WorldWideScience

Sample records for tin-based composite oxide

  1. Synthesis and electrochemical properties of tin oxide-based composite by rheological technique

    International Nuclear Information System (INIS)

    He Zeqiang; Li Xinhai; Xiong Lizhi; Wu Xianming; Xiao Zhuobing; Ma Mingyou

    2005-01-01

    Novel rheological technique was developed to synthesize tin oxide-based composites. The microstructure, morphology, and electrochemical performance of the materials were investigated by X-ray diffraction, scanning electron microscopy and electrochemical methods. The particles of tin oxide-based materials form an inactive matrix. The average size of the particles is about 150 nm. The material delivers a charge capacity of more than 570 mAh g -1 . The capacity loss per cycle is about 0.15% after being cycled 30 times. The good electrochemical performance indicates that this kind of tin oxide-based material is promising anode for lithium-ion battery

  2. Synthesis and characterization of tin and antimony based composites derived by mechanochemical in situ reduction of oxides

    International Nuclear Information System (INIS)

    Patel, P.; Roy, S.; Kim, I.L.-Seok; Kumta, P.N.

    2004-01-01

    Composites consisting of tin and silicon dioxide or antimony and silicon dioxide were synthesized using high energy mechanical milling. The composites were made by the reactive milling of SnO or Sb 2 O 3 with pure Si, resulting in the oxidation of silicon and the reduction of the metal oxides. The minimum time required to complete the reaction for the tin system was 170 min, while the minimum time for the antimony system was 230 min. X-ray diffraction and infrared spectroscopy were used to determine the phases present in the composites. In addition, scanning electron microscopy, along with energy dispersive X-ray analysis (EDX), was used to characterize the microstructure and composition of the resultant material

  3. Antimony Doped Tin Oxides and Their Composites with Tin pyrophosphates as Catalyst Supports for Oxygen Evolution Reaction in Proton Exchange Membrane Water Electrolysis

    DEFF Research Database (Denmark)

    Xu, Junyuan; Li, Qingfeng; Christensen, Erik

    2012-01-01

    Proton exchange membrane water electrolysers operating at typically 80 °C or at further elevated temperatures suffer from insufficient catalyst activity and durability. In this work, antimony doped tin oxide nanoparticles were synthesized and further doped with an inorganic proton conducting phase...... based on tin pyrophosphates as the catalyst support. The materials showed an overall conductivity of 0.57 S cm−1 at 130 °C under the water vapor atmosphere with a contribution of the proton conduction. Using this composite support, iridium oxide nanoparticle catalysts were prepared and characterized...

  4. Development of Nafion/tin oxide composite MEA for DMFC applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, F.; Mecheri, B.; D' Epifanio, A. [Department of Chemical Science and Technology, University of Rome ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Rome (Italy); Traversa, E. [Department of Chemical Science and Technology, University of Rome ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Rome (Italy); International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Licoccia, S.

    2010-10-15

    Nafion composite membranes containing either hydrated tin oxide (SnO{sub 2}. nH{sub 2}O) or sulphated tin oxide (S-SnO{sub 2}) at 5 and 10 wt.-% were prepared and characterised. The structural and electrochemical features of the samples were investigated using X-ray diffraction, electrochemical impedance spectroscopy, methanol crossover and direct methanol fuel cell (DMFC) tests. Highest conductivity values were obtained by using S-SnO{sub 2} as filler (0.094 S cm{sup -1} at T = 110 C and RH = 100%). The presence of the inorganic compound resulted in lower methanol crossover and improved DMFC performance with respect to a reference unfilled membrane. To improve the interface of the membrane electrode assembly (MEA), a layer of the composite electrolyte (i.e. the Nafion membrane containing 5 wt.-% S-SnO{sub 2}) was brushed on the electrodes, obtaining a DMFC operating at 110 C with a power density (PD) of 100 mW cm{sup -2} which corresponds to a PD improvement of 52% with respect to the unfilled Nafion membrane. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  5. Tin-antimony oxide oxidation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Frank J. [Open University, Department of Chemistry (United Kingdom)

    1998-12-15

    Tin-antimony oxide catalysts for the selective oxidation of hydrocarbons have been made by precipitation techniques. The dehydration of the amorphous dried precipitate by calcination at increasingly higher temperatures induces the crystallisation of a rutile-related tin dioxide-type phase and the segregation of antimony oxides which volatilise at elevated temperatures. The rutile-related tin dioxide-type phase contains antimony(V) in the bulk and antimony(III) in the surface. Specific catalytic activity for the oxidative dehydrogenation of butene to butadiene is associated with materials with large concentrations of antimony(III) in the surface.

  6. Gas Sensors Based on Tin Oxide Nanoparticles Synthesized from a Mini-Arc Plasma Source

    Directory of Open Access Journals (Sweden)

    Ganhua Lu

    2006-01-01

    Full Text Available Miniaturized gas sensors or electronic noses to rapidly detect and differentiate trace amount of chemical agents are extremely attractive. In this paper, we report on the fabrication and characterization of a functional tin oxide nanoparticle gas sensor. Tin oxide nanoparticles are first synthesized using a convenient and low-cost mini-arc plasma source. The nanoparticle size distribution is measured online using a scanning electrical mobility spectrometer (SEMS. The product nanoparticles are analyzed ex-situ by high resolution transmission electron microscopy (HRTEM for morphology and defects, energy dispersive X-ray (EDX spectroscopy for elemental composition, electron diffraction for crystal structure, and X-ray photoelectron spectroscopy (XPS for surface composition. Nonagglomerated rutile tin oxide (SnO2 nanoparticles as small as a few nm have been produced. Larger particles bear a core-shell structure with a metallic core and an oxide shell. The nanoparticles are then assembled onto an e-beam lithographically patterned interdigitated electrode using electrostatic force to fabricate the gas sensor. The nanoparticle sensor exhibits a fast response and a good sensitivity when exposed to 100 ppm ethanol vapor in air.

  7. Electrical and optical properties of indium tin oxide/epoxy composite film

    International Nuclear Information System (INIS)

    Guo Xia; Guo Chun-Wei; Chen Yu; Su Zhi-Ping

    2014-01-01

    The electrical and optical properties of the indium tin oxide (ITO)/epoxy composite exhibit dramatic variations as functions of the ITO composition and ITO particle size. Sharp increases in the conductivity in the vicinity of a critical volume fraction have been found within the framework of percolation theory. A conductive and insulating transition model is extracted by the ITO particle network in the SEM image, and verified by the resistivity dependence on the temperature. The dependence of the optical transmittance on the particle size was studied. Further decreasing the ITO particle size could further improve the percolation threshold and light transparency of the composite film. (condensed matter: structural, mechanical, and thermal properties)

  8. On the electrochemistry of tin oxide coated tin electrodes in lithium-ion batteries

    International Nuclear Information System (INIS)

    Böhme, Solveig; Edström, Kristina; Nyholm, Leif

    2015-01-01

    As tin based electrodes are of significant interest in the development of improved lithium-ion batteries it is important to understand the associated electrochemical reactions. In this work it is shown that the electrochemical behavior of SnO_2 coated tin electrodes can be described based on the SnO_2 and SnO conversion reactions, the lithium tin alloy formation and the oxidation of tin generating SnF_2. The CV, XPS and SEM data, obtained for electrodeposited tin crystals on gold substrates, demonstrates that the capacity loss often observed for SnO_2 is caused by the reformed SnO_2 layer serving as a passivating layer protecting the remaining tin. Capacities corresponding up to about 80 % of the initial SnO_2 capacity could, however, be obtained by cycling to 3.5 V vs. Li"+/Li. It is also shown that the oxidation of the lithium tin alloy is hindered by the rate of the diffusion of lithium through a layer of tin with increasing thickness and that the irreversible oxidation of tin to SnF_2 at potentials larger than 2.8 V vs. Li"+/Li is due to the fact that SnF_2 is formed below the SnO_2 layer. This improved electrochemical understanding of the SnO_2/Sn system should be valuable in the development of tin based electrodes for lithium-ion batteries.

  9. The optical and structural properties of graphene nanosheets and tin oxide nanocrystals composite

    Science.gov (United States)

    Farheen, Parveen, Azra; Azam, Ameer

    2018-05-01

    A nanocomposite material consisting of metal oxide and reduced graphene oxide was prepared via simple, economic, and effective chemical reduction method. The synthesis strategy was based on the reduction of GO with Sn2+ ion that combines tin oxidation and GO reduction in one step, which provides a simple, low-cost and effective way to prepare graphene nanosheets/SnO2 nanocrystals composites because no additional chemicals were needed. SEM and TEM images shows the uniform distribution of the SnO2 nanocrystals on the Graphene nanosheets (GNs) surface and transmission electron microscope shows an average particle size of 2-4 nm. The mean crystallite size was calculated by Debye Scherrer formula and was found to be about 4.0 nm. Optical analysis was done by using UV-Visible spectroscopy technique and the band gap energy of the GNs/SnO2 nanocomposite was calculated by Tauc relation and came out to be 3.43eV.

  10. Hydrolysis of bis(dimethylamido)tin to tin (II) oxyhydroxide and its selective transformation into tin (II) or tin (IV) oxide

    KAUST Repository

    Khanderi, Jayaprakash; Shi, Lei; Rothenberger, Alexander

    2015-01-01

    Sn6O4(OH)4, a hydrolysis product of Sn(NMe2)2, is transformed to tin (II) or tin (IV) oxide by solid and solution phase processing. Tin (II) oxide is formed by heating Sn6O4(OH)4 at ≤200 °C in air or under inert atmosphere. Tin (IV) oxide

  11. Characterization of tin oxide nanoparticles synthesized via oxidation from metal

    International Nuclear Information System (INIS)

    Abruzzi, R.C.; Dedavid, B.A.; Pires, M.J.R.; Streicher, M.

    2014-01-01

    The tin oxide (SnO_2) is a promising material with great potential for applications such as gas sensors and catalysts. This oxide nanostructures show higher activation efficiency due to its larger effective surface. This paper presents the synthesis and characterization of the tin oxide in different conditions, via oxidation of pure tin with nitric acid. Results obtained from the characterization of SnO_2 powder by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), Particle size by Dynamic Light Scattering (DLS) and Infrared Spectroscopy (FTIR) indicated that the conditions were suitable for the synthesis to obtain manometric tin oxide granules with crystalline structure of rutile. (author)

  12. Understanding the gas sensing properties of polypyrrole coated tin oxide nanofiber mats

    Science.gov (United States)

    Bagchi, Sudeshna; Ghanshyam, C.

    2017-03-01

    Tin oxide-polypyrrole composites have been widely studied for their enhanced sensing performance towards ammonia vapours, but further investigations are required for an understanding of the interaction mechanisms with different target analytes. In this work, polypyrrole coated tin oxide fibers have been synthesized using a two-step approach of electrospinning and vapour phase polymerization for the sensing of ammonia, ethanol, methanol, 2-propanol and acetone vapours. The resistance variation in the presence of these vapours of different nature and concentration is investigated for the determination of sensor response. A decrease in resistance occurred on interaction of tin oxide-polypyrrole with ammonia, as opposed to previous reported works. Partial reduction of polypyrrole due to interfacial interaction with tin oxide has been proposed to explain this behavior. High sensitivity of 7.45 is achieved for 1 ppm ammonia concentration. Furthermore, the sensor exhibited high sensitivity and a faster response towards ethanol vapours although methanol has the highest electron donating capability. The catalytic mechanism has been discussed to explain this interesting behavior. The results reveal that interaction between tin oxide and polypyrrole is crucial to control the predominant sensing mechanism.

  13. Hydrolysis of bis(dimethylamido)tin to tin (II) oxyhydroxide and its selective transformation into tin (II) or tin (IV) oxide

    KAUST Repository

    Khanderi, Jayaprakash

    2015-03-01

    Sn6O4(OH)4, a hydrolysis product of Sn(NMe2)2, is transformed to tin (II) or tin (IV) oxide by solid and solution phase processing. Tin (II) oxide is formed by heating Sn6O4(OH)4 at ≤200 °C in air or under inert atmosphere. Tin (IV) oxide nanoparticles are formed in the presence of a carboxylic acid and base in air at room temperature. IR spectroscopy, Raman spectroscopy, thermogravimetry (coupled with infrared spectroscopy), powder X-ray diffraction, high temperature X-ray diffraction, scanning electron and transmission electron microscopy are used for the characterization of Sn6O4(OH)4 and the investigation of its selective decomposition into SnO or SnO2. Spectroscopic and X-ray diffraction results indicate that SnO is formed by the removal of water from crystalline Sn6O4(OH)4. SEM shows octahedral morphology of the Sn6O4(OH)4, SnO and SnO2 with particle size from 400 nm-2 μm during solid state conversion. Solution phase transformation of Sn6O4(OH)4 to SnO2 occurs in the presence of potassium glutarate and oxygen. SnO2 particles are 15-20 nm in size.

  14. Highly sensitive detection of 2,4,6-trichlorophenol based on HS-β-cyclodextrin/gold nanoparticles composites modified indium tin oxide electrode

    International Nuclear Information System (INIS)

    Zheng, Xiangli; Liu, Shan; Hua, Xiaoxia; Xia, Fangquan; Tian, Dong; Zhou, Changli

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •A novel electrochemical sensing platform by self-assembling of HS-β-cyclodextrin/gold nanoparticles onto indium tin oxide electrode (HS-β-CD/AuNPs/SAM/ITO electrode) surface was constructed. •The proposed electrochemical sensor exhibited high sensitivity for the determination 2,4,6-trichlorophenol which electrochemical activity is very weak. •The newly developed method was successfully applied to quantitatively determine 2,4,6-trichlorophenol in tap water samples. -- ABSTRACT: A new electrochemical sensor for determination of 2,4,6-trichlorophenol (2,4,6-TCP) was fabricated. The characterization of the sensor was studied by scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry techniques. The electrochemical behavior of 2,4,6-TCP was investigated using cyclic voltammetry and differential pulse voltammetry at the HS-β-cyclodextrin (HS-β-CD)/gold nanoparticles (AuNPs) composite modified indium tin oxide (ITO) electrode. The results showed that the current responses of 2,4,6-TCP greatly enhanced due to the high catalytic activity and enrichment capability of composites. The peak current of 2,4,6-TCP increases linearly with the increase of the 2,4,6-TCP concentration from 3.0 × 10 −9 to 2.8 × 10 −8 M, with the limit of detection of 1.0 × 10 −9 . Further more, the modified electrode was successfully applied to detect the level of 2,4,6-TCP in tap water samples with excellent sensitivity

  15. Compositional influence on the electrical performance of zinc indium tin oxide transparent thin-film transistors

    International Nuclear Information System (INIS)

    Marsal, A.; Carreras, P.; Puigdollers, J.; Voz, C.; Galindo, S.; Alcubilla, R.; Bertomeu, J.; Antony, A.

    2014-01-01

    In this work, zinc indium tin oxide layers with different compositions are used as the active layer of thin film transistors. This multicomponent transparent conductive oxide is gaining great interest due to its reduced content of the scarce indium element. Experimental data indicate that the incorporation of zinc promotes the creation of oxygen vacancies, which results in a higher free carrier density. In thin-film transistors this effect leads to a higher off current and threshold voltage values. The field-effect mobility is also strongly degraded, probably due to coulomb scattering by ionized defects. A post deposition annealing in air reduces the density of oxygen vacancies and improves the field-effect mobility by orders of magnitude. Finally, the electrical characteristics of the fabricated thin-film transistors have been analyzed to estimate the density of states in the gap of the active layers. These measurements reveal a clear peak located at 0.3 eV from the conduction band edge that could be attributed to oxygen vacancies. - Highlights: • Zinc promotes the creation of oxygen vacancies in zinc indium tin oxide transistors. • Post deposition annealing in air reduces the density of oxygen. • Density of states reveals a clear peak located at 0.3 eV from the conduction band

  16. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Janika

    2011-12-12

    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO{sub 2} and TiO{sub 2}. In order to achieve transparent and conductive films free carriers have to be generated by oxygen vacancies, by metal ions at interstitial positions in the crystal lattice or by cation doping with Sb or Nb, respectively. Antimony doped tin oxide and niobium doped titanium oxide films have been prepared by reactive direct current magnetron sputtering (dc MS) from metallic targets. The process parameters and the doping concentration in the films have been varied. The films have been electrically, optically and structurally analysed in order to analyse the influence of the process parameters and the doping concentration on the film properties. Post-deposition treatments of the films have been performed in order to improve the film properties. For the deposition of transparent and conductive tin oxide, the dominant parameter during the deposition is the oxygen content in the sputtering gas. The Sb incorporation as doping atoms has a minor influence on the electrical, optical and structural properties. Within a narrow oxygen content in the sputtering gas highly transparent and conductive tin oxide films have been prepared. In this study, the lowest resistivity in the as deposited state is 2.9 m{omega} cm for undoped tin oxide without any postdeposition treatment. The minimum resistivity is related to a transition to crystalline films with the stoichiometry of SnO{sub 2}. At higher oxygen content the films turn out to have a higher resistivity due to an oxygen excess. After post

  17. Synthesising highly reactive tin oxide using Tin(II2- ethylhexanoate polynucleation as precursor

    Directory of Open Access Journals (Sweden)

    Alejandra Montenegro Hernández

    2009-01-01

    Full Text Available Tin oxide is a widely used compound in technological applications, particularity as a catalyst, gas sensor and in making varistors, transparent conductors, electrocatalytic electrodes and photovoltaic cells. An ethylhexanoate tin salt, a carboxylic acid and poly-esterification were used for synthesising highly reactive tin oxide in the present study. Synthesis was controlled by Fourier transform infrared (FTIR spectroscopy and recording changes in viscosity. The tin oxide characteristics so obtained were determined using FTIR spectroscopy, X-ray diffraction (XRD and scanning electron microscopy (SEM. The SnO2 dust synthesised and heat-treated at 550°C yielded high density aggregates, having greater than 50 μm particle size. This result demonstrates the high reactivity of the ceramic powders synthesised here.

  18. Surface characterization of sol–gel derived indium tin oxide films on ...

    Indian Academy of Sciences (India)

    Unknown

    , India ... 1. Introduction. Indium tin oxide (ITO) coating on glass is an important item in the field ..... In addition, contamination of carbon from environment cannot be ruled ..... processing of ceramics, glasses and composites (eds) L L. Hench and ...

  19. Mesoporous Tin-Based Oxide Nanospheres/Reduced Graphene Composites as Advanced Anodes for Lithium-Ion Half/Full Cells and Sodium-Ion Batteries.

    Science.gov (United States)

    He, Yanyan; Li, Aihua; Dong, Caifu; Li, Chuanchuan; Xu, Liqiang

    2017-10-04

    The large volume variations of tin-based oxides hinder their extensive application in the field of lithium-ion batteries (LIBs). In this study, structure design, hybrid fabrication, and carbon-coating approaches have been simultaneously adopted to address these shortcomings. To this end, uniform mesoporous NiO/SnO 2 @rGO, Ni-Sn oxide@rGO, and SnO 2 @rGO nanosphere composites have been selectively fabricated. Among them, the obtained NiO/SnO 2 @rGO composite exhibited a high capacity of 800 mAh g -1 at 1000 mA g -1 after 400 cycles. The electrochemical mechanism of NiO/SnO 2 as an anode for LIBs has been preliminarily investigated by ex situ XRD pattern analysis. Furthermore, an NiO/SnO 2 @rGO-LiCoO 2 lithium-ion full cell showed a high capacity of 467.8 mAh g -1 at 500 mA g -1 after 100 cycles. Notably, the NiO/SnO 2 @rGO composite also showed good performance when investigated as an anode for sodium-ion batteries (SIBs). It is believed that the unique mesoporous nanospherical framework, synergistic effects between the various components, and uniform rGO wrapping of NiO/SnO 2 shorten the Li + ion diffusion pathways, maintain sufficient contact between the active material and the electrolyte, mitigate volume changes, and finally improve the electrical conductivity of the electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effect of annealing temperature on optical properties of binary zinc tin oxide nano-composite prepared by sol-gel route using simple precursors: structural and optical studies by DRS, FT-IR, XRD, FESEM investigations.

    Science.gov (United States)

    Habibi, Mohammad Hossein; Mardani, Maryam

    2015-02-25

    Binary zinc tin oxide nano-composite was synthesized by a facile sol-gel method using simple precursors from the solutions consisting of zinc acetate, tin(IV) chloride and ethanol. Effect of annealing temperature on optical and structural properties was investigated using X-ray diffraction (XRD), diffuse reflectance spectra (DRS), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). XRD results revealed the existence of the ZnO and SnO2 phases. FESEM results showed that binary zinc tin oxide nano-composites ranges from 56 to 60 nm in diameter at 400°C and 500°C annealing temperatures respectively. The optical band gap was increased from 2.72 eV to 3.11 eV with the increasing of the annealing temperature. FTIR results confirmed the presence of zinc oxide and tin oxide and the broad absorption peaks at 3426 and 1602 cm(-1) can be ascribed to the vibration of absorptive water, and the absorption peaks at 546, 1038 and 1410 cm(-1) are due to the vibration of Zn-O or Sn-O groups in binary zinc tin oxide. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Indium tin oxide-rod/single walled carbon nanotube based transparent electrodes for ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Yun, Min Ju; Kim, Hee-Dong; Kim, Kyeong Heon; Sung, Hwan Jun; Park, Sang Young; An, Ho-Myoung; Kim, Tae Geun

    2013-01-01

    In this paper, we report a transparent conductive oxide electrode scheme working for ultraviolet light-emitting diodes based on indium tin oxide (ITO)-rod and a single walled carbon nanotube (SWCNT) layer. We prepared four samples with ITO-rod, SWCNT/ITO-rod, ITO-rod/SWCNT, and SWCNT/ITO-rod/SWCNT structures for comparison. As a result, the sample with SWCNT/ITO-rod/SWCNT structures showed the highest transmittance over 90% at 280 nm and the highest Ohmic behavior (with sheet resistance of 5.33 kΩ/□) in the current–voltage characteristic curves. - Highlights: • Transparent conductive oxide (TCO) electrodes are proposed for UV light-emitting diodes. • These TCO electrodes are based on evaporated indium tin oxide (ITO)-rods. • Single walled carbon nanotube (SWCNT) layers are used as a current spreading layer. • The proposed TCO electrode structures show more than 90% transmittance at 280 nm

  2. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Sumanta K.; Rajeswari, V. P. [Centre for Nano Science and Technology, GVP College of Engineering (Autonomous), Visakhapatnam- 530048 (India)

    2014-01-28

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn{sub 3}O{sub 4}, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.

  3. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    International Nuclear Information System (INIS)

    Tripathy, Sumanta K.; Rajeswari, V. P.

    2014-01-01

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn 3 O 4 , corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells

  4. Highly conducting and transparent sprayed indium tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Rami, M.; Benamar, E.; Messaoudi, C.; Sayah, D.; Ennaoui, A. (Faculte des Sciences, Rabat (Morocco). Lab. de Physique des Materiaux)

    1998-03-01

    Indium tin oxide (ITO) has a wide range of applications in solar cells (e.g. by controlling the resistivity, we can use low conductivity ITO as buffer layer and highly conducting ITO as front contact in thin films CuInS[sub 2] and CuInSe[sub 2] based solar cells) due to its wide band gap (sufficient to be transparent) in both visible and near infrared range, and high carrier concentrations with metallic conduction. A variety of deposition techniques such as reactive electron beam evaporation, DC magnetron sputtering, evaporation, reactive thermal deposition, and spray pyrolysis have been used for the preparation of undoped and tin doped indium oxide. This latter process which makes possible the preparation of large area coatings has attracted considerable attention due to its simplicity and large scale with low cost fabrication. It has been used here to deposit highly transparent and conducting films of tin doped indium oxide onto glass substrates. The electrical, optical and structural properties have been investigated as a function of various deposition parameters namely dopant concentrations, temperature and nature of substrates. X-ray diffraction patterns have shown that deposited films are polycrystalline without second phases and have preferred orientation [400]. INdium tin oxide layers with small resistivity value around 7.10[sup -5] [omega].cm and transmission coefficient in the visible and near IR range of about 85-90% have been easily obtained. (authors) 13 refs.

  5. Optically active polyurethane@indium tin oxide nanocomposite: Preparation, characterization and study of infrared emissivity

    International Nuclear Information System (INIS)

    Yang, Yong; Zhou, Yuming; Ge, Jianhua; Yang, Xiaoming

    2012-01-01

    Highlights: ► Silane coupling agent of KH550 was used to connect the ITO and polyurethanes. ► Infrared emissivity values of the hybrids were compared and analyzed. ► Interfacial synergistic action and orderly secondary structure were the key factors. -- Abstract: Optically active polyurethane@indium tin oxide and racemic polyurethane@indium tin oxide nanocomposites (LPU@ITO and RPU@ITO) were prepared by grafting the organics onto the surfaces of modified ITO nanoparticles. LPU@ITO and RPU@ITO composites based on the chiral and racemic tyrosine were characterized by FT-IR, UV–vis spectroscopy, X-ray diffraction (XRD), SEM, TEM, and thermogravimetric analysis (TGA), and the infrared emissivity values (8–14 μm) were investigated in addition. The results indicated that the polyurethanes had been successfully grafted onto the surfaces of ITO without destroying the crystalline structure. Both composites possessed the lower infrared emissivity values than the bare ITO nanoparticles, which indicated that the interfacial interaction had great effect on the infrared emissivity. Furthermore, LPU@ITO based on the optically active polyurethane had the virtue of regular secondary structure and more interfacial synergistic actions between organics and inorganics, thus it exhibited lower infrared emissivity value than RPU@ITO based on the racemic polyurethane.

  6. Deposition efficiency in the preparation of ozone-producing nickel and antimony doped tin oxide anodes

    Directory of Open Access Journals (Sweden)

    Staffan Sandin

    2017-03-01

    Full Text Available The influence of precursor salts in the synthesis of nickel and antimony doped tin oxide (NATO electrodes using thermal decomposition from dissolved chloride salts was investigated. The salts investigated were SnCl4×5H2O, SnCl2×2H2O, SbCl3 and NiCl2×6H2O. It was shown that the use of SnCl4×5H20 in the preparation process leads to a tin loss of more than 85 %. The loss of Sb can be as high as 90 % while no indications of Ni loss was observed. As a consequence, the concentration of Ni in the NATO coating will be much higher than in the precursor solution. This high and uncontrolled loss of precursors during the preparation process will lead to an unpredictable composition in the NATO coating and will have negative economic and environmental effects. It was found that using SnCl2×2H20 instead of SnCl4×5H2O can reduce the tin loss to less than 50 %. This tin loss occurs at higher temperatures than when using SnCl4×5H2O where the tin loss occurs from 56 – 147 °C causing the composition to change both during the drying (80 – 110 °C and calcination (460 -550 °C steps of the preparation process. Electrodes coated with NATO based on the two different tin salts were investigated for morphology, composition, structure, and ozone electrocatalytic properties.

  7. Microcontroller based instrumentation for heater control circuit of tin oxide based hydrogen sensor

    International Nuclear Information System (INIS)

    Premalatha, S.; Krithika, P.; Gunasekaran, G.; Ramakrishnan, R.; Ramanarayanan, R.R.; Prabhu, E.; Jayaraman, V.; Parthasarathy, R.

    2015-01-01

    A thin film sensor based on tin oxide developed in IGCAR is used to monitor very low levels of hydrogen (concentration ranging from 2 ppm to 80 ppm). The heater and the sensor patterns are integrated on a miniature alumina substrate and necessary electrical leads are taken out. For proper functioning of the sensor, the heater has to be maintained at a constant temperature of 350°C. The sensor output (voltage signal) varies with H 2 concentration. In fast breeder reactors, liquid sodium is used as coolant. The sensor is used to detect water/steam leak in secondary sodium circuit. During the start up of the reactor, steam leak into sodium circuit generates hydrogen gas as a product that doesn't dissolve in sodium, but escapes to the surge tank containing argon i.e. in cover gas plenum of sodium circuit. On-line monitoring of hydrogen in cover gas is done to detect an event of water/steam leakage. The focus of this project is on the instrumentation pertaining to the temperature control for the sensor heater. The tin oxide based hydrogen sensor is embedded in a substrate which consists of a platinum heater, essentially a resistor. There is no provision of embedding a temperature sensor on the heater surface due to the physical constraints, without which maintaining a constant heater temperature is a complex task

  8. Low-temperature Synthesis of Tin(II) Oxide From Tin(II) ketoacidoximate Precursor

    KAUST Repository

    Alshankiti, Buthainah

    2015-01-01

    Sn (II) oxide finds numerous applications in different fields such as thin film transistors1, solar cells2 and sensors.3 In this study we present the fabrication of tin monoxide SnO by using Sn (II) ketoacid oximate complexes as precursors. Tin (II

  9. Indium Tin Oxide Resistor-Based Nitric Oxide Microsensors

    Science.gov (United States)

    Xu, Jennifer C.; Hunter, Gary W.; Gonzalez, Jose M., III; Liu, Chung-Chiun

    2012-01-01

    A sensitive resistor-based NO microsensor, with a wide detection range and a low detection limit, has been developed. Semiconductor microfabrication techniques were used to create a sensor that has a simple, robust structure with a sensing area of 1.10 0.99 mm. A Pt interdigitated structure was used for the electrodes to maximize the sensor signal output. N-type semiconductor indium tin oxide (ITO) thin film was sputter-deposited as a sensing material on the electrode surface, and between the electrode fingers. Alumina substrate (250 m in thickness) was sequentially used for sensor fabrication. The resulting sensor was tested by applying a voltage across the two electrodes and measuring the resulting current. The sensor was tested at different concentrations of NO-containing gas at a range of temperatures. Preliminary results showed that the sensor had a relatively high sensitivity to NO at 450 C and 1 V. NO concentrations from ppm to ppb ranges were detected with the low limit of near 159 ppb. Lower NO concentrations are being tested. Two sensing mechanisms were involved in the NO gas detection at ppm level: adsorption and oxidation reactions, whereas at ppb level of NO, only one sensing mechanism of adsorption was involved. The NO microsensor has the advantages of high sensitivity, small size, simple batch fabrication, high sensor yield, low cost, and low power consumption due to its microsize. The resistor-based thin-film sensor is meant for detection of low concentrations of NO gas, mainly in the ppb or lower range, and is being developed concurrently with other sensor technology for multispecies detection. This development demonstrates that ITO is a sensitive sensing material for NO detection. It also provides crucial information for future selection of nanostructured and nanosized NO sensing materials, which are expected to be more sensitive and to consume less power.

  10. Formation of tin-tin oxide core–shell nanoparticles in the composite SnO{sub 2−x}/nitrogen-doped carbon nanotubes by pulsed ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Korusenko, P.M., E-mail: korusenko@obisp.oscsbras.ru [Omsk Scientific Center, Siberian Branch of the Russian Academy of Sciences, Karl Marx avenue 15, 644040 Omsk (Russian Federation); Nesov, S.N.; Bolotov, V.V.; Povoroznyuk, S.N. [Omsk Scientific Center, Siberian Branch of the Russian Academy of Sciences, Karl Marx avenue 15, 644040 Omsk (Russian Federation); Pushkarev, A.I. [National Research Tomsk Polytechnic University, Lenin Ave. 2a, 634028 Tomsk (Russian Federation); Ivlev, K.E. [Omsk Scientific Center, Siberian Branch of the Russian Academy of Sciences, Karl Marx avenue 15, 644040 Omsk (Russian Federation); Smirnov, D.A. [St. Petersburg State University, Lieutenant Shmidt Emb. 11, 198504 St. Petersburg (Russian Federation); Institute of Solid State Physics, Dresden University of Technology, D-01069 Dresden (Germany)

    2017-03-01

    Highlights: • Original method the formation of core–shell structures by pulsed ion beam is proposed. • The composite SnO{sub 2−x}/N-MWCNTs was irradiated by pulsed ion beam. • Morphology and electronic structure of the irradiated composite were characterized. • The formation of Sn−SnO{sub x} core–shell nanoparticles after irradiation was observed. - Abstract: The complex methods of transmission electron microscopy, energy dispersive X-ray analysis, and X-ray photoelectron spectroscopy were used to investigate the changes in the morphology, phase composition, and electronic structure of the composite SnO{sub 2−x}/nitrogen-doped multiwalled carbon nanotubes (SnO{sub 2−x}/N-MWCNTs) irradiated with the pulsed ion beam of nanosecond duration. The irradiation of the composite SnO{sub 2−x}/N-MWCNTs leads to the formation of nanoparticles with the core–shell structure on the surface of CNTs with a sharp interfacial boundary. It has been established that the “core” is a metal tin (Sn{sup 0}) with a typical size of 5–35 nm, and the “shell” is a thin amorphous layer (2–6 nm) consisting of nonstoichiometric tin oxide with a low oxygen content. The “core–shell” structure Sn−SnO{sub x} is formed due to the process of heating and evaporation of SnO{sub 2−x} under the effect of the ion beam, followed by vapor deposition on the surface of carbon nanotubes.

  11. Solvent transfer of graphene oxide for synthesis of tin mono-sulfide graphene composite and application as anode of lithium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Alok M., E-mail: alokmani@iitb.ac.in; Mitra, Sagar

    2016-11-15

    Graphical abstract: Destabilization of graphene oxide colloid and SnS graphene composite preparation for lithium-ion battery. - Abstract: Tin mono sulfide (SnS) graphene composite has been synthesized for anode of lithium-ion battery. For synthesis of composite, graphene oxide (GO)-water (H{sub 2}O) colloid has been destabilized and ensured the complete transfer of graphene oxide into another organic solvent N, N-dimethyl formamide (DMF). Mechanism for the destabilization of GO-H{sub 2}O colloid is established. Surface to surface attachment of SnS on graphene sheet is achieved by solvothermal solution phase assembly of graphene sheets and SnS nanoparticles in DMF solvent. Graphene plays role in nanoparticle formation in composite. Such confined composite has been cycled reversibly at current rate of 160 mA g{sup −1}, in voltage region of 0.01–2.5 V and exhibit a superior discharge capacity of 630 mAh g{sup −1} after 50th cycle. Ex situ TEM analysis of used electrode reveal that the SnS nanoparticle-graphene composite with CMC binder perform better due to proper shape retention of electroactive materials during electrochemical cycling.

  12. Solvent transfer of graphene oxide for synthesis of tin mono-sulfide graphene composite and application as anode of lithium-ion battery

    International Nuclear Information System (INIS)

    Tripathi, Alok M.; Mitra, Sagar

    2016-01-01

    Graphical abstract: Destabilization of graphene oxide colloid and SnS graphene composite preparation for lithium-ion battery. - Abstract: Tin mono sulfide (SnS) graphene composite has been synthesized for anode of lithium-ion battery. For synthesis of composite, graphene oxide (GO)-water (H_2O) colloid has been destabilized and ensured the complete transfer of graphene oxide into another organic solvent N, N-dimethyl formamide (DMF). Mechanism for the destabilization of GO-H_2O colloid is established. Surface to surface attachment of SnS on graphene sheet is achieved by solvothermal solution phase assembly of graphene sheets and SnS nanoparticles in DMF solvent. Graphene plays role in nanoparticle formation in composite. Such confined composite has been cycled reversibly at current rate of 160 mA g"−"1, in voltage region of 0.01–2.5 V and exhibit a superior discharge capacity of 630 mAh g"−"1 after 50th cycle. Ex situ TEM analysis of used electrode reveal that the SnS nanoparticle-graphene composite with CMC binder perform better due to proper shape retention of electroactive materials during electrochemical cycling.

  13. Dye-sensitized solar cell architecture based on indium-tin oxide nanowires coated with titanium dioxide

    International Nuclear Information System (INIS)

    Joanni, Ednan; Savu, Raluca; Sousa Goes, Marcio de; Bueno, Paulo Roberto; Nei de Freitas, Jilian; Nogueira, Ana Flavia; Longo, Elson; Varela, Jose Arana

    2007-01-01

    A new architecture for dye-sensitized solar cells is employed, based on a nanostructured transparent conducting oxide protruding from the substrate, covered with a separate active oxide layer. The objective is to decrease electron-hole recombination. The concept was tested by growing branched indium-tin oxide nanowires on glass using pulsed laser deposition followed by deposition of a sputtered titanium dioxide layer covering the wires. The separation of charge generation and charge transport functions opens many possibilities for dye-sensitized solar cell optimization

  14. The Preparation and Property of Graphene /Tin Oxide Transparent Conductive Film

    Directory of Open Access Journals (Sweden)

    SUN Tao

    2017-02-01

    Full Text Available Graphene doped tin oxide composites were prepared with SnCIZ·2HZ 0 and graphene oxide as raw materials with sol-gel method and then spincoated on the quartz glass to manufacture a new transparent conductive film. The composite film was characterized with X-ray diffraction(XRDand scanning electron microscopy(SEM analysis. XRD results show that the graphene oxide was successfully prepared with Hummers method. The graphene layers and particulate SnOZ can be clearly observed in SEM photos. The transmittance and conductivity of the thin films were tested with ultraviolet visible spectrophotometer and Hall effect measurement. The results show that the transmittivity of composite film in visible region is more than 90% and surface square resistance is 41 S2/口.The graphene/ SnOZ film exhibits a higher performance in transparence and conductivity than commercial FTO glass.

  15. Broad compositional tunability of indium tin oxide nanowires grown by the vapor-liquid-solid mechanism

    Directory of Open Access Journals (Sweden)

    M. Zervos

    2014-05-01

    Full Text Available Indium tin oxide nanowires were grown by the reaction of In and Sn with O2 at 800 °C via the vapor-liquid-solid mechanism on 1 nm Au/Si(001. We obtain Sn doped In2O3 nanowires having a cubic bixbyite crystal structure by using In:Sn source weight ratios > 1:9 while below this we observe the emergence of tetragonal rutile SnO2 and suppression of In2O3 permitting compositional and structural tuning from SnO2 to In2O3 which is accompanied by a blue shift of the photoluminescence spectrum and increase in carrier lifetime attributed to a higher crystal quality and Fermi level position.

  16. Properties of Polydisperse Tin-doped Dysprosium and Indium Oxides

    Directory of Open Access Journals (Sweden)

    Malinovskaya Tatyana

    2017-01-01

    Full Text Available The results of investigations of the complex permittivity, diffuse-reflectance, and characteristics of crystal lattices of tin-doped indium and dysprosium oxides are presented. Using the methods of spectroscopy and X-ray diffraction analysis, it is shown that doping of indium oxide with tin results in a significant increase of the components of the indium oxide complex permittivity and an appearance of the plasma resonance in its diffuse-reflectance spectra. This indicates the appearance of charge carriers with the concentration of more than 1021 cm−3 in the materials. On the other hand, doping of the dysprosium oxide with the same amount of tin has no effect on its optical and electromagnetic properties.

  17. Synthesis, characterization and photoluminescence of tin oxide nanoribbons and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M.A., E-mail: duraia_physics@yahoo.co [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan); Mansorov, Z.A. [Al-Farabi Kazakh National University, Almaty (Kazakhstan); Tokmolden, S. [Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan)

    2009-11-15

    In this work we report the successful formation of tin oxide nanowires and tin oxide nanoribbons with high yield and by using simple cheap method. We also report the formation of curved nanoribbon, wedge-like tin oxide nanowires and star-like nanowires. The growth mechanism of these structures has been studied. Scanning electron microscope was used in the analysis and the EDX analysis showed that our samples is purely Sn and O with ratio 1:2. X-ray analysis was also used in the characterization of the tin oxide nanowire and showed the high crystallinity of our nanowires. The mechanism of the growth of our1D nanostructures is closely related to the vapor-liquid-solid (VLS) process. The photoluminescence PL measurements for the tin oxide nanowires indicated that there are three stable emission peaks centered at wavelengths 630, 565 and 395 nm. The nature of the transition may be attributed to nanocrystals inside the nanobelts or to Sn or O vacancies occurring during the growth which can induce trapped states in the band gap.

  18. Inkjet printed ambipolar transistors and inverters based on carbon nanotube/zinc tin oxide heterostructures

    International Nuclear Information System (INIS)

    Kim, Bongjun; Jang, Seonpil; Dodabalapur, Ananth; Geier, Michael L.; Prabhumirashi, Pradyumna L.; Hersam, Mark C.

    2014-01-01

    We report ambipolar field-effect transistors (FETs) consisting of inkjet printed semiconductor bilayer heterostructures utilizing semiconducting single-walled carbon nanotubes (SWCNTs) and amorphous zinc tin oxide (ZTO). The bilayer structure allows for electron transport to occur principally in the amorphous oxide layer and hole transport to occur exclusively in the SWCNT layer. This results in balanced electron and hole mobilities exceeding 2 cm 2 V −1 s −1 at low operating voltages ( 10). This work provides a pathway for realizing solution processable, inkjet printable, large area electronic devices, and systems based on SWCNT-amorphous oxide heterostructures

  19. Development of Polymethylmethacrylate Based Composite for Gas Sensing Application

    OpenAIRE

    Devikala, S.; Kamaraj, P.

    2011-01-01

    Gas detection instruments are increasingly needed for industrial health and safety, environmental monitoring and process control. Conductive polymer composites have various industrial applications. The composite prepared by mixing carbon black with polymethylmethacrylate (PMMA) has very good gas sensing applications. The gas sensors based on carbon nanotube/polymer, ceramic and metal oxide composites such as epoxy, polyimide, PMMA / Barium titanate and tin oxide have also been developed. In t...

  20. Effect of passive film on electrochemical surface treatment for indium tin oxide

    International Nuclear Information System (INIS)

    Wu, Yung-Fu; Chen, Chi-Hao

    2013-01-01

    Highlights: ► Oxalic, tartaric, and citric acid baths accompanying with applied voltages were used to treat the ITO surface. ► We investigated the changes in ITO surfaces by examining the potentiodynamic behavior of ITO films. ► AFM analysis showed the formation of a passive layer could assist to planarize surface. ► XPS analysis indicated this passive layer was mainly composed of SnO 2. ► A better planarization was obtained by treating in 3.0 wt.% tartaric acid at 0.5 V due to weak complexation strength. - Abstract: Changes in indium tin oxide (ITO) film surface during electrochemical treatment in oxalic acid, tartaric acid, and citric acid were investigated. Controlling the voltage applied on ITO film allows the formation of a passive layer, effectively protecting the film surface. X-ray photoelectron spectrometry showed that the passive layer composition was predominantly SnO 2 in tartaric acid, while a composite of tin oxide and tin carboxylate in citric or oxalic acid. Even though the passive films on ITO surface generated in these organic acids, the indium or tin could complex with the organic acid anions, enhancing the dissolution of ITO films. The experimental results show that the interaction between the dissolution and passivation could assist to planarize the ITO surface. We found that the optimal treatment at 0.5 V in 3 wt.% tartaric acid could provide the ITO surface with root-mean-squared roughness less than 1.0 nm, due to the weak complexing characteristics of tartaric acid.

  1. Synthesis and Characterization of Nanocomposites Tin Oxide-Graphene Doping Pd Using Polyol Method

    Directory of Open Access Journals (Sweden)

    Aminuddin Debataraja

    2018-05-01

    Full Text Available This paper report on polyol method for Pd doped tin oxide-graphene nanocomposite thin film. XRD result shows sharp peaks at certain 2θ value and match with tin oxide, graphene, and Pd database. FTIR result shows peak from alcohol chain for –OH strong bonded absorption (3444 cm-1, also there are aldehyde and ketone which are indicated by C=O strong absorption (1751 cm-1. Moreover, alkene is also formed for decreasing symmetry intensity C=C (1616 cm-1, while alkyne is formed at strong deformation absorption at 646 and 613 cm-1. SEM and TEM result show SnO2 particles are attached uniformly on graphene surface layer. The composition for C, O, Sn, and Pd are 33.13, 25.58, 35.35 and 5.94%, respectively. This result indicated that the good composition is formed for Pd doped SnO2-graphene nanocomposite. The nanocomposite is promising materials for toxic gas sensor application at low temperature.

  2. Improved Long-Term Stability of Transparent Conducting Electrodes Based on Double-Laminated Electrosprayed Antimony Tin Oxides and Ag Nanowires

    Directory of Open Access Journals (Sweden)

    Koo B.-R.

    2017-06-01

    Full Text Available We fabricated double-laminated antimony tin oxide/Ag nanowire electrodes by spin-coating and electrospraying. Compared to pure Ag nanowire electrodes and single-laminated antimony tin oxide/Ag nanowire electrodes, the double-laminated antimony tin oxide/Ag nanowire electrodes had superior transparent conducting electrode performances with sheet resistance ~19.8 Ω/□ and optical transmittance ~81.9%; this was due to uniform distribution of the connected Ag nanowires because of double lamination of the metallic Ag nanowires without Ag aggregation despite subsequent microwave heating at 250°C. They also exhibited excellent and superior long-term chemical and thermal stabilities and adhesion to substrate because double-laminated antimony tin oxide thin films act as the protective layers between Ag nanowires, blocking Ag atoms penetration.

  3. Room temperature ferromagnetism of tin oxide nanocrystal based on synthesis methods

    Energy Technology Data Exchange (ETDEWEB)

    Sakthiraj, K.; Hema, M. [Department of Physics, Kamaraj College of Engineering and Technology, Virudhunagar 626001, Tamil Nadu (India); Balachandrakumar, K. [Department of Physics, Raja Doraisingam Government Arts College, Sivagangai 630561, Tamil Nadu (India)

    2016-04-15

    The experimental conditions used in the preparation of nanocrystalline oxide materials play an important role in the room temperature ferromagnetism of the product. In the present work, a comparison was made between sol–gel, microwave assisted sol–gel and hydrothermal methods for preparing tin oxide nanocrystal. X-ray diffraction analysis indicates the formation of tetragonal rutile phase structure for all the samples. The crystallite size was estimated from the HRTEM images and it is around 6–12 nm. Using optical absorbance measurement, the band gap energy value of the samples has been calculated. It reveals the existence of quantum confinement effect in all the prepared samples. Photoluminescence (PL) spectra confirms that the luminescence process originates from the structural defects such as oxygen vacancies present in the samples. Room temperature hysteresis loop was clearly observed in M–H curve of all the samples. But the sol–gel derived sample shows the higher values of saturation magnetization (M{sub s}) and remanence (M{sub r}) than other two samples. This study reveals that the sol–gel method is superior to the other two methods for producing room temperature ferromagnetism in tin oxide nanocrystal.

  4. Studies on Cementation of Tin on Copper and Tin Stripping from Copper Substrate

    Directory of Open Access Journals (Sweden)

    Rudnik E.

    2016-06-01

    Full Text Available Cementation of tin on copper in acid chloride-thiourea solutions leads to the formation of porous layers with a thickness dependent on the immersion time. The process occurs via Sn(II-Cu(I mechanism. Chemical stripping of tin was carried out in alkaline and acid solutions in the presence of oxidizing agents. It resulted in the dissolution of metallic tin, but refractory Cu3Sn phase remained on the copper surface. Electrochemical tin stripping allows complete tin removal from the copper substrate, but porosity and complex phase composition of the tin coating do not allow monitoring the process in unambiguous way.

  5. Effects of gas flow rate on the structure and elemental composition of tin oxide thin films deposited by RF sputtering

    Science.gov (United States)

    Al-Mansoori, Muntaser; Al-Shaibani, Sahar; Al-Jaeedi, Ahlam; Lee, Jisung; Choi, Daniel; Hasoon, Falah S.

    2017-12-01

    Photovoltaic technology is one of the key answers for a better sustainable future. An important layer in the structure of common photovoltaic cells is the transparent conductive oxide. A widely applied transparent conductive oxide is tin oxide (SnO2). The advantage of using tin oxide comes from its high stability and low cost in processing. In our study, we investigate effects of working gas flow rate and oxygen content in radio frequency (RF)-sputtering system on the growth of intrinsic SnO2 (i-SnO2) layers. X-ray diffraction results showed that amorphous-like with nano-crystallite structure, and the surface roughness varied from 1.715 to 3.936 nm. X-Ray photoelectron spectroscopy analysis showed different types of point defects, such as tin interstitials and oxygen vacancies, in deposited i-SnO2 films.

  6. Effects of gas flow rate on the structure and elemental composition of tin oxide thin films deposited by RF sputtering

    Directory of Open Access Journals (Sweden)

    Muntaser Al-Mansoori

    2017-12-01

    Full Text Available Photovoltaic technology is one of the key answers for a better sustainable future. An important layer in the structure of common photovoltaic cells is the transparent conductive oxide. A widely applied transparent conductive oxide is tin oxide (SnO2. The advantage of using tin oxide comes from its high stability and low cost in processing. In our study, we investigate effects of working gas flow rate and oxygen content in radio frequency (RF-sputtering system on the growth of intrinsic SnO2 (i-SnO2 layers. X-ray diffraction results showed that amorphous-like with nano-crystallite structure, and the surface roughness varied from 1.715 to 3.936 nm. X-Ray photoelectron spectroscopy analysis showed different types of point defects, such as tin interstitials and oxygen vacancies, in deposited i-SnO2 films.

  7. Intramolecular charge separation in spirobifluorene-based donor–acceptor compounds adsorbed on Au and indium tin oxide electrodes

    International Nuclear Information System (INIS)

    Heredia, Daniel; Otero, Luis; Gervaldo, Miguel; Fungo, Fernando; Dittrich, Thomas; Lin, Chih-Yen; Chi, Liang-Chen; Fang, Fu-Chuan; Wong, Ken-Tsung

    2013-01-01

    Surface photovoltage (SPV) measurements were performed with a Kelvin-probe in spirobifluorene-based donor (diphenylamine)–acceptor (dicyano or cyanoacrylic acid moieties) compounds adsorbed from highly diluted solutions onto Au and indium tin oxide electrode surfaces. Strong intramolecular charge separation (negative SPV signals up to more than 0.1 V) due to directed molecule adsorption was observed only for spirobifluorene donor–acceptor compounds with carboxylic acid moiety. SPV signals and onset energies of electronic transitions depended on ambience conditions. - Highlights: ► Fluorene donor–acceptor derivatives were adsorbed at Au and indium tin oxide. ► Surface photovoltage measurements were performed with a Kelvin-probe. ► Strong intra-molecular charge separation was observed. ► SPV signals depended on ambience conditions

  8. Sputter-Deposited Indium–Tin Oxide Thin Films for Acetaldehyde Gas Sensing

    Directory of Open Access Journals (Sweden)

    Umut Cindemir

    2016-04-01

    Full Text Available Reactive dual-target DC magnetron sputtering was used to prepare In–Sn oxide thin films with a wide range of compositions. The films were subjected to annealing post-treatment at 400 °C or 500 °C for different periods of time. Compositional and structural characterizations were performed by X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, Rutherford backscattering and scanning electron microscopy. Films were investigated for gas sensing at 200 °C by measuring their resistance response upon exposure to acetaldehyde mixed with synthetic air. We found that the relative indium-to-tin content was very important and that measurable sensor responses could be recorded at acetaldehyde concentrations down to 200 ppb, with small resistance drift between repeated exposures, for both crystalline SnO2-like films and for amorphous films consisting of about equal amounts of In and Sn. We also demonstrated that it is not possible to prepare crystalline sensors with intermediate indium-to-tin compositions by sputter deposition and post-annealing up to 500 °C.

  9. Electrical Properties of Electrospun Sb-Doped Tin Oxide Nanofibers

    International Nuclear Information System (INIS)

    Leon-Brito, Neliza; Melendez, Anamaris; Ramos, Idalia; Pinto, Nicholas J; Santiago-Aviles, Jorge J

    2007-01-01

    Transparent and conducting tin oxide fibers are of considerable interest for solar energy conversion, sensors and in various electrode applications. Appropriate doping can further enhance the conductivity of the fibers without loosing optical transparency. Undoped and antimony-doped tin oxide fibers have been synthesized by our group in previous work using electrospinning and metallorganic decomposition techniques. The undoped tin oxide fibers were obtained using a mixture of pure tin oxide sol made from tin (IV) chloride : water : propanol : isopropanol at a molar ratio of 1:9:9:6, and a viscous solution made from poly(ethylene oxide) (PEO) and chloroform at a ratio of 200 mg PEO/10 mL chloroform. In this work, antimony doped fibers were obtained by adding a dopant solution of antimony trichloride and isopropanol at a ratio of 2.2812 g antimony trichloride/10 ml isopropanol to the original tin oxide precursor solution. The Sb concentration in the precursor solution is 1.5%. After deposition, the fibers were sintered 600deg. C in air for two hours. The electrical conductivity of single fibers measured at room temperature increases by up to three orders of magnitude when compared to undoped fibers prepared using the same method. The resistivity change as a function of the annealing temperature can be attributed to the thermally activated formation of a nearly stoichoimetric solid. The resistivity of the fibers changes monotonically with temperature from 714Ω-cm at 2 K to 0.1Ω-cm at 300 K. In the temperature range from 2 to 8 K the fibers have a positive magnetoresistance (MR) with the highest value of 155 % at 2 K and ±9 T. At temperatures of 10 and 12 K the sign of MR changes to negative values for low magnetic fields and positive for high magnetic fields. For higher temperatures (15 K and above) the MR becomes negative and its magnitude decreases with temperature

  10. The development of latent fingerprints by zinc oxide and tin oxide nanoparticles prepared by precipitation technique

    Science.gov (United States)

    Luthra, Deepali; Kumar, Sacheen

    2018-05-01

    Fingerprints are the very important evidence at the crime scene which must be developed clearly with shortest duration of time to solve the case. Metal oxide nanoparticles could be the mean to develop the latent fingerprints. Zinc oxide and Tin Oxide Nanoparticles were prepared by using chemical precipitation technique which were dried and characterized by X-ray diffraction, UV-Visible spectroscopy and FTIR. The size of zinc oxide crystallite was found to be 14.75 nm with minimum reflectance at 360 nm whereas tin oxide have the size of 90 nm and reflectance at minimum level 321 nm. By using these powdered samples on glass, plastic and glossy cardboard, latent fingerprints were developed. Zinc oxide was found to be better candidate than tin oxide for the fingerprint development on all the three types of substrates.

  11. Disposable Non-Enzymatic Glucose Sensors Using Screen-Printed Nickel/Carbon Composites on Indium Tin Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Won-Yong Jeon

    2015-12-01

    Full Text Available Disposable screen-printed nickel/carbon composites on indium tin oxide (ITO electrodes (DSPNCE were developed for the detection of glucose without enzymes. The DSPNCE were prepared by screen-printing the ITO substrate with a 50 wt% nickel/carbon composite, followed by curing at 400 °C for 30 min. The redox couple of Ni(OH2/NiOOH was deposited on the surface of the electrodes via cyclic voltammetry (CV, scanning from 0–1.5 V for 30 cycles in 0.1 M NaOH solution. The DSPNCE were characterized by field-emission scanning electron microscopy (FE-SEM, X-ray photoelectron spectroscopy (XPS, and electrochemical methods. The resulting electrical currents, measured by CV and chronoamperometry at 0.65 V vs. Ag/AgCl, showed a good linear response with glucose concentrations from 1.0–10 mM. Also, the prepared electrodes showed no interference from common physiologic interferents such as uric acid (UA or ascorbic acid (AA. Therefore, this approach allowed the development of a simple, disposable glucose biosensor.

  12. Disposable Non-Enzymatic Glucose Sensors Using Screen-Printed Nickel/Carbon Composites on Indium Tin Oxide Electrodes.

    Science.gov (United States)

    Jeon, Won-Yong; Choi, Young-Bong; Kim, Hyug-Han

    2015-12-10

    Disposable screen-printed nickel/carbon composites on indium tin oxide (ITO) electrodes (DSPNCE) were developed for the detection of glucose without enzymes. The DSPNCE were prepared by screen-printing the ITO substrate with a 50 wt% nickel/carbon composite, followed by curing at 400 °C for 30 min. The redox couple of Ni(OH)₂/NiOOH was deposited on the surface of the electrodes via cyclic voltammetry (CV), scanning from 0-1.5 V for 30 cycles in 0.1 M NaOH solution. The DSPNCE were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and electrochemical methods. The resulting electrical currents, measured by CV and chronoamperometry at 0.65 V vs. Ag/AgCl, showed a good linear response with glucose concentrations from 1.0-10 mM. Also, the prepared electrodes showed no interference from common physiologic interferents such as uric acid (UA) or ascorbic acid (AA). Therefore, this approach allowed the development of a simple, disposable glucose biosensor.

  13. Microwave plasma CVD of NANO structured tin/carbon composites

    Science.gov (United States)

    Marcinek, Marek [Warszawa, PL; Kostecki, Robert [Lafayette, CA

    2012-07-17

    A method for forming a graphitic tin-carbon composite at low temperatures is described. The method involves using microwave radiation to produce a neutral gas plasma in a reactor cell. At least one organo tin precursor material in the reactor cell forms a tin-carbon film on a supporting substrate disposed in the cell under influence of the plasma. The three dimensional carbon matrix material with embedded tin nanoparticles can be used as an electrode in lithium-ion batteries.

  14. Electrical and Optical Properties of Fluorine Doped Tin Oxide Thin Films Prepared by Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Ziad Y. Banyamin

    2014-10-01

    Full Text Available Fluorine doped tin oxide (FTO coatings have been prepared using the mid-frequency pulsed DC closed field unbalanced magnetron sputtering technique in an Ar/O2 atmosphere using blends of tin oxide and tin fluoride powder formed into targets. FTO coatings were deposited with a thickness of 400 nm on glass substrates. No post-deposition annealing treatments were carried out. The effects of the chemical composition on the structural (phase, grain size, optical (transmission, optical band-gap and electrical (resistivity, charge carrier, mobility properties of the thin films were investigated. Depositing FTO by magnetron sputtering is an environmentally friendly technique and the use of loosely packed blended powder targets gives an efficient means of screening candidate compositions, which also provides a low cost operation. The best film characteristics were achieved using a mass ratio of 12% SnF2 to 88% SnO2 in the target. The thin film produced was polycrystalline with a tetragonal crystal structure. The optimized conditions resulted in a thin film with average visible transmittance of 83% and optical band-gap of 3.80 eV, resistivity of 6.71 × 10−3 Ω·cm, a carrier concentration (Nd of 1.46 × 1020 cm−3 and a mobility of 15 cm2/Vs.

  15. Demonstration of high-performance p-type tin oxide thin-film transistors using argon-plasma surface treatments

    Science.gov (United States)

    Bae, Sang-Dae; Kwon, Soo-Hun; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-07-01

    In this work, we investigated the effects of low-temperature argon (Ar)-plasma surface treatments on the physical and chemical structures of p-type tin oxide thin-films and the electrical performance of p-type tin oxide thin-film transistors (TFTs). From the x-ray photoelectron spectroscopy measurement, we found that SnO was the dominant phase in the deposited tin oxide thin-film, and the Ar-plasma treatment partially transformed the tin oxide phase from SnO to SnO2 by oxidation. The resistivity of the tin oxide thin-film increased with the plasma-treatment time because of the reduced hole concentration. In addition, the root-mean-square roughness of the tin oxide thin-film decreased as the plasma-treatment time increased. The p-type oxide TFT with an Ar-plasma-treated tin oxide thin-film exhibited excellent electrical performance with a high current on-off ratio (5.2 × 106) and a low off-current (1.2 × 10-12 A), which demonstrates that the low-temperature Ar-plasma treatment is a simple and effective method for improving the electrical performance of p-type tin oxide TFTs.

  16. Process for Making a Noble Metal on Tin Oxide Catalyst

    Science.gov (United States)

    Davis, Patricia; Miller, Irvin; Upchurch, Billy

    2010-01-01

    To produce a noble metal-on-metal oxide catalyst on an inert, high-surface-area support material (that functions as a catalyst at approximately room temperature using chloride-free reagents), for use in a carbon dioxide laser, requires two steps: First, a commercially available, inert, high-surface-area support material (silica spheres) is coated with a thin layer of metal oxide, a monolayer equivalent. Very beneficial results have been obtained using nitric acid as an oxidizing agent because it leaves no residue. It is also helpful if the spheres are first deaerated by boiling in water to allow the entire surface to be coated. A metal, such as tin, is then dissolved in the oxidizing agent/support material mixture to yield, in the case of tin, metastannic acid. Although tin has proven especially beneficial for use in a closed-cycle CO2 laser, in general any metal with two valence states, such as most transition metals and antimony, may be used. The metastannic acid will be adsorbed onto the high-surface-area spheres, coating them. Any excess oxidizing agent is then evaporated, and the resulting metastannic acid-coated spheres are dried and calcined, whereby the metastannic acid becomes tin(IV) oxide. The second step is accomplished by preparing an aqueous mixture of the tin(IV) oxide-coated spheres, and a soluble, chloride-free salt of at least one catalyst metal. The catalyst metal may be selected from the group consisting of platinum, palladium, ruthenium, gold, and rhodium, or other platinum group metals. Extremely beneficial results have been obtained using chloride-free salts of platinum, palladium, or a combination thereof, such as tetraammineplatinum (II) hydroxide ([Pt(NH3)4] (OH)2), or tetraammine palladium nitrate ([Pd(NH3)4](NO3)2).

  17. Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc

    International Nuclear Information System (INIS)

    Chim, Y.C.; Ding, X.Z.; Zeng, X.T.; Zhang, S.

    2009-01-01

    In this paper, four kinds of hard coatings, TiN, CrN, TiAlN and CrAlN (with Al/Ti or Al/Cr atomic ratio around 1:1), were deposited on stainless steel substrates by a lateral rotating cathode arc technique. The as-deposited coatings were annealed in ambient atmosphere at different temperatures (500-1000 o C) for 1 h. The evolution of chemical composition, microstructure, and microhardness of these coatings after annealing at different temperatures was systematically analyzed by energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and nanoindentation experiments. The oxidation behaviour and its influence on overall hardness of these four coatings were compared. It was found that the ternary TiAlN and CrAlN coatings have better oxidation resistance than their binary counterparts, TiN and CrN coatings. The Cr-based coatings (CrN and CrAlN) exhibited evidently better oxidation resistance than the Ti-based coatings (TiN and TiAlN). TiN coating started to oxidize at 500 o C. After annealing at 700 o C no N could be detected by EDX, indicating that the coating was almost fully oxidized. After annealed at 800 o C, the coating completely delaminated from the substrate. TiAlN started to oxidize at 600 o C. It was nearly fully oxidized (with little residual nitrogen detected in the coating by EDX) and partially delaminated at 1000 o C. Both CrN and CrAlN started to oxidize at 700 o C. CrN was almost fully oxidized (with little residual nitrogen detected in the coating by EDX) and partially delaminated at 900 o C. The oxidation rate of the CrAlN coating is quite slow. After annealing at 1000 o C, only about 19 at.% oxygen was detected and the coating showed no delamination. The Ti-based (TiN and TiAlN) coatings were not able to retain their hardness at higher temperatures (≥ 700 o C). On the other hand, the hardness of CrAlN was stable at a high level between 33 and 35 GPa up to an annealing temperature of 800 o C and still kept at a comparative high value of

  18. Hybrid nanocomposite based on cellulose and tin oxide: growth, structure, tensile and electrical characteristics

    International Nuclear Information System (INIS)

    Mahadeva, Suresha K; Kim, Jaehwan

    2011-01-01

    A highly flexible nanocomposite was developed by coating a regenerated cellulose film with a thin layer of tin oxide (SnO 2 ) by liquid-phase deposition. Tin oxide was crystallized in solution and formed nanocrystal coatings on regenerated cellulose. The nanocrystalline layers did not exfoliate from cellulose. Transmission electron microscopy and energy dispersive x-ray spectroscopy suggest that SnO 2 was not only deposited over the cellulose surface, but also nucleated and grew inside the cellulose film. Current-voltage characteristics of the nanocomposite revealed that its electrical resistivity decreases with deposition time, with the lowest value obtained for 24 h of deposition. The cellulose-SnO 2 hybrid nanocomposite can be used for biodegradable and disposable chemical, humidity and biosensors.

  19. Synthesis and characterization of single-crystalline zinc tin oxide nanowires

    Science.gov (United States)

    Shi, Jen-Bin; Wu, Po-Feng; Lin, Hsien-Sheng; Lin, Ya-Ting; Lee, Hsuan-Wei; Kao, Chia-Tze; Liao, Wei-Hsiang; Young, San-Lin

    2014-05-01

    Crystalline zinc tin oxide (ZTO; zinc oxide with heavy tin doping of 33 at.%) nanowires were first synthesized using the electrodeposition and heat treatment method based on an anodic aluminum oxide (AAO) membrane, which has an average diameter of about 60 nm. According to the field emission scanning electron microscopy (FE-SEM) results, the synthesized ZTO nanowires are highly ordered and have high wire packing densities. The length of ZTO nanowires is about 4 μm, and the aspect ratio is around 67. ZTO nanowires with a Zn/(Zn + Sn) atomic ratio of 0.67 (approximately 2/3) were observed from an energy dispersive spectrometer (EDS). X-ray diffraction (XRD) and corresponding selected area electron diffraction (SAED) patterns demonstrated that the ZTO nanowire is hexagonal single-crystalline. The study of ultraviolet/visible/near-infrared (UV/Vis/NIR) absorption showed that the ZTO nanowire is a wide-band semiconductor with a band gap energy of 3.7 eV.

  20. Inkjet printed ambipolar transistors and inverters based on carbon nanotube/zinc tin oxide heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bongjun; Jang, Seonpil; Dodabalapur, Ananth, E-mail: ananth.dodabalapur@engr.utexas.edu [Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States); Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Geier, Michael L.; Prabhumirashi, Pradyumna L. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Hersam, Mark C. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States); Department of Medicine, Northwestern University, Evanston, Illinois 60208 (United States)

    2014-02-10

    We report ambipolar field-effect transistors (FETs) consisting of inkjet printed semiconductor bilayer heterostructures utilizing semiconducting single-walled carbon nanotubes (SWCNTs) and amorphous zinc tin oxide (ZTO). The bilayer structure allows for electron transport to occur principally in the amorphous oxide layer and hole transport to occur exclusively in the SWCNT layer. This results in balanced electron and hole mobilities exceeding 2 cm{sup 2} V{sup −1} s{sup −1} at low operating voltages (<5 V) in air. We further show that the SWCNT-ZTO hybrid ambipolar FETs can be integrated into functional inverter circuits that display high peak gain (>10). This work provides a pathway for realizing solution processable, inkjet printable, large area electronic devices, and systems based on SWCNT-amorphous oxide heterostructures.

  1. On the structure and surface chemical composition of indium-tin oxide films prepared by long-throw magnetron sputtering

    International Nuclear Information System (INIS)

    Chuang, M.J.; Huang, H.F.; Wen, C.H.; Chu, A.K.

    2010-01-01

    Structures and surface chemical composition of indium tin oxide (ITO) thin films prepared by long-throw radio-frequency magnetron sputtering technique have been investigated. The ITO films were deposited on glass substrates using a 20 cm target-to-substrate distance in a pure argon sputtering environment. X-ray diffraction results showed that an increase in substrate temperature resulted in ITO structure evolution from amorphous to polycrystalline. Field-emission scanning electron microscopy micrographs suggested that the ITO films were free of bombardment of energetic particles since the microstructures of the films exhibited a smaller grain size and no sub-grain boundary could be observed. The surface composition of the ITO films was characterized by X-ray photoelectron spectroscopy (XPS). Oxygen atoms in both amorphous and crystalline ITO structures were observed from O 1 s XPS spectra. However, the peak of the oxygen atoms in amorphous ITO phase could only be found in samples prepared at low substrate temperatures. Its relative peak area decreased drastically when substrate temperatures were larger than 200 o C. In addition, a composition analysis from the XPS results revealed that the films deposited at low substrate temperatures contained high concentration of oxygen at the film surfaces. The oxygen-rich surfaces can be attributed to hydrolysis reactions of indium oxides, especially when large amount of the amorphous ITO were developed near the film surfaces.

  2. Sputtering yields and surface chemical modification of tin-doped indium oxide in hydrocarbon-based plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi, E-mail: hamaguch@ppl.eng.osaka-u.ac.jp [Center for Atomic and Molecular Technologies, Osaka University, Yamadaoka 2-1, Suita 565-0871 (Japan); Fukasawa, Masanaga; Nagahata, Kazunori; Tatsumi, Tetsuya [Device and Material R& D Group, RDS Platform, Sony Corporation, Kanagawa 243-0014 (Japan)

    2015-11-15

    Sputtering yields and surface chemical compositions of tin-doped indium oxide (or indium tin oxide, ITO) by CH{sup +}, CH{sub 3}{sup +}, and inert-gas ion (He{sup +}, Ne{sup +}, and Ar{sup +}) incidence have been obtained experimentally with the use of a mass-selected ion beam system and in-situ x-ray photoelectron spectroscopy. It has been found that etching of ITO is chemically enhanced by energetic incidence of hydrocarbon (CH{sub x}{sup +}) ions. At high incident energy incidence, it appears that carbon of incident ions predominantly reduce indium (In) of ITO and the ITO sputtering yields by CH{sup +} and CH{sub 3}{sup +} ions are found to be essentially equal. At lower incident energy (less than 500 eV or so), however, a hydrogen effect on ITO reduction is more pronounced and the ITO surface is more reduced by CH{sub 3}{sup +} ions than CH{sup +} ions. Although the surface is covered more with metallic In by low-energy incident CH{sub 3}{sup +} ions than CH{sup +} ions and metallic In is in general less resistant against physical sputtering than its oxide, the ITO sputtering yield by incident CH{sub 3}{sup +} ions is found to be lower than that by incident CH{sup +} ions in this energy range. A postulation to account for the relation between the observed sputtering yield and reduction of the ITO surface is also presented. The results presented here offer a better understanding of elementary surface reactions observed in reactive ion etching processes of ITO by hydrocarbon plasmas.

  3. Tribaloy alloy reinforced tin-bronze composite coating for journal bearing applications

    International Nuclear Information System (INIS)

    Gao, F.; Liu, R.; Wu, X.J.

    2011-01-01

    This article presents an experimental study of the tribological behavior of a tin/bronze-based composite coating. The improved-ductility Tribaloy alloy (T-401) particles are selected as the reinforcement. This coating is made on the bushing of planet journals used in aerospace engines, deposited with the high velocity oxygen fuel (HVOF) thermal spray technique. The tribological properties such as friction and wear resistance of the coated bushing are investigated under the WAMsc3 Sliding Contact Test, along with the leaded tin/bronze bushing tested for comparison. The testing results show that the bushing coated with the composite exhibits superior tribological properties to the leaded tin/bronze bushing in that the former runs longer before the friction coefficient reaches 0.5 and also leads a to lower wear rate than the latter. The experimental results and wear mechanisms of these two bushings are discussed with the assistance of worn surface analyses using scanning electron microscopy (SEM).

  4. Transparent heaters based on solution-processed indium tin oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Im, Kiju [Department of Electrical Engineering and Institute for Nano Science, Korea University, 5-1, Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of); Research Institute of TNB Nanoelec Co. Ltd., Seoul 136-701 (Korea, Republic of); Cho, Kyoungah [Department of Electrical Engineering and Institute for Nano Science, Korea University, 5-1, Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of); Kim, Jonghyun [Research Institute of TNB Nanoelec Co. Ltd., Seoul 136-701 (Korea, Republic of); Kim, Sangsig, E-mail: sangsig@korea.ac.k [Department of Electrical Engineering and Institute for Nano Science, Korea University, 5-1, Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of)

    2010-05-03

    We demonstrate transparent heaters constructed on glass substrates using solution-processed indium tin oxide (ITO) nanoparticles (NPs) and their heating capability. The heat-generating characteristics of the heaters depended significantly on the sintering temperature at which the ITO NPs deposited on a glass substrate by spin-coating were transformed thermally into a solid film. The steady-state temperature of the ITO NP film sintered at 400 {sup o}C was 163 {sup o}C at a bias voltage of 20 V, and the defrosting capability of the film was confirmed by using dry-ice.

  5. Correlation between the structure and optical transition characteristic energies of annealed tin oxide films

    International Nuclear Information System (INIS)

    Majid, W.H.A.; Muhamad, M.R.

    1990-01-01

    Thin films of tin oxide were prepared by room temperature thermal evaporation of blue-black stannous-oxide, SnO powder synthesized from metal tin. X-ray diffractograms reveal that as prepared amorphous samples form polycrystal of SnO by annealing at 300 0 C in air ambient for 30 minutes and they will be oxidized to polycrystal of SnO 2 with further annealing at 500 0 C or above. Optical measurements indicate that the dispersion energy E d and the single oscillator strength E 0 are highest for SnO polycrystal with a magnitude for about 14.0 eV and 4.0 eV respectively compared to 10.4 eV and 3.4 eV for SnO 2 . Further, the plasma energy E p was determined to be in the range of 3.4 eV to 8 eV; increases with increasing composition of SnO 2 . The density of valence electron N(E) can be estimated from the plasma energy E p

  6. The acidic properties of mixed tin and antimony oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Irving, E.A.; Taylor, D.

    1978-01-01

    The acidic properties of mixed tin + antimony oxide catalysts were studied in the isomerization of 3,3-dimethyl-1-butene, cyclopropane, 1-butene, and cis-2-butene and the dehydration of isopropanol over the mixed oxides outgassed at room temperature and 698/sup 0/K. Only the zero-order portions of the reaction were used for calculations. With catalysts outgassed at room temperature, weakly acidic sites were present, and all the reactions probably occurred by a carbonium ion mechanism with Broensted acid sites as a source of protons. The rates increased with increasing antimony content to a maximum at approx. 50 at. % and then decreased with further increase in the antimony content. Outgassing of the catalysts at 698/sup 0/K increased the isomerization rate of 3,3-dimethyl-1-butene, but decreased those for cyclopropane and isopropanol due to poisoning by the propylene produced. For 1-butene and cis-2-butene and catalysts outgassed at 698/sup 0/K, only catalysts with less than 50Vertical Bar3< antimony were active. The catalysts were poisoned by treatment with bases or with sodium acetate. A proposed correlation between rates and acidity led to the conclusion that the catalyst composition corresponding to maximum acidity differs from that for maximum selective oxidation activity. Graphs and 10 references.

  7. FeNi3/indium tin oxide (ITO) composite nanoparticles with excellent microwave absorption performance and low infrared emissivity

    International Nuclear Information System (INIS)

    Fu, Li-Shun; Jiang, Jian-Tang; Zhen, Liang; Shao, Wen-Zhu

    2013-01-01

    Highlights: ► Electrical conductivity and infrared emissivity can be controlled by ITO content. ► The infrared emissivity is the lowest when the mole ratio of In:Sn in sol is 9:1. ► The permittivity in microwave band can be controlled by the electrical conductivity. ► EMA performance is significantly influenced by the content of ITO phase. ► FeNi 3 /ITO composite particles are suitable for both infrared and radar camouflage. - Abstract: FeNi 3 /indium tin oxide (ITO) composite nanoparticles were synthesized by a self-catalyzed reduction method and a sol–gel process. The dependence of the content of ITO phase with the mole ratios of In:Sn of different sols was investigated. The relation between the electrical conductivity, infrared emissivity of FeNi 3 /ITO composite nanoparticles and the content of ITO phase was discussed. Electromagnetic wave absorption (EMA) performance of products was evaluated by using transmission line theory. It was found that EMA performance including the intensity and the location of effective band is significantly dependent on the content of ITO phase. The low infrared emissivity and superior EMA performance of FeNi 3 /ITO composite nanoparticles can be both achieved when the mole ratio of In:Sn in sol is 9:1.

  8. The effect of substrate temperature on atomic layer deposited zinc tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lindahl, Johan, E-mail: johan.lindahl@angstrom.uu.se; Hägglund, Carl, E-mail: carl.hagglund@angstrom.uu.se; Wätjen, J. Timo, E-mail: timo.watjen@angstrom.uu.se; Edoff, Marika, E-mail: marika.edoff@angstrom.uu.se; Törndahl, Tobias, E-mail: tobias.torndahl@angstrom.uu.se

    2015-07-01

    Zinc tin oxide (ZTO) thin films were deposited on glass substrates by atomic layer deposition (ALD), and the film properties were investigated for varying deposition temperatures in the range of 90 to 180 °C. It was found that the [Sn]/([Sn] + [Zn]) composition is only slightly temperature dependent, while properties such as growth rate, film density, material structure and band gap are more strongly affected. The growth rate dependence on deposition temperature varies with the relative number of zinc or tin containing precursor pulses and it correlates with the growth rate behavior of pure ZnO and SnO{sub x} ALD. In contrast to the pure ZnO phase, the density of the mixed ZTO films is found to depend on the deposition temperature and it increases linearly with about 1 g/cm{sup 3} in total over the investigated range. Characterization by transmission electron microscopy suggests that zinc rich ZTO films contain small (~ 10 nm) ZnO or ZnO(Sn) crystallites embedded in an amorphous matrix, and that these crystallites increase in size with increasing zinc content and deposition temperature. These crystallites are small enough for quantum confinement effects to reduce the optical band gap of the ZTO films as they grow in size with increasing deposition temperature. - Highlights: • Zinc tin oxide thin films were deposited by atomic layer deposition. • The structure and optical properties were studied at different growth temperatures. • The growth temperature had only a small effect on the composition of the films. • Small ZnO or ZnO(Sn) crystallites were observed by TEM in zinc rich ZTO films. • The growth temperature affects the crystallite size, which influences the band gap.

  9. The effect of substrate temperature on atomic layer deposited zinc tin oxide

    International Nuclear Information System (INIS)

    Lindahl, Johan; Hägglund, Carl; Wätjen, J. Timo; Edoff, Marika; Törndahl, Tobias

    2015-01-01

    Zinc tin oxide (ZTO) thin films were deposited on glass substrates by atomic layer deposition (ALD), and the film properties were investigated for varying deposition temperatures in the range of 90 to 180 °C. It was found that the [Sn]/([Sn] + [Zn]) composition is only slightly temperature dependent, while properties such as growth rate, film density, material structure and band gap are more strongly affected. The growth rate dependence on deposition temperature varies with the relative number of zinc or tin containing precursor pulses and it correlates with the growth rate behavior of pure ZnO and SnO x ALD. In contrast to the pure ZnO phase, the density of the mixed ZTO films is found to depend on the deposition temperature and it increases linearly with about 1 g/cm 3 in total over the investigated range. Characterization by transmission electron microscopy suggests that zinc rich ZTO films contain small (~ 10 nm) ZnO or ZnO(Sn) crystallites embedded in an amorphous matrix, and that these crystallites increase in size with increasing zinc content and deposition temperature. These crystallites are small enough for quantum confinement effects to reduce the optical band gap of the ZTO films as they grow in size with increasing deposition temperature. - Highlights: • Zinc tin oxide thin films were deposited by atomic layer deposition. • The structure and optical properties were studied at different growth temperatures. • The growth temperature had only a small effect on the composition of the films. • Small ZnO or ZnO(Sn) crystallites were observed by TEM in zinc rich ZTO films. • The growth temperature affects the crystallite size, which influences the band gap

  10. Nanostructured antistatic and antireflective thin films made of indium tin oxide and silica over-coat layer

    Science.gov (United States)

    Cho, Young-Sang; Hong, Jeong-Jin; Yang, Seung-Man; Choi, Chul-Jin

    2010-08-01

    Stable dispersion of colloidal indium tin oxide nanoparticles was prepared by using indium tin oxide nanopowder, organic solvent, and suitable dispersants through attrition process. Various comminution parameters during the attrition step were studied to optimize the process for the stable dispersion of indium tin oxide sol. The transparent and conductive films were fabricated on glass substrate using the indium tin oxide sol by spin coating process. To obtain antireflective function, partially hydrolyzed alkyl silicate was deposited as over-coat layer on the pre-fabricated indium tin oxide film by spin coating technique. This double-layered structure of the nanostructured film was characterized by measuring the surface resistance and reflectance spectrum in the visible wavelength region. The final film structure was enough to satisfy the TCO regulations for EMI shielding purposes.

  11. In-Situ Growth and Characterization of Indium Tin Oxide Nanocrystal Rods

    Directory of Open Access Journals (Sweden)

    Yan Shen

    2017-11-01

    Full Text Available Indium tin oxide (ITO nanocrystal rods were synthesized in-situ by a vapor-liquid-solid (VLS method and electron beam evaporation technique. When the electron-beam gun bombarded indium oxide (In2O3 and tin oxide (SnO2 mixed sources, indium and tin droplets appeared and acted as catalysts. The nanocrystal rods were in-situ grown on the basis of the metal catalyst point. The nanorods have a single crystal structure. Its structure was confirmed by X-ray diffraction (XRD and transmission electron microscopy (TEM. The surface morphology was analyzed by scanning electron microscopy (SEM. During the evaporation, a chemical process was happened and an In2O3 and SnO2 solid solution was formed. The percentage of doped tin oxide was calculated by Vegard’s law to be 3.18%, which was in agreement with the mixture ratio of the experimental data. The single crystal rod had good semiconductor switch property and its threshold voltage of single rod was approximately 2.5 V which can be used as a micro switch device. The transmission rate of crystalline nanorods ITO film was over 90% in visible band and it was up to 95% in the blue green band as a result of the oxygen vacancy recombination luminescence.

  12. Nitrogen Dioxide-Sensing Properties at Room Temperature of Metal Oxide-Modified Graphene Composite via One-Step Hydrothermal Method

    Science.gov (United States)

    Zhang, Dongzhi; Liu, Jingjing; Xia, Bokai

    2016-08-01

    A metal oxide/graphene composite film-based sensor toward room-temperature detection of ppm-level nitrogen dioxide (NO2) gas has been demonstrated. The sensor prototype was constructed on a PCB substrate with microelectrodes, and a tin oxide-reduced graphene oxide (SnO2-rGO) composite as sensing film was prepared by one-step hydrothermal synthesis of tin tetrachloride pentahydrate solution in the presence of graphene oxide (GO). The SnO2-rGO hybrid composite was examined by scanning electron microscope and x-ray diffraction (XRD). The gas sensing properties of the SnO2-rGO composite were investigated at room temperature by exposing it to a wide concentration ranging from 1 ppm to 2000 ppm toward NO2 gas. The experiment results showed that the sensor exhibited a high response, superior selectivity, good repeatability, rapid response/recovery characteristics and low detection limit of 1 ppm, which exceeded that of a pure rGO sensor. The gas sensing mechanisms of the proposed sensor toward NO2 were possibly attributed to the nano-hybrid structures and n- p heterojunctions created at the interface of the SnO2 nanocrystals and rGO nanosheets.

  13. Production of Sn/SnO2/MWCNT composites by plasma oxidation after thermal evaporation from pure Sn targets onto buckypapers.

    Science.gov (United States)

    Alaf, M; Gultekin, D; Akbulut, H

    2012-12-01

    In this study, tin/tinoxide/multi oxide/multi walled carbon nano tube (Sn/SnO2/MWCNT) composites were produced by thermal evaporation and then subsequent plasma oxidation. Buckypapers having controlled porosity were prepared by vacuum filtration from functionalized MWCNTs. Pure metallic tin was thermally evaporated on the buckypapers in argon atmosphere with different thicknesses. It was determined that the evaporated pure tin nano crystals were mechanically penetrated into pores of buckypaper to form a nanocomposite. The tin/MWCNT composites were subjected to plasma oxidation process at oxygen/argon gas mixture. Three different plasma oxidation times (30, 45 and 60 minutes) were used to investigate oxidation and physical and microstructural properties. The effect of coating thickness and oxidation time was investigated to understand the effect of process parameters on the Sn and SnO2 phases after plasma oxidation. Quantitative phase analysis was performed in order to determine the relative phase amounts. The structural properties were studied by field-emission gun scanning electron microscopy (FEG-SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD).

  14. Optimization of nanoparticulate indium tin oxide slurries for the manufacture of ultra-thin indium tin oxide coatings with the slot-die coating process

    International Nuclear Information System (INIS)

    Wegener, M.; Riess, K.; Roosen, A.

    2016-01-01

    This paper deals with the optimization of colloidal processing to achieve suitable nanoparticulate indium tin oxide (ITO) slurries for the production of sub-μm-thin ITO coatings with the slot die coating process. For application in printed electronics these ITO coatings, which are composite films consisting of nanoparticulate ITO and a polymeric binder, should offer high flexibility, transparency and electrical conductivity. To preserve their flexibility, the composite films are not subject to any heat treatment, instead they are used as deposited and dried. To achieve very good transparency and electrical conductivity at the same time, the slurries must exhibit excellent dispersivity to result in a dense particle packing during film formation and drying. To reduce materials costs, films with thicknesses of several 100 nm are of interest. Therefore, the slot-die technique was applied as a fast, pre-dosing technique to produce sub-μm-thin ITO/binder composite films. The resulting ITO/binder films were characterized with regard to their key properties such as total transmission and specific electrical resistance. With the colloidal optimization of ethanol- and water-based nanoparticulate ITO slurries using PVP and PVB as binders, it was possible to achieve films of 250 nm in thickness exhibiting high total transmission of ∝ 93 % and a low specific electrical resistance of ∝ 10 Ω.cm.

  15. Optimization of nanoparticulate indium tin oxide slurries for the manufacture of ultra-thin indium tin oxide coatings with the slot-die coating process

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, M.; Riess, K.; Roosen, A. [Erlangen-Nuremberg Univ., Erlangen (Germany). Dept. of Materials Science, Glass and Ceramics

    2016-07-01

    This paper deals with the optimization of colloidal processing to achieve suitable nanoparticulate indium tin oxide (ITO) slurries for the production of sub-μm-thin ITO coatings with the slot die coating process. For application in printed electronics these ITO coatings, which are composite films consisting of nanoparticulate ITO and a polymeric binder, should offer high flexibility, transparency and electrical conductivity. To preserve their flexibility, the composite films are not subject to any heat treatment, instead they are used as deposited and dried. To achieve very good transparency and electrical conductivity at the same time, the slurries must exhibit excellent dispersivity to result in a dense particle packing during film formation and drying. To reduce materials costs, films with thicknesses of several 100 nm are of interest. Therefore, the slot-die technique was applied as a fast, pre-dosing technique to produce sub-μm-thin ITO/binder composite films. The resulting ITO/binder films were characterized with regard to their key properties such as total transmission and specific electrical resistance. With the colloidal optimization of ethanol- and water-based nanoparticulate ITO slurries using PVP and PVB as binders, it was possible to achieve films of 250 nm in thickness exhibiting high total transmission of ∝ 93 % and a low specific electrical resistance of ∝ 10 Ω.cm.

  16. Hybrid composite thin films composed of tin oxide nanoparticles and cellulose

    International Nuclear Information System (INIS)

    Mahadeva, Suresha K; Nayak, Jyoti; Kim, Jaehwan

    2013-01-01

    This paper reports the preparation and characterization of hybrid thin films consisting of tin oxide (SnO 2 ) nanoparticles and cellulose. SnO 2 nanoparticle loaded cellulose hybrid thin films were fabricated by a solution blending technique, using sodium dodecyl sulfate as a dispersion agent. Scanning and transmission electron microscopy studies revealed uniform dispersion of the SnO 2 nanoparticles in the cellulose matrix. Reduction in the crystalline melting transition temperature and tensile properties of cellulose was observed due to the SnO 2 nanoparticle loading. Potential application of these hybrid thin films as low cost, flexible and biodegradable humidity sensors is examined in terms of the change in electrical resistivity of the material exposed to a wide range of humidity as well as its response–recovery behavior. (paper)

  17. Characterization of tin oxide nanoparticles synthesized via oxidation from metal; Caracterizacao de nanoparticulas de oxido de estanho sintetizado via oxidacao do metal

    Energy Technology Data Exchange (ETDEWEB)

    Abruzzi, R.C.; Dedavid, B.A.; Pires, M.J.R.; Streicher, M., E-mail: afael.abruzzi@acad.pucrs.br [Pontificia Universidade Catolica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS (Brazil). Pos-Graduacao em Engenharia e Tecnologia de Materiais

    2014-07-01

    The tin oxide (SnO{sub 2}) is a promising material with great potential for applications such as gas sensors and catalysts. This oxide nanostructures show higher activation efficiency due to its larger effective surface. This paper presents the synthesis and characterization of the tin oxide in different conditions, via oxidation of pure tin with nitric acid. Results obtained from the characterization of SnO{sub 2} powder by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), Particle size by Dynamic Light Scattering (DLS) and Infrared Spectroscopy (FTIR) indicated that the conditions were suitable for the synthesis to obtain manometric tin oxide granules with crystalline structure of rutile. (author)

  18. Influence of thermal treatment in N{sub 2} atmosphere on chemical, microstructural and optical properties of indium tin oxide and nitrogen doped indium tin oxide rf-sputtered thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stroescu, H.; Anastasescu, M.; Preda, S.; Nicolescu, M.; Stoica, M. [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Stefan, N. [National Institute for Lasers, Plasma and Radiation Physics, Atomistilor 409, RO-77125, Bucharest-Magurele (Romania); Kampylafka, V.; Aperathitis, E. [FORTH-IESL, Crete (Greece); Modreanu, M. [Tyndall National Institute, University College Cork, Cork (Ireland); Zaharescu, M. [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Gartner, M., E-mail: mgartner@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania)

    2013-08-31

    We report the influence of the normal thermal treatment (TT) and of rapid thermal annealing (RTA) on the microstructural, optical and electrical properties of indium tin oxide (ITO) and nitrogen doped indium tin oxide (ITO:N) thin films. The TT was carried out for 1 h at 400 °C and the RTA for 1 min up to 400 °C, both in N{sub 2} atmosphere. The ITO and ITO:N films were deposited by reactive sputtering in Argon, and respectively Nitrogen plasma, on Si with (100) and (111) orientation. The present study brings data about the microstructural and optical properties of ITO thin films with thicknesses around 300–400 nm. Atomic Force Microscopy analysis showed the formation of continuous and homogeneous films, fully covered by quasi-spherical shaped particles, with higher roughness values on Si(100) as compared to Si(111). Spectroscopic ellipsometry allowed the determination of film thickness, optical band gap as well as of the dispersion curves of n and k optical constants. X-ray diffraction analysis revealed the presence of diffraction peaks corresponding to the same nominal bulk composition of ITO, but with different intensities and preferential orientation depending on the substrate, atmosphere of deposition and type of thermal treatment. - Highlights: ► Stability of the films can be monitored by experimental ellipsometric spectra. ► The refractive index of indium tin oxide film on 0.3–30 μm range is reported. ► Si(100) substrate induces rougher film surfaces than Si(111). ► Rapid thermal annealing and normal thermal treatment lead to stable conductive film. ► The samples have a higher preferential orientation after rapid thermal annealing.

  19. Low-temperature growth and electronic structures of ambipolar Yb-doped zinc tin oxide transparent thin films

    Science.gov (United States)

    Oh, Seol Hee; Ferblantier, Gerald; Park, Young Sang; Schmerber, Guy; Dinia, Aziz; Slaoui, Abdelilah; Jo, William

    2018-05-01

    The compositional dependence of the crystal structure, optical transmittance, and surface electric properties of the zinc tin oxide (Zn-Sn-O, shortened ZTO) thin films were investigated. ZTO thin films with different compositional ratios were fabricated on glass and p-silicon wafers using radio frequency magnetron sputtering. The binding energy of amorphous ZTO thin films was examined by a X-ray photoelectron spectroscopy. The optical transmittance over 70% in the visible region for all the ZTO films was observed. The optical band gap of the ZTO films was changed as a result of the competition between the Burstein-Moss effect and renormalization. An electron concentration in the films and surface work function distribution were measured by a Hall measurement and Kelvin probe force microscopy, respectively. The mobility of the n- and p-type ZTO thin films have more than 130 cm2/V s and 15 cm2/V s, respectively. We finally constructed the band structure which contains band gap, work function, and band edges such as valence band maximum and conduction band minimum of ZTO thin films. The present study results suggest that the ZTO thin film is competitive compared with the indium tin oxide, which is a representative material of the transparent conducting oxides, regarding optoelectronic devices applications.

  20. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making

    Science.gov (United States)

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan; Velikokhatnyi, Oleg

    2017-02-07

    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VII of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.

  1. Studies on the optoelectronic properties of the thermally evaporated tin-doped indium oxide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Ko-Ying [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, ROC (China); Lin, Liang-Da [Institute of Materials Science and Nanotechnology, Chinese Culture University, Taipei 111, Taiwan, ROC (China); Chang, Li-Wei [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, ROC (China); Shih, Han C., E-mail: hcshih@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, ROC (China); Institute of Materials Science and Nanotechnology, Chinese Culture University, Taipei 111, Taiwan, ROC (China)

    2013-05-15

    Indium oxide (In{sub 2}O{sub 3}) nanorods, nanotowers and tin-doped (Sn:In = 1:100) indium oxide (ITO) nanorods have been fabricated by thermal evaporation. The morphology, microstructure and chemical composition of these three nanoproducts are characterized by FE-SEM, HRTEM and XPS. To further investigate the optoelectronic properties, the I–V curves and cathodoluminescence (CL) spectra are measured. The electrical resistivity of In{sub 2}O{sub 3} nanorods, nanotowers and ITO nanorods are 1.32 kΩ, 0.65 kΩ and 0.063 kΩ, respectively. CL spectra of these three nanoproducts clearly indicate that tin-doped (Sn:In = 1:100) indium oxide (ITO) nanorods cause a blue shift. No doubt ITO nanorods obtain the highest performance among these three nanoproducts, and this also means that Sn-doped In{sub 2}O{sub 3} nanostructures would be the best way to enhance the optoelectronic properties. Additionally, the growing mechanism and the optoelectronic properties of these three nanostructures are discussed. This study is beneficial to the applications of In{sub 2}O{sub 3} nanorods, nanotowers and ITO nanorods in optoelectronic nanodevices.

  2. Characterization of lead zirconate titanate (PZT)--indium tin oxide (ITO) thin film interface

    International Nuclear Information System (INIS)

    Sreenivas, K.; Sayer, M.; Laursen, T.; Whitton, J.L.; Pascual, R.; Johnson, D.J.; Amm, D.T.

    1990-01-01

    In this paper the interface between ultrathin sputtered lead zirconate titanate (PZT) films and a conductive electrode (indium tin oxide-ITO) is investigated. Structural and compositional changes at the PZT-ITO interface have been examined by surface analysis and depth profiling techniques of glancing angle x-ray diffraction, Rutherford backscattering (RBS), SIMS, Auger electron spectroscopy (AES), and elastic recoil detection analysis (ERDA). Studies indicate significant interdiffusion of lead into the underlying ITP layer and glass substrate with a large amount of residual stress at the interface. Influence of such compositional deviations at the interface is correlated to an observed thickness dependence in the dielectric properties of PZT films

  3. Partial oxidation of TiN coating by hydrothermal treatment and ozone treatment to improve its osteoconductivity

    International Nuclear Information System (INIS)

    Shi, Xingling; Xu, Lingli; Le, Thi Bang; Zhou, Guanghong; Zheng, Chuanbo; Tsuru, Kanji; Ishikawa, Kunio

    2016-01-01

    Dental implants made of pure titanium suffer from abrasion and scratch during routine oral hygiene procedures. This results in an irreversible surface damage, facilitates bacteria adhesion and increases risk of peri-implantitis. To overcome these problems, titanium nitride (TiN) coating was introduced to increase surface hardness of pure titanium. However, the osteoconductivity of TiN is considered to be similar or superior to that of titanium and its alloys and therefore surface modification is necessary. In this study, TiN coating prepared through gas nitriding was partially oxidized by hydrothermal (HT) treatment and ozone (O 3 ) treatment in pure water to improve its osteoconductivity. The effects of HT treatment and O 3 treatment on surface properties of TiN were investigated and the osteoconductivity after undergoing treatment was assessed in vitro using osteoblast evaluation. The results showed that the critical temperature for HT treatment was 100 °C since higher temperatures would impair the hardness of TiN coating. By contrast, O 3 treatment was more effective in oxidizing TiN surfaces, improving its wettability while preserving its morphology and hardness. Osteoblast attachment, proliferation, alkaline phosphatase (ALP) expression and mineralization were improved on oxidized specimens, especially on O 3 treated specimens, compared with untreated ones. These effects seemed to be consequences of partial oxidation, as well as improved hydrophilicity and surface decontamination. Finally, it was concluded that, partially oxidized TiN is a promising coating to be used for dental implant. - Highlights: • TiN coating surface was oxidized by hydrothermal or ozone treatment while preserving its hardness. • Improved wettability, decontamination and interstitial N promoted osteoblast responses. • Partial oxidation makes TiN a promising coating for dental implant with good osteoconductivity.

  4. Partial oxidation of TiN coating by hydrothermal treatment and ozone treatment to improve its osteoconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xingling [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan); Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); Xu, Lingli, E-mail: linly311@163.com [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Le, Thi Bang [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Zhou, Guanghong [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); Zheng, Chuanbo, E-mail: zjust316@163.com [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Tsuru, Kanji; Ishikawa, Kunio [Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan)

    2016-02-01

    Dental implants made of pure titanium suffer from abrasion and scratch during routine oral hygiene procedures. This results in an irreversible surface damage, facilitates bacteria adhesion and increases risk of peri-implantitis. To overcome these problems, titanium nitride (TiN) coating was introduced to increase surface hardness of pure titanium. However, the osteoconductivity of TiN is considered to be similar or superior to that of titanium and its alloys and therefore surface modification is necessary. In this study, TiN coating prepared through gas nitriding was partially oxidized by hydrothermal (HT) treatment and ozone (O{sub 3}) treatment in pure water to improve its osteoconductivity. The effects of HT treatment and O{sub 3} treatment on surface properties of TiN were investigated and the osteoconductivity after undergoing treatment was assessed in vitro using osteoblast evaluation. The results showed that the critical temperature for HT treatment was 100 °C since higher temperatures would impair the hardness of TiN coating. By contrast, O{sub 3} treatment was more effective in oxidizing TiN surfaces, improving its wettability while preserving its morphology and hardness. Osteoblast attachment, proliferation, alkaline phosphatase (ALP) expression and mineralization were improved on oxidized specimens, especially on O{sub 3} treated specimens, compared with untreated ones. These effects seemed to be consequences of partial oxidation, as well as improved hydrophilicity and surface decontamination. Finally, it was concluded that, partially oxidized TiN is a promising coating to be used for dental implant. - Highlights: • TiN coating surface was oxidized by hydrothermal or ozone treatment while preserving its hardness. • Improved wettability, decontamination and interstitial N promoted osteoblast responses. • Partial oxidation makes TiN a promising coating for dental implant with good osteoconductivity.

  5. InGaN/AlGaInN-based ultraviolet light-emitting diodes with indium gallium tin oxide electrodes

    International Nuclear Information System (INIS)

    Kim, Sukwon; Kim, Tae Geun

    2015-01-01

    In this study, In- and Sn-doped GaO (IGTO) is proposed as an alternative transparent conductive electrode for indium tin oxide (ITO) to improve the performance of InGaN/AlGaInN-based near ultraviolet light-emitting diodes (NUV LEDs). IGTO films were prepared by co-sputtering the ITO and Ga_2O_3 targets under various target power ratios. Among those, IGTO films post-annealed at 700 °C under a hydrogen environment gave rise to a transmittance of 94% at 385 nm and a contact resistance of 9.4 × 10"−"3 Ω-cm"2 with a sheet resistance of 124 Ω/ϒ. Compared to ITO-based NUV LEDs, the IGTO-based NUV LED showed a 9% improvement in the light output power, probably due to IGTO's higher transmittance, although the forward voltage was still higher by 0.23 V. - Highlights: • Indium gallium tin oxide (IGTO) for near-ultraviolet light-emitting diode is proposed. • IGTO is fabricated by co-sputtering the ITO and Ga_2O_3 targets and hydrogen annealing. • IGTO shows a 94% transmittance at 385 nm and a 9.4 × 10"−"3 Ω-cm"2 contact resistance. • Near-ultraviolet light-emitting diode with IGTO shows improved optical performance.

  6. Performance of GaN-Based LEDs with Nanopatterned Indium Tin Oxide Electrode

    Directory of Open Access Journals (Sweden)

    Zhanxu Chen

    2016-01-01

    Full Text Available The indium tin oxide (ITO has been widely applied in light emitting diodes (LEDs as the transparent current spreading layer. In this work, the performance of GaN-based blue light LEDs with nanopatterned ITO electrode is investigated. Periodic nanopillar ITO arrays are fabricated by inductive coupled plasma etching with the mask of polystyrene nanosphere. The light extraction efficiency (LEE of LEDs can be improved by nanopatterned ITO ohmic contacts. The light output intensity of the fabricated LEDs with nanopatterned ITO electrode is 17% higher than that of the conventional LEDs at an injection current of 100 mA. Three-dimensional finite difference time domain simulation matches well with the experimental result. This method may serve as a practical approach to improving the LEE of the LEDs.

  7. Effects of a base coating used for electropolymerization of poly(3,4-ethylenedioxythiophene) on indium tin oxide electrode

    International Nuclear Information System (INIS)

    Wang, X.J.; Wong, K.Y.

    2006-01-01

    Electropolymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) films on indium tin oxide (ITO), using a very thin PEDOT:poly(styrene sulfonate) (PEDOT:PSS) film as a base coating, was carried out in a non-aqueous solution containing the monomer, an electrolyte and propylene carbonate by a two-electrode system. For comparison, PEDOT film electrodeposited on bare ITO substrate under the same condition was also presented. The PEDOT films deposited on these two substrates were characterized by scanning electron microscopy, energy disperse X-ray spectroscopy and Raman spectroscopy. The results indicate that the PEDOT film electrodeposited on bare ITO was not uniform, while the PEDOT film electrodeposited on PEDOT:PSS/ITO has better uniformity. The compositions of the different regions of PEDOT film electrodeposited on bare ITO and PEDOT:PSS/ITO were studied and discussed. Electrochromic devices (ECDs) based on PEDOT films electrodeposited on bare ITO and PEDOT:PSS/ITO were fabricated and characterized by UV-Vis-NIR spectrophotometric study. The results show that the display contrast of the ECD based on PEDOT film electrodeposited on PEDOT:PSS/ITO was improved over that on a bare ITO substrate

  8. Electrochemically reduced graphene–gold nano particle composite on indium tin oxide for label free immuno sensing of estradiol

    International Nuclear Information System (INIS)

    Dharuman, Venkataraman; Hahn, Jong Hoon; Jayakumar, Kumarasamy; Teng, Wei

    2013-01-01

    Highlights: •Label free immunosensing of estradiol is demonstrated using graphene–AuNP composite fabricated on ITO transducer. •Continuous potential cycling reduction method selectively reduces the acid groups of the graphene oxide at pH 6.5. •The AuNP deposition induces change in the graphene orientation on the ITO surface and enhances the charge transport. -- Abstract: Electro reduced graphene and gold nano particle (ErG/AuNP) composite is prepared on indium tin oxide (ITO) surface. Characterization by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Raman spectroscopy (RS), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques reveals the formation of vertical and flat oriented ErG films on the ITO. The AuNP deposition changes the flat oriented ErGs into vertical orientation indicated by the FESEM. Coherent interactions between the ITO, ErG and AuNPs are responsible for the discrete formation of vertical oriented hetero structures of ErG–AuNP composite on the ITO. Electrochemical properties are investigated using [Fe(CN) 6 ] 3−/4− and [Ru(NH 3 )] 2+/3+ redox probes using cyclic voltammetry (CV). While the [Fe(CN) 6 ] 3−/4− shows fast reversible behavior, the [Ru(NH 3 )] 2+/3+ reveals very slow charge transport on both ErG and ErG/AuNP films indicating the multi and compact graphene layer posses positive charge at pH 6.5 used for preparing these composites. Immuno sensing of breast cancer inducing hormone 17β-estradiol (E2) is demonstrated in presence of [Fe(CN) 6 ] 3−/4− . Estrone (E1) and estriol (E3) antigens are used as the controls. The near vertical immobilization of anti-estradiol-antibody enhances the lowest detection limit of 0.1 fmol and dynamic range of 1 × 10 −3 –0.1 × 10 −12 M without any signal amplifiers. These results prove that the acid group of the GO is reduced selectively in controlled way by simple potential

  9. UV-visible spectroscopic estimation of photodegradation of rhodamine-B dye using tin(IV) oxide nanoparticles.

    Science.gov (United States)

    Sangami, G; Dharmaraj, N

    2012-11-01

    Nanocrystalline, tin(IV) oxide (SnO(2)) particles has been prepared by thermal decomposition of tin oxalate precursor obtained from the reactions of tin(IV) chloride and sodium oxalate using eggshell membrane (ESM). The as-prepared SnO(2) nanoparticles were characterized by thermal studies, transmission electron microscopy (TEM), powder X-ray diffraction (XRD), Raman, FT-IR and UV-visible studies and used as a photocatalyst for the degradation of rhodamine-B (Rh-B) dye. The size of the prepared nanoparticles was in the range of 5-12nm as identified from the TEM images. Powder XRD data revealed the presence of a tetragonal, rutile crystalline phase of the tin(IV) oxide nanoparticles. Thermal analysis showed that the decomposition of tin oxalate precursor to yield the titled tin(IV) oxide nanoparticles was completed below 500°C. The extent of degradation of Rh-B in the presence of SnO(2) monitored by absorption spectral measurements demonstrated that 94.48% of the selected dye was degraded upon irradiation with UV light for 60 min. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Inorganic ion exchanger based on tin/titanium mixed oxide doped with europium to be used in radioactive waste

    International Nuclear Information System (INIS)

    Paganini, Paula P.; Felinto, Maria Claudia F.C.; Kodaira, Claudia A.; Brito, Hermi F.

    2009-01-01

    This work presents the results of synthesis and characterization of an inorganic ion exchanger based on tin/titanium mixed oxides doped with europium (SnO 2 /TiO 2 :Eu 3+ ) to be used in environmental field. The adsorption study of nickel was realized in this exchanger to recover the nickel metal which is in thorium-nickel alloys used as electrode of discharge lamps. The studied exchanger was synthesized by neutralization of tin chloride (IV) and titanium chloride (III) mixed solution and characterized by thermogravimetric measurement (TG), Differential Scanning Calorimetry (DSC), X-Ray Powder Diffraction (XRD), Infrared Spectroscopy (IR) and Scanning Electron Microscopy (SEM). The adsorption study showed that these inorganic ion exchangers are good materials to recovery nickel with high weight distribution ratios (Dw Ni 2+ ) and percent adsorption. (author)

  11. Studies on tin based inorganic ion exchangers for fission products separation

    International Nuclear Information System (INIS)

    Dash, A.; Balasubramanian, K.R.; Murthy, T.S.

    1993-01-01

    Tin(IV) antimonate and hydrous tin(IV) oxide have been prepared and their characteristics are evaluated. A new method has been finalized for the separation of 95 Zr- 95 Nb from irradiated uranium using hydrous tin(IV) oxide. In this process, the irradiated sample is dissolved in concentrated HNO 3 , evaporated to near dryness and taken up in 0.5 M HNO 3 . The solution is passed over tin(IV) oxide column and the isotope eluted with 10 M HNO 3 . The product is obtained in pure nitrate form which is generally preferred for different applications. A method has been finalized for the separation of 106 Ru from fission product solution using tin(IV) antimonate. In this method fission product solution is adjusted to 2 M with respect to nitric acid, 137 Cs is separated on a column of ammonium phosphomolybdate, the effluent after adjustment of acidity to 0.2 M is then passed over a column of tin(IV) antimonate where the effluent contains pure 106 Ru. (author). 14 refs., 6 figs., 2 tabs

  12. InGaN/AlGaInN-based ultraviolet light-emitting diodes with indium gallium tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sukwon; Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr

    2015-09-30

    In this study, In- and Sn-doped GaO (IGTO) is proposed as an alternative transparent conductive electrode for indium tin oxide (ITO) to improve the performance of InGaN/AlGaInN-based near ultraviolet light-emitting diodes (NUV LEDs). IGTO films were prepared by co-sputtering the ITO and Ga{sub 2}O{sub 3} targets under various target power ratios. Among those, IGTO films post-annealed at 700 °C under a hydrogen environment gave rise to a transmittance of 94% at 385 nm and a contact resistance of 9.4 × 10{sup −3} Ω-cm{sup 2} with a sheet resistance of 124 Ω/ϒ. Compared to ITO-based NUV LEDs, the IGTO-based NUV LED showed a 9% improvement in the light output power, probably due to IGTO's higher transmittance, although the forward voltage was still higher by 0.23 V. - Highlights: • Indium gallium tin oxide (IGTO) for near-ultraviolet light-emitting diode is proposed. • IGTO is fabricated by co-sputtering the ITO and Ga{sub 2}O{sub 3} targets and hydrogen annealing. • IGTO shows a 94% transmittance at 385 nm and a 9.4 × 10{sup −3} Ω-cm{sup 2} contact resistance. • Near-ultraviolet light-emitting diode with IGTO shows improved optical performance.

  13. FeNi{sub 3}/indium tin oxide (ITO) composite nanoparticles with excellent microwave absorption performance and low infrared emissivity

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Li-Shun; Jiang, Jian-Tang [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhen, Liang, E-mail: lzhen@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin 150080 (China); Shao, Wen-Zhu [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-03-01

    Highlights: Black-Right-Pointing-Pointer Electrical conductivity and infrared emissivity can be controlled by ITO content. Black-Right-Pointing-Pointer The infrared emissivity is the lowest when the mole ratio of In:Sn in sol is 9:1. Black-Right-Pointing-Pointer The permittivity in microwave band can be controlled by the electrical conductivity. Black-Right-Pointing-Pointer EMA performance is significantly influenced by the content of ITO phase. Black-Right-Pointing-Pointer FeNi{sub 3}/ITO composite particles are suitable for both infrared and radar camouflage. - Abstract: FeNi{sub 3}/indium tin oxide (ITO) composite nanoparticles were synthesized by a self-catalyzed reduction method and a sol-gel process. The dependence of the content of ITO phase with the mole ratios of In:Sn of different sols was investigated. The relation between the electrical conductivity, infrared emissivity of FeNi{sub 3}/ITO composite nanoparticles and the content of ITO phase was discussed. Electromagnetic wave absorption (EMA) performance of products was evaluated by using transmission line theory. It was found that EMA performance including the intensity and the location of effective band is significantly dependent on the content of ITO phase. The low infrared emissivity and superior EMA performance of FeNi{sub 3}/ITO composite nanoparticles can be both achieved when the mole ratio of In:Sn in sol is 9:1.

  14. Synthesis of antimony-doped tin oxide (ATO) nanoparticles by the nitrate-citrate combustion method

    International Nuclear Information System (INIS)

    Zhang Jianrong; Gao Lian

    2004-01-01

    Antimony-doped tin oxide (ATO) nanoparticles having rutile structure have been synthesized by the combustion method using citric acid (CA) as fuel and nitrate as an oxidant, the metal sources were granulated tin and Sb 2 O 3 . The influence of citric acid (fuel) to metal ratio on the average crystallite size, specific surface area and morphology of the nanoparticles has been investigated. X-ray diffraction showed the tin ions were reduced to elemental tin during combustion reaction. The average ATO crystallite size increased with the increase of citric acid (fuel). Powder morphology and the comparison of crystallite size and grain size shows that the degree of agglomeration of the powder decreased with an increase of the ratio. The highest specific surface area was 37.5 m 2 /g when the citric acid to tin ratio was about 6

  15. Morphology and phase transformations of tin oxide nanostructures synthesized by the hydrothermal method in the presence of dicarboxylic acids

    International Nuclear Information System (INIS)

    Zima, Tatyana; Bataev, Ivan

    2016-01-01

    A new approach to the synthesis of non-stoichiometric tin oxide structures with different morphologies and the phase compositions has been evaluated. The nanostructures were synthesized by hydrothermal treatment of the mixtures of dicarboxylic acids ― aminoterephthalic or oxalic ― with nanocrystalline SnO 2 powder, which was obtained via the sol-gel technology. The products were characterized by Raman and IR spectroscopy, SEM, HRTEM, and XRD analysis. It was shown that the controlled addition of a dicarboxylic acid leads not only to a change in the morphology of the nanostructures, but also to SnO 2 –SnO 2 /Sn 3 O 4 –Sn 3 O 4 –SnO phase transformations. A single-phase Sn 3 O 4 in the form of the well-separated hexagonal nanoplates and mixed SnO 2 /Sn 3 O 4 phases in the form of hierarchical flower-like structures were obtained in the presence of organic additives. The effects of concentration, redox activity of the acids and heat treatment on the basic characteristics of the synthesized tin oxide nanostructures and phase transformations in the synthesized materials are discussed. - Graphical abstract: The controlled addition of aminoterephthalic or oxalic acid leads not only to a change in the morphology of the nanostructures, but also to SnO 2 –SnO 2 /Sn 3 O 4 –Sn 3 O 4 –SnO phase transformations. - Highlights: • A new approach to the synthesis of non-stoichiometric tin oxide structures is studied. • Tin oxide structures are synthesized via hydrothermal method with dicarboxylic acids. • Morphology and phase composition are changed with redox activity and dosage of acid. • The redox activity of acid has an effect on ratio of SnO and SnO 2 in crystal structure. • A pure phase Sn 3 O 4 nanoplates and SnO 2 /Sn 3 O 4 hierarchical structures are formed.

  16. Fabrication and Characterization of SnO2/Graphene Composites as High Capacity Anodes for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Abirami Dhanabalan

    2013-11-01

    Full Text Available Tin-oxide and graphene (TG composites were fabricated using the Electrostatic Spray Deposition (ESD technique, and tested as anode materials for Li-ion batteries. The electrochemical performance of the as-deposited TG composites were compared to heat-treated TG composites along with pure tin-oxide films. The heat-treated composites exhibited superior specific capacity and energy density than both the as-deposited TG composites and tin oxide samples. At the 70th cycle, the specific capacities of the as-deposited and post heat-treated samples were 534 and 737 mA·h/g, respectively, and the corresponding energy densities of the as-deposited and heat-treated composites were 1240 and 1760 W·h/kg, respectively. This improvement in the electrochemical performance of the TG composite anodes as compared to the pure tin oxide samples is attributed to the synergy between tin oxide and graphene, which increases the electrical conductivity of tin oxide and helps alleviate volumetric changes in tin-oxide during cycling.

  17. First-principles analysis of structural and opto-electronic properties of indium tin oxide

    Science.gov (United States)

    Tripathi, Madhvendra Nath; Shida, Kazuhito; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2012-05-01

    Density functional theory (DFT) and DFT + U (DFT with on-site Coulomb repulsion corrections) calculations have been carried out to study the structural and opto-electronic properties of indium tin oxide (ITO) for both the oxidized and reduced environment conditions. Some of the results obtained by DFT calculations differ from the experimental observations, such as uncertain indication for the site preference of tin atom to replace indium atom at b-site or d-site, underestimation of local inward relaxation in the first oxygen polyhedra around tin atom, and also the improper estimation of electronic density of states and hence resulting in an inappropriate optical spectra of ITO. These discrepancies of theoretical outcomes with experimental observations in ITO arise mainly due to the underestimation of the cationic 4d levels within standard DFT calculations. Henceforth, the inclusion of on-site corrections within DFT + U framework significantly modifies the theoretical results in better agreement to the experimental observations. Within this framework, our calculations show that the indium b-site is preferential site over d-site for tin atom substitution in indium oxide under both the oxidized and reduced conditions. Moreover, the calculated average inward relaxation value of 0.16 Å around tin atom is in good agreement with the experimental value of 0.18 Å. Furthermore, DFT + U significantly modify the electronic structure and consequently induce modifications in the calculated optical spectra of ITO.

  18. Synthesis, nanostructure and magnetic properties of FeCo-reduced graphene oxide composite films by one-step electrodeposition

    International Nuclear Information System (INIS)

    Cao, Derang; Li, Hao; Wang, Zhenkun; Wei, Jinwu; Wang, Jianbo; Liu, Qingfang

    2015-01-01

    FeCo-reduced graphene oxide (FeCo-RGO) composite film was fabricated on indium tin oxide substrate using one-step electrodeposition method. Raman spectroscopy and field emission scanning electron microscope results show that the reduced graphene oxide is coprecipitated with the FeCo film. The energy-dispersive spectrometer results demonstrate that the atomic ratio of Fe/Co in FeCo-RGO composite film is larger than that of the FeCo film under the same fabrication condition. As a result, the FeCo-RGO composite film exhibits good soft magnetic properties and high-frequency properties as well as the FeCo film. The magnetic anisotropy field and saturation magnetization of FeCo-RGO composite film are increased when compared with FeCo film. Furthermore, the ferromagnetic resonance frequency is improved from 2.15 GHz for the FeCo film to 3.9 GHz for the FeCo-RGO composite film. - Highlights: • FeCo-reduced graphene oxide composite film was fabricated on indium tin oxide substrate. • One step electrodeposition method was used. • Good soft magnetic properties were exhibited by the composite films. • Increase of resonance frequency from 2.15 GHz for FeCo film to 3.9 GHz for composite film

  19. Fabrication of heterojunction solar cells by improved tin oxide deposition on insulating layer

    Science.gov (United States)

    Feng, Tom; Ghosh, Amal K.

    1980-01-01

    Highly efficient tin oxide-silicon heterojunction solar cells are prepared by heating a silicon substrate, having an insulating layer thereon, to provide a substrate temperature in the range of about 300.degree. C. to about 400.degree. C. and thereafter spraying the so-heated substrate with a solution of tin tetrachloride in a organic ester boiling below about 250.degree. C. Preferably the insulating layer is naturally grown silicon oxide layer.

  20. Acid-catalyzed kinetics of indium tin oxide etching

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae-Hyeok; Kim, Seong-Oh; Hilton, Diana L. [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); Cho, Nam-Joon, E-mail: njcho@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore)

    2014-08-28

    We report the kinetic characterization of indium tin oxide (ITO) film etching by chemical treatment in acidic and basic electrolytes. It was observed that film etching increased under more acidic conditions, whereas basic conditions led to minimal etching on the time scale of the experiments. Quartz crystal microbalance was employed in order to track the reaction kinetics as a function of the concentration of hydrochloric acid and accordingly solution pH. Contact angle measurements and atomic force microscopy experiments determined that acid treatment increases surface hydrophilicity and porosity. X-ray photoelectron spectroscopy experiments identified that film etching is primarily caused by dissolution of indium species. A kinetic model was developed to explain the acid-catalyzed dissolution of ITO surfaces, and showed a logarithmic relationship between the rate of dissolution and the concentration of undisassociated hydrochloric acid molecules. Taken together, the findings presented in this work verify the acid-catalyzed kinetics of ITO film dissolution by chemical treatment, and support that the corresponding chemical reactions should be accounted for in ITO film processing applications. - Highlights: • Acidic conditions promoted indium tin oxide (ITO) film etching via dissolution. • Logarithm of the dissolution rate depended linearly on the solution pH. • Acid treatment increased ITO surface hydrophilicity and porosity. • ITO film etching led to preferential dissolution of indium species over tin species.

  1. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

    Directory of Open Access Journals (Sweden)

    M. Morales-Masis

    2014-09-01

    Full Text Available Improving the conductivity of earth-abundant transparent conductive oxides (TCOs remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H2-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H2-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitive substrates.

  2. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Masis, M., E-mail: monica.moralesmasis@epfl.ch; Ding, L.; Dauzou, F. [Photovoltaics and Thin-Film Electronics Laboratory (PVLab), Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne - EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel (Switzerland); Jeangros, Q. [Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Hessler-Wyser, A. [Photovoltaics and Thin-Film Electronics Laboratory (PVLab), Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne - EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel (Switzerland); Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Nicolay, S. [Centre Suisse d’Electronique et de Microtechnique (CSEM) SA, Rue Jaquet-Droz 1, CH-2002 Neuchatel (Switzerland); Ballif, C. [Photovoltaics and Thin-Film Electronics Laboratory (PVLab), Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne - EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel (Switzerland); Centre Suisse d’Electronique et de Microtechnique (CSEM) SA, Rue Jaquet-Droz 1, CH-2002 Neuchatel (Switzerland)

    2014-09-01

    Improving the conductivity of earth-abundant transparent conductive oxides (TCOs) remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H{sub 2})-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H{sub 2}-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitive substrates.

  3. PALLADIUM DOPED TIN OXIDE BASED HYDROGEN GAS SENSORS FOR SAFETY APPLICATIONS

    International Nuclear Information System (INIS)

    Kasthurirengan, S.; Behera, Upendra; Nadig, D. S.

    2010-01-01

    Hydrogen is considered to be a hazardous gas since it forms a flammable mixture between 4 to 75% by volume in air. Hence, the safety aspects of handling hydrogen are quite important. For this, ideally, highly selective, fast response, small size, hydrogen sensors are needed. Although sensors based on different technologies may be used, thin-film sensors based on palladium (Pd) are preferred due to their compactness and fast response. They detect hydrogen by monitoring the changes to the electrical, mechanical or optical properties of the films. We report the development of Pd-doped tin-oxide based gas sensors prepared on thin ceramic substrates with screen printed platinum (Pt) contacts and integrated nicrome wire heaters. The sensors are tested for their performances using hydrogen-nitrogen gas mixtures to a maximum of 4%H 2 in N 2 . The sensors detect hydrogen and their response times are less than a few seconds. Also, the sensor performance is not altered by the presence of helium in the test gas mixtures. By the above desired performance characteristics, field trials of these sensors have been undertaken. The paper presents the details of the sensor fabrication, electronic circuits, experimental setup for evaluation and the test results.

  4. Combinatorial study of zinc tin oxide thin-film transistors

    Science.gov (United States)

    McDowell, M. G.; Sanderson, R. J.; Hill, I. G.

    2008-01-01

    Groups of thin-film transistors using a zinc tin oxide semiconductor layer have been fabricated via a combinatorial rf sputtering technique. The ZnO :SnO2 ratio of the film varies as a function of position on the sample, from pure ZnO to SnO2, allowing for a study of zinc tin oxide transistor performance as a function of channel stoichiometry. The devices were found to have mobilities ranging from 2to12cm2/Vs, with two peaks in mobility in devices at ZnO fractions of 0.80±0.03 and 0.25±0.05, and on/off ratios as high as 107. Transistors composed predominantly of SnO2 were found to exhibit light sensitivity which affected both the on/off ratios and threshold voltages of these devices.

  5. Effect of fabrication conditions on the properties of indium tin oxide powders

    International Nuclear Information System (INIS)

    Xie Wei

    2008-01-01

    This paper reports that indium tin oxide (ITO) crystalline powders are prepared by coprecipitation method. Fabrication conditions mainly as sintering temperature and Sn doping content are correlated with the phase, microstructure, infrared emissivity in and powder resistivity of indium tin oxides by means of x-ray diffraction, Fourier transform infrared, and transmission electron microscope. The optimum sintering temperature of 1350°C and Sn doping content 6∼8wt% are determined. The application of ITO in the military camouflage field is proposed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. Spray deposited gallium doped tin oxide thinfilm for acetone sensor application

    Science.gov (United States)

    Preethi, M. S.; Bharath, S. P.; Bangera, Kasturi V.

    2018-04-01

    Undoped and gallium doped (1 at.%, 2 at.% and 3 at.%) tin oxide thin films were prepared using spray pyrolysis technique by optimising the deposition conditions such as precursor concentration, substrate temperature and spraying rate. X-ray diffraction analysis revealed formation of tetragonally structured polycrystalline films. The SEM micrographs of Ga doped films showed microstructures. The electrical resistivity of the doped films was found to be more than that of the undoped films. The Ga-doped tin oxide thin films were characterised for gas sensors. 1 at.% Ga doped thin films were found to be better acetone gas sensor, showed 68% sensitivity at 350°C temperature.

  7. Gas Sensing Properties of Indium Tin Oxide Nanofibers

    Directory of Open Access Journals (Sweden)

    Shiyou Xu

    2009-11-01

    Full Text Available Indium Tin Oxide (ITO nanofibers were fabricated by the electrospinning process. The morphology and crystal structure of ITO nanofibers were studied by SEM, XRD, and TEM respectively. The results showed that polycrystalline ITO nanofibers with an average diameter of 80 nm were obtained. Sensors based on these nanofibers were fabricated by collecting these nanofibers on the integrated sensor platforms. The ITO nanofiber-based sensors showed very fast and high sensor responses at both room and elevated temperatures for NO2. The ratios of resistance in NO2 over that in air were 5 at room temperature and 34 at the optimal working temperature, respectively. The ITO nanofiber-based sensor can be repeatedly used. The details for the fast, enhanced sensor responses and the optimal temperature were discussed.

  8. Development of Polymethylmethacrylate Based Composite for Gas Sensing Application

    Directory of Open Access Journals (Sweden)

    S. Devikala

    2011-01-01

    Full Text Available Gas detection instruments are increasingly needed for industrial health and safety, environmental monitoring and process control. Conductive polymer composites have various industrial applications. The composite prepared by mixing carbon black with polymethylmethacrylate (PMMA has very good gas sensing applications. The gas sensors based on carbon nanotube/polymer, ceramic and metal oxide composites such as epoxy, polyimide, PMMA / Barium titanate and tin oxide have also been developed. In the present work, a new composite has been prepared by using PMMA and ammonium dihydrogen phosphate (ADP. The PMMA/Ammonium dihydrogen phosphate (PMADP composites PMADP 1 and PMADP 2 were characterized by using Powder XRD. The thick films of the composite on glass plates were prepared by using a spin coating unit at 9000 rpm. The application of the thick film as gas sensor has been studied between 0 and 2000 seconds. The results reveal that the thick film of PMADP composite can function as a very good gas sensor.

  9. Oxidation resistance coating for niobium base structural composites

    International Nuclear Information System (INIS)

    Tabaru, T.; Shobu, K.; Kim, J.H.; Hirai, H.; Hanada, S.

    2003-01-01

    Oxidation behavior of Al-rich Mo(Si,Al) 2 base alloys, which is a candidate material for the oxidation resistance coating on Nb base structural composites, were investigated by thermogravimetry. The Mo(Si,Al) 2 base alloys containing Mo 5 (Si,Al) 3 up to about 10 vol% exhibits excellent oxidation resistance at temperatures ranging from 780 to 1580 K, particularly at 1580 K due to continuous Al 2 O 3 layer development. To evaluate the applicability of the Mo(Si,Al) 2 base coating, plasma spraying on Nb base composites were undertaken. However, interface reaction layer was found to form during the following heat treatment. Preparation of Mo(Si,Al) 2 /Al 2 O 3 /Nb layered structures via powder metallurgical process was attempted to preclude diffusion reaction between coating and substrate. (orig.)

  10. Photocatalytic degradation of phenol by iodine doped tin oxide nanoparticles under UV and sunlight irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdi, Abdullah M.; Sillanpää, Mika [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Dutta, Joydeep, E-mail: dutta@squ.edu.om [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman)

    2015-01-05

    Highlights: • A sol–gel method used to synthesize tin oxide nanoparticles. • Nanoparticles of tin oxide doped with different iodine concentrations. • Degradation studies carried up with UV–vis, TOC, HPLC and GC instruments. • 1% iodine doped tin dioxide showed maximum photodegradation efficiency. - Abstract: Iodine doped tin oxide (SnO{sub 2}:I) nanoparticles were prepared by sol–gel synthesis and their photocatalytic activities with phenol as a test contaminant were studied. In the presence of the catalysts, phenol degradation under direct sunlight was comparable to what was achieved under laboratory conditions. Photocatalytic oxidation reactions were studied by varying the catalyst loading, light intensity, illumination time, pH of the reactant and phenol concentration. Upon UV irradiation in the presence of SnO{sub 2}:I nanoparticles, phenol degrades very rapidly within 30 min, forming carboxylic acid which turns the solution acidic. Phenol degradation rate with 1% iodine doped SnO{sub 2} nanoparticles is at least an order of magnitude higher compared to the degradation achieved through undoped SnO{sub 2} nanoparticles under similar illumination conditions.

  11. Photocatalytic degradation of phenol by iodine doped tin oxide nanoparticles under UV and sunlight irradiation

    International Nuclear Information System (INIS)

    Al-Hamdi, Abdullah M.; Sillanpää, Mika; Dutta, Joydeep

    2015-01-01

    Highlights: • A sol–gel method used to synthesize tin oxide nanoparticles. • Nanoparticles of tin oxide doped with different iodine concentrations. • Degradation studies carried up with UV–vis, TOC, HPLC and GC instruments. • 1% iodine doped tin dioxide showed maximum photodegradation efficiency. - Abstract: Iodine doped tin oxide (SnO 2 :I) nanoparticles were prepared by sol–gel synthesis and their photocatalytic activities with phenol as a test contaminant were studied. In the presence of the catalysts, phenol degradation under direct sunlight was comparable to what was achieved under laboratory conditions. Photocatalytic oxidation reactions were studied by varying the catalyst loading, light intensity, illumination time, pH of the reactant and phenol concentration. Upon UV irradiation in the presence of SnO 2 :I nanoparticles, phenol degrades very rapidly within 30 min, forming carboxylic acid which turns the solution acidic. Phenol degradation rate with 1% iodine doped SnO 2 nanoparticles is at least an order of magnitude higher compared to the degradation achieved through undoped SnO 2 nanoparticles under similar illumination conditions

  12. Crack density and electrical resistance in indium-tin-oxide/polymer thin films under cyclic loading

    KAUST Repository

    Mora Cordova, Angel; Khan, Kamran; El Sayed, Tamer

    2014-01-01

    Here, we propose a damage model that describes the degradation of the material properties of indium-tin-oxide (ITO) thin films deposited on polymer substrates under cyclic loading. We base this model on our earlier tensile test model and show

  13. Pretreatment of Platinum/Tin Oxide-Catalyst

    Science.gov (United States)

    Hess, Robert V.; Paulin, Patricia A.; Miller, Irvin M.; Schryer, David R.; Sidney, Barry D.; Wood, George M.; Upchurch, Billy T.; Brown, Kenneth G.

    1987-01-01

    Addition of CO to He pretreatment doubles catalytic activity. In sealed, high-energy, pulsed CO2 laser, CO and O2 form as decomposition products of CO2 in laser discharge zone. Products must be recombined, because oxygen concentration of more than few tenths of percent causes rapid deterioration of power, ending in unstable operation. Promising low-temperature catalyst for combining CO and O2 is platinum on tin oxide. New development increases activity of catalyst so less needed for recombination process.

  14. Chemical vapor deposition of tin oxide: fundamentals and applications

    NARCIS (Netherlands)

    Mol, A.M.B. van; Chae, Y.; McDaniel, A.H.; Allendorf, M.D.

    2006-01-01

    Tin oxide thin layers have very beneficial properties such as a high transparency for visible light and electrical conductivity making these coatings suitable for a wide variety of applications, such as solar cells, and low-emissivity coatings for architectural glass windows. Each application

  15. Mechanical Properties of Glass Surfaces Coated with Tin Oxide

    DEFF Research Database (Denmark)

    Swindlehurst, W. E.; Cantor, B.

    1978-01-01

    The effect of tin oxide coatings on the coefficient of friction and fracture strength of glass surfaces is studied. Experiments were performed partly on commercially treated glass bottles and partly on laboratory prepared microscope slides. Coatings were applied in the laboratory by decomposition...

  16. High Mobility Thin Film Transistors Based on Amorphous Indium Zinc Tin Oxide

    Directory of Open Access Journals (Sweden)

    Imas Noviyana

    2017-06-01

    Full Text Available Top-contact bottom-gate thin film transistors (TFTs with zinc-rich indium zinc tin oxide (IZTO active layer were prepared at room temperature by radio frequency magnetron sputtering. Sintered ceramic target was prepared and used for deposition from oxide powder mixture having the molar ratio of In2O3:ZnO:SnO2 = 2:5:1. Annealing treatment was carried out for as-deposited films at various temperatures to investigate its effect on TFT performances. It was found that annealing treatment at 350 °C for 30 min in air atmosphere yielded the best result, with the high field effect mobility value of 34 cm2/Vs and the minimum subthreshold swing value of 0.12 V/dec. All IZTO thin films were amorphous, even after annealing treatment of up to 350 °C.

  17. Structural, photoconductivity, and dielectric studies of polythiophene-tin oxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Murugavel, S., E-mail: starin85@gmail.com; Malathi, M., E-mail: mmalathi@vit.ac.in

    2016-09-15

    Highlights: • Synthesis of polythiophene-tin oxide nanocomposites confirmed by FTIR and EDAX. • SEM shows SnO{sub 2} nanoparticles embedded within polythiophene matrix. • Stability and isoelectric point suggest nanoparticle–matrix interaction. • High dielectric constant due to high Maxwell–Wagner interfacial polarization. - Abstract: Polythiophene-tinoxide (PT-SnO{sub 2}) nanocomposites were prepared by in situ chemical oxidative polymerization, in the presence of various concentrations of SnO{sub 2} nanoparticles. Samples were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy and Zeta potential measurements. Morphologies and elemental compositions were investigated by transmission electron microscopy, field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. The photoconductivity of the nanocomposites was studied by field-dependent dark and photo conductivity measurements. Their dielectric properties were investigated using dielectric spectroscopy, in the frequency range of 1kHz–1 MHz. The results indicated that the SnO{sub 2} nanoparticles in the PT-SnO{sub 2} nanocomposite were responsible for its enhanced dielectric performance.

  18. Structural studies of supported tin catalysts

    Science.gov (United States)

    Nava, Noel; Viveros, Tomás

    1999-11-01

    Tin oxide was supported on aluminium oxide, titanium oxide, magnesium oxide and silicon oxide, and the resulting interactions between the components in the prepared samples and after reduction were characterized by Mössbauer spectroscopy. It was observed that in the oxide state, tin is present as SnO2 on alumina, magnesia and silica, but on titania tin occupies Ti sites in the structure. After hydrogen treatment at high temperatures, tin is reduced from Sn(4) to Sn(2) on alumina and titania; it is reduced from Sn(4) to Sn(0) on silica, and is practically not reduced on magnesia. These results reveal the degree of interaction between tin and the different supports studied.

  19. Structural studies of supported tin catalysts

    International Nuclear Information System (INIS)

    Nava, Noel; Viveros, Tomas

    1999-01-01

    Tin oxide was supported on aluminium oxide, titanium oxide, magnesium oxide and silicon oxide, and the resulting interactions between the components in the prepared samples and after reduction were characterized by Moessbauer spectroscopy. It was observed that in the oxide state, tin is present as SnO 2 on alumina, magnesia and silica, but on titania tin occupies Ti sites in the structure. After hydrogen treatment at high temperatures, tin is reduced from Sn(4) to Sn(2) on alumina and titania; it is reduced from Sn(4) to Sn(0) on silica, and is practically not reduced on magnesia. These results reveal the degree of interaction between tin and the different supports studied

  20. Amplified electrochemical determination of maltol in food based on graphene oxide-wrapped tin oxide@carbon nanospheres.

    Science.gov (United States)

    Gan, Tian; Sun, Junyong; Yu, Miaomiao; Wang, Kaili; Lv, Zhen; Liu, Yanming

    2017-01-01

    The study presents a new approach for rapid and ultrasensitive detection of maltol using a glassy carbon electrode (GCE) modified with graphene oxide-wrapped tin oxide@carbon nanospheres (SnO2@C@GO). The morphological and components properties of SnO2@C@GO nanocomposites were investigated by means of X-ray diffraction spectroscopy, Raman spectroscopy, field emission scanning electron microscopy, high resolution transmission electron microscopy, and electrochemical impedance spectroscopy. SnO2@C@GO nanocomposite on a GCE had a synergetic effect on the electrochemical oxidation of maltol by means of square wave voltammetry. Under the optimum conditions, anodic peak current response of maltol was linear with its concentration in the range of 80nM-10μM, and a detection limit of 12nM was achieved for maltol. The experiment results presented that the method showed good selectivity, sensitivity, reproducibility, and long-term stability, as well as excellent potential for use as an ideal inexpensive voltammetric method applicable for complex food matrices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Transparent conductive electrodes of mixed TiO2−x–indium tin oxide for organic photovoltaics

    KAUST Repository

    Lee, Kyu-Sung; Lim, Jong-Wook; Kim, Han-Ki; Alford, T. L.; Jabbour, Ghassan E.

    2012-01-01

    A transparent conductive electrode of mixed titanium dioxide (TiO2−x)–indium tin oxide (ITO) with an overall reduction in the use of indium metal is demonstrated. When used in organic photovoltaicdevices based on bulk heterojunction photoactive

  2. Alkaline earth metal doped tin oxide as a novel oxygen storage material

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Qiang, E-mail: dong@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Yin, Shu; Yoshida, Mizuki; Wu, Xiaoyong; Liu, Bin [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro [Department of Research Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Miyamae cho-7, Kofu 400-8511 (Japan); Sato, Tsugio [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan)

    2015-09-15

    Alkaline earth metal doped tin oxide (SnO{sub 2}) hollow nanospheres with a diameter of 50 nm have been synthesized successfully via a facial solvothermal route in a very simple system composed of only ethanol, acetic acid, SnCl{sub 4}·5H{sub 2}O and A(NO{sub 3}){sub 2}·xH{sub 2}O (A = Mg, Ca, Sr, Ba). The synthesized undoped SnO{sub 2} and A-doped SnO{sub 2} hollow nanospheres were characterized by the oxygen storage capacity (OSC), X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique. The OSC values of all samples were measured using thermogravimetric-differential thermal analysis. The incorporation of alkaline earth metal ion into tin oxide greatly enhanced the thermal stability and OSC. Especially, Ba-doped SnO{sub 2} hollow nanospheres calcined at 1000 °C for 20 h with a BET surface area of 61 m{sup 2} g{sup −1} exhibited the considerably high OSC of 457 μmol-O g{sup −1} and good thermal stability. Alkaline earth metal doped tin oxide has the potential to be a novel oxygen storage material.

  3. Transparent indium-tin oxide/indium-gallium-zinc oxide Schottky diodes formed by gradient oxygen doping

    Science.gov (United States)

    Ho, Szuheng; Yu, Hyeonggeun; So, Franky

    2017-11-01

    Amorphous InGaZnO (a-IGZO) is promising for transparent electronics due to its high carrier mobility and optical transparency. However, most metal/a-IGZO junctions are ohmic due to the Fermi-level pinning at the interface, restricting their device applications. Here, we report that indium-tin oxide/a-IGZO Schottky diodes can be formed by gradient oxygen doping in the a-IGZO layer that would otherwise form an ohmic contact. Making use of back-to-back a-IGZO Schottky junctions, a transparent IGZO permeable metal-base transistor is also demonstrated with a high common-base gain.

  4. Influence of Rare Earth Doping on the Structural and Catalytic Properties of Nanostructured Tin Oxide

    Directory of Open Access Journals (Sweden)

    Maciel Adeilton

    2008-01-01

    Full Text Available AbstractNanoparticles of tin oxide, doped with Ce and Y, were prepared using the polymeric precursor method. The structural variations of the tin oxide nanoparticles were characterized by means of nitrogen physisorption, carbon dioxide chemisorption, X-ray diffraction, and X-ray photoelectron spectroscopy. The synthesized samples, undoped and doped with the rare earths, were used to promote the ethanol steam reforming reaction. The SnO2-based nanoparticles were shown to be active catalysts for the ethanol steam reforming. The surface properties, such as surface area, basicity/base strength distribution, and catalytic activity/selectivity, were influenced by the rare earth doping of SnO2and also by the annealing temperatures. Doping led to chemical and micro-structural variations at the surface of the SnO2particles. Changes in the catalytic properties of the samples, such as selectivity toward ethylene, may be ascribed to different dopings and annealing temperatures.

  5. Atomic layer epitaxy of hematite on indium tin oxide for application in solar energy conversion

    Science.gov (United States)

    Martinson, Alex B.; Riha, Shannon; Guo, Peijun; Emery, Jonathan D.

    2016-07-12

    A method to provide an article of manufacture of iron oxide on indium tin oxide for solar energy conversion. An atomic layer epitaxy method is used to deposit an uncommon bixbytite-phase iron (III) oxide (.beta.-Fe.sub.2O.sub.3) which is deposited at low temperatures to provide 99% phase pure .beta.-Fe.sub.2O.sub.3 thin films on indium tin oxide. Subsequent annealing produces pure .alpha.-Fe.sub.2O.sub.3 with well-defined epitaxy via a topotactic transition. These highly crystalline films in the ultra thin film limit enable high efficiency photoelectrochemical chemical water splitting.

  6. Enhancement of the electrical characteristics of thin-film transistors with indium-zinc-tin oxide/Ag/indium-zinc-tin oxide multilayer electrodes

    Science.gov (United States)

    Oh, Dohyun; Yun, Dong Yeol; Cho, Woon-Jo; Kim, Tae Whan

    2014-08-01

    Transparent indium-zinc-tin oxide (IZTO)-based thin-film transistors (TFTs) with IZTO/Ag/IZTO multilayer electrodes were fabricated on glass substrates using a tilted dual-target radio-frequency magnetron sputtering system. The IZTO TFTs with IZTO/Ag/IZTO multilayer electrodes exhibited a high optical transmittance in a visible region. The threshold voltage, the mobility, and the on/off-current ratio of the TFTs with IZTO/Ag/IZTO multilayer electrodes were enhanced in comparison with those of the TFTs with ITO electrodes. The source/drain contact resistance of the IZTO TFTs with IZTO/Ag/IZTO multilayer electrodes was smaller than that of the IZTO TFTs with ITO electrodes, resulting in enhancement of their electrical characteristics.

  7. One pot synthesis of multi-functional tin oxide nanostructures for high efficiency dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wali, Qamar; Fakharuddin, Azhar; Yasin, Amina; Ab Rahim, Mohd Hasbi; Ismail, Jamil; Jose, Rajan, E-mail: rjose@ump.edu.my

    2015-10-15

    Photoanode plays a key role in dye sensitized solar cells (DSSCs) as a scaffold for dye molecules, transport medium for photogenerated electrons, and scatters light for improved absorption. Herein, tin oxide nanostructures unifying the above three characteristics were optimized by a hydrothermal process and used as photoanode in DSSCs. The optimized morphology is a combination of hollow porous nanoparticles of size ∼50 nm and micron sized spheres with BET surface area (up to 29 m{sup 2}/g) to allow large dye-loading and light scattering as well as high crystallinity to support efficient charge transport. The optimized morphology gave the highest photovoltaic conversion efficiency (∼7.5%), so far achieved in DSSCs with high open circuit voltage (∼700 mV) and short circuit current density (∼21 mA/cm{sup 2}) employing conventional N3 dye and iodide/triiodide electrolyte. The best performing device achieved an incident photon to current conversion efficiency of ∼90%. The performance of the optimized tin oxide nanostructures was comparable to that of conventional titanium based DSSCs fabricated at similar conditions. - Graphical abstract: Tin oxide hollow nanostructure simultaneously supporting improved light scattering, dye-loading, and charge transport yielded high photovoltaic conversion efficiency in dye-sensitized solar cells. - Highlights: • Uniformly and bimodelly distributed tin oxide hollow nanospheres (HNS) are synthesized. • Uniform HNS are of size ∼10 nm; bimodel HNS has additional size up to ∼800 nm. • They are evaluated as photoelectrodes in dye-sensitized solar cells (DSSCs). • The uniform HNS increase dye-loading and the larger increase light scattering in DSSCs. • Photo conversion efficiency ∼7.5% is achieved using bimodel HNS.

  8. Broader color gamut of color-modulating optical coating display based on indium tin oxide and phase change materials.

    Science.gov (United States)

    Ni, Zhigang; Mou, Shenghong; Zhou, Tong; Cheng, Zhiyuan

    2018-05-01

    A color-modulating optical coating display based on phase change materials (PCM) and indium tin oxide (ITO) is fabricated and analyzed. We demonstrate that altering the thickness of top-ITO in this PCM-based display device can effectively change color. The significant role of the top-ITO layer in the thin-film interference in this multilayer system is confirmed by experiment as well as simulation. The ternary-color modulation of devices with only 5 nano thin layer of phase change material is achieved. Furthermore, simulation work demonstrates that a stirringly broader color gamut can be obtained by introducing the control of the top-ITO thickness.

  9. Defect Engineering and Interface Phenomena in Tin Oxide

    KAUST Repository

    Albar, Arwa

    2017-04-05

    The advance in transparent electronics requires high-performance transparent conducting oxide materials. The microscopic properties of these materials are sensitive to the presence of defects and interfaces and thus fundamental understanding is required for materials engineering. In this thesis, first principles density functional theory is used to investigate the possibility of tuning the structural, electronic and magnetic properties of tin oxide by means of defects and interfaces. Our aim is to reveal unique properties and the parameters to control them as well as to explain the origin of unique phenomena in oxide materials. The stability of native defect in tin monoxide (SnO) under strain is investigated using formation energy calculations. We find that the conductivity (which is controlled by native defects) can be switched from p-type to either n-type or undoped semiconducting by means of applied pressure. We then target inducing magnetism in SnO by 3d transition metal doping. We propose that V doping is efficient to realize spin polarization at high temperature. We discuss different tin oxide interfaces. Metallic states are found to form at the SnO/SnO2 interface with electronic properties that depend on the interface terminations. The origin of these states is explained in terms of charge transfer caused by chemical bonding and band alignment. For the SnO/SnO2 heterostructure, we observe the formation of a two dimensional hole gas at the interface, which is surprising as it cannot be explained by the standard polar catastrophe model. Thus, we propose a charge density discontinuity model to explain our results. The model can be generalized to other polar-polar interfaces. Motivated by technological applications, the electronic and structural properties of the MgO (100)/SnO2 (110) interface are investigated. Depending on the interface termination, we observe the formation of a two dimensional electron gas or spin polarized hole gas. Aiming to identify further

  10. Investigation of TiN thin film oxidation depending on the substrate temperature at vacuum break

    Energy Technology Data Exchange (ETDEWEB)

    Piallat, Fabien, E-mail: fabien.piallat@gmail.com [STMicroelectronics, 850 rue Jean Monnet, 38920 Crolles (France); CEA, LETI, Campus Minatec, F-38054 Grenoble (France); LTM-CNRS, 17 rue des Martyrs, 38054 Grenoble (France); Gassilloud, Remy [CEA, LETI, Campus Minatec, F-38054 Grenoble (France); Caubet, Pierre [STMicroelectronics, 850 rue Jean Monnet, 38920 Crolles (France); Vallée, Christophe [LTM-CNRS, 17 rue des Martyrs, 38054 Grenoble (France)

    2016-09-15

    Due to the reduction of the thickness of the layers used in the advanced technology nodes, there is a growing importance of the surface phenomena in the definition of the general properties of the materials. One of the least controlled and understood phenomenon is the oxidation of metals after deposition, at the vacuum break. In this study, the influence of the sample temperature at vacuum break on the oxidation level of TiN deposited by metalorganic chemical vapor deposition is investigated. TiN resistivity appears to be lower for samples which underwent vacuum break at high temperature. Using X-ray photoelectron spectrometry analysis, this change is correlated to the higher oxidation of the TiN layer. Moreover, angle resolved XPS analysis reveals that higher is the temperature at the vacuum break, higher is the surface oxidation of the sample. This surface oxidation is in turn limiting the diffusion of oxygen in the volume of the layer. Additionally, evolution of TiN layers resistivity was monitored in time and it shows that resistivity increases until a plateau is reached after about 10 days, with the lowest temperature at vacuum break resulting in the highest increase, i.e., the resistivity of the sample released to atmosphere at high temperature increased by a factor 1.7 whereas the resistivity of the sample cooled down under vacuum temperature increased by a factor 2.7.

  11. A novel electrode surface fabricated by directly attaching gold nanoparticles onto NH2+ ions implanted-indium tin oxide substrate

    International Nuclear Information System (INIS)

    Liu Chenyao; Jiao Jiao; Chen Qunxia; Xia Ji; Li Shuoqi; Hu Jingbo; Li Qilong

    2010-01-01

    A new type of gold nanoparticle attached to a NH 2 + ion implanted-indium tin oxide surface was fabricated without using peculiar binder molecules, such as 3-(aminopropyl)-trimethoxysilane. A NH 2 /indium tin oxide film was obtained by implantation at an energy of 80 keV with a fluence of 5 x 10 15 ions/cm 2 . The gold nanoparticle-modified film was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy and electrochemical techniques and compared with a modified bare indium tin oxide surface and 3-(aminopropyl)-trimethoxysilane linked surface, which exhibited a relatively low electron transfer resistance and high electrocatalytic activity. The results demonstrate that NH 2 + ion implanted-indium tin oxide films can provide an important route to immobilize nanoparticles, which is attractive in developing new biomaterials.

  12. Microwave Derived Facile Approach to Sn/Graphene Composite Anodes for, Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Beck, Faith R.; Epur, Rigved; Hong, Daeho; Manivannan, Ayyakkannu; Kumta, Prashant N.

    2014-01-01

    Graphical abstract: Tin particles embedded in graphene (G) sheet have been synthesized by microwave reduction of tin halide (SnCl 2 ) and graphite oxide (GO) followed by annealing in argon. The microwave reaction resulted in the formation of tin oxide embedded in graphene sheets. Annealing in argon at elevated temperatures initiated carbothermal reduction culminating in the formation of tin decorated graphene sheet composites that were employed as anodes for lithium-ion batteries. X-ray diffraction analysis of the final composite showed the presence of crystalline tin combined with a very small diffraction peak corresponding to (002) plane of graphite. Scanning electron microscopy (SEM) revealed decorated graphene layers with tin droplets. X-ray Photoelectron Spectroscopy (XPS) confirmed the presence of graphene and graphene oxide in the composite. Electrochemical cycling response indicated that the tin/graphene composite exhibited initial discharge capacities varying from 790 mAh/g to 850 mAh/g depending on the composition, while a stable reversible capacity of ∼500 mAh/g was achieved for optimized compositions when cycled at a current density of ∼100 mA/g in the voltage window of 0.02 to 1.2 V vs. Li + /Li. Carbon coating of the Sn/G composite ultimately achieved by decomposition of dextrose using microwave heating significantly improved the electrochemical cycling stability. - Highlights: • Tin embedded graphene sheets have been synthesized by microwave reduction. • Tin oxide and graphene formed was carbothermally reduced to Sn/graphene. • XPS confirmed presence of graphene and graphene oxide in the composite. • Electrochemical response indicated capacities in 790 mAh/g to 850 mAh/g range. • Carbon coated composite yielded stable reversible capacity ∼500 mAh/g. - Abstract: Tin particles embedded in graphene (G) sheets have been synthesized by microwave reduction of tin halide (SnCl 2 .2H 2 O) and graphite oxide (GO) followed by annealing in argon

  13. Selective carbon monoxide oxidation over Ag-based composite oxides

    Energy Technology Data Exchange (ETDEWEB)

    Guldur, C. [Gazi University, Ankara (Turkey). Chemical Engineering Department; Balikci, F. [Gazi University, Ankara (Turkey). Institute of Science and Technology, Environmental Science Department

    2002-02-01

    We report our results of the synthesis of 1 : 1 molar ratio of the silver cobalt and silver manganese composite oxide catalysts to remove carbon monoxide from hydrogen-rich fuels by the catalytic oxidation reaction. Catalysts were synthesized by the co-precipitation method. XRD, BET, TGA, catalytic activity and catalyst deactivation studies were used to identify active catalysts. Both CO oxidation and selective CO oxidation were carried out in a microreactor using a reaction gas mixture of 1 vol% CO in air and another gas mixture was prepared by mixing 1 vol% CO, 2 vol% O{sub 2}, 84 vol% H{sub 2}, the balance being He. 15 vol% CO{sub 2} was added to the reactant gas mixture in order to determine the effect of CO{sub 2}, reaction gases were passed through the humidifier to determine the effect of the water vapor on the oxidation reaction. It was demonstrated that metal oxide base was decomposed to the metallic phase and surface areas of the catalysts were decreased when the calcination temperature increased from 200{sup o}C to 500{sup o}C. Ag/Co composite oxide catalyst calcined at 200{sup o}C gave good activity at low temperatures and 90% of CO conversion at 180{sup o}C was obtained for the selective CO oxidation reaction. The addition of the impurities (CO{sub 2} or H{sub 2}O) decreased the activity of catalyst for selective CO oxidation in order to get highly rich hydrogen fuels. (author)

  14. Surface passivation function of indium-tin-oxide-based nanorod structural sensors

    International Nuclear Information System (INIS)

    Lin, Tzu-Shun; Lee, Ching-Ting; Lee, Hisn-Ying; Lin, Chih-Chien

    2012-01-01

    Employing self-shadowing traits of an oblique-angle electron-beam deposition system, various indium tin oxide (ITO) nanorod arrays were deposited on a silicon substrate and used as extended-gate field-effect-transistor (EGFET) pH sensors. The length and morphology of the deposited ITO nanorod arrays could be changed and controlled under different deposition conditions. The ITO nanorod structural EGFET pH sensors exhibited high sensing performances owing to the larger sensing surface area. The sensitivity of the pH sensors with 150-nm-length ITO nanorod arrays was 53.96 mV/pH. By using the photoelectrochemical treatment of the ITO nanorod arrays, the sensitivity of the pH sensors with 150-nm-length passivated ITO nanorod arrays was improved to 57.21 mV/pH.

  15. Physical properties of pyrolytically sprayed tin-doped indium oxide coatings

    NARCIS (Netherlands)

    Haitjema, H.; Elich, J.J.P.

    1991-01-01

    The optical and electrical properties of tin-doped indium oxide coatings obviously depend on a number of production parameters. This dependence has been studied to obtain a more general insight into the relationships between the various coating properties. The coatings have been produced by spray

  16. Screen-printed Tin-doped indium oxide (ITO) films for NH3 gas sensing

    International Nuclear Information System (INIS)

    Mbarek, Hedia; Saadoun, Moncef; Bessais, Brahim

    2006-01-01

    Gas sensors using metal oxides have several advantageous features such as simplicity in device structure and low cost fabrication. In this work, Tin-doped indium oxide (ITO) films were prepared by the screen printing technique onto glass substrates. The granular and porous structure of screen-printed ITO are suitable for its use in gas sensing devices. The resistance of the ITO films was found to be strongly dependent on working temperatures and the nature and concentration of the ambient gases. We show that screen-printed ITO films have good sensing properties toward NH 3 vapours. The observed behaviors are explained basing on the oxidizing or the reducer nature of the gaseous species that react on the surface of the heated semi-conducting oxide

  17. Impact of soft annealing on the performance of solution-processed amorphous zinc tin oxide thin-film transistors

    KAUST Repository

    Nayak, Pradipta K.

    2013-05-08

    It is demonstrated that soft annealing duration strongly affects the performance of solution-processed amorphous zinc tin oxide thin-film transistors. Prolonged soft annealing times are found to induce two important changes in the device: (i) a decrease in zinc tin oxide film thickness, and (ii) an increase in oxygen vacancy concentration. The devices prepared without soft annealing exhibited inferior transistor performances, in comparison to devices in which the active channel layer (zinc tin oxide) was subjected to soft annealing. The highest saturation field-effect mobility - 5.6 cm2 V-1 s-1 with a drain-to-source on-off current ratio (Ion/Ioff) of 2 × 108 - was achieved in the case of devices with 10-min soft-annealed zinc tin oxide thin films as the channel layer. The findings of this work identify soft annealing as a critical parameter for the processing of chemically derived thin-film transistors, and it correlates device performance to the changes in material structure induced by soft annealing. © 2013 American Chemical Society.

  18. Deposition of indium tin oxide thin films by cathodic arc ion plating

    International Nuclear Information System (INIS)

    Yang, M.-H.; Wen, J.-C.; Chen, K.-L.; Chen, S.-Y.; Leu, M.-S.

    2005-01-01

    Indium tin oxide (ITO) thin films have been deposited by cathodic arc ion plating (CAIP) using sintered oxide target as the source material. In an oxygen atmosphere of 200 deg. C, ITO films with a lowest resistivity of 2.2x10 -4 Ω-cm were obtained at a deposition rate higher than 450 nm/min. The carrier mobility of ITO shows a maximum at some medium pressures. Although morphologically ITO films with a very fine nanometer-sized structure were observed to possess the lowest resistivity, more detailed analyses based on X-ray diffraction are attempted to gain more insight into the factors that govern electron mobility in this investigation

  19. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    CERN Document Server

    Morgado, J; Charas, A; Matos, M; Alcacer, L; Cacialli, F

    2003-01-01

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide.

  20. Post-deposition annealing effects in RF reactive magnetron sputtered indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M A; Herrero, J; Gutierrez, M T [Inst. de Energias Renovables (CIEMAT), Madrid (Spain)

    1992-05-01

    Indium tin oxide films have been grown by RF reactive magnetron sputtering. The influence of the deposition parameters on the properties of the films has been investigated and optimized, obtaining a value for the figure of merit of 6700 ({Omega} cm){sup -1}. As-grown indium tin oxide films were annealed in vacuum and O{sub 2} atmosphere. After these heat treatments the electro-optical properties were improved, with values for the resistivity of 1.9x10{sup -4} {Omega} cm and the figure of merit of 26700 ({Omega} cm){sup -1}. (orig.).

  1. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    International Nuclear Information System (INIS)

    Morgado, Jorge; Barbagallo, Nunzio; Charas, Ana; Matos, Manuel; Alcacer, Luis; Cacialli, Franco

    2003-01-01

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide

  2. IMPEDANCE SPECTROSCOPY OF POLYCRYSTALLINE TIN DIOXIDE FILMS

    Directory of Open Access Journals (Sweden)

    D. V. Adamchuck

    2016-01-01

    Full Text Available The aim of this work is the analysis of the influence of annealing in an inert atmosphere on the electrical properties and structure of non-stoichiometric tin dioxide films by means of impedance spectroscopy method. Non-stoichiometric tin dioxide films were fabricated by two-step oxidation of metallic tin deposited on the polycrystalline Al2O3 substrates by DC magnetron sputtering. In order to modify the structure and stoichiometric composition, the films were subjected to the high temperature annealing in argon atmosphere in temperature range 300–800 °С. AC-conductivity measurements of the films in the frequency range 20 Hz – 2 MHz were carried out. Variation in the frequency dependencies of the real and imaginary parts of the impedance of tin dioxide films was found to occur as a result of high-temperature annealing. Equivalent circuits for describing the properties of films with various structure and stoichiometric composition were proposed. Possibility of conductivity variation of the polycrystalline tin dioxide films as a result of аnnealing in an inert atmosphere was demonstrated by utilizing impedance spectroscopy. Annealing induces the recrystallization of the films, changing in their stoichiometry as well as increase of the sizes of SnO2 crystallites. Variation of electrical conductivity and structure of tin dioxide films as a result of annealing in inert atmosphere was confirmed by X-ray diffraction analysis. Analysis of the impedance diagrams of tin dioxide films was found to be a powerful tool to study their electrical properties. 

  3. Si-Based Germanium Tin Semiconductor Lasers for Optoelectronic Applications

    Science.gov (United States)

    Al-Kabi, Sattar H. Sweilim

    Silicon-based materials and optoelectronic devices are of great interest as they could be monolithically integrated in the current Si complementary metal-oxide-semiconductor (CMOS) processes. The integration of optoelectronic components on the CMOS platform has long been limited due to the unavailability of Si-based laser sources. A Si-based monolithic laser is highly desirable for full integration of Si photonics chip. In this work, Si-based germanium-tin (GeSn) lasers have been demonstrated as direct bandgap group-IV laser sources. This opens a completely new avenue from the traditional III-V integration approach. In this work, the material and optical properties of GeSn alloys were comprehensively studied. The GeSn films were grown on Ge-buffered Si substrates in a reduced pressure chemical vapor deposition system with low-cost SnCl4 and GeH4 precursors. A systematic study was done for thin GeSn films (thickness 400 nm) with Sn composition 5 to 17.5%. The room temperature photoluminescence (PL) spectra were measured that showed a gradual shift of emission peaks towards longer wavelength as Sn composition increases. Strong PL intensity and low defect density indicated high material quality. Moreover, the PL study of n-doped samples showed bandgap narrowing compared to the unintentionally p-doped (boron) thin films with similar Sn compositions. Finally, optically pumped GeSn lasers on Si with broad wavelength coverage from 2 to 3 mum were demonstrated using high-quality GeSn films with Sn compositions up to 17.5%. The achieved maximum Sn composition of 17.5% broke the acknowledged Sn incorporation limit using similar deposition chemistry. The highest lasing temperature was measured at 180 K with an active layer thickness as thin as 270 nm. The unprecedented lasing performance is due to the achievement of high material quality and a robust fabrication process. The results reported in this work show a major advancement towards Si-based electrically pumped mid

  4. Production of multifilamentary Nb3Sn composites incorporating a high tin bronze

    International Nuclear Information System (INIS)

    Petrovich, A.; Zeithlin, B.A.; Walker, M.S.

    1977-01-01

    The economics and processing methods have been examined for the fabrication of multifilamentary Nb 3 Sn using a high tin bronze reactive matrix. Four conductor configurations utilizing the high tin bronze were compared with a conventional Cu-13 wt % Sn bronze. The most promising of these designs is potentially 40% lower in cost per ampere meter than the conventional composite. Large hydrostatic extrusion facilities, which are required for the high tin processing, are not presently available in this country but can be made by conversion of conventional presses. They exist in Europe. Experiments were conducted to investigate the applicability of hydrostatic extrusion, and billet components were successfully prepared using the hydrostatic extrusion technique. We have concluded that the economics, availability of facilities and initial fabrication results are favorable for this type of conductor and that the next stage in this program of scale up to extrusion and drawing of 2'' to 3'' diameter composite billets should be undertaken

  5. A sol-gel method to synthesize indium tin oxide nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Xiuhua Li; Xiujuan xu; Xin Yin; Chunzhong Li; Jianrong Zhang

    2011-01-01

    Transparent conductive indium tin oxide (ITO) nanoparticles were synthesized by a novel sol-gel method.Granulated indium and tin were dissolved in HNO3 and partially complexed with citric acid.A sol-gel process was induced when tertiary butyl alcohol was added dropwise to the above solution.ITO nanoparticles with an average crystallite size of 18.5 nm and surface area of 32.6 m2/g were obtained after the gel was heat-treated at 700 C.The ITO nanoparticles showed good sinterability,the starting sintering temperature decreased sharply to 900 C,and the 1400 C sintered pellet had a density of 98.1 % of theoretical density (TD).

  6. One step aqueous solution preparation of nanosize iron-doped tin oxide from SnO{sub 2}.xH{sub 2}O gel

    Energy Technology Data Exchange (ETDEWEB)

    Melghit, Khaled [Chemistry Department, College of Science, P.O. Box 36, Al-Khodh 123, Sultan Qaboos University (Oman)]. E-mail: melghit@squ.edu.om; Bouziane, Khalid [Physics Department, College of Science, P.O. Box 36, Al-Khodh 123, Sultan Qaboos University (Oman)

    2006-03-15

    Nanosized iron-doped tin oxide solid solution was prepared by mixing tin oxide gel SnO{sub 2}.xH{sub 2}O with a boiling solution of iron nitrate. The XRD data of the as-prepared and annealed sample at 773 K show that the patterns are indexed to the rutile phase without any trace of an extra phase. SEM and TEM results performed on different selected area of the samples reveal a homogeneous composition of 8 at.% of Fe content and a size of about 2 nm of the particles. The particles size was found to increase slightly with temperature; about 7 nm after 24 h at 773 K. Structural and magnetic results seem to indicate that Fe{sup 3+} substitute for Sn{sup 4+} on the as-prepared sample. The system presents some weak ferromagnetic character at room temperature.

  7. Mn-implanted, polycrystalline indium tin oxide and indium oxide films

    International Nuclear Information System (INIS)

    Scarlat, Camelia; Vinnichenko, Mykola; Xu Qingyu; Buerger, Danilo; Zhou Shengqiang; Kolitsch, Andreas; Grenzer, Joerg; Helm, Manfred; Schmidt, Heidemarie

    2009-01-01

    Polycrystalline conducting, ca. 250 nm thick indium tin oxide (ITO) and indium oxide (IO) films grown on SiO 2 /Si substrates using reactive magnetron sputtering, have been implanted with 1 and 5 at.% of Mn, followed by annealing in nitrogen or in vacuum. The effect of the post-growth treatment on the structural, electrical, magnetic, and optical properties has been studied. The roughness of implanted films ranges between 3 and 15 nm and XRD measurements revealed a polycrystalline structure. A positive MR has been observed for Mn-implanted and post-annealed ITO and IO films. It has been interpreted by considering s-d exchange. Spectroscopic ellipsometry has been used to prove the existence of midgap electronic states in the Mn-implanted ITO and IO films reducing the transmittance below 80%.

  8. Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors

    International Nuclear Information System (INIS)

    Tue, Phan Trong; Inoue, Satoshi; Takamura, Yuzuru; Shimoda, Tatsuya

    2016-01-01

    We report combustion solution synthesized (SCS) indium-tin-oxide (ITO) thin film, which is a well-known transparent conductive oxide, for source/drain (S/D) electrodes in solution-processed amorphous zirconium-indium-zinc-oxide TFT. A redox-based combustion synthetic approach is applied to ITO thin film using acetylacetone as a fuel and metal nitrate as oxidizer. The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. It was found that at optimal conditions the SCS-ITO thin film exhibited high crystalline quality, atomically smooth surface (RMS ∝ 4.1 Aa), and low electrical resistivity (4.2 x 10 -4 Ω cm). The TFT using SCS-ITO film as the S/D electrodes showed excellent electrical properties with negligible hysteresis. The obtained ''on/off'' current ratio, subthreshold swing factor, subthreshold voltage, and field-effect mobility were 5 x 10 7 , 0.43 V/decade, 0.7 V, and 2.1 cm 2 /V s, respectively. The performance and stability of the SCS-ITO TFT are comparable to those of the sputtered-ITO TFT, emphasizing that the SCS-ITO film is a promising candidate for totally solution-processed oxide TFTs. (orig.)

  9. Effect of cationic/anionic organic surfactants on evaporation induced self assembled tin oxide nanostructured films

    International Nuclear Information System (INIS)

    Khun Khun, Kamalpreet; Mahajan, Aman; Bedi, R.K.

    2011-01-01

    Tin oxide nanostructures with well defined morphologies have been obtained through an evaporation induced self assembly process. The technique has been employed using an ultrasonic nebulizer for production of aersol and its subsequent deposition onto a heated glass substrate. The precursor used for aersol production was modified by introducing cationic and anionic surfactants namely cetyl trimethyl ammonium bromide and sodium dodecyl sulphate respectively. The effect of surfactants on the structural, electrical and optical properties of self assembled tin oxide nanostructures were investigated by using X-ray diffraction, field emission scanning electroscope microscopy, two probe technique and photoluminiscence studies. The results reveal that high concentration of surfactants in the precursor solution leads to reduction in crystallite size with significant changes in the morphology of tin oxide nanostructures. Photoluminiscence studies of the nanostructures show emissions in the visible region which exhibit marked changes in the intensities upon variation of surfactants in the precursor solutions.

  10. Effect of cationic/anionic organic surfactants on evaporation induced self assembled tin oxide nanostructured films

    Energy Technology Data Exchange (ETDEWEB)

    Khun Khun, Kamalpreet [Material Science Laboratory, Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Mahajan, Aman, E-mail: dramanmahajan@yahoo.co.in [Material Science Laboratory, Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Bedi, R.K. [Material Science Laboratory, Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India)

    2011-01-15

    Tin oxide nanostructures with well defined morphologies have been obtained through an evaporation induced self assembly process. The technique has been employed using an ultrasonic nebulizer for production of aersol and its subsequent deposition onto a heated glass substrate. The precursor used for aersol production was modified by introducing cationic and anionic surfactants namely cetyl trimethyl ammonium bromide and sodium dodecyl sulphate respectively. The effect of surfactants on the structural, electrical and optical properties of self assembled tin oxide nanostructures were investigated by using X-ray diffraction, field emission scanning electroscope microscopy, two probe technique and photoluminiscence studies. The results reveal that high concentration of surfactants in the precursor solution leads to reduction in crystallite size with significant changes in the morphology of tin oxide nanostructures. Photoluminiscence studies of the nanostructures show emissions in the visible region which exhibit marked changes in the intensities upon variation of surfactants in the precursor solutions.

  11. Control of the electrical conductivity of composites of antimony doped tin oxide (ATO) nanoparticles and acrylate by grafting of 3-methacryloxpropyltrimethoxysilane (MPS)

    NARCIS (Netherlands)

    Posthumus, W.; Laven, J.; With, de G.; Linde, van der R.

    2006-01-01

    The effect of the addition of antimony doped tin oxide (ATO) nanoparticles on the electrical conductivity of acrylate films is described. To enable dispersing of ATO in acrylate matrices, 3-methacryloxypropyltrimethoxysilane (MPS) was grafted on the surface of the filler. The amount of MPS used for

  12. Reactivation of a tin oxide-containing catalyst

    Science.gov (United States)

    Upchurch, Billy T. (Inventor); Miller, Irvin M. (Inventor); Brown, Kenneth G. (Inventor); Hess, Robert V. (Inventor); Schryer, David R. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor); Paulin, Patricia A. (Inventor)

    1989-01-01

    A method for the reactivation of a tin oxide-containing catalyst of a CO.sub.2 laser is provided. First, the catalyst is pretreated by a standard procedure. When the catalyst experiences diminished activity during usage, the heated zone surrounding the catalyst is raised to a temperature which is the operating temperature of the laser and 400.degree. C. for approximately one hour. The catalyst is exposed to the same laser gas mixture during this period. The temperature of the heated zone is then lowered to the operating temperature of the CO.sub.2 laser.

  13. On the deposition parameters of indium oxide (IO) and tin oxide (TO) by reactive evaporation technique

    International Nuclear Information System (INIS)

    Hassan, F.; Abdullah, A.H.; Salam, R.

    1990-01-01

    Thin films of tin oxide (TO) and indium oxide (IO) are prepared by the reactive evaporation technique, where indium or tin sources are evaporated and made to react with oxygen gas injected close to the substrate. In both depositions a substrate temperature of 380 0 C and a chamber pressure of 2x10 -5 mbar are utilized, but however different oxygen flow rates has been maintained. For TO, the deposition rate is found to be constant up to about 55 minutes of deposition time with a deposition rate of about 0.10 A/s, but for longer deposition time the deposition rate increases rapidly up to about 0.30 A/s. The IO displays a higher deposition rate of about 0.80 A/s over a deposition time 30 minutes, beyond which the deposition rate increases gradually

  14. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    KAUST Repository

    Wang, Zhenwei

    2015-04-20

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

  15. Single-Stroke Synthesis of Tin Sulphide/Oxide Nanocomposites Within Engineering Thermoplastic and Their Humidity Response.

    Science.gov (United States)

    Adkar, Dattatraya; Adhyapak, Parag; Mulik, Uttamrao; Jadkar, Sandesh; Vutova, Katia; Amalnerkar, Dinesh

    2018-05-01

    SnS nanostructured materials have attracted enormous interest due to their important properties and potential application in low cost solar energy conversion systems and optical devices. From the perspective of SnS based device fabrication, we offer single-stroke in-situ technique for the generation of Sn based sulphide and oxide nanostructures inside the polymer network via polymer-inorganic solid state reaction route. In this method, polyphenylene sulphide (PPS)-an engineering thermoplastic-acts as chalcogen source as well as stabilizing matrix for the resultant nano products. Typical solid state reaction was accomplished by simply heating the physical admixtures of the tin salts (viz. tin acetate/tin chloride) with PPS at the crystalline melting temperature (285 °C) of PPS in inert atmosphere. The synthesized products were characterized by using various physicochemical characterization techniques. The prima facie observations suggest the concurrent formation of nanocrystalline SnS with extraneous oxide phase. The TEM analysis revealed formation of nanosized particles of assorted morphological features with polydispersity confined to 5 to 50 nm. However, agglomerated particles of nano to submicron size were also observed. The humidity sensing characterization of these nanocomposites was also performed. The resistivity response with the level of humidity (20 to 85% RH) was compared for these nanocomposites. The linear response was obtained for both the products. Nevertheless, the nanocomposite product obtained from acetate precursor showed higher sensitivity towards the humidity than that of one prepared from chloride precursor.

  16. Rapid synthesis of tin oxide nanostructures by microwave-assisted thermal oxidation for sensor applications

    Science.gov (United States)

    Phadungdhitidhada, S.; Ruankham, P.; Gardchareon, A.; Wongratanaphisan, D.; Choopun, S.

    2017-09-01

    In the present work nanostructures of tin oxides were synthesized by a microwave-assisted thermal oxidation. Tin precursor powder was loaded into a cylindrical quartz tube and further radiated in a microwave oven. The as-synthesized products were characterized by scanning electron microscope, transmission electron microscope, and x-ray diffractometer. The results showed that two different morphologies of SnO2 microwires (MWs) and nanoparticles (NPs) were obtained in one minute of microwave radiation under atmospheric ambient. A few tens of the SnO2 MWs with the length of 10-50 µm were found. Some parts of the MWs were decorated with the SnO2 NPs. However, most of the products were SnO2 NPs with the diameter ranging from 30-200 nm. Preparation under loosely closed system lead to mixed phase SnO-SnO2 NPs with diameter of 30-200 nm. The single-phase of SnO2 could be obtained by mixing the Sn precursor powders with CuO2. The products were mostly found to be SnO2 nanowires (NWs) and MWs. The diameter of SnO2 NWs was less than 50 nm. The SnO2 NPs, MWs, and NWs were in the cassiterite rutile structure phase. The SnO NPs was in the tetragonal structure phase. The growth direction of the SnO2 NWs was observed in (1 1 0) and (2 2 1) direction. The ethanol sensor performance of these tin oxide nanostructures showed that the SnO-SnO2 NPs exhibited extremely high sensitivity. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  17. Application of argon atmospheric cold plasma for indium tin oxide (ITO) based diodes

    Science.gov (United States)

    Akbari Nia, S.; Jalili, Y. Seyed; Salar Elahi, A.

    2017-09-01

    Transparent Conductive Oxide (TCO) layers due to transparency, high conductivity and hole injection capability have attracted a lot of attention. One of these layers is Indium Tin Oxide (ITO). ITO due to low resistance, transparency in the visible spectrum and its proper work function is widely used in the manufacture of organic light emitting diodes and solar cells. One way for improving the ITO surface is plasma treatment. In this paper, changes in surface morphology, by applying argon atmospheric pressure cold plasma, was studied through Atomic Force Microscopic (AFM) image analysis and Fourier Transform Infrared Spectroscopy (FTIR) analysis. FTIR analysis showed functional groups were not added or removed, but chemical bond angle and bonds strength on the surface were changed and also AFM images showed that surface roughness was increased. These factors lead to the production of diodes with enhanced Ohmic contact and injection mechanism which are more appropriate in industrial applications.

  18. Recovery Of Valuable Metals In Tin-Based Anodic Slimes By Carbothermic Reaction

    Directory of Open Access Journals (Sweden)

    Han Chulwoong

    2015-06-01

    Full Text Available This study investigated the recovery of anodic slimes by carbothermic reaction in the temperature range of 973~1,273K and amount of carbon as a function of time. Tin anodic slime samples were collected from the bottom of the electrolytic cells during the electro-refining of tin. The anodic slimes are consisted of high concentrated tin, silver, copper and lead oxides. The kinetics of reduction were determined by means of the weight-loss measurement technique. In order to understand in detail of carbothermic reaction, thermodynamic calculation was carried out and compared with experiments. From thermodynamic calculation and experiment, it was confirmed that Sn-based anodic slime could be reduced by controlling temperature and amount of carbon. However, any tendency between the reduction temperature and carbon content for the reduction reaction was not observed.

  19. Microstructure and high-temperature oxidation resistance of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy surface by laser cladding

    Science.gov (United States)

    Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua

    2010-11-01

    A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.

  20. Indium--tin oxide films radio frequency sputtered from specially formulated high density indium--tin oxide targets

    International Nuclear Information System (INIS)

    Kulkarni, S.; Bayard, M.

    1991-01-01

    High density ITO (indium--tin oxide) targets doped with Al 2 O 3 and SiO 2 manufactured in the Tektronix Ceramics Division have been used to rf sputter ITO films of various thicknesses on borosilicate glass substrates. Sputtering in an oxygen--argon gas mixture and annealing in forming gas, resulted in ITO films exhibiting 90% transmission at 550 nm and a sheet resistance of 15 Ω/sq for a thickness of 1100 A. Sputtering in an oxygen--argon gas mixture and annealing in air increased sheet resistance without a large effect on the transmission. Films sputtered in argon gas alone were transparent in the visible and the sheet resistance was found to be 100--180 Ω/sq for the same thickness, without annealing

  1. Correlative scanning electron and confocal microscopy imaging of labeled cells coated by indium-tin-oxide

    KAUST Repository

    Rodighiero, Simona

    2015-03-22

    Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field-of-view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold-labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium-tin-oxide was deposited by ion-sputtering on gold-decorated HeLa cells and neurons. Indium-tin-oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold-conjugated markers. © 2015 Wiley Periodicals, Inc.

  2. Structural, optical and electrical properties of tin oxide thin films for application as a wide band gap semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, Riti; Ahmad, Shabir; Aziz, Anver; Siddiqui, Azher Majid, E-mail: amsiddiqui@jmi.ac.in [Department of Physics, Jamia Millia Islamia, New Delhi-110025 (India)

    2015-08-28

    Tin oxide (SnO) thin films were synthesized using thermal evaporation technique. Ultra pure metallic tin was deposited on glass substrates using thermal evaporator under high vacuum. The thickness of the tin deposited films was kept at 100nm. Subsequently, the as-deposited tin films were annealed under oxygen environment for a period of 3hrs to obtain tin oxide films. To analyse the suitability of the synthesized tin oxide films as a wide band gap semiconductor, various properties were studied. Structural parameters were studied using XRD and SEM-EDX. The optical properties were studied using UV-Vis Spectrophotometry and the electrical parameters were calculated using the Hall-setup. XRD and SEM confirmed the formation of SnO phase. Uniform texture of the film can be seen through the SEM images. Presence of traces of unoxidised Sn has also been confirmed through the XRD spectra. The band gap calculated was around 3.6eV and the optical transparency around 50%. The higher value of band gap and lower value of optical transparency can be attributed to the presence of unoxidised Sn. The values of resistivity and mobility as measured by the Hall setup were 78Ωcm and 2.92cm{sup 2}/Vs respectively. The reasonable optical and electrical parameters make SnO a suitable candidate for optoelectronic and electronic device applications.

  3. Supercapacitors Based on Nickel Oxide/Carbon Materials Composites

    OpenAIRE

    Lota, Katarzyna; Sierczynska, Agnieszka; Lota, Grzegorz

    2011-01-01

    In the thesis, the properties of nickel oxide/active carbon composites as the electrode materials for supercapacitors are discussed. Composites with a different proportion of nickel oxide/carbon materials were prepared. A nickel oxide/carbon composite was prepared by chemically precipitating nickel hydroxide on an active carbon and heating the hydroxide at 300 ∘C in the air. Phase compositions of the products were characterized using X-ray diffractometry (XRD). The morphology of the composite...

  4. Generic Top-Functionalization of Patterned Antifouling Zwitterionic Polymers on Indium Tin Oxide

    NARCIS (Netherlands)

    Li, Y.; Giesbers, M.; Zuilhof, H.

    2012-01-01

    This paper presents a novel surface engineering approach that combines photochemical grafting and surface-initiated atom transfer radical polymerization (SI-ATRP) to attach zwitterionic polymer brushes onto indium tin oxide (ITO) substrates. The photochemically grafted hydroxyl-terminated organic

  5. Low-temperature Synthesis of Tin(II) Oxide From Tin(II) ketoacidoximate Precursor

    KAUST Repository

    Alshankiti, Buthainah

    2015-04-01

    Sn (II) oxide finds numerous applications in different fields such as thin film transistors1, solar cells2 and sensors.3 In this study we present the fabrication of tin monoxide SnO by using Sn (II) ketoacid oximate complexes as precursors. Tin (II) ketoacidoximates of the type [HON=CRCOO]2Sn where R= Me 1, R= CH2Ph 2, and [(MeON=CMeCOO)3Sn]- NH4 +.2H2O 3 were synthesized by in situ formation of the ketoacid oximate ligand. The crystal structures were determined via single crystal X- ray diffraction of the complexes 1-3 revealed square planar and square pyramidal coordination environments for the Sn atom. Intramolecular hydrogen bonding is observed in all the complexes. Furthermore, the complexes were characterized by Infrared (IR), Nuclear Magnetic Resonance (NMR) and elemental analysis. From thermogravimetric analysis of 1-3, it was found that the complexes decomposed in the range of 160 – 165 oC. Analysis of the gases evolved during decomposition indicated complete loss of the oximato ligand in one step and the formation of SnO. Spin coating of 1 on silicon or glass substrate show uniform coating of SnO. Band gaps of SnO films were measured and found to be in the range of 3.0 – 3.3 eV by UV-Vis spectroscopy. X-ray photoelectron spectroscopy indicated surface oxidation of the SnO film. Heating 1 above 140 oC in air gives SnO of size ranging from 10 – 500 nm and is spherical in shape. The SnO nanomaterial is characterized by powder X-ray diffraction(XRD), Raman spectroscopy, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM).

  6. Modification of composite por -Si/SnOx power ion beam of nanosecond duration

    International Nuclear Information System (INIS)

    Korusenko, P.M.; Bolotov, V.V.; Knyazev, E.V.; Kovivchak, V.S.; Korepanov, A.A.; Nesov, S.N.; Povoroznyuk, S.N.

    2011-01-01

    The results of XPS (X-ray photoelectron spectroscopy), AES (Auger electron spectroscopy) and SEM (Scanning electron microscopy) investigation of tin oxide nanolayers on the samples of the composite por-Si/SnO x with different porosity of the matrix, formed under the influence of a powerful ion beam of nanosecond duration was presented. It is shown that fast melting and crystallization of the surface leads to the formation of globular structures with a typical size of 200 nm. Established that the tin is included in structure of the nanocomposite in the oxidized state with little inclusion of metallic β-tin. With increasing porosity, phase composition of nanolayers of tin is close to the state corresponding to the higher tin oxide SnO 2 . Also shows that with increasing porosity, the intensity of subvalent 4d lines of tin, which is apparently associated with an increased degree of hybridization of the tin atoms and oxygen atoms. According to the results stratified etching was to evaluate the changes of the elemental structure of the composite and the depth of penetration of tin. (authors)

  7. A novel electrode surface fabricated by directly attaching gold nanoparticles onto NH{sub 2}{sup +} ions implanted-indium tin oxide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chenyao; Jiao Jiao; Chen Qunxia [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Xia Ji [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China); Li Shuoqi [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Hu Jingbo, E-mail: hujingbo@bnu.edu.c [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Li Qilong [College of Chemistry, Beijing Normal University, Beijing 100875 (China)

    2010-12-01

    A new type of gold nanoparticle attached to a NH{sub 2}{sup +} ion implanted-indium tin oxide surface was fabricated without using peculiar binder molecules, such as 3-(aminopropyl)-trimethoxysilane. A NH{sub 2}/indium tin oxide film was obtained by implantation at an energy of 80 keV with a fluence of 5 x 10{sup 15} ions/cm{sup 2}. The gold nanoparticle-modified film was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy and electrochemical techniques and compared with a modified bare indium tin oxide surface and 3-(aminopropyl)-trimethoxysilane linked surface, which exhibited a relatively low electron transfer resistance and high electrocatalytic activity. The results demonstrate that NH{sub 2}{sup +} ion implanted-indium tin oxide films can provide an important route to immobilize nanoparticles, which is attractive in developing new biomaterials.

  8. Study of optical characteristics of tin oxide thin film prepared by sol ...

    Indian Academy of Sciences (India)

    wear-resistant coating on glass containers (Nakagawa et al. 1997), Infrared reflectors for ... Tin oxide is a tetragonal n-type semiconductor having high bandgap energy ... (IV) chloride due to the cost factor and availability. The main purpose of ...

  9. Supercapacitors Based on Nickel Oxide/Carbon Materials Composites

    Directory of Open Access Journals (Sweden)

    Katarzyna Lota

    2011-01-01

    Full Text Available In the thesis, the properties of nickel oxide/active carbon composites as the electrode materials for supercapacitors are discussed. Composites with a different proportion of nickel oxide/carbon materials were prepared. A nickel oxide/carbon composite was prepared by chemically precipitating nickel hydroxide on an active carbon and heating the hydroxide at 300 ∘C in the air. Phase compositions of the products were characterized using X-ray diffractometry (XRD. The morphology of the composites was observed by SEM. The electrochemical performances of composite electrodes used in electrochemical capacitors were studied in addition to the properties of electrode consisting of separate active carbon and nickel oxide only. The electrochemical measurements were carried out using cyclic voltammetry, galvanostatic charge/discharge, and impedance spectroscopy. The composites were tested in 6 M KOH aqueous electrolyte using two- and three-electrode Swagelok systems. The results showed that adding only a few percent of nickel oxide to active carbon provided the highest value of capacity. It is the confirmation of the fact that such an amount of nickel oxide is optimal to take advantage of both components of the composite, which additionally can be a good solution as a negative electrode in asymmetric configuration of electrode materials in an electrochemical capacitor.

  10. Directly smelted lead-tin alloys: A historical perspective

    Science.gov (United States)

    Dube, R. K.

    2010-08-01

    This paper discusses evidence related to the genesis and occurrence of mixed lead-tin ore deposit consisting of cassiterite and the secondary minerals formed from galena. These evidences belong to a very long time period ranging from pre-historic to as late as the nineteenth century a.d. This type of mixed ore deposits was smelted to prepare lead-tin alloys. The composition of the alloy depended on the composition of the starting ore mixture. A nineteenth century evidence for the production of directly smelted lead-tin alloys in southern Thailand is discussed. A unique and rather uncommon metallurgical terminology in Sanskrit language— Nāgaja—was introduced in India for the tin recovered from impure lead. This suggests that Indians developed a process for recovering tin from lead-tin alloys, which in all probability was based on the general principle of fire refining. It has been shown that in the context of India the possibility of connection between the word Nāgaja and the directly smelted lead-tin alloys cannot be ruled out.

  11. Recovery Of Valuable Metals In Tin-Based Anodic Slimes By Carbothermic Reaction

    OpenAIRE

    Han Chulwoong; Kim Young-Min; Son Seong Ho; Choi Hanshin; Kim Tae Bum; Kim Yong Hwan

    2015-01-01

    This study investigated the recovery of anodic slimes by carbothermic reaction in the temperature range of 973~1,273K and amount of carbon as a function of time. Tin anodic slime samples were collected from the bottom of the electrolytic cells during the electro-refining of tin. The anodic slimes are consisted of high concentrated tin, silver, copper and lead oxides. The kinetics of reduction were determined by means of the weight-loss measurement technique. In order to understand in detail o...

  12. Electrochemical impedance spectroscopy investigation on indium tin oxide films under cathodic polarization in NaOH solution

    International Nuclear Information System (INIS)

    Gao, Wenjiao; Cao, Si; Yang, Yanze; Wang, Hao; Li, Jin; Jiang, Yiming

    2012-01-01

    The electrochemical corrosion behaviors of indium tin oxide (ITO) films under the cathodic polarization in 0.1 M NaOH solution were investigated by electrochemical impedance spectroscopy. The as-received and the cathodically polarized ITO films were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction for morphological, compositional and structural studies. The results showed that ITO films underwent a corrosion process during the cathodic polarization and the main component of the corrosion products was body-centered cubic indium. The electrochemical impedance parameters were related to the effect of the cathodic polarization on the ITO specimens. The capacitance of ITO specimens increased, while the charge transfer resistance and the inductance decreased with the increase of the polarization time. The proposed mechanism indicated that the corrosion products (metallic indium) were firstly formed during the cathodic polarization and then absorbed on the surface of the ITO film. As the surface was gradually covered by indium particles, the corrosion process was suppressed. - Highlights: ► Cathodic polarization of indium tin oxide (ITO) in 0.1 M NaOH. ► Cathodic polarization studied with electrochemical impedance spectroscopy. ► ITO underwent a corrosion attack during cathodic polarization, indium was observed. ► Electrochemical parameters of ITO were obtained using equivalent electrical circuit. ► A corrosion mechanism is proposed.

  13. Efficient indium-tin-oxide free inverted organic solar cells based on aluminum-doped zinc oxide cathode and low-temperature aqueous solution processed zinc oxide electron extraction layer

    International Nuclear Information System (INIS)

    Chen, Dazheng; Zhang, Chunfu; Wang, Zhizhe; Zhang, Jincheng; Tang, Shi; Wei, Wei; Sun, Li; Hao, Yue

    2014-01-01

    Indium-tin-oxide (ITO) free inverted organic solar cells (IOSCs) based on aluminum-doped zinc oxide (AZO) cathode, low-temperature aqueous solution processed zinc oxide (ZnO) electron extraction layer, and poly(3-hexylthiophene-2, 5-diyl):[6, 6]-phenyl C 61 butyric acid methyl ester blend were realized in this work. The resulted IOSC with ZnO annealed at 150 °C shows the superior power conversion efficiency (PCE) of 3.01%, if decreasing the ZnO annealing temperature to 100 °C, the obtained IOSC also shows a PCE of 2.76%, and no light soaking issue is observed. It is found that this ZnO film not only acts as an effective buffer layer but also slightly improves the optical transmittance of AZO substrates. Further, despite the relatively inferior air-stability, these un-encapsulated AZO/ZnO IOSCs show comparable PCEs to the referenced ITO/ZnO IOSCs, which demonstrates that the AZO cathode is a potential alternative to ITO in IOSCs. Meanwhile, this simple ZnO process is compatible with large area deposition and plastic substrates, and is promising to be widely used in IOSCs and other relative fields.

  14. Tin Oxide Nanoparticles: Synthesis, Characterization and Study their Particle Size at Different Current Density

    Directory of Open Access Journals (Sweden)

    Karzan A. Omar

    2013-11-01

    Full Text Available Tin oxide nanoparticles are prepared by electrochemical reduction method using tetrapropylammonium bromide (TPAB and tetrabutylammonium bromide (TBAB as structure directing agent in an organic medium viz. tetrahydrofuran (THF and acetonitrile (ACN in 4:1 ratio by optimizing current density and molar concentration of the ligand. The reduction process takes place under an inert atmosphere of nitrogen over a period of 2 h. Such nanoparticles are prepared by using a simple electrolysis cell in which the sacrificial anode as a commercially available in tin metal sheet and platinum (inert sheet act as a cathode. The parameters such as current density, solvent polarity, distance between electrodes and concentration of stabilizers are used to control the size of nanoparticles. The synthesized tin oxide nanoparticles are characterized by using UV–Visible, FT-IR and SEM–EDS analysis techniques. UV-Visible spectroscopy has revealed the optical band gap to be 4.13, 4.16 and 4.24 ev for (8, 10 and 12 mA/cm2 and the effect of current density on theirs particle size, respectively.

  15. A novel sensor made of Antimony Doped Tin Oxide-silica composite sol on a glassy carbon electrode modified by single-walled carbon nanotubes for detection of norepinephrine.

    Science.gov (United States)

    Wang, Zhao; Wang, Kai; Zhao, Lu; Chai, Shigan; Zhang, Jinzhi; Zhang, Xiuhua; Zou, Qichao

    2017-11-01

    In this study, we designed a novel molecularly imprinted polymer (MIP), Antimony Doped Tin Oxide (ATO)-silica composite sol, which was made using a sol-gel method. Then a sensitive and selective imprinted electrochemical sensor was constructed with the ATO-silica composite sol on a glassy carbon electrode modified by single-walled carbon nanotubes (SWNTs). The introduction of SWNTs increased the sensitivity of the MIP sensor. The surface morphology of the MIP and MIP/SWNTs were characterized by scanning electron microscopy (SEM), and the optimal conditions for detection were determined. The oxidative peak current increased linearly with the concentration of norepinephrine in the range of 9.99×10 -8 M to 1.50×10 -5 M, as detected by cyclic voltammetry (CV), the detection limit was 3.33×10 -8 M (S/N=3). In addition, the proposed electrochemical sensors were successfully applied to detect the norepinephrine concentration in human blood serum samples. The recoveries of the sensors varied from 99.67% to 104.17%, indicating that the sensor has potential for the determination of norepinephrine in clinical tests. Moreover, the imprinted electrochemical sensor was used to selectively detect norepinephrine. The analytical application was conducted successfully and yielded accurate and precise results. Copyright © 2017. Published by Elsevier B.V.

  16. Fabrication of flower-like tin/carbon composite microspheres as long-lasting anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Tae-Woo [Department of Chemical Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Lim, Hyung-Seok [Department of WCU Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Park, Seong-Jin [Department of Chemical Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Sun, Yang-Kook [Department of WCU Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Suh, Kyung-Do, E-mail: kdsuh@hanyang.ac.kr [Department of Chemical Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2017-01-01

    In this work, we report the fabrication of the flower-like tin/carbon (Sn/C) composite microspheres using sulfonated semi-interpenetrating polystyrene (SPS) microspheres as a carbon precursor. The sulfonation degree of SPS has great effects on the resulting particle size, morphology, amount of introduced Sn, and the carbonization yield of the microspheres after heat treatment. The obtained Sn/C composite microspheres were characterized by scanning electron microscopy (SEM), focused-ion beam SEM, and X-ray diffraction. The flower-like Sn/C composite electrodes exhibited higher charge-discharge capacities than those of graphite as an anode material for a lithium ion battery. In addition, they show a long lasting cyclability, even through 400 cycles. - Highlights: • Tin nanocrystals are introduced in flower-like carbon spheres with many ripples. • Long lasting cyclability is exhibited at 1 C rate up to 400 cycles. • Tin content of composite spheres depends on chemical treatment of polymer microspheres.

  17. Self-catalytic growth of tin oxide nanowires by chemical vapor deposition process

    CSIR Research Space (South Africa)

    Thabethe, BS

    2013-01-01

    Full Text Available The authors report on the synthesis of tin oxide (SnO(sub2)) nanowires by a chemical vapor deposition (CVD) process. Commercially bought SnO nanopowders were vaporized at 1050°C for 30 minutes with argon gas continuously passing through the system...

  18. Surface modification of indium tin oxide for direct writing of silver nanoparticulate ink micropatterns

    International Nuclear Information System (INIS)

    Vunnam, Swathi; Ankireddy, Krishnamraju; Kellar, Jon; Cross, William

    2013-01-01

    Surface treatment techniques were deployed to alter the surface of indium tin oxide (ITO) samples to attain a favorable interface between printed nano-inks and ITO surface. Surface free energy components of treated ITO substrates were calculated for each treatment using the van Oss–Chaudhury–Good method. The surface treatments of ITO changed the Lifshitz–van der Waals and Lewis acid–base components, and contact angle hysteresis significantly. Among all the surface treatments, air plasma treated samples showed high polar in nature, whereas dodecyltrichlorosilane self-assembled monolayer treated sample showed the lowest. In addition to the polarity and homogeneity, the surface roughness of the ITO was studied with respect to the surface treatment. Silver nanoparticulate ink was printed on treated ITO surfaces using aerosol jet printing system. Printed silver nano-ink line width and morphology strongly depended on the surface treatment of the ITO, ink properties and printing parameters. - Highlights: ► Surface treatments on indium tin oxide (ITO) altered its surface free energy. ► Surface free energies were studied in terms of acid–base components. ► ITO surface morphology and roughness were changed with the surface treatment. ► Silver ink was printed on treated ITO samples using aerosol jet printing system. ► Line widths of printed patterns clearly depended on the surface free energy of ITO

  19. Surface modification of indium tin oxide for direct writing of silver nanoparticulate ink micropatterns

    Energy Technology Data Exchange (ETDEWEB)

    Vunnam, Swathi, E-mail: swathi.vunnam@mines.sdsmt.edu [Nanoscience and Nanoengineering Department, South Dakota School of Mines and Technology, Rapid City, SD-57701 (United States); Ankireddy, Krishnamraju; Kellar, Jon; Cross, William [Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD-57701 (United States)

    2013-03-01

    Surface treatment techniques were deployed to alter the surface of indium tin oxide (ITO) samples to attain a favorable interface between printed nano-inks and ITO surface. Surface free energy components of treated ITO substrates were calculated for each treatment using the van Oss–Chaudhury–Good method. The surface treatments of ITO changed the Lifshitz–van der Waals and Lewis acid–base components, and contact angle hysteresis significantly. Among all the surface treatments, air plasma treated samples showed high polar in nature, whereas dodecyltrichlorosilane self-assembled monolayer treated sample showed the lowest. In addition to the polarity and homogeneity, the surface roughness of the ITO was studied with respect to the surface treatment. Silver nanoparticulate ink was printed on treated ITO surfaces using aerosol jet printing system. Printed silver nano-ink line width and morphology strongly depended on the surface treatment of the ITO, ink properties and printing parameters. - Highlights: ► Surface treatments on indium tin oxide (ITO) altered its surface free energy. ► Surface free energies were studied in terms of acid–base components. ► ITO surface morphology and roughness were changed with the surface treatment. ► Silver ink was printed on treated ITO samples using aerosol jet printing system. ► Line widths of printed patterns clearly depended on the surface free energy of ITO.

  20. Novel antimony doped tin oxide/carbon aerogel as efficient electrocatalytic filtration membrane

    Directory of Open Access Journals (Sweden)

    Zhimeng Liu

    2016-05-01

    Full Text Available A facile method was developed to prepare antimony doped tin oxide (Sb-SnO2/carbon aerogel (CA for use as an electrocatalytic filtration membrane. The preparation process included synthesis of a precursor sol, impregnation, and thermal decomposition. The Sb-SnO2, which was tetragonal in phase with an average crystallite size of 10.8 nm, was uniformly distributed on the CA surface and firmly attached via carbon-oxygen-tin chemical bonds. Preliminary filtration tests indicated that the Sb-SnO2/CA membrane had a high rate of total organic carbon removal for aqueous tetracycline owing to its high current efficiency and electrode stability.

  1. Electrochemistry behavior of endogenous thiols on fluorine doped tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Luciana; Molero, Leonard; Tapia, Ricardo A.; Rio, Rodrigo del; Valle, M. Angelica del; Antilen, Monica [Departamento de Quimica Inorganica, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Av Vicuna Mackenna 4860, Casilla 306, Correo 22, Macul, Santiago (Chile); Armijo, Francisco, E-mail: jarmijom@uc.cl [Departamento de Quimica Inorganica, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Av Vicuna Mackenna 4860, Casilla 306, Correo 22, Macul, Santiago (Chile)

    2011-10-01

    Highlights: > The first time that fluorine doped tin oxide electrodes are used for the electrooxidation of endogenous thiols. > Low potentials of electrooxidation were obtained for the different thiols. > The electrochemical behavior of thiols depends on the pH and the ionic electroactive species, the electrooxidation proceeds for a process of adsorption of electroactive species on FTO and high values the heterogeneous electron tranfer rate constant of the reaction were obtained. - Abstract: In this work the electrochemical behavior of different thiols on fluorine doped tin oxide (FTO) electrodes is reported. To this end, the mechanism of electrochemical oxidation of glutathione (GSH), cysteine (Cys), homocysteine (HCys) and acetyl-cysteine (ACys) at different pH was investigated. FTO showed electroactivity for the oxidation of the first three thiols at pH between 2.0 and 4.0, but under these conditions no acetyl-cysteine oxidation was observed on FTO. Voltammetric studies of the electro-oxidation of GSH, Cys and HCys showed peaks at about 0.35, 0.29, and 0.28 V at optimum pH 2.4, 2.8 and 3.4, respectively. In addition, this study demonstrated that GSH, Cys and HCys oxidation occurs when the zwitterion is the electro-active species that interact by adsorption on FTO electrodes. The overall reaction involves 4e{sup -}/4H{sup +} and 2e{sup -}/2H{sup +}, respectively, for HCys and for GSH and Cys and high heterogeneous electron transfer rate constants. Besides, the use of FTO for the determination of different thiols was evaluated. Experimental square wave voltammetry shows a linear current vs. concentrations response between 0.1 and 1.0 mM was found for HCys and GSH, indicating that these FTO electrodes are promising candidates for the efficient electrochemical determination of these endogenous thiols.

  2. Manufacture and properties of AlON-TiN particulate composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zuotai; Wang Xidong; Zhang Mei; Li Wenchao [Dept. of Physical Chemistry of Metallurgy, Univ. of Science and Technology, Beijing, BJ (China)

    2005-07-01

    Dense aluminum oxynitride-titanium nitride (AlON-TiN) composites with 3{proportional_to}15 wt% TiN were fabricated by hot pressing technique. The effect of the content of a dispersion-toughening aid, TiN, on the mechanical properties, oxidation resistance and wear resistance were studied and related to the microstructure. The composites with a content of 15 wt% were characterized with the highest strength, 487 MPa, and the highest wear resistance properties. Oxidation behavior was studied and the results showed that AlON-TiN composites have excellent oxidation resistance. (orig.)

  3. Sensitivity, selectivity and stability of tin oxide nanostructures on large area arrays of microhotplates

    Science.gov (United States)

    Panchapakesan, Balaji; Cavicchi, Richard; Semancik, Steve; DeVoe, Don L.

    2006-01-01

    In this paper, the sensitivity, stability and selectivity of nanoparticle engineered tin oxide (SnO2) are reported, for microhotplate chemical sensing applications. 16 Å of metals such as nickel, cobalt, iron, copper and silver were selectively evaporated onto each column of the microhotplate array. Following evaporation, the microhotplates were heated to 500 °C and SnO2 was deposited on top of the microhotplates using a self-aligned chemical vapour deposition process. Scanning electron microscopy characterization revealed control of SnO2 nanostructures in the range of 20-121 nm. Gas sensing in seven different hydrocarbons revealed that metal nanoparticles that helped in producing faster nucleation of SnO2 resulted in smaller grain size and higher sensitivity. Sensitivity as a function of concentration and grain size is addressed for tin oxide nanostructures. Smaller grain sizes resulted in higher sensitivity of tin oxide nanostructures. Temperature programmed sensing of the devices yielded shape differences in the response between air and methanol, illustrating selectivity. Spiderweb plots were used to monitor the materials programmed selectivity. The shape differences between different gases in spiderweb plots illustrate materials selectivity as a powerful mapping approach for monitoring selectivity in various gases. Continuous monitoring in 80 ppm methanol yielded stable sensor response for more than 200 h. This comprehensive study illustrates the use of a nanoparticle engineering approach for sensitive, selective and stable gas sensing applications.

  4. Characteristics of indium-tin-oxide (ITO) nanoparticle ink-coated layers recycled from ITO scraps

    Science.gov (United States)

    Cha, Seung-Jae; Hong, Sung-Jei; Lee, Jae Yong

    2015-09-01

    This study investigates the characteristics of an indium-tin-oxide (ITO) ink layer that includes nanoparticles synthesized from ITO target scraps. The particle size of the ITO nanoparticle was less than 15 nm, and the crystal structure was cubic with a (222) preferred orientation. Also, the composition ratio of In to Sn was 92.7 to 7.3 in weight. The ITO nanoparticles were well dispersed in the ink solvent to formulate a 20-wt% ITO nanoparticle ink. Furthermore, the ITO nanoparticle ink was coated onto a glass substrate, followed by heat-treatment at 600 °C. The layer showed good sheet resistances below 400 Ω/□ and optical transmittances higher than 88% at 550 nm. Thus, we can conclude that the characteristics of the layer make it highly applicable to a transparent conductive electrode.

  5. Multi-band emission in a wide wavelength range from tin oxide/Au nanocomposites grown on porous anodic alumina substrate (AAO)

    International Nuclear Information System (INIS)

    Norek, Małgorzata; Michalska-Domańska, Marta; Stępniowski, Wojciech J.; Ayala, Israel; Bombalska, Aneta; Budner, Bogusław

    2013-01-01

    The photoluminescence (PL) properties of tin oxide nanostructures are investigated. Three samples of different morphology, induced by deposition process and various geometrical features of nanoporous anodic aluminum oxide (AAO) substrate, are analyzed. X-ray photoelectronic spectroscopy (XPS) analysis reveals the presence of two forms of tin oxide on the surface of all studied samples: SnO and SnO 2 . The former form is typical for reduced surface with bridging oxygen atoms and every other row of in-plane oxygen atoms removed. The oxygen defects give rise to a strong emission in visible region. Two intense PL peaks are observed centered at about 540 (band I) and 620 (band II) nm. The origin of these bands was ascribed to the recombination of electrons from the conduction band (band I) and shallow traps levels (band II) to the surface oxygen vacancy levels. Upon deposition of Au nanoparticles on the top of tin oxide nanostructures the emission at 540 and 620 nm disappears and a new band (band III) occurs in the range >760 nm. The PL mechanism operating in the studied systems is discussed. The tin oxide/Au nanocomposites can be used as efficient multi-band light emitters in a wide (from visible to near infrared) wavelength range.

  6. Structural, optical and electrical properties of indium tin oxide thin films prepared by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Benamar, E.; Rami, M.; Messaoudi, C.; Sayah, D.; Ennaoui, A. [Deptartmento de Physique, Laboratoire de Physique des Materiaux, Faculte des Sciences, BP 1014, Ave Inb Battouta, Rabat (Morocco)

    1998-11-27

    Spray pyrolysis process has been used to deposit highly transparent and conducting films of tin-doped indium oxide onto glass substrates. The electrical, structural and optical properties have been investigated as a function of various deposition parameters namely dopant concentrations, temperature and nature of substrate. The morphology of the surface as a function of the substrate temperature has been studied using atomic force microscopy. XRD has shown that deposited films are polycrystalline without second phases and have a preferred orientation (4 0 0). Indium tin oxide layers with low resistivity values around 4x10{sup -5} {Omega} cm and transmission coefficients in the visible and near-infrared range of about 85-90% have been easily obtained

  7. Rf reactive sputtering of indium-tin-oxide films

    International Nuclear Information System (INIS)

    Tvarozek, V.; Novotny, I.; Harman, R.; Kovac, J.

    1986-01-01

    Films of indium-tin-oxide (ITO) have been deposited by rf reactive diode sputtering of metallic InSn alloy targets, or ceramic ITO targets, in an Ar and Ar+0 2 atmosphere. Electrical as well as optical properties of ITO films were controlled by varying sputtering parameters and by post-deposition heat-treatment in Ar, H 2 , N 2 , H 2 +N 2 ambients. The ITO films exhibited low resistivity approx. 2 x 10 -4 Ω cm, high transmittance approx. 90% in the visible spectral region and high reflectance approx. 80% in the near infra-red region. (author)

  8. Effect of Source/Drain Electrodes on the Electrical Properties of Silicon–Tin Oxide Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Xianzhe Liu

    2018-05-01

    Full Text Available Ultra-high definition displays have become a trend for the current flat plane displays. In this study, the contact properties of amorphous silicon–tin oxide thin-film transistors (a-STO TFTs employed with source/drain (S/D electrodes were analyzed. Ohmic contact with a good device performance was achieved when a-STO was matched with indium-tin-oxide (ITO or Mo electrodes. The acceptor-like densities of trap states (DOS of a-STO TFTs were further investigated by using low-frequency capacitance–voltage (C–V characteristics to understand the impact of the electrode on the device performance. The reason of the distinct electrical performances of the devices with ITO and Mo contacts was attributed to different DOS caused by the generation of local defect states near the electrodes, which distorted the electric field distribution and formed an electrical potential barrier hindering the flow of electrons. It is of significant importance for circuit designers to design reliable integrated circuits with SnO2-based devices applied in flat panel displays.

  9. Tin( ii ) ketoacidoximates: synthesis, X-ray structures and processing to tin( ii ) oxide

    KAUST Repository

    Khanderi, Jayaprakash

    2015-10-21

    Tin(ii) ketoacidoximates of the type [HONCRCOO]Sn (R = Me 1, CHPh 2) and (MeONCMeCOO)Sn] NH·2HO 3 were synthesized by reacting pyruvate- and hydroxyl- or methoxylamine RONH (R = H, Me) with tin(ii) chloride dihydrate SnCl·2HO. The single crystal X-ray structure reveals that the geometry at the Sn atom is trigonal bipyramidal in 1, 2 and trigonal pyramidal in 3. Inter- or intramolecular hydrogen bonding is observed in 1-3. Thermogravimetric (TG) analysis shows that the decomposition of 1-3 to SnO occurs at ca. 160 °C. The evolved gas analysis during TG indicates complete loss of the oximato ligand in one step for 1 whereas a small organic residue is additionally removed at temperatures >400 °C for 2. Above 140 °C, [HONC(Me)COO]Sn (1) decomposes in air to spherical SnO particles of size 10-500 nm. Spin coating of 1 on Si or a glass substrate followed by heating at 200 °C results in a uniform film of SnO. The band gap of the produced SnO film and nanomaterial was determined by diffuse reflectance spectroscopy to be in the range of 3.0-3.3 eV. X-ray photoelectron spectroscopy indicates surface oxidation of the SnO film to SnO in ambient atmosphere.

  10. Swift heavy ion induced modification in morphological and physico-chemical properties of tin oxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Manoj Kumar [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110 078 (India); Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Kumar, Rajesh, E-mail: rajeshkumaripu@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110 078 (India)

    2013-11-15

    Nanocomposite thin films of tin oxide (SnO{sub 2})/titanium oxide (TiO{sub 2}) were grown on silicon (1 0 0) substrates by electron beam evaporation deposition technique using sintered nanocomposite pellet of SnO{sub 2}/TiO{sub 2} in the percentage ratio of 95:5. Sintering of the nanocomposite pellet was done at 1300 °C for 24 h. The thicknesses of these films were measured to be 100 nm during deposition using piezo-sensor attached to the deposition chamber. TiO{sub 2} doped SnO{sub 2} nanocomposite films were irradiated by 100 MeV Au{sup 8+} ion beam at fluence range varying from 1 × 10{sup 11} ions/cm{sup 2} to 5 × 10{sup 13} ions/cm{sup 2} at Inter University Accelerator Center (IUAC), New Delhi, India. Chemical properties of pristine and ion irradiation modified thin films were characterized by Fourier Transform Infrared (FTIR) spectroscopy. FTIR peak at 610 cm{sup −1} confirms the presence of O–Sn–O bridge of tin (IV) oxide signifying the composite nature of pristine and irradiated thin films. Atomic Force Microscope (AFM) in tapping mode was used to study the surface morphology and grain growth due to swift heavy ion irradiation at different fluencies. Grain size calculations obtained from sectional analysis of AFM images were compared with results obtained from Glancing Angle X-ray Diffraction (GAXRD) measurements using Scherrer’s formulae. Phase transformation due to irradiation was observed from Glancing Angle X-ray Diffraction (GAXRD) results. The prominent 2θ peaks observed in GAXRD spectrum are at 30.67°, 32.08°, 43.91°, 44.91° and 52.35° in the irradiated films.

  11. Enhanced diode characteristics of organic solar cell with silanized fluorine doped tin oxide electrode

    Science.gov (United States)

    Sachdeva, Sheenam; Sharma, Sameeksha; Singh, Devinder; Tripathi, S. K.

    2018-05-01

    To investigate the diode characteristics of organic solar cell based on the planar heterojunction of 4,4'- cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine] (TAPC) and fullerene (C70), we report the use of silanized fluorine-doped tin oxide (FTO) anode with N1-(3-trimethoxysilylpropyl)diethyltriamine (DETA) forming monolayer. The use of silanized FTO results in the decrease of saturation current density and diode ideality factor of the device. Such silanized FTO anode is found to enhance the material quality and improve the device properties.

  12. Tin - an unlikely ally for silicon field effect transistors?

    KAUST Repository

    Hussain, Aftab M.

    2014-01-13

    We explore the effectiveness of tin (Sn), by alloying it with silicon, to use SiSn as a channel material to extend the performance of silicon based complementary metal oxide semiconductors. Our density functional theory based simulation shows that incorporation of tin reduces the band gap of Si(Sn). We fabricated our device with SiSn channel material using a low cost and scalable thermal diffusion process of tin into silicon. Our high-κ/metal gate based multi-gate-field-effect-transistors using SiSn as channel material show performance enhancement, which is in accordance with the theoretical analysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ultra-Low-Power Smart Electronic Nose System Based on Three-Dimensional Tin Oxide Nanotube Arrays.

    Science.gov (United States)

    Chen, Jiaqi; Chen, Zhuo; Boussaid, Farid; Zhang, Daquan; Pan, Xiaofang; Zhao, Huijuan; Bermak, Amine; Tsui, Chi-Ying; Wang, Xinran; Fan, Zhiyong

    2018-06-04

    In this work, we present a high-performance smart electronic nose (E-nose) system consisting of a multiplexed tin oxide (SnO 2 ) nanotube sensor array, read-out circuit, wireless data transmission unit, mobile phone receiver, and data processing application (App). Using the designed nanotube sensor device structure in conjunction with multiple electrode materials, high-sensitivity gas detection and discrimination have been achieved at room temperature, enabling a 1000 times reduction of the sensor's power consumption as compared to a conventional device using thin film SnO 2 . The experimental results demonstrate that the developed E-nose can identify indoor target gases using a simple vector-matching gas recognition algorithm. In addition, the fabricated E-nose has achieved state-of-the-art sensitivity for H 2 and benzene detection at room temperature with metal oxide sensors. Such a smart E-nose system can address the imperative needs for distributed environmental monitoring in smart homes, smart buildings, and smart cities.

  14. Surface chemistry of carbon removal from indium tin oxide by base and plasma treatment, with implications on hydroxyl termination

    International Nuclear Information System (INIS)

    Chaney, John A.; Koh, Sharon E.; Dulcey, Charles S.; Pehrsson, Pehr E.

    2003-01-01

    The surface chemistry of carbon removal from indium tin oxide (ITO) has been investigated with Auger electron spectroscopy (AES), high-resolution electron energy loss spectroscopy (HREELS), and high-resolution energy loss spectroscopy (HR-ELS). A vibrating Kelvin probe (KP) was used to monitor the work function (PHI) of ITO after cleaning, either by base-cleaning with alcoholic-KOH or by O 2 plasma-cleaning. Base-cleaning lowered PHI ITO as seen in the KP analysis, whereas plasma-cleaning slightly increased PHI ITO by an oxidative process. The degree of PHI ITO depression by base-cleaning was seen to depend on the initial surface, but the PHI depression itself was nonreductive to the ITO, as seen in the In-MNN AES lineshape. The nonreductive depression of PHI ITO by base-cleaning was further supported by a constant charge carrier density, as estimated from the HR-ELS. Base-cleaning was slightly more effective than the oxygen plasma in removing carbon from the ITO surface. However, base-cleaning preferentially removed graphitic carbon while leaving significant hydrocarbon contaminants, as determined by vibrational analysis with HREELS. All other ITO surfaces retained a significant carbon and hydrocarbon contamination as evidenced by AES and HREELS. There was little evidence of the formation of surface hydroxyl species, as expected for such an inherently contaminated surface as ITO

  15. Tailor-made surface plasmon polaritons above the bulk plasma frequency: a design strategy for indium tin oxide

    International Nuclear Information System (INIS)

    Brand, S; Abram, R A; Kaliteevski, M A

    2010-01-01

    A simple phase-matching approach is employed as a design aid to engineer surface plasmon polariton states at the interface of an indium tin oxide layer on the top of a Bragg reflector. By altering the details of the reflector, and in particular the ordering of the layers and the thickness of the layer adjacent to the indium tin oxide, it is possible to readily adjust the energy of these states. Examples of structures engineered to give rise to distinctive features in the reflectivity spectra above the bulk screened plasma frequency for states of both possible polarizations are presented.

  16. The role of electric field during spray deposition on fluorine doped tin oxide film

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Anuj, E-mail: anujkumarom@gmail.com; Swami, Sanjay Kumar; Dutta, Viresh

    2014-03-05

    Highlights: • Fluorine doped tin oxide deposition by spray technique. • The growth reaction of tin oxide, controlled by the electric field on the substrate surface. • Deposit on large scale substrate 10 cm × 10 cm by single nozzle. • Obtained good quality of thin film. -- Abstract: The fluorine doped tin oxide film has been deposited on 10 cm × 10 cm glass substrate by using spray technique with a voltage applied between the nozzle and an annular electrode placed 2 mm below the nozzle. The effect of the electric field thus created during the spray deposition on structural, optical and electrical properties of SnO{sub 2}:F (FTO) film was studied. X-ray diffraction pattern revealed the presence of cassiterite structure with (2 0 0) orientation for all the FTO film. SEM study revealed the formation of smooth and uniform surface FTO film under the electric field over the entire substrate area. The electrical measurements show that the film prepared under the electric field (for an applied voltage of 2000 V) had a resistivity ∼1.2 × 10{sup −3} Ω cm, carrier concentration ∼4.21 × 10{sup 20} cm{sup −3} and mobility ∼14.48 cm{sup 2} V{sup −1} s{sup −1}. The sprayed FTO film have the average transmission in the visible region of more than about 80%.

  17. Fundamental electrochemiluminescence characteristics of fluorine-doped tin oxides synthesized by sol-gel combustion.

    Science.gov (United States)

    Moon, B H; Chaoumead, A; Sung, Y M

    2013-10-01

    Fluorine-doped tin oxide (FTO) materials synthesized by sol-gel combustion method were investigated for electrochemical luminescence (ECL) application. Effects of sol-gel combustion conditions on the structures and morphology of the porous FTO (p-FTO) materials were studied. ECL efficiency of p-FTO-based cell was about 251 cd/m2 at 4 V bias, which is higher than the sell using only FTO electrodes (102.8 cd/m2). The highest intensity of the emitting light was obtained at the wavelength of about 610 nm. The porous FTO layer was effective for increasing ECL intensities.

  18. Wrinkle-free graphene electrodes in zinc tin oxide thin-film transistors for large area applications

    Science.gov (United States)

    Lee, Se-Hee; Kim, Jae-Hee; Park, Byeong-Ju; Park, Jozeph; Kim, Hyun-Suk; Yoon, Soon-Gil

    2017-02-01

    Wrinkle-free graphene was used to form the source-drain electrodes in thin film transistors based on a zinc tin oxide (ZTO) semiconductor. A 10 nm thick titanium adhesion layer was applied prior to transferring a conductive graphene film on top of it by chemical detachment. The formation of an interlayer oxide between titanium and graphene allows the achievement of uniform surface roughness over the entire substrate area. The resulting devices were thermally treated in ambient air, and a substantial decrease in field effect mobility is observed with increasing annealing temperature. The increase in electrical resistivity of the graphene film at higher annealing temperatures may have some influence, however the growth of the oxide interlayer at the ZTO/Ti boundary is suggested to be most influential, thereby inducing relatively high contact resistance.

  19. Study of quartz crystal microbalance NO2 sensor coated with sputtered indium tin oxide film

    Science.gov (United States)

    Georgieva, V.; Aleksandrova, M.; Stefanov, P.; Grechnikov, A.; Gadjanova, V.; Dilova, T.; Angelov, Ts

    2014-12-01

    A study of NO2 gas sorption ability of thin indium tin oxide (ITO) deposited on 16 MHz quartz crystal microbalance (QCM) is presented. ITO films are grown by RF sputtering of indium/tin target with weight proportion 95:5 in oxygen environment. The ITO films have been characterized by X-ray photoelectron spectroscopy measurements. The ITO surface composition in atomic % is defined to be: In-40.6%, Sn-4.3% and O-55%. The thickness and refractive index of the films are determined by ellipsometric method. The frequency shift of QCM-ITO is measured at different NO2 concentrations. The QCM-ITO system becomes sensitive at NO2 concentration >= 500 ppm. The sorbed mass for each concentration is calculated according the Sauerbrey equation. The results indicated that the 1.09 ng of the gas is sorbed into 150 nm thick ITO film at 500 ppm NO2 concentration. When the NO2 concentration increases 10 times the calculated loaded mass is 5.46 ng. The sorption process of the gas molecules is defined as reversible. The velocity of sorbtion /desorption processes are studied, too. The QCM coated with thin ITO films can be successfully used as gas sensors for detecting NO2 in the air at room temperature.

  20. Study of quartz crystal microbalance NO2 sensor coated with sputtered indium tin oxide film

    International Nuclear Information System (INIS)

    Georgieva, V; Gadjanova, V; Angelov, Ts; Aleksandrova, M; Acad. Georgi Bonchev str.bl. 11, 1113, Sofia (Bulgaria))" data-affiliation=" (Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev str.bl. 11, 1113, Sofia (Bulgaria))" >Stefanov, P; Acad. Georgi Bonchev str.bl. 11, 1113, Sofia (Bulgaria))" data-affiliation=" (Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev str.bl. 11, 1113, Sofia (Bulgaria))" >Dilova, T; Grechnikov, A

    2014-01-01

    A study of NO 2 gas sorption ability of thin indium tin oxide (ITO) deposited on 16 MHz quartz crystal microbalance (QCM) is presented. ITO films are grown by RF sputtering of indium/tin target with weight proportion 95:5 in oxygen environment. The ITO films have been characterized by X-ray photoelectron spectroscopy measurements. The ITO surface composition in atomic % is defined to be: In-40.6%, Sn-4.3% and O-55%. The thickness and refractive index of the films are determined by ellipsometric method. The frequency shift of QCM-ITO is measured at different NO 2 concentrations. The QCM-ITO system becomes sensitive at NO 2 concentration ≥ 500 ppm. The sorbed mass for each concentration is calculated according the Sauerbrey equation. The results indicated that the 1.09 ng of the gas is sorbed into 150 nm thick ITO film at 500 ppm NO 2 concentration. When the NO 2 concentration increases 10 times the calculated loaded mass is 5.46 ng. The sorption process of the gas molecules is defined as reversible. The velocity of sorbtion /desorption processes are studied, too. The QCM coated with thin ITO films can be successfully used as gas sensors for detecting NO 2 in the air at room temperature

  1. Conversion electron Moessbauer spectroscopic studies on the chemical states of surface layers of corroded tin plates and tin-coated iron plates

    International Nuclear Information System (INIS)

    Kato, Akinori; Endo, Kazutoyo; Sano, Hirotoshi

    1980-01-01

    By means of the conversion electron Moessbauer spectroscopy (CEMS), we studied surface layers of ''tin'' plates and tin-coated iron plates corroded by various acids. Transmission Moessbauer spectra and X-ray diffraction patterns were also measured. Metastannic acid was formed, when the ''tin'' plate was corroded by nitric acid solution. In corrosion by phosphoric acid solution, the X-ray diffractometry revealed the formation of tin(IV) pyrophosphate. In corrosion by various organic acid solutions, the formation of oxides was identified by the 119 Sn CEMS, but not by the X-ray diffractometry because of the too thin corrosion layer. In corrosion of tin-coated iron plates, maleic acid, malonic acid, formic acid, and oxalic acid were used. It was determined by CEMS that the corrosion products caused by these acids were tin(IV) oxides, although they could not be identified by the X-ray diffractometry. CEMS also confirmed that the surface of uncorroded tin-coated iron plate was already oxidized by air. Colorimetric determinations of Sn and Fe dissolved from tin-coated iron plates to various acid solutions confirmed that maleic acid had the strongest corrosion effect among the organic acids studied. (author)

  2. Pt/SnO2-based CO-oxidation catalysts for long-life closed-cycle CO2 lasers

    Science.gov (United States)

    Schryer, David R.; Upchurch, Billy T.; Hess, Robert V.; Wood, George M.; Sidney, Barry D.; Miller, Irvin M.; Brown, Kenneth G.; Vannorman, John D.; Schryer, Jacqueline; Brown, David R.

    1990-01-01

    Noble-metal/tin-oxide based catalysts such as Pt/SnO2 have been shown to be good catalysts for the efficient oxidation of CO at or near room temperature. These catalysts require a reductive pretreatment and traces of hydrogen or water to exhibit their full activity. Addition of Palladium enhances the activity of these catalysts with about 15 to 20 percent Pt, 4 percent Pd, and the balance SnO2 being an optimum composition. Unfortunately, these catalysts presently exhibit significant decay due in part to CO2 retention, probably as a bicarbonate. Research on minimizing the decay in activity of these catalysts is currently in progress. A proposed mechanism of CO oxidation on Pt/SnO2-based catalysts has been developed and is discussed.

  3. Preparation of transparent conductive indium tin oxide thin films from nanocrystalline indium tin hydroxide by dip-coating method

    International Nuclear Information System (INIS)

    Koroesi, Laszlo; Papp, Szilvia; Dekany, Imre

    2011-01-01

    Indium tin oxide (ITO) thin films with well-controlled layer thickness were produced by dip-coating method. The ITO was synthesized by a sol-gel technique involving the use of aqueous InCl 3 , SnCl 4 and NH 3 solutions. To obtain stable sols for thin film preparation, as-prepared Sn-doped indium hydroxide was dialyzed, aged, and dispersed in ethanol. Polyvinylpyrrolidone (PVP) was applied to enhance the stability of the resulting ethanolic sols. The transparent, conductive ITO films on glass substrates were characterized by X-ray diffraction, scanning electron microscopy and UV-Vis spectroscopy. The ITO layer thickness increased linearly during the dipping cycles, which permits excellent controllability of the film thickness in the range ∼ 40-1160 nm. After calcination at 550 o C, the initial indium tin hydroxide films were transformed completely to nanocrystalline ITO with cubic and rhombohedral structure. The effects of PVP on the optical, morphological and electrical properties of ITO are discussed.

  4. Oxidation of Hydrocarbons on the Surface of Tin Dioxide Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Izabela Polowczyk

    2011-04-01

    Full Text Available The paper presents the results of our investigation on the effect of the molecular structure of organic vapors on the characteristics of resistive chemical gas sensors. The sensors were based on tin dioxide and prepared by means of thick film technology. The electrical and catalytic examinations showed that the abstraction of two hydrogen atoms from the organic molecule and formation of a water in result of reaction with a chemisorbed oxygen ion, determine the rate of oxidation reactions, and thus the sensor performance. The rate of the process depends on the order of carbon atoms and Lewis acidity of the molecule. Therefore, any modification of the surface centers of a sensor material, modifies not only the sensor sensitivity, but also its selectivity.

  5. Ab Initio Study of the Atomic Level Structure of the Rutile TiO2(110)-Titanium Nitride (TiN) Interface.

    Science.gov (United States)

    Gutiérrez Moreno, José Julio; Nolan, Michael

    2017-11-01

    Titanium nitride (TiN) is widely used in industry as a protective coating due to its hardness and resistance to corrosion and can spontaneously form a thin oxide layer when it is exposed to air, which could modify the properties of the coating. With limited understanding of the TiO 2 -TiN interfacial system at present, this work aims to describe the structural and electronic properties of oxidized TiN based on a density functional theory (DFT) study of the rutile TiO 2 (110)-TiN(100) interface model system, also including Hubbard +U correction on Ti 3d states. The small lattice mismatch gives a good stability to the TiO 2 -TiN interface after depositing the oxide onto TiN through the formation of interfacial Ti-O bonds. Our DFT+U study shows the presence of Ti 3+ cations in the TiO 2 region, which are preferentially located next to the interface region as well as the rotation of the rutile TiO 2 octahedra in the interface structure. The DFT+U TiO 2 electronic density of states (EDOS) shows localized Ti 3+ defect states forming in the midgap between the top edge of the valence and the bottom of the conduction band. We increase the complexity of our models by the introduction of nonstoichiometric compositions. Although the vacancy formation energies for Ti in TiN (E vac (Ti) ≥ 4.03 eV) or O in the oxide (E vac (O) ≥ 3.40 eV) are quite high relative to perfect TiO 2 -TiN, defects are known to form during the oxide growth and can therefore be present after TiO 2 formation. Our results show that a structure with exchanged O and N can lie 0.82 eV higher in energy than the perfect system, suggesting the stability of structures with interdiffused O and N anions at ambient conditions. The presence of N in TiO 2 introduces N 2p states localized between the top edge of the O 2p valence states and the midgap Ti 3+ 3d states, thus reducing the band gap in the TiO 2 region for the exchanged O/N interface EDOS. The outcomes of these simulations give us a most comprehensive

  6. Hierarchical oxide-based composite nanostructures for energy, environmental, and sensing applications

    Science.gov (United States)

    Gao, Pu-Xian; Shimpi, Paresh; Cai, Wenjie; Gao, Haiyong; Jian, Dunliang; Wrobel, Gregory

    2011-02-01

    Self-assembled composite nanostructures integrate various basic nano-elements such as nanoparticles, nanofilms and nanowires toward realizing multifunctional characteristics, which promises an important route with potentially high reward for the fast evolving nanoscience and nanotechnology. A broad array of hierarchical metal oxide based nanostructures have been designed and fabricated in our research group, involving semiconductor metal oxides, ternary functional oxides such as perovskites and spinels and quaternary dielectric hydroxyl metal oxides with diverse applications in efficient energy harvesting/saving/utilization, environmental protection/control, chemical sensing and thus impacting major grand challenges in the area of materials and nanotechnology. Two of our latest research activities have been highlighted specifically in semiconductor oxide alloy nanowires and metal oxide/perovskite composite nanowires, which could impact the application sectors in ultraviolet/blue lighting, visible solar absorption, vehicle and industry emission control, chemical sensing and control for vehicle combustors and power plants.

  7. Catalyst for Decomposition of Nitrogen Oxides

    Science.gov (United States)

    Schryer, David R. (Inventor); Jordan, Jeffrey D. (Inventor); Akyurtlu, Ates (Inventor); Akyurtlu, Jale (Inventor)

    2015-01-01

    This invention relates generally to a platinized tin oxide-based catalyst. It relates particularly to an improved platinized tin oxide-based catalyst able to decompose nitric oxide to nitrogen and oxygen without the necessity of a reducing gas.

  8. Effect of Graphene Addition on Mechanical Properties of TiN

    International Nuclear Information System (INIS)

    Shon, In-Jin; Yoon, Jin-Kook; Hong, Kyung-Tae

    2017-01-01

    Despite of many attractive properties of TiN, the current concern about the TiN focuses on its low fracture toughness below the ductile-brittle transition temperature. To improve its mechanical properties, the approach generally utilized has been the addition of a second phase to form composites and to make nanostructured materials. In this respect, highly dense nanostructured TiN and TiN-graphene composites were obtained within two min at 1250 ℃. The grain size of TiN was reduced remarkably by the addition of graphene. The addition of graphene to TiN simultaneously improved the fracture toughness and hardness of TiN-graphene composite due to refinement of TiN and deterring crack propagation by graphene. This study demonstrates that the graphene can be an effective reinforcing agent for improved hardness and fracture toughness of TiN composites.

  9. Effect of Graphene Addition on Mechanical Properties of TiN

    Energy Technology Data Exchange (ETDEWEB)

    Shon, In-Jin [Chonbuk National University, Jeonju (Korea, Republic of); Yoon, Jin-Kook; Hong, Kyung-Tae [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2017-03-15

    Despite of many attractive properties of TiN, the current concern about the TiN focuses on its low fracture toughness below the ductile-brittle transition temperature. To improve its mechanical properties, the approach generally utilized has been the addition of a second phase to form composites and to make nanostructured materials. In this respect, highly dense nanostructured TiN and TiN-graphene composites were obtained within two min at 1250 ℃. The grain size of TiN was reduced remarkably by the addition of graphene. The addition of graphene to TiN simultaneously improved the fracture toughness and hardness of TiN-graphene composite due to refinement of TiN and deterring crack propagation by graphene. This study demonstrates that the graphene can be an effective reinforcing agent for improved hardness and fracture toughness of TiN composites.

  10. Tin oxide quantum dots embedded iron oxide composite as efficient lead sensor

    Science.gov (United States)

    Dutta, Dipa; Bahadur, Dhirendra

    2018-04-01

    SnO2 quantum dots (QDs) embedded iron oxide (IO) nanocomposite is fabricated and explored as a capable sensor for lead detection. Square wave anodic stripping voltammetry (SWASV) and amperometry have been used to explore the proposed sensor's response towards lead detection. The modified electrode shows linear current response for concentration of lead ranging from 99 nM to 6.6 µM with limit of detection 0.42 µM (34 ppb). Amperometry shows a detection limit as low as 0.18 nM (0.015 ppb); which is far below the permissible limit of lead in drinking water by World Health Organization. This proposed sensor shows linear current response (R2 = 0.98) for the lead concentration ranging from 133 × 10-9 to 4.4 × 10-6M. It also exhibits rapid response time of 12 sec with an ultra high sensitivity of 5.5 µA/nM. These detection properties promise the use of SnO2 QDs -IO composite for detection of lead in environmental sample with great ease.

  11. Transparent and Flexible Zinc Tin Oxide Thin Film Transistors and Inverters using Low-pressure Oxygen Annealing Process

    Science.gov (United States)

    Lee, Kimoon; Kim, Yong-Hoon; Kim, Jiwan; Oh, Min Suk

    2018-05-01

    We report on the transparent and flexible enhancement-load inverters which consist of zinc tin oxide (ZTO) thin film transistors (TFTs) fabricated at low process temperature. To control the electrical characteristics of oxide TFTs by oxygen vacancies, we applied low-pressure oxygen rapid thermal annealing (RTA) process to our devices. When we annealed the ZTO TFTs in oxygen ambient of 2 Torr, they showed better electrical characteristics than those of the devices annealed in the air ambient of 760 Torr. To realize oxide thin film transistor and simple inverter circuits on flexible substrate, we annealed the devices in O2 of 2 Torr at 150° C and could achieve the decent electrical properties. When we used transparent conductive oxide electrodes such as indium zinc oxide (IZO) and indium tin oxide (ITO), our transparent and flexible inverter showed the total transmittance of 68% in the visible range and the voltage gain of 5. And the transition voltage in voltage transfer curve was located well within the range of operation voltage.

  12. A study of the characteristics of indium tin oxide after chlorine electro-chemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moonsoo; Kim, Jongmin; Cho, Jaehee; Kim, Hyunwoo; Lee, Nayoung; Choi, Byoungdeog, E-mail: bdchoi@skku.edu

    2016-10-15

    Graphical abstract: The presence of Chlorine in the outer surface resulted in a highly electro-negative surface states and an increase in the vacuum energy level. - Highlights: • We investigated the influence of chlorine surface treatment on ITO properties. • Chlorination induced the change of the electro-static potential in the outer surface. • Chlorine electro-chemical treatment of ITO is a simple, fast and effective technique. - Abstract: In this work, we investigate the influence of a chlorine-based electro-chemical surface treatment on the characteristics of indium tin oxide (ITO) including the work function, chemical composition, and phase transition. The treated ITOs were characterized using X-ray photoelectron spectroscopy (XPS), ultra-violet photoelectron spectroscopy (UPS), 4-point probe measurements, and grazing incidence X-ray diffraction (GI-XRD). We confirmed a change of the chemical composition in the near-surface region of the ITO and the formation of indium-chlorine (In-Cl) bonds and surface dipoles (via XPS). In particular, the change of the electro-static potential in the outer surface was caused by chlorination. Due to the vacuum-level shift after the electro-chemical treatment in a dilute hydrochloric acid, the ITO work function was increased by ∼0.43 eV (via UPS); furthermore, the electro-negativity of the chlorine anions attracted electrons to emit them from the hole transport layer (HTL) to the ITO anodes, resulting in an increase of the hole-injection efficiency.

  13. Preparation of RF reactively sputtered indium-tin oxide thin films with optical properties suitable for heat mirrors

    International Nuclear Information System (INIS)

    Boyadzhiev, S; Dobrikov, G; Rassovska, M

    2008-01-01

    Technologies are discussed for preparing and characterizing indium-tin oxide (ITO) thin films with properties appropriate for usage as heat mirrors in solar thermal collectors. The samples were prepared by means of radio frequency (RF) reactive sputtering of indium-tin targets in oxygen. The technological parameters were optimized to obtain films with optimal properties for heat mirrors. The optical properties of the films were studied by visible and infra-red (IR) spectrophotometry and laser ellipsometry. The reflectance of the films in the thermal IR range was investigated by a Fourier transform infra-red (FTIR) spectrophotometer. Heating of the substrates during the sputtering and their post deposition annealing in different environments were also studied. The ultimate purpose of the present research being the development of a technological process leading to low-cost ITO thin films with high transparency in the visible and near IR (0.3-2.4 μm) and high reflection in the thermal IR range (2.5-25 μm), we investigated the correlation of the ITO thin films structural and optical properties with the technological process parameters - target composition and heat treatment

  14. Optimisation of chemical solution deposition of indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sunde, Tor Olav Løveng; Einarsrud, Mari-Ann; Grande, Tor, E-mail: grande@ntnu.no

    2014-12-31

    An environmentally friendly aqueous sol–gel process has been optimised to deposit indium tin oxide (ITO) thin films, aiming to improve the film properties and reduce the deposition costs. It was demonstrated how parameters such as cation concentration and viscosity could be applied to modify the physical properties of the sol and thereby reduce the need for multiple coatings to yield films with sufficient conductivity. The conductivity of the thin films was enhanced by adjusting the heat treatment temperature and atmosphere. Both increasing the heat treatment temperature of the films from 530 to 800 °C and annealing in reducing atmosphere significantly improved the electrical conductivity, and conductivities close to the state of the art sputtered ITO films were obtained. A pronounced decreased conductivity was observed after exposing the thin films to air and the thermal reduction and ageing of the film was studied by in situ conductivity measurements. - Highlights: • Spin coating of indium tin oxide using an aqueous solution was optimised. • The conductivity was enhanced by thermal annealing in reducing atmosphere. • The conductivity of is comparable to the conductivity of sputtered films. • A relaxation process in the reduced thin film was observed after exposure in air.

  15. Enhanced performance of dye-sensitized solar cells using gold nanoparticles modified fluorine tin oxide electrodes

    International Nuclear Information System (INIS)

    Zhang Dingwen; Shen Jie; Huang Sumei; Wang Milton; Brolo, Alexandre G; Li Xiaodong

    2013-01-01

    We have investigated plasmon-assisted energy conversion in dye-sensitized solar cells (DSCs) applying gold nanoparticles (NPs) modified fluorine tin oxide (FTO) electrodes. A series of Au NPs with different sizes (15-80 nm) were synthesized and immobilized onto FTO glass slides. Photoanodes were prepared on these Au modified FTO substrates using P25 TiO 2 powders and by the screen-printing method. The size effects of Au NPs on the photovoltaic performance of the formed DSCs were investigated systematically. Structural and photoelectrochemical properties of the formed photoanodes were examined by field emission scanning electron microscopy and electrochemical impedance spectroscopy. It was found that the energy conversion efficiency of the DSC was highly dependent on the Au particle size. When the particle size was not greater than 60 nm, the DSC based on the Au NP-FTO composite electrode showed a higher short-circuit current density and better photovoltaic (PV) performance than the cell based on the bare FTO. The best cell was achieved using 25 nm sized Au NPs modified FTO. It exhibited a conversion efficiency of 6.69%, which was 15% higher than that of DSCs without Au NPs. The related PV performance enhancement mechanisms, photoelectrochemical processes and surface-plasmon resonances in DSCs with Au nanostructures are analysed and discussed.

  16. The use of a hierarchically platinum-free electrode composed of tin oxide decorated polypyrrole on nanoporous copper in catalysis of methanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Asghari, Elnaz, E-mail: elnazasghari@yahoo.com; Ashassi-Sorkhabi, Habib; Vahed, Akram; Rezaei-Moghadam, Babak; Charmi, Gholam Reza

    2016-01-01

    Tin oxide nanoparticles were synthesized through a galvanostatic pathway on polypyrrole, PPy, coated nanoporous copper. The morphology and surface analysis of the assemblies were evaluated by field emission scanning electron microscopy, FESEM, and energy dispersive X-ray, EDX, analysis, respectively. The electrocatalytic behavior of electrodes was studied by cyclic voltammetry and chronoamperometry tests in methanol solution. FESEM results showed that uniformly distributed nanoparticles with diameters of about 20–30 nm have been dispersed on PPy matrix. Cyclic voltammetry and chronoamperometry tests in methanol solution showed a significant enhancement in the catalytic action of PPy after decoration of tin oxide nanoparticles. Porous Cu/PPy/SnO{sub x} electrodes showed enhanced anodic peak current density for methanol oxidation compared to smooth Cu/PPy/SnO{sub x} and porous Cu/PPy. The effects of synthesis current density and time on the electrocatalytic behavior of the electrodes were evaluated. The significant enhancement of electrocatalytic behavior of the Cu/PPy electrode after decoration of SnO{sub x} overlayer was attributed to the effect of tin oxide on the adsorption of intermediates of methanol oxidation as well as oxidation of bi-products such as CO; huge tendency of tin oxides for dehydrogenation of the alcohols and the increase in microscopic surface area of the electrodes were introduced as other affecting factors. - Highlights: • Nanoporous copper–zinc substrates were formed by chemical leaching of zinc. • Polypyrrole thin film was electrodeposited on nanoporous copper. • Thin oxide nanoparticles were synthesized electrochemically on polypyrrole layer. • The catalytic performance of the electrodes was evaluated for methanol oxidation.

  17. Epitaxy-enabled vapor-liquid-solid growth of tin-doped indium oxide nanowires with controlled orientations

    KAUST Repository

    Shen, Youde; Turner, Stuart G.; Yang, Ping; Van Tendeloo, Gustaaf; Lebedev, Oleg I.; Wu, Tao

    2014-01-01

    challenges in reliably achieving these goals of orientation-controlled nanowire synthesis and assembly. Here we report that growth of planar, vertical and randomly oriented tin-doped indium oxide (ITO) nanowires can be realized on yttria-stabilized zirconia

  18. Dehydrogenation and concurrent isomerization of n-butenes on mixed tin and antimony oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Irvine, E.A.; Taylor, D.

    1978-01-01

    The dehydrogenation and concurrent isomerization of n-butenes on mixed tin and antimony oxide catalysts which had been outgassed at 698/sup 0/K were carried out in the presence of oxygen at 474/sup 0/K, and the initial approximately zero-order rates of 1,3-butadiene formation and rates of isomerization were used as a measure of catalytic activity to construct activity patterns as a function of catalyst composition. A comparison of the patterns with those for the isomerization of 3,3-dimethyl-1-butene and for the selective oxidation of propane on the same catalysts indicated that the dehydrogenation of 1-butene involves a m-allyl intermediate, but isomerization occurs through carbonium ion formation. For the cis- and trans-isomers, both reactions apparently occurred via a common allyl (but not m-allyl) intermediate. Dehydrogenation to butadiene decreased in the order 1-butene > cis-2-butene trans-2-butene and was maximum at 10% antimony for 1-butene and 21% antimony for 2-butene. Isomerization was always slower than dehydrogenation and showed two maEima, at 21 (or 27%) and at 75% antimony.

  19. Hydrogen ion sensors based on indium tin oxide thin film using radio frequency sputtering system

    International Nuclear Information System (INIS)

    Chiang, Jung-Lung; Jhan, Syun-Sheng; Hsieh, Shu-Chen; Huang, An-Li

    2009-01-01

    Indium tin oxide (ITO) thin films were deposited onto Si and SiO 2 /Si substrates using a radio frequency sputtering system with a grain size of 30-50 nm and thickness of 270-280 nm. ITO/Si and ITO/SiO 2 /Si sensing structures were achieved and connected to a standard metal-oxide-semiconductor field-effect transistor (MOSFET) as an ITO pH extended-gate field-effect transistor (ITO pH-EGFET). The semiconductor parameter analysis measurement (Keithley 4200) was utilized to measure the current-voltage (I-V) characteristics curves and study the sensing properties of the ITO pH-EGFET. The linear pH voltage sensitivities were about 41.43 and 43.04 mV/pH for the ITO/Si and ITO/SiO 2 /Si sensing structures, respectively. At the same time, both pH current sensitivities were about 49.86 and 51.73 μA/pH, respectively. Consequently, both sensing structures can be applied as extended-gate sensing heads. The separative structure is suitable for application as a disposable pH sensor.

  20. Effect of oxidizer on grain size and low temperature DC electrical conductivity of tin oxide nanomaterial synthesized by gel combustion method

    International Nuclear Information System (INIS)

    Rajeeva, M. P.; Jayanna, H. S.; Ashok, R. L.; Naveen, C. S.; Bothla, V. Prasad

    2014-01-01

    Nanocrystalline Tin oxide material with different grain size was synthesized using gel combustion method by varying the fuel (C 6 H 8 O 7 ) to oxidizer (HNO 3 ) molar ratio by keeping the amount of fuel as constant. The prepared samples were characterized by using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Analysis X-ray Spectroscopy (EDAX). The effect of fuel to oxidizer molar ratio in the gel combustion method was investigated by inspecting the grain size of nano SnO 2 powder. The grain size was found to be reduced with the amount of oxidizer increases from 0 to 6 moles in the step of 2. The X-ray diffraction patterns of the calcined product showed the formation of high purity tetragonal tin (IV) oxide with the grain size in the range of 12 to 31 nm which was calculated by Scherer's formula. Molar ratio and temperature dependence of DC electrical conductivity of SnO 2 nanomaterial was studied using Keithley source meter. DC electrical conductivity of SnO 2 nanomaterial increases with the temperature from 80K to 300K. From the study it was observed that the DC electrical conductivity of SnO 2 nanomaterial decreases with the grain size at constant temperature

  1. Oxidation and corrosion of silicon-based ceramics and composites

    International Nuclear Information System (INIS)

    Jacobson, N.S.; Fox, D.S.; Smialek, J.L.

    1997-01-01

    Silica scales exhibit slow growth rates and a low activation energy. Thus silica-protected materials are attractive high temperature structural materials for their potentially excellent oxidation resistance and well-documented high temperature strength. This review focuses on silicon carbide, silicon nitride, and composites of these materials. It is divided into four parts: (i) Fundamental oxidation mechanisms, (ii) Special properties of silica scales, (iii) Protective coatings, and (iv) Internal oxidation behavior of composites. While the fundamental oxidation mechanism of SiC is understood, there are still many questions regarding the oxidation mechanism of Si 3 N 4 . Silica scales exhibit many unique properties as compared to chromia and alumina. These include slower growth rates, SiO(g) formation, sensitivity to water vapor and impurities, and dissolution by basic molten salts. Protective coatings can limit the deleterious effects. The fourth area-internal oxidation of fibers and fiber coatings in composites-has limited the application of these novel materials. Strategies for understanding and limiting this internal oxidation are discussed. (orig.)

  2. Enhanced visible-light photocatalysis and gas sensor properties of polythiophene supported tin doped titanium nanocomposite

    Science.gov (United States)

    Chandra, M. Ravi; Siva Prasada Reddy, P.; Rao, T. Siva; Pammi, S. V. N.; Siva Kumar, K.; Vijay Babu, K.; Kiran Kumar, Ch.; Hemalatha, K. P. J.

    2017-06-01

    The polythiophene supported tin doped titanium nanocomposites (PTh/Sn-TiO2) were synthesized by modified sol-gel process through oxidative polymerization of thiophene. The fourier transform infrared spectroscopy (FT-IR) and UV-Vis diffuse reflectance spectroscopy (UV-DRS) analysis confirms the existence of synergetic interaction between metal oxide and polymer along with extension of absorption edge to visible region. The composites are found to be in spherical form with core-shell structure, which is confirmed by scanning electron spectroscopy (SEM) and transmission electron microscopy (TEM) images, the presence of all respective elements of composite are proven by energy-dispersive X-ray spectroscopy (EDX) analysis. The importance of polythiophene on surface of metal oxide has been were studied as a function of photocatalytic activity for degradation of organic pollutant congo red and gas sensor behavior towards liquid petroleum gas (LPG). All the composites are photocatalytically active and the composite with 1.5 wt% thiophene degrades the pollutant congo red within 120 min when compared to remaining catalysts under visible light irradiation. On the other hand, same composite have shown potential gas sensor properties towards LPG at 300 °C. Considering all the results, it can be noted that polythiophene acts as good sensitizer towards LPG and supporter for the tin doped titania that improve the photocatalytic activity under visible light.

  3. Oxidation state of sulfur, iron and tin at the surface of float glasses

    International Nuclear Information System (INIS)

    Lagarde, P; Flank, A-M; Jupille, J; Montigaud, H

    2009-01-01

    Sulfur is an important element of glasses, not because of its amount, always very low (less than 0.4 % in weight of SO 3 ), but because of its role since it actively participates to the refinement process and, combined to other elements, it can be responsible for the coloration of the glass. Iron is also of a major importance in most of the glasses. In the case of the float glass, the two faces, because of the fabrication process, are different in terms of composition (presence of Sn for one face) and also in terms of oxidation state of these minority elements (Fe, Sn, S). There should be a subtle interplay between the concentrations and the oxidation states of these different minority elements, and anyway these variations occur over a thickness of the order of few micrometers below the surface. Using the high intensity and the focusing properties (3 x 3 μm 2 ) of the x-ray beam from the Lucia beamline, we have therefore studied the speciation of iron and sulfur near the face of a float glass in relation with the behavior of tin. This has been obtained by combining elemental x-ray fluorescence cartography and x-ray micro-absorption at the different K-edges.

  4. Oxidation state of sulfur, iron and tin at the surface of float glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lagarde, P; Flank, A-M [Synchrotron SOLEIL, l' Orme des Merisiers, BP 48 91192 Gif/Yvette cedex (France); Jupille, J [IMPMC, Universite P. and M. Curie, Campus de Boucicaut, 140 rue de Lourmel 75015 Paris (France); Montigaud, H [Saint-Gobain Recherche 39, quai Lucien Lefranc, BP 135 93303 Aubervilliers Cedex (France)

    2009-11-15

    Sulfur is an important element of glasses, not because of its amount, always very low (less than 0.4 % in weight of SO{sub 3}), but because of its role since it actively participates to the refinement process and, combined to other elements, it can be responsible for the coloration of the glass. Iron is also of a major importance in most of the glasses. In the case of the float glass, the two faces, because of the fabrication process, are different in terms of composition (presence of Sn for one face) and also in terms of oxidation state of these minority elements (Fe, Sn, S). There should be a subtle interplay between the concentrations and the oxidation states of these different minority elements, and anyway these variations occur over a thickness of the order of few micrometers below the surface. Using the high intensity and the focusing properties (3 x 3 {mu}m{sup 2}) of the x-ray beam from the Lucia beamline, we have therefore studied the speciation of iron and sulfur near the face of a float glass in relation with the behavior of tin. This has been obtained by combining elemental x-ray fluorescence cartography and x-ray micro-absorption at the different K-edges.

  5. Fluorine-doped tin oxide surfaces modified by self-assembled alkanethiols for thin-film devices

    Energy Technology Data Exchange (ETDEWEB)

    Alves, A.C.T.; Gomes, D.J.C.; Silva, J.R.; Silva, G.B., E-mail: george@cpd.ufmt.br

    2013-08-15

    In this work, we have investigated self-assembled monolayers (SAMs) from alkanethiols on fluorine-doped tin oxide (FTO) surfaces, which were used as an anode for thin-film devices prepared from the conductive copolymer so-called sulfonated poly(thiophene-3-[2-(2-methoxyethoxy) ethoxy]-2,5-diyl) (S-P3MEET). The assembled monolayers were characterized by using wetting contact angle, atomic force microscopy, and electrical measurements. The results indicated that dodecanethiol molecules, CH{sub 3}(CH{sub 2}){sub 11}SH, were well assembled on the FTO surfaces. In addition, it was found similar values of wetting contact angle for dodecanethiol assembled on both FTO and Au surfaces. Concerning the thin-film device, current–voltage analysis revealed a hysteresis. This behavior was associated to a charge-trapping effect and also to structural changes of the SAMs. Finally, charge injection capability of tin oxide electrodes can be improved by using SAMs and then this approach can plays an important role in molecular-scale electronic devices.

  6. Effects of TiN nanoparticles on the microstructure and properties of W–30Cu composites prepared via electroless plating and powder metallurgy

    International Nuclear Information System (INIS)

    Huang, Li-Mei; Luo, Lai-Ma; Zhao, Mei-Ling; Luo, Guang-Nan; Zhu, Xiao-Yong; Cheng, Ji-Gui; Zan, Xiang; Wu, Yu-Cheng

    2015-01-01

    Highlights: • TiN-doped W–Cu composite was successfully prepared by electroless plating and powder metallurgy. • TiN-doped W–Cu significantly affected the microstructure and properties of the composites. • W–Cu composite with 0.25 wt.% TiN possesses the best comprehensive performance. - Abstract: W–30Cu/(0, 0.25, 0.5, 1, and 2) wt.% TiN composites were prepared via electroless plating with simplified pretreatment and powder metallurgy. The phase and morphology of W–Cu/TiN composite powders and sintered W–Cu/TiN samples were characterized via X-ray diffraction and field emission scanning electron microscopy. Transmission electron microscopy was performed to characterize the microstructure of the sintered W–Cu/TiN samples. The relative density, hardness, electrical conductivity, and compressive strength of the sintered samples were examined. Results showed that W–30Cu composite powders with a uniform structure can be obtained using W powder pretreated with nitric acid, ammonium fluoride, and hydrofluoric acid followed by electroless Cu plating. The addition of TiN nanoparticles significantly affected the microstructure and properties of the W–30Cu composites. A good combination of the compressive strength and hardness of the W–30Cu composite material can be obtained by incorporating the TiN additive at 0.25 wt.%. However, the relative density and electrical conductivity slightly decreased

  7. Zinc oxide-potassium ferricyanide composite thin film matrix for biosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Shibu [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Arya, Sunil K. [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, New Delhi 110012 (India); Singh, S.P. [Department of Engineering Science and Materials, University of Puerto Rico, Mayaguez, PR 00680 (United States); Sreenivas, K. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Malhotra, B.D. [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, New Delhi 110012 (India); Gupta, Vinay, E-mail: vgupta@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2009-10-27

    Thin film of zinc oxide-potassium ferricyanide (ZnO-KFCN) composite has been deposited on indium tin oxide (ITO) coated corning glass using pulsed laser deposition (PLD). The composite thin film electrode has been exploited for amperometric biosensing in a mediator-free electrolyte. The composite matrix has the advantages of high iso-electric point of ZnO along with enhanced electron communication due to the presence of a redox species in the matrix itself. Glucose oxidase (GOx) has been chosen as the model enzyme for studying the application of the developed matrix to biosensing. The sensing response of the bio-electrode, GOx/ZnO-KFCN/ITO/glass, towards glucose was studied using cylic voltammetry (CV) and photometric assay. The bio-electrode exhibits good linearity from 2.78 mM to 11.11 mM glucose concentration. The low value of Michaelis-Menten constant (1.69 mM) indicates an enhanced affinity of the immobilized enzyme towards its substrate. A quassireversible system is obtained with the composite matrix. The results confirm promising application of the ZnO-KFCN composite matrix for amperometric biosensing applications in a mediator-less electrolyte that could lead to the realization of an integrated lab-on-chip device.

  8. Zinc oxide-potassium ferricyanide composite thin film matrix for biosensing applications

    International Nuclear Information System (INIS)

    Saha, Shibu; Arya, Sunil K.; Singh, S.P.; Sreenivas, K.; Malhotra, B.D.; Gupta, Vinay

    2009-01-01

    Thin film of zinc oxide-potassium ferricyanide (ZnO-KFCN) composite has been deposited on indium tin oxide (ITO) coated corning glass using pulsed laser deposition (PLD). The composite thin film electrode has been exploited for amperometric biosensing in a mediator-free electrolyte. The composite matrix has the advantages of high iso-electric point of ZnO along with enhanced electron communication due to the presence of a redox species in the matrix itself. Glucose oxidase (GOx) has been chosen as the model enzyme for studying the application of the developed matrix to biosensing. The sensing response of the bio-electrode, GOx/ZnO-KFCN/ITO/glass, towards glucose was studied using cylic voltammetry (CV) and photometric assay. The bio-electrode exhibits good linearity from 2.78 mM to 11.11 mM glucose concentration. The low value of Michaelis-Menten constant (1.69 mM) indicates an enhanced affinity of the immobilized enzyme towards its substrate. A quassireversible system is obtained with the composite matrix. The results confirm promising application of the ZnO-KFCN composite matrix for amperometric biosensing applications in a mediator-less electrolyte that could lead to the realization of an integrated lab-on-chip device.

  9. Electrochemical reduction of trinitrotoluene on core-shell tin-carbon electrodes

    International Nuclear Information System (INIS)

    Grigoriants, Irena; Markovsky, Boris; Persky, Rachel; Perelshtein, Ilana; Gedanken, Aharon; Aurbach, Doron; Filanovsky, Boris; Bourenko, Tatiana; Felner, Israel

    2008-01-01

    In this work, we studied the electrochemical process of 2,4,6-trinitrotoluene (TNT) reduction on a new type of electrodes based on a core-shell tin-carbon Sn(C) structure. The Sn(C) composite was prepared from the precursor tetramethyl-tin Sn(CH 3 ) 4 , and the product contained a core of submicron-sized tin particles uniformly enveloped with carbon shells. Cyclic voltammograms of Sn(C) electrodes in aqueous sodium chloride solutions containing TNT show three well-pronounced reduction waves in the potential range of -0.50 to -0.80 V (vs. an Ag/AgCl/Cl - reference electrode) that correspond to the multistep process of TNT reduction. Electrodes containing Sn(C) particles annealed at 800 deg. C under argon develop higher voltammetric currents of TNT reduction (comparing to the as-prepared tin-carbon material) due to stabilization of the carbon shell. It is suggested that the reduction of TNT on core-shell tin-carbon electrodes is an electrochemically irreversible process. A partial oxidation of the TNT reduction products occurred at around -0.20 V. The electrochemical response of TNT reduction shows that it is not controlled by the diffusion of the active species to/from the electrodes but rather by interfacial charge transfer and possible adsorption phenomena. The tin-carbon electrodes demonstrate significantly stable behavior for TNT reduction in NaCl solutions and provide sufficient reproducibility with no surface fouling through prolonged voltammetric cycling. It is presumed that tin nanoparticles, which constitute the core, are electrochemically inactive towards TNT reduction, but Sn or SnO 2 formed on the electrodes during TNT reduction may participate in this reaction as catalysts or carbon-modifying agents. The nitro-groups of TNT can be reduced irreversibly (via two possible paths) by three six-electron transfers, to 2,4,6-triaminotoluene, as follows from mass-spectrometric studies. The tin-carbon electrodes described herein may serve as amperometric sensors

  10. Tin - an unlikely ally for silicon field effect transistors?

    KAUST Repository

    Hussain, Aftab M.; Fahad, Hossain M.; Singh, Nirpendra; Sevilla, Galo T.; Schwingenschlö gl, Udo; Hussain, Muhammad Mustafa

    2014-01-01

    We explore the effectiveness of tin (Sn), by alloying it with silicon, to use SiSn as a channel material to extend the performance of silicon based complementary metal oxide semiconductors. Our density functional theory based simulation shows

  11. Selectivity of Catalytically Modified Tin Dioxide to CO and NH3 Gas Mixtures

    Directory of Open Access Journals (Sweden)

    Artem Marikutsa

    2015-10-01

    Full Text Available This paper is aimed at selectivity investigation of gas sensors, based on chemically modified nanocrystalline tin dioxide in the detection of CO and ammonia mixtures in air. Sol-gel prepared tin dioxide was modified by palladium and ruthenium oxides clusters via an impregnation technique. Sensing behavior to CO, NH3 and their mixtures in air was studied by in situ resistance measurements. Using the appropriate match of operating temperatures, it was shown that the reducing gases mixed in a ppm-level with air could be discriminated by the noble metal oxide-modified SnO2. Introducing palladium oxide provided high CO-sensitivity at 25–50 °C. Tin dioxide modified by ruthenium oxide demonstrated increased sensor signals to ammonia at 150–200 °C, and selectivity to NH3 in presence of higher CO concentrations.

  12. Raman scattering, electrical and optical properties of fluorine-doped tin oxide thin films with (200) and (301) preferred orientation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Yeoul, E-mail: cykim15@kicet.re.kr [Nano-Convergence Intelligence Material Team, Korea Institute of Ceramic Eng. and Tech., Gasan-digtial-ro 10 Gil 77 Geumcheon-gu, 153-801 Seoul (Korea, Republic of); Riu, Doh-Hyung [Dept. of New Material Sci. and Eng., Seoul National University of Technology, Seoul (Korea, Republic of)

    2014-12-15

    (200) and (301) preferred oriented fluorine-doped tin oxide (FTO) thin films were fabricated by spray pyrolysis of ethanol-added and water-based FTO precursor solutions, respectively. (200) oriented FTO thin film from ethanol-added solution shows the lower electrical resistivity and visible light transmission than (301) preferred thin film from water-based solution. It is due to the higher carrier concentration and electron mobility in (200) oriented crystals, that is, the lower ionized impurity scattering. The higher electron concentration is related to the higher optical band gap energy, the lower visible light transmission, and the higher IR reflection. For (301) preferred FTO thin films from water-based solution, the lower carrier concentration and electron mobility make the higher electrical resistivity and visible light transmission. Raman scattering analysis shows that IR active modes prominent in (200) oriented FTO thin film are related with the lower electrical resistivity. - Highlights: • We coated fluorine-doped tin oxide thin films with preferred orientation of (200) and (301). • We examine changes in the level of electrical and optical properties with the orientation. • (200) preferred orientation showed lower electrical resistivity and optical transmittance. • (200) oriented thin films have higher electron concentrations that are related with IR active modes.

  13. A comparative study of TiN and TiC: Oxidation resistance and retention of xenon at high temperature and under degraded vacuum

    International Nuclear Information System (INIS)

    Gavarini, S.; Bes, R.; Millard-Pinard, N.; Peaucelle, C.; Perrat-Mabilon, A.; Gaillard, C.; Cardinal, S.; Garnier, V.

    2011-01-01

    Dense TiN and TiC samples were prepared by hot pressing using micrometric powders. Xenon species (simulating rare gas fission products) were then implanted into the ceramics. The samples were annealed for 1 h at 1500 deg. C under several degraded vacuums with P O 2 varying from 10 -6 to 2x10 -4 mbars. The oxidation resistance of the samples and their retention properties with respect to preimplanted xenon species were analyzed using scanning electron microscopy, grazing incidence x-ray diffraction, Rutherford backscattering spectrometry, and nuclear backscattering spectrometry. Results indicate that TiC is resistant to oxidation and does not release xenon for P O 2 ≤6x10 -6 mbars. When P O 2 increases, geometric oxide crystallites appear at the surface depending on the orientation and size of TiC grains. These oxide phases are Ti 2 O 3 , Ti 3 O 5 , and TiO 2 . Apparition of oxide crystallites is associated with the beginning of xenon release. TiC surface is completely covered by the oxide phases at P O 2 =2x10 -4 mbars up to a depth of 3 μm and the xenon is then completely released. For TiN samples, the results show a progressive apparition of oxide crystallites (Ti 3 O 5 mainly) at the surface when P O 2 increases. The presence of the oxide crystallites is also directly correlated with xenon release, the more oxide crystallites are growing the more xenon is released. TiN surface is completely covered by an oxide layer at P O 2 =2x10 -4 mbars up to 1 μm. A correlation between the initial fine microstructure of TiN and the properties of the growing layer is suggested.

  14. Hierarchical Assembly of Multifunctional Oxide-based Composite Nanostructures for Energy and Environmental Applications

    Directory of Open Access Journals (Sweden)

    Hui-Jan Lin

    2012-06-01

    Full Text Available Composite nanoarchitectures represent a class of nanostructured entities that integrates various dissimilar nanoscale building blocks including nanoparticles, nanowires, and nanofilms toward realizing multifunctional characteristics. A broad array of composite nanoarchitectures can be designed and fabricated, involving generic materials such as metal, ceramics, and polymers in nanoscale form. In this review, we will highlight the latest progress on composite nanostructures in our research group, particularly on various metal oxides including binary semiconductors, ABO3-type perovskites, A2BO4 spinels and quaternary dielectric hydroxyl metal oxides (AB(OH6 with diverse application potential. Through a generic template strategy in conjunction with various synthetic approaches—such as hydrothermal decomposition, colloidal deposition, physical sputtering, thermal decomposition and thermal oxidation, semiconductor oxide alloy nanowires, metal oxide/perovskite (spinel composite nanowires, stannate based nanocompostes, as well as semiconductor heterojunction—arrays and networks have been self-assembled in large scale and are being developed as promising classes of composite nanoarchitectures, which may open a new array of advanced nanotechnologies in solid state lighting, solar absorption, photocatalysis and battery, auto-emission control, and chemical sensing.

  15. Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells

    KAUST Repository

    Barbe, Jeremy

    2017-02-08

    Chemical bath deposition (CBD) of tin oxide (SnO) thin films as an electron-transport layer (ETL) in a planar-heterojunction n-i-p organohalide lead perovskite and organic bulk-heterojunction (BHJ) solar cells is reported. The amorphous SnO (a-SnO) films are grown from a nontoxic aqueous bath of tin chloride at a very low temperature (55 °C) and do not require postannealing treatment to work very effectively as an ETL in a planar-heterojunction n-i-p organohalide lead perovskite or organic BHJ solar cells, in lieu of the commonly used ETL materials titanium oxide (TiO) and zinc oxide (ZnO), respectively. Ultraviolet photoelectron spectroscopy measurements on the glass/indium-tin oxide (ITO)/SnO/methylammonium lead iodide (MAPbI)/2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene device stack indicate that extraction of photogenerated electrons is facilitated by a perfect alignment of the conduction bands at the SnO/MAPbI interface, while the deep valence band of SnO ensures strong hole-blocking properties. Despite exhibiting very low electron mobility, the excellent interfacial energetics combined with high transparency (E > 4 eV) and uniform substrate coverage make the a-SnO ETL prepared by CBD an excellent candidate for the potentially low-cost and large-scale fabrication of organohalide lead perovskite and organic photovoltaics.

  16. Elastic and thermo-physical properties of TiC, TiN, and their intermediate composition alloys using ab initio calculations

    International Nuclear Information System (INIS)

    Kim, Jiwoong; Kang, Shinhoo

    2012-01-01

    Highlights: ► Elastic properties of TiC, TiN and their alloys were calculated by ab initio calculations. ► Debye temperature and Gruneisen constant of TiC, TiN and their alloys were calculated as a function of nitrogen content. ► Thermo-physical properties were calculated as a function of nitrogen content. ► Thermal expansion of the alloys was fitted in different temperature range. - Abstract: The equilibrium lattice parameters, elastic properties, material brittleness, heat capacities, and thermal expansion coefficients of TiC, TiN, and their intermediate composition alloys (Ti(C 1−x N x ), x = 0.25, 0.5, and 0.75) were calculated using ab initio density functional theory (DFT) methods. We employed the Debye–Gruneisen model to calculate a finite temperature heat capacity and thermal expansion coefficient. The calculated elastic moduli and thermal expansion coefficients agreed well with the experimental data and with other DFT calculations. Accurate heat capacities of TiC, TiN, and their intermediate composition alloys were obtained by calculating not only the phonon contributions but also the electron contributions to the heat capacity. Our calculations indicated that the heat capacity differences between each composition originated mainly from the electronic contributions.

  17. Rapid thermal processing of nano-crystalline indium tin oxide transparent conductive oxide coatings on glass by flame impingement technology

    International Nuclear Information System (INIS)

    Schoemaker, S.; Willert-Porada, M.

    2009-01-01

    Indium tin oxide (ITO) is still the best suited material for transparent conductive oxides, when high transmission in the visible range, high infrared reflection or high electrical conductivity is needed. Current approaches on powder-based printable ITO coatings aim at minimum consumption of active coating and low processing costs. The paper describes how fast firing by flame impingement is used for effective sintering of ITO-coatings applied on glass. The present study correlates process parameters of fast firing by flame impingement with optoelectronic properties and changes in the microstructure of suspension derived nano-particulate films. With optimum process parameters the heat treated coatings had a sheet resistance below 0.5 kΩ/ □ combined with a transparency higher than 80%. To characterize the influence of the burner type on the process parameters and the coating functionality, two types of methane/oxygen burner were compared: a diffusion burner and a premixed burner

  18. Dual light-activated microfluidic pumps based on an optopiezoelectric composite

    International Nuclear Information System (INIS)

    Wang, Hsin-Hu; Lee, Chih-Kung; Hsu, Yu-Hsiang; Wu, Ting-Jui; Cheng, I-Chun; Lin, Shih-Jue; Gu, Jen-Tau

    2017-01-01

    In this paper, a new type of microfluidic pump that can be activated and controlled by a masked light source is presented. The actuation of this micropump is based on an optopiezoelectric composite. This composite is constructed by having one of the electrodes of a piezoelectric PVDF (polyvinylidene fluoride) polymer replaced by a layer of TiOPc (titanyl phthalocyanine) photoconductive coating and an ITO (indium-tin-oxide) transparent electrode. This layer of photoconductive electrode provides the capability to activate multiple locations of this optopiezoelectric composite independently using a masked light source and a single voltage source. To verify the feasibility of this concept, dual light-activated microfluidic pumps based on this optopiezoelectric composite are implemented and studied. Experimental results verify that two microfluidic pumps can be created by one optopiezoelectric composite and that each pump can be optically turned on and off independently or be turned on simultaneously. These results suggest that integrating an optopiezoelectric composite into a lab-on-a-chip system can reduce the size and the number of driving units significantly, since every operation can be done optically and only one driving source is needed. The equivalent circuit, design, and implementation of dual light-activated optopiezoelectric micropumps are discussed in this paper. (paper)

  19. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    KAUST Repository

    Wang, Zhenwei; Al-Jawhari, Hala A.; Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wei, Nini; Hedhili, Mohamed N.; Alshareef, Husam N.

    2015-01-01

    , which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin

  20. Indium Tin Oxide thin film gas sensors for detection of ethanol vapours

    International Nuclear Information System (INIS)

    Vaishnav, V.S.; Patel, P.D.; Patel, N.G.

    2005-01-01

    Indium Tin Oxide (ITO: In 2 O 3 + 17% SnO 2 ) thin films grown on alumina substrate at 648 K temperatures using direct evaporation method with two gold pads deposited on the top for electrical contacts were exposed to ethanol vapours (200-2500 ppm). The operating temperature of the sensor was optimized. The sensitivity variation of films having different thickness was studied. The sensitivity of the films deposited on Si substrates was studied. The response of the film with MgO catalytic layer on sensitivity and selectivity was observed. A novel approach of depositing thin stimulating layer of various metals/oxides below the ITO film was tried and tested

  1. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti_3Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    International Nuclear Information System (INIS)

    Liu, Hongxi; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-01-01

    High temperature anti-oxidation TiN/Ti_3Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO_2 laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti_3Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti_3Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti_3Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV_0_._2. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti_3Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti_3Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al_2O_3 and TiO_2. The laser cladding TiN/Ti_3Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti_3Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti_3Al intermetallic coating is mainly composed of α-Ti, TiN and Ti_3Al phases. • The

  2. Electrical and optical properties of thin indium tin oxide films produced by pulsed laser ablation in oxygen or rare gas atmospheres

    DEFF Research Database (Denmark)

    Thestrup, B.; Schou, Jørgen; Nordskov, A.

    1999-01-01

    Films of indium tin oxide (ITO) have been produced in different background gases by pulsed laser deposition (PLD). The Films deposited in rare gas atmospheres on room temperature substrates were metallic, electrically conductive, but had poor transmission of visible light. For substrate temperatu......Films of indium tin oxide (ITO) have been produced in different background gases by pulsed laser deposition (PLD). The Films deposited in rare gas atmospheres on room temperature substrates were metallic, electrically conductive, but had poor transmission of visible light. For substrate...

  3. Oxygen effect of transparent conducting amorphous Indium Zinc Tin Oxide films on Polyimide substrate for flexible electrode

    International Nuclear Information System (INIS)

    Ko, Yoon Duk; Lee, Chang Hun; Moon, Doo Kyung; Kim, Young Sung

    2013-01-01

    This paper discusses the effect of oxygen on the transparent conducting properties and mechanical durability of the amorphous indium zinc tin oxide (IZTO) films. IZTO films deposited on flexible clear polyimide (PI) substrate using pulsed direct current (DC) magnetron sputtering at room temperature under various oxygen partial pressures. All IZTO films deposited at room temperature exhibit an amorphous structure. The electrical and optical properties of the IZTO films were sensitively influenced by oxygen partial pressures. At optimized deposition condition of 3.0% oxygen partial pressure, the IZTO film shows the lowest resistivity of 6.4 × 10 −4 Ωcm, high transmittance of over 80% in the visible range, and figure of merit value of 3.6 × 10 −3 Ω −1 without any heat controls. In addition, high work function and good mechanical flexibility of amorphous IZTO films are beneficial to flexible applications. It is proven that the proper oxygen partial pressure is important parameter to enhance the transparent conducting properties of IZTO films on PI substrate deposited at room temperature. - Highlights: • Indium zinc tin oxide (IZTO) films were deposited on polyimide at room temperature. • Transparent conducting properties of IZTO were influenced with oxygen partial pressure. • The smooth surface and high work function of IZTO were beneficial to anode layer. • The mechanical reliability of IZTO shows better performance to indium tin oxide film

  4. Growth kinetics of tin oxide nanocrystals in colloidal suspensions under hydrothermal conditions

    International Nuclear Information System (INIS)

    Lee, Eduardo J.H.; Ribeiro, Caue; Longo, Elson; Leite, Edson R.

    2006-01-01

    Colloidal suspensions of tin oxide nanocrystals were synthesized at room temperature by the hydrolysis reaction of tin chloride (II), in an ethanolic solution. The coarsening kinetics of such nanocrystals was studied by submitting the as-prepared suspensions to hydrothermal treatments at temperatures of 100, 150 and 200 deg. C for periods between 60 and 12,000 min. Transmission electron microscopy (TEM) was used to characterize the samples (i.e. distribution of nanocrystal size, average particle radius and morphology). The results show that the usual Ostwald ripening coarsening mechanism does not fit well the experimental data, which is an indicative that this process is not significant for SnO 2 nanocrystals, in the studied experimental conditions. The morphology evolution of the nanocrystals upon hydrothermal treatment indicates that growth by oriented attachment (OA) should be significant. A kinetic model that describes OA growth is successfully applied to fit the data

  5. Indium Tin Oxide-Free Polymer Solar Cells: Toward Commercial Reality

    DEFF Research Database (Denmark)

    Angmo, Dechan; Espinosa Martinez, Nieves; Krebs, Frederik C

    2014-01-01

    Polymer solar cell (PSC) is the latest of all photovoltaic technologies which currently lies at the brink of commercialization. The impetus for its rapid progress in the last decade has come from low-cost high throughput production possibility which in turn relies on the use of low-cost materials...... and vacuum-free manufacture. Indium tin oxide (ITO), the commonly used transparent conductor, imposes the majority of the cost of production of PSCs, limits flexibility, and is feared to create bottleneck in the dawning industry due to indium scarcity and the resulting large price fluctuations. As such...

  6. Tin Whisker Formation — A Stress Relieve Phenomenon

    Science.gov (United States)

    Dittes, M.; Oberndorff, P.; Crema, P.; Su, P.

    2006-02-01

    With the move towards lead-free electronics also the solderable finish of electronic components' terminations are converted. While the typical finish was containing 5 % to 20 % lead (Pb) and thus was almost whisker free, lead (Pb)-free finishes such as pure tin or high tin alloys are rather prone to grow whisker. These whiskers are spontaneous protrusions that grow to a significant length of up to millimeters with a typical diameter in the range of few microns and are suspect to cause shorts in electronic assemblies. The latest details of the mechanisms are not yet understood. However it appears to be well established that the driving force for tin whisker growth is a compressive stress in the tin layer and that this stress is released by whisker formation. Besides the mechanism for whisker growth therefore the mechanism of the stress induction is of interest. The origin of that stress may have multiple sources. Among others the most important one is the volume increase within the tin layer due the formation of intermetallics at the interface to the base material. This applies to all copper based material. For base materials with a coefficient of thermal expansion (cte) significantly different from the tin finish another mechanism plays the dominant role. This is the induction of stress during thermal cycling due to the different expansion of the materials with every temperature change. Another mechanism for stress induction may be the oxidation of the finish, which also leads to a local volume increase. Based on the knowledge of stress induction various mitigation strategies can be deducted. Most common is the introduction of a diffusion barrier (e.g. Ni) in order to prevent the growth of the Cu-Sn intermetallics, the controlled growth of Cu-Sn intermetallics in order to prevent their irregularity or the introduction of a mechanical buffer material targeting at the minimisation of the cte mismatch between base and finish material. With respect to the stress

  7. Broad spectral response photodetector based on individual tin-doped CdS nanowire

    Directory of Open Access Journals (Sweden)

    Weichang Zhou

    2014-12-01

    Full Text Available High purity and tin-doped 1D CdS micro/nano-structures were synthesized by a convenient thermal evaporation method. SEM, EDS, XRD and TEM were used to examine the morphology, composition, phase structure and crystallinity of as-prepared samples. Raman spectrum was used to confirm tin doped into CdS effectively. The effect of impurity on the photoresponse properties of photodetectors made from these as-prepared pure and tin-doped CdS micro/nano-structures under excitation of light with different wavelength was investigated. Various photoconductive parameters such as responsivity, external quantum efficiency, response time and stability were analyzed to evaluate the advantage of doped nanowires and the feasibility for photodetector application. Comparison with pure CdS nanobelt, the tin-doped CdS nanowires response to broader spectral range while keep the excellect photoconductive parameters. Both trapped state induced by tin impurity and optical whispering gallery mode microcavity effect in the doped CdS nanowires contribute to the broader spectral response. The micro-photoluminescence was used to confirm the whispering gallery mode effect and deep trapped state in the doped CdS nanowires.

  8. Zinc oxide based dye sensitized solar cell using eosin – Y as ...

    African Journals Online (AJOL)

    A zinc oxide based Dye sensitized Solar Cell (DSSC) has been fabricated, using Eosin-Y as the dye adsorbed on a nanocrystalline zinc oxide - fluorine doped tin oxide electrode, for the sensitization of the large band gap semiconductor. The absorption spectrum of Eosin-Y showed high absorption of visible light between ...

  9. Thermal transport properties of polycrystalline tin-doped indium oxide films

    International Nuclear Information System (INIS)

    Ashida, Toru; Miyamura, Amica; Oka, Nobuto; Sato, Yasushi; Shigesato, Yuzo; Yagi, Takashi; Taketoshi, Naoyuki; Baba, Tetsuya

    2009-01-01

    Thermal diffusivity of polycrystalline tin-doped indium oxide (ITO) films with a thickness of 200 nm has been characterized quantitatively by subnanosecond laser pulse irradiation and thermoreflectance measurement. ITO films sandwiched by molybdenum (Mo) films were prepared on a fused silica substrate by dc magnetron sputtering using an oxide ceramic ITO target (90 wt %In 2 O 3 and 10 wt %SnO 2 ). The resistivity and carrier density of the ITO films ranged from 2.9x10 -4 to 3.2x10 -3 Ω cm and from 1.9x10 20 to 1.2x10 21 cm -3 , respectively. The thermal diffusivity of the ITO films was (1.5-2.2)x10 -6 m 2 /s, depending on the electrical conductivity. The thermal conductivity carried by free electrons was estimated using the Wiedemann-Franz law. The phonon contribution to the heat transfer in ITO films with various resistivities was found to be almost constant (λ ph =3.95 W/m K), which was about twice that for amorphous indium zinc oxide films

  10. Composition control of tin-zinc electrodeposits through means of experimental strategies

    International Nuclear Information System (INIS)

    Dubent, S.; De Petris-Wery, M.; Saurat, M.; Ayedi, H.F.

    2007-01-01

    Tin-zinc coatings offer excellent corrosion protection and do not suffer the drawback of the voluminous white corrosion product of pure zinc or high zinc alloy coatings. The aim of this study was to determine the suitable electroplating conditions (i.e. electrolyte composition and cathode current density) to produce 70Sn-30Zn electrodeposits. Thus, a fractional factorial design (FFD) was carried out to evaluate the effects of experimental parameters (Zn II concentration, Sn IV concentration, pH and current density) on the Zn content of the electrodeposit. On the other hand, the electrodeposits were characterised by glow discharge optical emission spectroscopy (GDOES) and scanning electron microscopy (SEM). Correlation between operating conditions, composition and morphology was attempted

  11. Tin-Assisted Synthesis of ɛ -Ga2O3 by Molecular Beam Epitaxy

    Science.gov (United States)

    Kracht, M.; Karg, A.; Schörmann, J.; Weinhold, M.; Zink, D.; Michel, F.; Rohnke, M.; Schowalter, M.; Gerken, B.; Rosenauer, A.; Klar, P. J.; Janek, J.; Eickhoff, M.

    2017-11-01

    The synthesis of ɛ -Ga2O3 and β -Ga2O3 by plasma-assisted molecular beam epitaxy on (001 )Al2O3 substrates is studied. The growth window of β -Ga2O3 in the Ga-rich regime, usually limited by the formation of volatile gallium suboxide, is expanded due to the presence of tin during the growth process, which stabilizes the formation of gallium oxides. X-ray diffraction, transmission electron microscopy, time-of-flight secondary-ion mass spectrometry, Raman spectroscopy, and atomic force microscopy are used to analyze the influence of tin on the layer formation. We demonstrate that it allows the synthesis of phase-pure ɛ -Ga2O3 . A growth model based on the oxidation of gallium suboxide by reduction of an intermediate sacrificial tin oxide is suggested.

  12. Thickness-Dependent Bioelectrochemical and Energy Applications of Thickness-Controlled Meso-Macroporous Antimony-Doped Tin Oxide

    Directory of Open Access Journals (Sweden)

    Daniel Mieritz

    2018-04-01

    Full Text Available Coatings of hierarchically meso-macroporous antimony-doped tin oxide (ATO enable interfacing adsorbed species, such as biomacromolecules, with an electronic circuit. The coating thickness is a limiting factor for the surface coverage of adsorbates, that are electrochemically addressable. To overcome this challenge, a carbon black-based templating method was developed by studying the composition of the template system, and finding the right conditions for self-standing templates, preventing the reaction mixture from flowing out of the mask. The thicknesses of as-fabricated coatings were measured using stylus profilometry to establish a relationship between the mask thickness and the coating thickness. Cyclic voltammetry was performed on coatings with adsorbed cytochrome c to check whether the entire coating thickness was electrochemically addressable. Further, bacterial photosynthetic reaction centers were incorporated into the coatings, and photocurrent with respect to coating thickness was studied. The template mixture required enough of both carbon black and polymer, roughly 7% carbon black and 6% poly(ethylene glycol. Coatings were fabricated with thicknesses approaching 30 µm, and thickness was shown to be controllable up to at least 15 µm. Under the experimental conditions, photocurrent was found to increase linearly with the coating thickness, up to around 12 µm, above which were diminished gains.

  13. Ultraviolet laser ablation of fluorine-doped tin oxide thin films for dye-sensitized back-contact solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huan [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Fu, Dongchuan [ARC Centre of Excellence for Electromaterials Science, Department of Materials Engineering and School of Chemistry, Monash University, Clayton Victoria, 3800 (Australia); Jiang, Ming [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Duan, Jun, E-mail: duans@hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Zhang, Fei; Zeng, Xiaoyan [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Bach, Udo [ARC Centre of Excellence for Electromaterials Science, Department of Materials Engineering and School of Chemistry, Monash University, Clayton Victoria, 3800 (Australia)

    2013-03-01

    In this study, laser ablation of a fluorine-doped tin oxide (FTO) thin film on a glass substrate was conducted using a 355 nm Nd:YVO{sub 4} ultraviolet (UV) laser to obtain a 4 × 4 mm microstructure. The microstructure contains a symmetric set of interdigitated FTO finger electrodes of a monolithic back-contact dye-sensitized solar cell (BC-DSC) on a common substrate. The effects of UV laser ablation parameters (such as laser fluence, repetition frequency, and scanning speed) on the size precision and quality of the microstructure were investigated using a 4 × 4 orthogonal design and an assistant experimental design. The incident photon-to-electron conversion efficiency and the current–voltage characteristics of the BC-DSC base of the interdigitated FTO finger electrodes were also determined. The experimental results show that an FTO film microstructure with high precision and good quality can be produced on a glass substrate via laser ablation with high scanning speed, high repetition frequency, and appropriate laser fluence. - Highlights: ► The ablation width and depth generally depend on the laser fluence. ► The scanning speed and the repetition frequency must match each other. ► Slight ablation of the glass substrate can completely remove F-doped tin oxide.

  14. Growth and characterization of tin oxide thin films and fabrication of transparent p-SnO/n-ZnO p–n hetero junction

    Energy Technology Data Exchange (ETDEWEB)

    Sanal, K.C., E-mail: sanalcusat@gmail.com [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kerala 682 022 (India); Inter University Center for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology (India); Jayaraj, M.K. [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kerala 682 022 (India)

    2013-07-01

    Highlights: • Growth of p-type semiconducting SnO thin films by rf sputtering. • Varying the type of charge carriers with oxygen partial pressure. • Atomic percentage of SnO{sub x} thin films from the XPS analysis. • Demonstration of transparent p–n hetero junctions fabricated in the structure glass/ITO/n-ZnO/p-SnO. -- Abstract: p-Type and n-type tin oxide thin films were deposited by rf-magnetron sputtering of metal tin target by varying the oxygen pressure. Chemical composition of SnO thin film according to the intensity of the XPS peak is about 48.85% and 51.15% for tin and oxygen respectively. Nearest neighbor distance of the atoms calculated from SAED patterns is 2.9 Åand 2.7 Åfor SnO and SnO{sub 2} respectively. The Raman scattering spectrum obtained from SnO thin films showed two peaks, one at 113 cm{sup −1} and the other at 211 cm{sup −1}. Band gap of as-deposited SnO{sub x} thin films vary from 1.6 eV to 3.2 eV on varying the oxygen partial pressure from 3% to 30% which indicates the oxidization of metallic phase Sn to SnO and SnO{sub 2}. p-Type conductivity of SnO thin films and n-type conductivity of SnO{sub 2} thin films were confirmed through Hall coefficient measurement. Transparent p–n hetero junction fabricated in the structure glass/ITO/n-ZnO/p-SnO shows rectification with forward to reverse current ratio as 12 at 4.5 V.

  15. Spectroscopic and luminescent properties of Co2+ doped tin oxide thin films by spray pyrolysis

    Directory of Open Access Journals (Sweden)

    K. Durga Venkata Prasad

    2016-07-01

    Full Text Available The wide variety of electronic and chemical properties of metal oxides makes them exciting materials for basic research and for technological applications alike. Oxides span a wide range of electrical properties from wide band-gap insulators to metallic and superconducting. Tin oxide belongs to a class of materials called Transparent Conducting Oxides (TCO which constitutes an important component for optoelectronic applications. Co2+ doped tin oxide thin films were prepared by chemical spray pyrolysis synthesis and characterized by powder X-ray diffraction, SEM, TEM, FT-IR, optical, EPR and PL techniques to collect the information about the crystal structure, coordination/local site symmetry of doped Co2+ ions in the host lattice and the luminescent properties of the prepared sample. Powder XRD data revealed that the crystal structure belongs to tetragonal rutile phase and its lattice cell parameters are evaluated. The average crystallite size was estimated to be 26 nm. The morphology of prepared sample was analyzed by using SEM and TEM studies. Functional groups of the prepared sample were observed in the FT-IR spectrum. Optical absorption and EPR studies have shown that on doping, Co2+ ions enter in the host lattice as octahedral site symmetry. PL studies of Co2+ doped SnO2 thin films exhibit blue and yellow emission bands. CIE chromaticity coordinates were also calculated from emission spectrum of Co2+ doped SnO2 thin films.

  16. Nanostructured manganese oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing composites in artificial photosynthesis.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Rahimi, Fahime; Fathollahzadeh, Maryam; Haghighi, Behzad; Hołyńska, Małgorzata; Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2014-07-28

    Herein, we report on nano-sized Mn oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing compounds in artificial photosynthesis. The composites are synthesized by different and simple procedures and characterized by a number of methods. The water-oxidizing activities of these composites are also considered in the presence of cerium(IV) ammonium nitrate. Some composites are efficient Mn-based catalysts with TOF (mmol O2 per mol Mn per second) ~ 2.6.

  17. Transparent Conducting Films of Antimony-Doped Tin Oxide with Uniform Mesostructure Assembled from Preformed Nanocrystals

    Czech Academy of Sciences Publication Activity Database

    Müller, V.; Rasp, M.; Rathouský, Jiří; Schütz, B.; Niederberger, M.; Fattakhova-Rohlfing, D.

    2010-01-01

    Roč. 6, č. 5 (2010), s. 633-637 ISSN 1613-6810 R&D Projects: GA ČR GA104/08/0435 Institutional research plan: CEZ:AV0Z40400503 Keywords : antimony -doped tin oxide * msoporous materials * nanoparticles Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.333, year: 2010

  18. Optimized spherical manganese oxide-ferroferric oxide-tin oxide ternary composites as advanced electrode materials for supercapacitors

    Science.gov (United States)

    Zhu, Jian; Tang, Shaochun; Vongehr, Sascha; Xie, Hao; Meng, Xiangkang

    2015-09-01

    Inexpensive MnO2 is a promising material for supercapacitors (SCs), but its application is limited by poor electrical conductivity and low specific surface area. We design and fabricate hierarchical MnO2-based ternary composite nanostructures showing superior electrochemical performance via doping with electrochemically active Fe3O4 in the interior and electrically conductive SnO2 nanoparticles in the surface layer. Optimization composition results in a MnO2-Fe3O4-SnO2 composite electrode material with 5.9 wt.% Fe3O4 and 5.3 wt.% SnO2, leading to a high specific areal capacitance of 1.12 F cm-2 at a scan rate of 5 mV s-1. This is two to three times the values for MnO2-based binary nanostructures at the same scan rate. The low amount of SnO2 almost doubles the capacitance of porous MnO2-Fe3O4 (before SnO2 addition), which is attributed to an improved conductivity and remaining porosity. In addition, the optimal ternary composite has a good rate capability and an excellent cycling performance with stable capacitance retention of ˜90% after 5000 charge/discharge cycles at 7.5 mA cm-2. All-solid-state SCs are assembled with such electrodes using polyvinyl alcohol/Na2SO4 electrolyte. An integrated device made by connecting two identical SCs in series can power a light-emitting diode indicator for more than 10 min.

  19. Surface Modification of Indium Tin Oxide Nanoparticles to Improve Its Distribution in Epoxy-Silica Polymer Matrix

    Directory of Open Access Journals (Sweden)

    Mostafa Jafari

    2014-10-01

    Full Text Available A semiconducting nanoparticle indium tin oxide (ITO was modified with silane groups and for this purpose trimethoxysilane (TMOS precursor was used under specific experimental conditions for surface modification of ITO nanoparticles. It is found that the modification of ITO nanoparticles increases the interactions between the filler and the matrix and subsequently improves the distibution of indium tin oxide nanoparticles in the polymer matrix. The epoxisilica polymer matrix was produced using trimethoxysilane and 3-glycidyloxypropyl trimethoxysilane precursors and ethylenediamine (EDA as curing agent at low temperature by sol-gel process. The sol-gel process was very useful due to its easily controllable process, solution concentration and homogeneity without using expensive and complicated equipments in comparison with other methods. Then, Fourier transform infrared (FTIR spectroscopy was employed to study the formation of Si-O-Si and Si-OH groups on ITO nanoparticles. X-Ray diffraction (XRD technique and thermal gravimetric analysis (TGA were employed to investigate the modification and weight loss of the modified ITO, respectively, as an indication of the presence of organic groups on these nanoparticles. The separation analyzer tests were performed to check the stability of the nanoparticles suspension and it revealed that due to better interaction of nanoparticles with the polymer matrix the stability of modified ITO suspention is higher than the unmodified sample. The morphology and particle distribution were determined by scanning electron microscopy (SEM. It was found that the distibution of modified indium tin oxide in epoxy-silica polymer matrix was improved in comparison with pure ITO.

  20. Impact of soft annealing on the performance of solution-processed amorphous zinc tin oxide thin-film transistors

    KAUST Repository

    Nayak, Pradipta K.; Hedhili, Mohamed N.; Cha, Dong Kyu; Alshareef, Husam N.

    2013-01-01

    It is demonstrated that soft annealing duration strongly affects the performance of solution-processed amorphous zinc tin oxide thin-film transistors. Prolonged soft annealing times are found to induce two important changes in the device: (i) a

  1. Performance optimization of AlGaN-based LEDs by use of ultraviolet-transparent indium tin oxide: Effect of in situ contact treatment

    Science.gov (United States)

    Tu, Wenbin; Chen, Zimin; Zhuo, Yi; Li, Zeqi; Ma, Xuejin; Wang, Gang

    2018-05-01

    Ultraviolet (UV)-transparent indium tin oxide (ITO) grown by metal–organic chemical vapor deposition (MOCVD) is used as the current-spreading layer for 368 nm AlGaN-based light-emitting diodes (LEDs). By performing in situ contact treatment on the LED/ITO interface, the morphology, resistivity, and contact resistance of electrodes become controllable. Resistivity of 2.64 × 10‑4 Ω cm and transmittance at 368 nm of 95.9% are realized for an ITO thin film grown with Sn-purge in situ treatment. Therefore, the high-power operating voltage decreases from 3.94 V (without treatment) to 3.83 V (with treatment). The improved performance is attributed to the lowering of the tunneling barrier at the LED/ITO interface.

  2. Optical and Electrical Properties of Tin-Doped Cadmium Oxide Films Prepared by Electron Beam Technique

    Science.gov (United States)

    Ali, H. M.; Mohamed, H. A.; Wakkad, M. M.; Hasaneen, M. F.

    2009-04-01

    Tin-doped cadmium oxide films were deposited by electron beam evaporation technique. The structural, optical and electrical properties of the films were characterized. The X-ray diffraction (XRD) study reveals that the films are polycrystalline in nature. As composition and structure change due to the dopant ratio and annealing temperature, the carrier concentration was varied around 1020 cm-3, and the mobility increased from less than 10 to 45 cm2 V-1 s-1. A transmittance value of ˜83% and a resistivity value of 4.4 ×10-4 Ω cm were achieved for (CdO)0.88(SnO2)0.12 film annealed at 350 °C for 15 min., whereas the maximum value of transmittance ˜93% and a resistivity value of 2.4 ×10-3 Ω cm were obtained at 350 °C for 30 min. The films exhibited direct band-to-band transitions, which corresponded to optical band gaps of 3.1-3.3 eV.

  3. An Indium-Free Anode for Large-Area Flexible OLEDs: Defect-Free Transparent Conductive Zinc Tin Oxide

    NARCIS (Netherlands)

    Morales-Masis, M.; Dauzou, F.; Jeangros, Q.; Dabirian, A.; Lifka, H.; Gierth, R.; Ruske, M.; Moet, D.; Hessler-Wyser, A.; Ballif, C.

    2016-01-01

    Flexible large-area organic light-emitting diodes (OLEDs) require highly conductive and transparent anodes for efficient and uniform light emission. Tin-doped indium oxide (ITO) is the standard anode in industry. However, due to the scarcity of indium, alternative anodes that eliminate its use are

  4. Low Working-Temperature Acetone Vapor Sensor Based on Zinc Nitride and Oxide Hybrid Composites.

    Science.gov (United States)

    Qu, Fengdong; Yuan, Yao; Guarecuco, Rohiverth; Yang, Minghui

    2016-06-01

    Transition-metal nitride and oxide composites are a significant class of emerging materials that have attracted great interest for their potential in combining the advantages of nitrides and oxides. Here, a novel class of gas sensing materials based on hybrid Zn3 N2 and ZnO composites is presented. The Zn3 N2 /ZnO (ZnNO) composites-based sensor exhibits selectivity and high sensitivity toward acetone vapor, and the sensitivity is dependent on the nitrogen content of the composites. The ZnNO-11.7 described herein possesses a low working temperature of 200 °C. The detection limit (0.07 ppm) is below the diabetes diagnosis threshold (1.8 ppm). In addition, the sensor shows high reproducibility and long-term stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effect of non-electroactive additives on the early stage pyrrole electropolymerization on indium tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Castro-Beltran, A. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Ave. Pedro de Alba s/n, Ciudad Universitaria, C.P. 66451 San Nicolás de los Garza, N.L. (Mexico); Centro de Innovación Investigación y Desarrollo en Ingeniería y Tecnología (CIIDIT), Universidad Autónoma de Nuevo León, PIIT-Monterrey C.P. 66600 Apodaca, N.L. (Mexico); Dominguez, C.; Bahena-Uribe, D. [Centro Investigación en Ingeniería y Ciencias Aplicadas (CIICAp), Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Mor. (Mexico); Sepulveda-Guzman, S., E-mail: selene.sepulvedagz@uanl.edu.mx [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Ave. Pedro de Alba s/n, Ciudad Universitaria, C.P. 66451 San Nicolás de los Garza, N.L. (Mexico); Centro de Innovación Investigación y Desarrollo en Ingeniería y Tecnología (CIIDIT), Universidad Autónoma de Nuevo León, PIIT-Monterrey C.P. 66600 Apodaca, N.L. (Mexico); Cruz-Silva, R. [Research Center for Exotic NanoCarbon, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan)

    2014-09-01

    The use of non-electroactive additives during electrodeposition of conducting polymers has long been used to modify the properties of deposited films. These additives can improve the adhesion, and not only change the morphology and deposition rate but also modify the chemical composition of the electrodeposited polymer. Several compounds have been used to modify deposition of polypyrrole; however, there is no systematic study of these compounds. In this work, we comparatively studied several water soluble chemical compounds, a cationic polymer, an anionic polymer, a cationic surfactant, and an anionic surfactant during potentiostatic electrodeposition of polypyrrole. In order to study the effect of these compounds on the interface, where the electrochemical polymerization takes place, we used electrochemical impedance spectroscopy. The morphology during the initial stage of growth was studied by atomic force microscopy, whereas the resulting polypyrrole films were observed by scanning electron microscopy. - Highlights: • Early-stage polymerization polypyrrole particles on indium tin oxide (ITO). • Anionic additives promote pyrrole oxidation and polypyrrole film growth on ITO. • Cationic polyelectrolyte promotes adhesion between ITO and polypyrrole film. • Non-electroactive additives strongly influence polypyrrole nucleation on ITO.

  6. Investigation of microstructural and physical characteristics of nano composite tin oxide-doped Al3+ in Zn2+ based composite coating by DAECD technique

    Science.gov (United States)

    Anawe, P. A. L.; Fayomi, O. S. I.; Popoola, A. P. I.

    In other to overcome the devastating deterioration of mild steel in service, Zn-based embedded Al/SnO2 composite coatings have been considered as reinforcing alternative replacements to the more traditional deposition for improved surface properties by using Dual Anode Electrolytic Co-deposition (DAECD) technique from chloride bath. The structural characterization of the starting materials and deposited coating are evaluated using scanning electron microscopy (SEM), equipped with energy dispersive X-ray spectroscopy (EDX) elemental analysis and atomic force microscope (AFM). The hardness behaviour, wear and intermetallic distribution was examined by diamond based microhardness tester, CETR reciprocating sliding test rig and X-ray diffractometer (XRD) respectively. The corrosion properties of the developed coating were examined in 3.5% NaCl. The microstructure of the deposited sample obtained at 7% SnO2, revealed fine-grains deposit of the Al/SnO2 on the mild steel surface. The results showed that the Al/SnO2 strengthening alloy plays a significant role in impelling the wear and corrosion behaviour of Zn-Al/SnO2 coatings in an aggressive saline environment. Interestingly Zn-30Al-7Sn-chloride showed the highest wear and improved corrosion resistance due to Al/SnO2 oxide passive film that forms during anodic polarization. This work established that co-deposition of mild steel with Al/SnO2 is auspicious in increasing the anti-wear and corrosion progression.

  7. Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells

    KAUST Repository

    Werner, Jérémie

    2016-12-05

    Perovskite/crystalline silicon tandem solar cells have the potential to reach efficiencies beyond those of silicon single-junction record devices. However, the high-temperature process of 500 °C needed for state-of-the-art mesoscopic perovskite cells has, so far, been limiting their implementation in monolithic tandem devices. Here, we demonstrate the applicability of zinc tin oxide as a recombination layer and show its electrical and optical stability at temperatures up to 500 °C. To prove the concept, we fabricate monolithic tandem cells with mesoscopic top cell with up to 16% efficiency. We then investigate the effect of zinc tin oxide layer thickness variation, showing a strong influence on the optical interference pattern within the tandem device. Finally, we discuss the perspective of mesoscopic perovskite cells for high-efficiency monolithic tandem solar cells. © 2016 Author(s)

  8. Flexible organic light-emitting device based on magnetron sputtered indium-tin-oxide on plastic substrate

    International Nuclear Information System (INIS)

    Wong, F.L.; Fung, M.K.; Tong, S.W.; Lee, C.S.; Lee, S.T.

    2004-01-01

    A radio-frequency sputtering deposition method was applied to prepare indium tin oxide (ITO) on a plastic substrate, polyethylene terephthalate (PET). The correlation of deposition conditions and ITO film properties was systematically investigated and characterized. The optimal ITO films had a transmittance of over 90% in the visible range (400-700 nm) and a resistivity of 5.0x10 -4 Ω-cm. Sequentially α-napthylphenylbiphenyl diamine, tris-(8-hydroxyquinoline) aluminium, and magnesium-silver were thermally deposited on the ITO-coated PET substrate to fabricate flexible organic light-emitting diodes (FOLEDs). The fabricated devices had a maximum current efficiency of ∼4.1 cd/A and a luminance of nearly 4100 cd/m 2 at 100 mA/cm 2 . These values showed that the FOLEDs had comparable performance characteristics with the conventional organic light-emitting diodes made on ITO-coated glasses with the same device configuration

  9. Highly conducting and crystalline doubly doped tin oxide films fabricated using a low-cost and simplified spray technique

    Energy Technology Data Exchange (ETDEWEB)

    Ravichandran, K., E-mail: kkr1365@yahoo.co [P.G. and Research Department of Physics, AVVM. Sri Pushpum College, Poondi, Thanjavur District, Tamil Nadu 613503 (India); Muruganantham, G.; Sakthivel, B. [P.G. and Research Department of Physics, AVVM. Sri Pushpum College, Poondi, Thanjavur District, Tamil Nadu 613503 (India)

    2009-11-15

    Doubly doped (simultaneous doping of antimony and fluorine) tin oxide films (SnO{sub 2}:Sb:F) have been fabricated by employing an inexpensive and simplified spray technique using perfume atomizer from aqueous solution of SnCl{sub 2} precursor. The structural studies revealed that the films are highly crystalline in nature with preferential orientation along the (2 0 0) plane. It is found that the size of the crystallites of the doubly doped tin oxide films is larger (69 nm) than that (27 nm) of their undoped counterparts. The dislocation density of the doubly doped film is lesser (2.08x10{sup 14} lines/m{sup 2}) when compared with that of the undoped film (13.2x10{sup 14} lines/m{sup 2}), indicating the higher degree of crystallinity of the doubly doped films. The SEM images depict that the films are homogeneous and uniform. The optical transmittance in the visible range and the optical band gap of the doubly doped films are 71% and 3.56 eV respectively. The sheet resistance (4.13 OMEGA/square) attained for the doubly doped film in this study is lower than the values reported for spray deposited fluorine or antimony doped tin oxide films prepared from aqueous solution of SnCl{sub 2} precursor (without using methanol or ethanol).

  10. Crack density and electrical resistance in indium-tin-oxide/polymer thin films under cyclic loading

    KAUST Repository

    Mora Cordova, Angel

    2014-11-01

    Here, we propose a damage model that describes the degradation of the material properties of indium-tin-oxide (ITO) thin films deposited on polymer substrates under cyclic loading. We base this model on our earlier tensile test model and show that the new model is suitable for cyclic loading. After calibration with experimental data, we are able to capture the stress-strain behavior and changes in electrical resistance of ITO thin films. We are also able to predict the crack density using calibrations from our previous model. Finally, we demonstrate the capabilities of our model based on simulations using material properties reported in the literature. Our model is implemented in the commercially available finite element software ABAQUS using a user subroutine UMAT.[Figure not available: see fulltext.].

  11. Performance enhancement of quantum dot-sensitized solar cells based on polymer nano-composite catalyst

    International Nuclear Information System (INIS)

    Seo, Hyunwoong; Gopi, Chandu V.V.M.; Kim, Hee-Je; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2017-01-01

    Highlights: •We studied polymer nano-composite containing TiO 2 nano-particles as a catalyst. •Polymer nano-composite was applied for quantum dot-sensitized solar cells. •Polymer nano-composite catalyst was considerably improved with TiO 2 nano-particles. •Polymer nano-composite showed higher photovoltaic performance than conventional Au. -- Abstract: Polymer nano-composite composed of poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) and TiO 2 nano-particles was deposited on fluorine-doped tin oxide substrate and applied as an alternative to Au counter electrode of quantum dot-sensitized solar cell (QDSC). It became surface-richer with the increase in nano-particle amount so that catalytic reaction was increased by widened catalytic interface. Electrochemical impedance spectroscopy and cyclic voltammetry clearly demonstrated the enhancement of polymer nano-composite counter electrode. A QDSC based on polymer nano-composite counter electrode showed 0.56 V of V OC , 12.24 mA cm −2 of J SC , 0.57 of FF, and 3.87% of efficiency and this photovoltaic performance was higher than that of QDSC based on Au counter electrode (3.75%).

  12. Improvement of the effective work function and transmittance of thick indium tin oxide/ultrathin ruthenium doped indium oxide bilayers as transparent conductive oxide

    International Nuclear Information System (INIS)

    Taweesup, Kattareeya; Yamamoto, Ippei; Chikyow, Toyohiro; Lothongkum, Gobboon; Tsukagoshi, Kazutoshi; Ohishi, Tomoji; Tungasmita, Sukkaneste; Visuttipitukul, Patama; Ito, Kazuhiro; Takahashi, Makoto; Nabatame, Toshihide

    2016-01-01

    Ruthenium doped indium oxide (In_1_−_xRu_xO_y) films fabricated using DC magnetron co-sputtering with In_2O_3 and Ru targets were investigated for use as transparent conductive oxides. The In_1_−_xRu_xO_y films had an amorphous structure in the wide compositional range of x = 0.3–0.8 and had an extremely smooth surface. The transmittance and resistivity of the In_1_−_xRu_xO_y films increased as the Ru content increased. The transmittance of the In_0_._3_8Ru_0_._6_2O_y film improved to over 80% when the film thickness was less than 5 nm, while the specific resistivity (ρ) was kept to a low value of 1.6 × 10"−"4 Ω cm. Based on these experimental data, we demonstrated that thick indium tin oxide (In_0_._9Sn_0_._1O_y, ITO) (150 nm)/ultrathin In_0_._3_8Ru_0_._6_2O_y (3 nm) bilayers have a high effective work function of 5.3 eV, transmittance of 86%, and low ρ of 9.2 × 10"−"5 Ω cm. This ITO/In_0_._3_8Ru_0_._6_2O_y bilayer is a candidate for use as an anode for organic electroluminescent devices. - Highlights: • We investigated characteristics of thick ITO/ultrathin Ru doped In_2O_3 bilayers. • Effect of Ru addition in In_2O_3 results in smooth surface because of an amorphous structure. • The In_0_._3_8Ru_0_._6_2O_y film with less than 5 nm improves to high transmittance over 80%. • ITO/In_0_._3_8Ru_0_._6_2O_y bilayer has a high effective work function of 5.3 eV. • We conclude that ITO/ultrathin In_0_._3_8Ru_0_._6_2O_y bilayer is a candidate as an anode of OEL.

  13. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor.

    Science.gov (United States)

    Rashid, Jahwarhar Izuan Abdul; Yusof, Nor Azah; Abdullah, Jaafar; Hashim, Uda; Hajian, Reza

    2014-12-01

    This work describes the incorporation of SiNWs/AuNPs composite as a sensing material for DNA detection on indium tin-oxide (ITO) coated glass slide. The morphology of SiNWs/AuNPs composite as the modifier layer on ITO was studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The morphological studies clearly showed that SiNWs were successfully decorated with 20 nm-AuNPs using self-assembly monolayer (SAM) technique. The effective surface area for SiNWs/AuNPs-modified ITO enhanced about 10 times compared with bare ITO electrode. SiNWs/AuNPs nanocomposite was further explored as a matrix for DNA probe immobilization in detection of dengue virus as a bio-sensing model to evaluate its performance in electrochemical sensors. The hybridization of complementary DNA was monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as the redox indicator. The fabricated biosensor was able to discriminate significantly complementary, non-complementary and single-base mismatch oligonucleotides. The electrochemical biosensor was sensitive to target DNA related to dengue virus in the range of 9.0-178.0 ng/ml with detection limit of 3.5 ng/ml. In addition, SiNWs/AuNPs-modified ITO, regenerated up to 8 times and its stability was up to 10 weeks at 4°C in silica gel. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Preparation and photovoltaic properties of CdS quantum dot-sensitized solar cell based on zinc tin mixed metal oxides.

    Science.gov (United States)

    Cao, Jiupeng; Zhao, Yifan; Zhu, Yatong; Yang, Xiaoyu; Shi, Peng; Xiao, Hongdi; Du, Na; Hou, Wanguo; Qi, Genggeng; Liu, Jianqiang

    2017-07-15

    The present study reports a new type of quantum dot sensitized solar cells (QDSSCs) using the zinc tin mixed metal oxides (MMO) as the anode materials, which were obtained from the layered double hydroxide (LDH) precursor. The successive ionic layer adsorption and reaction (SILAR) method is applied to deposit CdS quantum dots. The effects of sensitizing cycles on the performance of CdS QDSSC are studied. Scanning electron microscopy (SEM), Transmission electron microscope (TEM) and X-ray diffraction (XRD) are used to identify the surface profile and crystal structure of the mixed metal oxides anode. The photovoltaic performance of the QDSSC is studied by the electrochemical method. The new CdS QDSSC exhibits power conversion efficiency (PCE) up to 0.48% when the anode was sensitized for eight cycles. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Chemical Vapor Identification by Plasma Treated Thick Film Tin Oxide Gas Sensor Array and Pattern Recognition

    Directory of Open Access Journals (Sweden)

    J. K. Srivastava

    2011-02-01

    Full Text Available Present study deals the class recognition potential of a four element plasma treated thick film tin oxide gas sensor array exposed with volatile organic compounds (VOCs. Methanol, Ethanol and Acetone are selected as target VOCs and exposed on sensor array at different concentration in range from 100-1000 ppm. Sensor array consist of four tin oxide sensors doped with 1-4 % PbO concentrations were fabricated by thick film technology and then treated with oxygen plasma for 5-10 minute durations. Sensor signal is analyzed by principal component analysis (PCA for visual classification of VOCs. Further output of PCA is used as input for classification of VOCs by four pattern classification techniques as: linear discriminant analysis (LDA, k-nearest neighbor (KNN, back propagation neural network (BPNN and support vector machine (SVM. All the four classifier results 100 % correct classification rate of VOCs by response analysis of sensor array treated with plasma for 5 minute.

  16. Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells

    KAUST Repository

    Werner, Jé ré mie; Walter, Arnaud; Rucavado, Esteban; Moon, Soo Jin; Sacchetto, Davide; Rienaecker, Michael; Peibst, Robby; Brendel, Rolf; Niquille, Xavier; De Wolf, Stefaan; Lö per, Philipp; Morales-Masis, Monica; Nicolay, Sylvain; Niesen, Bjoern; Ballif, Christophe

    2016-01-01

    the concept, we fabricate monolithic tandem cells with mesoscopic top cell with up to 16% efficiency. We then investigate the effect of zinc tin oxide layer thickness variation, showing a strong influence on the optical interference pattern within the tandem

  17. Low Temperature Synthesis of Fluorine-Doped Tin Oxide Transparent Conducting Thin Film by Spray Pyrolysis Deposition.

    Science.gov (United States)

    Ko, Eun-Byul; Choi, Jae-Seok; Jung, Hyunsung; Choi, Sung-Churl; Kim, Chang-Yeoul

    2016-02-01

    Transparent conducting oxide (TCO) is widely used for the application of flat panel display like liquid crystal displays and plasma display panel. It is also applied in the field of touch panel, solar cell electrode, low-emissivity glass, defrost window, and anti-static material. Fluorine-doped tin oxide (FTO) thin films were fabricated by spray pyrolysis of ethanol-added FTO precursor solutions. FTO thin film by spray pyrolysis is very much investigated and normally formed at high temperature, about 500 degrees C. However, these days, flexible electronics draw many attentions in the field of IT industry and the research for flexible transparent conducting thin film is also required. In the industrial field, indium-tin oxide (ITO) film on polymer substrate is widely used for touch panel and displays. In this study, we investigated the possibility of FTO thin film formation at relatively low temperature of 250 degrees C. We found out that the control of volume of input precursor and exhaust gases could make it possible to form FTO thin film with a relatively low electrical resistance, less than 100 Ohm/sq and high optical transmittance about 88%.

  18. Thermochemical stability of zirconia-titanium nitride as mixed ionic-electronic composites

    DEFF Research Database (Denmark)

    Silva, P. S. M.; Esposito, V.; Marani, D.

    2018-01-01

    Dense zirconia (8% molar yttria-stabilized ZrO2)-titanium nitride (TiN) composites are fabricated to obtain mixed ionic-electronic conducting ceramic systems with high degree of electronic and thermal conductivity. The composites are consolidated by spark plasma sintering (SPS), starting from pure...... the composites, high electrical conductivity is attained. Samples exhibit metallic behavior, showing an unexpected percolation of TiN in the YSZ matrix for volume fraction ≤ 25 wt% (27 vol%). Chemical degradation and electrical properties of the compounds were monitored under oxidative (air) and inert (Ar...... transport properties of the composite can be tuned by both the relative volume fraction of phases and controlled oxidative treatments. Adjusting such parameters different electric behaviors were observed ranging from predominant electronic conductors, to temperature-independent resistivity...

  19. Genotoxicity of indium tin oxide by comet test

    Directory of Open Access Journals (Sweden)

    İbrahim Hakkı Ciğerci

    2015-06-01

    Full Text Available Indium tin oxide (ITO is used for liquid crystal display (LCDs, electrochromic displays, flat panel displays, field emission displays, touch or laptop computer screens, cell phones, energy conserving architectural windows, defogging aircraft and automobile windows, heat-reflecting coatings to increase light bulb efficiency, gas sensors, antistatic window coatings, wear resistant layers on glass, nanowires and nanorods because of its unique properties of high electrical conductivity, transparency and mechanical resistance.Genotoxic effects of ITO were investigated on the root cells of Allium cepa by Comet assay. A. cepa roots were treated with the aqueous dispersions of ITO at 5 different concentrations (12.5, 25, 50, 75, and 100 ppm for 4 h. A significant increase in DNA damage was a observed at all concentrations of ITO by Comet assay. These result indicate that ITO exhibit genotoxic activity in A. cepa root meristematic cells.

  20. Room temperature synthesis of indium tin oxide nanotubes with high precision wall thickness by electroless deposition

    Directory of Open Access Journals (Sweden)

    Mario Boehme

    2011-02-01

    Full Text Available Conductive nanotubes consisting of indium tin oxide (ITO were fabricated by electroless deposition using ion track etched polycarbonate templates. To produce nanotubes (NTs with thin walls and small surface roughness, the tubes were generated by a multi-step procedure under aqueous conditions. The approach reported below yields open end nanotubes with well defined outer diameter and wall thickness. In the past, zinc oxide films were mostly preferred and were synthesized using electroless deposition based on aqueous solutions. All these methods previously developed, are not adaptable in the case of ITO nanotubes, even with modifications. In the present work, therefore, we investigated the necessary conditions for the growth of ITO-NTs to achieve a wall thickness of around 10 nm. In addition, the effects of pH and reductive concentrations for the formation of ITO-NTs are also discussed.

  1. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti{sub 3}Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongxi, E-mail: piiiliuhx@sina.com; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-06-15

    High temperature anti-oxidation TiN/Ti{sub 3}Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO{sub 2} laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti{sub 3}Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti{sub 3}Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti{sub 3}Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV{sub 0.2}. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti{sub 3}Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti{sub 3}Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al{sub 2}O{sub 3} and TiO{sub 2}. The laser cladding TiN/Ti{sub 3}Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti{sub 3}Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti{sub 3}Al intermetallic

  2. Dark solitons in erbium-doped fiber lasers based on indium tin oxide as saturable absorbers

    Science.gov (United States)

    Guo, Jia; Zhang, Huanian; Li, Zhen; Sheng, Yingqiang; Guo, Quanxin; Han, Xile; Liu, Yanjun; Man, Baoyuan; Ning, Tingyin; Jiang, Shouzhen

    2018-04-01

    Dark solitons, which have good stability, long transmission distance and strong anti-interference ability. By using a coprecipitation method, the high quality indium tin oxide (ITO) were prepared with an average diameter of 34.1 nm. We used a typical Z-scan scheme involving a balanced twin-detector measurement system to investigated nonlinear optical properties of the ITO nanoparticles. The saturation intensity and modulation depths are 13.21 MW/cm2 and 0.48%, respectively. In an erbium-doped fiber (EDF) lasers, we using the ITO nanoparticles as saturable absorber (SA), and the formation of dark soliton is experimentally demonstrated. The generated dark solitons are centered at the wavelength of 1561.1 nm with a repetition rate of 22.06 MHz. Besides, the pulse width and pulse-to-pulse interval of the dark solitons is ∼1.33ns and 45.11 ns, respectively. These results indicate that the ITO nanoparticles is a promising nanomaterial for ultrafast photonics.

  3. Indium tin oxide films prepared via wet chemical route

    International Nuclear Information System (INIS)

    Legnani, C.; Lima, S.A.M.; Oliveira, H.H.S.; Quirino, W.G.; Machado, R.; Santos, R.M.B.; Davolos, M.R.; Achete, C.A.; Cremona, M.

    2007-01-01

    In this work, indium tin oxide (ITO) films were prepared using a wet chemical route, the Pechini method. This consists of a polyesterification reaction between an α-hydroxicarboxylate complex (indium citrate and tin citrate) with a polyalcohol (ethylene glycol) followed by a post annealing at 500 deg. C. A 10 at.% of doping of Sn 4+ ions into an In 2 O 3 matrix was successfully achieved through this method. In order to characterize the structure, the morphology as well as the optical and electrical properties of the produced ITO films, they were analyzed using different experimental techniques. The obtained films are highly transparent, exhibiting transmittance of about 85% at 550 nm. They are crystalline with a preferred orientation of [222]. Microscopy discloses that the films are composed of grains of 30 nm average size and 0.63 nm RMS roughness. The films' measured resistivity, mobility and charge carrier concentration were 5.8 x 10 -3 Ω cm, 2.9 cm 2 /V s and - 3.5 x 10 20 /cm 3 , respectively. While the low mobility value can be related to the small grain size, the charge carrier concentration value can be explained in terms of the high oxygen concentration level resulting from the thermal treatment process performed in air. The experimental conditions are being refined to improve the electrical characteristics of the films while good optical, chemical, structural and morphological qualities already achieved are maintained

  4. Electrocatalytic reduction of carbon dioxide on electrodeposited tin-based surfaces

    Science.gov (United States)

    Alba, Bianca Christina S.; Camayang, John Carl A.; Mopon, Marlon L.; del Rosario, Julie Anne D.

    2017-08-01

    The electrocatalytic reduction of carbon dioxide to small organic molecular compounds provides a means of generating alternative fuel source while suppressing climate change. Suitable catalysts, however, are necessary to optimize its reaction kinetics towards more valuable products. Consequently, in this study, electrodeposited Sn electrodes have been developed as catalysts for CO2 electroreduction. Deposition potential was varied to produce different Sn catalysts. SEM showed varying morphologies and increasing amount as the applied potential becomes more negative. Cyclic voltammetry and chronoamperometry showed that the activity and stability of the catalysts towards CO2 reduction depend on the morphology and presence of tin oxides. These results provide a better understanding on the performance of electrodeposited Sn-based surfaces as catalysts for CO2 reduction.

  5. Employment of fluorine doped zinc tin oxide (ZnSnOx:F) coating layer on stainless steel 316 for a bipolar plate for PEMFC

    International Nuclear Information System (INIS)

    Park, Ji Hun; Byun, Dongjin; Lee, Joong Kee

    2011-01-01

    Highlights: → Preparation of fluorine doped tin oxide (SnOx:F) and fluorine doped zinc tin oxide (ZnSnOx:F) coating layer on the surface of stainless steel 316 bipolar plate for PEMFCs (Proton Exchange Membrane Fuel Cells). → Evaluations of the corrosion resistance and the interfacial contact resistance of the bare, SnOx:F and ZnSnOx:F thin film coated stainless steel 316 bipolar plates. → Evaluation of single cell performance such as cell voltage and power density using bare stainless steel, SnOx:F and ZnSnOx:F film coated bipolar plates. - Abstract: The investigation of the electrochemical characteristics of the fluorine doped tin oxide (SnOx:F) and fluorine doped zinc tin oxide (ZnSnOx:F) was carried out in the simulated PEMFC environment and bare stainless steel 316 was used as a reference. The results showed that the ZnSnOx:F coating enhanced both the corrosion resistance and interfacial contact resistance (ICR). The corrosion current for ZnSnOx:F was 1.2 μA cm -2 which was much lower than that of bare stainless steel of 50.16 μA cm -2 . The ZnSnOx:F coated film had the smallest corrosion current due to the formation of a tight surface morphology with very few pin-holes. The ZnSnOx:F coated film exhibited the highest values of the cell voltage and power density due to its having the lowest ICR values.

  6. Polycrystalline Mn-alloyed indium tin oxide films

    International Nuclear Information System (INIS)

    Scarlat, Camelia; Schmidt, Heidemarie; Xu, Qingyu; Vinnichenko, Mykola; Kolitsch, Andreas; Helm, Manfred; Iacomi, Felicia

    2008-01-01

    Magnetic ITO films are interesting for integrating ITO into magneto-optoelectronic devices. We investigated n-conducting indium tin oxide (ITO) films with different Mn doping concentration which have been grown by chemical vapour deposition using targets with the atomic ratio In:Sn:Mn=122:12:0,114:12:7, and 109:12:13. The average film roughness ranges between 30 and 50 nm and XRD patterns revealed a polycrystalline structure. Magnetotransport measurements revealed negative magnetoresistance for all the samples, but high field positive MR can be clearly observed at 5 K with increasing Mn doping concentration. Spectroscopic ellipsometry (SE) has been used to prove the existence of midgap states in the Mn-alloyed ITO films revealing a transmittance less than 80%. A reasonable model for the ca. 250 nm thick Mn-alloyed ITO films has been developed to extract optical constants from SE data below 3 eV. Depending on the Mn content, a Lorentz oscillator placed between 1 and 2 eV was used to model optical absorption below the band gap

  7. Modulating indium doped tin oxide electrode properties for laccase electron transfer enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Diaconu, Mirela [National Institute for Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, Bucharest 060031 (Romania); Chira, Ana [National Institute for Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, Bucharest 060031 (Romania); Politehnica University of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu Str., 011061 (Romania); Radu, Lucian, E-mail: gl_radu@chim.upb.ro [Politehnica University of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu Str., 011061 (Romania)

    2014-08-28

    Indium doped tin oxide (ITO) electrodes were functionalized with gold nanoparticles (GNPs) and cysteamine monolayer to enhance the heterogeneous electron transfer process of laccase from Trametes versicolor. The assembly of GNP on ITO support was performed through generation of H{sup +} species at the electrode surface by hydroquinone electrooxidation at 0.9 V vs Ag/AgCl. Uniform distribution of gold nanoparticle aggregates on electrode surfaces was confirmed by atomic force microscopy. The size of GNP aggregates was in the range of 200–500 nm. The enhanced charge transfer at the GNP functionalized ITO electrodes was observed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy. Electrocatalytic behavior of laccase immobilized on ITO modified electrode toward oxygen reduction reaction was evaluated using CV in the presence of 2,2′-azino-bis 3-ethylbenzothiazoline-6-sulfuric acid (ABTS). The obtained sigmoidal-shaped voltammograms for ABTS reduction in oxygen saturated buffer solution are characteristic for a catalytic process. The intensity of catalytic current increased linearly with mediator concentration up to 6.2 × 10{sup −4} M. The registered voltammogram in the absence of ABTS mediator clearly showed a significant faradaic current which is the evidence of the interfacial oxygen reduction. - Highlights: • Assembly of gold nanoparticles on indium tin oxide support at positive potentials • Electrochemical and morphological evaluation of the gold nanoparticle layer assembly • Bioelectrocatalytic oxygen reduction on laccase modified electrode.

  8. Prediction of crack density and electrical resistance changes in indium tin oxide/polymer thin films under tensile loading

    KAUST Repository

    Mora Cordova, Angel; Khan, Kamran; El Sayed, Tamer

    2014-01-01

    We present unified predictions for the crack onset strain, evolution of crack density, and changes in electrical resistance in indium tin oxide/polymer thin films under tensile loading. We propose a damage mechanics model to quantify and predict

  9. Planar Indium Tin Oxide Heater for Improved Thermal Distribution for Metal Oxide Micromachined Gas Sensors

    Directory of Open Access Journals (Sweden)

    M. Cihan Çakır

    2016-09-01

    Full Text Available Metal oxide gas sensors with integrated micro-hotplate structures are widely used in the industry and they are still being investigated and developed. Metal oxide gas sensors have the advantage of being sensitive to a wide range of organic and inorganic volatile compounds, although they lack selectivity. To introduce selectivity, the operating temperature of a single sensor is swept, and the measurements are fed to a discriminating algorithm. The efficiency of those data processing methods strongly depends on temperature uniformity across the active area of the sensor. To achieve this, hot plate structures with complex resistor geometries have been designed and additional heat-spreading structures have been introduced. In this work we designed and fabricated a metal oxide gas sensor integrated with a simple square planar indium tin oxide (ITO heating element, by using conventional micromachining and thin-film deposition techniques. Power consumption–dependent surface temperature measurements were performed. A 420 °C working temperature was achieved at 120 mW power consumption. Temperature distribution uniformity was measured and a 17 °C difference between the hottest and the coldest points of the sensor at an operating temperature of 290 °C was achieved. Transient heat-up and cool-down cycle durations are measured as 40 ms and 20 ms, respectively.

  10. Planar Indium Tin Oxide Heater for Improved Thermal Distribution for Metal Oxide Micromachined Gas Sensors.

    Science.gov (United States)

    Çakır, M Cihan; Çalışkan, Deniz; Bütün, Bayram; Özbay, Ekmel

    2016-09-29

    Metal oxide gas sensors with integrated micro-hotplate structures are widely used in the industry and they are still being investigated and developed. Metal oxide gas sensors have the advantage of being sensitive to a wide range of organic and inorganic volatile compounds, although they lack selectivity. To introduce selectivity, the operating temperature of a single sensor is swept, and the measurements are fed to a discriminating algorithm. The efficiency of those data processing methods strongly depends on temperature uniformity across the active area of the sensor. To achieve this, hot plate structures with complex resistor geometries have been designed and additional heat-spreading structures have been introduced. In this work we designed and fabricated a metal oxide gas sensor integrated with a simple square planar indium tin oxide (ITO) heating element, by using conventional micromachining and thin-film deposition techniques. Power consumption-dependent surface temperature measurements were performed. A 420 °C working temperature was achieved at 120 mW power consumption. Temperature distribution uniformity was measured and a 17 °C difference between the hottest and the coldest points of the sensor at an operating temperature of 290 °C was achieved. Transient heat-up and cool-down cycle durations are measured as 40 ms and 20 ms, respectively.

  11. Perspectives of the Si3N4-TiN ceramic composite as a biomaterial and manufacturing of complex-shaped implantable devices by electrical discharge machining (EDM).

    Science.gov (United States)

    Bucciotti, Francesco; Mazzocchi, Mauro; Bellosi, Alida

    2010-01-01

    In this work we investigated the suitability of electroconductive silicon nitride/titanium nitride composite for biomedical implantable devices with particular attention on the processing route that allows the net-shaping of complex components by electrical discharge machining (EDM). The composite, constituted mainly of a beta-Si3N4, dispersed TiN grains and a glassy grain boundary phase, exhibited a low density and high hardness, strength and toughness. Bulk, surface characteristics and properties of the Si3N4-TiN composite were analyzed. After the EDM process, the microstructure of the machined surface was examined. The obtained results showed that the Si3N4-TiN ceramic composite together with the EDM manufacturing process might potentially play a key role in implantable load-bearing prosthesis applications.

  12. Carbon nanofibers with highly dispersed tin and tin antimonide nanoparticles: Preparation via electrospinning and application as the anode materials for lithium-ion batteries

    Science.gov (United States)

    Li, Zhi; Zhang, Jiwei; Shu, Jie; Chen, Jianping; Gong, Chunhong; Guo, Jianhui; Yu, Laigui; Zhang, Jingwei

    2018-03-01

    One-dimensional carbon nanofibers with highly dispersed tin (Sn) and tin antimonide (SnSb) nanoparticles are prepared by electrospinning in the presence of antimony-doped tin oxide (denoted as ATO) wet gel as the precursor. The effect of ATO dosage on the microstructure and electrochemical properties of the as-fabricated Sn-SnSb/C composite nanofibers is investigated. Results indicate that ATO wet gel as the precursor can effectively improve the dispersion of Sn nanoparticles in carbon fiber and prevent them from segregation during the electrospinning and subsequent calcination processes. The as-prepared Sn-SnSb/C nanofibers as the anode materials for lithium-ion batteries exhibit high reversible capacity and stable cycle performance. Particularly, the electrode made from Sn-SnSb/C composite nanofibers obtained with 0.9 g of ATO gel has a high specific capacity of 779 mAh·g-1 and 378 mAh·g-1 at the current density of 50 mA·g-1 and 5 A·g-1, respectively, and it exhibits a capacity retention of 97% after 1200 cycles under the current density of 1 A·g-1. This is because the carbon nanofibers can form a continuous conductive network to buffer the volume change of the electrodes while Sn and Sn-SnSb nanoparticles uniformly distributed in the carbon nanofibers are free of segregation, thereby contributing to electrochemical performances of the electrodes.

  13. Transparent conductive electrodes of mixed TiO2−x–indium tin oxide for organic photovoltaics

    KAUST Repository

    Lee, Kyu-Sung

    2012-05-22

    A transparent conductive electrode of mixed titanium dioxide (TiO2−x)–indium tin oxide (ITO) with an overall reduction in the use of indium metal is demonstrated. When used in organic photovoltaicdevices based on bulk heterojunction photoactive layer of poly (3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester, a power conversion efficiency of 3.67% was obtained, a value comparable to devices having sputtered ITO electrode. Surface roughness and optical efficiency are improved when using the mixed TiO2−x–ITO electrode. The consumption of less indium allows for lower fabrication cost of such mixed thin filmelectrode.

  14. The electronic structure of co-sputtered zinc indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, Paz; Antony, Aldrin; Bertomeu, Joan [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, 08028 Barcelona (Spain); Gutmann, Sebastian [Department of Chemistry, University of South Florida, Tampa, Florida 33620 (United States); Schlaf, Rudy [Department of Electrical Engineering, University of South Florida, Tampa, Florida 33620 (United States)

    2011-10-01

    Zinc indium tin oxide (ZITO) transparent conductive oxide layers were deposited via radio frequency (RF) magnetron co-sputtering at room temperature. A series of samples with gradually varying zinc content was investigated. The samples were characterized with x-ray and ultraviolet photoemission spectroscopy (XPS, UPS) to determine the electronic structure of the surface. Valence and conduction bands maxima (VBM, CBM), and work function were determined. The experiments indicate that increasing Zn content results in films with a higher defect rate at the surface leading to the formation of a degenerately doped surface layer if the Zn content surpasses {approx}50%. Furthermore, the experiments demonstrate that ZITO is susceptible to ultraviolet light induced work function reduction, similar to what was earlier observed on ITO and TiO{sub 2} films.

  15. Sol–gel synthesis of nanostructured indium tin oxide with controlled morphology and porosity

    Energy Technology Data Exchange (ETDEWEB)

    Kőrösi, László, E-mail: ltkorosi@gmail.com [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Scarpellini, Alice [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Petrik, Péter [Institute for Technical Physics and Materials Science, Konkoly-Thege út 29-33, H-1121 Budapest (Hungary); Papp, Szilvia [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Dékány, Imre [MTA-SZTE Supramolecular and Nanostructured Materials Research Group, University of Szeged, Dóm tér 8, H-6720 Szeged (Hungary)

    2014-11-30

    Graphical abstract: - Highlights: • Nanocrystalline ITO thin films and powders were prepared by a sol–gel method. • The nature of the compounds used for hydrolysis plays a key role in the morphology. • Hydrolysis of In{sup 3+}/Sn{sup 4+} with EA led to a rod-like morphology. • Monodisperse spherical ITO nanoparticles were obtained on the use of AC. • ITO{sub E}A was highly porous, while ITO{sub A}C contained densely packed nanocrystals. - Abstract: Nanostructured indium tin oxide (ITO) powders and thin films differing in morphology and porosity were prepared by a sol–gel method. In{sup 3+} and Sn{sup 4+} were hydrolyzed in aqueous medium through the use of ethanolamine (EA) or sodium acetate (AC). X-ray diffraction measurements demonstrated that both EA and AC furnished indium tin hydroxide, which became nanocrystalline after aging for one day. The indium tin hydroxide samples calcined at 550 °C afforded ITO with a cubic crystal structure, but the morphology differed significantly, depending on the agent used for hydrolysis. Electron microscopy revealed the formation of round monodisperse nanoparticles when AC was used, whereas the application of EA led to rod-like ITO nanoparticles. Both types of nanoparticles were suitable for the preparation of transparent and conductive ITO thin films. The influence of the morphology and porosity on the optical properties is discussed.

  16. Deposition and surface treatment of Ag-embedded indium tin oxide by plasma processing

    International Nuclear Information System (INIS)

    Kim, Jun Young; Kim, Jae-Kwan; Kim, Ja-Yeon; Kwon, Min-Ki; Yoon, Jae-Sik; Lee, Ji-Myon

    2013-01-01

    Ag-embedded indium tin oxide (ITO) films were deposited on Corning 1737 glass by radio-frequency magnetron sputtering under an Ar or Ar/O 2 mixed gas ambient with a combination of ITO and Ag targets that were sputtered alternately by switching on and off the shutter of the sputter gun. The effects of a subsequent surface treatment using H 2 and H 2 + O 2 mixed gas plasma were also examined. The specific resistance of the as-deposited Ag-embedded ITO sample was lower than that of normal ITO. The transmittance was quenched when Ag was incorporated in ITO. To enhance the specific resistance of Ag-embedded ITO, a surface treatment was conducted using H 2 or H 2 + O 2 mixed gas plasma. Although all samples showed improved specific resistance after the H 2 plasma treatment, the transmittance was quenched due to the formation of agglomerated metals on the surface. The specific resistance of the film was improved without any deterioration of the transmittance after a H 2 + O 2 mixed gas plasma treatment. - Highlights: • Ag-embedded indium tin oxide was deposited. • The contact resistivity was decreased by H 2 + O 2 plasma treatment. • The process was carried out at room temperature without thermal treatment. • The mechanism of enhancing the contact resistance was clarified

  17. Porous screen printed indium tin oxide (ITO) for NOx gas sensing

    International Nuclear Information System (INIS)

    Mbarek, H.; Saadoun, M.; Bessais, B.

    2007-01-01

    Tin-doped Indium Oxide (ITO) films were prepared by the screen printing method. Transparent and conductive ITO thin films were obtained from an organometallic based paste fired in an Infrared furnace. The Screen printed ITO films were found to be granular and porous. This specific morphology was found to be suitable for sensing different gaseous species. This work investigates the possibility of using screen printed (ITO) films as a specific material for efficient NO x gas sensing. It was found that screen printed ITO is highly sensitive and stable towards NO x , especially for gas concentration higher than 50 ppm and starting from a substrate working temperature of about 180 C. The sensitivity of the ITO films increases with increasing NO x concentration and temperature. The sensitivity and stability of the screen printed ITO based sensors were studied within time. The ITO crystallite grain size dimension was found to be a key parameter that influences the gas response characteristics. Maximum gas sensitivity and minimum response time were observed for ITO films having lower crystallite size dimensions. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells

    KAUST Repository

    Barbe, Jeremy; Tietze, Max Lutz; Neophytou, Marios; Banavoth, Murali; Alarousu, Erkki; El Labban, Abdulrahman; Abulikemu, Mutalifu; Yue, Wan; Mohammed, Omar F.; McCulloch, Iain; Amassian, Aram; Del Gobbo, Silvano

    2017-01-01

    Chemical bath deposition (CBD) of tin oxide (SnO) thin films as an electron-transport layer (ETL) in a planar-heterojunction n-i-p organohalide lead perovskite and organic bulk-heterojunction (BHJ) solar cells is reported. The amorphous SnO (a

  19. Work function tuning of tin-doped indium oxide electrodes with solution-processed lithium fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Ow-Yang, C.W., E-mail: cleva@sabanciuniv.edu [Materials Science and Engineering Program, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey); Nanotechnology Application Center, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey); Jia, J. [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258 (Japan); Aytun, T. [Materials Science and Engineering Program, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey); Zamboni, M.; Turak, A. [Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L8 (Canada); Saritas, K. [Materials Science and Engineering Program, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey); Shigesato, Y. [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258 (Japan)

    2014-05-30

    Solution-processed lithium fluoride (sol-LiF) nanoparticles synthesized in polymeric micelle nanoreactors enabled tuning of the surface work function of tin-doped indium oxide (ITO) films. The micelle reactors provided the means for controlling surface coverage by progressively building up the interlayer through alternating deposition and plasma etch removal of the polymer. In order to determine the surface coverage and average interparticle distance, spatial point pattern analysis was applied to scanning electron microscope images of the nanoparticle dispersions. The work function of the sol-LiF modified ITO, obtained from photoelectron emission yield spectroscopy analysis, was shown to increase with surface coverage of the sol-LiF particles, suggesting a lateral depolarization effect. Analysis of the photoelectron emission energy distribution in the near threshold region revealed the contribution of surface states for surface coverage in excess of 14.1%. Optimization of the interfacial barrier was achieved through contributions from both work function modification and surface states. - Highlights: • Work function of indium tin oxide increased with LiF nanoparticle coverage. • Work function was analyzed via photoelectron emission yield (PEYS). • At higher surface coverage, the energy distribution of PEYS increased. • Pre-threshold increase in PEYS consistent with emission from surface states.

  20. Magnetoresistance and Microstructure of Magnetite Nanocrystals Dispersed in Indium−Tin Oxide Thin Films

    OpenAIRE

    Okada, Koichi; Kohiki, Shigemi; Mitome, Masanori; Tanaka, Hidekazu; Arai, Masao; Mito, Masaki; Deguchi, Hiroyuki

    2009-01-01

    Epitaxial indium−tin oxide (ITO) thin films were fabricated on a yttria-stabilized zirconia (YSZ) substrate by pulsed-laser deposition using magnetite (Fe3O4) nanoparticle dispersed ITO powders as a target. Magnetoresistance of the film at a field of 1 T was 39% at 45 K, and it stayed at 3% above 225 K. The film demonstrated cooling hysteresis in the temperature dependence of direct-current magnetization. Transmission electron microscopy revealed that phase-separated Fe3O4 nanocrystals with w...

  1. Conducting tin halides with a layered organic-based perovskite structure

    Science.gov (United States)

    Mitzi, D. B.; Feild, C. A.; Harrison, W. T. A.; Guloy, A. M.

    1994-06-01

    THE discovery1 of high-temperature superconductivity in layered copper oxide perovskites has generated considerable fundamental and technological interest in this class of materials. Only a few other examples of conducting layered perovskites are known; these are also oxides such as (La1-xSrx)n+1 MnnO3n+1 (ref. 2), Lan+1NinO3n+1 (ref. 3) and Ban+1PbnO3n+1 (ref. 4), all of which exhibit a trend from semiconducting to metallic behaviour with increasing number of perovskite layers (n). We report here the synthesis of a family of organic-based layered halide perovskites, (C4H9NH3)2(CH3NH3)n-1Snnl3n+1 which show a similar transition from semiconducting to metallic behaviour with increasing n. The incorporation of an organic modulation layer between the conducting tin iodide sheets potentially provides greater flexibility for tuning the electrical properties of the perovskite sheets, and we suggest that such an approach will prove valuable for exploring the range of transport properties possible with layered perovskites.

  2. Gas Sensing Studies of an n-n Hetero-Junction Array Based on SnO2 and ZnO Composites

    Directory of Open Access Journals (Sweden)

    Anupriya Naik

    2016-02-01

    Full Text Available A composite metal oxide semiconductor (MOS sensor array based on tin dioxide (SNO2 and zinc oxide (ZnO has been fabricated using a straight forward mechanical mixing method. The array was characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectroscopy and X-ray diffraction. The array was evaluated against a number of environmentally important reducing and oxidizing gases across a range of operating temperatures (300–500 °C. The highest response achieved was against 100 ppm ethanol by the 50 wt% ZnO–50 wt% SnO2 device, which exhibited a response of 109.1, a 4.5-fold increase with respect to the pure SnO2 counterpart (which displayed a response of 24.4 and a 12.3-fold enhancement with respect to the pure ZnO counterpart (which was associated with a response of 8.9, towards the same concentration of the analyte. Cross sensitivity studies were also carried out against a variety of reducing gases at an operating temperature of 300 °C. The sensors array showed selectivity towards ethanol. The enhanced behaviour of the mixed oxide materials was influenced by junction effects, composition, the packing structure and the device microstructure. The results show that it is possible to tune the sensitivity and selectivity of a composite sensor, through a simple change in the composition of the composite.

  3. Plasma vapor deposited n-indium tin oxide/p-copper indium oxide heterojunctions for optoelectronic device applications

    Science.gov (United States)

    Jaya, T. P.; Pradyumnan, P. P.

    2017-12-01

    Transparent crystalline n-indium tin oxide/p-copper indium oxide diode structures were fabricated on quartz substrates by plasma vapor deposition using radio frequency (RF) magnetron sputtering. The p-n heterojunction diodes were highly transparent in the visible region and exhibited rectifying current-voltage (I-V) characteristics with a good ideality factor. The sputter power during fabrication of the p-layer was found to have a profound effect on I-V characteristics, and the diode with the p-type layer deposited at a maximum power of 200 W exhibited the highest value of the diode ideality factor (η value) of 2.162, which suggests its potential use in optoelectronic applications. The ratio of forward current to reverse current exceeded 80 within the range of applied voltages of -1.5 to +1.5 V in all cases. The diode structure possessed an optical transmission of 60-70% in the visible region.

  4. Optical properties of tin oxide nanoparticles prepared by laser ablation in water: Influence of laser ablation time duration and laser fluence

    International Nuclear Information System (INIS)

    Desarkar, Himadri Sankar; Kumbhakar, P.; Mitra, A.K.

    2012-01-01

    Colloidal tin oxide nanoparticles are prepared by laser (having a wavelength of 1064 nm) ablation of tin metallic target immersed in pure deionized water. The influences of laser ablation time and laser fluence on the size and optical properties of the synthesized nanoparticles are studied. Prepared tin oxide nanoparticles are characterized by transmission electron microscope, selected area electron diffraction and UV–Visible absorption spectroscopy. The morphology of prepared tin oxide nanoparticles is found to be mostly spherical and with sizes in the nanometric range (mean radius of 3.2 to 7.3 nm). The measured UV–Visible absorption spectra show the presence of absorption peaks in the ultraviolet region. The band gap energy of samples prepared with different laser ablation time duration is calculated and is found to be increased with decrease in size (radius) of the prepared nanoparticles. Photoluminescence emission measurements at room temperature show that all the samples exhibit photoluminescence in the visible region. The peak photoluminescence emission intensity in the sample prepared with 50 min of laser ablation time is 3.5 times larger than that obtained in the sample prepared with 10 min of laser ablation time. - Highlights: ► SnO 2 nanoparticles (6.4–14.6 nm) are prepared by laser ablation in liquid technique. ► The influences of laser ablation time and laser fluence are studied. ► Samples are characterized by TEM and UV–Visible absorption spectroscopy. ► UV–Visible absorption spectra exhibit quantum confinement effect. ► Samples exhibit enhanced photoluminescence emissions in the visible region.

  5. Microstructure and growth mechanism of tin whiskers on RESn3 compounds

    International Nuclear Information System (INIS)

    Li Caifu; Liu Zhiquan

    2013-01-01

    Graphical abstract: Large amount of intact tin whiskers were firstly prepared without post handling, and their microstructures were investigated systematically with TEM. A growth model was proposed to explain the observed growth characteristics from Sn–RE alloys. - Abstract: An exclusive method was developed to prepare intact tin whiskers as transmission electron microscope specimens, and with this technique in situ observation of tin whisker growth from RESn 3 (RE = Nd, La, Ce) film specimen was first achieved. Electron irradiation was discovered to have an effect on the growth of a tin whisker through its root. Large quantities of tin whiskers with diameters from 20 nm to 10 μm and lengths ranging from 50 nm to 500 μm were formed at a growth rate of 0.1–1.8 nm s −1 on the surface of RESn 3 compounds. Most (>85%) of these tin whiskers have preferred growth directions of 〈1 0 0〉, 〈0 0 1〉, 〈1 0 1〉 and 〈1 0 3〉, as determined by statistics. This kind of tin whisker is single-crystal β-Sn even if it has growth striations, steps and kinks, and no dislocations or twin or grain boundaries were observed within the whisker body. RESn 3 compounds undergo selective oxidation during whisker growth, and the oxidation provides continuous tin atoms for tin whisker growth until they are exhausted. The driving force for whisker growth is the compressive stress resulting from the restriction of the massive volume expansion (38–43%) during the oxidation by the surface RE(OH) 3 layer. Tin atoms diffuse and flow to feed the continuous growth of tin whiskers under a compressive stress gradient formed from the extrusion of tin atoms/clusters at weak points on the surface RE(OH) 3 layers. A growth model was proposed to discuss the characteristics and growth mechanism of tin whiskers from RESn 3 compounds.

  6. Electrochemical migration of tin in electronics and microstructure of the dendrites

    Energy Technology Data Exchange (ETDEWEB)

    Minzari, Daniel, E-mail: dmin@mek.dtu.d [Section for Materials and Surface Technology, Department for Mechanical Engineering, Technical University of Denmark (Denmark); Grumsen, Flemming Bjerg; Jellesen, Morten S.; Moller, Per; Ambat, Rajan [Section for Materials and Surface Technology, Department for Mechanical Engineering, Technical University of Denmark (Denmark)

    2011-05-15

    Graphical abstract: The electrochemical migration of tin in electronics forms dendritic structures, consisting of a metallic tin core, which is surrounded by oxide layers having various thickness. Display Omitted Research highlights: Electrochemical migration occurs if two conductors are connected by condensed moisture. Metallic ions are dissolved and grow in a dendritic structure that short circuit the electrodes. The dendrite consists of a metallic tin core with oxide layers of various thickness surrounding. Detailed microstructure of dendrites is investigated using electron microscopy. The dendrite microstructure is heterogeneous along the growth direction. - Abstract: The macro-, micro-, and nano-scale morphology and structure of tin dendrites, formed by electrochemical migration on a surface mount ceramic chip resistor having electrodes consisting of tin with small amounts of Pb ({approx}2 wt.%) was investigated by scanning electron microscopy and transmission electron microscopy including Energy dispersive X-ray spectroscopy and electron diffraction. The tin dendrites were formed under 5 or 12 V potential bias in 10 ppm by weight NaCl electrolyte as a micro-droplet on the resistor during electrochemical migration experiments. The dendrites formed were found to have heterogeneous microstructure along the growth direction, which is attributed to unstable growth conditions inside the micro-volume of electrolyte. Selected area electron diffraction showed that the dendrites are metallic tin having sections of single crystal orientation and lead containing intermetallic particles embedded in the structure. At certain areas, the dendrite structure was found to be surrounded by an oxide crust, which is believed to be due to unstable growth conditions during the dendrite formation. The oxide layer was found to be of nanocrystalline structure, which is expected to be formed by the dehydration of the hydrated oxide originally formed in solution ex-situ in ambient air.

  7. Sulfated tin oxide (STO – Structural properties and application in catalysis: A review

    Directory of Open Access Journals (Sweden)

    Ravi Varala

    2016-07-01

    Full Text Available Catalysis is an important area of chemistry, with an extensive amount of work going on in this area of sciences, toward synthesis and evaluation of newer catalysts. There are many reports for different conversion reactions such as oxidation, reduction, coupling, alkylation, and acylation for which various catalysts have been used such as mixed metal oxides, metal nanoparticles, metal organic complexes and many others. Among the many catalysts reported, the one catalyst that caught our attention due to its exploitation for a plethora of organic conversions is the sulfated tin oxide (STO, which is due to the low cost, greater stability and high efficiency of the catalyst. In this review, we have attempted to compile data about the structural properties of STO, and its applications as catalysts in various organic synthesis are presented. The literature data up to 2014 were collected and considered for the review.

  8. Spray Pyrolyzed Polycrystalline Tin Oxide Thin Film as Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    Ganesh E. Patil

    2010-09-01

    Full Text Available Polycrystalline tin oxide (SnO2 thin film was prepared by using simple and inexpensive spray pyrolysis technique (SPT. The film was characterized for their phase and morphology by X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively. The crystallite size calculated from the XRD pattern is 84 nm. Conductance responses of the polycrystalline SnO2 were measured towards gases like hydrogen (H2, liquefied petroleum gas (LPG, ethanol vapors (C2H5OH, NH3, CO, CO2, Cl2 and O2. The gas sensing characteristics were obtained by measuring the sensor response as a function of various controlling factors like operating temperature, operating voltages (1 V, 5 V, 10 V 15 V, 20 V and 25 V and concentration of gases. The sensor response measurement showed that the SnO2 has maximum response to hydrogen. Furthermore; the SnO2 based sensor exhibited fast response and good recovery towards hydrogen at temperature 150 oC. The result of response towards H2 reveals that SnO2 thin film prepared by SPT would be a suitable material for the fabrication of the hydrogen sensor.

  9. Characterization of tin dioxide film for chemical vapors sensor

    International Nuclear Information System (INIS)

    Hafaiedh, I.; Helali, S.; Cherif, K.; Abdelghani, A.; Tournier, G.

    2008-01-01

    Recently, oxide semiconductor material used as transducer has been the central topic of many studies for gas sensor. In this paper we investigated the characteristic of a thick film of tin dioxide (SnO 2 ) film for chemical vapor sensor. It has been prepared by screen-printing technology and deposited on alumina substrate provided with two gold electrodes. The morphology, the molecular composition and the electrical properties of this material have been characterized respectively by Atomic Force Spectroscopy (AFM), Fourier Transformed Infrared Spectroscopy (FTIR) and Impedance Spectroscopy (IS). The electrical properties showed a resistive behaviour of this material less than 300 deg. C which is the operating temperature of the sensor. The developed sensor can identify the nature of the detected gas, oxidizing or reducing

  10. Growth Kinetics and Oxidation Mechanism of ALD TiN Thin Films Monitored by In Situ Spectroscopic Ellipsometry

    NARCIS (Netherlands)

    Van Hao, B.; Groenland, A.W.; Aarnink, Antonius A.I.; Wolters, Robertus A.M.; Schmitz, Jurriaan; Kovalgin, Alexeij Y.

    2011-01-01

    Spectroscopic ellipsometry (SE) was employed to investigate the growth of atomic layer deposited (ALD) TiN thin films from titanium chloride (TiCl4) and ammonia (NH3) and the followed oxidation in dry oxygen. Two regimes were found in the growth including a transient stage prior to a linear regime.

  11. Surface engineering of one-dimensional tin oxide nanostructures for chemical sensors

    International Nuclear Information System (INIS)

    Ma, Yuanyuan; Qu, Yongquan; Zhou, Wei

    2013-01-01

    Nanostructured materials are promising candidates for chemical sensors due to their fascinating physicochemical properties. Among various candidates, tin oxide (SnO 2 ) has been widely explored in gas sensing elements due to its excellent chemical stability, low cost, ease of fabrication and remarkable reproducibility. We are presenting an overview on recent investigations on 1-dimensional (1D) SnO 2 nanostructures for chemical sensing. In particular, we focus on the performance of devices based on surface engineered SnO 2 nanostructures, and on aspects of morphology, size, and functionality. The synthesis and sensing mechanism of highly selective, sensitive and stable 1D nanostructures for use in chemical sensing are discussed first. This is followed by a discussion of the relationship between the surface properties of the SnO 2 layer and the sensor performance from a thermodynamic point of view. Then, the opportunities and recent progress of chemical sensors fabricated from 1D SnO 2 heterogeneous nanostructures are discussed. Finally, we summarize current challenges in terms of improving the performance of chemical (gas) sensors using such nanostructures and suggest potential applications. (author)

  12. Quantum dot based on tin/titanium mixed oxide doped with europium synthesized by protein sol-gel method

    International Nuclear Information System (INIS)

    Paganini, Paula P.; Felinto, Maria Claudia F.C.; Brito, Hermi F.

    2011-01-01

    Special luminescence biomarkers have been developed to find more sensitive fluoroimmunoassay methods. A new generation of these biomarkers is the semiconductors nanocrystals, known as quantum dots, doped with lanthanides. The use of lanthanides ions as luminescent markers has many advantages, for example a security method, low cost, high specificity and also the luminescence can be promptly measured with high sensibility and accuracy. The protein sol-gel is a modification of conventional method, in which the coconut water replacing the alkoxides normally used. The advantage is that, the proteins present in coconut water bind chemically with metal salts forming a polymer chain. This work presents nanoparticles based on tin/titanium mixed oxide doped with 3% of europium synthesized by protein sol-gel method. The nanoparticles were burned at 300 deg C, 500 deg C, 800 deg C and 1100 deg C. The samples were analyzed and characterized by thermal analysis, X-ray powder diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The synthesis was effective and the nanoparticles showed nanometric size and structural differences with the annealing. To be used in the fluoroimmunoassays tests, these particles need to be functionalized before be connect with biological molecules and after this process, these nanoparticles going to be submitted at gamma radiation for sterilization. (author)

  13. Quantum dot based on tin/titanium mixed oxide doped with europium synthesized by protein sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Paganini, Paula P.; Felinto, Maria Claudia F.C., E-mail: paulapaganini@usp.b, E-mail: mfelinto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Brito, Hermi F., E-mail: hefbrito@iq.usp.b [Universidade de Sao Paulo (IQ/USP), Sao Paulo, SP (Brazil). Inst. de Quimica. Lab. de Elementos do Bloco f

    2011-07-01

    Special luminescence biomarkers have been developed to find more sensitive fluoroimmunoassay methods. A new generation of these biomarkers is the semiconductors nanocrystals, known as quantum dots, doped with lanthanides. The use of lanthanides ions as luminescent markers has many advantages, for example a security method, low cost, high specificity and also the luminescence can be promptly measured with high sensibility and accuracy. The protein sol-gel is a modification of conventional method, in which the coconut water replacing the alkoxides normally used. The advantage is that, the proteins present in coconut water bind chemically with metal salts forming a polymer chain. This work presents nanoparticles based on tin/titanium mixed oxide doped with 3% of europium synthesized by protein sol-gel method. The nanoparticles were burned at 300 deg C, 500 deg C, 800 deg C and 1100 deg C. The samples were analyzed and characterized by thermal analysis, X-ray powder diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The synthesis was effective and the nanoparticles showed nanometric size and structural differences with the annealing. To be used in the fluoroimmunoassays tests, these particles need to be functionalized before be connect with biological molecules and after this process, these nanoparticles going to be submitted at gamma radiation for sterilization. (author)

  14. Polarization-Insensitive Surface Plasmon Polarization Electro-Absorption Modulator Based on Epsilon-Near-Zero Indium Tin Oxide

    Science.gov (United States)

    Jin, Lin; Wen, Long; Liang, Li; Chen, Qin; Sun, Yunfei

    2018-02-01

    CMOS-compatible plasmonic modulators operating at the telecom wavelength are significant for a variety of on-chip applications. Relying on the manipulation of the transverse magnetic (TM) mode excited on the metal-dielectric interface, most of the previous demonstrations are designed to response only for specific polarization state. In this case, it will lead to a high polarization dependent loss, when the polarization-sensitive modulator integrates to a fiber with random polarization state. Herein, we propose a plasmonic modulator utilizing a metal-oxide indium tin oxide (ITO) wrapped around the silicon waveguide and investigate its optical modulation ability for both the vertical and horizontal polarized guiding light by tuning electro-absorption of ITO with the field-induced carrier injection. The electrically biased modulator with electron accumulated at the ITO/oxide interface allows for epsilon-near-zero (ENZ) mode to be excited at the top or lateral portion of the interface depending on the polarization state of the guiding light. Because of the high localized feature of ENZ mode, efficient electro-absorption can be achieved under the "OFF" state of the device, thus leading to large extinction ratio (ER) for both polarizations in our proposed modulator. Further, the polarization-insensitive modulation is realized by properly tailoring the thickness of oxide in two different stacking directions and therefore matching the ER values for device operating at vertical and horizontal polarized modes. For the optimized geometry configuration, the difference between the ER values of two polarization modes, i.e., the ΔER, as small as 0.01 dB/μm is demonstrated and, simultaneously with coupling efficiency above 74%, is obtained for both polarizations at a wavelength of 1.55 μm. The proposed plasmonic-combined modulator has a potential application in guiding and processing of light from a fiber with a random polarization state.

  15. Cyclic etching of tin-doped indium oxide using hydrogen-induced modified layer

    Science.gov (United States)

    Hirata, Akiko; Fukasawa, Masanaga; Nagahata, Kazunori; Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi; Tatsumi, Tetsuya

    2018-06-01

    The rate of etching of tin-doped indium oxide (ITO) and the effects of a hydrogen-induced modified layer on cyclic, multistep thin-layer etching were investigated. It was found that ITO cyclic etching is possible by precisely controlling the hydrogen-induced modified layer. Highly selective etching of ITO/SiO2 was also investigated, and it was suggested that cyclic etching by selective surface adsorption of Si can precisely control the etch rates of ITO and SiO2, resulting in an almost infinite selectivity for ITO over SiO2 and in improved profile controllability.

  16. Improved irradiation tolerance of reactive gas pulse sputtered TiN coatings with a hybrid architecture of multilayered and compositionally graded structures

    Science.gov (United States)

    Liang, Wei; Yang, Jijun; Zhang, Feifei; Lu, Chenyang; Wang, Lumin; Liao, Jiali; Yang, Yuanyou; Liu, Ning

    2018-04-01

    This study investigates the improved irradiation tolerance of reactive gas pulse (RGP) sputtered TiN coatings which has hybrid architecture of multilayered and compositionally graded structures. The multilayered RGP-TiN coating is composed of hexagonal close-packed Ti phase and face-centred cubic TiN phase sublayers, where the former sublayer has a compositionally graded structure and the latter one maintains constant stoichiometric atomic ratio of Ti:N. After 100 keV He ion irradiation, the RGP-TiN coating exhibits improved irradiation resistance compared with its single layered (SL) counterpart. The size and density of He bubbles are smaller in the RGP-TiN coating than in the SL-TiN coating. The irradiation-induced surface blistering of the coatings shows a similar tendency. Meanwhile, the irradiation hardening and adhesion strength of the RGP-TiN coatings were not greatly affected by He irradiation. Moreover, the irradiation damage tolerance of the coatings can be well tuned by changing the undulation period number of N2 gas flow rate. Detailed analysis suggested that this improved irradiation tolerance could be related to the combined contribution of the multilayered and compositionally graded structures.

  17. Nanostructured tin oxide films: Physical synthesis, characterization, and gas sensing properties.

    Science.gov (United States)

    Ingole, S M; Navale, S T; Navale, Y H; Bandgar, D K; Stadler, F J; Mane, R S; Ramgir, N S; Gupta, S K; Aswal, D K; Patil, V B

    2017-05-01

    Nanostructured tin oxide (SnO 2 ) films are synthesized using physical method i.e. thermal evaporation and are further characterized with X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy measurement techniques for confirming its structure and morphology. The chemiresistive properties of SnO 2 films are studied towards different oxidizing and reducing gases where these films have demonstrated considerable selectivity towards oxidizing nitrogen dioxide (NO 2 ) gas with a maximum response of 403% to 100ppm @200°C, and fast response and recovery times of 4s and 210s, respectively, than other test gases. In addition, SnO 2 films are enabling to detect as low as 1ppm NO 2 gas concentration @200°C with 23% response enhancement. Chemiresistive performances of SnO 2 films are carried out in the range of 1-100ppm and reported. Finally, plausible adsorption and desorption reaction mechanism of NO 2 gas molecules with SnO 2 film surface has been thoroughly discussed by means of an impedance spectroscopy analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Influences of Indium Tin Oxide Layer on the Properties of RF Magnetron-Sputtered (BaSr)TiO3 Thin Films on Indium Tin Oxide-Coated Glass Substrate

    Science.gov (United States)

    Kim, Tae Song; Oh, Myung Hwan; Kim, Chong Hee

    1993-06-01

    Nearly stoichiometric ((Ba+Sr)/Ti=1.08-1.09) and optically transparent (BaSr)TiO3 thin films were deposited on an indium tin oxide (ITO)-coated glass substrate by means of rf magnetron sputtering for their application to the insulating layer of an electroluminescent flat panel display. The influence of the ITO layer on the properties of (BaSr)TiO3 thin films deposited on the ITO-coated substrate was investigated. The ITO layer did not affect the crystallographic orientation of (BaSr)TiO3 thin film, but enhanced the grain growth. Another effect of the ITO layer on (BaSr)TiO3 thin films was the interdiffusion phenomenon, which was studied by means of secondary ion mass spectrometry (SIMS). As the substrate temperature increased, interdiffusion intensified at the interface not only between the grown film and ITO layer but also between the ITO layer and base glass substrate. The refractive index (nf) of (BaSr)TiO3 thin film deposited on a bare glass substrate was 2.138-2.286, as a function of substrate temperature.

  19. Effects of process parameters on sheet resistance uniformity of fluorine-doped tin oxide thin films

    Science.gov (United States)

    Hudaya, Chairul; Park, Ji Hun; Lee, Joong Kee

    2012-01-01

    An alternative indium-free material for transparent conducting oxides of fluorine-doped tin oxide [FTO] thin films deposited on polyethylene terephthalate [PET] was prepared by electron cyclotron resonance - metal organic chemical vapor deposition [ECR-MOCVD]. One of the essential issues regarding metal oxide film deposition is the sheet resistance uniformity of the film. Variations in process parameters, in this case, working and bubbler pressures of ECR-MOCVD, can lead to a change in resistance uniformity. Both the optical transmittance and electrical resistance uniformity of FTO film-coated PET were investigated. The result shows that sheet resistance uniformity and the transmittance of the film are affected significantly by the changes in bubbler pressure but are less influenced by the working pressure of the ECR-MOCVD system.

  20. TIN-X

    DEFF Research Database (Denmark)

    Cannon, Daniel C; Yang, Jeremy J; Mathias, Stephen L

    2017-01-01

    between proteins and diseases, based on text mining data processed from scientific literature. In the current implementation, TIN-X supports exploration of data for G-protein coupled receptors, kinases, ion channels, and nuclear receptors. TIN-X supports browsing and navigating across proteins......Motivation: The increasing amount of peer-reviewed manuscripts requires the development of specific mining tools to facilitate the visual exploration of evidence linking diseases and proteins. Results: We developed TIN-X, the Target Importance and Novelty eXplorer, to visualize the association...

  1. Chemically-modified electrodes in photoelectrochemical cells. [Tin oxide and TiO/sub 2/ semiconductor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fox, M A; Hohman, J R; Kamat, P V

    1893-01-01

    Tin oxide and titanium dioxide semiconductor electrodes hae been covalently modified by the attachment of functionalized olefins and arenes through surface silanation or via a cyanuric chloride linkage. The excited state and electrochemical properties of the molecules so attached are significantly affected by the semiconductor. Photocurrent measurements and time-resolved laser coulostatic monitoring have been employed to elucidate the mechanism of charge injection on these modified surfaces. 17 references, 7 figures.

  2. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Jahwarhar Izuan Abdul [Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Department of Chemistry and Biology, Centre for Defense Foundation Studies, National Defense University of Malaysia, Sungai Besi Camp, 57000 Kuala Lumpur (Malaysia); Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Yusof, Nor Azah, E-mail: azahy@upm.edu.my [Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Abdullah, Jaafar [Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Hashim, Uda [Institute of Nanoelectronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); Hajian, Reza, E-mail: rezahajian@upm.edu.my [Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2014-12-01

    This work describes the incorporation of SiNWs/AuNPs composite as a sensing material for DNA detection on indium tin-oxide (ITO) coated glass slide. The morphology of SiNWs/AuNPs composite as the modifier layer on ITO was studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The morphological studies clearly showed that SiNWs were successfully decorated with 20 nm-AuNPs using self-assembly monolayer (SAM) technique. The effective surface area for SiNWs/AuNPs-modified ITO enhanced about 10 times compared with bare ITO electrode. SiNWs/AuNPs nanocomposite was further explored as a matrix for DNA probe immobilization in detection of dengue virus as a bio-sensing model to evaluate its performance in electrochemical sensors. The hybridization of complementary DNA was monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as the redox indicator. The fabricated biosensor was able to discriminate significantly complementary, non-complementary and single-base mismatch oligonucleotides. The electrochemical biosensor was sensitive to target DNA related to dengue virus in the range of 9.0–178.0 ng/ml with detection limit of 3.5 ng/ml. In addition, SiNWs/AuNPs-modified ITO, regenerated up to 8 times and its stability was up to 10 weeks at 4 °C in silica gel. - Highlights: • A sensitive biosensor is presented for detection of dengue virus. • SiNWs and AuNPs used as nanocomposite layers on ITO for construction of biosensor • The detection mechanism is based on the interaction of MB with DNA bonded on AuNPs. • The reduction signal of MB decreases upon complementary hybridization.

  3. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor

    International Nuclear Information System (INIS)

    Rashid, Jahwarhar Izuan Abdul; Yusof, Nor Azah; Abdullah, Jaafar; Hashim, Uda; Hajian, Reza

    2014-01-01

    This work describes the incorporation of SiNWs/AuNPs composite as a sensing material for DNA detection on indium tin-oxide (ITO) coated glass slide. The morphology of SiNWs/AuNPs composite as the modifier layer on ITO was studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The morphological studies clearly showed that SiNWs were successfully decorated with 20 nm-AuNPs using self-assembly monolayer (SAM) technique. The effective surface area for SiNWs/AuNPs-modified ITO enhanced about 10 times compared with bare ITO electrode. SiNWs/AuNPs nanocomposite was further explored as a matrix for DNA probe immobilization in detection of dengue virus as a bio-sensing model to evaluate its performance in electrochemical sensors. The hybridization of complementary DNA was monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as the redox indicator. The fabricated biosensor was able to discriminate significantly complementary, non-complementary and single-base mismatch oligonucleotides. The electrochemical biosensor was sensitive to target DNA related to dengue virus in the range of 9.0–178.0 ng/ml with detection limit of 3.5 ng/ml. In addition, SiNWs/AuNPs-modified ITO, regenerated up to 8 times and its stability was up to 10 weeks at 4 °C in silica gel. - Highlights: • A sensitive biosensor is presented for detection of dengue virus. • SiNWs and AuNPs used as nanocomposite layers on ITO for construction of biosensor • The detection mechanism is based on the interaction of MB with DNA bonded on AuNPs. • The reduction signal of MB decreases upon complementary hybridization

  4. Dependence of the optical constants and the performance in the SPREE gas measurement on the thickness of doped tin oxide over coatings

    Science.gov (United States)

    Fischer, D.; Hertwig, A.; Beck, U.; Negendank, D.; Lohse, V.; Kormunda, M.; Esser, N.

    2017-11-01

    In this study, thickness related changes of the optical properties of doped tin oxide were studied. Two different sets of samples were prepared. The first set was doped with iron or nickel on silicon substrate with thicknesses of 29-56 nm, the second was iron doped on gold/glass substrate with 1.6-6.3 nm. The optical constants were determined by using spectral ellipsometry (SE) followed by modelling of the dielectric function with an oscillator model using Gaussian peaks. The analysis of the optical constants shows a dependence of the refraction and the absorption on the thickness of the doped tin oxide coating. In addition to the tin oxide absorption in the UV, one additional absorption peak was found in the near-IR/red which is related to plasmonic effects due to the doping. This peak shifts from the near-IR to the red part of the visible spectrum and becomes stronger by reducing the thickness, probably due to the formation of metal nanoparticles in this layer. These results were found for two different sets of samples by using the same optical model. Afterwards the second sample set was tested in the Surface Plasmon Resonance Enhanced Ellipsometric (SPREE) gas measurement with CO gas. It was found that the thickness has significant influence on the sensitivity and thus the adsorption of the CO gas. By increasing the thickness from 1.6 nm to 5.1 nm, the sensing ability is enhanced due to a higher coverage of the surface with the over coating. This is explained by the high affinity of CO molecules to the incorporated Fe-nanoparticles in the tin oxide coating. By increasing the thickness further to 6.3 nm, the sensing ability drops because the layer disturbs the SPR sensing effect too much.

  5. Effect of thermal processing on silver thin films of varying thickness deposited on zinc oxide and indium tin oxide

    International Nuclear Information System (INIS)

    Sivaramakrishnan, K.; Ngo, A. T.; Alford, T. L.; Iyer, S.

    2009-01-01

    Silver films of varying thicknesses (25, 45, and 60 nm) were deposited on indium tin oxide (ITO) on silicon and zinc oxide (ZnO) on silicon. The films were annealed in vacuum for 1 h at different temperatures (300-650 deg. C). Four-point-probe measurements were used to determine the resistivity of the films. All films showed an abrupt change in resistivity beyond an onset temperature that varied with thickness. Rutherford backscattering spectrometry measurements revealed agglomeration of the Ag films upon annealing as being responsible for the resistivity change. X-ray pole figure analysis determined that the annealed films took on a preferential texturing; however, the degree of texturing was significantly higher in Ag/ZnO/Si than in Ag/ITO/Si samples. This observation was accounted for by interface energy minimization. Atomic force microscopy (AFM) measurements revealed an increasing surface roughness of the annealed films with temperature. The resistivity behavior was explained by the counterbalancing effects of increasing crystallinity and surface roughness. Average surface roughness obtained from the AFM measurements were also used to model the agglomeration of Ag based on Ostwald ripening theory

  6. Method for palliation of pain in human bone cancer using therapeutic tin-117m compositions

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Meinken, G.E.; Mausner, L.F.; Atkins, H.L.

    1998-01-01

    The invention provides a method for the palliation of bone pain due to cancer by the administration of a unique dosage of a tin-117m (Sn-117m) stannic chelate complex in a pharmaceutically acceptable composition. In addition, the invention provides a method for simultaneous palliation of bone pain and radiotherapy in cancer patients using compositions containing Sn-117m chelates. The invention also provides a method for palliating bone pain in cancer patients using Sn-117m-containing compositions and monitoring patient status by imaging the distribution of the Sn-117m in the patients. Also provided are pharmaceutically acceptable compositions containing Sn-117m chelate complexes for the palliation of bone pain in cancer patients. 5 figs

  7. "A New Class of Creep Resistant Oxide/Oxide Ceramic Matrix Composites"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohit Jain, Dr. Ganesh Skandan, Prof. Roger Cannon, Rutgers University

    2007-03-30

    Despite recent progress in the development of SiC-SiC ceramic matrix composites (CMCs), their application in industrial gas turbines for distributed energy (DE) systems has been limited. The poor oxidation resistance of the non-oxide ceramics warrants the use of envrionmental barrier coatings (EBCs), which in turn lead to issues pertaining to life expectancy of the coatings. On the other hand, oxide/oxide CMCs are potential replacements, but their use has been limited until now due to the poor creep resistance at high temperatures, particularly above 1200 oC: the lack of a creep resistant matrix has been a major limiting factor. Using yttrium aluminum garnet (YAG) as the matrix material system, we have advanced the state-of-the-art in oxide/oxide CMCs by introducing innovations in both the structure and composition of the matrix material, thereby leading to high temperature matrix creep properties not achieved until now. An array of YAG-based powders with a unique set of particle characteristics were produced in-house and sintered to full density and compressive creep data was obtained. Aided in part by the composition and the microstructure, the creep rates were found to be two orders of magnitude smaller than the most creep resistant oxide fiber available commercially. Even after accounting for porosity and a smaller matrix grain size in a practical CMC component, the YAG-based matrix material was found to creep slower than the most creep resistant oxide fiber available commercially.

  8. Respiration sensor made from indium tin oxide-coated conductive fabrics

    Science.gov (United States)

    Kim, Sun Hee; Lee, Joo Hyeon; Jee, Seung Hyun

    2015-02-01

    Conductive fabrics with new properties and applications have been the subject of extensive research over the last few years, with wearable respiration sensors attracting much attention. Different methods can be used to obtain fabrics that are electrically conducting, an essential property for various applications. For instance, fabrics can be coated with conductive polymers. Here, indium tin oxide (ITO)-coated conductive fabrics with cross-linked polyvinyl alcohol (C-PVA) were prepared using a doctor-blade. The C-PVA was employed in the synthesis to bind ITO on the fabrics with the highest possible mechanical strength. The feasibility of a respiration sensor prepared using the ITO-coated conductive fabric was investigated. The ITO-coated conductive fabric with the C-PVA was demonstrated to have a high potential for use in respiration sensors.

  9. Synthesis and properties of ternary mixture of nickel/cobalt/tin oxides for supercapacitors

    Science.gov (United States)

    Ferreira, C. S.; Passos, R. R.; Pocrifka, L. A.

    2014-12-01

    The present study reports the synthesis and morphological, structural and electrochemical characterization of ternary oxides mixture containing nickel, cobalt and tin. The ternary oxide is synthesized by Pechini method with subsequent deposition onto a titanium substrate in a thin-film form. XRD and EDS analysis confirm the formation of ternary film with amorphous nature. SEM analysis show that cracks on the film favor the gain of the surface area that is an interesting feature for electrochemical capacitors. The ternary film is investigated in KOH electrolyte solution using cyclic voltammetry and charge-discharge study with a specific capacitance of 328 F g-1, and a capacitance retention of 86% over 600 cycles. The values of specific power and specific energy was 345.7 W kg-1 and 18.92 Wh kg-1, respectively.

  10. Strategies to Reduce Tin and Other Metals in Electronic Cigarette Aerosol.

    Directory of Open Access Journals (Sweden)

    Monique Williams

    Full Text Available Metals are present in electronic cigarette (EC fluid and aerosol and may present health risks to users.The objective of this study was to measure the amounts of tin, copper, zinc, silver, nickel and chromium in the aerosol from four brands of EC and to identify the sources of these metals by examining the elemental composition of the atomizer components.Four brands of popular EC were dissected and the cartomizers were examined microscopically. Elemental composition of cartomizer components was determined using integrated energy dispersive X-ray microanalysis, and the concentrations of the tin, copper, zinc silver, nickel, and chromium in the aerosol were determined for each brand using inductively coupled plasma optical emission spectroscopy.All filaments were made of nickel and chromium. Thick wires were copper coated with either tin or silver. Wires were joined to each other by tin solder, brazing, or by brass clamps. High concentrations of tin were detected in the aerosol when tin solder joints were friable. Tin coating on copper wires also contributed to tin in the aerosol.Tin concentrations in EC aerosols varied both within and between brands. Tin in aerosol was reduced by coating the thick wire with silver rather than tin, placing stable tin solder joints outside the atomizing chamber, joining wires with brass clamps or by brazing rather than soldering wires. These data demonstrate the feasibility of removing tin and other unwanted metals from EC aerosol by altering designs and using materials of suitable quality.

  11. High Performance Graphene Oxide Based Rubber Composites

    Science.gov (United States)

    Mao, Yingyan; Wen, Shipeng; Chen, Yulong; Zhang, Fazhong; Panine, Pierre; Chan, Tung W.; Zhang, Liqun; Liang, Yongri; Liu, Li

    2013-01-01

    In this paper, graphene oxide/styrene-butadiene rubber (GO/SBR) composites with complete exfoliation of GO sheets were prepared by aqueous-phase mixing of GO colloid with SBR latex and a small loading of butadiene-styrene-vinyl-pyridine rubber (VPR) latex, followed by their co-coagulation. During co-coagulation, VPR not only plays a key role in the prevention of aggregation of GO sheets but also acts as an interface-bridge between GO and SBR. The results demonstrated that the mechanical properties of the GO/SBR composite with 2.0 vol.% GO is comparable with those of the SBR composite reinforced with 13.1 vol.% of carbon black (CB), with a low mass density and a good gas barrier ability to boot. The present work also showed that GO-silica/SBR composite exhibited outstanding wear resistance and low-rolling resistance which make GO-silica/SBR very competitive for the green tire application, opening up enormous opportunities to prepare high performance rubber composites for future engineering applications. PMID:23974435

  12. Immobilization of azurin with retention of its native electrochemical properties at alkylsilane self-assembled monolayer modified indium tin oxide

    International Nuclear Information System (INIS)

    Ashur, Idan; Jones, Anne K.

    2012-01-01

    Highlights: ► Immobilization of azurin at indium tin oxide causes modification of the native redox properties. ► Azurin was immobilized at alkylsilane self-assembled monolayer on indium tin oxide. ► Native, solution redox properties are retained for the immobilized protein on the SAM. ► Technique should be widely applicable to other redox proteins. - Abstract: Indium tin oxide (ITO) is a promising material for developing spectroelectrochemical methods due to its combination of excellent transparency in the visible region and high conductivity over a broad range of potential. However, relatively few examples of immobilization of redox proteins at ITO with retention of the ability to transfer electrons with the underlying material with native characteristics have been reported. In this work, we utilize an alkylsilane functionalized ITO surface as a biocompatible interface for immobilization of the blue copper protein azurin. Adsorption of azurin at ITO as well as ITO coated with self-assembled monolayers of (3-mercaptopropyl)trimethoxysilane (MPTMS) and n-decyltrimethoxysilane (DTMS) was achieved, and immobilized protein probed using protein film electrochemistry. The native redox properties of the protein were perturbed by adsorption directly to ITO or to the MPTMS layer on an ITO surface. However, azurin adsorbed at a DTMS covered ITO surface retained native electrochemical properties (E 1/2 = 122 ± 5 mV vs. Ag/AgCl) and could exchange electrons directly with the underlying ITO layer without need for an intervening chemical mediator. These results open new opportunities for immobilizing functional redox proteins at ITO and developing spectroelectrochemical methods for investigating them.

  13. Tin

    Science.gov (United States)

    Kamilli, Robert J.; Kimball, Bryn E.; Carlin, James F.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Tin (Sn) is one of the first metals to be used by humans. Almost without exception, tin is used as an alloy. Because of its hardening effect on copper, tin was used in bronze implements as early as 3500 B.C. The major uses of tin today are for cans and containers, construction materials, transportation materials, and solder. The predominant ore mineral of tin, by far, is cassiterite (SnO2).In 2015, the world’s total estimated mine production of tin was 289,000 metric tons of contained tin. Total world reserves at the end of 2016 were estimated to be 4,700,000 metric tons. China held about 24 percent of the world’s tin reserves and accounted for 38 percent of the world’s 2015 production of tin.The proportion of scrap used in tin production is between 10 and 25 percent. Unlike many metals, tin recycling is relatively efficient, and the fraction of tin in discarded products that get recycled is greater than 50 percent.Only about 20 percent of the world’s identified tin resources occur as primary hydrothermal hard-rock veins, or lodes. These lodes contain predominantly high-temperature minerals and almost invariably occur in close association with silicic, peraluminous granites. About 80 percent of the world’s identified tin resources occur as unconsolidated secondary or placer deposits in riverbeds and valleys or on the sea floor. The largest concentration of both onshore and offshore placers is in the extensive tin belt of Southeast Asia, which stretches from China in the north, through Thailand, Burma (also referred to as Myanmar), and Malaysia, to the islands of Indonesia in the south. Furthermore, tin placers are almost always found closely allied to the granites from which they originate. Other countries with significant tin resources are Australia, Bolivia, and Brazil.Most hydrothermal tin deposits belong to what can be thought of as a superclass of porphyry-greisen deposits. The hydrothermal tin deposits are all characterized by a close spatial

  14. Effect of tin oxide nano particles and heat treatment on decay resistance and physical properties of beech wood (Fagus orientalis

    Directory of Open Access Journals (Sweden)

    Maryam Ghorbani

    2014-11-01

    Full Text Available This research was conducted to investigate the effect of Tin oxide nanoparticles and heat treatment on decay resistance and physical properties of beech wood. Biological and physical test samples were prepared according to EN-113 and ASTM-D4446-05 standards respectively. Samples were classified into 4 groups: control, impregnation with Tin oxide nanoparticles, heat treatment and nano-heat treatment. Impregnation with Tin oxide nano at 5000ppm concentration was carried out in the cylinder according to Bethell method. Then, samples were heated at 140, 160 and 185˚C for 2 and 4 hours. According to results, decay resistance improved with increasing time and temperature of heat treatment. Least weight loss showed 46.39% reduction in nano-heat samples treated at 180˚C for 4 hours in comparison with control at highest weight loss. Nano-heat treated samples demonstrated the maximum amount of water absorption without significant difference with control and nanoparticles treated samples. Increase in heat treatment temperature reduced water absorption so that it is revealed 47.8% reduction in heat treated samples at 180°C for 4h after 24h immersion in water. In nano-heat treated samples at 180˚C for 2h was measured least volume swelling. Volume swelling in nano-treated samples decreased 8.7 and 22.76% after 2 and 24 h immersion in comparison with the control samples respectively.

  15. Effect of Temperature on Nucleation of Nanocrystalline Indium Tin Oxide Synthesized by Electron-Beam Evaporation

    Science.gov (United States)

    Shen, Yan; Zhao, Yujun; Shen, Jianxing; Xu, Xiangang

    2017-07-01

    Indium tin oxide (ITO) has been widely applied as a transparent conductive layer and optical window in light-emitting diodes, solar cells, and touch screens. In this paper, crystalline nano-sized ITO dendrites are obtained using an electron-beam evaporation technique. The surface morphology of the obtained ITO was studied for substrate temperatures of 25°C, 130°C, 180°C, and 300°C. Nano-sized crystalline dendrites were synthesized only at a substrate temperature of 300°C. The dendrites had a cubic structure, confirmed by the results of x-ray diffraction and transmission electron microscopy. The growth mechanism of the nano-crystalline dendrites could be explained by a vapor-liquid-solid (VLS) growth model. The catalysts of the VLS process were indium and tin droplets, confirmed by varying the substrate temperature, which further influenced the nucleation of the ITO dendrites.

  16. X-ray photoelectron spectroscopy investigation of ion beam sputtered indium tin oxide films as a function of oxygen pressure during deposition

    International Nuclear Information System (INIS)

    Nelson, A.J.; Aharoni, H.

    1987-01-01

    X-ray photoelectron spectroscopy analysis was performed on ion beam sputter deposited films of indium tin oxide as a function of O 2 partial pressure during deposition. The oxygen partial pressure was varied over the range of 2.5 x 10 -6 --4.0 x 10 -5 Torr. Changes in composition as well as in the deconvoluted In 3d 5 /sub // 2 , Sn 3d 5 /sub // 2 , and O 1s core level spectra were observed and correlated with the variation of the oxygen partial pressure during deposition. Results show that the films become increasingly stoichiometric as P/sub =/ is increased and that the excess oxygen introduced during deposition is bound predominantly to the Sn and has little or no effect on the In--O bonding

  17. Molecular diversity of the ammonia-oxidizing bacteria community in disused tin-mining ponds located within Kampar, Perak, Malaysia.

    Science.gov (United States)

    Sow, S L S; Khoo, G; Chong, L K; Smith, T J; Harrison, P L; Ong, H K A

    2014-02-01

    Disused tin-mining ponds make up a significant amount of water bodies in Malaysia particularly at the Kinta Valley in the state of Perak where tin-mining activities were the most extensive, and these abundantly available water sources are widely used in the field of aquaculture and agriculture. However, the natural ecology and physicochemical conditions of these ponds, many of which have been altered due to secondary post-mining activities, remains to be explored. As ammonia-oxidizing bacteria (AOB) are directly related to the nutrient cycles of aquatic environments and are useful bioindicators of environmental variations, the focus of this study was to identify AOBs associated with disused tin-mining ponds that have a history of different secondary activities in comparison to ponds which were left untouched and remained as part of the landscape. The 16S rDNA gene was used to detect AOBs in the sediment and water sampled from the three types of disused mining ponds, namely ponds without secondary activity, ponds that were used for lotus cultivation and post-aquaculture ponds. When the varying pond types were compared with the sequence and phylogenetic analysis of the AOB clone libraries, both Nitrosomonas and Nitrosospira-like AOB were detected though Nitrosospira spp. was seen to be the most ubiquitous AOB as it was present in all ponds types. However, AOBs were not detected in the sediments of idle ponds. Based on rarefaction analysis and diversity indices, the disused mining pond with lotus culture indicated the highest richness of AOBs. Canonical correspondence analysis indicated that among the physicochemical properties of the pond sites, TAN and nitrite were shown to be the main factors that influenced the community structure of AOBs in these disused tin-mining ponds.

  18. Tin- and Lead-Based Perovskite Solar Cells under Scrutiny: An Environmental Perspective

    DEFF Research Database (Denmark)

    Serrano-Luján, Lucía; Espinosa Martinez, Nieves; Larsen-Olsen, Thue Trofod

    2015-01-01

    The effect of substituting lead with tin in perovskite-based solar cells (PSCs) has shows that lead is preferred over tin by a lower cumulative energy demand. The results, which also include end-of-life management, show that a recycling scenario that carefully handles emission of lead enables use...

  19. Ethylene Gas Sensing Properties of Tin Oxide Nanowires Synthesized via CVD Method

    Science.gov (United States)

    Akhir, Maisara A. M.; Mohamed, Khairudin; Rezan, Sheikh A.; Arafat, M. M.; Haseeb, A. S. M. A.; Uda, M. N. A.; Nuradibah, M. A.

    2018-03-01

    This paper studies ethylene gas sensing performance of tin oxide (SnO2) nanowires (NWs) as sensing material synthesized using chemical vapor deposition (CVD) technique. The effect of NWs diameter on ethylene gas sensing characteristics were investigated. SnO2 NWs with diameter of ∼40 and ∼240 nm were deposited onto the alumina substrate with printed gold electrodes and tested for sensing characteristic toward ethylene gas. From the finding, the smallest diameter of NWs (42 nm) exhibit fast response and recovery time and higher sensitivity compared to largest diameter of NWs (∼240 nm). Both sensor show good reversibility features for ethylene gas sensor.

  20. Gold island films on indium tin oxide for localized surface plasmon sensing

    International Nuclear Information System (INIS)

    Szunerits, Sabine; Praig, Vera G; Manesse, Mael; Boukherroub, Rabah

    2008-01-01

    Mechanically, chemically and optically stable gold island films were prepared on indium tin oxide (ITO) substrates by direct thermal evaporation of thin gold films (2-6 nm) without the need for pre- or post-coating. The effect of mild thermal annealing (150 deg. C, 12 h) or short high temperature annealing (500 deg. C, 1 min) on the morphology of the gold nanostructures was investigated. ITO covered with 2 nm gold nanoislands and annealed at 500 deg. C for 1 min was investigated for its ability to detect the adsorption of biotinylated bovine serum albumin using local surface plasmon resonance (LSPR), and its subsequent molecular recognition of avidin

  1. Strategies to Reduce Tin and Other Metals in Electronic Cigarette Aerosol

    Science.gov (United States)

    Williams, Monique; To, An; Bozhilov, Krassimir; Talbot, Prue

    2015-01-01

    Background Metals are present in electronic cigarette (EC) fluid and aerosol and may present health risks to users. Objective The objective of this study was to measure the amounts of tin, copper, zinc, silver, nickel and chromium in the aerosol from four brands of EC and to identify the sources of these metals by examining the elemental composition of the atomizer components. Methods Four brands of popular EC were dissected and the cartomizers were examined microscopically. Elemental composition of cartomizer components was determined using integrated energy dispersive X-ray microanalysis, and the concentrations of the tin, copper, zinc silver, nickel, and chromium in the aerosol were determined for each brand using inductively coupled plasma optical emission spectroscopy. Results All filaments were made of nickel and chromium. Thick wires were copper coated with either tin or silver. Wires were joined to each other by tin solder, brazing, or by brass clamps. High concentrations of tin were detected in the aerosol when tin solder joints were friable. Tin coating on copper wires also contributed to tin in the aerosol. Conclusions Tin concentrations in EC aerosols varied both within and between brands. Tin in aerosol was reduced by coating the thick wire with silver rather than tin, placing stable tin solder joints outside the atomizing chamber, joining wires with brass clamps or by brazing rather than soldering wires. These data demonstrate the feasibility of removing tin and other unwanted metals from EC aerosol by altering designs and using materials of suitable quality. PMID:26406602

  2. Fabrication and performance analysis of 4-sq cm indium tin oxide/InP photovoltaic solar cells

    Science.gov (United States)

    Gessert, T. A.; Li, X.; Phelps, P. W.; Coutts, T. J.; Tzafaras, N.

    1991-01-01

    Large-area photovoltaic solar cells based on direct current magnetron sputter deposition of indium tin oxide (ITO) into single-crystal p-InP substrates demonstrated both the radiation hardness and high performance necessary for extraterrestrial applications. A small-scale production project was initiated in which approximately 50 ITO/InP cells are being produced. The procedures used in this small-scale production of 4-sq cm ITO/InP cells are presented and discussed. The discussion includes analyses of performance range of all available production cells, and device performance data of the best cells thus far produced. Additionally, processing experience gained from the production of these cells is discussed, indicating other issues that may be encountered when large-scale productions are begun.

  3. Nickel doped indium tin oxide anode and effect on dark spot development of organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.M. [Southern Taiwan University, Department of Electro-Optical Engineering, 1 Nan-Tai St, Yung-Kang City, Tainan County 710, Taiwan (China)], E-mail: tedhsu@mail.stut.edu.tw; Kuo, C.S.; Hsu, W.C.; Wu, W.T. [Southern Taiwan University, Department of Electro-Optical Engineering, 1 Nan-Tai St, Yung-Kang City, Tainan County 710, Taiwan (China)

    2009-01-01

    This article demonstrated that introducing nickel (Ni) atoms into an indium tin oxide (ITO) anode could considerably decrease ITO surface roughness and eliminate the formation of dark spots of an organic light-emitting device (OLED). A dramatic drop in surface roughness from 6.52 nm of an conventional ITO to 0.46 nm of an 50 nm Ni(50 W)-doped ITO anode was observed, and this led to an improved lifetime performance of an Alq3 based OLED device attributed to reduced dark spots. Reducing thickness of Ni-doped ITO anode was found to worsen surface roughness. Meanwhile, the existence of Ni atoms showed little effect on deteriorating the light-emitting mechanism of OLED devices.

  4. Indium tin oxide surface smoothing by gas cluster ion beam

    CERN Document Server

    Song, J H; Choi, W K

    2002-01-01

    CO sub 2 cluster ions are irradiated at the acceleration voltage of 25 kV to remove hillocks on indium tin oxide (ITO) surfaces and thus to attain highly smooth surfaces. CO sub 2 monomer ions are also bombarded on the ITO surfaces at the same acceleration voltage to compare sputtering phenomena. From the atomic force microscope results, the irradiation of monomer ions makes the hillocks sharper and the surfaces rougher from 1.31 to 1.6 nm in roughness. On the other hand, the irradiation of CO sub 2 cluster ions reduces the height of hillocks and planarize the ITO surfaces as smooth as 0.92 nm in roughness. This discrepancy could be explained by large lateral sputtering yield of the cluster ions and re-deposition of sputtered particles by the impact of the cluster ions on surfaces.

  5. Fabrication of nickel oxide and Ni-doped indium tin oxide thin films using pyrosol process

    International Nuclear Information System (INIS)

    Nakasa, Akihiko; Adachi, Mami; Usami, Hisanao; Suzuki, Eiji; Taniguchi, Yoshio

    2006-01-01

    Organic light emitting diodes (OLEDs) need indium tin oxide (ITO) anodes with highly smooth surface. The work function of ITO, about 4.8 eV, is generally rather lower than the optimum level for application to OLEDs. In this work, NiO was deposited by pyrosol process on pyrosol ITO film to increase the work function of the ITO for improving the performance of OLEDs. It was confirmed that NiO was successfully deposited on pyrosol ITO film and the NiO deposition increased the work function of pyrosol ITO, using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and atmospheric photoelectron spectroscopy. Furthermore, doping ITO with Ni succeeded in producing the Ni-doped ITO film with high work function and lower sheet resistance

  6. Deposition of indium tin oxide films on acrylic substrates by radiofrequency magnetron sputtering

    International Nuclear Information System (INIS)

    Chiou, B.S.; Hsieh, S.T.; Wu, W.F.

    1994-01-01

    Indium tin oxide (ITO) films were deposited onto acrylic substrates by rf magnetron sputtering. Low substrate temperature (< 80 C) and low rf power (< 28 W) were maintained during sputtering to prevent acrylic substrate deformation. The influence of sputtering parameters, such as rf power, target-to-substrate distance, and chamber pressure, on the film deposition rate, the electrical properties, as well as the optical properties of the deposited films was investigated. Both the refractive index and the extinction coefficient were derived. The high reflection at wavelengths greater than 3 μm made these sputtered ITO films applicable to infrared mirrors

  7. Low Reflectivity and High Flexibility of Tin-Doped Indium Oxide Nanofiber Transparent Electrodes

    KAUST Repository

    Wu, Hui

    2011-01-12

    Tin-doped indium oxide (ITO) has found widespread use in solar cells, displays, and touch screens as a transparent electrode; however, two major problems with ITO remain: high reflectivity (up to 10%) and insufficient flexibility. Together, these problems severely limit the applications of ITO films for future optoelectronic devices. In this communication, we report the fabrication of ITO nanofiber network transparent electrodes. The nanofiber networks show optical reflectivity as low as 5% and high flexibility; the nanofiber networks can be bent to a radius of 2 mm with negligible changes in the sheet resistance. © 2010 American Chemical Society.

  8. Interim Results from a Study of the Impacts of Tin (II) Based Mercury Treatment in a Small Stream Ecosystem: Tims Branch, Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Looney, Brian [Savannah River National Laboratory (SRNL); BryanJr., Larry [Savannah River Ecology Laboratory; Mathews, Teresa J [ORNL; Peterson, Mark J [ORNL; Roy, W Kelly [ORNL; Jett, Robert T [ORNL; Smith, John G [ORNL

    2012-03-01

    A research team is assessing the impacts of an innovative mercury treatment system in Tims Branch, a small southeastern stream. The treatment system, installed in 2007, reduces and removes inorganic mercury from water using tin(II) (stannous) chloride addition followed by air stripping. The system results in discharge of inorganic tin to the ecosystem. This screening study is based on historical information combined with measurements of contaminant concentrations in water, fish, sediment, biofilms and invertebrates. Initial mercury data indicate that first few years of mercury treatment resulted in a significant decrease in mercury concentration in an upper trophic level fish, redfin pickerel, at all sampling locations in the impacted reach. For example, the whole body mercury concentration in redfin pickerel collected from the most impacted pond decreased approximately 72% between 2006 (pre-treatment) and 2010 (post-treatment). Over this same period, mercury concentrations in the fillet of redfin pickerel in this pond were estimated to have decreased from approximately 1.45 {micro}g/g (wet weight basis) to 0.45 {micro}g/g - a decrease from 4.8x to 1.5x the current EPA guideline concentration for mercury in fillet (0.3 {micro}g/g). Thermodynamic modeling, scanning electron microscopy, and other sampling data for tin suggest that particulate tin (IV) oxides are a significant geochemical species entering the ecosystem with elevated levels of tin measured in surficial sediments and biofilms. Detectable increases in tin in sediments and biofilms extended approximately 3km from the discharge location. Tin oxides are recalcitrant solids that are relatively non-toxic and resistant to dissolution. Work continues to develop and validate methods to analyze total tin in the collected biota samples. In general, the interim results of this screening study suggest that the treatment process has performed as predicted and that the concentration of mercury in upper trophic level

  9. Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Hsu, Ryan S; Higgins, Drew; Chen Zhongwei

    2010-01-01

    Novel tin-oxide (SnO 2 )-coated single-walled carbon nanotube (SWNT) bundles supporting platinum (Pt) electrocatalysts for ethanol oxidation were developed for direct ethanol fuel cells. SnO 2 -coated SWNT (SnO 2 -SWNT) bundles were synthesized by a simple chemical-solution route. SnO 2 -SWNT bundles supporting Pt (Pt/SnO 2 -SWNTs) electrocatalysts and SWNT-supported Pt (Pt/SWNT) electrocatalysts were prepared by an ethylene glycol reduction method. The catalysts were physically characterized using TGA, XRD and TEM and electrochemically evaluated through cyclic voltammetry experiments. The Pt/SnO 2 -SWNTs showed greatly enhanced electrocatalytic activity for ethanol oxidation in acid medium, compared to the Pt/SWNT. The optimal SnO 2 loading of Pt/SnO 2 -SWNT catalysts with respect to specific catalytic activity for ethanol oxidation was also investigated.

  10. Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells.

    Science.gov (United States)

    Hsu, Ryan S; Higgins, Drew; Chen, Zhongwei

    2010-04-23

    Novel tin-oxide (SnO(2))-coated single-walled carbon nanotube (SWNT) bundles supporting platinum (Pt) electrocatalysts for ethanol oxidation were developed for direct ethanol fuel cells. SnO(2)-coated SWNT (SnO(2)-SWNT) bundles were synthesized by a simple chemical-solution route. SnO(2)-SWNT bundles supporting Pt (Pt/SnO(2)-SWNTs) electrocatalysts and SWNT-supported Pt (Pt/SWNT) electrocatalysts were prepared by an ethylene glycol reduction method. The catalysts were physically characterized using TGA, XRD and TEM and electrochemically evaluated through cyclic voltammetry experiments. The Pt/SnO(2)-SWNTs showed greatly enhanced electrocatalytic activity for ethanol oxidation in acid medium, compared to the Pt/SWNT. The optimal SnO(2) loading of Pt/SnO(2)-SWNT catalysts with respect to specific catalytic activity for ethanol oxidation was also investigated.

  11. Microstructures and properties of TiN reinforced Co-based composite coatings modified with Y_2O_3 by laser cladding on Ti–6Al–4V alloy

    International Nuclear Information System (INIS)

    Weng, Fei; Yu, Huijun; Chen, Chuanzhong; Liu, Jianli; Zhao, Longjie

    2015-01-01

    In this study, TiN reinforced composite coatings were fabricated on Ti–6Al–4V substrate by laser cladding with Co42 self-fluxing alloy, TiN and Y_2O_3 mixed powders. Microstructures and wear resistance of the cladding coatings with and without Y_2O_3 addition were investigated comparatively. Results showed that the coatings were mainly comprised of γ-Co/Ni, TiN, CoTi, CoTi_2, NiTi, TiC, Cr_7C_3, TiB, Ti_5Si_3 and TiC_0_._3N_0_._7 phases. The coatings showed metallurgical bonding free of pores and cracks with the substrate. Compared with the Ti–6Al–4V substrate, the microhardness and wear resistance of the coatings was enhanced by 3–4 times and 9.5–11.9 times, respectively. With 1.0 wt.% Y_2O_3 addition, the microstructure of the coating was refined significantly, and the microhardness and dry sliding wear resistance were enhanced further. The effects of Y_2O_3 were attributed to the residual Y_2O_3 and decomposed Y atoms. - Graphical abstract: The diagram illustration for the action mechanism of Y_2O_3: (a) dissolution of Y_2O_3 and TiN, (b) re-formation of TiN and in situ formation of TiC, (c) growth of TiN, TiC and the distribution of Y atoms. - Highlights: • Coatings showing metallurgical bonding with the substrate were fabricated. • The effect of Y_2O_3 on the refinement of the microstructure is notable. • A kind of Y_2O_3 centered core–shell structure was picked out in the coating. • Microhardness and wear resistance of the coatings was enhanced significantly.

  12. Poly(3,4-ethylenedioxythiophene)/reduced graphene oxide composites as counter electrodes for high efficiency dye-sensitized solar cells

    Science.gov (United States)

    Ma, Jinfu; Yuan, Shenghua; Yang, Shaolin; Lu, Hui; Li, Yingtao

    2018-05-01

    A facile, low cost, easy-controllable method to prepare Poly(3,4-ethylenedioxythiophene) (PEDOT)/reduced graphene oxide (rGO) composites by electrochemical deposition onto fluorinated tin oxide (FTO) as counter electrodes (CEs) in high performance dye-sensitized solar cells (DSSCs) is reported. The electro-deposition process was accomplished by electro-polymerization of graphene oxide (GO)/PEDOT composites onto FTO substrates followed by electrochemical reduction of the GO component. Electrochemical measurements show that the I-/I3- catalytic activity of the as-prepared PEDOT/rGO CE is improved compared with that of the pure PEDOT and PEDOT/GO electrode. Through the analysis of photoelectric properties, the performance of the electrodes fabricated with different polymerization times are compared, and the optimal preparation condition is determined. The photoelectric conversion efficiency (PCE) of the DSSC assembled with PEDOT/rGO electrode reaches 7.79%, close to 8.33% of the cell with Platinum (Pt) electrode, and increases by 13.2% compared with 6.88% of the device with the PEDOT electrode.

  13. Textured indium tin oxide thin films by chemical solution deposition and rapid thermal processing

    International Nuclear Information System (INIS)

    Mottern, Matthew L.; Tyholdt, Frode; Ulyashin, Alexander; Helvoort, Antonius T.J. van; Verweij, Henk; Bredesen, Rune

    2007-01-01

    The microstructure of state-of-the-art chemical solution deposited indium tin oxide thin films typically consists of small randomly oriented grains, high porosity and poor homogeneity. The present study demonstrates how the thin film microstructure can be improved significantly by tailoring the precursor solutions and deposition conditions to be kinetically and thermodynamically favorable for generation of homogeneous textured thin films. This is explained by the occurrence of a single heterogeneous nucleation mechanism. The as-deposited thin films, crystallized at 800 deg. C, have a high apparent density, based on a refractive index of ∼ 1.98 determined by single wavelength ellipsometry at 633 nm. The microstructure of the films consists of columnar grains with preferred orientation as determined by X-ray diffraction and transmission electron microscopy. The resistivity, measured by the four point probe method, is ∼ 2 x 10 -3 Ω cm prior to post-deposition treatments

  14. Electrochemical synthesis of gold nanoparticles onto indium tin oxide glass and application in biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Hu Yanling; Song Yan; Wang Yuan; Di Junwei, E-mail: djw@suda.edu.cn

    2011-07-29

    A simple one-step method for the electrochemical deposition of gold nanoparticles (GNPs) onto bare indium tin oxide film coated glass substrate without any template or surfactant was investigated. The effect of electrolysis conditions such as potential range, temperature, concentration and deposition cycles were examined. The connectivity of GNPs was analyzed by UV-Vis absorption spectroscopy and scanning electron microscopy. The nanoparticles were found to connect in pairs or to coalesce in larger numbers. The twin GNPs display a transverse and a longitudinal localized surface plasmon resonance (LSPR) band, which is similar to that of gold nanorods. The presence of longitudinal LSPR band correlates with high refractive index sensitivity. Conjugation of the twin-linked GNPs with albumin bovine serum-biotin was employed for the detection of streptavidin as a model based on the specific binding affinity in biotin/streptavidin pairs. The spectrophotometric sensor showed concentration-dependent binding for streptavidin.

  15. An Optically-Transparent Aptamer-Based Detection System for Colon Cancer Applications Using Gold Nanoparticles Electrodeposited on Indium Tin Oxide

    Directory of Open Access Journals (Sweden)

    Mojgan Ahmadzadeh-Raji

    2016-07-01

    Full Text Available In this paper, a label-free aptamer based detection system (apta-DS was investigated for detecting colon cancer cells. For this purpose, we employed an aptamer specific to colon cancer cells like HCT116 expressing carcinoembryonic antigen (CEA on their surfaces. Capture aptamers were covalently immobilized on the surface of gold nanoparticles (GNPs through self-assembly monolayer of 11-mercaptoundecanoic acid (11-MUA activated with EDC (1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide/N-hydroxysuccinimide (NHS. The cyclic voltammetry (CV and chronopotentiometry (CP methods were used for electrodeposition of GNPs on the surface of indium tin oxide (ITO. In this work, the CV method was also used to demonstrate the conjugation of GNPs and aptamers and identify the cancer cell capturing events. Additionally, Field Emission Scanning Electron Microscopy (FE-SEM confirmed the deposition of GNPs on ITO and the immobilization of aptamer on the apta-DS. The electrodeposited GNPs played the role of nanoprobes for cancer cell targeting without losing the optical transparency of the ITO substrate. A conventional optical microscope also verified the detection of captured cancer cells. Based on this study’s results relying on electrochemical and optical microscopic methods, the proposed apta-DS is reliable and high sensitive with a LOD equal to 6 cell/mL for colon cancer detection.

  16. Stress-corrosion cracking of indium tin oxide coated polyethylene terephthalate for flexible optoelectronic devices

    International Nuclear Information System (INIS)

    Sierros, Konstantinos A.; Morris, Nicholas J.; Ramji, Karpagavalli; Cairns, Darran R.

    2009-01-01

    Stress corrosion cracking of transparent conductive layers of indium tin oxide (ITO), sputtered on polyethylene terephthalate (PET) substrates, is an issue of paramount importance in flexible optoelectronic devices. These components, when used in flexible device stacks, can be in contact with acid containing pressure-sensitive adhesives or with conductive polymers doped in acids. Acids can corrode the brittle ITO layer, stress can cause cracking and delamination, and stress-corrosion cracking can cause more rapid failure than corrosion alone. The combined effect of an externally-applied mechanical stress to bend the device and the corrosive environment provided by the acid is investigated in this work. We show that acrylic acid which is contained in many pressure-sensitive adhesives can cause corrosion of ITO coatings on PET. We also investigate and report on the combined effect of external mechanical stress and corrosion on ITO-coated PET composite films. Also, it is shown that the combination of stress and corrosion by acrylic acid can cause ITO cracking to occur at stresses less than a quarter of those needed for failure with no corrosion. In addition, the time to failure, under ∼ 1% tensile strain can reduce the total time to failure by as much as a third

  17. Determination of gold and cobalt dopants in advanced materials based on tin oxide by slurry sampling high-resolution continuum source graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Filatova, Daria G.; Eskina, Vasilina V.; Baranovskaya, Vasilisa B.; Vladimirova, Svetlana A.; Gaskov, Alexander M.; Rumyantseva, Marina N.; Karpov, Yuri A.

    2018-02-01

    A novel approach is developed for the determination of Co and Au dopants in advanced materials based on tin oxide using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS) with direct slurry sampling. Sodium carboxylmethylcellulose (Na-CMC) is an effective stabilizer for diluted suspensions. Use Na-CMC allows to transfer the analytes into graphite furnace completely and reproducibly. The relative standard deviation obtained by HR CS GFAAS was not higher than 4%. Accuracy was proven by means inductively coupled plasma mass spectrometry (ICP-MS) in solutions after decomposition as a comparative technique. To determine Au and Co in the volume of SnO2, the acid decomposition conditions (HCl, HF) of the samples were suggested by means of an autoclave in a microwave oven.

  18. Synthesis and characterization of inorganic ion exchangers based on mixed oxide tin-titanium to be used in recovery of cadmium and nickel and photoluminescent studies

    International Nuclear Information System (INIS)

    Paganini, Paula Pinheiro

    2007-01-01

    This work presents the synthesis, characterization and adsorption studies of inorganic ion exchangers based on mixed tin-titanium oxide for recovery of cadmium and nickel metals from aqueous effluents, discarded in the environment mainly through Ni-Cd battery. The exchangers were synthesized by sol-gel modified method using a mixture of tin(IV) chloride and titanium(III) chloride and ammonium hydroxide, as precursors reagents. The materials obtained: SnO 2 /TiO 2 and SnO 2 /TiO 2 :Eu 3+ were characterized by infrared spectroscopy, thermal analysis, scattering electronic microscopy (SEM), X-ray powder diffraction (XRD) (powder method) and electronic spectroscopy (excitation and emission) for the europium doped exchanger. The same materials also were synthesized in polymeric matrix too and can be used in column, because the synthesized materials showed crystals size in nano metric scale. It was determined by the distribution ratios for metals taking as parameters the influence of pH, the concentration of metals (by adsorption isotherms) and the contact time (by adsorption kinetic). The inorganic ion exchanger presented high exchange capacity with adsorption percent above 90 por cent for the studied conditions, quickly kinetic, heterogeneous exchange surfaces, physic adsorption and spontaneous process of exchange. To the doped exchanger spectroscopy properties were studied and also it was calculated the intensity parameters and it was found a satisfactory quantum yield. (author)

  19. TDPAC characterization of tin oxides using 181Ta

    International Nuclear Information System (INIS)

    Moreno, M.S.; Desimoni, J.; Requejo, F.G.; Renteria, M.; Bibiloni, A.G.

    1991-01-01

    In connection with a general study of the evolution of tin-oxygen thin films, we report here on the hyperfine interactions of 181 Ta substitutionally replacing tin in the isolated phases SnO and SnO 2 . For this purpose, pure SnO pressed powder and a thin SnO 2 film were implanted with 181 Hf. In both cases, unique quadrupole frequencies were found after thermal annealing treatments. The results indicate that the following hyperfine parameters: ν Q =740.6(2.1) MHz, η=0.07(2) and ν Q =971.5(1.9) MHz, η=0.72(1) characterize 181 Ta and SnO and SnO 2 , respectively. (orig.)

  20. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    Science.gov (United States)

    Kashiwagi, Y.; Koizumi, A.; Takemura, Y.; Furuta, S.; Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Fujiwara, Y.; Murahashi, K.; Ohtsuka, K.; Nakamoto, M.

    2014-12-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded.

  1. Influence of gaseous annealing environment on the properties of indium-tin-oxide thin films

    International Nuclear Information System (INIS)

    Wang, R.X.; Beling, C.D.; Fung, S.; Djurisic, A.B.; Ling, C.C.; Li, S.

    2005-01-01

    The influence of postannealing in different gaseous environments on the optical properties of indiu-tin-oxide (ITO) thin films deposited on glass substrates using e-beam evaporation has been systematically investigated. It is found that the annealing conditions affect the optical and electrical properties of the films. Atomic force microscopy, x-ray diffraction, and x-ray photoemission spectroscopy (XPS) were employed to obtain information on the chemical state and crystallization of the films. These data suggest that the chemical states and surface morphology of the ITO film are strongly influenced by the gaseous environment during the annealing process. The XPS data indicate that the observed variations in the optical transmittance can be explained by oxygen incorporation into the film, decomposition of the indium oxide phases, as well as the removal of metallic In

  2. Effect of micro-patterned fluorine-doped tin oxide films on electrochromic properties of Prussian blue films

    International Nuclear Information System (INIS)

    Lee, Kyuha; Kim, A-Young; Park, Ji Hun; Jung, Hun-Gi; Choi, Wonchang; Lee, Hwa Young; Lee, Joong Kee

    2014-01-01

    Graphical abstract: - Highlights: • PB-based ECD employed micro-patterned FTO electrode was fabricated. • Effect of interface morphology on electrochromic characteristics was examined. • Electrochromic properties were enhanced by employing a patterned interface. - Abstract: The effect of interface morphology on electrochromic characteristics was examined for an electrochromic device (ECD). Micro-patterned fluorine-doped tin oxide (FTO) films were fabricated using a photolithography process. Prussian blue (PB) films were then deposited on the patterned FTO films. The surface areas of both PB films and FTO films were increased by patterning. ECDs were assembled using patterned PB/FTO films as the electrochromic electrode, bare FTO films as the counter electrode, and an electrolyte containing LiClO 4 salt. The increased effective surface area of the patterned PB/FTO electrode boosted the mobility of ions at the interphase between the electrolyte and PB electrode, and the electron transfer between PB films and FTO films. As a result, electrochromic properties such as transmittance and response time were significantly improved by employing the patterned FTO films as the transparent conductive oxide layer of the electrochromic electrode

  3. Oxidation behaviour of ribbon shape carbon fibers and their composites

    International Nuclear Information System (INIS)

    Manocha, L.M.; Warrier, Ashish; Manocha, S.; Edie, D.D.; Ogale, A.A.

    2006-01-01

    Carbon fibers, though important constituent as reinforcements for high performance carbon/carbon composites, are shadowed by their oxidation in air at temperatures beginning 450 deg. C. Owing to tailorable properties of carbon fibers, efforts are underway to explore structural modification possibilities to improve the oxidation resistance of the fibers and their composites. The pitch based ribbon shape carbon fibers are found to have highly preferential oriented graphitic structure resulting in high mechanical properties and thermal conductivity. In the present work oxidation behaviour of ribbon shape carbon fibers and their composites heat treated to 1000-2700 deg. C has been studied. SEM examination of these composites exhibits development of graphitic texture and ordering within the fibers with increase in heat treatment temperature. Oxidation studies made by thermogravimetric analysis in air show that matrix has faster rate of oxidation and in the initial stages the matrix gets oxidized at faster rate with slower rate of oxidation of the fibers depending on processing conditions of fibers and composites

  4. Heat treatable indium tin oxide films deposited with high power pulse magnetron sputtering

    International Nuclear Information System (INIS)

    Horstmann, F.; Sittinger, V.; Szyszka, B.

    2009-01-01

    In this study, indium tin oxide (ITO) films were prepared by high power pulse magnetron sputtering [D. J. Christie, F. Tomasel, W. D. Sproul, D. C. Carter, J. Vac. Sci. Technol. A, 22 (2004) 1415. ] without substrate heating. The ITO films were deposited from a ceramic target at a deposition rate of approx. 5.5 nm*m/min kW. Afterwards, the ITO films were covered with a siliconoxynitride film sputtered from a silicon alloy target in order to prevent oxidation of the ITO film during annealing at 650 deg. C for 10 min in air. The optical and electrical properties as well as the texture and morphology of these films were investigated before and after annealing. Mechanical durability of the annealed films was evaluated at different test conditions. The results were compared with state-of-the art ITO films which were obtained at optimized direct current magnetron sputtering conditions

  5. Metal oxide nanorod arrays on monolithic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pu-Xian; Guo, Yanbing; Ren, Zheng

    2018-01-02

    A metal oxide nanorod array structure according to embodiments disclosed herein includes a monolithic substrate having a surface and multiple channels, an interface layer bonded to the surface of the substrate, and a metal oxide nanorod array coupled to the substrate surface via the interface layer. The metal oxide can include ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide. The substrate can include a glass substrate, a plastic substrate, a silicon substrate, a ceramic monolith, and a stainless steel monolith. The ceramic can include cordierite, alumina, tin oxide, and titania. The nanorod array structure can include a perovskite shell, such as a lanthanum-based transition metal oxide, or a metal oxide shell, such as ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide, or a coating of metal particles, such as platinum, gold, palladium, rhodium, and ruthenium, over each metal oxide nanorod. Structures can be bonded to the surface of a substrate and resist erosion if exposed to high velocity flow rates.

  6. Influence of the alloy composition on the oxidation and internal-nitridation behaviour of nickel-base superalloys

    International Nuclear Information System (INIS)

    Krupp, U.; Christ, H.-J.

    1999-01-01

    Internal nitridation of nickel-base superalloys takes place as a consequence of the failure of protecting oxide scales (Al 2 O 3 and Cr 2 O 3 , respectively) and leads to a deterioration of the material properties due to near-surface embrittlement caused by the nitrides precipitated (TiN and AlN, respectively) and due to near-surface dissolution of the γ' phase. By using thermogravimetric methods in a temperature range between 800 C and 1100 C supplemented by microstructural examinations, the failure potential due to internal nitridation could be documented. A quantification was carried out by extending the experimental program to thermogravimetric studies in a nearly oxygen-free nitrogen atmosphere which was also applied to various model alloys of the system Ni-Cr-Al-Ti. It could be shown that the nitrogen diffusivity and solubility in nickel-base alloys is influenced particularly by the chromium concentration. An increasing chromium content leads to an enhanced internal-nitridation attack. (orig.)

  7. Electrooxidation of ethanol on novel multi-walled carbon nanotube supported platinum-antimony tin oxide nanoparticle catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Dao-Jun [School of Chemistry and Chemical Engineering, The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, Shandong 273165 (China)

    2011-01-15

    We synthesize the new Pt based catalyst for direct ethanol fuel cells using novel multi-walled carbon nanotubes supported platinum-antimony tin oxide (Pt-ATO/MWCNT) nanoparticle as new catalyst support for the first time. The structure of Pt-ATO/MWCNT catalyst is characterized by transmission electron micrograph (TEM) and X-ray diffraction (XRD). The electrocatalytic properties of Pt-ATO/MWCNT catalyst for ethanol electrooxidation reactions are investigated by cyclic voltammetry (CV) and chronoamperometric experiments in acidic medium. The electrocatalytic activity for ethanol electrooxidation reaction shows that high carbon monoxide tolerance and good stability of Pt-ATO/MWCNT catalyst compared with Pt-SnO{sub 2}/MWCNT and commercial Pt/C are observed. These results imply that Pt-ATO/MWCNT catalyst has promising potential applications in direct alcohol fuel cells. (author)

  8. Preparation of high quality spray-deposited fluorine-doped tin oxide thin films using dilute di(n-butyl)tin(iv) diacetate precursor solutions

    Energy Technology Data Exchange (ETDEWEB)

    Premalal, E.V.A., E-mail: vikum777@gmail.com [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu (Japan); Dematage, N. [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu (Japan); Kaneko, S. [SPD Laboratory Inc, Hi-Cube 3-1-7, Wajiyama, Naka-ku, Hamamatsu (Japan); Konno, A. [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu (Japan)

    2012-09-01

    Fluorine-doped tin oxide (FTO) thin films were prepared, at different substrate temperatures, using dilute precursor solutions of di(n-butyl)tin(iv) diacetate (0.1 M DBTDA) by varying the F{sup -} concentration in the solution. It is noticed that conductivity of FTO film is increasing by increasing the fluorine amount in the solution. Morphology of SEM image reveals that grain size and its distribution are totally affected by the substrate temperature in which conductivity is altered. Among these FTO films, the best film obtained gives an electronic conductivity of 31.85 Multiplication-Sign 10{sup 2} {Omega}{sup -1} cm{sup -1}, sheet resistance of 4.4 {Omega}/{open_square} ({rho} = 3.14 Multiplication-Sign 10{sup -4} {Omega} cm) with over 80% average normal transmittance between the 400 and 800 nm wavelength range. The best FTO film consists of a large distribution of grain sizes from 50 nm to 400 nm range and the optimum conditions used are 0.1 M DBTDA, 0.3 M ammonium fluoride, in a mixture of propan-2-ol and water, at 470 Degree-Sign C substrate temperature. The large distribution of grain sizes can be easily obtained using low DBTDA concentration ({approx} 0.1 M or less) and moderate substrate temperature (470 Degree-Sign C). - Highlights: Black-Right-Pointing-Pointer F-doped SnO{sub 2} (FTO) thin films prepared using di(n-butyl)tin(iv) diacetate (DBTDA). Black-Right-Pointing-Pointer Substrate temperature and DBTDA concentration affect grain size and distribution. Black-Right-Pointing-Pointer Large distribution of grain sizes can optimize the conductivity of FTO film. Black-Right-Pointing-Pointer 0.1 M DBTDA, substrate temperature of 470 Degree-Sign C allows a large grain size distribution.

  9. Corrosion Behavior of Carbon Steel in Concrete Material Composed of Tin Slag Waste in Aqueous Chloride Solution

    Science.gov (United States)

    Rustandi, Andi; Cahyadi, Agung; Taruli Siallagan, Sonia; Wafa' Nawawi, Fuad; Pratesa, Yudha

    2018-01-01

    Tin slag is a byproduct of tin ore smelting process which is rarely utilized. The main purpose of this work is to investigate the use of tin slag for concrete cement material application compared to the industrial Ordinary Portland Cement (OPC). Tin slag composition was characterized by XRD and XRF analysis. The characterization results showed the similar chemical composition of tin slag and OPC. It also revealed the semi crystalline structure of tin slag sample. Several electrochemical tests were performed to evaluate corrosion behavior of tin slag, OPC and various mixed composition of both materials and the addition of CaO. The corrosion behavior of OPC and tin slag were evaluated by using Cyclic Polarization, Electrochemical Impedance Spectroscopy (EIS) and Electrochemical Frequency Modulation (EFM) methods. Aqueous sodium chloride (NaCl) solution with 3.5% w.t concentration which similar to seawater was used as the electrolyte in this work. The steel specimen used as the reinforce bar (rebar) material of the concrete was carbon steel AISI 1045. The rebar was embedded in the concrete cement which composed of OPC and the various composition of tin slag including slag without addition of CaO and slag mixed with addition of 50 % CaO. The electrochemical tests results revealed that tin slag affected its corrosion behavior which becoming more active and increasing the corrosion rate as well as decreasing the electrochemical impedance.

  10. One-step electrochemical synthesis and photoelectric conversion of a ZnO/Se/RGO composite

    International Nuclear Information System (INIS)

    Wang, Lei; Zhang, Chunyan; Zhang, Shengyi; Niu, Helin; Song, Jiming; Mao, Changjie; Jin, Baokang; Tian, Yupeng

    2015-01-01

    Using Zn(NO 3 ) 2 , H 2 SeO 3 and graphene oxide as precursors, the zinc oxide/selenium/reduced graphene oxide (ZnO/Se/RGO) composite was facilely electrodeposited on the surface of indium tin oxide glass. The conditions for electrochemical synthesis such as electrodeposition potential and electrolyte composition were studied. The morphology and crystallization of the products as-prepared were characterized using scanning electron microscopy (SEM) and x-ray diffractometry (XRD) respectively. The light absorption and conductivity of the products were studied by UV-visible spectroscopy (UV-vis) and electrochemical impedance spectroscopy (EIS). Based on a series of experimental results, the photoelectrical conversion mechanism and effect factors of the products were explored. By means of synergistic action of n-type ZnO, p-type Se and conductive RGO, the ZnO/Se/RGO composite showed excellent photoelectric conversion under visible light irradiation. (paper)

  11. Effect of aluminum doping on the high-temperature stability and piezoresistive response of indium tin oxide strain sensors

    International Nuclear Information System (INIS)

    Gregory, Otto J.; You, Tao; Crisman, Everett E.

    2005-01-01

    Ceramic strain sensors based on reactively sputtered indium tin oxide (ITO) thin films doped with aluminum are being considered to improve the high-temperature stability and response. Ceramic strain sensors were developed to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500 deg C. Earlier studies using electron spectroscopy for chemical analysis (ESCA) studies indicated that interfacial reactions between ITO and aluminum oxide increase the stability of ITO at elevated temperature. The resulting ESCA depth files showed the presence of two new indium-indium peaks at 448.85 and 456.40 eV, corresponding to the indium 3d5 and 3d3 binding energies. These binding energies are significantly higher than those associated with stoichiometric indium oxide. Based on these studies, a combinatorial chemistry approach was used to screen large numbers of possible concentrations to optimize the stability and performance of Al-doped ceramic strain sensors. Scanning electron microscopy was used to analyze the combinatorial libraries in which varying amounts of aluminum were incorporated into ITO films formed by cosputtering from multiple targets. Electrical stability and piezoresistive response of these films were compared to undoped ITO films over the same temperature range

  12. An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Chhina, H.; Campbell, S. [Ballard Power Systems Inc., 9000 Glenlyon Parkway, Burnaby, BC V5J 5J8 (Canada); Kesler, O. [Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4 (Canada)

    2006-10-27

    The oxidation of carbon catalyst supports causes degradation in catalyst performance in proton exchange membrane fuel cells (PEMFCs). Indium tin oxide (ITO) is considered as a candidate for an alternative catalyst support. The electrochemical stability of ITO was studied by use of a rotating disk electrode (RDE). Oxidation cycles between +0.6 and +1.8V were applied to ITO supporting a Pt catalyst. Cyclic voltammograms (CVs) both before and after the oxidation cycles were obtained for Pt on ITO, Hispec 4000 (a commercially available catalyst), and 40wt.% Pt dispersed in-house on Vulcan XC-72R. Pt on ITO showed significantly better electrochemical stability, as determined by the relative change in electrochemically active surface area after cycling. Hydrogen desorption peaks in the CVs existed even after 100 cycles from 0.6 to 1.8V for Pt on ITO. On the other hand, most of the active surface area was lost after 100 cycles of the Hispec 4000 catalyst. The 40wt.% Pt on Vulcan made in-house also lost most of its active area after only 50 cycles. Pt on ITO was significantly more electrochemically stable than both Hispec 4000 and Pt on Vulcan XC-72R. In this study, it was found that the Pt on ITO had average crystallite sizes of 13nm for Pt and 38nm for ITO. Pt on ITO showed extremely high thermal stability, with only {approx}1wt.% loss of material for ITO versus {approx}57wt.% for Hispec 4000 on heating to 1000{sup o}C. The TEM data show Pt clusters dispersed on small crystalline ITO particles. The SEM data show octahedral shaped ITO particles supporting Pt. (author)

  13. Ag-Pd-Cu alloy inserted transparent indium tin oxide electrodes for organic solar cells

    International Nuclear Information System (INIS)

    Kim, Hyo-Joong; Seo, Ki-Won; Kim, Han-Ki; Noh, Yong-Jin; Na, Seok-In

    2014-01-01

    The authors report on the characteristics of Ag-Pd-Cu (APC) alloy-inserted indium tin oxide (ITO) films sputtered on a glass substrate at room temperature for application as transparent anodes in organic solar cells (OSCs). The effect of the APC interlayer thickness on the electrical, optical, structural, and morphological properties of the ITO/APC/ITO multilayer were investigated and compared to those of ITO/Ag/ITO multilayer electrodes. At the optimized APC thickness of 8 nm, the ITO/APC/ITO multilayer exhibited a resistivity of 8.55 × 10 −5 Ω cm, an optical transmittance of 82.63%, and a figure-of-merit value of 13.54 × 10 −3 Ω −1 , comparable to those of the ITO/Ag/ITO multilayer. Unlike the ITO/Ag/ITO multilayer, agglomeration of the metal interlayer was effectively relieved with APC interlayer due to existence of Pd and Cu elements in the thin region of the APC interlayer. The OSCs fabricated on the ITO/APC/ITO multilayer showed higher power conversion efficiency than that of OSCs prepared on the ITO/Ag/ITO multilayer below 10 nm due to the flatness of the APC layer. The improved performance of the OSCs with ITO/APC/ITO multilayer electrodes indicates that the APC alloy interlayer prevents the agglomeration of the Ag-based metal interlayer and can decrease the thickness of the metal interlayer in the oxide-metal-oxide multilayer of high-performance OSCs

  14. Indium-tin oxide surface treatments: Effects on the performance of liquid crystal devices

    International Nuclear Information System (INIS)

    Abderrahmen, A.; Romdhane, F.F.; Ben Ouada, H.; Gharbi, A.

    2006-01-01

    In this work, we investigate the effect of indium tin oxide (ITO) substrate cleaning on the surface properties. Wettability technique was used to measure the contact angle and the surface energy of the different treated ITO substrates. It is found that treatment with the methanol without dehydration gives the lowest water contact angle (most hydrophilic surface) and the highest surface energy compared to other solvents. This result was confirmed by impedance measurements performed on nematic liquid crystal cells with ITO electrodes. Indeed, we check the decrease of ionic entities in the interface ITO/liquid crystal. The polarity and dielectric parameters of the used solvents explain the obtained results

  15. Indium-tin oxide surface treatments: Effects on the performance of liquid crystal devices

    Energy Technology Data Exchange (ETDEWEB)

    Abderrahmen, A. [Laboratoire de physique et chimie des interfaces, Faculte des sciences, 5000, Monastir (Tunisia)]. E-mail: asma_abderrahmen@yahoo.fr; Romdhane, F.F. [Laboratoire de la matiere molle, Faculte des sciences, Tunis (Tunisia); Ben Ouada, H. [Laboratoire de physique et chimie des interfaces, Faculte des sciences, 5000, Monastir (Tunisia); Gharbi, A. [Laboratoire de la matiere molle, Faculte des sciences, Tunis (Tunisia)

    2006-03-15

    In this work, we investigate the effect of indium tin oxide (ITO) substrate cleaning on the surface properties. Wettability technique was used to measure the contact angle and the surface energy of the different treated ITO substrates. It is found that treatment with the methanol without dehydration gives the lowest water contact angle (most hydrophilic surface) and the highest surface energy compared to other solvents. This result was confirmed by impedance measurements performed on nematic liquid crystal cells with ITO electrodes. Indeed, we check the decrease of ionic entities in the interface ITO/liquid crystal. The polarity and dielectric parameters of the used solvents explain the obtained results.

  16. Assembly of tin oxide/graphene nanosheets into 3D hierarchical frameworks for high-performance lithium storage.

    Science.gov (United States)

    Huang, Yanshan; Wu, Dongqing; Han, Sheng; Li, Shuang; Xiao, Li; Zhang, Fan; Feng, Xinliang

    2013-08-01

    3D hierarchical tin oxide/graphene frameworks (SnO2 /GFs) were built up by the in situ synthesis of 2D SnO2 /graphene nanosheets followed by hydrothermal assembly. These SnO2 /GFs exhibited a 3D hierarchical porous architecture with mesopores (≈3 nm), macropores (3-6 μm), and a large surface area (244 m(2) g(-1) ), which not only effectively prevented the agglomeration of SnO2 nanoparticles, but also facilitated fast ion and electron transport in 3D pathways. As a consequence, the SnO2 /GFs exhibited a high capacity of 830 mAh g(-1) for up to 70 charge-discharge cycles at 100 mA g(-1) . Even at a high current density of 500 mA g(-1) , a reversible capacity of 621 mAh g(-1) could be maintained for SnO2 /GFs with excellent cycling stability. Such performance is superior to that of previously reported SnO2 /graphene and other SnO2 /carbon composites with similar weight contents of SnO2 . Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Sputtered indium-tin oxide/cadmium telluride junctions and cadmium telluride surfaces

    International Nuclear Information System (INIS)

    Courreges, F.G.; Fahrenbruch, A.L.; Bube, R.H.

    1980-01-01

    The properties of indium-tin oxide (ITO)/CdTe junction solar cells prepared by rf sputtering of ITO on P-doped CdTe single-crystal substrates have been investigated through measurements of the electrical and photovoltaic properties of ITO/CdTe and In/CdTe junctions, and of electron beam induced currents (EBIC) in ITO/CdTe junctions. In addition, surface properties of CdTe related to the sputtering process were investigated as a function of sputter etching and thermal oxidation using the techniques of surface photovoltage and photoluminescence. ITO/CdTe cells prepared by this sputtering method consist of an n + -ITO/n-CdTe/p-CdTe buried homojunction with about a 1-μm-thick n-type CdTe layer formed by heating of the surface of the CdTe during sputtering. Solar efficiencies up to 8% have been observed with V/sub 0c/=0.82 V and J/sub s/c=14.5 mA/cm 2 . The chief degradation mechanism involves a decrease in V/sub 0c/ with a transformation of the buried homojunction structure to an actual ITO/CdTe heterojunction

  18. Preparation of porous titanium oxide films onto indium tin oxide for application in organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Andreia G. [Laboratorio de Dispositivos Nanoestruturados, Departamento de Fisica, Universidade Federal do Parana, Curitiba, Parana (Brazil); Mattos, Luana L.; Spada, Edna R.; Serpa, Rafael B.; Campos, Cristiani S. [Laboratorio de Sistemas Nanoestruturados, Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina (Brazil); Grova, Isabel R.; Ackcelrud, Leni [Laboratorio de Polimeros Paulo Scarpa, Departamento de Quimica, Universidade Federal do Parana, Curitiba, Parana (Brazil); Reis, Francoise T.; Sartorelli, Maria L. [Laboratorio de Sistemas Nanoestruturados, Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina (Brazil); Roman, Lucimara S., E-mail: lsroman@fisica.ufpr.br [Laboratorio de Dispositivos Nanoestruturados, Departamento de Fisica, Universidade Federal do Parana, Curitiba, Parana (Brazil)

    2012-05-01

    In this work, porous ordered TiO{sub 2} films were prepared through sol gel route by using a monolayer of polystyrene spheres as template on indium-tin oxide/glass substrate. These films were characterized by SEM, AFM, Raman spectroscopy, UV-vis absorbance and XRD. The UV-vis absorbance spectrum show a pseudo band gap (PBG) with maxima at 460 nm arising from the light scattering and partial or total suppression of the photon density of states, this PBG can be controlled by the size of the pore. We also propose the use of this porous film as electron acceptor electrode in organic photovoltaic cells; we show that devices prepared with porous titania displayed higher efficiencies than devices using compact titania films as electrode. Such behaviour was observed in both bilayer and bulk heterojunction devices.

  19. Preparation of porous titanium oxide films onto indium tin oxide for application in organic photovoltaic devices

    International Nuclear Information System (INIS)

    Macedo, Andreia G.; Mattos, Luana L.; Spada, Edna R.; Serpa, Rafael B.; Campos, Cristiani S.; Grova, Isabel R.; Ackcelrud, Leni; Reis, Françoise T.; Sartorelli, Maria L.; Roman, Lucimara S.

    2012-01-01

    In this work, porous ordered TiO 2 films were prepared through sol gel route by using a monolayer of polystyrene spheres as template on indium-tin oxide/glass substrate. These films were characterized by SEM, AFM, Raman spectroscopy, UV-vis absorbance and XRD. The UV-vis absorbance spectrum show a pseudo band gap (PBG) with maxima at 460 nm arising from the light scattering and partial or total suppression of the photon density of states, this PBG can be controlled by the size of the pore. We also propose the use of this porous film as electron acceptor electrode in organic photovoltaic cells; we show that devices prepared with porous titania displayed higher efficiencies than devices using compact titania films as electrode. Such behaviour was observed in both bilayer and bulk heterojunction devices.

  20. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    Science.gov (United States)

    Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki

    2014-08-01

    We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕinterface with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.

  1. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    OpenAIRE

    Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki

    2014-01-01

    We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕ_ with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.

  2. Influence of indium tin oxide electrodes deposited at room temperature on the properties of organic light-emitting devices

    International Nuclear Information System (INIS)

    Satoh, Toshikazu; Fujikawa, Hisayoshi; Taga, Yasunori

    2005-01-01

    The influence of indium tin oxide (ITO) electrodes deposited at room temperature (ITO-RT) on the properties of organic light-emitting devices (OLEDs) has been studied. The OLED on the ITO-RT showed an obvious shorter lifetime and higher operating voltage than that on the conventional ITO electrode deposited at 573 K. The result of an in situ x-ray photoelectron spectroscopy analysis of the ITO electrode and the organic layer suggested that many of the hydroxyl groups that originate in the amorphous structure of the ITO-RT electrode oxidize the organic layer. The performance of the OLED on the ITO-RT is able to be explained by the oxidation of the organic layer

  3. A Robust and Low-Complexity Gas Recognition Technique for On-Chip Tin-Oxide Gas Sensor Array

    Directory of Open Access Journals (Sweden)

    Farid Flitti

    2008-01-01

    Full Text Available Gas recognition is a new emerging research area with many civil, military, and industrial applications. The success of any gas recognition system depends on its computational complexity and its robustness. In this work, we propose a new low-complexity recognition method which is tested and successfully validated for tin-oxide gas sensor array chip. The recognition system is based on a vector angle similarity measure between the query gas and the representatives of the different gas classes. The latter are obtained using a clustering algorithm based on the same measure within the training data set. Experimented results on our in-house gas sensors array show more than 98% of correct recognition. The robustness of the proposed method is tested by recognizing gas measurements with simulated drift. Less than 1% of performance degradation is noted at the worst case scenario which represents a significant improvement when compared to the current state-of-the-art.

  4. Simple Synthesis and Enhanced Performance of Graphene Oxide-Gold Composites

    Directory of Open Access Journals (Sweden)

    Min Song

    2012-01-01

    Full Text Available Graphene oxide-gold composites were prepared by one-step reaction in aqueous solution, where the gold nanoparticles were deposited on the graphene oxide during their synthesis process. Transmission electron morphology, X-ray diffraction, Roman spectra, and UV-Vis absorption spectra were used to characterize the obtained composites. Furthermore, based on the BET analysis results, it was found that the surface area of the composite film was obviously enhanced compared with the synthesized graphene oxide. Electrochemical measurements indicated that the modification of the composites on electrode could efficiently enhance the voltammetric response, suggesting the potential application for making electrochemical sensors.

  5. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    International Nuclear Information System (INIS)

    Kashiwagi, Y.; Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Nakamoto, M.; Koizumi, A.; Fujiwara, Y.; Takemura, Y.; Murahashi, K.; Ohtsuka, K.; Furuta, S.

    2014-01-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded

  6. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, Y., E-mail: kasiwagi@omtri.or.jp; Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Nakamoto, M. [Osaka Municipal Technical Research Institute, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553 (Japan); Koizumi, A.; Fujiwara, Y. [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Takemura, Y.; Murahashi, K.; Ohtsuka, K. [Okuno Chemical Industries Co., Ltd., 2-1-25 Hanaten-nishi, Joto-ku, Osaka 536-0011 (Japan); Furuta, S. [Tomoe Works Co., Ltd., 7-13 Tsurumachi, Amagasaki 660-0092 (Japan)

    2014-12-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded.

  7. Size-dependent electronic structure controls activity for ethanol electro-oxidation at Ptn/indium tin oxide (n = 1 to 14).

    Science.gov (United States)

    von Weber, Alexander; Baxter, Eric T; Proch, Sebastian; Kane, Matthew D; Rosenfelder, Michael; White, Henry S; Anderson, Scott L

    2015-07-21

    Understanding the factors that control electrochemical catalysis is essential to improving performance. We report a study of electrocatalytic ethanol oxidation - a process important for direct ethanol fuel cells - over size-selected Pt centers ranging from single atoms to Pt14. Model electrodes were prepared by soft-landing of mass-selected Ptn(+) on indium tin oxide (ITO) supports in ultrahigh vacuum, and transferred to an in situ electrochemical cell without exposure to air. Each electrode had identical Pt coverage, and differed only in the size of Pt clusters deposited. The small Ptn have activities that vary strongly, and non-monotonically with deposited size. Activity per gram Pt ranges up to ten times higher than that of 5 to 10 nm Pt particles dispersed on ITO. Activity is anti-correlated with the Pt 4d core orbital binding energy, indicating that electron rich clusters are essential for high activity.

  8. Indium tin oxide with titanium doping for transparent conductive film application on CIGS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei-Sheng; Cheng, Huai-Ming; Hu, Hung-Chun; Li, Ying-Tse; Huang, Shi-Da; Yu, Hau-Wei [Department of Photonics Engineering, Yuan Ze University, Chung-Li 32003, Taiwan (China); Pu, Nen-Wen, E-mail: nwpuccit@gmail.com [Department of Photonics Engineering, Yuan Ze University, Chung-Li 32003, Taiwan (China); Liang, Shih-Chang [Materials & Electro-Optics Research Division, National Chung-Shan Institute of Science and Technology, Lung Tan 32599, Taiwan (China)

    2015-11-01

    Highlights: • Ti-doped indium tin oxide (ITO) films were deposited by DC magnetron sputtering. • Optimal optoelectronic properties were achieved at a sputtering power of 100 W. • Resistivity = 3.2 × 10{sup −4} Ω-cm without substrate heating or post growth annealing. • Mean visible and NIR transmittances of 83 and 80%, respectively, were achieved. • Efficient batteries (11.3%) were fabricated by applying ITO:Ti to CIGS solar cells. - Abstract: In this study, Ti-doped indium tin oxide (ITO:Ti) thin films were fabricated using a DC-magnetron sputtering deposition method. The thin films were grown without introducing oxygen or heating the substrate, and no post-growth annealing was performed after fabrication. The thickness of the ITO:Ti thin films (350 nm) was controlled while increasing the sputtering power from 50 to 150 W. According to the results, the optimal optoelectronic properties were observed in ITO:Ti thin films grown at a sputtering power of 100 W, yielding a reduced resistivity of 3.2 × 10{sup −4} Ω-cm and a mean high transmittance of 83% at wavelengths ranging from 400 to 800 nm. The optimal ITO:Ti thin films were used to fabricate a Cu(In,Ga)Se{sub 2} solar cell that exhibited a photoelectric conversion efficiency of 11.3%, a short-circuit current density of 33.1 mA/cm{sup 2}, an open-circuit voltage of 0.54 V, and a fill factor of 0.64.

  9. Fabrication and excellent conductive performance of antimony-doped tin oxide-coated diatomite with porous structure

    International Nuclear Information System (INIS)

    Du Yucheng; Yan Jing; Meng Qi; Wang Jinshu; Dai Hongxing

    2012-01-01

    Graphical abstract: Antimony-doped tin oxide (ATO)-coated diatomite with porous structures are fabricated using the co-precipitation method. The porous ATO-coated diatomite material shows excellent conductive performance. Highlights: ► Sb-doped SnO 2 (ATO)-coated diatomite materials with porous structures are prepared. ► Sn/Sb ratio, ATO coating amount, pH value, and temperature influence resistivity. ► Porous ATO-coated diatomite materials show excellent conductive performance. ► The lowest resistivity of the porous ATO-coated diatomite sample is 10 Ω cm. - Abstract: Diatomite materials coated with antimony-doped tin oxide (ATO) were prepared by the co-precipitation method, and characterized by means of the techniques, such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, selected-area electron diffraction, X-ray fluorescence spectroscopy, and N 2 adsorption–desorption measurement. It was shown that the coated ATO possessed a tetragonal rutile crystal structure, and the ATO-coated diatomite materials had a multi-pore (micro- meso-, and macropores) architecture. The porous ATO-coated diatomite materials exhibited excellent electrical conductive behaviors. The best conductive performance (volume resistivity = 10 Ω cm) was achieved for the sample that was prepared under the conditions of Sn/Sb molar ratio = 5.2, Sn/Sb coating amount = 45 wt%, pH = 1.0, and reaction temperature = 50 °C. Such a conductive porous material is useful for the applications in physical and chemical fields.

  10. Preparation and optical properties of indium tin oxide/epoxy nanocomposites with polyglycidyl methacrylate grafted nanoparticles.

    Science.gov (United States)

    Tao, Peng; Viswanath, Anand; Schadler, Linda S; Benicewicz, Brian C; Siegel, Richard W

    2011-09-01

    Visibly highly transparent indium tin oxide (ITO)/epoxy nanocomposites were prepared by dispersing polyglycidyl methacrylate (PGMA) grafted ITO nanoparticles into a commercial epoxy resin. The oleic acid stabilized, highly crystalline, and near monodisperse ITO nanoparticles were synthesized via a nonaqueous synthetic route with multigram batch quantities. An azido-phosphate ligand was synthesized and used to exchange with oleic acid on the ITO surface. The azide terminal group allows for the grafting of epoxy resin compatible PGMA polymer chains via Cu(I) catalyzed alkyne-azide "click" chemistry. Transmission electron microscopy (TEM) observation shows that PGMA grafted ITO particles were homogeneously dispersed within the epoxy matrix. Optical properties of ITO/epoxy nanocomposites with different ITO concentrations were studied with an ultraviolet-visible-near-infrared (UV-vis-NIR) spectrometer. All the ITO/epoxy nanocomposites show more than 90% optical transparency in the visible light range and absorption of UV light from 300 to 400 nm. In the near-infrared region, ITO/epoxy nanocomposites demonstrate low transmittance and the infrared (IR) transmission cutoff wavelength of the composites shifts toward the lower wavelength with increased ITO concentration. The ITO/epoxy nanocomposites were applied onto both glass and plastic substrates as visibly transparent and UV/IR opaque optical coatings.

  11. Fast Inline Roll-to-Roll Printing for Indium-Tin-Oxide-Free Polymer Solar Cells Using Automatic Registration

    DEFF Research Database (Denmark)

    Hösel, Markus; Søndergaard, Roar R.; Jørgensen, Mikkel

    2013-01-01

    layer. The third and fourth layers were slot-die coated at the same time again using inline processing at a web speed of 10 mmin1 of firstly zinc oxide as the electron transport layer followed by P3HT:PCBM as the active layer. The first three layers (silver-grid/PEDOT:PSS/ZnO) comprise a generally......Fast inline roll-to-roll printing and coating on polyethylene terephthalate (PET) and barrier foil was demonstrated under ambient conditions at web speeds of 10 mmin1 for the manufacture of indium-tin-oxide-free (ITO-free) polymer solar cells comprising a 6-layer stack: silver-grid/PEDOT:PSS/ Zn...

  12. Controlled Deposition of Tin Oxide and Silver Nanoparticles Using Microcontact Printing

    Directory of Open Access Journals (Sweden)

    Joo C. Chan

    2015-02-01

    Full Text Available This report describes extensive studies of deposition processes involving tin oxide (SnOx nanoparticles on smooth glass surfaces. We demonstrate the use of smooth films of these nanoparticles as a platform for spatially-selective electroless deposition of silver by soft lithographic stamping. The edge and height roughness of the depositing metallic films are 100 nm and 20 nm, respectively, controlled by the intrinsic size of the nanoparticles. Mixtures of alcohols as capping agents provide further control over the size and shape of nanoparticles clusters. The distribution of cluster heights obtained by atomic force microscopy (AFM is modeled through a modified heterogeneous nucleation theory as well as Oswald ripening. The thermodynamic modeling of the wetting properties of nanoparticles aggregates provides insight into their mechanism of formation and how their properties might be further exploited in wide-ranging applications.

  13. Indium oxide co-doped with tin and zinc: A simple route to highly conducting high density targets for TCO thin-film fabrication

    Science.gov (United States)

    Saadeddin, I.; Hilal, H. S.; Decourt, R.; Campet, G.; Pecquenard, B.

    2012-07-01

    Indium oxide co-doped with tin and zinc (ITZO) ceramics have been successfully prepared by direct sintering of the powders mixture at 1300 °C. This allowed us to easily fabricate large highly dense target suitable for sputtering transparent conducting oxide (TCO) films, without using any cold or hot pressing techniques. Hence, the optimized ITZO ceramic reaches a high relative bulk density (˜ 92% of In2O3 theoretical density) and higher than the well-known indium oxide doped with tin (ITO) prepared under similar conditions. All X-ray diagrams obtained for ITZO ceramics confirms a bixbyte structure typical for In2O3 only. This indicates a higher solubility limit of Sn and Zn when they are co-doped into In2O3 forming a solid-solution. A very low value of electrical resistivity is obtained for [In2O3:Sn0.10]:Zn0.10 (1.7 × 10-3 Ω cm, lower than ITO counterpart) which could be fabricated to high dense ceramic target suing pressure-less sintering.

  14. Determination of ferrite formation coefficient of tin in an austenitic stainless steel by the diffusion couple method

    International Nuclear Information System (INIS)

    Marchive, Daniel; Treheux, Daniel; Guiraldenq, Pierre

    1976-01-01

    The ferritic action of tin for a 18-10 stainless steel has been measured by two different methods: the first is based on the diffusion couple method and the graphical representation of compositions in a diagram α/α + γ/γ corresponding to ferrite and austenitic elements of the steel. In the second method, ferrite formation is analyzed in small ingots prepared with different chromium and tin concentrations. Ferrite coefficient of tin, compared to chromium is 0.25 with diffusion couples and this value is in good agreement with the classical method [fr

  15. A novel voltammetric sensor based on carbon nanotubes and nanoparticles of antimony tin oxide for the determination of ractopamine

    Energy Technology Data Exchange (ETDEWEB)

    Baytak, Aysegul Kutluay; Teker, Tugce; Duzmen, Sehriban; Aslanoglu, Mehmet, E-mail: maslanoglu@harran.edu.tr

    2016-02-01

    An electrochemical sensor was prepared by the modification of a glassy carbon electrode (GCE) with carbon nanotubes (CNTs) and nanoparticles of antimony tin oxide (ATO). The surface layer was characterized by scanning electron microscopy (SEM), energy dispersive X-ray diffraction method (EDX) and ATR FT-IR spectroscopy. The proposed electrode was assessed in respect to the electro-oxidation of ractopamine. Compared with a bare GCE and a GCE electrode modified with CNTs, the ATONPs/CNTs/GCE exhibited a great catalytic activity towards the oxidation of ractopamine with a well-defined anodic peak at 600 mV. The current response was linear with the concentration of ractopamine over the range from 10 to 240 nM with a detection limit of 3.3 nM. The proposed electrode enabled the selective determination of ractopamine in the presence of high concentrations of ascorbic acid (AA), dopamine (DA) and uric acid (UA). The proposed electrode was successfully applied for the determination of ractopamine in feed and urine samples. The sensitive and selective determination of ractopamine makes the developed method of great interest for monitoring its therapeutic use and doping control purposes. - Highlights: • A novel voltammetric sensor was prepared using nanoparticles of ATO and CNTs. • The ATONPs/CNTs/GCE has greatly improved the voltammetry of ractopamine. • The proposed electrode enabled a detection limit of 3.3 nM. • AA, DA and UA did not interfere with the selective detection of ractopamine. • Measurements were precise and accurate.

  16. A novel voltammetric sensor based on carbon nanotubes and nanoparticles of antimony tin oxide for the determination of ractopamine

    International Nuclear Information System (INIS)

    Baytak, Aysegul Kutluay; Teker, Tugce; Duzmen, Sehriban; Aslanoglu, Mehmet

    2016-01-01

    An electrochemical sensor was prepared by the modification of a glassy carbon electrode (GCE) with carbon nanotubes (CNTs) and nanoparticles of antimony tin oxide (ATO). The surface layer was characterized by scanning electron microscopy (SEM), energy dispersive X-ray diffraction method (EDX) and ATR FT-IR spectroscopy. The proposed electrode was assessed in respect to the electro-oxidation of ractopamine. Compared with a bare GCE and a GCE electrode modified with CNTs, the ATONPs/CNTs/GCE exhibited a great catalytic activity towards the oxidation of ractopamine with a well-defined anodic peak at 600 mV. The current response was linear with the concentration of ractopamine over the range from 10 to 240 nM with a detection limit of 3.3 nM. The proposed electrode enabled the selective determination of ractopamine in the presence of high concentrations of ascorbic acid (AA), dopamine (DA) and uric acid (UA). The proposed electrode was successfully applied for the determination of ractopamine in feed and urine samples. The sensitive and selective determination of ractopamine makes the developed method of great interest for monitoring its therapeutic use and doping control purposes. - Highlights: • A novel voltammetric sensor was prepared using nanoparticles of ATO and CNTs. • The ATONPs/CNTs/GCE has greatly improved the voltammetry of ractopamine. • The proposed electrode enabled a detection limit of 3.3 nM. • AA, DA and UA did not interfere with the selective detection of ractopamine. • Measurements were precise and accurate.

  17. Graphene oxide/oxidized carbon nanofiber/mineralized hydroxyapatite based hybrid composite for biomedical applications

    Science.gov (United States)

    Murugan, N.; Sundaramurthy, Anandhakumar; Chen, Shen-Ming; Sundramoorthy, Ashok K.

    2017-12-01

    Hydroxyapatite (Ca10(PO4)6(OH)2, HAP), a multi-mineral substituted calcium phosphate is the main mineral component of tooth enamel and bone, has become an important biomaterial for biomedical applications. However, as-synthesized HAP has poor mechanical properties and inferior wear resistance, so it is not suitable to use in bone tissue engineering applications. We report the successful incorporation of oxidized carbon nanofibers (O-CNF) and graphene oxide (GO) into the mineralized hydroxyapatite (M-HAP) which showed excellent mechanical and biological properties. GO improved the high mechanical strength and corrosion protection of the substrate in simulated body fluid (SBF) solution and promoted the viability of osteoblasts MG63 cells. As-prepared M-HAP/O-CNF/GO composite showed materials characteristics that similar to natural bone (M-HAP) with high mechanical strength. The resultant M-HAP/O-CNF/GO composite was characterized out by x-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and Fourier-transform infrared spectroscopy (FT-IR), respectively. The mechanical strength of the material was determined by Vicker’s micro-hardness method and it was found that M-HAP/O-CNF/GO (468  ±  4 Hv) composite has superior mechanical properties than M-HAP (330  ±  3 Hv) and M-HAP/GO (425  ±  5 Hv) samples. In addition, antibacterial activity of the composite was studied against Staphylococcus aureus and Escherichia coli. Furthermore, the cell viability of the composite was observed in vitro against osteoblast cells. All these studies confirmed that the M-HAP/O-CNF/GO composite can be considered as potential candidate for dental and orthopedic applications.

  18. Gold nanoparticle arrays directly grown on nanostructured indium tin oxide electrodes: Characterization and electroanalytical application

    International Nuclear Information System (INIS)

    Zhang Jingdong; Oyama, Munetaka

    2005-01-01

    This work describes an improved seed-mediated growth approach for the direct attachment and growth of mono-dispersed gold nanoparticles on nanostructured indium tin oxide (ITO) surfaces. It was demonstrated that, when the seeding procedure of our previously reported seed-mediated growth process on an ITO surface was modified, the density of gold nanospheres directly grown on the surface could be highly improved, while the emergence of nanorods was restrained. By field emission scanning electron microscopy (FE-SEM) and cyclic voltammetry, the growth of gold nanoparticles with increasing growth time on the defect sites of nanostructured ITO surface was monitored. Using a [Fe(China) 6 ] 3- /[Fe(China) 6 ] 4- redox probe, the increasingly facile heterogeneous electron transfer kinetics resulting from the deposition and growth of gold nanoparticle arrays was observed. The as-prepared gold nanoparticle arrays exhibited high catalytic activity toward the electrooxidation of nitric oxide, which could provide electroanalytical application for nitric oxide sensing

  19. Oxidation behavior of molybdenum silicides and their composites

    International Nuclear Information System (INIS)

    Natesan, K.; Deevi, S. C.

    2000-01-01

    A key materials issue associated with the future of high-temperature structural silicides is the resistance of these materials to oxidation at low temperatures. Oxidation tests were conducted on Mo-based silicides over a wide temperature range to evaluate the effects of alloy composition and temperature on the protective scaling characteristics and testing regime for the materials. The study included Mo 5 Si 3 alloys that contained several concentrations of B. In addition, oxidation characteristics of MoSi 2 -Si 3 N 4 composites that contained 20--80 vol.% Si 3 N 4 were evaluated at 500--1,400 C

  20. Selective oxidation of propene on bismuth molybdate and mixed oxides of tin and antimony and of uranium and antimony

    International Nuclear Information System (INIS)

    Pendleton, P.; Taylor, D.

    1976-01-01

    Propene + 18 0 2 reactions have been studied in a static reaction system on bismuth molybdate and mixed oxides of tin and antimony and of uranium and antimony. The [ 16 0] acrolein content of the total acrolein formed and the proportion of 16 0 in the oxygen of the carbon dioxide by-product have been determined. The results indicate that for each catalyst the lattice is the only direct source of the oxygen in the aldehyde, and that lattice and/or gas phase oxygen is used in carbon dioxide formation. Oxygen anion mobility appears to be greater in the molybdate catalyst than in the other two. (author)

  1. All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2009-01-01

    of a bottom electrode comprising silver nanoparticles on a 130 micron thick polyethyleneternaphthalate (PEN) substrate. Subsequently an electron transporting layer of zinc oxide nanoparticles was applied from solution followed by an active layer of P3HT-PCBM and a hole transporting layer of PEDOT......, 3 and 8 stripes. All five layers in the device were processed from solution in air and no vacuum steps were employed. An additional advantage is that the use of indium-tin-oxide (ITO) is avoided in this process. The devices were tested under simulated sunlight (1000 W m−2, AM1.5G) and gave a typical...

  2. Vanadocene reactions with mixed acylates of silicon, germanium and tin

    International Nuclear Information System (INIS)

    Latyaeva, V.N.; Lineva, A.N.; Zimina, S.V.; Gordetsov, A.S.; Dergunov, Yu.I.

    1981-01-01

    Vanadocene interaction with di-and tri-alkyl (aryl)-derivatives of silicon, tin and germanium is studied. Dibutyltin dibenzoate under mild conditions (20 deg C, toluene) oxidates vanadocene to [CpV(OCOC 6 H 5 ) 2 ] 2 , at that, the splitting off of one Cp group in the form of cyclopentadiene and formation of the products of tin-organic fragment disproportionation (tributyltin benzoate, dibutyltin, metallic tin) take place. Tributyltin benzoate oxidates vanadocene at the mole ratio 2:1 and during prolong heating (120 deg C) in the absence of the solvent, [CpV(OCOC 6 H 5 ) 2 ] 2 and hexabutyldistannate are the products of the reaction. Acetates R 3 SnOCOCH 3 react in the similar way. The reactivity of mono- and diacylates of germanium and silicon decreases in the series of derivatives Sn>Ge>Si [ru

  3. Microscopically crumpled indium-tin-oxide thin films as compliant electrodes with tunable transmittance

    International Nuclear Information System (INIS)

    Ong, Hui-Yng; Shrestha, Milan; Lau, Gih-Keong

    2015-01-01

    Indium-tin-oxide (ITO) thin films are perceived to be stiff and brittle. This letter reports that crumpled ITO thin films on adhesive poly-acrylate dielectric elastomer can make compliant electrodes, sustaining compression of up to 25% × 25% equi-biaxial strain and unfolding. Its optical transmittance reduces with crumpling, but restored with unfolding. A dielectric elastomer actuator (DEA) using the 14.2% × 14.2% initially crumpled ITO thin-film electrodes is electrically activated to produce a 37% areal strain. Such electric unfolding turns the translucent DEA to be transparent, with transmittance increased from 39.14% to 52.08%. This transmittance tunability promises to make a low-cost smart privacy window

  4. Microscopically crumpled indium-tin-oxide thin films as compliant electrodes with tunable transmittance

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Hui-Yng [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); School of Engineering, Nanyang Polytechnic, Singapore 569830 (Singapore); Shrestha, Milan; Lau, Gih-Keong, E-mail: mgklau@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-09-28

    Indium-tin-oxide (ITO) thin films are perceived to be stiff and brittle. This letter reports that crumpled ITO thin films on adhesive poly-acrylate dielectric elastomer can make compliant electrodes, sustaining compression of up to 25% × 25% equi-biaxial strain and unfolding. Its optical transmittance reduces with crumpling, but restored with unfolding. A dielectric elastomer actuator (DEA) using the 14.2% × 14.2% initially crumpled ITO thin-film electrodes is electrically activated to produce a 37% areal strain. Such electric unfolding turns the translucent DEA to be transparent, with transmittance increased from 39.14% to 52.08%. This transmittance tunability promises to make a low-cost smart privacy window.

  5. Organic light-emitting devices with fullerene/aluminum composite anode

    International Nuclear Information System (INIS)

    Song, Q.L.; Li, C.M.; Wang, M.L.; Sun, X.Y.

    2008-01-01

    Our previous work demonstrates that fullerene/Aluminum (C 60 /Al) can be used as a composite anode in organic solar cells. In this work, we report that an organic light emitting devices (OLEDs) can be made with the C 60 /Al composite anode as well. The OLEDs show comparable current density and brightness to the traditional devices with the indium tin oxide anode

  6. Induced nano-scale self-formed metal-oxide interlayer in amorphous silicon tin oxide thin film transistors.

    Science.gov (United States)

    Liu, Xianzhe; Xu, Hua; Ning, Honglong; Lu, Kuankuan; Zhang, Hongke; Zhang, Xiaochen; Yao, Rihui; Fang, Zhiqiang; Lu, Xubing; Peng, Junbiao

    2018-03-07

    Amorphous Silicon-Tin-Oxide thin film transistors (a-STO TFTs) with Mo source/drain electrodes were fabricated. The introduction of a ~8 nm MoO x interlayer between Mo electrodes and a-STO improved the electron injection in a-STO TFT. Mo adjacent to the a-STO semiconductor mainly gets oxygen atoms from the oxygen-rich surface of a-STO film to form MoO x interlayer. The self-formed MoO x interlayer acting as an efficient interface modification layer could conduce to the stepwise internal transport barrier formation while blocking Mo atoms diffuse into a-STO layer, which would contribute to the formation of ohmic contact between Mo and a-STO film. It can effectively improve device performance, reduce cost and save energy for the realization of large-area display with high resolution in future.

  7. Chlorinated indium tin oxide electrode by InCl{sub 3} aqueous solution for high-performance organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yun; Wang, Bo; Wang, Zhao-Kui, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn; Liao, Liang-Sheng, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); Zhou, Dong-Ying [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou, Jiangsu 215123 (China)

    2016-04-11

    The authors develop a facile and effective method to produce the chlorinated indium tin oxide (Cl-ITO) treated by InCl{sub 3} aqueous solution and UV/ozone. The work function of the Cl-ITO achieved by this treatment is as high as 5.69 eV, which is increased by 1.09 eV compared with that of the regular ITO without any treatment. Further investigation proved that the enhancement of the work function is attributed to the formation of In-Cl bonds on the Cl-ITO surface. Green phosphorescent organic light-emitting devices based on the Cl-ITO electrodes exhibit excellent electroluminescence performance, elongating lifetime due to the improvement in hole injection.

  8. High-performance a-IGZO thin-film transistor with conductive indium-tin-oxide buried layer

    Science.gov (United States)

    Ahn, Min-Ju; Cho, Won-Ju

    2017-10-01

    In this study, we fabricated top-contact top-gate (TCTG) structure of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) with a thin buried conductive indium-tin oxide (ITO) layer. The electrical performance of a-IGZO TFTs was improved by inserting an ITO buried layer under the IGZO channel. Also, the effect of the buried layer's length on the electrical characteristics of a-IGZO TFTs was investigated. The electrical performance of the transistors improved with increasing the buried layer's length: a large on/off current ratio of 1.1×107, a high field-effect mobility of 35.6 cm2/Vs, a small subthreshold slope of 116.1 mV/dec, and a low interface trap density of 4.2×1011 cm-2eV-1 were obtained. The buried layer a-IGZO TFTs exhibited enhanced transistor performance and excellent stability against the gate bias stress.

  9. Improved optical response and photocatalysis for N-doped titanium oxide (TiO2) films prepared by oxidation of TiN

    International Nuclear Information System (INIS)

    Wan, L.; Li, J.F.; Feng, J.Y.; Sun, W.; Mao, Z.Q.

    2007-01-01

    In order to improve the photocatalytic activity, N-doped titanium oxide (TiO 2 ) films were obtained by thermal oxidation of TiN films, which were prepared on Ti substrates by ion beam assisted deposition (IBAD). The dominating rutile TiO 2 phase was found in films after thermal oxidation. According to the results of X-ray photoelectron spectroscopy (XPS), the residual N atoms occupied O-atom sites in TiO 2 lattice to form Ti-O-N bonds. UV-vis spectra revealed the N-doped TiO 2 film had a red shift of absorption edge. The maximum red shift was assigned to the sample annealed at 750 deg. C, with an onset wavelength at 600 nm. The onset wavelength corresponded to the photon energy of 2.05 eV, which was nearly 1.0 eV below the band gap of pure rutile TiO 2 . The effect of nitrogen was responsible for the enhancement of photoactivity of N-doped TiO 2 films in the range of visible light

  10. Tin (Sn) for enhancing performance in silicon CMOS

    KAUST Repository

    Hussain, Aftab M.; Fahad, Hossain M.; Singh, Nirpendra; Sevilla, Galo T.; Schwingenschlö gl, Udo; Hussain, Muhammad Mustafa

    2013-01-01

    We study a group IV element: tin (Sn) by integrating it into silicon lattice, to enhance the performance of silicon CMOS. We have evaluated the electrical properties of the SiSn lattice by performing simulations using First-principle studies, followed by experimental device fabrication and characterization. We fabricated high-κ/metal gate based Metal-Oxide-Semiconductor capacitors (MOSCAPs) using SiSn as channel material to study the impact of Sn integration into silicon. © 2013 IEEE.

  11. Tin (Sn) for enhancing performance in silicon CMOS

    KAUST Repository

    Hussain, Aftab M.

    2013-10-01

    We study a group IV element: tin (Sn) by integrating it into silicon lattice, to enhance the performance of silicon CMOS. We have evaluated the electrical properties of the SiSn lattice by performing simulations using First-principle studies, followed by experimental device fabrication and characterization. We fabricated high-κ/metal gate based Metal-Oxide-Semiconductor capacitors (MOSCAPs) using SiSn as channel material to study the impact of Sn integration into silicon. © 2013 IEEE.

  12. Effect of micro-patterned fluorine-doped tin oxide films on electrochromic properties of Prussian blue films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyuha [Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, A-Young [Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Material Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Park, Ji Hun; Jung, Hun-Gi; Choi, Wonchang; Lee, Hwa Young [Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Joong Kee, E-mail: leejk@kist.re.kr [Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2014-09-15

    Graphical abstract: - Highlights: • PB-based ECD employed micro-patterned FTO electrode was fabricated. • Effect of interface morphology on electrochromic characteristics was examined. • Electrochromic properties were enhanced by employing a patterned interface. - Abstract: The effect of interface morphology on electrochromic characteristics was examined for an electrochromic device (ECD). Micro-patterned fluorine-doped tin oxide (FTO) films were fabricated using a photolithography process. Prussian blue (PB) films were then deposited on the patterned FTO films. The surface areas of both PB films and FTO films were increased by patterning. ECDs were assembled using patterned PB/FTO films as the electrochromic electrode, bare FTO films as the counter electrode, and an electrolyte containing LiClO{sub 4} salt. The increased effective surface area of the patterned PB/FTO electrode boosted the mobility of ions at the interphase between the electrolyte and PB electrode, and the electron transfer between PB films and FTO films. As a result, electrochromic properties such as transmittance and response time were significantly improved by employing the patterned FTO films as the transparent conductive oxide layer of the electrochromic electrode.

  13. Design and characterization of Ga-doped indium tin oxide films for pixel electrode in liquid crystal display

    International Nuclear Information System (INIS)

    Choi, J.H.; Kang, S.H.; Oh, H.S.; Yu, T.H.; Sohn, I.S.

    2013-01-01

    Indium tin oxide (ITO) thin films doped with various metal atoms were investigated in terms of phase transition behavior and electro-optical properties for the purpose of upgrading ITO and indium zinc oxide (IZO) films, commonly used for pixel electrodes in flat panel displays. We explored Ce, Mg, Zn, and Ga atoms as dopants to ITO by the co-sputtering technique, and Ga-doped ITO films (In:Sn:Ga = 87.4:6.7:5.9 at.%) showed the phase transition behavior at 210 °C within 20 min with high visible transmittance of 91% and low resistivity of 0.22 mΩ cm. The film also showed etching rate similar to amorphous ITO, and no etching residue on glass surfaces. These results were confirmed with the film formed from a single Ga-doped ITO target with slightly different compositions (In:Sn:Ga = 87:9:4 at.%). Compared to the ITO target, Ga-doped ITO target left 1/4 less nodules on the target surface after sputtering. These results suggest that Ga-doped ITO films could be an excellent alternative to ITO and IZO for pixel electrodes in thin film transistor liquid crystal display (TFT-LCD). - Highlights: ► We report Ga-doped In–Sn–O films for a pixel electrode in liquid crystal display. ► Ga-doped In–Sn–O films show phase transition behavior at 210 °C. ► Ga-doped In–Sn–O films show high wet etchability and low resistivity

  14. Organic derivatives of tin (II/IV): Investigation of their structure

    Energy Technology Data Exchange (ETDEWEB)

    Szirtes, L., E-mail: szirtes@iki.kfki.h [Institute of Isotopes of the Hungarian Academy of Sciences, Budapest H-1525, P.O. Box 77 (Hungary); Megyeri, J., E-mail: megyeri@iki.kfki.h [Institute of Isotopes of the Hungarian Academy of Sciences, Budapest H-1525, P.O. Box 77 (Hungary); Kuzmann, E. [Laboratory of Nuclear Chemistry, CRC of the Hungarian Academy of Science at Eoetvoes University, H-1518 Budapest, P.O. Box 32 (Hungary); Beck, A. [Institute of Isotopes of the Hungarian Academy of Sciences, Budapest H-1525, P.O. Box 77 (Hungary)

    2011-07-15

    The structures of tin(II)-oxalate, tin(IV)Na-EDTA and tin(IV)Na{sub 8}-inositol hexaphosphate were investigated using XRD analysis. Samples were identified using the Moessbauer study, thermal analysis and FTIR spectrometry. The Moessbauer study determined two different oxidation states of tin atoms, and consequently two different tin surroundings in the end products. The tin oxalate was found to be orthorhombic with space group Pnma, a=9.2066(3) A, b=9.7590(1) A, c=13.1848(5) A, V=1184.62 A{sup 3} and Z=8. SnNa-EDTA was found to be monoclinic with space group P2{sub 1}/c{sub 1}, a=10.7544(3) A, b=10.1455(3) A, c=16.5130(6) A, {beta}=98.59(2){sup o}, V=1781.50(4) A{sup 3} and Z=4. Sn(C{sub 6}H{sub 6}Na{sub 8}O{sub 24}P{sub 6}) was found to be amorphous.

  15. Fast, versatile x-ray fluorescence method for measuring tin in impregnated wood

    DEFF Research Database (Denmark)

    Drabæk, I.; Christensen, Leif Højslet

    1985-01-01

    The present paper describes an energy-dispersive x-ray fluorescence method for measuring tin in bis(tri-n-butyl)tin-oxide impregnated wood. The proposed method is of the backscatter/fundamental parameter type. Its versatility, precision, and accuracy is demonstrated by analyses of eleven samples...

  16. Oxidation behaviour of cast aluminium matrix composites with Ce surface coatings

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Arrabal, R.; Feliu, S.; Viejo, F.

    2007-01-01

    The oxidation behaviour of SiC-reinforced aluminium matrix composites (A3xx.x/SiCp) has been studied after Ce-based treatments. Kinetics data of oxidation process were obtained from gravimetric tests performed at different temperatures (350, 425 and 500 o C). The nature of the oxidation layer was analyzed by scanning electron and atomic force microscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy and X-ray diffraction. The extent of oxidation degradation in untreated composites was preferentially localized in matrix/SiCp interfaces favouring the MgO formation. Ce coatings favoured a uniform oxidation of the composite surface with MgAl 2 O 4 spinel formation. This oxide increased the surface hardness of the materials

  17. Composite cathode based on yttria stabilized bismuth oxide for low-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Xia Changrong; Zhang Yuelan; Liu Meilin

    2003-01-01

    Composites consisting of silver and yttria stabilized bismuth oxide (YSB) have been investigated as cathodes for low-temperature honeycomb solid oxide fuel cells with stabilized zirconia as electrolytes. At 600 deg. C, the interfacial polarization resistances of a porous YSB-Ag cathode is about 0.3 Ω cm 2 , more than one order of magnitude smaller than those of other reported cathodes on stabilized zirconia. For example, the interfacial resistances of a traditional YSZ-lanthanum maganites composite cathode is about 11.4 Ω cm 2 at 600 deg. C. Impedance analysis indicated that the performance of an YSB-Ag composite cathode fired at 850 deg. C for 2 h is severely limited by gas transport due to insufficient porosity. The high performance of the YSB-Ag cathodes is very encouraging for developing honeycomb fuel cells to be operated at temperatures below 600 deg. C

  18. Effect of wastewater quality parameters on coliform inactivation by tin oxide anodes.

    Science.gov (United States)

    Teel, Amy L; Watts, Richard J

    2018-04-16

    The effect of six water quality constituents on wastewater effluent disinfection by tin oxide anodes (TOAs) was investigated in single cell laboratory reactors. Several concentrations of suspended solids, chemical oxygen demand (COD), alkalinity, ammonia-nitrogen, nitrite-nitrogen, and nitrate-nitrogen were added to media containing 10 6 total coliform bacteria mL -1 . Current was applied through the TOAs, and coliform bacteria viability was analyzed over time. Over 99.9% inactivation of coliform bacteria was found over 15 min in TOA reactors. Concentrations of the six water quality constituents typical of concentrations found in wastewaters had no effect on TOA disinfection efficacy. The results of this research demonstrate that TOAs, which could potentially be powered by solar panels, have potential as a sustainable disinfection process compared to chlorine, ozone, and ultraviolet light.

  19. Fabricate heterojunction diode by using the modified spray pyrolysis method to deposit nickel-lithium oxide on indium tin oxide substrate.

    Science.gov (United States)

    Wu, Chia-Ching; Yang, Cheng-Fu

    2013-06-12

    P-type lithium-doped nickel oxide (p-LNiO) thin films were deposited on an n-type indium tin oxide (ITO) glass substrate using the modified spray pyrolysis method (SPM), to fabricate a transparent p-n heterojunction diode. The structural, optical, and electrical properties of the p-LNiO and ITO thin films and the p-LNiO/n-ITO heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectroscopy, Hall effect measurement, and current-voltage (I-V) measurements. The nonlinear and rectifying I-V properties confirmed that a heterojunction diode characteristic was successfully formed in the p-LNiO/n-ITO (p-n) structure. The I-V characteristic was dominated by space-charge-limited current (SCLC), and the Anderson model demonstrated that band alignment existed in the p-LNiO/n-ITO heterojunction diode.

  20. Effect of replacement of tin doped indium oxide (ITO) by ZnO: analysis of environmental impact categories

    Science.gov (United States)

    Ziemińska-Stolarska, Aleksandra; Barecka, Magda; Zbiciński, Ireneusz

    2017-10-01

    Abundant use of natural resources is doubtlessly one of the greatest challenges of sustainable development. Process alternatives, which enable sustainable manufacturing of valuable products from more accessible resources, are consequently required. One of examples of limited resources is Indium, currently broadly used for tin doped indium oxide (ITO) for production of transparent conductive films (TCO) in electronics industry. Therefore, candidates for Indium replacement, which would offer as good performance as the industrial state-of-the-art technology based on ITO are widely studied. However, the environmental impact of new layers remains unknown. Hence, this paper studies the environmental effect of ITO replacement by zinc oxide (ZnO) by means life cycle assessment (LCA) methodology. The analysis enables to quantify the environmental impact over the entire period of life cycle of products—during manufacturing, use phase and waste generation. The analysis was based on experimental data for deposition process. Further, analysis of different impact categories was performed in order to determine specific environmental effects related to technology change. What results from the analysis, is that ZnO is a robust alternative material for ITO replacement regarding environmental load and energy efficiency of deposition process which is also crucial for sustainable TCO layer production.

  1. Charge transport in metal oxide nanocrystal-based materials

    Science.gov (United States)

    Runnerstrom, Evan Lars

    There is probably no class of materials more varied, more widely used, or more ubiquitous than metal oxides. Depending on their composition, metal oxides can exhibit almost any number of properties. Of particular interest are the ways in which charge is transported in metal oxides: devices such as displays, touch screens, and smart windows rely on the ability of certain metal oxides to conduct electricity while maintaining visible transparency. Smart windows, fuel cells, and other electrochemical devices additionally rely on efficient transport of ionic charge in and around metal oxides. Colloidal synthesis has enabled metal oxide nanocrystals to emerge as a relatively new but highly tunable class of materials. Certain metal oxide nanocrystals, particularly highly doped metal oxides, have been enjoying rapid development in the last decade. As in myriad other materials systems, structure dictates the properties of metal oxide nanocrystals, but a full understanding of how nanocrystal synthesis, the processing of nanocrystal-based materials, and the structure of nanocrystals relate to the resulting properties of nanocrystal-based materials is still nascent. Gaining a fundamental understanding of and control over these structure-property relationships is crucial to developing a holistic understanding of metal oxide nanocrystals. The unique ability to tune metal oxide nanocrystals by changing composition through the introduction of dopants or by changing size and shape affords a way to study the interplay between structure, processing, and properties. This overall goal of this work is to chemically synthesize colloidal metal oxide nanocrystals, process them into useful materials, characterize charge transport in materials based on colloidal metal oxide nanocrystals, and develop ways to manipulate charge transport. In particular, this dissertation characterizes how the charge transport properties of metal oxide nanocrystal-based materials depend on their processing and

  2. Study of quantum dot based on tin/yttrium mixed oxide doped with terbium to be used as biomarker

    International Nuclear Information System (INIS)

    Paganini, Paula P.; Felinto, Maria Claudia F.C.; Kodaira, Claudia A.; Brito, Hermi F.; Nunes, Luiz Antonio O.

    2009-01-01

    Quantum dots (semiconductors nanocrystals) have brought a promising field to develop a new generation of luminescent biomarkers. The use of lanthanides ions as luminescent markers has many advantages, for example a security method, low cost, high specificity and also the luminescence can be promptly measured with high sensibility and accuracy. These luminescent dots are functionalized with biomolecules. For the luminophore particle to be connect with biologicals molecules (for example covalent antibody) is necessary a previous chemical treatment to modify luminophore particle surface and this process is called functionalization. A prior chemical treatment with changes on the surface luminophore particle is necessary to couple the luminophore to biological molecules. This process can be used as coating which can protect these particles from being dissolved by acid as well as provide functional groups for biological conjugation. This work presents a photoluminescence study of nanoparticles based on tin/yttrium mixed oxides doped with terbium (SnO 2 /Y 2 O 3 :Tb 3+ ), synthesized by coprecipitation method. The nanoparticles were submitted to thermal treatment and characterized by X-Ray Powder Diffraction (XRD) that showed cassiterite phase formation and the influence of thermal treatment on nanoparticles structures. These nanoparticles going to be functionalized with a natural polysaccharide (chitosan) in order to form microspheres. These microspheres going to be irradiated with gamma radiation to sterilization and it can be evaluated if the nanoparticles are resistant to irradiation and they do not lose functionality with this process. (author)

  3. Structural and optical studies of 100 MeV Au irradiated thin films of tin oxide

    Science.gov (United States)

    Jaiswal, Manoj Kumar; Kanjilal, D.; Kumar, Rajesh

    2013-11-01

    Thin films of tin(IV) oxide (SnO2) of 100 nm thickness were grown on silicon (1 0 0) matrices by electron beam evaporation deposition technique under high vacuum. The thicknesses of these films were monitored by piezo-sensor attached to the deposition chamber. Nanocrystallinity is achieved in these thin films by 100 MeV Au8+ using 1 pnA current at normal incidence with ion fluences varying from 1 × 1011 ions/cm2 to 5 × 1013 ions/cm2. Swift Heavy Ion beam irradiation was carried out by using 15 UD Pelletron Accelerator at IUAC, New Delhi, India. Optical studies of pristine and ion irradiated thin films were characterized by UV-Visible spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. Prominent peak at 610 cm-1 in FTIR spectrum confirmed the O-Sn-O bonding of tin(IV) oxide. For Surface topographical studies and grain size calculations, these films were characterized by Atomic Force Microscope (AFM) using Nanoscope III-A. Crystallinity and phase transformation due to irradiation of pristine and irradiated films were characterized by Glancing Angle X-ray Diffraction (GAXRD) using Brucker-D8 advance model. GAXRD results show improvement in crystallinity and phase transformation due to swift heavy ion irradiation. Grain size distribution was verified by AFM and GAXRD results. Swift heavy ion induced modifications in thin films of SnO2 were confirmed by the presence of prominent peaks at 2θ values of 30.65°, 32.045°, 43.94°, 44.96° and 52.36° in GAXRD spectrum.

  4. Fabrication and excellent conductive performance of antimony-doped tin oxide-coated diatomite with porous structure

    Energy Technology Data Exchange (ETDEWEB)

    Du Yucheng, E-mail: ychengdu@bjut.edu.cn [Key Lab of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Yan Jing; Meng Qi; Wang Jinshu [Key Lab of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Dai Hongxing, E-mail: hxdai@bjut.edu.cn [Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China)

    2012-04-16

    Graphical abstract: Antimony-doped tin oxide (ATO)-coated diatomite with porous structures are fabricated using the co-precipitation method. The porous ATO-coated diatomite material shows excellent conductive performance. Highlights: Black-Right-Pointing-Pointer Sb-doped SnO{sub 2} (ATO)-coated diatomite materials with porous structures are prepared. Black-Right-Pointing-Pointer Sn/Sb ratio, ATO coating amount, pH value, and temperature influence resistivity. Black-Right-Pointing-Pointer Porous ATO-coated diatomite materials show excellent conductive performance. Black-Right-Pointing-Pointer The lowest resistivity of the porous ATO-coated diatomite sample is 10 {Omega} cm. - Abstract: Diatomite materials coated with antimony-doped tin oxide (ATO) were prepared by the co-precipitation method, and characterized by means of the techniques, such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, selected-area electron diffraction, X-ray fluorescence spectroscopy, and N{sub 2} adsorption-desorption measurement. It was shown that the coated ATO possessed a tetragonal rutile crystal structure, and the ATO-coated diatomite materials had a multi-pore (micro- meso-, and macropores) architecture. The porous ATO-coated diatomite materials exhibited excellent electrical conductive behaviors. The best conductive performance (volume resistivity = 10 {Omega} cm) was achieved for the sample that was prepared under the conditions of Sn/Sb molar ratio = 5.2, Sn/Sb coating amount = 45 wt%, pH = 1.0, and reaction temperature = 50 Degree-Sign C. Such a conductive porous material is useful for the applications in physical and chemical fields.

  5. Study on the removal of iron impurities in methanesulfonic acid tin plating bath

    Science.gov (United States)

    Hou-li, LIU; Jian-Jun, CHEN; Hong-Liang, PAN

    2018-03-01

    This thesis investigated the the influence of sodium sulfite as reducing agent on the recovery rate of tin ion. The approach is that HZ016 type cation exchange resin was used to adsorb Sn2+ and Fe2+ in electroplated tin solution first. After adsorption, the resin was removed by sulfuric acid, which was added with NaOH to adjust pH value to form precipitation and separate tin. X-ray diffraction (XRD) and energy spectrum (EDS) method were used to analyze the composition of the precipitates adjusted by pH. The results show that when the mass ratio of resin to bath is 1:2, the adsorption efficiency of resin reaches 98.3% and 97.1% respectively, and the elution efficiency of tin and iron reaches 95.1% and 94% respectively when the mass ratio of resin to eluent sulfuric acid is 1:4. Sodium sulfite was added to increase the efficiency of tin recovery by 8.1%. EDS and XRD atlas showed that after pH regulation, the main composition of the filtration precipitation was the hydroxides of tin.

  6. Effect of TiN Addition on 3Y-TZP Ceramics with Emphasis on Making EDM-Able Bodies

    Science.gov (United States)

    Khosravifar, Mahnoosh; Mirkazemi, Seyyed Mohammad; Taheri, Mahdiar; Golestanifard, Farhad

    2018-04-01

    In this study, to produce electrically conductive ceramics, rapid hot press (RHP) sintering of 3 mol.% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) and 3Y-TZP/TiN composites with TiN amounts of 25, 35, and 45 vol.% was performed at 1300, 1350, and 1400 °C. Interestingly, the toughness and hardness were improved in the presence of TiN up to 35 vol.% and maximum fracture toughness and hardness of 5.40 ± 0.05 MPa m1/2 and 14.50 ± 0.06 GPa, respectively, were obtained. However, the bending strength was decreased which could be attributed to the rather weak interfaces of nitride and oxide phases. Regarding the zirconia matrix, the effect of grain size on fracture toughness of the samples has been studied using x-ray diffraction and field emission scanning electron microscope (FESEM) analysis. It was also found that electrical resistivity decreased to the value of 6.88 × 10-6 Ω m at 45 vol.% of TiN. It seems the TiN grains form a network to impose conductivity on the ZrO2 body; however, below 35 vol.% TiN, due to lack of percolation effect, this conductivity could not be maintained according to FESEM studies. Finally, electrically conductive samples were successfully machined by electrical discharge machining (EDM).

  7. Properties of tin oxide base gas sensors for nitrogen oxides (NO{sub x}). Modelling the NO{sub x}-SnO{sub 2} interactions; Proprietes des capteurs de gaz a base d'oxyde d'etain vis a vis des oxydes d'azote (NO{sub x}). Modelisation des interactions NO{sub x}-SnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, E.

    1999-12-22

    In order to better resolve the selectivity problems of the tin oxide base sensors for nitrogen oxides (NO{sub x}), three points have been considered: 1)a thoroughly study of the knowledge of the nitrogen oxides properties: experimental and theoretical studies of the gases present in the studied conditions (thermodynamic aspect) and of their transformation velocities (kinetic aspect) have been carried out 2)an understanding of the NO{sub x}-SnO{sub 2} interactions which lead to the conductance variation of the sensors: studies of the NO{sub x} conversion at the surface of the tin dioxide made with a differential reactor allow to specify the reactional mechanism of the reaction: 2 NO + O{sub 2} = 2 NO{sub 2}. The characterization of the adsorbed species reveals the adsorption of NO{sub 2} in great amount under the nitrate form as well as the key role of these species in the catalytic mechanism. A modelling of the conductance variations of a SnO{sub 2} base sensor under an atmosphere of NO, NO{sub 2} and O{sub 2} is proposed 3)an optimization of the gas sensors properties: after having revealed the strong influence on the sensor sensitivity of the electrodes-SnO{sub 2}, a study on the geometry effects of the electrodes is carried out. No major improvement of the sensitivity has been noticed. The addition of MoO{sub 3} to SnO{sub 2} has been considered. This addition has allowed to strongly improve the sensitivity to the carbon monoxide and to the nitrogen oxide at 450 degrees Celsius. Nevertheless, it has not resolved the selectivity problems. In this study, the perfection of a total NO{sub x} sensor able to measure the sum of the NO and NO{sub 2} amounts has been considered too. (O.M.)

  8. Oxidation of Pb-Sn and Pb-Sn-In alloys

    International Nuclear Information System (INIS)

    Sluzewski, D.A.; Chang, Y.A.; Marcotte, V.C.

    1990-01-01

    Air oxidized Pb-Sn and Pb-Sn-In single phase alloys have been studied with scanning Auger microscopy. Line scans across grain boundaries combined with argon ion sputter etching revealed grain boundary oxidation. In the Pb-Sn samples, tin is preferentially oxidized with the grain boundary regions having a much higher percentage of tin oxide than the bulk surface oxide. In the Pb-Sn-In alloys, both tin and indium are preferentially oxidized with the grain boundary regions being enriched with tin and indium oxides

  9. Venting temperature determines surface chemistry of magnetron sputtered TiN films

    Energy Technology Data Exchange (ETDEWEB)

    Greczynski, G. [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-581 83 Linköping (Sweden); Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Mráz, S.; Schneider, J. M. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Hultman, L. [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-581 83 Linköping (Sweden)

    2016-01-25

    Surface properties of refractory ceramic transition metal nitride thin films grown by magnetron sputtering are essential for resistance towards oxidation necessary in all modern applications. Here, typically neglected factors, including exposure to residual process gases following the growth and the venting temperature T{sub v}, each affecting the surface chemistry, are addressed. It is demonstrated for the TiN model materials system that T{sub v} has a substantial effect on the composition and thickness-evolution of the reacted surface layer and should therefore be reported. The phenomena are also shown to have impact on the reliable surface characterization by x-ray photoelectron spectroscopy.

  10. Ac conductivity and dielectric spectroscopy studies on tin oxide thin films formed by spray deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Barış, Behzad, E-mail: behzadbaris@gmail.com

    2014-04-01

    Au/tin oxide/n-Si (1 0 0) structure has been created by forming a tin oxide (SnO{sub 2}) on n-type Si by using the spray deposition technique. The ac electrical conductivity (σ{sub ac}) and dielectric properties of the structure have been investigated between 30 kHz and 1 MHz at room temperature. The values of ε', ε″, tanδ, σ{sub ac}, M' and M″ were determined as 1.404, 0.357, 0.253, 1.99×10{sup −7} S/cm, 0.665 and 0.168 for 1 MHz and 6.377, 6.411, 1.005, 1.07×10{sup −7} S/cm, 0.077 and 0.078 for 30 kHz at zero bias, respectively. These changes were attributed to variation of the charge carriers from the interface traps located between semiconductor and metal in the band gap. It is concluded that the values of the ε', ε″ and tanδ increase with decreasing frequency while a decrease is seen in σ{sub ac} and the real (M') and imaginary (M″) components of the electrical modulus. The M″ parameter of the structure has a relaxation peak as a function of frequency for each examined voltage. The relaxation time of M″(τ{sub M″}) varies from 0.053 ns to 0.018 ns with increasing voltage. The variation of Cole–Cole plots of the sample shows that there is one relaxation.

  11. Preparation and characterization of indium tin oxide thin films for their application as gas sensors

    International Nuclear Information System (INIS)

    Vaishnav, V.S.; Patel, P.D.; Patel, N.G.

    2005-01-01

    The structural and electrical properties of indium tin oxide (In 2 O 3 /SnO 2 ) thin films grown using direct evaporation technique on various substrates at different temperatures were studied. The effect of annealing, of films with different weight percent concentration of SnO 2 in In 2 O 3 and of different thickness on the structural and electrical properties were studied and optimized for use as gas sensor. The stability of the films against time and temperature variations was studied. The effect of the catalytic layers on the sensor microstructure and its performance towards the gas sensing application was observed

  12. Room temperature deposition of crystalline indium tin oxide films by cesium-assisted magnetron sputtering

    International Nuclear Information System (INIS)

    Lee, Deuk Yeon; Baik, Hong-Koo

    2008-01-01

    Indium tin oxide (ITO) films were deposited on a Si (1 0 0) substrate at room temperature by cesium-assisted magnetron sputtering. Including plasma characteristics, the structural, electrical, and optical properties of deposited films were investigated as a function of cesium partial vapor pressure controlled by cesium reservoir temperature. We calculated the cesium coverage on the target surface showing maximum formation efficiency of negative ions by means of the theoretical model. Cesium addition promotes the formation efficiency of negative ions, which plays important role in enhancing the crystallinity of ITO films. In particular, the plasma density was linearly increased with cesium concentrations. The resultant decrease in specific resistivity and increase in transmittance (82% in the visible region) at optimum cesium concentration (4.24 x 10 -4 Ω cm at 80 deg. C of reservoir temperature) may be due to enhanced crystallinity of ITO films. Excess cesium incorporation into ITO films resulted in amorphization of its microstructure leading to degradation of ITO crystallinity. We discuss the cesium effects based on the growth mechanism of ITO films and the plasma density

  13. Comparative study of the interface composition of TiN and TiCN hard coatings on high speed steel substrates obtained by arc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Roman, E. (Lab. de Fisica de Superficies, Inst. de Ciencia de Materiales, CSIC, Madrid (Spain)); Segovia, J.L. de (Lab. de Fisica de Superficies, Inst. de Ciencia de Materiales, CSIC, Madrid (Spain)); Alberdi, A. (TEKNIKER, Asociacion de Investigacion Tecnologica, Eibar (Spain)); Calvo, J. (TEKNIKER, Asociacion de Investigacion Tecnologica, Eibar (Spain)); Laucirica, J. (TEKNIKER, Asociacion de Investigacion Tecnologica, Eibar (Spain))

    1993-05-15

    In this paper the composition of the interface of TiN and TiCN hard coatings deposited onto high speed steel substrates obtained by the arc discharge technique is studied using Auger electron spectroscopy at two different substrate temperatures, 520 K and 720 K. The low temperature (520 K) TiN coating developed an oxygen phase at the interface, producing a weak adherence of 40 N, while the high temperature coatings (720 K) had a less intense oxygen phase, giving a greater adherence to the substrate of 60 N. TiCN coatings at 520 K are characterized by a low oxygen intensity at the interface. However, their adherence of 50 N is lower than the value of 60 N for the high temperature TiN coatings and is independent of the substrate temperature. (orig.)

  14. Injection of holes at indium tin oxide/dendrimer interface: An explanation with new theory of thermionic emission at metal/organic interfaces

    International Nuclear Information System (INIS)

    Peng Yingquan; Lu Feiping

    2006-01-01

    The traditional theory of thermionic emission at metal/inorganic crystalline semiconductor interfaces is no longer applicable for the interface between a metal and an organic semiconductor. Under the assumption of thermalization of hot carriers in the organic semiconductor near the interface, a theory for thermionic emission of charge carriers at metal/organic semiconductor interfaces is developed. This theory is used to explain the experimental result from Samuel group [J.P.J. Markham, D.W. Samuel, S.-C. Lo, P.L. Burn, M. Weiter, H. Baessler, J. Appl. Phys. 95 (2004) 438] for the injection of holes from indium tin oxide into the dendrimer based on fac-tris(2-phenylpyridyl) iridium(III)

  15. Boron oxide–tin oxide/graphene composite as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Wen, Lina; Qin, Xue; Meng, Wei; Cao, Ning; Song, Zhonghai

    2016-01-01

    Highlights: • B_2O_3–SnO_2/G anode material is prepared by chemical heat solvent method for LIBs. • B_2O_3–SnO_2/G shows much improved cycling performance and rate capability. • B_2O_3 plays an important role in improving the performance. - Abstract: B_2O_3–SnO_2/graphene (B_2O_3–SnO_2/G) composite is fabricated via a chemical heat solvent method and utilized as anode material for lithium ion batteries. The added B_2O_3 dramatically improves the electrochemical performance of lithium ion batteries compared to the SnO_2/G composite. The B_2O_3–SnO_2/G composites as anode show an outstanding discharge capacity of 1404.9 mAh g"−"1 at 500 mA g"−"1 after 200 cycles and an excellent rate capacity, which apparently outperforms the previously reported SnO_2-based anode material. These improved electrochemical performance characteristics are due to the B_2O_3 played a buffering role, which are easily beneficial for accommodating the volume change during the lithium ions insertion/extraction processes. Furthermore, boron atoms can accept electrons for its electron-deficient nature and boron ions could release electrons, which lead to electrons' increased density and conductivity are increased. The results indicate that the B_2O_3–SnO_2/G composite is a promising anode material for lithium ion batteries.

  16. Sintered indium-tin oxide particles induce pro-inflammatory responses in vitro, in part through inflammasome activation.

    Directory of Open Access Journals (Sweden)

    Melissa A Badding

    Full Text Available Indium-tin oxide (ITO is used to make transparent conductive coatings for touch-screen and liquid crystal display electronics. As the demand for consumer electronics continues to increase, so does the concern for occupational exposures to particles containing these potentially toxic metal oxides. Indium-containing particles have been shown to be cytotoxic in cultured cells and pro-inflammatory in pulmonary animal models. In humans, pulmonary alveolar proteinosis and fibrotic interstitial lung disease have been observed in ITO facility workers. However, which ITO production materials may be the most toxic to workers and how they initiate pulmonary inflammation remain poorly understood. Here we examined four different particle samples collected from an ITO production facility for their ability to induce pro-inflammatory responses in vitro. Tin oxide, sintered ITO (SITO, and ventilation dust particles activated nuclear factor kappa B (NFκB within 3 h of treatment. However, only SITO induced robust cytokine production (IL-1β, IL-6, TNFα, and IL-8 within 24 h in both RAW 264.7 mouse macrophages and BEAS-2B human bronchial epithelial cells. Our lab and others have previously demonstrated SITO-induced cytotoxicity as well. These findings suggest that SITO particles activate the NLRP3 inflammasome, which has been implicated in several immune-mediated diseases via its ability to induce IL-1β release and cause subsequent cell death. Inflammasome activation by SITO was confirmed, but it required the presence of endotoxin. Further, a phagocytosis assay revealed that pre-uptake of SITO or ventilation dust impaired proper macrophage phagocytosis of E. coli. Our results suggest that adverse inflammatory responses to SITO particles by both macrophage and epithelial cells may initiate and propagate indium lung disease. These findings will provide a better understanding of the molecular mechanisms behind an emerging occupational health issue.

  17. Magnetic composites based on hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides

    International Nuclear Information System (INIS)

    Braga, Tiago P.; Vasconcelos, Igor F.; Sasaki, Jose M.; Fabris, J.D.; Oliveira, Diana Q.L. de; Valentini, Antoninho

    2010-01-01

    Materials containing hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides were obtained from a chemical precursor prepared by admixing chitosan and iron and aluminum hydroxides. The oxides were first characterized with scanning electron microscopy, X-ray diffraction, and Moessbauer spectroscopy. Scanning electron microscopy micrographs showed the size distribution of the resulting spheres to be highly homogeneous. The occurrence of nano-composites containing aluminum oxides and iron oxides was confirmed from powder X-ray diffraction patterns; except for the sample with no aluminum, the superparamagnetic relaxation due to iron oxide particles were observed from Moessbauer spectra obtained at 298 and 110 K; the onset six line-spectrum collected at 20 K indicates a magnetic ordering related to the blocking relaxation effect for significant portion of small spheres in the sample with a molar ratio Al:Fe of 2:1.

  18. Ultrathin Tungsten Oxide Nanowires/Reduced Graphene Oxide Composites for Toluene Sensing

    Directory of Open Access Journals (Sweden)

    Muhammad Hassan

    2017-09-01

    Full Text Available Graphene-based composites have gained great attention in the field of gas sensor fabrication due to their higher surface area with additional functional groups. Decorating one-dimensional (1D semiconductor nanomaterials on graphene also show potential benefits in gas sensing applications. Here we demonstrate the one-pot and low cost synthesis of W18O49 NWs/rGO composites with different amount of reduced graphene oxide (rGO which show excellent gas-sensing properties towards toluene and strong dependence on their chemical composition. As compared to pure W18O49 NWs, an improved gas sensing response (2.8 times higher was achieved in case of W18O49 NWs composite with 0.5 wt. % rGO. Promisingly, this strategy can be extended to prepare other nanowire based composites with excellent gas-sensing performance.

  19. Effect of ion plating TiN on the oxidation of sputtered NiCrAlY-coated Ti3Al-Nb in air at 850-950 C

    International Nuclear Information System (INIS)

    Rizzo, F.C.; Zeng, C.; Chinese Academy of Sciences, Shenyang; Wu, W.

    1998-01-01

    A single sputtered NiCrAlY coating and a complex coating of inner ion-plated TiN and outer sputtered NiCrAlY were prepared on the intermetallic compound Ti 3 Al-Nb. Their oxidation behavior was examined at 850, 900, and 950 C in air by thermal gravimetry combined with XRD, SEM, and EDAX. The results showed that Ti 3 Al-Nb followed approximately parabolic oxidation, forming an outer thin Al 2 O 3 -rich scale and an inner TiO 2 -rich layer doped with Nb at the three temperatures. The TiO 2 -rich layer doped with Nb dominated the oxidation reaction. The single NiCrAlY coating did not follow parabolic oxidation exactly at 850 and 950 C, but oxidized approximately in a parabolic manner, because the instantaneous parabolic constants changed slightly with time. Besides the Al 2 O 3 scale, TiO 2 formed from the coating surface at the coating-substrate interface. The deterioration of the coating accelerated with increasing temperature. The NiCrAlY-TiN coating showed two-stage parabolic oxidation at 850 and 900 C, and an approximate parabolic oxidation at 950 C. The TiN layer was effective as a barrier to inhibit coating-alloy interdiffusion

  20. Microstructures and properties of TiN reinforced Co-based composite coatings modified with Y{sub 2}O{sub 3} by laser cladding on Ti–6Al–4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Fei, E-mail: wengfeisdu@126.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science and Engineering, Shandong University, Ji' nan 250061 (China); Shandong University, Suzhou Institute, Suzhou 215123 (China); Yu, Huijun, E-mail: yhj2001@sdu.edu.cn [Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Ji' nan 250061 (China); Shandong University, Suzhou Institute, Suzhou 215123 (China); Chen, Chuanzhong, E-mail: czchen@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science and Engineering, Shandong University, Ji' nan 250061 (China); Shandong University, Suzhou Institute, Suzhou 215123 (China); Liu, Jianli, E-mail: jianli21s@163.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science and Engineering, Shandong University, Ji' nan 250061 (China); Shandong University, Suzhou Institute, Suzhou 215123 (China); Zhao, Longjie, E-mail: zhaoljsdu@sina.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science and Engineering, Shandong University, Ji' nan 250061 (China); Shandong University, Suzhou Institute, Suzhou 215123 (China)

    2015-11-25

    In this study, TiN reinforced composite coatings were fabricated on Ti–6Al–4V substrate by laser cladding with Co42 self-fluxing alloy, TiN and Y{sub 2}O{sub 3} mixed powders. Microstructures and wear resistance of the cladding coatings with and without Y{sub 2}O{sub 3} addition were investigated comparatively. Results showed that the coatings were mainly comprised of γ-Co/Ni, TiN, CoTi, CoTi{sub 2}, NiTi, TiC, Cr{sub 7}C{sub 3}, TiB, Ti{sub 5}Si{sub 3} and TiC{sub 0.3}N{sub 0.7} phases. The coatings showed metallurgical bonding free of pores and cracks with the substrate. Compared with the Ti–6Al–4V substrate, the microhardness and wear resistance of the coatings was enhanced by 3–4 times and 9.5–11.9 times, respectively. With 1.0 wt.% Y{sub 2}O{sub 3} addition, the microstructure of the coating was refined significantly, and the microhardness and dry sliding wear resistance were enhanced further. The effects of Y{sub 2}O{sub 3} were attributed to the residual Y{sub 2}O{sub 3} and decomposed Y atoms. - Graphical abstract: The diagram illustration for the action mechanism of Y{sub 2}O{sub 3}: (a) dissolution of Y{sub 2}O{sub 3} and TiN, (b) re-formation of TiN and in situ formation of TiC, (c) growth of TiN, TiC and the distribution of Y atoms. - Highlights: • Coatings showing metallurgical bonding with the substrate were fabricated. • The effect of Y{sub 2}O{sub 3} on the refinement of the microstructure is notable. • A kind of Y{sub 2}O{sub 3} centered core–shell structure was picked out in the coating. • Microhardness and wear resistance of the coatings was enhanced significantly.

  1. TiN-conductive carbon black composite as counter electrode for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Li, G.R.; Wang, F.; Song, J.; Xiong, F.Y.; Gao, X.P.

    2012-01-01

    Highlights: ► The TiN nanoparticles are highly dispersed on conductive carbon black matrix (CCB). ► The well dispersion of TiN nanoparticles can improve electrochemical performance. ► The TiN/CCB shows a high photovoltaic performance with high conversion efficiency. - Abstract: TiN-conductive carbon black (CCB)/Ti electrodes are prepared by the nitridation of TiO 2 –CCB mixtures filmed on metallic Ti substrate in ammonia atmosphere. It is demonstrated from X-ray diffraction (XRD) and scanning electron microscopy (SEM) that TiN nanoparticles are highly dispersed on the CCB matrix in the composites. TiN–CCB/Ti electrodes show outstanding electrochemical performances as compared to individual TiN/Ti and CCB/Ti electrodes. In particular, the dye-sensitized solar cell (DSSC) using TiN–CCB (1:1, mass ratio)/Ti electrode presents an energy conversion efficiency of 7.92%, which is higher than that (6.59%) of the device using Pt/FTO (fluorine doped tin oxide) electrode measured under the same test conditions. Based on the analysis of cyclic voltammetry (CV) and electrochemical impedance spectra (EIS), the enhancements for the electrochemical and photochemical performance of TiN–CCB/Ti electrodes are attributed to the fact that the dispersed TiN nanoparticles in the CCB matrix provide an improved electrocatalytic activity and a facilitated diffusion for triiodine ions. This work shows a facile approach to develop metal nitrides–carbon composites as counter electrodes for DSSCs. High energy conversion efficiency and low lost will make the composites have significant potential for replacing the conventional Pt/FTO electrodes in DSSCs.

  2. Evaluation on the characteristics of tin-silver-bismuth solder

    Science.gov (United States)

    Xia, Z.; Shi, Y.; Chen, Z.

    2002-02-01

    Tin-silver-bismuth solder is characterized by its lower melting point, good wetting behavior, and good mechanical property for which it is expected to be a new lead-free solder to replace tin-lead solder. In this article, Sn-3.33Ag-4.83Bi solder was investigated concerning its physical, spreading, and mechanical properties under specific conditions. Cooling curves and DSC results showed that it was close to eutectic composition (m.p. 210° 212 °C). Coefficiency of thermal expansion (CTE) of this solder, between that of PCBs and copper substrates, was beneficial to alleviate the thermal mismatch of the substrates. It was also a good electrical and thermal conductor. Using a rosin-based, mildly activated (RMA) flux, a spreading test indicated that SnAgBi solder paste had good solderability. Meanwhile, the solder had high tensile strength and fracture energy. Its fracture mechanism was a mixture of ductile and brittle fracture morphology. The metallographic and EDAX analyses indicated that it was composed of a tin-based solid solution and some intermetallic compound (IMC) that could strengthen the substrate. However, these large needle-like IMCs would cut the substrate and this resulted in the decreasing of the toughness of the solder.

  3. Cyclic voltammetric study of tin hexacyanoferrate for aqueous battery applications

    Directory of Open Access Journals (Sweden)

    Denys Gromadskyi

    2016-09-01

    Full Text Available A hybrid composite containing 65 mass % of tin hexacyanoferrate mixed with 35 mass % of carbon nanotubes has been synthesized and its electrochemical behavior as a negative electrode in alkali metal-ion batteries has been studied in 1 mol L-1 aqueous solution of sodium sulfate. The specific capacity of pure tin hexacyanoferrate is 58 mAh g-1, whereas the specific capacity normalized per total electrode mass of the composite studied reaches 34 mAh g-1. The estimated maximal specific power of an aqueous alkali-metal ion battery with a tin hexacyanoferrate electrode is ca. 3.6 kW kg-1 being comparable to characteristics of industrial electric double-layer capacitors. The maximal specific energy accumulated by this battery may reach 25.6 Wh kg-1 at least three times exceeding the specific energy for supercapacitors.

  4. Synthesize of Graphene-Tin Oxide Nanocomposite and Its Photocatalytic Properties for the Degradation of Organic Pollutants Under Visible Light.

    Science.gov (United States)

    Shanmugam, M; Jayavel, R

    2015-09-01

    Graphene-tinoxide nanocomposite has been synthesised by coating SnO2 nanoparticles on graphene sheets by the redox reaction between graphene oxide (GO) and tin chloride. Graphene oxide was reduced to graphene and Sn2+ was oxidized to SnO2 during the redox reaction, resulting in the uniform distribution of SnO2 nanoparticles on graphene sheets. The synthesised material was characterized by XRD, SEM, AFM, FT-IR, UV-vis, TGA and Raman spectroscopic studies. SEM and AFM studies reveal the formation of wrinkled paper like structure of graphene sheets with uniform coating of SnO2 nanoparticles on either side. The strong photocatalytic degradation of Methylene orange (MO) dye was analysed using G-SnO2 nanocomposite under the visible light irradiation.

  5. Boron oxide–tin oxide/graphene composite as anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Lina [Department of chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Qin, Xue, E-mail: qinxue@tju.edu.cn [Department of chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071 (China); Meng, Wei; Cao, Ning; Song, Zhonghai [Department of chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)

    2016-11-15

    Highlights: • B{sub 2}O{sub 3}–SnO{sub 2}/G anode material is prepared by chemical heat solvent method for LIBs. • B{sub 2}O{sub 3}–SnO{sub 2}/G shows much improved cycling performance and rate capability. • B{sub 2}O{sub 3} plays an important role in improving the performance. - Abstract: B{sub 2}O{sub 3}–SnO{sub 2}/graphene (B{sub 2}O{sub 3}–SnO{sub 2}/G) composite is fabricated via a chemical heat solvent method and utilized as anode material for lithium ion batteries. The added B{sub 2}O{sub 3} dramatically improves the electrochemical performance of lithium ion batteries compared to the SnO{sub 2}/G composite. The B{sub 2}O{sub 3}–SnO{sub 2}/G composites as anode show an outstanding discharge capacity of 1404.9 mAh g{sup −1} at 500 mA g{sup −1} after 200 cycles and an excellent rate capacity, which apparently outperforms the previously reported SnO{sub 2}-based anode material. These improved electrochemical performance characteristics are due to the B{sub 2}O{sub 3} played a buffering role, which are easily beneficial for accommodating the volume change during the lithium ions insertion/extraction processes. Furthermore, boron atoms can accept electrons for its electron-deficient nature and boron ions could release electrons, which lead to electrons' increased density and conductivity are increased. The results indicate that the B{sub 2}O{sub 3}–SnO{sub 2}/G composite is a promising anode material for lithium ion batteries.

  6. Fabrication of high-performance fluorine doped-tin oxide film using flame-assisted spray deposition

    Energy Technology Data Exchange (ETDEWEB)

    Purwanto, Agus, E-mail: Aguspur@uns.ac.id [Department of Chemical Engineering, Faculty of Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A, Surakarta, Central Java 57126 (Indonesia); Widiyandari, Hendri [Department of Physics, Faculty of Mathematics and Natural Sciences, Diponegoro University, Jl. Prof. Dr. Soedarto, Tembalang, Semarang 50275 (Indonesia); Jumari, Arif [Department of Chemical Engineering, Faculty of Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A, Surakarta, Central Java 57126 (Indonesia)

    2012-01-01

    A high-performance fluorine-doped tin oxide (FTO) film was fabricated by flame-assisted spray deposition method. By varying the NH{sub 4}F doping concentration, the optimal concentration was established as 8 at.%. X-ray diffractograms confirmed that the as-grown FTO film was tetragonal SnO{sub 2}. In addition, the FTO film was comprised of nano-sized grains ranging from 40 to 50 nm. The heat-treated FTO film exhibited a sheet resistance of 21.8 {Omega}/{open_square} with an average transmittance of 81.9% in the visible region ({lambda} = 400-800 nm). The figures of merit shows that the prepared FTO film can be used for highly efficient dye-sensitized solar cells electrodes.

  7. Bio-active synthesis of tin oxide nanoparticles using eggshell membrane for energy storage application

    Science.gov (United States)

    Celina Selvakumari, J.; Nishanthi, S. T.; Dhanalakshmi, J.; Ahila, M.; Pathinettam Padiyan, D.

    2018-05-01

    Nano-sized tin oxide (SnO2) particles were synthesized using eggshell membrane (ESM), a natural bio-waste from the chicken eggshell. The crystallization of SnO2 into the tetragonal structure was confirmed from powder X-ray diffraction and the crystallite size ranged from 13 to 40 nm. Various shapes including rod, hexagonal and spherical SnO2 nanoparticles were observed from the morphological studies. The electrochemical impedance study revealed a lower charge transfer resistance (Rct) of 8.565 Ω and the presence of a constant phase element which arised due to surface roughness and porosity. Capacitive behavior seen in the cyclic voltammetry curve of the prepared SnO2 nanoparticles, find future applications in supercapacitors.

  8. Composite modulation of Fano resonance in plasmonic microstructures by electric-field and microcavity

    International Nuclear Information System (INIS)

    Zhang, Fan; Wu, Chenyun; Yang, Hong; Hu, Xiaoyong; Gong, Qihuang

    2014-01-01

    Composite modulation of Fano resonance by using electric-field and microcavity simultaneously is realized in a plasmonic microstructure, which consists of a gold nanowire grating inserted into a Fabry-Perot microcavity composited of a liquid crystal layer sandwiched between two indium tin oxide layers. The Fano resonance wavelength varies with the applied voltage and the microcavity resonance. A large shift of 48 nm in the Fano resonance wavelength is achieved when the applied voltage is 20 V. This may provide a new way for the study of multi-functional integrated photonic circuits and chips based on plasmonic microstructures

  9. Composite modulation of Fano resonance in plasmonic microstructures by electric-field and microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; Wu, Chenyun; Yang, Hong [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong, E-mail: xiaoyonghu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-11-03

    Composite modulation of Fano resonance by using electric-field and microcavity simultaneously is realized in a plasmonic microstructure, which consists of a gold nanowire grating inserted into a Fabry-Perot microcavity composited of a liquid crystal layer sandwiched between two indium tin oxide layers. The Fano resonance wavelength varies with the applied voltage and the microcavity resonance. A large shift of 48 nm in the Fano resonance wavelength is achieved when the applied voltage is 20 V. This may provide a new way for the study of multi-functional integrated photonic circuits and chips based on plasmonic microstructures.

  10. Epitaxy-enabled vapor-liquid-solid growth of tin-doped indium oxide nanowires with controlled orientations

    KAUST Repository

    Shen, Youde

    2014-08-13

    Controlling the morphology of nanowires in bottom-up synthesis and assembling them on planar substrates is of tremendous importance for device applications in electronics, photonics, sensing and energy conversion. To date, however, there remain challenges in reliably achieving these goals of orientation-controlled nanowire synthesis and assembly. Here we report that growth of planar, vertical and randomly oriented tin-doped indium oxide (ITO) nanowires can be realized on yttria-stabilized zirconia (YSZ) substrates via the epitaxy-assisted vapor-liquid-solid (VLS) mechanism, by simply regulating the growth conditions, in particular the growth temperature. This robust control on nanowire orientation is facilitated by the small lattice mismatch of 1.6% between ITO and YSZ. Further control of the orientation, symmetry and shape of the nanowires can be achieved by using YSZ substrates with (110) and (111), in addition to (100) surfaces. Based on these insights, we succeed in growing regular arrays of planar ITO nanowires from patterned catalyst nanoparticles. Overall, our discovery of unprecedented orientation control in ITO nanowires advances the general VLS synthesis, providing a robust epitaxy-based approach toward rational synthesis of nanowires. © 2014 American Chemical Society.

  11. Smooth Nanowire/Polymer Composite Transparent Electrodes

    KAUST Repository

    Gaynor, Whitney; Burkhard, George F.; McGehee, Michael D.; Peumans, Peter

    2011-01-01

    Smooth composite transparent electrodes are fabricated via lamination of silver nanowires into the polymer poly-(4,3-ethylene dioxythiophene): poly(styrene-sulfonate) (PEDOT:PSS). The surface roughness is dramatically reduced compared to bare nanowires. High-efficiency P3HT:PCBM organic photovoltaic cells can be fabricated using these composites, reproducing the performance of cells on indium tin oxide (ITO) on glass and improving the performance of cells on ITO on plastic. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Smooth Nanowire/Polymer Composite Transparent Electrodes

    KAUST Repository

    Gaynor, Whitney

    2011-04-29

    Smooth composite transparent electrodes are fabricated via lamination of silver nanowires into the polymer poly-(4,3-ethylene dioxythiophene): poly(styrene-sulfonate) (PEDOT:PSS). The surface roughness is dramatically reduced compared to bare nanowires. High-efficiency P3HT:PCBM organic photovoltaic cells can be fabricated using these composites, reproducing the performance of cells on indium tin oxide (ITO) on glass and improving the performance of cells on ITO on plastic. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    Science.gov (United States)

    Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei

    2015-10-01

    Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  14. Structural and optical studies of 100 MeV Au irradiated thin films of tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Manoj Kumar [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110 078 (India); Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Kumar, Rajesh, E-mail: rajeshkumaripu@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110 078 (India)

    2013-11-01

    Thin films of tin(IV) oxide (SnO{sub 2}) of 100 nm thickness were grown on silicon (1 0 0) matrices by electron beam evaporation deposition technique under high vacuum. The thicknesses of these films were monitored by piezo-sensor attached to the deposition chamber. Nanocrystallinity is achieved in these thin films by 100 MeV Au{sup 8+} using 1 pnA current at normal incidence with ion fluences varying from 1 × 10{sup 11} ions/cm{sup 2} to 5 × 10{sup 13} ions/cm{sup 2}. Swift Heavy Ion beam irradiation was carried out by using 15 UD Pelletron Accelerator at IUAC, New Delhi, India. Optical studies of pristine and ion irradiated thin films were characterized by UV–Visible spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. Prominent peak at 610 cm{sup −1} in FTIR spectrum confirmed the O–Sn–O bonding of tin(IV) oxide. For Surface topographical studies and grain size calculations, these films were characterized by Atomic Force Microscope (AFM) using Nanoscope III-A. Crystallinity and phase transformation due to irradiation of pristine and irradiated films were characterized by Glancing Angle X-ray Diffraction (GAXRD) using Brucker-D8 advance model. GAXRD results show improvement in crystallinity and phase transformation due to swift heavy ion irradiation. Grain size distribution was verified by AFM and GAXRD results. Swift heavy ion induced modifications in thin films of SnO{sub 2} were confirmed by the presence of prominent peaks at 2θ values of 30.65°, 32.045°, 43.94°, 44.96° and 52.36° in GAXRD spectrum.

  15. Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity

    OpenAIRE

    Deepak Kumar Kaushik; K. Uday Kumar; A. Subrahmanyam

    2017-01-01

    Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes) in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl∼1; kF is the Fermi wave vector and l ...

  16. Electrochemical Characterization of Nanoporous Nickel Oxide Thin Films Spray-Deposited onto Indium-Doped Tin Oxide for Solar Conversion Scopes

    Directory of Open Access Journals (Sweden)

    Muhammad Awais

    2015-01-01

    Full Text Available Nonstoichiometric nickel oxide (NiOx has been deposited as thin film utilizing indium-doped tin oxide as transparent and electrically conductive substrate. Spray deposition of a suspension of NiOx nanoparticles in alcoholic medium allowed the preparation of uniform NiOx coatings. Sintering of the coatings was conducted at temperatures below 500°C for few minutes. This scalable procedure allowed the attainment of NiOx films with mesoporous morphology and reticulated structure. The electrochemical characterization showed that NiOx electrodes possess large surface area (about 1000 times larger than their geometrical area. Due to the openness of the NiOx morphology, the underlying conductive substrate can be contacted by the electrolyte and undergo redox processes within the potential range in which NiOx is electroactive. This requires careful control of the conditions of polarization in order to prevent the simultaneous occurrence of reduction/oxidation processes in both components of the multilayered electrode. The combination of the open structure with optical transparency and elevated electroactivity in organic electrolytes motivated us to analyze the potential of the spray-deposited NiOx films as semiconducting cathodes of dye-sensitized solar cells of p-type when erythrosine B was the sensitizer.

  17. Tin electrodeposition from sulfate solution containing a benzimidazolone derivative

    Directory of Open Access Journals (Sweden)

    Said BAKKALI

    2016-11-01

    Full Text Available Tin electrodeposition in an acidic medium in the presence of N,N’-1,3-bis-[N-3-(6-deoxy-3-O-methyl-D-glucopyranose-6-yl-2-oxobenzimidazol-1-yl]-2-tetradecyloxypropane as an additive was investigated in this work. The adequate current density and the appropriate additive concentration were determined by gravimetric measurements. Chronopotentiometric curves showed that the presence of the additive caused an increase in the overpotential of tin reduction. The investigations by cyclic voltammetry technique revealed that, in the presence and in absence of the additive, there were two peaks, one in the cathodic side attributed to the reduction of Sn2+ and the other one in the anodic side assigned to the oxidation of tin previously formed during the cathodic scan. The surface morphology of the tin deposits was studied by scanning electron microscopy (SEM and XRD.

  18. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Wenya [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); Zhou, Qun, E-mail: zhq@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); Li, Shuangshuang [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China); Zhao, Wei; Li, Na [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); Zheng, Junwei, E-mail: jwzheng@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China)

    2015-10-30

    Highlights: • Gold nanoparticles assembled on electrodes are incorporated into polyaniline film. • Composite film electrodes exhibit synergistic effect on electrocatalytic oxidation. • Ascorbic acid and dopamine can be detected simultaneously on composite electrodes. - Abstract: Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  19. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    International Nuclear Information System (INIS)

    Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei

    2015-01-01

    Highlights: • Gold nanoparticles assembled on electrodes are incorporated into polyaniline film. • Composite film electrodes exhibit synergistic effect on electrocatalytic oxidation. • Ascorbic acid and dopamine can be detected simultaneously on composite electrodes. - Abstract: Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  20. The Effects of Oxidation Layer, Temperature, and Stress on Tin Whisker Growth: A Short Review

    Science.gov (United States)

    Mahim, Z.; Salleh, M. A. A.; Khor, C. Y.

    2018-03-01

    In order to reduce the Tin (Sn) whisker growth phenomenon in solder alloys, the researcher all the world has studied the factor of this behaviour. However, this phenomenon still hunted the electronic devices and industries. The whiskers growth were able to cause the electrical short, which would lead to the catastrophic such as plane crush, the failure of heart pacemaker, and the lost satellite connection. This article focuses on the three factors that influence the whiskers growth in solder alloys which is stress, oxidation layer and temperature. This findings were allowed the researchers to develop various method on how to reduce the growth of the Sn whiskers.

  1. Effects of annealing temperature on mechanical durability of indium-tin oxide film on polyethylene terephthalate substrate

    International Nuclear Information System (INIS)

    Machinaga, Hironobu; Ueda, Eri; Mizuike, Atsuko; Takeda, Yuuki; Shimokita, Keisuke; Miyazaki, Tsukasa

    2014-01-01

    Effects of the annealing temperature on mechanical durability of indium-tin oxide (ITO) thin films deposited on polyethylene terephthalate (PET) substrates were investigated. The ITO films were annealed at the range from 150 °C to 195 °C after the DC sputtering deposition for the production of polycrystalline ITO layers on the substrates. The onset strains of cracking in the annealed ITO films were evaluated by the uniaxial stretching tests with electrical resistance measurements during film stretching. The results indicate that the onset strain of cracking in the ITO film is clearly increased by increasing the annealing temperature. The in-situ measurements of the inter-planer spacing of the (222) plane in the crystalline ITO films during film stretching by using synchrotron radiation strongly suggest that the large compressive stress in the ITO film increases the onset strain of cracking in the film. X-ray stress analyses of the annealed ITO films and thermal mechanical analyses of the PET substrates also clarifies that the residual compressive stress in the ITO film is enhanced with increasing the annealing temperature due to the considerably larger shrinkage of the PET substrate. - Highlights: • Indium-tin oxide (ITO) films were deposited on polyethylene terephthalate (PET). • Mechanical durability of the ITO is improved by high temperature post-annealing. • The shrinkage in the PET increases with rising the post-annealing temperature. • The shrinkage of the PET enhances the compressive stress in the ITO film. • Large compressive stress in the ITO film may improve its mechanical durability

  2. Nano-composite powders Ag-SnO2 prepared by reactive milling sintering and microstructural evolution

    International Nuclear Information System (INIS)

    Lorrain, Nathalie

    2000-01-01

    This work aims at controlling the synthesis and the sintering of nano-composite powders Ag-SnO 2 in order to obtain a dense and nano-structured material for electrical contact as a substitute of the toxic compound Ag - CdO. The powder is prepared by reactive milling from silver oxide (Ag 2 O) and silver bronze (Ag 3 Sn) powders. This process leads to a fine dispersion of silver and tin oxide nanometer sized particles. We first studied the mechanisms of reaction promoted by milling in vacuum and in air. A two-stage oxidation of tin in Ag 3 Sn occurs: during forced contact with Ag 2 O, tin oxidises in SnO, then in SnO 2 . In air, gaseous oxygen also participates to the oxidation of tin in SnO 2 but the reaction is slower because of the formation of silver carbonates from a reaction of Ag 2 O with CO 2 .Then the sintering behaviour of the nano-composite powder as a function of the compacting pressure and of the heating rate has been studied. We show: (i) a diffusion of pure silver towards porosity and free surfaces (exo-diffusion) which destroys the nano-structure and (ii) a severe de-densification. We show that the origin of these phenomena is due to carbonates on to the Ag 2 O starting powder, which are incorporated, in the milled Ag-SnO 2 powder in course of milling; during sintering, decomposition gases generate internal stresses. Low stresses lead to a diffusional creep with exo-diffusion whereas high stresses induce an intensive de-densification by local plastic deformation but no exo-diffusion. A modelling shows that exo-diffusion is limited by heating very quickly a strongly compacted powder that contains a high quantity of carbonates. The experimental results confirm the predictions of the model. Finally, we propose solutions allowing a full densification and a process for decreasing the tin oxide concentration. (author) [fr

  3. Surface energy for electroluminescent polymers and indium-tin-oxide

    International Nuclear Information System (INIS)

    Zhong Zhiyou; Yin Sheng; Liu Chen; Zhong Youxin; Zhang Wuxing; Shi Dufang; Wang Chang'an

    2003-01-01

    The contact angles on the thin films of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and indium-tin-oxide (ITO) were measured by the sessile-drop technique. The surface energies of the films were calculated using the Owens-Wendt (OW) and van Oss-Chaudhury-Good (vOCG) approaches. The overall total surface energies of MEH-PPV and the as-received ITO were 30.75 and 30.07 mJ/m 2 , respectively. Both approaches yielded almost the same surface energies. The surface energies were mainly contributed from the dispersion interactions or Lifshitz-van der Waals (LW) interactions for both MEH-PPV and ITO. The changes in the contact angles and surface energies of the ITO films, due to different solvent cleaning processes and oxygen plasma treatments, were analyzed. Experimental results revealed that the total surface energy of the ITO films increased after various cleaning processes. In comparison with different solvents used in this study, we found that methanol is an effective solvent for ITO cleaning, as a higher surface energy was observed. ITO films treated with oxygen plasma showed the highest surface energy. This work demonstrated that contact angle measurement is a useful method to diagnose the cleaning effect on ITO films

  4. Electrophoretic deposition (EPD) of multi-walled carbon nano tubes (MWCNT) onto indium-tin-oxide (ITO) glass substrates

    International Nuclear Information System (INIS)

    Mohd Roslie Ali; Shahrul Nizam Mohd Salleh

    2009-01-01

    Full text: Multi-Walled Carbon Nano tubes (MWCNT) were deposited onto Indium-Tin-Oxide (ITO)-coated glass substrates by introducing the use of Electrophoretic Deposition (EPD) as the method. The Multi-Walled Carbon Nano tubes (MWCNT) were dispersed ultrasonically in ethanol and sodium hydroxide (NaOH) to form stable suspension. The addition of Sodium Hydroxide in ethanol can stabilize the suspension, which was very important step before the deposition take place. Two substrates of Indium-Tin-Oxide(ITO)-coated glass placed in parallel facing each other (conductive side) into the suspension. The deposition occurs at room temperature, which the distance fixed at 1 cm between both electrodes and the voltage level applied was fixed at 400 V, respectively. The deposition time also was fixed at 30 minutes. The deposited ITO-Glass with Multi-Walled Carbon Nano tubes (MWCNT) will be characterized using Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), and Raman Microscope. The images of SEM shows that the Multi -Walled Carbon Nano tubes (MWCNT) were distributed uniformly onto the surface of ITO-Glass. The deposited ITO-Glass with Multi-Walled Carbon Nano tubes (MWCNT) could be the potential material in various practical applications such as field emission devices, fuel cells, and super capacitors. Electrophoretic deposition (EPD) technique was found to be an efficient technique in forming well distribution of Multi-Walled Carbon Nano tubes (MWCNT) onto ITO-Glass substrates, as proved in characterization methods, in which the optimum conditions will play the major role. (author)

  5. Characterization and Gas Sensing Properties of Copper-doped Tin Oxide Thin Films Deposited by Ultrasonic Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    Zhaoxia ZHAI

    2016-05-01

    Full Text Available Tin oxide-based thin films are deposited by ultrasonic spray pyrolysis technology, in which Cu addition is introduced to enhance the gas sensing performance by H2S detection. The thin films are porous and comprise nano-sized crystallites. One of the Cu-containing thin film sensors demonstrates a fast and significant response to H2S gas. The values of power law exponent n are calculated to discuss the sensitivity of the sensors, which is significantly promoted by Cu additive. The sensitivity of Cu-doped SnO2 gas sensors is determined by two mechanisms. One is the normal gas sensing mechanism of SnO2 grains, and the other is the promoted mechanism caused by the transformation between CuO and CuS in the H2S detection. DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12917

  6. Effect of Target Density on Microstructural, Electrical, and Optical Properties of Indium Tin Oxide Thin Films

    Science.gov (United States)

    Zhu, Guisheng; Zhi, Li; Yang, Huijuan; Xu, Huarui; Yu, Aibing

    2012-09-01

    In this paper, indium tin oxide (ITO) targets with different densities were used to deposit ITO thin films. The thin films were deposited from these targets at room temperature and annealed at 750°C. Microstructural, electrical, and optical properties of the as-prepared films were studied. It was found that the target density had no effect on the properties or deposition rate of radiofrequency (RF)-sputtered ITO thin films, different from the findings for direct current (DC)-sputtered films. Therefore, when using RF sputtering, the target does not require a high density and may be reused.

  7. Accommodation of tin in tetragonal ZrO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bell, B. D. C.; Grimes, R. W.; Wenman, M. R., E-mail: m.wenman@imperial.ac.uk [Department of Materials and Centre for Nuclear Engineering, Imperial College, London SW7 2AZ (United Kingdom); Murphy, S. T. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Burr, P. A. [Department of Materials and Centre for Nuclear Engineering, Imperial College, London SW7 2AZ (United Kingdom); Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Menai, New South Wales 2234 (Australia)

    2015-02-28

    Atomic scale computer simulations using density functional theory were used to investigate the behaviour of tin in the tetragonal phase oxide layer on Zr-based alloys. The Sn{sub Zr}{sup ×} defect was shown to be dominant across most oxygen partial pressures, with Sn{sub Zr}{sup ″} charge compensated by V{sub O}{sup ••} occurring at partial pressures below 10{sup −31 }atm. Insertion of additional positive charge into the system was shown to significantly increase the critical partial pressure at which Sn{sub Zr}{sup ″} is stable. Recently developed low-Sn nuclear fuel cladding alloys have demonstrated an improved corrosion resistance and a delayed transition compared to Sn-containing alloys, such as Zircaloy-4. The interaction between the positive charge and the tin defect is discussed in the context of alloying additions, such as niobium and their influence on corrosion of cladding alloys.

  8. Enhanced Water Oxidation Photoactivity of Nano-Architectured α-Fe2O3-WO3 Composite Synthesized by Single-Step Hydrothermal Method

    Science.gov (United States)

    Rahman, Gul; Joo, Oh-Shim; Chae, Sang Youn; Shah, Anwar-ul-Haq Ali; Mian, Shabeer Ahmad

    2018-04-01

    This study reports the one-step in situ synthesis of a hematite-tungsten oxide (α-Fe2O3-WO3) composite on fluorine-doped tin oxide substrate via a simple hydrothermal method. Scanning electron microscopy images indicated that the addition of tungsten (W) precursor into the reaction mixture altered the surface morphology from nanorods to nanospindles. Energy-dispersive x-ray spectroscopy analysis confirmed the presence of W content in the composite. From the ultraviolet-visible spectrum of α-Fe2O3-WO3, it was observed that absorption began at ˜ 600 nm which corresponded to the bandgap energy of ˜ 2.01 eV. The α-Fe2O3-WO3 electrode demonstrated superior performance, with water oxidation photocurrent density of 0.80 mA/cm2 (at 1.6 V vs. reversible hydrogen electrode under standard illumination conditions; AM 1.5G, 100 mW/cm2) which is 2.4 times higher than α-Fe2O3 (0.34 mA/cm2). This enhanced water oxidation performance can be attributed to the better charge separation properties in addition to the large interfacial area of small-sized particles present in the α-Fe2O3-WO3 nanocomposite film.

  9. The role of surface and deep-level defects on the emission of tin oxide quantum dots

    International Nuclear Information System (INIS)

    Kumar, Vinod; Kumar, Vijay; Som, S; Ntwaeaborwa, O M; Swart, H C; Neethling, J H; Lee, Mike

    2014-01-01

    This paper reports on the role of surface and deep-level defects on the blue emission of tin oxide quantum dots (SnO 2 QDs) synthesized by the solution-combustion method at different combustion temperatures. X-ray diffraction studies showed the formation of a single rutile SnO 2 phase with a tetragonal lattice structure. High resolution transmission electron microscopy studies revealed an increase in the average dot size from 2.2 to 3.6 nm with an increase of the combustion temperature from 350 to 550 °C. A decrease in the band gap value from 3.37 to 2.76 eV was observed with the increase in dot size due to the quantum confinement effect. The photoluminescence emission was measured for excitation at 325 nm and it showed a broad blue emission band for all the combustion temperatures studied. This was due to the creation of various oxygen and tin vacancies/defects as confirmed by x-ray photoelectron spectroscopy data. The origin of the blue emission in the SnO 2 QDs is discussed with the help of an energy band diagram. (paper)

  10. Interfacial reactions between indium tin oxide and triphenylamine tetramer layers induced by photoirradiation

    International Nuclear Information System (INIS)

    Satoh, Toshikazu; Fujikawa, Hisayoshi; Yamamoto, Ichiro; Murasaki, Takanori; Kato, Yoshifumi

    2008-01-01

    The effects of photoirradiation on the interfacial chemical reactions between indium tin oxide (ITO) films and layers of triphenylamine tetramer (TPTE) were investigated by using in situ x-ray photoelectron spectroscopy (XPS). Thin TPTE layers deposited onto sputter-deposited ITO films were irradiated with violet light-emitting diodes (peak wavelength: 380 nm). Shifts in the peak positions of spectral components that originated in the organic layer toward the higher binding-energy side were observed in the XPS profiles during the early stages of irradiation. No further peak shifts were observed after additional irradiation. An increase in the ratio of the organic component in the O 1s spectra was also observed during the photoirradiation. The ratio of the organic component increased in proportion to the cube root of the irradiation time. These results suggest that photoirradiation induces an increase in the height of the carrier injection barrier at the interface between TPTE and ITO in the early stages of the irradiation, possibly due to the rapid diffusion controlled formation and growth of an oxidized TPTE layer, which is considered to act as a high resistance layer

  11. Petrogenesis of Cretaceous volcanic-intrusive complex from the giant Yanbei tin deposit, South China: Implication for multiple magma sources, tin mineralization, and geodynamic setting

    Science.gov (United States)

    Li, Qian; Zhao, Kui-Dong; Lai, Pan-Chen; Jiang, Shao-Yong; Chen, Wei

    2018-01-01

    The giant Yanbei tin ore deposit is the largest porphyry-type tin deposit in South China. The orebodies are hosted by the granite porphyry in the central part of the Yanbei volcanic basin in southern Jiangxi Province. The Yanbei volcanic-intrusive complex mainly consists of dacitic-rhyolitic volcanic rocks, granite, granite porphyry and diabase dikes. In previous papers, the granite porphyry was considered as subvolcanic rocks, which came from the same single magma chamber with the volcanic rocks. In this study, zircon U-Pb ages and Hf isotope data, as well as whole-rock geochemical and Sr-Nd isotopic compositions of different magmatic units in the Yanbei complex are reported. Geochronologic results show that various magmatic units have different formation ages. The dacite yielded a zircon U-Pb age of 143 ± 1 Ma, and the granite porphyry has the emplacement age of 138 ± 1 Ma. Diabase dikes which represented the final stage of magmatism, yielded a zircon U-Pb age of 128 ± 1 Ma. Distinctive whole rock Sr-Nd and zircon Hf isotopic compositions suggest that these magmatic units were derived from different magma sources. The volcanic rocks were mainly derived from the partial melting of Paleoproterozoic metasedimentary rocks without additions of mantle-derived magma. The granite porphyry has an A-type geochemical affinity, and was derived from remelting of Paleo-Mesoproterozoic crustal source with involvement of a subordinate mantle-derived magma. The granite porphyry is also a typical stanniferous granite with high F (4070-6090 ppm) and Sn (7-39 ppm) contents. It underwent strongly crystal fractionation of plagioclase, K-feldspar, and accessory minerals (like apatite, Fe-Ti oxides), which may contribute to the tin mineralization. The diabase was derived by partial melting of enriched lithospheric mantle which had been metasomatised by slab-derived fluids. The change of magmatic sources reflected an increasing extensional tectonic environment, perhaps induced by slab

  12. Measuring the sustainability of tin in China.

    Science.gov (United States)

    Yang, Congren; Tan, Quanyin; Zeng, Xianlai; Zhang, Yuping; Wang, Zhishi; Li, Jinhui

    2018-09-01

    Tin is a component of many items used in daily activities, including solder in consumer electronics, tin can containing food and beverages, polyvinyl chloride stabilizers in construction products, catalysts in industrial processes, etc. China is the largest producer and consumer of refined tin, and more than 60% of this refined tin is applied in the electronics sector as solder. China is the leader in global economic growth; simultaneously, China is also a major producer and consumer of electrical and electronic equipment (EEE). Thus, future tin supply and demand in China are forecasted, based on the gross domestic product per capita and the average consumption of refined tin in past five years. Current tin reserves and identified resources in China can meet the future two decades of mine production, but import of tin will also be critical for China's future tin consumption. However, there will be a lot of uncertainty for import of tin from other countries. At the same time, virgin mining of geological ores is a process of high energy consumption and destruction of the natural environment. Hence recycling tin from Sn-bearing secondary resources like tailings and waste electrical and electronic equipment (WEEE) can not only address the shortage of tin mineral resources, but also save energy and protect the ecological environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The base metal of the oxide-coated cathode

    International Nuclear Information System (INIS)

    Poret, F.; Roquais, J.M.

    2005-01-01

    The oxide-coated cathode has been the most widely used electron emitter in vacuum electronic devices. From one manufacturing company to another the emissive oxide is either a double-Ba, Sr-or a triple-Ba, Sr, Ca-oxide, having always the same respective compositions. Conversely, the base metal composition is very often proprietary because of its importance in the cathode emission performances. The present paper aims at explaining the operation of the base metal through a review. After a brief introduction, the notion of activator is detailed along with their diffusivities and their associated interfacial compounds. Then, the different cathode life models are described prior to few comments on the composition choice of a base metal. Finally, the specificities of the RCA/Thomson 'bimetal' base metal are presented with a discussion on the optimized composition choice illustrated by a long-term life-test of five different melts

  14. Facile solvothermal synthesis of a graphene nanosheet-bismuth oxide composite and its electrochemical characteristics

    International Nuclear Information System (INIS)

    Wang Huanwen; Hu Zhongai; Chang Yanqin; Chen Yanli; Lei Ziqiang; Zhang Ziyu; Yang Yuying

    2010-01-01

    This work demonstrates a novel and facile route for preparing graphene-based composites comprising of metal oxide nanoparticles and graphene. A graphene nanosheet-bismuth oxide composite as electrode materials of supercapacitors was firstly synthesized by thermally treating the graphene-bismuth composite, which was obtained through simultaneous solvothermal reduction of the colloidal dispersions of negatively charged graphene oxide sheets in N,N-dimethyl formamide (DMF) solution of bismuth cations at 180 o C. The morphology, composition, and microstructure of the composites together with pure graphite oxide, and graphene were characterized using powder X-ray diffraction (XRD), FT-IR, field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetry and differential thermogravimetry (TG-DTG). The electrochemical behaviors were measured by cyclic voltammogram (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). The specific capacitance of 255 F g -1 (based on composite) is obtained at a specific current of 1 A g -1 as compared with 71 F g -1 for pure graphene. The loaded-bismuth oxide achieves a specific capacitance as high as 757 F g -1 even at 10 A g -1 . In addition, the graphene nanosheet-bismuth oxide composite electrode exhibits the excellent rate capability and well reversibility.

  15. Facile solvothermal synthesis of a graphene nanosheet-bismuth oxide composite and its electrochemical characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huanwen [Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Hu Zhongai, E-mail: zhongai@nwnu.edu.c [Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Chang Yanqin; Chen Yanli; Lei Ziqiang; Zhang Ziyu; Yang Yuying [Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2010-12-01

    This work demonstrates a novel and facile route for preparing graphene-based composites comprising of metal oxide nanoparticles and graphene. A graphene nanosheet-bismuth oxide composite as electrode materials of supercapacitors was firstly synthesized by thermally treating the graphene-bismuth composite, which was obtained through simultaneous solvothermal reduction of the colloidal dispersions of negatively charged graphene oxide sheets in N,N-dimethyl formamide (DMF) solution of bismuth cations at 180 {sup o}C. The morphology, composition, and microstructure of the composites together with pure graphite oxide, and graphene were characterized using powder X-ray diffraction (XRD), FT-IR, field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetry and differential thermogravimetry (TG-DTG). The electrochemical behaviors were measured by cyclic voltammogram (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). The specific capacitance of 255 F g{sup -1} (based on composite) is obtained at a specific current of 1 A g{sup -1} as compared with 71 F g{sup -1} for pure graphene. The loaded-bismuth oxide achieves a specific capacitance as high as 757 F g{sup -1} even at 10 A g{sup -1}. In addition, the graphene nanosheet-bismuth oxide composite electrode exhibits the excellent rate capability and well reversibility.

  16. One-step synthesis of Pt-reduced graphene oxide composites based on high-energy radiation technique

    International Nuclear Information System (INIS)

    Liu, Xuqiang; Jiang, Shubin; Huang, Wei; Song, Hongtao

    2014-01-01

    In this paper, we introduce a novel 60 Co-ray-irradiation-based one-step synthesis method of Pt-reduced graphene oxide composites (Pt-RGO) in acid aqueous solution. The compositional distribution of the particles in the samples was characterized by transmission electron microscopy. The structure and composition of the nanocomposite has been determined with a scanning electron microscope (SEM) equipped with an energy dispersion X-ray (EDS) analyzer. Surface enhanced Raman scattering (SERS) of graphene deposited by the Pt nanoparticles were investigated with the 514.5 nm excitation. It was found that small-sized and highly-dispersed Pt nanoparticles could easily grow on the RGO surface under acidic conditions. In addition, the obtained homogeneous dispersions exhibit long-term stability, which will facilitate the production of homogeneous composites. (orig.)

  17. Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes

    International Nuclear Information System (INIS)

    Fan, Le-Qing; Liu, Gui-Jing; Wu, Ji-Huai; Liu, Lu; Lin, Jian-Ming; Wei, Yue-Lin

    2014-01-01

    Graphene oxide/polypyrrole (GO/PPy) composite is synthesized by in situ oxidation polymerization of pyrrole (Py) in the presence of GO and used for supercapacitor electrode. The scanning electron microscope (SEM) observes that PPy nanoparticles are uniformly grown on the surfaces of GO sheets, leading to increase both the specific surface area and the electrical conductivity of material. GO/PPy composite exhibits better electrochemical performances than the pure individual components. When the mass ratio of GO to Py is 10:100, the GO/PPy composite electrode shows the highest capacitance of 332.6 F g −1 , and presents high rate capability. An asymmetric supercapacitor is fabricated by using the optimized GO/PPy composite as positive electrode and activated carbon (AC) as negative electrode. The asymmetric supercapacitor can be cycled reversibly in the voltage range of 0–1.6 V, and exhibits the maximum energy density of 21.4 Wh kg −1 at a power density of 453.9 W kg −1 . Furthermore, the GO/PPy//AC asymmetric supercapacitor displays good rate capability and excellent cyclic durability

  18. Crystallinity, etchability, electrical and mechanical properties of Ga doped amorphous indium tin oxide thin films deposited by direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Lee, Hyun-Jun; Song, Pung-Keun

    2014-01-01

    Indium tin oxide (ITO) and Ga-doped ITO (ITO:Ga) films were deposited on glass and polyimide (PI) substrates by direct current (DC) magnetron sputtering using different ITO:Ga targets (doped-Ga: 0, 0.1 and 2.9 wt.%). The films were deposited with a thickness of 50 nm and then post-annealed at various temperatures (room temperature-250 °C) in a vacuum chamber for 30 min. The amorphous ITO:Ga (0.1 wt.% Ga) films post-annealed at 220 °C exhibited relatively low resistivity (4.622x10 −4 Ω cm), indicating that the crystallinity of the ITO:Ga films decreased with increasing Ga content. In addition, the amorphous ITO:Ga films showed a better surface morphology, etchability and mechanical properties than the ITO films. - Highlights: • The Ga doped indium tin oxide (ITO) films crystallized at higher temperatures than the ITO films. • The amorphisation of ITO films increases with increasing Ga content. • Similar resistivity was observed between crystalline ITO and amorphous Ga doped ITO films. • Etching property of ITO film was improved with increasing Ga content

  19. Improvement of transistor characteristics and stability for solution-processed ultra-thin high-valence niobium doped zinc-tin oxide thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Jeng, Jiann-Shing, E-mail: jsjeng@mail.nutn.edu.tw

    2016-08-15

    Nb-doped Zinc tin oxide (NZTO) channel materials have been prepared by solution process in combination with the spin-coating method. All NZTO thin film transistors (TFTs) are n-type enhancement-mode devices, either without or with Nb additives. High-valence niobium ion (ionic charge = +5) has a larger ionic potential and similar ionic radius to Zn{sup 2+} and Sn{sup 4+} ions. As compared with the pure ZTO device, introducing Nb{sup 5+} ions into the ZTO channel layers can improve the electrical properties and bias stability of TFTs because of the reduction of the oxygen vacancies. This study discusses the connection among the material properties of the NZTO films and the electrical performance and bias stability of NZTO TFTs and how they are influenced by the Nb/(Nb + Sn) molar ratios of NZTO films. - Highlights: • Ultra-thin high-valence niobium doped zinc-tin oxide (NZTO) thin films are prepared using a solution process. • Nb dopants in ZTO films reduce the oxygen vacancy and subgap adsorption of the ZTO films. • The Nb-doping concentration of the NZTO channel layer has a strong influence on the TFT performance.

  20. Tin-Silver Alloys for Flip-Chip Bonding Studied with a Rotating Cylinder Electrode

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Pedersen, E.H.; Bech-Nielsen, G.

    1999-01-01

    Electrodeposition of solder for flip-chip bonding is studied in the form of a pyrophosphate/iodide tin-silver alloy bath. The objective is to obtain a uniform alloy composition, with 3.8 At.% silver, over a larger area. This specific alloy will provide an eutectic solder melting at 221°C (or 10°C...... photoresist, have shown a stable and promising alternative to pure tin and tin-lead alloys for flip-chip bonding applications....

  1. Design of photonic crystal surface emitting lasers with indium-tin-oxide top claddings

    Science.gov (United States)

    Huang, Shen-Che; Hong, Kuo-Bin; Chiu, Han-Lun; Lan, Shao-Wun; Chang, Tsu-Chi; Li, Heng; Lu, Tien-Chang

    2018-02-01

    Electrically pumped GaAs-based photonic crystal surface emitting lasers were fabricated using a simple fabrication process by directly capping the indium-tin-oxide transparent conducting thin film as the top cladding layer upon a photonic crystal layer. Optimization of the separate-confinement heterostructures of a laser structure is crucial to improving characteristics by providing advantageous optical confinements. The turn-on voltage, series resistance, threshold current, and slope efficiency of the laser with a 100 × 100 μm2 photonic crystal area operated at room temperature were 1.3 V, 1.5 Ω, 121 mA, and 0.2 W/A, respectively. Furthermore, we demonstrated a single-lobed lasing wavelength of 928.6 nm at 200 mA and a wavelength redshift rate of 0.05 nm/K in temperature-dependent measurements. The device exhibited the maximum output power of approximately 400 mW at an injection current of 2 A; moreover, divergence angles of less than 1° for the unpolarized circular-shaped laser beam were measured at various injection currents. Overall, the low threshold current, excellent beam quality, small divergence, high output power, and high-operating-temperature (up to 343 K) of our devices indicate that they can potentially fill the requirements for next-generation light sources and optoelectronic devices.

  2. Electrochemical migration of tin in electronics and microstructure of the dendrites

    DEFF Research Database (Denmark)

    Minzari, Daniel; Grumsen, Flemming Bjerg; Jellesen, Morten Stendahl

    2011-01-01

    The macro-, micro-, and nano-scale morphology and structure of tin dendrites, formed by electrochemical migration on a surface mount ceramic chip resistor having electrodes consisting of tin with small amounts of Pb (∼2wt.%) was investigated by scanning electron microscopy and transmission electr...... by the dehydration of the hydrated oxide originally formed in solution ex-situ in ambient air.......The macro-, micro-, and nano-scale morphology and structure of tin dendrites, formed by electrochemical migration on a surface mount ceramic chip resistor having electrodes consisting of tin with small amounts of Pb (∼2wt.%) was investigated by scanning electron microscopy and transmission electron...... microscopy including Energy dispersive X-ray spectroscopy and electron diffraction. The tin dendrites were formed under 5 or 12V potential bias in 10ppm by weight NaCl electrolyte as a micro-droplet on the resistor during electrochemical migration experiments. The dendrites formed were found to have...

  3. Composite of TiN nanoparticles and few-walled carbon nanotubes and its application to the electrocatalytic oxygen reduction reaction

    KAUST Repository

    Isogai, Shunsuke

    2011-11-30

    Nanoparticles meet nanotubes! Direct synthesis of TiN nanoparticles in a three-dimensional network of few-walled carbon nanotubes (FWCNTs) was achieved by using mesoporous graphitic carbon nitride (C 3N 4) as both a hard template and a nitrogen source. The TiN/FWCNT composite showed high performance for the oxygen reduction reaction in acidic media. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effects of tin concentrations on structural characteristics and electrooptical properties of tin-doped indium oxide films prepared by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Choong-Hoon; Yasui, Itaru; Shigesato, Yuzo [Tokyo Univ. (Japan). Inst. of Industrial Science

    1995-02-01

    Structural characteristics and electrooptical properties of Sn-doped In{sub 2}O{sub 3} (ITO) films were investigated in terms of Sn concentrations from 5.34 to 8.99 (Sn/In at.%) with changing oxygen partial pressure and substrate temperature during deposition, in spite of using an ITO target with the same Sn concentration (7.50 SnO{sub 2} wt%, 7.17 Sn/In at.%). The resistivity of the films deposited at 200 and 300degC had a clear tendency to decrease with decrease of the total Sn content. Sn atoms incorporated in the ITO films were classified into two types, i.e., electrically active substitutional Sn atoms contributing to carrier density and electrically nonactive impurities forming nonreducible tin-oxide complexes, which were revealed by precise lattice constant measurement. The change in the Sn concentration was found to be associated with the preferred orientation of the crystal grains, which was dominated by the deposition conditions and should reflect the crystal growth processes. (author).

  5. Effects of tin concentrations on structural characteristics and electrooptical properties of tin-doped indium oxide films prepared by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Yi, Choong-Hoon; Yasui, Itaru; Shigesato, Yuzo

    1995-01-01

    Structural characteristics and electrooptical properties of Sn-doped In 2 O 3 (ITO) films were investigated in terms of Sn concentrations from 5.34 to 8.99 (Sn/In at.%) with changing oxygen partial pressure and substrate temperature during deposition, in spite of using an ITO target with the same Sn concentration (7.50 SnO 2 wt%, 7.17 Sn/In at.%). The resistivity of the films deposited at 200 and 300degC had a clear tendency to decrease with decrease of the total Sn content. Sn atoms incorporated in the ITO films were classified into two types, i.e., electrically active substitutional Sn atoms contributing to carrier density and electrically nonactive impurities forming nonreducible tin-oxide complexes, which were revealed by precise lattice constant measurement. The change in the Sn concentration was found to be associated with the preferred orientation of the crystal grains, which was dominated by the deposition conditions and should reflect the crystal growth processes. (author)

  6. Patterning crystalline indium tin oxide by high repetition rate femtosecond laser-induced crystallization

    International Nuclear Information System (INIS)

    Cheng, Chung-Wei; Lin, Cen-Ying; Shen, Wei-Chih; Lee, Yi-Ju; Chen, Jenq-Shyong

    2010-01-01

    A method is proposed for patterning crystalline indium tin oxide (c-ITO) patterns on amorphous ITO (a-ITO) thin films by femtosecond laser irradiation at 80 MHz repetition rate followed by chemical etching. In the proposed approach, the a-ITO film is transformed into a c-ITO film over a predetermined area via the heat accumulation energy supplied by the high repetition rate laser beam, and the unirradiated a-ITO film is then removed using an acidic etchant solution. The fabricated c-ITO patterns are observed using scanning electron microscopy and cross-sectional transmission electron microscopy. The crystalline, optical, electrical properties were measured by X-ray diffraction, spectrophotometer, and four point probe station, respectively. The experimental results show that a high repetition rate reduces thermal shock and yields a corresponding improvement in the surface properties of the c-ITO patterns.

  7. Thin copolymer-cased light-emitting display made with fluorine-foped tin oxide substrates

    Directory of Open Access Journals (Sweden)

    Lessmann Rudolf

    2004-01-01

    Full Text Available Seven-segment displays are used to show numerical quantities in electronic equipment, being present in most of the low-end electronics. In this work we describe a novel organic light emitting display made with poly(1,10 decanedioxy 2 methoxy - 1,2 phenylene - 1,2 ethenylene - 3,6 dimethoxy - 1,4 phenylene - 1,2 ethenylene 3 methoxy - 1,4 - phenylene (OPPVDBC, tris(8-hydroxyquinolinealuminum salt (Alq3 and a hole injection layer (PEDOT:PSS: poly(3,4 - ethylenedioxythiophene : poly(styrenesulfonate. The general device structure is FTO/PEDOT:PSS/OPPVDBC/Ca/Al or FTO/PEDOT:PSS/OPPVDBC/Alq3/Ca/Al. The FTO (fluorine-doped tin oxide thin films are transparent (transmittance > 80 % in the visible region of the spectrum, conductive (< 15 omega/º for 200 nm thick films, and present high chemical stability.

  8. Gas Sensing of Fluorine Doped Tin Oxide Thin Films Prepared by Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    A. A. YADAV

    2008-05-01

    Full Text Available Fluorine doped tin oxide (F: SnO2 films have been prepared onto the amorphous glass substrates by a spray pyrolysis. XRD studies reveal that the material deposited is polycrystalline SnO2 and have tetragonal structure. It is observed that films are highly orientated along (200 direction. The direct optical band gap energy for the F: SnO2 films are found to be 4.15 eV. Gas sensing properties of the sensor were checked against combustible gases like H2, CO2 CO, C3H8, CH4.The H2 sensitivity of the F-doped SnO2 sensor was found to be increased. The increase in the sensitivity is discussed in terms of increased resistivity and reduced permeation of gaseous oxygen into the underlying sensing layer due to the surface modification of the sensor.

  9. Investigation of the Optoelectronic Properties of Ti-doped Indium Tin Oxide Thin Film.

    Science.gov (United States)

    Pu, Nen-Wen; Liu, Wei-Sheng; Cheng, Huai-Ming; Hu, Hung-Chun; Hsieh, Wei-Ting; Yu, Hau-Wei; Liang, Shih-Chang

    2015-09-21

    : In this study, direct-current magnetron sputtering was used to fabricate Ti-doped indium tin oxide (ITO) thin films. The sputtering power during the 350-nm-thick thin-film production process was fixed at 100 W with substrate temperatures increasing from room temperature to 500 °C. The Ti-doped ITO thin films exhibited superior thin-film resistivity (1.5 × 10 - ⁴ Ω/cm), carrier concentration (4.1 × 10 21 cm - ³), carrier mobility (10 cm²/Vs), and mean visible-light transmittance (90%) at wavelengths of 400-800 nm at a deposition temperature of 400 °C. The superior carrier concentration of the Ti-doped ITO alloys (>10 21 cm - ³) with a high figure of merit (81.1 × 10 - ³ Ω - ¹) demonstrate the pronounced contribution of Ti doping, indicating their high suitability for application in optoelectronic devices.

  10. Facilitated extracellular electron transfer of Shewanella loihica PV-4 by antimony-doped tin oxide nanoparticles as active microelectrodes.

    Science.gov (United States)

    Zhang, Xiaojian; Liu, Huan; Wang, Jinrong; Ren, Guangyuan; Xie, Beizhen; Liu, Hong; Zhu, Ying; Jiang, Lei

    2015-11-28

    Dissimilatory metal reducing bacteria are capable of extracellular electron transfer (EET) to insoluble metal oxides as external electron acceptors for their anaerobic respiration, which is recognized as an important energy-conversion process in natural and engineered environments, such as in mineral cycling, bioremediation, and microbial fuel/electrolysis cells. However, the low EET efficiency remains one of the major bottlenecks for its practical application. We report firstly that the microbial current generated by Shewanella loihica PV-4 (S. loihica PV-4) could be greatly improved that is up to ca. 115 fold, by adding antimony-doped tin oxide (ATO) nanoparticles in the electrochemical reactor. The results demonstrate that the biocompatible, electrically conductive ATO nanoparticles acted as active microelectrodes could facilitate the formation of a cells/ATO composite biofilm and the reduction of the outer membrane c-type cytochromes (OM c-Cyts) that are beneficial for the electron transfer from cells to electrode. Meanwhile, a synergistic effect between the participation of OM c-Cyts and the accelerated EET mediated by cell-secreted flavins may play an important role for the enhanced current generation in the presence of ATO nanoparticles. Moreover, it is worth noting that the TCA cycle in S. loihica PV-4 cells is activated by adding ATO nanoparticles, even if the potential is poised at +0.2 V, thereby also improving the EET process. The results presented here may provide a simple and effective strategy to boost the EET of S. loihica PV-4 cells, which is conducive to providing potential applications in bioelectrochemical systems.

  11. Building up Graphene-Based Conductive Polymer Composite Thin Films Using Reduced Graphene Oxide Prepared by γ-Ray Irradiation

    Directory of Open Access Journals (Sweden)

    Siyuan Xie

    2013-01-01

    Full Text Available In this paper, reduced graphene oxide (RGO was prepared by means of γ-ray irradiation of graphene oxide (GO in a water/ethanol mix solution, and we investigated the influence of reaction parameters, including ethanol concentration, absorbed dose, and dose rate during the irradiation. Due to the good dispersibility of the RGO in the mix solution, we built up flexible and conductive composite films based on the RGO and polymeric matrix through facile vacuum filtration and polymer coating. The electrical and optical properties of the obtained composite films were tested, showing good electrical conductivity with visible transmittance but strong ultraviolet absorbance.

  12. Hydrothermal synthesis of tungsten doped tin dioxide nanocrystals

    Science.gov (United States)

    Zhou, Cailong; Li, Yufeng; Chen, Yiwen; Lin, Jing

    2018-01-01

    Tungsten doped tin dioxide (WTO) nanocrystals were synthesized through a one-step hydrothermal method. The structure, composition and morphology of WTO nanocrystals were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, UV-vis diffuse reflectance spectra, zeta potential analysis and high-resolution transmission electron microscopy. Results show that the as-prepared WTO nanocrystals were rutile-type structure with the size near 13 nm. Compared with the undoped tin dioxide nanocrystals, the WTO nanocrystals possessed better dispersity in ethanol phase and formed transparent sol.

  13. Spark Plasma Sintering and Densification Mechanisms of Antimony-Doped Tin Oxide Nanoceramics

    Directory of Open Access Journals (Sweden)

    Junyan Wu

    2013-01-01

    Full Text Available Densification of antimony-doped tin oxide (ATO ceramics without sintering aids is very difficult, due to the volatilization of SnO2, formation of deleterious phases above 1000°C, and poor sintering ability of ATO particles. In this paper, monodispersed ATO nanoparticles were synthesized via sol-gel method, and then ATO nanoceramics with high density were prepared by spark plasma sintering (SPS technology using the as-synthesized ATO nanoparticles without the addition of sintering aids. The effect of Sb doping content on the densification was investigated, and the densification mechanisms were explored. The results suggest that ATO nanoparticles derived from sol-gel method show good crystallinity with a crystal size of 5–20 nm and Sb is incorporated into the SnO2 crystal structure. When the SPS sintering temperature is 1000°C and the Sb doping content is 5 at.%, the density of ATO nanoceramics reaches a maximum value of 99.2%. Densification mechanisms are explored in detail.

  14. Influence of indium doping on the properties of zinc tin oxide films and its application to transparent thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Mu Hee; Ma, Tae Young, E-mail: tyma@gnu.ac.kr

    2014-01-01

    In this study, the effects of indium (In) doping on the properties of zinc tin oxide (ZTO) films are reported. ZTO films were prepared by RF magnetron sputtering followed by In layer deposition, for use as the diffusion source. In order to protect the In layer from peeling, a second ZTO film was deposited on the In film. The annealing at 400 °C for 30 min was carried out to diffuse In atoms into the ZTO films. The structural, optical, and elemental properties of the annealed ZTO/In/ZTO films were investigated by X-ray diffraction, UV/vis spectrophotometry, and X-ray photoluminescence spectroscopy, respectively. The ZTO transparent thin film transistors employing the ZTO/In/ZTO films as the source/drain were prepared, and the effects of the In doped source/drain on the threshold voltage and mobility were characterized and analyzed. - Highlights: • We successfully doped zinc tin oxide (ZTO) films using In as a diffusion source. • Indium (In) was diffused in both directions with the diffusion coefficient of ∼ 4.3 × 10{sup −16} cm{sup 2}/s. • The mobility of ZTO thin film transistor was increased 1.6-times by adopting the In-diffused source/drain.

  15. Embeddability behaviour of tin-based bearing material in dry sliding

    International Nuclear Information System (INIS)

    Zeren, Adalet

    2007-01-01

    In this study, tin-based bearing material has been investigated in dry sliding conditions. The low Sb content (7%) is known as SAE 12 and is Sn-Sb-Cu alloy and is widely used in the automotive industry. Wear and friction characteristics were determined with respect to sliding distance, sliding speed and bearing load, using a Tecquipment HFN type 5 journal bearing test equipment. Scanning electron microscopy (SEM) and energy-disperse X-ray spectrography (EDX) are used to understand the tribological events, especially embeddability. Thus, the purpose of this study is to investigate the tribological properties of tin-based bearing alloy used especially in heavy industrial service conditions. Tests were carried out in dry sliding conditions, since despite the presence of lubricant film, under heavy service conditions dry sliding may occur from time to time, causing local wear. As a result of local wear, bearing materials and bearing may be out of their tolerance limits in their early lifetime. Embeddability is an important property due to inversely affecting the hardness and the strength of the bearing

  16. High temperature oxidation resistant cermet compositions

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1976-01-01

    Cermet compositions are designed to provide high temperature resistant refractory coatings on stainless steel or molybdenum substrates. A ceramic mixture of chromium oxide and aluminum oxide form a coating of chromium oxide as an oxidation barrier around the metal particles, to provide oxidation resistance for the metal particles.

  17. Deposition of tin oxide doped with fluorine produced by sol-gel method and deposited by spray-pyrolysis

    International Nuclear Information System (INIS)

    Maia, Paulo Herbert Franca; Lima, Francisco Marcone; Sena, Aline Cosmo de; Silva, Alvaro Neuton; Almeida, Ana Fabiola Leite de; Freire, Francisco Nivaldo Aguiar

    2014-01-01

    Solar energy is one of the most important sources of renewable energy today, but its production is based on silicon cells, expensive and difficult to produce, so the research seek new materials to replace them. This work aims to deposit tin oxide doped with fluorine on the glass substrate using the sol-gel method to provide a working solution and spray pyrolysis technique to perform the deposition. F-SnO2 (FTO) were synthesized by sol-gel method, employing NH_4F and SnCl_2 precursor in an ethanol solution. Before the formation of the gel phase, the entire solution was sprayed, with the aid of a pistol aerographic substrate under heated at 600 °C divided by 50 applications and cooled in the furnace. The substrates had resistances between 10 and 30 S.cm. The energy dispersive x-ray (EDS) revealed the presence of fluorine in the SnO_2 network. (author)

  18. Realization of ultrathin silver layers in highly conductive and transparent zinc tin oxide/silver/zinc tin oxide multilayer electrodes deposited at room temperature for transparent organic devices

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Thomas; Schmidt, Hans; Fluegge, Harald; Nikolayzik, Fabian; Baumann, Ihno; Schmale, Stephan; Johannes, Hans-Hermann; Rabe, Torsten [Institut fuer Hochfrequenztechnik, Technische Universitaet Braunschweig, Schleinitzstr. 22, 38106 Braunschweig (Germany); Hamwi, Sami, E-mail: sami.hamwi@ihf.tu-bs.de [Institut fuer Hochfrequenztechnik, Technische Universitaet Braunschweig, Schleinitzstr. 22, 38106 Braunschweig (Germany); Riedl, Thomas [Institute of Electronic Devices, Bergische Universitaet Wuppertal, Rainer-Gruenter Str. 21, 42119 Wuppertal (Germany); Kowalsky, Wolfgang [Institut fuer Hochfrequenztechnik, Technische Universitaet Braunschweig, Schleinitzstr. 22, 38106 Braunschweig (Germany)

    2012-05-01

    We report on transparent and highly conductive multilayer electrodes prepared at room temperature by RF sputtering of zinc tin oxide (ZTO) and thermal evaporation of ultrathin silver (Ag) as top contact for transparent organic light emitting diodes (TOLED). Specifically, we study the morphological, electrical and optical properties of the multilayer structure in particular of the thin Ag film. The tendency of Ag to form agglomerates over time on top of ZTO is shown by atomic force microscopy. From the optical constants derived from ellipsometric measurements we evidenced a bulk like behavior of an Ag film with a thickness of 8 nm embedded in ZTO leading to a low sheet resistance of 9 {Omega}/sq. Furthermore we verify the optical constants by simulation of an optimized ZTO/Ag/ZTO structure. As an application we present a highly efficient TOLED providing a device transmittance of > 82% in the visible part of the spectrum. The TOLED shows no damage caused by sputtering on a lighting area of 80 mm{sup 2} and exhibits efficiencies of 43 cd/A and 36 lm/W.

  19. Synthesis and Mössbauer spectroscopy of formal tin(II) dichloride and dihydride species supported by Lewis acids and bases.

    Science.gov (United States)

    Al-Rafia, S M Ibrahim; Shynkaruk, Olena; McDonald, Sean M; Liew, Sean K; Ferguson, Michael J; McDonald, Robert; Herber, Rolfe H; Rivard, Eric

    2013-05-06

    (119)Sn Mössbauer spectroscopy was performed on a series of formal Sn(II) dichloride and dihydride adducts bound by either carbon- or phosphorus-based electron pair donors. Upon binding electron-withdrawing metal pentacarbonyl units to the tin centers in LB·SnCl2·M(CO)5 (LB = Lewis base; M = Cr or W), a significant decrease in isomer shift (IS) was noted relative to the unbound Sn(II) complexes, LB·SnCl2, consistent with removal of nonbonding s-electron density from tin upon forming Sn-M linkages (M = Cr and W). Interestingly, when the nature of the Lewis base in the series LB·SnCl2·W(CO)5 was altered, very little change in the IS values was noted, implying that the LB-Sn bonds were constructed with tin-based orbitals of large p-character (as supported by prior theoretical studies). In addition, variable temperature Mössbauer measurements were used to determine the mean displacement of the tin atoms in the solid state, a parameter that can be correlated with the degree of covalent bonding involving tin in these species.

  20. A VIRTUAL GLOBE-BASED MULTI-RESOLUTION TIN SURFACE MODELING AND VISUALIZETION METHOD

    Directory of Open Access Journals (Sweden)

    X. Zheng

    2016-06-01

    Full Text Available The integration and visualization of geospatial data on a virtual globe play an significant role in understanding and analysis of the Earth surface processes. However, the current virtual globes always sacrifice the accuracy to ensure the efficiency for global data processing and visualization, which devalue their functionality for scientific applications. In this article, we propose a high-accuracy multi-resolution TIN pyramid construction and visualization method for virtual globe. Firstly, we introduce the cartographic principles to formulize the level of detail (LOD generation so that the TIN model in each layer is controlled with a data quality standard. A maximum z-tolerance algorithm is then used to iteratively construct the multi-resolution TIN pyramid. Moreover, the extracted landscape features are incorporated into each-layer TIN, thus preserving the topological structure of terrain surface at different levels. In the proposed framework, a virtual node (VN-based approach is developed to seamlessly partition and discretize each triangulation layer into tiles, which can be organized and stored with a global quad-tree index. Finally, the real time out-of-core spherical terrain rendering is realized on a virtual globe system VirtualWorld1.0. The experimental results showed that the proposed method can achieve an high-fidelity terrain representation, while produce a high quality underlying data that satisfies the demand for scientific analysis.