production. There are over 150 groups trafficking in cocaine, with cartels centered in Medellin and Cali. These...nontraditional mapping products and several digital mapping data bases for geological information and intelligence systems. • Defense Security Assistance Agency...variety of means. Dissemination means include personal contact, physical transfer or courier of hard copy textual and graphic materials, digital and

  19. Jet Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.; O'Hara, G.W.; Pollard, I.E.

    1988-07-01

    The paper presents the Jet Joint Undertaking annual report 1987. A description is given of the JET and Euratom and International Fusion Programmes. The technical status of JET is outlined, including the development and improvements made to the system in 1987. The results of JET Operation in 1987 are described within the areas of: density effects, temperature improvements, energy confinement studies and other material effects. The contents also contain a summary of the future programme of JET. (U.K.)

  20. Joint Fire Support

    Science.gov (United States)

    2010-06-30

    intelligence application package for theater battle management core system ( TBMCS ) functionality at wing and squadron levels. The automated four... TBMCS , Joint Surveillance and Target Attack Radar System (Ground Control Station), and Global Command and Control System, as well as with Allied FA...The TBMCS is a force level integrated air C2 system. TBMCS provides hardware, software, and communications interfaces to support the preparation