WorldWideScience

Sample records for tin oxide fto

  1. Electrochemistry behavior of endogenous thiols on fluorine doped tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Luciana; Molero, Leonard; Tapia, Ricardo A.; Rio, Rodrigo del; Valle, M. Angelica del; Antilen, Monica [Departamento de Quimica Inorganica, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Av Vicuna Mackenna 4860, Casilla 306, Correo 22, Macul, Santiago (Chile); Armijo, Francisco, E-mail: jarmijom@uc.cl [Departamento de Quimica Inorganica, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Av Vicuna Mackenna 4860, Casilla 306, Correo 22, Macul, Santiago (Chile)

    2011-10-01

    Highlights: > The first time that fluorine doped tin oxide electrodes are used for the electrooxidation of endogenous thiols. > Low potentials of electrooxidation were obtained for the different thiols. > The electrochemical behavior of thiols depends on the pH and the ionic electroactive species, the electrooxidation proceeds for a process of adsorption of electroactive species on FTO and high values the heterogeneous electron tranfer rate constant of the reaction were obtained. - Abstract: In this work the electrochemical behavior of different thiols on fluorine doped tin oxide (FTO) electrodes is reported. To this end, the mechanism of electrochemical oxidation of glutathione (GSH), cysteine (Cys), homocysteine (HCys) and acetyl-cysteine (ACys) at different pH was investigated. FTO showed electroactivity for the oxidation of the first three thiols at pH between 2.0 and 4.0, but under these conditions no acetyl-cysteine oxidation was observed on FTO. Voltammetric studies of the electro-oxidation of GSH, Cys and HCys showed peaks at about 0.35, 0.29, and 0.28 V at optimum pH 2.4, 2.8 and 3.4, respectively. In addition, this study demonstrated that GSH, Cys and HCys oxidation occurs when the zwitterion is the electro-active species that interact by adsorption on FTO electrodes. The overall reaction involves 4e{sup -}/4H{sup +} and 2e{sup -}/2H{sup +}, respectively, for HCys and for GSH and Cys and high heterogeneous electron transfer rate constants. Besides, the use of FTO for the determination of different thiols was evaluated. Experimental square wave voltammetry shows a linear current vs. concentrations response between 0.1 and 1.0 mM was found for HCys and GSH, indicating that these FTO electrodes are promising candidates for the efficient electrochemical determination of these endogenous thiols.

  2. Fundamental electrochemiluminescence characteristics of fluorine-doped tin oxides synthesized by sol-gel combustion.

    Science.gov (United States)

    Moon, B H; Chaoumead, A; Sung, Y M

    2013-10-01

    Fluorine-doped tin oxide (FTO) materials synthesized by sol-gel combustion method were investigated for electrochemical luminescence (ECL) application. Effects of sol-gel combustion conditions on the structures and morphology of the porous FTO (p-FTO) materials were studied. ECL efficiency of p-FTO-based cell was about 251 cd/m2 at 4 V bias, which is higher than the sell using only FTO electrodes (102.8 cd/m2). The highest intensity of the emitting light was obtained at the wavelength of about 610 nm. The porous FTO layer was effective for increasing ECL intensities.

  3. Low Temperature Synthesis of Fluorine-Doped Tin Oxide Transparent Conducting Thin Film by Spray Pyrolysis Deposition.

    Science.gov (United States)

    Ko, Eun-Byul; Choi, Jae-Seok; Jung, Hyunsung; Choi, Sung-Churl; Kim, Chang-Yeoul

    2016-02-01

    Transparent conducting oxide (TCO) is widely used for the application of flat panel display like liquid crystal displays and plasma display panel. It is also applied in the field of touch panel, solar cell electrode, low-emissivity glass, defrost window, and anti-static material. Fluorine-doped tin oxide (FTO) thin films were fabricated by spray pyrolysis of ethanol-added FTO precursor solutions. FTO thin film by spray pyrolysis is very much investigated and normally formed at high temperature, about 500 degrees C. However, these days, flexible electronics draw many attentions in the field of IT industry and the research for flexible transparent conducting thin film is also required. In the industrial field, indium-tin oxide (ITO) film on polymer substrate is widely used for touch panel and displays. In this study, we investigated the possibility of FTO thin film formation at relatively low temperature of 250 degrees C. We found out that the control of volume of input precursor and exhaust gases could make it possible to form FTO thin film with a relatively low electrical resistance, less than 100 Ohm/sq and high optical transmittance about 88%.

  4. The role of electric field during spray deposition on fluorine doped tin oxide film

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Anuj, E-mail: anujkumarom@gmail.com; Swami, Sanjay Kumar; Dutta, Viresh

    2014-03-05

    Highlights: • Fluorine doped tin oxide deposition by spray technique. • The growth reaction of tin oxide, controlled by the electric field on the substrate surface. • Deposit on large scale substrate 10 cm × 10 cm by single nozzle. • Obtained good quality of thin film. -- Abstract: The fluorine doped tin oxide film has been deposited on 10 cm × 10 cm glass substrate by using spray technique with a voltage applied between the nozzle and an annular electrode placed 2 mm below the nozzle. The effect of the electric field thus created during the spray deposition on structural, optical and electrical properties of SnO{sub 2}:F (FTO) film was studied. X-ray diffraction pattern revealed the presence of cassiterite structure with (2 0 0) orientation for all the FTO film. SEM study revealed the formation of smooth and uniform surface FTO film under the electric field over the entire substrate area. The electrical measurements show that the film prepared under the electric field (for an applied voltage of 2000 V) had a resistivity ∼1.2 × 10{sup −3} Ω cm, carrier concentration ∼4.21 × 10{sup 20} cm{sup −3} and mobility ∼14.48 cm{sup 2} V{sup −1} s{sup −1}. The sprayed FTO film have the average transmission in the visible region of more than about 80%.

  5. Comparative study of ITO and FTO thin films grown by spray pyrolysis

    International Nuclear Information System (INIS)

    Ait Aouaj, M.; Diaz, R.; Belayachi, A.; Rueda, F.; Abd-Lefdil, M.

    2009-01-01

    Tin doped indium oxide (ITO) and fluorine doped tin oxide (FTO) thin films have been prepared by one step spray pyrolysis. Both film types grown at 400 deg. C present a single phase, ITO has cubic structure and preferred orientation (4 0 0) while FTO exhibits a tetragonal structure. Scanning electron micrographs showed homogeneous surfaces with average grain size around 257 and 190 nm for ITO and FTO respectively. The optical properties have been studied in several ITO and FTO samples by transmittance and reflectance measurements. The transmittance in the visible zone is higher in ITO than in FTO layers with a comparable thickness, while the reflectance in the infrared zone is higher in FTO in comparison with ITO. The best electrical resistivity values, deduced from optical measurements, were 8 x 10 -4 and 6 x 10 -4 Ω cm for ITO (6% of Sn) and FTO (2.5% of F) respectively. The figure of merit reached a maximum value of 2.15 x 10 -3 Ω -1 for ITO higher than 0.55 x 10 -3 Ω -1 for FTO.

  6. Fluorine-doped tin oxide surfaces modified by self-assembled alkanethiols for thin-film devices

    Energy Technology Data Exchange (ETDEWEB)

    Alves, A.C.T.; Gomes, D.J.C.; Silva, J.R.; Silva, G.B., E-mail: george@cpd.ufmt.br

    2013-08-15

    In this work, we have investigated self-assembled monolayers (SAMs) from alkanethiols on fluorine-doped tin oxide (FTO) surfaces, which were used as an anode for thin-film devices prepared from the conductive copolymer so-called sulfonated poly(thiophene-3-[2-(2-methoxyethoxy) ethoxy]-2,5-diyl) (S-P3MEET). The assembled monolayers were characterized by using wetting contact angle, atomic force microscopy, and electrical measurements. The results indicated that dodecanethiol molecules, CH{sub 3}(CH{sub 2}){sub 11}SH, were well assembled on the FTO surfaces. In addition, it was found similar values of wetting contact angle for dodecanethiol assembled on both FTO and Au surfaces. Concerning the thin-film device, current–voltage analysis revealed a hysteresis. This behavior was associated to a charge-trapping effect and also to structural changes of the SAMs. Finally, charge injection capability of tin oxide electrodes can be improved by using SAMs and then this approach can plays an important role in molecular-scale electronic devices.

  7. Enhanced diode characteristics of organic solar cell with silanized fluorine doped tin oxide electrode

    Science.gov (United States)

    Sachdeva, Sheenam; Sharma, Sameeksha; Singh, Devinder; Tripathi, S. K.

    2018-05-01

    To investigate the diode characteristics of organic solar cell based on the planar heterojunction of 4,4'- cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine] (TAPC) and fullerene (C70), we report the use of silanized fluorine-doped tin oxide (FTO) anode with N1-(3-trimethoxysilylpropyl)diethyltriamine (DETA) forming monolayer. The use of silanized FTO results in the decrease of saturation current density and diode ideality factor of the device. Such silanized FTO anode is found to enhance the material quality and improve the device properties.

  8. Fabrication of high-performance fluorine doped-tin oxide film using flame-assisted spray deposition

    Energy Technology Data Exchange (ETDEWEB)

    Purwanto, Agus, E-mail: Aguspur@uns.ac.id [Department of Chemical Engineering, Faculty of Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A, Surakarta, Central Java 57126 (Indonesia); Widiyandari, Hendri [Department of Physics, Faculty of Mathematics and Natural Sciences, Diponegoro University, Jl. Prof. Dr. Soedarto, Tembalang, Semarang 50275 (Indonesia); Jumari, Arif [Department of Chemical Engineering, Faculty of Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A, Surakarta, Central Java 57126 (Indonesia)

    2012-01-01

    A high-performance fluorine-doped tin oxide (FTO) film was fabricated by flame-assisted spray deposition method. By varying the NH{sub 4}F doping concentration, the optimal concentration was established as 8 at.%. X-ray diffractograms confirmed that the as-grown FTO film was tetragonal SnO{sub 2}. In addition, the FTO film was comprised of nano-sized grains ranging from 40 to 50 nm. The heat-treated FTO film exhibited a sheet resistance of 21.8 {Omega}/{open_square} with an average transmittance of 81.9% in the visible region ({lambda} = 400-800 nm). The figures of merit shows that the prepared FTO film can be used for highly efficient dye-sensitized solar cells electrodes.

  9. Effect of micro-patterned fluorine-doped tin oxide films on electrochromic properties of Prussian blue films

    International Nuclear Information System (INIS)

    Lee, Kyuha; Kim, A-Young; Park, Ji Hun; Jung, Hun-Gi; Choi, Wonchang; Lee, Hwa Young; Lee, Joong Kee

    2014-01-01

    Graphical abstract: - Highlights: • PB-based ECD employed micro-patterned FTO electrode was fabricated. • Effect of interface morphology on electrochromic characteristics was examined. • Electrochromic properties were enhanced by employing a patterned interface. - Abstract: The effect of interface morphology on electrochromic characteristics was examined for an electrochromic device (ECD). Micro-patterned fluorine-doped tin oxide (FTO) films were fabricated using a photolithography process. Prussian blue (PB) films were then deposited on the patterned FTO films. The surface areas of both PB films and FTO films were increased by patterning. ECDs were assembled using patterned PB/FTO films as the electrochromic electrode, bare FTO films as the counter electrode, and an electrolyte containing LiClO 4 salt. The increased effective surface area of the patterned PB/FTO electrode boosted the mobility of ions at the interphase between the electrolyte and PB electrode, and the electron transfer between PB films and FTO films. As a result, electrochromic properties such as transmittance and response time were significantly improved by employing the patterned FTO films as the transparent conductive oxide layer of the electrochromic electrode

  10. Electrical and Optical Properties of Fluorine Doped Tin Oxide Thin Films Prepared by Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Ziad Y. Banyamin

    2014-10-01

    Full Text Available Fluorine doped tin oxide (FTO coatings have been prepared using the mid-frequency pulsed DC closed field unbalanced magnetron sputtering technique in an Ar/O2 atmosphere using blends of tin oxide and tin fluoride powder formed into targets. FTO coatings were deposited with a thickness of 400 nm on glass substrates. No post-deposition annealing treatments were carried out. The effects of the chemical composition on the structural (phase, grain size, optical (transmission, optical band-gap and electrical (resistivity, charge carrier, mobility properties of the thin films were investigated. Depositing FTO by magnetron sputtering is an environmentally friendly technique and the use of loosely packed blended powder targets gives an efficient means of screening candidate compositions, which also provides a low cost operation. The best film characteristics were achieved using a mass ratio of 12% SnF2 to 88% SnO2 in the target. The thin film produced was polycrystalline with a tetragonal crystal structure. The optimized conditions resulted in a thin film with average visible transmittance of 83% and optical band-gap of 3.80 eV, resistivity of 6.71 × 10−3 Ω·cm, a carrier concentration (Nd of 1.46 × 1020 cm−3 and a mobility of 15 cm2/Vs.

  11. Improving the performance of fluorine-doped tin oxide by adding salt

    Energy Technology Data Exchange (ETDEWEB)

    Purwanto, Agus, E-mail: Aguspur@uns.ac.id [Department of Chemical Engineering, Faculty of Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A, Surakarta, Central Java 57126 (Indonesia); Widiyandari, Hendri [Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Dr. Soedarto, Tembalang, Semarang 50275 (Indonesia); Suryana, Risa [Department of Physics, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami 36 A, Surakarta, Central Java 57126 (Indonesia); Jumari, Arif [Department of Chemical Engineering, Faculty of Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A, Surakarta, Central Java 57126 (Indonesia)

    2015-07-01

    High-performance fluorine-doped tin oxide (FTO) films were fabricated via a spray deposition technique with salt added to the precursor. The addition of NaCl in the precursor improved the conductivity of the FTO films. Increasing the NaCl concentration to its optimal concentration reduced the sheet resistance of the FTO film. The optimal values for the addition of a NaCl were 0.5, 0.5, 1.5, and 1.5 at.% for the FTO film prepared using NH{sub 4}F concentration of 4, 10, 16, and 22 at.%, respectively. The lowest sheet resistance of the salt-added FTO film was 4.8 Ω/□. The FTO film averaged a transmittance of more than 80% in the visible range region (λ = 400–800 nm). XRD diffractograms confirmed that the crystal structure of the as-grown FTO film was that of a tetragonal SnO{sub 2} and that the addition of salt improved its crystallinity. This film has the potential for use as an electrode for dye-sensitized solar cells (DSSCs). - Highlights: • A method to improve FTO performance using the addition of salt • The FTO film exhibited high performance of conductivity and light transmittance. • This technique is low-cost, fast and scales-up easily using simple devices.

  12. Preparation of high quality spray-deposited fluorine-doped tin oxide thin films using dilute di(n-butyl)tin(iv) diacetate precursor solutions

    Energy Technology Data Exchange (ETDEWEB)

    Premalal, E.V.A., E-mail: vikum777@gmail.com [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu (Japan); Dematage, N. [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu (Japan); Kaneko, S. [SPD Laboratory Inc, Hi-Cube 3-1-7, Wajiyama, Naka-ku, Hamamatsu (Japan); Konno, A. [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu (Japan)

    2012-09-01

    Fluorine-doped tin oxide (FTO) thin films were prepared, at different substrate temperatures, using dilute precursor solutions of di(n-butyl)tin(iv) diacetate (0.1 M DBTDA) by varying the F{sup -} concentration in the solution. It is noticed that conductivity of FTO film is increasing by increasing the fluorine amount in the solution. Morphology of SEM image reveals that grain size and its distribution are totally affected by the substrate temperature in which conductivity is altered. Among these FTO films, the best film obtained gives an electronic conductivity of 31.85 Multiplication-Sign 10{sup 2} {Omega}{sup -1} cm{sup -1}, sheet resistance of 4.4 {Omega}/{open_square} ({rho} = 3.14 Multiplication-Sign 10{sup -4} {Omega} cm) with over 80% average normal transmittance between the 400 and 800 nm wavelength range. The best FTO film consists of a large distribution of grain sizes from 50 nm to 400 nm range and the optimum conditions used are 0.1 M DBTDA, 0.3 M ammonium fluoride, in a mixture of propan-2-ol and water, at 470 Degree-Sign C substrate temperature. The large distribution of grain sizes can be easily obtained using low DBTDA concentration ({approx} 0.1 M or less) and moderate substrate temperature (470 Degree-Sign C). - Highlights: Black-Right-Pointing-Pointer F-doped SnO{sub 2} (FTO) thin films prepared using di(n-butyl)tin(iv) diacetate (DBTDA). Black-Right-Pointing-Pointer Substrate temperature and DBTDA concentration affect grain size and distribution. Black-Right-Pointing-Pointer Large distribution of grain sizes can optimize the conductivity of FTO film. Black-Right-Pointing-Pointer 0.1 M DBTDA, substrate temperature of 470 Degree-Sign C allows a large grain size distribution.

  13. Effect of micro-patterned fluorine-doped tin oxide films on electrochromic properties of Prussian blue films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyuha [Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, A-Young [Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Material Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Park, Ji Hun; Jung, Hun-Gi; Choi, Wonchang; Lee, Hwa Young [Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Joong Kee, E-mail: leejk@kist.re.kr [Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2014-09-15

    Graphical abstract: - Highlights: • PB-based ECD employed micro-patterned FTO electrode was fabricated. • Effect of interface morphology on electrochromic characteristics was examined. • Electrochromic properties were enhanced by employing a patterned interface. - Abstract: The effect of interface morphology on electrochromic characteristics was examined for an electrochromic device (ECD). Micro-patterned fluorine-doped tin oxide (FTO) films were fabricated using a photolithography process. Prussian blue (PB) films were then deposited on the patterned FTO films. The surface areas of both PB films and FTO films were increased by patterning. ECDs were assembled using patterned PB/FTO films as the electrochromic electrode, bare FTO films as the counter electrode, and an electrolyte containing LiClO{sub 4} salt. The increased effective surface area of the patterned PB/FTO electrode boosted the mobility of ions at the interphase between the electrolyte and PB electrode, and the electron transfer between PB films and FTO films. As a result, electrochromic properties such as transmittance and response time were significantly improved by employing the patterned FTO films as the transparent conductive oxide layer of the electrochromic electrode.

  14. Titanium dioxide-coated fluorine-doped tin oxide thin films for improving overall photoelectric property

    International Nuclear Information System (INIS)

    Li, Bao-jia; Huang, Li-jing; Ren, Nai-fei; Zhou, Ming

    2014-01-01

    Titanium (Ti) layers were deposited by direct current (DC) magnetron sputtering on commercial fluorine-doped tin oxide (FTO) glasses, followed by simultaneous oxidation and annealing treatment in a tubular furnace to prepare titanium dioxide (TiO 2 )/FTO bilayer films. Large and densely arranged grains were observed on all TiO 2 /FTO bilayer films. The presence of TiO 2 tetragonal rutile phase in the TiO 2 /FTO bilayer films was confirmed by X-ray diffraction (XRD) analysis. The results of parameter optimization indicated that the TiO 2 /FTO bilayer film, which was formed by adopting a temperature of 400 °C and an oxygen flow rate of 15 sccm, had the optimal overall photoelectric property with a figure of merit of 2.30 × 10 −2 Ω −1 , higher than 1.78 × 10 −2 Ω −1 for the FTO single-layer film. After coating a 500 nm-thick AZO layer by DC magnetron sputtering on this TiO 2 /FTO bilayer film, the figure of merit of the trilayer film achieved to a higher figure of merit of 3.12 × 10 −2 Ω −1 , indicating further improvement of the overall photoelectric property. This work may provide a scientific basis and reference for improving overall photoelectric property of transparent conducting oxide (TCO) films.

  15. Raman scattering, electrical and optical properties of fluorine-doped tin oxide thin films with (200) and (301) preferred orientation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Yeoul, E-mail: cykim15@kicet.re.kr [Nano-Convergence Intelligence Material Team, Korea Institute of Ceramic Eng. and Tech., Gasan-digtial-ro 10 Gil 77 Geumcheon-gu, 153-801 Seoul (Korea, Republic of); Riu, Doh-Hyung [Dept. of New Material Sci. and Eng., Seoul National University of Technology, Seoul (Korea, Republic of)

    2014-12-15

    (200) and (301) preferred oriented fluorine-doped tin oxide (FTO) thin films were fabricated by spray pyrolysis of ethanol-added and water-based FTO precursor solutions, respectively. (200) oriented FTO thin film from ethanol-added solution shows the lower electrical resistivity and visible light transmission than (301) preferred thin film from water-based solution. It is due to the higher carrier concentration and electron mobility in (200) oriented crystals, that is, the lower ionized impurity scattering. The higher electron concentration is related to the higher optical band gap energy, the lower visible light transmission, and the higher IR reflection. For (301) preferred FTO thin films from water-based solution, the lower carrier concentration and electron mobility make the higher electrical resistivity and visible light transmission. Raman scattering analysis shows that IR active modes prominent in (200) oriented FTO thin film are related with the lower electrical resistivity. - Highlights: • We coated fluorine-doped tin oxide thin films with preferred orientation of (200) and (301). • We examine changes in the level of electrical and optical properties with the orientation. • (200) preferred orientation showed lower electrical resistivity and optical transmittance. • (200) oriented thin films have higher electron concentrations that are related with IR active modes.

  16. Titanium dioxide-coated fluorine-doped tin oxide thin films for improving overall photoelectric property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bao-jia, E-mail: bjia_li@126.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Huang, Li-jing [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Ren, Nai-fei [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhou, Ming [The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2014-01-30

    Titanium (Ti) layers were deposited by direct current (DC) magnetron sputtering on commercial fluorine-doped tin oxide (FTO) glasses, followed by simultaneous oxidation and annealing treatment in a tubular furnace to prepare titanium dioxide (TiO{sub 2})/FTO bilayer films. Large and densely arranged grains were observed on all TiO{sub 2}/FTO bilayer films. The presence of TiO{sub 2} tetragonal rutile phase in the TiO{sub 2}/FTO bilayer films was confirmed by X-ray diffraction (XRD) analysis. The results of parameter optimization indicated that the TiO{sub 2}/FTO bilayer film, which was formed by adopting a temperature of 400 °C and an oxygen flow rate of 15 sccm, had the optimal overall photoelectric property with a figure of merit of 2.30 × 10{sup −2} Ω{sup −1}, higher than 1.78 × 10{sup −2} Ω{sup −1} for the FTO single-layer film. After coating a 500 nm-thick AZO layer by DC magnetron sputtering on this TiO{sub 2}/FTO bilayer film, the figure of merit of the trilayer film achieved to a higher figure of merit of 3.12 × 10{sup −2} Ω{sup −1}, indicating further improvement of the overall photoelectric property. This work may provide a scientific basis and reference for improving overall photoelectric property of transparent conducting oxide (TCO) films.

  17. Ultraviolet laser ablation of fluorine-doped tin oxide thin films for dye-sensitized back-contact solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huan [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Fu, Dongchuan [ARC Centre of Excellence for Electromaterials Science, Department of Materials Engineering and School of Chemistry, Monash University, Clayton Victoria, 3800 (Australia); Jiang, Ming [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Duan, Jun, E-mail: duans@hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Zhang, Fei; Zeng, Xiaoyan [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Bach, Udo [ARC Centre of Excellence for Electromaterials Science, Department of Materials Engineering and School of Chemistry, Monash University, Clayton Victoria, 3800 (Australia)

    2013-03-01

    In this study, laser ablation of a fluorine-doped tin oxide (FTO) thin film on a glass substrate was conducted using a 355 nm Nd:YVO{sub 4} ultraviolet (UV) laser to obtain a 4 × 4 mm microstructure. The microstructure contains a symmetric set of interdigitated FTO finger electrodes of a monolithic back-contact dye-sensitized solar cell (BC-DSC) on a common substrate. The effects of UV laser ablation parameters (such as laser fluence, repetition frequency, and scanning speed) on the size precision and quality of the microstructure were investigated using a 4 × 4 orthogonal design and an assistant experimental design. The incident photon-to-electron conversion efficiency and the current–voltage characteristics of the BC-DSC base of the interdigitated FTO finger electrodes were also determined. The experimental results show that an FTO film microstructure with high precision and good quality can be produced on a glass substrate via laser ablation with high scanning speed, high repetition frequency, and appropriate laser fluence. - Highlights: ► The ablation width and depth generally depend on the laser fluence. ► The scanning speed and the repetition frequency must match each other. ► Slight ablation of the glass substrate can completely remove F-doped tin oxide.

  18. Effects of process parameters on sheet resistance uniformity of fluorine-doped tin oxide thin films

    Science.gov (United States)

    Hudaya, Chairul; Park, Ji Hun; Lee, Joong Kee

    2012-01-01

    An alternative indium-free material for transparent conducting oxides of fluorine-doped tin oxide [FTO] thin films deposited on polyethylene terephthalate [PET] was prepared by electron cyclotron resonance - metal organic chemical vapor deposition [ECR-MOCVD]. One of the essential issues regarding metal oxide film deposition is the sheet resistance uniformity of the film. Variations in process parameters, in this case, working and bubbler pressures of ECR-MOCVD, can lead to a change in resistance uniformity. Both the optical transmittance and electrical resistance uniformity of FTO film-coated PET were investigated. The result shows that sheet resistance uniformity and the transmittance of the film are affected significantly by the changes in bubbler pressure but are less influenced by the working pressure of the ECR-MOCVD system.

  19. Thin copolymer-cased light-emitting display made with fluorine-foped tin oxide substrates

    Directory of Open Access Journals (Sweden)

    Lessmann Rudolf

    2004-01-01

    Full Text Available Seven-segment displays are used to show numerical quantities in electronic equipment, being present in most of the low-end electronics. In this work we describe a novel organic light emitting display made with poly(1,10 decanedioxy 2 methoxy - 1,2 phenylene - 1,2 ethenylene - 3,6 dimethoxy - 1,4 phenylene - 1,2 ethenylene 3 methoxy - 1,4 - phenylene (OPPVDBC, tris(8-hydroxyquinolinealuminum salt (Alq3 and a hole injection layer (PEDOT:PSS: poly(3,4 - ethylenedioxythiophene : poly(styrenesulfonate. The general device structure is FTO/PEDOT:PSS/OPPVDBC/Ca/Al or FTO/PEDOT:PSS/OPPVDBC/Alq3/Ca/Al. The FTO (fluorine-doped tin oxide thin films are transparent (transmittance > 80 % in the visible region of the spectrum, conductive (< 15 omega/º for 200 nm thick films, and present high chemical stability.

  20. High performance dye-sensitized solar cells using graphene modified fluorine-doped tin oxide glass by Langmuir–Blodgett technique

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Ki-Min [Rare Metals Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Jo, Eun-Hee; Chang, Hankwon [Rare Metals Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Nanomaterials Science and Engineering Major, University of Science and Technology, Daejeon 305-350 (Korea, Republic of); Han, Tae Hee [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Jang, Hee Dong, E-mail: hdjang@kigam.re.kr [Rare Metals Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Nanomaterials Science and Engineering Major, University of Science and Technology, Daejeon 305-350 (Korea, Republic of)

    2015-04-15

    Since the introduction of dye-sensitized solar cells (DSSCs) with low fabrication cost and high power conversion efficiency, extensive studies have been carried out to improve the charge transfer rate and performance of DSSCs. In this paper, we present DSSCs that use surface modified fluorine-doped tin oxide (FTO) substrates with reduced graphene oxide (r-GO) sheets prepared using the Langmuir–Blodgett (LB) technique to decrease the charge recombination at the TiO{sub 2}/FTO interface. R-GO sheets were excellently attached on FTO surface without physical deformations such as wrinkles; effects of the surface coverage of r-GO on the DSSC performance were also investigated. By using graphene modified FTO substrates, the resistance at the interface of TiO{sub 2}/FTO was reduced and the power conversion efficiency was increased to 8.44%. - Graphical abstract: DSSCs with graphene modified FTO glass were fabricated with the Langmuir Blodgett technique. GO sheets were transferred to FTO at various surface pressures in order to change the surface density of graphene and the highest power conversion efficiency of the DSSC was 8.44%. - Highlights: • By LB technique, r-GO sheets were coated on FTO without physical deformation. • DSSCs were fabricated with, r-GO modified FTO substrates. • With surface modification by r-GO, the interface resistance of DSSC decreased. • Maximum PCE of the DSSC was increased up to 8.44%.

  1. Enhanced performance of dye-sensitized solar cells using gold nanoparticles modified fluorine tin oxide electrodes

    International Nuclear Information System (INIS)

    Zhang Dingwen; Shen Jie; Huang Sumei; Wang Milton; Brolo, Alexandre G; Li Xiaodong

    2013-01-01

    We have investigated plasmon-assisted energy conversion in dye-sensitized solar cells (DSCs) applying gold nanoparticles (NPs) modified fluorine tin oxide (FTO) electrodes. A series of Au NPs with different sizes (15-80 nm) were synthesized and immobilized onto FTO glass slides. Photoanodes were prepared on these Au modified FTO substrates using P25 TiO 2 powders and by the screen-printing method. The size effects of Au NPs on the photovoltaic performance of the formed DSCs were investigated systematically. Structural and photoelectrochemical properties of the formed photoanodes were examined by field emission scanning electron microscopy and electrochemical impedance spectroscopy. It was found that the energy conversion efficiency of the DSC was highly dependent on the Au particle size. When the particle size was not greater than 60 nm, the DSC based on the Au NP-FTO composite electrode showed a higher short-circuit current density and better photovoltaic (PV) performance than the cell based on the bare FTO. The best cell was achieved using 25 nm sized Au NPs modified FTO. It exhibited a conversion efficiency of 6.69%, which was 15% higher than that of DSCs without Au NPs. The related PV performance enhancement mechanisms, photoelectrochemical processes and surface-plasmon resonances in DSCs with Au nanostructures are analysed and discussed.

  2. Hazy Al2O3-FTO Nanocomposites: A Comparative Study with FTO-Based Nanocomposites Integrating ZnO and S:TiO2 Nanostructures

    Directory of Open Access Journals (Sweden)

    Shan-Ting Zhang

    2018-06-01

    Full Text Available In this study, we report the use of Al2O3 nanoparticles in combination with fluorine doped tin oxide (F:SnO2, aka FTO thin films to form hazy Al2O3-FTO nanocomposites. In comparison to previously reported FTO-based nanocomposites integrating ZnO and sulfur doped TiO2 (S:TiO2 nanoparticles (i.e., ZnO-FTO and S:TiO2-FTO nanocomposites, the newly developed Al2O3-FTO nanocomposites show medium haze factor HT of about 30%, while they exhibit the least loss in total transmittance Ttot. In addition, Al2O3-FTO nanocomposites present a low fraction of large-sized nanoparticle agglomerates with equivalent radius req > 1 μm; effectively 90% of the nanoparticle agglomerates show req < 750 nm. The smaller feature size in Al2O3-FTO nanocomposites, as compared to ZnO-FTO and S:TiO2-FTO nanocomposites, makes them more suitable for applications that are sensitive to roughness and large-sized features. With the help of a simple optical model developed in this work, we have simulated the optical scattering by a single nanoparticle agglomerate characterized by bottom radius r0, top radius r1, and height h. It is found that r0 is the main factor affecting the HT(λ, which indicates that the haze factor of Al2O3-FTO and related FTO nanocomposites is mainly determined by the total surface coverage of all the nanoparticle agglomerates present.

  3. Preparation and characterization of sprayed FTO thin films

    Science.gov (United States)

    Abd-Lefdil, M.; Diaz, R.; Bihri, H.; Aouaj, M. Ait; Rueda, F.

    2007-06-01

    Fluorine doped tin oxide (FTO) thin films have been prepared by spray pyrolysis technique with no further annealing. Films with 2.5% of fluorine grown at 400 °C present a single phase and exhibit a tetragonal structure with lattice parameters a = 4.687 Å and c = 3.160 Å. Scanning electron micrographs showed homogeneous surfaces with average grain size around 190 nm. The films are transparent in the visible zone and exhibit a high reflectance in the near infrared region. The best electrical resistivity was 6.3 × 10-4 Ω cm for FTO with 2.5% of fluorine. The ratio of transmittance in the visible to the sheet resistance are in the 0.57 × 10-2 1.96 × 10-2 {Ω }-1 range.

  4. Tin-antimony oxide oxidation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Frank J. [Open University, Department of Chemistry (United Kingdom)

    1998-12-15

    Tin-antimony oxide catalysts for the selective oxidation of hydrocarbons have been made by precipitation techniques. The dehydration of the amorphous dried precipitate by calcination at increasingly higher temperatures induces the crystallisation of a rutile-related tin dioxide-type phase and the segregation of antimony oxides which volatilise at elevated temperatures. The rutile-related tin dioxide-type phase contains antimony(V) in the bulk and antimony(III) in the surface. Specific catalytic activity for the oxidative dehydrogenation of butene to butadiene is associated with materials with large concentrations of antimony(III) in the surface.

  5. The Preparation and Property of Graphene /Tin Oxide Transparent Conductive Film

    Directory of Open Access Journals (Sweden)

    SUN Tao

    2017-02-01

    Full Text Available Graphene doped tin oxide composites were prepared with SnCIZ·2HZ 0 and graphene oxide as raw materials with sol-gel method and then spincoated on the quartz glass to manufacture a new transparent conductive film. The composite film was characterized with X-ray diffraction(XRDand scanning electron microscopy(SEM analysis. XRD results show that the graphene oxide was successfully prepared with Hummers method. The graphene layers and particulate SnOZ can be clearly observed in SEM photos. The transmittance and conductivity of the thin films were tested with ultraviolet visible spectrophotometer and Hall effect measurement. The results show that the transmittivity of composite film in visible region is more than 90% and surface square resistance is 41 S2/口.The graphene/ SnOZ film exhibits a higher performance in transparence and conductivity than commercial FTO glass.

  6. DC-pulse atmospheric-pressure plasma jet and dielectric barrier discharge surface treatments on fluorine-doped tin oxide for perovskite solar cell application

    Science.gov (United States)

    Tsai, Jui-Hsuan; Cheng, I.-Chun; Hsu, Cheng-Che; Chen, Jian-Zhang

    2018-01-01

    Nitrogen DC-pulse atmospheric-pressure plasma jet (APPJ) and nitrogen dielectric barrier discharge (DBD) were applied to pre-treat fluorine-doped tin oxide (FTO) glass substrates for perovskite solar cells (PSCs). Nitrogen DC-pulse APPJ treatment (substrate temperature: ~400 °C) for 10 s can effectively increase the wettability, whereas nitrogen DBD treatment (maximum substrate temperature: ~140 °C) achieved limited improvement in wettability even with increased treatment time of 60 s. XPS results indicate that 10 s APPJ, 60 s DBD, and 15 min UV-ozone treatment of FTO glass substrates can decontaminate the surface. A PSC fabricated on APPJ-treated FTO showed the highest power conversion efficiency (PCE) of 14.90%; by contrast, a PSC with nitrogen DBD-treated FTO shows slightly lower PCE of 12.57% which was comparable to that of a PSC on FTO treated by a 15 min UV-ozone process. Both nitrogen DC-pulse APPJ and nitrogen DBD can decontaminate FTO substrates and can be applied for the substrate cleaning step of PSC.

  7. Single-layer graphene/titanium oxide cubic nanorods array/FTO heterojunction for sensitive ultraviolet light detection

    Science.gov (United States)

    Liang, Feng-Xia; Wang, Jiu-Zhen; Wang, Yi; Lin, Yi; Liang, Lin; Gao, Yang; Luo, Lin-Bao

    2017-12-01

    In this study, we report on the fabrication of a sensitive ultraviolet photodetector (UVPD) by simply transferring single-layer graphene (SLG) on rutile titanium oxide cubic nanorod (TiO2NRs) array. The cubic TiO2NRs array with strong light trapping effect was grown on fluorine-doped tin oxide (FTO) glass through a hydrothermal approach. The as-assembled UVPD was very sensitive to UV light illumination, but virtually blind to white light illumination. The responsivity and specific detectivity were estimated to be 52.1 A/W and 4.3 × 1012 Jones, respectively. What is more, in order to optimize device performance of UVPD, a wet-chemistry treatment was then employed to reduce the high concentration of defects in TiO2NRs during hydrothermal growth. It was found that the UVPD after treatment showed obvious decrease in sensitivity, but the response speed (rise time: 80 ms, fall time: 160 ms) and specific detectivity were substantially increased. It is also found that the speicific detectivity was imporoved by six-fold to 3.2 × 1013 Jones, which was the best result in comparison with previously reported TiO2 nanostructures or thin film based UVPDs. This totality of this study shows that the present SLG/TiO2NR/FTO UVPD may find potential application in future optoelectronic devices and systems.

  8. Laser-assisted preparation and photoelectric properties of grating-structured Pt/FTO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Nai-fei, E-mail: rnf_ujs@126.com [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Huang, Li-jing, E-mail: lij_huang@126.com [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Li, Bao-jia [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhou, Ming [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2014-09-30

    Highlights: • Pt layers were deposited by DC magnetron sputtering on commercial FTO glasses. • Pt/FTO films were irradiated by laser for inducing gratings and annealing. • An ideal grating-structured Pt/FTO film was obtained using a fluence of 1.05 J/cm{sup 2}. • The grating-structured Pt/FTO film exhibited excellent photoelectric properties. • Laser-assisted treatment is effective for improving performance of FTO-based films. - Abstract: In order to improve the transparency and conductivity of commercial fluorine-doped tin oxide (FTO) glass, platinum (Pt) layers were deposited on the FTO film by direct current (DC) magnetron sputtering, followed by being irradiating with a 532 nm nanosecond pulsed laser for the dual purpose of inducing grating structures and annealing. Introducing a Pt layer decreased the average transmittance (400–800 nm) and the sheet resistance of the initial FTO film from 80.2% and 8.4 Ω/sq to 68.6% and 7.9 Ω/sq, respectively. The ideal grating-structured Pt/FTO film was obtained by laser irradiation with a fluence of 1.05 J/cm{sup 2}, and X-ray diffraction (XRD) analysis confirmed that this film underwent optimal annealing. As a result, it exhibited an average transmittance (400–800 nm) of 84.1% and a sheet resistance of 6.8 Ω/sq. These results indicated that laser-assisted treatment combined with introduction of metal layer can effectively improve photoelectric properties of FTO single-layer films.

  9. Hydrolysis of bis(dimethylamido)tin to tin (II) oxyhydroxide and its selective transformation into tin (II) or tin (IV) oxide

    KAUST Repository

    Khanderi, Jayaprakash; Shi, Lei; Rothenberger, Alexander

    2015-01-01

    Sn6O4(OH)4, a hydrolysis product of Sn(NMe2)2, is transformed to tin (II) or tin (IV) oxide by solid and solution phase processing. Tin (II) oxide is formed by heating Sn6O4(OH)4 at ≤200 °C in air or under inert atmosphere. Tin (IV) oxide

  10. Improving the performance of nickel-coated fluorine-doped tin oxide thin films by magnetic-field-assisted laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bao-jia, E-mail: li_bjia@126.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Huang, Li-jing [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Ren, Nai-fei [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Kong, Xia; Cai, Yun-long; Zhang, Jie-lu [Jiangsu Tailong Reduction Box Co. Ltd., Taixing 225400 (China)

    2015-10-01

    Highlights: • Ni/FTO films were prepared by sputtering Ni layers on commercial FTO glass. • The as-prepared Ni/FTO films underwent magnetic-field-assisted laser annealing. • Magnetic field and laser fluence were crucial for improving quality of the films. • All Ni/FTO films displayed enhanced compactness after magnetic laser annealing. • Magnetic laser annealing using a fluence of 0.9 J/cm{sup 2} led to the best film quality. - Abstract: Nickel-coated fluorine-doped tin oxide (Ni/FTO) thin films were prepared by sputtering Ni layers on commercial FTO glass. The as-prepared Ni/FTO films underwent nanosecond pulsed laser annealing in an external magnetic field (0.4 T). The effects of the presence of magnetic field and laser fluence on surface morphology, crystal structure and photoelectric properties of the films were investigated. All the films displayed enhanced compactness after magnetic-field-assisted laser annealing. It was notable that both crystallinity and grain size of the films gradually increased with increasing laser fluence from 0.6 to 0.9 J/cm{sup 2}, and then decreased slightly with an increase in laser fluence to 1.1 J/cm{sup 2}. As a result, the film obtained by magnetic-field-assisted laser annealing using a fluence of 0.9 J/cm{sup 2} had the best overall photoelectric property with an average transmittance of 81.2%, a sheet resistance of 5.5 Ω/sq and a figure of merit of 2.27 × 10{sup −2} Ω{sup −1}, outperforming that of the film obtained by pure laser annealing using the same fluence.

  11. Translation Effects in Fluorine Doped Tin Oxide Thin Film Properties by Atmospheric Pressure Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Mohammad Afzaal

    2016-10-01

    Full Text Available In this work, the impact of translation rates in fluorine doped tin oxide (FTO thin films using atmospheric pressure chemical vapour deposition (APCVD were studied. We demonstrated that by adjusting the translation speeds of the susceptor, the growth rates of the FTO films varied and hence many of the film properties were modified. X-ray powder diffraction showed an increased preferred orientation along the (200 plane at higher translation rates, although with no actual change in the particle sizes. A reduction in dopant level resulted in decreased particle sizes and a much greater degree of (200 preferred orientation. For low dopant concentration levels, atomic force microscope (AFM studies showed a reduction in roughness (and lower optical haze with increased translation rate and decreased growth rates. Electrical measurements concluded that the resistivity, carrier concentration, and mobility of films were dependent on the level of fluorine dopant, the translation rate and hence the growth rates of the deposited films.

  12. Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation.

    Science.gov (United States)

    Subramanian, Arunprabaharan; Annamalai, Alagappan; Lee, Hyun Hwi; Choi, Sun Hee; Ryu, Jungho; Park, Jung Hee; Jang, Jum Suk

    2016-08-03

    Herein we report the influence of a ZrO2 underlayer on the PEC (photoelectrochemical) behavior of hematite nanorod photoanodes for efficient solar water splitting. Particular attention was given to the cathodic shift in onset potential and photocurrent enhancement. Akaganite (β-FeOOH) nanorods were grown on ZrO2-coated FTO (fluorine-doped tin oxide) substrates. Sintering at 800 °C transformed akaganite to the hematite (α-Fe2O3) phase and induced Sn diffusion into the crystal structure of hematite nanorods from the FTO substrates and surface migration, shallow doping of Zr atoms from the ZrO2 underlayer. The ZrO2 underlayer-treated photoanode showed better water oxidation performance compared to the pristine (α-Fe2O3) photoanode. A cathodic shift in the onset potential and photocurrent enhancement was achieved by surface passivation and shallow doping of Zr from the ZrO2 underlayer, along with Sn doping from the FTO substrate to the crystal lattice of hematite nanorods. The Zr based hematite nanorod photoanode achieved 1 mA/cm(2) at 1.23 VRHE with a low turn-on voltage of 0.80 VRHE. Sn doping and Zr passivation, as well as shallow doping, were confirmed by XPS, Iph, and M-S plot analyses. Electrochemical impedance spectroscopy revealed that the presence of a ZrO2 underlayer decreased the deformation of FTO substrate, improved electron transfer at the hematite/FTO interface and increased charge-transfer resistance at the electrolyte/hematite interface. This is the first systematic investigation of the effects of Zr passivation, shallow doping, and Sn doping on hematite nanorod photoanodes through application of a ZrO2 underlayer on the FTO substrate.

  13. Improvement of Transparent Conducting Performance on Oxygen-Activated Fluorine-Doped Tin Oxide Electrodes Formed by Horizontal Ultrasonic Spray Pyrolysis Deposition.

    Science.gov (United States)

    Koo, Bon-Ryul; Oh, Dong-Hyeun; Riu, Doh-Hyung; Ahn, Hyo-Jin

    2017-12-27

    In this study, highly transparent conducting fluorine-doped tin oxide (FTO) electrodes were fabricated using the horizontal ultrasonic spray pyrolysis deposition. In order to improve their transparent conducting performances, we carried out oxygen activation by adjusting the ratio of O 2 /(O 2 +N 2 ) in the carrier gas (0%, 20%, and 50%) used during the deposition process. The oxygen activation on the FTO electrodes accelerated the substitution concentration of F (F O • ) into the oxygen sites in the FTO electrode while the oxygen vacancy (V O • • ) concentration was reduced. In addition, due to growth of pyramid-shaped crystallites with (200) preferred orientations, this oxygen activation caused the formation of a uniform surface structure. As a result, compared to others, the FTO electrode prepared at 50% O 2 showed excellent electrical and optical properties (sheet resistance of ∼4.0 ± 0.14 Ω/□, optical transmittance of ∼85.3%, and figure of merit of ∼5.09 ± 0.19 × 10 -2 Ω -1 ). This led to a superb photoconversion efficiency (∼7.03 ± 0.20%) as a result of the improved short-circuit current density. The photovoltaic performance improvement can be defined by the decreased sheet resistance of FTO used as a transparent conducting electrode in dye-sensitized solar cells (DSSCs), which is due to the combined effect of the high carrier concentration by the improved F O • concentration on the FTO electrodes and the fasted Hall mobility by the formation of a uniform FTO surface structure and distortion relaxation on the FTO lattices resulting from the reduced V O • • • concentration.

  14. Reference of Temperature and Time during tempering process for non-stoichiometric FTO films

    Science.gov (United States)

    Yang, J. K.; Liang, B.; Zhao, M. J.; Gao, Y.; Zhang, F. C.; Zhao, H. L.

    2015-10-01

    In order to enhance the mechanical strength of Low-E glass, Fluorine-doped tin oxide (FTO) films have to be tempered at high temperatures together with glass substrates. The effects of tempering temperature (600 °C ~ 720 °C) and time (150 s ~ 300 s) on the structural and electrical properties of FTO films were investigated. The results show all the films consist of non-stoichiometric, polycrystalline SnO2 without detectable amounts of fluoride. 700 °C and 260 s may be the critical tempering temperature and time, respectively. FTO films tempered at 700 °C for 260 s possesses the resistivity of 7.54 × 10-4 Ω•cm, the average transmittance in 400 ~ 800 nm of ~80%, and the calculated emissivity of 0.38. Hall mobility of FTO films tempered in this proper condition is mainly limited by the ionized impurity scattering. The value of [O]/[Sn] at the film surface is much higher than the stoichiometric value of 2.0 of pure crystalline SnO2.

  15. Characterization of tin oxide nanoparticles synthesized via oxidation from metal

    International Nuclear Information System (INIS)

    Abruzzi, R.C.; Dedavid, B.A.; Pires, M.J.R.; Streicher, M.

    2014-01-01

    The tin oxide (SnO_2) is a promising material with great potential for applications such as gas sensors and catalysts. This oxide nanostructures show higher activation efficiency due to its larger effective surface. This paper presents the synthesis and characterization of the tin oxide in different conditions, via oxidation of pure tin with nitric acid. Results obtained from the characterization of SnO_2 powder by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), Particle size by Dynamic Light Scattering (DLS) and Infrared Spectroscopy (FTIR) indicated that the conditions were suitable for the synthesis to obtain manometric tin oxide granules with crystalline structure of rutile. (author)

  16. Production of core–shell type conducting FTO/TiO2 photoanode for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Icli, Kerem Cagatay; Yavuz, Halil Ibrahim; Ozenbas, Macit

    2014-01-01

    Core–shell type photoanode composed of electrically conducting fluorine doped tin dioxide (FTO) matrix and TiO 2 shell layer was prepared and applied in dye sensitized solar cells. Effects of fluorine doping on tin dioxide based cells and precursor material on shell layer were investigated. Fluorine doped tin dioxide nanoparticles were synthesized under hydrothermal conditions and resistivity value down to 17 Ω cm was achieved. Cells constructed from FTO nanoparticles show enhanced performance compared to intrinsic SnO 2 . Deposition of thin blocking TiO 2 layers was conducted using ammonium hexafluorotitanate and titanium tetrachloride aqueous solutions for different dipping durations which yielded significant deviations in the layer morphology and affected cell parameters. Best results were obtained with titanium tetrachloride treated cells giving 11.51 mA/cm 2 photocurrent density and they were comparable with that of pure TiO 2 based cells prepared under identical conditions. - Graphical abstract: Core shell type FTO matrix was formed as TiO 2 is the shell material to create a blocking layer between FTO core and the electrolyte for suppressed recombination and efficiency enhancement. Display Omitted - Highlights: • Core–shell type photoanode using conducting FTO matrix and TiO 2 shell was prepared. • FTO nanoparticles having resistivity value down to 17 Ω cm was achieved. • Best cell parameters were obtained with TiCl 4 treated cells. • FTO nanoparticle based cells show enhanced performance compared to intrinsic SnO 2 . • Photocurrent in TiCl 4 treated cells is found as comparable to pure TiO 2 cell

  17. Aquaregia and Oxygen Plasma Treatments on Fluorinated Tin Oxide for Assembly of PLEDs Devices Using OC1C10-PPV as Emissive Polymer

    Directory of Open Access Journals (Sweden)

    Emerson Roberto SANTOS

    2009-02-01

    Full Text Available In this work were carried out treatments with oxygen plasma and aquaregia on fluorinated tin oxide (FTO films varying the treatment times. After treatments, the samples were analyzed by techniques measurements: sheet resistance, thickness, Hall effect, transmittance and superficial roughness. Devices using FTO/PEDOT:PSS/OC1C10-PPV/Al were assembled. In this experiment some variations were observed by sheet resistance and thickness and Hall effect measurements indicated most elevated carriers concentration and resistivity for aquaregia than that oxygen plasma. The roughness was elevated for the first minutes with treatment by aquaregia too. In the I-V curves the aquaregia devices presented the lowest threshold voltage for 30 minutes and devices treated by oxygen plasma presented a behavior most resistivity different of typical curves for PLEDs devices.

  18. Influences of Pr and Ta doping concentration on the characteristic features of FTO thin film deposited by spray pyrolysis

    International Nuclear Information System (INIS)

    Turgut, Güven; Koçyiğit, Adem; Sönmez, Erdal

    2015-01-01

    The Pr and Ta separately doped FTO (10 at.% F incorporated SnO 2 ) films are fabricated via spray pyrolysis. The microstructural, topographic, optical, and electrical features of fluorine-doped TO (FTO) films are investigated as functions of Pr and Ta dopant concentrations. The x-ray diffraction (XRD) measurements reveal that all deposited films show polycrystalline tin oxide crystal property. FTO film has (200) preferential orientation, but this orientation changes to (211) direction with Pr and Ta doping ratio increasing. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) analyses show that all films have uniform and homogenous nanoparticle distributions. Furthermore, morphologies of the films depend on the ratio between Pr and Ta dopants. From ultraviolet-visible (UV-Vis) spectrophotometer measurements, it is shown that the transmittance value of FTO film decreases with Pr and Ta doping elements increasing. The band gap value of FTO film increases only at 1 at.% Ta doping level, it drops off with Pr and Ta doping ratio increasing at other doped FTO films. The electrical measurements indicate that the sheet resistance value of FTO film initially decreases with Pr and Ta doping ratio decreasing and then it increases with Pr and Ta doping ratio increasing. The highest value of figure of merit is obtained for 1 at.% Ta- and Pr-doped FTO film. These results suggest that Pr- and Ta-doped FTO films may be appealing candidates for TCO applications. (paper)

  19. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Janika

    2011-12-12

    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO{sub 2} and TiO{sub 2}. In order to achieve transparent and conductive films free carriers have to be generated by oxygen vacancies, by metal ions at interstitial positions in the crystal lattice or by cation doping with Sb or Nb, respectively. Antimony doped tin oxide and niobium doped titanium oxide films have been prepared by reactive direct current magnetron sputtering (dc MS) from metallic targets. The process parameters and the doping concentration in the films have been varied. The films have been electrically, optically and structurally analysed in order to analyse the influence of the process parameters and the doping concentration on the film properties. Post-deposition treatments of the films have been performed in order to improve the film properties. For the deposition of transparent and conductive tin oxide, the dominant parameter during the deposition is the oxygen content in the sputtering gas. The Sb incorporation as doping atoms has a minor influence on the electrical, optical and structural properties. Within a narrow oxygen content in the sputtering gas highly transparent and conductive tin oxide films have been prepared. In this study, the lowest resistivity in the as deposited state is 2.9 m{omega} cm for undoped tin oxide without any postdeposition treatment. The minimum resistivity is related to a transition to crystalline films with the stoichiometry of SnO{sub 2}. At higher oxygen content the films turn out to have a higher resistivity due to an oxygen excess. After post

  20. Production of core–shell type conducting FTO/TiO{sub 2} photoanode for dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Icli, Kerem Cagatay [Micro and Nanotechnology Graduate Program, Middle East Technical University, Dumlupinar Bulvari, 06800 Ankara (Turkey); Center for Solar Energy Research and Applications (GUNAM), Middle East Technical University, Dumlupinar Bulvari, 06800 Ankara (Turkey); Yavuz, Halil Ibrahim [Center for Solar Energy Research and Applications (GUNAM), Middle East Technical University, Dumlupinar Bulvari, 06800 Ankara (Turkey); Department of Metallurgical and Materials Engineering, Middle East Technical University, Dumlupinar Bulvari, 06800 Ankara (Turkey); Ozenbas, Macit, E-mail: ozenbas@metu.edu.tr [Center for Solar Energy Research and Applications (GUNAM), Middle East Technical University, Dumlupinar Bulvari, 06800 Ankara (Turkey); Department of Metallurgical and Materials Engineering, Middle East Technical University, Dumlupinar Bulvari, 06800 Ankara (Turkey)

    2014-02-15

    Core–shell type photoanode composed of electrically conducting fluorine doped tin dioxide (FTO) matrix and TiO{sub 2} shell layer was prepared and applied in dye sensitized solar cells. Effects of fluorine doping on tin dioxide based cells and precursor material on shell layer were investigated. Fluorine doped tin dioxide nanoparticles were synthesized under hydrothermal conditions and resistivity value down to 17 Ω cm was achieved. Cells constructed from FTO nanoparticles show enhanced performance compared to intrinsic SnO{sub 2}. Deposition of thin blocking TiO{sub 2} layers was conducted using ammonium hexafluorotitanate and titanium tetrachloride aqueous solutions for different dipping durations which yielded significant deviations in the layer morphology and affected cell parameters. Best results were obtained with titanium tetrachloride treated cells giving 11.51 mA/cm{sup 2} photocurrent density and they were comparable with that of pure TiO{sub 2} based cells prepared under identical conditions. - Graphical abstract: Core shell type FTO matrix was formed as TiO{sub 2} is the shell material to create a blocking layer between FTO core and the electrolyte for suppressed recombination and efficiency enhancement. Display Omitted - Highlights: • Core–shell type photoanode using conducting FTO matrix and TiO{sub 2} shell was prepared. • FTO nanoparticles having resistivity value down to 17 Ω cm was achieved. • Best cell parameters were obtained with TiCl{sub 4} treated cells. • FTO nanoparticle based cells show enhanced performance compared to intrinsic SnO{sub 2}. • Photocurrent in TiCl{sub 4} treated cells is found as comparable to pure TiO{sub 2} cell.

  1. High efficiency bifacial Cu2ZnSnSe4 thin-film solar cells on transparent conducting oxide glass substrates

    Directory of Open Access Journals (Sweden)

    Jung-Sik Kim

    2016-09-01

    Full Text Available In this work, transparent conducting oxides (TCOs have been employed as a back contact instead of Mo on Cu2ZnSnSe4 (CZTSe thin-film solar cells in order to examine the feasibility of bifacial Cu2ZnSn(S,Se4 (CZTSSe solar cells based on a vacuum process. It is found that the interfacial reaction between flourine doped tin oxide (FTO or indium tin oxide (ITO and the CZTSe precursor is at odds with the conventional CZTSe/Mo reaction. While there is no interfacial reaction on CZTSe/FTO, indium in CZTSe/ITO was significantly diffused into the CZTSe layers; consequently, a SnO2 layer was formed on the ITO substrate. Under bifacial illumination, we achieved a power efficiency of 6.05% and 4.31% for CZTSe/FTO and CZTSe/ITO, respectively.

  2. Secondary electron emission characteristics of oxide electrodes in flat electron emission lamp

    Directory of Open Access Journals (Sweden)

    Chang-Lin Chiang

    2016-01-01

    Full Text Available The present study concerns with the secondary electron emission coefficient, γ, of the cathode materials used in the newly developed flat electron emission lamp (FEEL devices, which essentially integrates the concept of using cathode for fluorescent lamp and anode for cathode ray tube (CRT to obtain uniform planar lighting. Three different cathode materials, namely fluorine-doped tin oxide (FTO, aluminum oxide coated FTO (Al2O3/FTO and magnesium oxide coated FTO (MgO/FTO were prepared to investigate how the variations of γ and working gases influence the performance of FEEL devices, especially in lowering the breakdown voltage and pressure of the working gases. The results indicate that the MgO/FTO bilayer cathode exhibited a relatively larger effective secondary electron emission coefficient, resulting in significant reduction of breakdown voltage to about 3kV and allowing the device to be operated at the lower pressure to generate the higher lighting efficiency.

  3. Secondary electron emission characteristics of oxide electrodes in flat electron emission lamp

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Chang-Lin, E-mail: CLChiang@itri.org.tw; Li, Chia-Hung [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, 195, Sec. 4, Chung Hsing Road, Chutung 310, Taiwan (China); Department of Electrophysics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan (China); Zeng, Hui-Kai [Department of Electronic Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li 320, Taiwan (China); Li, Jung-Yu, E-mail: JY-Lee@itri.org.tw; Chen, Shih-Pu; Lin, Yi-Ping [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, 195, Sec. 4, Chung Hsing Road, Chutung 310, Taiwan (China); Hsieh, Tai-Chiung; Juang, Jenh-Yih, E-mail: jyjuang@cc.nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan (China)

    2016-01-15

    The present study concerns with the secondary electron emission coefficient, γ, of the cathode materials used in the newly developed flat electron emission lamp (FEEL) devices, which essentially integrates the concept of using cathode for fluorescent lamp and anode for cathode ray tube (CRT) to obtain uniform planar lighting. Three different cathode materials, namely fluorine-doped tin oxide (FTO), aluminum oxide coated FTO (Al{sub 2}O{sub 3}/FTO) and magnesium oxide coated FTO (MgO/FTO) were prepared to investigate how the variations of γ and working gases influence the performance of FEEL devices, especially in lowering the breakdown voltage and pressure of the working gases. The results indicate that the MgO/FTO bilayer cathode exhibited a relatively larger effective secondary electron emission coefficient, resulting in significant reduction of breakdown voltage to about 3kV and allowing the device to be operated at the lower pressure to generate the higher lighting efficiency.

  4. On the electrochemistry of tin oxide coated tin electrodes in lithium-ion batteries

    International Nuclear Information System (INIS)

    Böhme, Solveig; Edström, Kristina; Nyholm, Leif

    2015-01-01

    As tin based electrodes are of significant interest in the development of improved lithium-ion batteries it is important to understand the associated electrochemical reactions. In this work it is shown that the electrochemical behavior of SnO_2 coated tin electrodes can be described based on the SnO_2 and SnO conversion reactions, the lithium tin alloy formation and the oxidation of tin generating SnF_2. The CV, XPS and SEM data, obtained for electrodeposited tin crystals on gold substrates, demonstrates that the capacity loss often observed for SnO_2 is caused by the reformed SnO_2 layer serving as a passivating layer protecting the remaining tin. Capacities corresponding up to about 80 % of the initial SnO_2 capacity could, however, be obtained by cycling to 3.5 V vs. Li"+/Li. It is also shown that the oxidation of the lithium tin alloy is hindered by the rate of the diffusion of lithium through a layer of tin with increasing thickness and that the irreversible oxidation of tin to SnF_2 at potentials larger than 2.8 V vs. Li"+/Li is due to the fact that SnF_2 is formed below the SnO_2 layer. This improved electrochemical understanding of the SnO_2/Sn system should be valuable in the development of tin based electrodes for lithium-ion batteries.

  5. Synthesising highly reactive tin oxide using Tin(II2- ethylhexanoate polynucleation as precursor

    Directory of Open Access Journals (Sweden)

    Alejandra Montenegro Hernández

    2009-01-01

    Full Text Available Tin oxide is a widely used compound in technological applications, particularity as a catalyst, gas sensor and in making varistors, transparent conductors, electrocatalytic electrodes and photovoltaic cells. An ethylhexanoate tin salt, a carboxylic acid and poly-esterification were used for synthesising highly reactive tin oxide in the present study. Synthesis was controlled by Fourier transform infrared (FTIR spectroscopy and recording changes in viscosity. The tin oxide characteristics so obtained were determined using FTIR spectroscopy, X-ray diffraction (XRD and scanning electron microscopy (SEM. The SnO2 dust synthesised and heat-treated at 550°C yielded high density aggregates, having greater than 50 μm particle size. This result demonstrates the high reactivity of the ceramic powders synthesised here.

  6. Low-temperature Synthesis of Tin(II) Oxide From Tin(II) ketoacidoximate Precursor

    KAUST Repository

    Alshankiti, Buthainah

    2015-01-01

    Sn (II) oxide finds numerous applications in different fields such as thin film transistors1, solar cells2 and sensors.3 In this study we present the fabrication of tin monoxide SnO by using Sn (II) ketoacid oximate complexes as precursors. Tin (II

  7. Hydrolysis of bis(dimethylamido)tin to tin (II) oxyhydroxide and its selective transformation into tin (II) or tin (IV) oxide

    KAUST Repository

    Khanderi, Jayaprakash

    2015-03-01

    Sn6O4(OH)4, a hydrolysis product of Sn(NMe2)2, is transformed to tin (II) or tin (IV) oxide by solid and solution phase processing. Tin (II) oxide is formed by heating Sn6O4(OH)4 at ≤200 °C in air or under inert atmosphere. Tin (IV) oxide nanoparticles are formed in the presence of a carboxylic acid and base in air at room temperature. IR spectroscopy, Raman spectroscopy, thermogravimetry (coupled with infrared spectroscopy), powder X-ray diffraction, high temperature X-ray diffraction, scanning electron and transmission electron microscopy are used for the characterization of Sn6O4(OH)4 and the investigation of its selective decomposition into SnO or SnO2. Spectroscopic and X-ray diffraction results indicate that SnO is formed by the removal of water from crystalline Sn6O4(OH)4. SEM shows octahedral morphology of the Sn6O4(OH)4, SnO and SnO2 with particle size from 400 nm-2 μm during solid state conversion. Solution phase transformation of Sn6O4(OH)4 to SnO2 occurs in the presence of potassium glutarate and oxygen. SnO2 particles are 15-20 nm in size.

  8. Properties of Polydisperse Tin-doped Dysprosium and Indium Oxides

    Directory of Open Access Journals (Sweden)

    Malinovskaya Tatyana

    2017-01-01

    Full Text Available The results of investigations of the complex permittivity, diffuse-reflectance, and characteristics of crystal lattices of tin-doped indium and dysprosium oxides are presented. Using the methods of spectroscopy and X-ray diffraction analysis, it is shown that doping of indium oxide with tin results in a significant increase of the components of the indium oxide complex permittivity and an appearance of the plasma resonance in its diffuse-reflectance spectra. This indicates the appearance of charge carriers with the concentration of more than 1021 cm−3 in the materials. On the other hand, doping of the dysprosium oxide with the same amount of tin has no effect on its optical and electromagnetic properties.

  9. Synthesis, characterization and photoluminescence of tin oxide nanoribbons and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M.A., E-mail: duraia_physics@yahoo.co [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan); Mansorov, Z.A. [Al-Farabi Kazakh National University, Almaty (Kazakhstan); Tokmolden, S. [Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan)

    2009-11-15

    In this work we report the successful formation of tin oxide nanowires and tin oxide nanoribbons with high yield and by using simple cheap method. We also report the formation of curved nanoribbon, wedge-like tin oxide nanowires and star-like nanowires. The growth mechanism of these structures has been studied. Scanning electron microscope was used in the analysis and the EDX analysis showed that our samples is purely Sn and O with ratio 1:2. X-ray analysis was also used in the characterization of the tin oxide nanowire and showed the high crystallinity of our nanowires. The mechanism of the growth of our1D nanostructures is closely related to the vapor-liquid-solid (VLS) process. The photoluminescence PL measurements for the tin oxide nanowires indicated that there are three stable emission peaks centered at wavelengths 630, 565 and 395 nm. The nature of the transition may be attributed to nanocrystals inside the nanobelts or to Sn or O vacancies occurring during the growth which can induce trapped states in the band gap.

  10. Chitosan-iron oxide nanocomposite based electrochemical aptasensor for determination of malathion

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, Nirmal, E-mail: nirmalprabhakar@gmail.com; Thakur, Himkusha; Bharti, Anu; Kaur, Navpreet

    2016-10-05

    An electrochemical aptasensor based on chitosan-iron oxide nanocomposite (CHIT-IO) film deposited on fluorine tin Oxide (FTO) was developed for the detection of malathion. Iron oxide nanoparticles were prepared by co-precipitation method and characterized by Transmission electron microscopy and UV–Visible spectroscopy. The biotinylated DNA aptamer sequence specific to the malathion was immobilized onto the iron oxide doped-chitosan/FTO electrode by using streptavidin as linking molecule. Various characterization studies like Field Emission-Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and Electrochemical studies were performed to attest the successful fabrication of bioelectrodes. Experimental parameters like aptamer concentration, response time, stability of electrode and reusability studies were optimized. Aptamer immobilized chitosan-iron oxide nanocomposite (APT/SA/CHIT-IO/FTO) bioelectrodes exhibited LOD of about 0.001 ng/mL within 15 min and spike-in studies revealed about 80–92% recovery of malathion from the lettuce leaves and soil sample. - Highlights: • An electrochemical aptasensor for the detection of Malathion has been developed. • Chitosan-iron oxide NP deposited FTO sheets provides platform for aptamer immobilization. • Aptasensor has efficiency to detect malathion upto 0.001 ng/mL within 15 min.

  11. FTO associations with obesity and telomere length.

    Science.gov (United States)

    Zhou, Yuling; Hambly, Brett D; McLachlan, Craig S

    2017-09-01

    This review examines the biology of the Fat mass- and obesity-associated gene (FTO), and the implications of genetic association of FTO SNPs with obesity and genetic aging. Notably, we focus on the role of FTO in the regulation of methylation status as possible regulators of weight gain and genetic aging. We present a theoretical review of the FTO gene with a particular emphasis on associations with UCP2, AMPK, RBL2, IRX3, CUX1, mTORC1 and hormones involved in hunger regulation. These associations are important for dietary behavior regulation and cellular nutrient sensing via amino acids. We suggest that these pathways may also influence telomere regulation. Telomere length (TL) attrition may be influenced by obesity-related inflammation and oxidative stress, and FTO gene-involved pathways. There is additional emerging evidence to suggest that telomere length and obesity are bi-directionally associated. However, the role of obesity risk-related genotypes and associations with TL are not well understood. The FTO gene may influence pathways implicated in regulation of TL, which could help to explain some of the non-consistent relationship between weight phenotype and telomere length that is observed in population studies investigating obesity.

  12. Electrical Properties of Electrospun Sb-Doped Tin Oxide Nanofibers

    International Nuclear Information System (INIS)

    Leon-Brito, Neliza; Melendez, Anamaris; Ramos, Idalia; Pinto, Nicholas J; Santiago-Aviles, Jorge J

    2007-01-01

    Transparent and conducting tin oxide fibers are of considerable interest for solar energy conversion, sensors and in various electrode applications. Appropriate doping can further enhance the conductivity of the fibers without loosing optical transparency. Undoped and antimony-doped tin oxide fibers have been synthesized by our group in previous work using electrospinning and metallorganic decomposition techniques. The undoped tin oxide fibers were obtained using a mixture of pure tin oxide sol made from tin (IV) chloride : water : propanol : isopropanol at a molar ratio of 1:9:9:6, and a viscous solution made from poly(ethylene oxide) (PEO) and chloroform at a ratio of 200 mg PEO/10 mL chloroform. In this work, antimony doped fibers were obtained by adding a dopant solution of antimony trichloride and isopropanol at a ratio of 2.2812 g antimony trichloride/10 ml isopropanol to the original tin oxide precursor solution. The Sb concentration in the precursor solution is 1.5%. After deposition, the fibers were sintered 600deg. C in air for two hours. The electrical conductivity of single fibers measured at room temperature increases by up to three orders of magnitude when compared to undoped fibers prepared using the same method. The resistivity change as a function of the annealing temperature can be attributed to the thermally activated formation of a nearly stoichoimetric solid. The resistivity of the fibers changes monotonically with temperature from 714Ω-cm at 2 K to 0.1Ω-cm at 300 K. In the temperature range from 2 to 8 K the fibers have a positive magnetoresistance (MR) with the highest value of 155 % at 2 K and ±9 T. At temperatures of 10 and 12 K the sign of MR changes to negative values for low magnetic fields and positive for high magnetic fields. For higher temperatures (15 K and above) the MR becomes negative and its magnitude decreases with temperature

  13. Electrochromic and electrochemical capacitive properties of tungsten oxide and its polyaniline nanocomposite films obtained by chemical bath deposition method

    CSIR Research Space (South Africa)

    Nwanya, AC

    2014-05-01

    Full Text Available Polyanine and its nanocomposite WO3/PANI films were deposited on fluorine doped tin oxide (FTO) glassslides by simple chemical bath deposition method. The morphology structure of the composite film wasstudied using atomic force microscopy (AFM...

  14. The development of latent fingerprints by zinc oxide and tin oxide nanoparticles prepared by precipitation technique

    Science.gov (United States)

    Luthra, Deepali; Kumar, Sacheen

    2018-05-01

    Fingerprints are the very important evidence at the crime scene which must be developed clearly with shortest duration of time to solve the case. Metal oxide nanoparticles could be the mean to develop the latent fingerprints. Zinc oxide and Tin Oxide Nanoparticles were prepared by using chemical precipitation technique which were dried and characterized by X-ray diffraction, UV-Visible spectroscopy and FTIR. The size of zinc oxide crystallite was found to be 14.75 nm with minimum reflectance at 360 nm whereas tin oxide have the size of 90 nm and reflectance at minimum level 321 nm. By using these powdered samples on glass, plastic and glossy cardboard, latent fingerprints were developed. Zinc oxide was found to be better candidate than tin oxide for the fingerprint development on all the three types of substrates.

  15. Highly conducting and transparent sprayed indium tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Rami, M.; Benamar, E.; Messaoudi, C.; Sayah, D.; Ennaoui, A. (Faculte des Sciences, Rabat (Morocco). Lab. de Physique des Materiaux)

    1998-03-01

    Indium tin oxide (ITO) has a wide range of applications in solar cells (e.g. by controlling the resistivity, we can use low conductivity ITO as buffer layer and highly conducting ITO as front contact in thin films CuInS[sub 2] and CuInSe[sub 2] based solar cells) due to its wide band gap (sufficient to be transparent) in both visible and near infrared range, and high carrier concentrations with metallic conduction. A variety of deposition techniques such as reactive electron beam evaporation, DC magnetron sputtering, evaporation, reactive thermal deposition, and spray pyrolysis have been used for the preparation of undoped and tin doped indium oxide. This latter process which makes possible the preparation of large area coatings has attracted considerable attention due to its simplicity and large scale with low cost fabrication. It has been used here to deposit highly transparent and conducting films of tin doped indium oxide onto glass substrates. The electrical, optical and structural properties have been investigated as a function of various deposition parameters namely dopant concentrations, temperature and nature of substrates. X-ray diffraction patterns have shown that deposited films are polycrystalline without second phases and have preferred orientation [400]. INdium tin oxide layers with small resistivity value around 7.10[sup -5] [omega].cm and transmission coefficient in the visible and near IR range of about 85-90% have been easily obtained. (authors) 13 refs.

  16. Deposition of tin oxide doped with fluorine produced by sol-gel method and deposited by spray-pyrolysis

    International Nuclear Information System (INIS)

    Maia, Paulo Herbert Franca; Lima, Francisco Marcone; Sena, Aline Cosmo de; Silva, Alvaro Neuton; Almeida, Ana Fabiola Leite de; Freire, Francisco Nivaldo Aguiar

    2014-01-01

    Solar energy is one of the most important sources of renewable energy today, but its production is based on silicon cells, expensive and difficult to produce, so the research seek new materials to replace them. This work aims to deposit tin oxide doped with fluorine on the glass substrate using the sol-gel method to provide a working solution and spray pyrolysis technique to perform the deposition. F-SnO2 (FTO) were synthesized by sol-gel method, employing NH_4F and SnCl_2 precursor in an ethanol solution. Before the formation of the gel phase, the entire solution was sprayed, with the aid of a pistol aerographic substrate under heated at 600 °C divided by 50 applications and cooled in the furnace. The substrates had resistances between 10 and 30 S.cm. The energy dispersive x-ray (EDS) revealed the presence of fluorine in the SnO_2 network. (author)

  17. Dense CdS thin films on fluorine-doped tin oxide coated glass by high-rate microreactor-assisted solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yu-Wei, E-mail: suyuweiwayne@gmail.com [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97330 (United States); Microproducts Breakthrough Institute and Oregon Process Innovation Center, Corvallis, Oregon 97330 (United States); Ramprasad, Sudhir [Energy Processes and Materials Division, Pacific Northwest National Laboratory, Corvallis, OR 9730 (United States); Microproducts Breakthrough Institute and Oregon Process Innovation Center, Corvallis, Oregon 97330 (United States); Han, Seung-Yeol; Wang, Wei [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97330 (United States); Microproducts Breakthrough Institute and Oregon Process Innovation Center, Corvallis, Oregon 97330 (United States); Ryu, Si-Ok [School of Display and Chemical Engineering, Yeungnam University, 214-1 Dae-dong, Gyeonsan, Gyeongbuk 712-749 (Korea, Republic of); Palo, Daniel R. [Barr Engineering Co., Hibbing, MN 55747 (United States); Paul, Brian K. [School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Corvallis, OR 97330 (United States); Microproducts Breakthrough Institute and Oregon Process Innovation Center, Corvallis, Oregon 97330 (United States); Chang, Chih-hung [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97330 (United States); Microproducts Breakthrough Institute and Oregon Process Innovation Center, Corvallis, Oregon 97330 (United States)

    2013-04-01

    Continuous microreactor-assisted solution deposition is demonstrated for the deposition of CdS thin films on fluorine-doped tin oxide (FTO) coated glass. The continuous flow system consists of a microscale T-junction micromixer with the co-axial water circulation heat exchanger to control the reacting chemical flux and optimize the heterogeneous surface reaction. Dense, high quality nanocrystallite CdS thin films were deposited at an average rate of 25.2 nm/min, which is significantly higher than the reported growth rate from typical batch chemical bath deposition process. Focused-ion-beam was used for transmission electron microscopy specimen preparation to characterize the interfacial microstructure of CdS and FTO layers. The band gap was determined at 2.44 eV by UV–vis absorption spectroscopy. X-ray photon spectroscopy shows the binding energies of Cd 3d{sub 3/2}, Cd 3d{sub 5/2}, S 2P{sub 3/2} and S 2P{sub 1/2} at 411.7 eV, 404.8 eV, 162.1 eV and 163.4 eV, respectively. - Highlights: ► CdS films deposited using continuous microreactor-assisted solution deposition (MASD) ► Dense nanocrystallite CdS films can be reached at a rate of 25.2 [nm/min]. ► MASD can approach higher film growth rate than conventional chemical bath deposition.

  18. Demonstration of high-performance p-type tin oxide thin-film transistors using argon-plasma surface treatments

    Science.gov (United States)

    Bae, Sang-Dae; Kwon, Soo-Hun; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-07-01

    In this work, we investigated the effects of low-temperature argon (Ar)-plasma surface treatments on the physical and chemical structures of p-type tin oxide thin-films and the electrical performance of p-type tin oxide thin-film transistors (TFTs). From the x-ray photoelectron spectroscopy measurement, we found that SnO was the dominant phase in the deposited tin oxide thin-film, and the Ar-plasma treatment partially transformed the tin oxide phase from SnO to SnO2 by oxidation. The resistivity of the tin oxide thin-film increased with the plasma-treatment time because of the reduced hole concentration. In addition, the root-mean-square roughness of the tin oxide thin-film decreased as the plasma-treatment time increased. The p-type oxide TFT with an Ar-plasma-treated tin oxide thin-film exhibited excellent electrical performance with a high current on-off ratio (5.2 × 106) and a low off-current (1.2 × 10-12 A), which demonstrates that the low-temperature Ar-plasma treatment is a simple and effective method for improving the electrical performance of p-type tin oxide TFTs.

  19. Process for Making a Noble Metal on Tin Oxide Catalyst

    Science.gov (United States)

    Davis, Patricia; Miller, Irvin; Upchurch, Billy

    2010-01-01

    To produce a noble metal-on-metal oxide catalyst on an inert, high-surface-area support material (that functions as a catalyst at approximately room temperature using chloride-free reagents), for use in a carbon dioxide laser, requires two steps: First, a commercially available, inert, high-surface-area support material (silica spheres) is coated with a thin layer of metal oxide, a monolayer equivalent. Very beneficial results have been obtained using nitric acid as an oxidizing agent because it leaves no residue. It is also helpful if the spheres are first deaerated by boiling in water to allow the entire surface to be coated. A metal, such as tin, is then dissolved in the oxidizing agent/support material mixture to yield, in the case of tin, metastannic acid. Although tin has proven especially beneficial for use in a closed-cycle CO2 laser, in general any metal with two valence states, such as most transition metals and antimony, may be used. The metastannic acid will be adsorbed onto the high-surface-area spheres, coating them. Any excess oxidizing agent is then evaporated, and the resulting metastannic acid-coated spheres are dried and calcined, whereby the metastannic acid becomes tin(IV) oxide. The second step is accomplished by preparing an aqueous mixture of the tin(IV) oxide-coated spheres, and a soluble, chloride-free salt of at least one catalyst metal. The catalyst metal may be selected from the group consisting of platinum, palladium, ruthenium, gold, and rhodium, or other platinum group metals. Extremely beneficial results have been obtained using chloride-free salts of platinum, palladium, or a combination thereof, such as tetraammineplatinum (II) hydroxide ([Pt(NH3)4] (OH)2), or tetraammine palladium nitrate ([Pd(NH3)4](NO3)2).

  20. Understanding the gas sensing properties of polypyrrole coated tin oxide nanofiber mats

    Science.gov (United States)

    Bagchi, Sudeshna; Ghanshyam, C.

    2017-03-01

    Tin oxide-polypyrrole composites have been widely studied for their enhanced sensing performance towards ammonia vapours, but further investigations are required for an understanding of the interaction mechanisms with different target analytes. In this work, polypyrrole coated tin oxide fibers have been synthesized using a two-step approach of electrospinning and vapour phase polymerization for the sensing of ammonia, ethanol, methanol, 2-propanol and acetone vapours. The resistance variation in the presence of these vapours of different nature and concentration is investigated for the determination of sensor response. A decrease in resistance occurred on interaction of tin oxide-polypyrrole with ammonia, as opposed to previous reported works. Partial reduction of polypyrrole due to interfacial interaction with tin oxide has been proposed to explain this behavior. High sensitivity of 7.45 is achieved for 1 ppm ammonia concentration. Furthermore, the sensor exhibited high sensitivity and a faster response towards ethanol vapours although methanol has the highest electron donating capability. The catalytic mechanism has been discussed to explain this interesting behavior. The results reveal that interaction between tin oxide and polypyrrole is crucial to control the predominant sensing mechanism.

  1. Synthesis and electrochemical properties of tin oxide-based composite by rheological technique

    International Nuclear Information System (INIS)

    He Zeqiang; Li Xinhai; Xiong Lizhi; Wu Xianming; Xiao Zhuobing; Ma Mingyou

    2005-01-01

    Novel rheological technique was developed to synthesize tin oxide-based composites. The microstructure, morphology, and electrochemical performance of the materials were investigated by X-ray diffraction, scanning electron microscopy and electrochemical methods. The particles of tin oxide-based materials form an inactive matrix. The average size of the particles is about 150 nm. The material delivers a charge capacity of more than 570 mAh g -1 . The capacity loss per cycle is about 0.15% after being cycled 30 times. The good electrochemical performance indicates that this kind of tin oxide-based material is promising anode for lithium-ion battery

  2. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5

    Science.gov (United States)

    Huang, Yue; Yan, Jingli; Li, Qi; Li, Jiafei; Gong, Shouzhe; Zhou, Hu; Gan, Jianhua; Jiang, Hualiang; Jia, Gui-Fang; Luo, Cheng; Yang, Cai-Guang

    2015-01-01

    Two human demethylases, the fat mass and obesity-associated (FTO) enzyme and ALKBH5, oxidatively demethylate abundant N6-methyladenosine (m6A) residues in mRNA. Achieving a method for selective inhibition of FTO over ALKBH5 remains a challenge, however. Here, we have identified meclofenamic acid (MA) as a highly selective inhibitor of FTO. MA is a non-steroidal, anti-inflammatory drug that mechanistic studies indicate competes with FTO binding for the m6A-containing nucleic acid. The structure of FTO/MA has revealed much about the inhibitory function of FTO. Our newfound understanding, revealed herein, of the part of the nucleotide recognition lid (NRL) in FTO, for example, has helped elucidate the principles behind the selectivity of FTO over ALKBH5. Treatment of HeLa cells with the ethyl ester form of MA (MA2) has led to elevated levels of m6A modification in mRNA. Our collective results highlight the development of functional probes of the FTO enzyme that will (i) enable future biological studies and (ii) pave the way for the rational design of potent and specific inhibitors of FTO for use in medicine. PMID:25452335

  3. Electrical and optical performance of transparent conducting oxide films deposited by electrostatic spray assisted vapour deposition.

    Science.gov (United States)

    Hou, Xianghui; Choy, Kwang-Leong; Liu, Jun-Peng

    2011-09-01

    Transparent conducting oxide (TCO) films have the remarkable combination of high electrical conductivity and optical transparency. There is always a strong motivation to produce TCO films with good performance at low cost. Electrostatic Spray Assisted Vapor Deposition (ESAVD), as a variant of chemical vapour deposition (CVD), is a non-vacuum and low-cost deposition method. Several types of TCO films have been deposited using ESAVD process, including indium tin oxide (ITO), antimony-doped tin oxide (ATO), and fluorine doped tin oxide (FTO). This paper reports the electrical and optical properties of TCO films produced by ESAVD methods, as well as the effects of post treatment by plasma hydrogenation on these TCO films. The possible mechanisms involved during plasma hydrogenation of TCO films are also discussed. Reduction and etching effect during plasma hydrogenation are the most important factors which determine the optical and electrical performance of TCO films.

  4. Nanostructured antistatic and antireflective thin films made of indium tin oxide and silica over-coat layer

    Science.gov (United States)

    Cho, Young-Sang; Hong, Jeong-Jin; Yang, Seung-Man; Choi, Chul-Jin

    2010-08-01

    Stable dispersion of colloidal indium tin oxide nanoparticles was prepared by using indium tin oxide nanopowder, organic solvent, and suitable dispersants through attrition process. Various comminution parameters during the attrition step were studied to optimize the process for the stable dispersion of indium tin oxide sol. The transparent and conductive films were fabricated on glass substrate using the indium tin oxide sol by spin coating process. To obtain antireflective function, partially hydrolyzed alkyl silicate was deposited as over-coat layer on the pre-fabricated indium tin oxide film by spin coating technique. This double-layered structure of the nanostructured film was characterized by measuring the surface resistance and reflectance spectrum in the visible wavelength region. The final film structure was enough to satisfy the TCO regulations for EMI shielding purposes.

  5. In-Situ Growth and Characterization of Indium Tin Oxide Nanocrystal Rods

    Directory of Open Access Journals (Sweden)

    Yan Shen

    2017-11-01

    Full Text Available Indium tin oxide (ITO nanocrystal rods were synthesized in-situ by a vapor-liquid-solid (VLS method and electron beam evaporation technique. When the electron-beam gun bombarded indium oxide (In2O3 and tin oxide (SnO2 mixed sources, indium and tin droplets appeared and acted as catalysts. The nanocrystal rods were in-situ grown on the basis of the metal catalyst point. The nanorods have a single crystal structure. Its structure was confirmed by X-ray diffraction (XRD and transmission electron microscopy (TEM. The surface morphology was analyzed by scanning electron microscopy (SEM. During the evaporation, a chemical process was happened and an In2O3 and SnO2 solid solution was formed. The percentage of doped tin oxide was calculated by Vegard’s law to be 3.18%, which was in agreement with the mixture ratio of the experimental data. The single crystal rod had good semiconductor switch property and its threshold voltage of single rod was approximately 2.5 V which can be used as a micro switch device. The transmission rate of crystalline nanorods ITO film was over 90% in visible band and it was up to 95% in the blue green band as a result of the oxygen vacancy recombination luminescence.

  6. Cloning and characterization of chicken fat mass and obesity associated (Fto) gene: fasting affects Fto expression.

    Science.gov (United States)

    Tiwari, A; Krzysik-Walker, S M; Ramachandran, R

    2012-01-01

    Fat mass and obesity associated gene (Fto), also known as Fatso, is a member of the Fe-II and 2-oxoglutarate-dependent dioxygenase superfamily. Recent studies in humans and rodents suggest that Fto is involved in food intake regulation and lipid metabolism, whereas single nucleotide mutations in the Fto gene are associated with obesity and type 2 diabetes. The Fto gene is highly conserved from green algae to humans, but little is known about the avian Fto gene or protein. The objectives of the current study were to clone full-length chicken Fto cDNA and to determine the effect of age or feeding status on Fto expression. With the use of rapid amplification of cDNA ends, the full-length chicken Fto cDNA was cloned and found to share 63% to 66% homology with the mammalian Fto nucleotide sequence. Several regions of the chicken Fto protein, including the substrate (2-oxoglutarate) binding domains, were found to be identical to mammalian Fto protein. Western blotting with anti-human Fto antibody and reverse transcription PCR studies showed that Fto protein and gene were ubiquitously expressed in various tissues of the chicken. With the use of quantitative PCR, Fto mRNA levels were found to be higher in liver and skeletal muscle of 8-wk-old chickens than in 4-wk-old chickens. In addition, alterations in feeding status resulted in significant changes in Fto mRNA and Fto protein expression in the liver but not in skeletal muscle and adipose tissue of broiler chickens. Taken together, our data suggest that Fto probably plays a significant role in liver function and energy metabolism in the chicken. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Characterization of tin oxide nanoparticles synthesized via oxidation from metal; Caracterizacao de nanoparticulas de oxido de estanho sintetizado via oxidacao do metal

    Energy Technology Data Exchange (ETDEWEB)

    Abruzzi, R.C.; Dedavid, B.A.; Pires, M.J.R.; Streicher, M., E-mail: afael.abruzzi@acad.pucrs.br [Pontificia Universidade Catolica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS (Brazil). Pos-Graduacao em Engenharia e Tecnologia de Materiais

    2014-07-01

    The tin oxide (SnO{sub 2}) is a promising material with great potential for applications such as gas sensors and catalysts. This oxide nanostructures show higher activation efficiency due to its larger effective surface. This paper presents the synthesis and characterization of the tin oxide in different conditions, via oxidation of pure tin with nitric acid. Results obtained from the characterization of SnO{sub 2} powder by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), Particle size by Dynamic Light Scattering (DLS) and Infrared Spectroscopy (FTIR) indicated that the conditions were suitable for the synthesis to obtain manometric tin oxide granules with crystalline structure of rutile. (author)

  8. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Sumanta K.; Rajeswari, V. P. [Centre for Nano Science and Technology, GVP College of Engineering (Autonomous), Visakhapatnam- 530048 (India)

    2014-01-28

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn{sub 3}O{sub 4}, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.

  9. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    International Nuclear Information System (INIS)

    Tripathy, Sumanta K.; Rajeswari, V. P.

    2014-01-01

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn 3 O 4 , corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells

  10. Partial oxidation of TiN coating by hydrothermal treatment and ozone treatment to improve its osteoconductivity

    International Nuclear Information System (INIS)

    Shi, Xingling; Xu, Lingli; Le, Thi Bang; Zhou, Guanghong; Zheng, Chuanbo; Tsuru, Kanji; Ishikawa, Kunio

    2016-01-01

    Dental implants made of pure titanium suffer from abrasion and scratch during routine oral hygiene procedures. This results in an irreversible surface damage, facilitates bacteria adhesion and increases risk of peri-implantitis. To overcome these problems, titanium nitride (TiN) coating was introduced to increase surface hardness of pure titanium. However, the osteoconductivity of TiN is considered to be similar or superior to that of titanium and its alloys and therefore surface modification is necessary. In this study, TiN coating prepared through gas nitriding was partially oxidized by hydrothermal (HT) treatment and ozone (O 3 ) treatment in pure water to improve its osteoconductivity. The effects of HT treatment and O 3 treatment on surface properties of TiN were investigated and the osteoconductivity after undergoing treatment was assessed in vitro using osteoblast evaluation. The results showed that the critical temperature for HT treatment was 100 °C since higher temperatures would impair the hardness of TiN coating. By contrast, O 3 treatment was more effective in oxidizing TiN surfaces, improving its wettability while preserving its morphology and hardness. Osteoblast attachment, proliferation, alkaline phosphatase (ALP) expression and mineralization were improved on oxidized specimens, especially on O 3 treated specimens, compared with untreated ones. These effects seemed to be consequences of partial oxidation, as well as improved hydrophilicity and surface decontamination. Finally, it was concluded that, partially oxidized TiN is a promising coating to be used for dental implant. - Highlights: • TiN coating surface was oxidized by hydrothermal or ozone treatment while preserving its hardness. • Improved wettability, decontamination and interstitial N promoted osteoblast responses. • Partial oxidation makes TiN a promising coating for dental implant with good osteoconductivity.

  11. Partial oxidation of TiN coating by hydrothermal treatment and ozone treatment to improve its osteoconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xingling [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan); Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); Xu, Lingli, E-mail: linly311@163.com [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Le, Thi Bang [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Zhou, Guanghong [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); Zheng, Chuanbo, E-mail: zjust316@163.com [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Tsuru, Kanji; Ishikawa, Kunio [Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan)

    2016-02-01

    Dental implants made of pure titanium suffer from abrasion and scratch during routine oral hygiene procedures. This results in an irreversible surface damage, facilitates bacteria adhesion and increases risk of peri-implantitis. To overcome these problems, titanium nitride (TiN) coating was introduced to increase surface hardness of pure titanium. However, the osteoconductivity of TiN is considered to be similar or superior to that of titanium and its alloys and therefore surface modification is necessary. In this study, TiN coating prepared through gas nitriding was partially oxidized by hydrothermal (HT) treatment and ozone (O{sub 3}) treatment in pure water to improve its osteoconductivity. The effects of HT treatment and O{sub 3} treatment on surface properties of TiN were investigated and the osteoconductivity after undergoing treatment was assessed in vitro using osteoblast evaluation. The results showed that the critical temperature for HT treatment was 100 °C since higher temperatures would impair the hardness of TiN coating. By contrast, O{sub 3} treatment was more effective in oxidizing TiN surfaces, improving its wettability while preserving its morphology and hardness. Osteoblast attachment, proliferation, alkaline phosphatase (ALP) expression and mineralization were improved on oxidized specimens, especially on O{sub 3} treated specimens, compared with untreated ones. These effects seemed to be consequences of partial oxidation, as well as improved hydrophilicity and surface decontamination. Finally, it was concluded that, partially oxidized TiN is a promising coating to be used for dental implant. - Highlights: • TiN coating surface was oxidized by hydrothermal or ozone treatment while preserving its hardness. • Improved wettability, decontamination and interstitial N promoted osteoblast responses. • Partial oxidation makes TiN a promising coating for dental implant with good osteoconductivity.

  12. UV-visible spectroscopic estimation of photodegradation of rhodamine-B dye using tin(IV) oxide nanoparticles.

    Science.gov (United States)

    Sangami, G; Dharmaraj, N

    2012-11-01

    Nanocrystalline, tin(IV) oxide (SnO(2)) particles has been prepared by thermal decomposition of tin oxalate precursor obtained from the reactions of tin(IV) chloride and sodium oxalate using eggshell membrane (ESM). The as-prepared SnO(2) nanoparticles were characterized by thermal studies, transmission electron microscopy (TEM), powder X-ray diffraction (XRD), Raman, FT-IR and UV-visible studies and used as a photocatalyst for the degradation of rhodamine-B (Rh-B) dye. The size of the prepared nanoparticles was in the range of 5-12nm as identified from the TEM images. Powder XRD data revealed the presence of a tetragonal, rutile crystalline phase of the tin(IV) oxide nanoparticles. Thermal analysis showed that the decomposition of tin oxalate precursor to yield the titled tin(IV) oxide nanoparticles was completed below 500°C. The extent of degradation of Rh-B in the presence of SnO(2) monitored by absorption spectral measurements demonstrated that 94.48% of the selected dye was degraded upon irradiation with UV light for 60 min. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Synthesis of antimony-doped tin oxide (ATO) nanoparticles by the nitrate-citrate combustion method

    International Nuclear Information System (INIS)

    Zhang Jianrong; Gao Lian

    2004-01-01

    Antimony-doped tin oxide (ATO) nanoparticles having rutile structure have been synthesized by the combustion method using citric acid (CA) as fuel and nitrate as an oxidant, the metal sources were granulated tin and Sb 2 O 3 . The influence of citric acid (fuel) to metal ratio on the average crystallite size, specific surface area and morphology of the nanoparticles has been investigated. X-ray diffraction showed the tin ions were reduced to elemental tin during combustion reaction. The average ATO crystallite size increased with the increase of citric acid (fuel). Powder morphology and the comparison of crystallite size and grain size shows that the degree of agglomeration of the powder decreased with an increase of the ratio. The highest specific surface area was 37.5 m 2 /g when the citric acid to tin ratio was about 6

  14. Schottky diode behaviour with excellent photoresponse in NiO/FTO heterostructure

    Science.gov (United States)

    Saha, B.; Sarkar, K.; Bera, A.; Deb, K.; Thapa, R.

    2017-10-01

    Delocalization of charge carriers through formation of native defects in NiO, to achieve a good metal oxide hole transport layer was attemted in this work and thus a heterojunction of p-type NiO and n-type FTO have been prepared through sol-gel process on FTO coated glass substrate. The synthesis process was stimulated by imparting large number of OH- sites during nucleation of Ni(OH)2 on FTO, so that during oxidation through annealing Ni vacancies are introduced. The structural properties as observed from X-ray diffraction measurement indicate formation of well crystalline NiO nanoparticles. Uniform distribution of NiO nanoparticles has been observed in the images obtained from scanning electron microscope. The occurrence of p-type conductivity in the NiO film was stimulated through the formation of delocalized defect carriers originated from crystal defects like vacancies or interstitials in the lattice. Ni vacancy creates shallow levels with respect to the valance band maxima and they readily produce holes. Thus a native p-type conductivity of NiO originates from Ni vacancies. NiO was thus obtained as an auspicious hole transport medium, which creates an expedient heterojunction at the interface with FTO. Excellent rectifying behavior was observed in the electrical J-V plot obtained from the prepared heterojunction. The results are explained from the band energy diagram of the NiO/FTO heterojunction. Remarkable photoresponse has been observed in the reverse characteristics of the heterojunction caused by photon generated electron hole pairs.

  15. First-principles analysis of structural and opto-electronic properties of indium tin oxide

    Science.gov (United States)

    Tripathi, Madhvendra Nath; Shida, Kazuhito; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2012-05-01

    Density functional theory (DFT) and DFT + U (DFT with on-site Coulomb repulsion corrections) calculations have been carried out to study the structural and opto-electronic properties of indium tin oxide (ITO) for both the oxidized and reduced environment conditions. Some of the results obtained by DFT calculations differ from the experimental observations, such as uncertain indication for the site preference of tin atom to replace indium atom at b-site or d-site, underestimation of local inward relaxation in the first oxygen polyhedra around tin atom, and also the improper estimation of electronic density of states and hence resulting in an inappropriate optical spectra of ITO. These discrepancies of theoretical outcomes with experimental observations in ITO arise mainly due to the underestimation of the cationic 4d levels within standard DFT calculations. Henceforth, the inclusion of on-site corrections within DFT + U framework significantly modifies the theoretical results in better agreement to the experimental observations. Within this framework, our calculations show that the indium b-site is preferential site over d-site for tin atom substitution in indium oxide under both the oxidized and reduced conditions. Moreover, the calculated average inward relaxation value of 0.16 Å around tin atom is in good agreement with the experimental value of 0.18 Å. Furthermore, DFT + U significantly modify the electronic structure and consequently induce modifications in the calculated optical spectra of ITO.

  16. Fabrication of heterojunction solar cells by improved tin oxide deposition on insulating layer

    Science.gov (United States)

    Feng, Tom; Ghosh, Amal K.

    1980-01-01

    Highly efficient tin oxide-silicon heterojunction solar cells are prepared by heating a silicon substrate, having an insulating layer thereon, to provide a substrate temperature in the range of about 300.degree. C. to about 400.degree. C. and thereafter spraying the so-heated substrate with a solution of tin tetrachloride in a organic ester boiling below about 250.degree. C. Preferably the insulating layer is naturally grown silicon oxide layer.

  17. Acid-catalyzed kinetics of indium tin oxide etching

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae-Hyeok; Kim, Seong-Oh; Hilton, Diana L. [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); Cho, Nam-Joon, E-mail: njcho@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore)

    2014-08-28

    We report the kinetic characterization of indium tin oxide (ITO) film etching by chemical treatment in acidic and basic electrolytes. It was observed that film etching increased under more acidic conditions, whereas basic conditions led to minimal etching on the time scale of the experiments. Quartz crystal microbalance was employed in order to track the reaction kinetics as a function of the concentration of hydrochloric acid and accordingly solution pH. Contact angle measurements and atomic force microscopy experiments determined that acid treatment increases surface hydrophilicity and porosity. X-ray photoelectron spectroscopy experiments identified that film etching is primarily caused by dissolution of indium species. A kinetic model was developed to explain the acid-catalyzed dissolution of ITO surfaces, and showed a logarithmic relationship between the rate of dissolution and the concentration of undisassociated hydrochloric acid molecules. Taken together, the findings presented in this work verify the acid-catalyzed kinetics of ITO film dissolution by chemical treatment, and support that the corresponding chemical reactions should be accounted for in ITO film processing applications. - Highlights: • Acidic conditions promoted indium tin oxide (ITO) film etching via dissolution. • Logarithm of the dissolution rate depended linearly on the solution pH. • Acid treatment increased ITO surface hydrophilicity and porosity. • ITO film etching led to preferential dissolution of indium species over tin species.

  18. Combinatorial study of zinc tin oxide thin-film transistors

    Science.gov (United States)

    McDowell, M. G.; Sanderson, R. J.; Hill, I. G.

    2008-01-01

    Groups of thin-film transistors using a zinc tin oxide semiconductor layer have been fabricated via a combinatorial rf sputtering technique. The ZnO :SnO2 ratio of the film varies as a function of position on the sample, from pure ZnO to SnO2, allowing for a study of zinc tin oxide transistor performance as a function of channel stoichiometry. The devices were found to have mobilities ranging from 2to12cm2/Vs, with two peaks in mobility in devices at ZnO fractions of 0.80±0.03 and 0.25±0.05, and on/off ratios as high as 107. Transistors composed predominantly of SnO2 were found to exhibit light sensitivity which affected both the on/off ratios and threshold voltages of these devices.

  19. Facile solution deposition of Cu{sub 2}ZnSnS{sub 4} (CZTS) nano-worm films on FTO substrates and its photoelectrochemical property

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yaohan; Li, Guangli; Fan, Qingfei; Zhang, Meili; Lan, Qi [School of Materials Science and Engineering, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Chengdu 610031 (China); Fan, Ximei, E-mail: fanximei@126.com [School of Materials Science and Engineering, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Chengdu 610031 (China); Zhou, Zuowan [School of Materials Science and Engineering, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Chengdu 610031 (China); Zhang, Chaoliang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 (China)

    2016-02-28

    Graphical abstract: - Highlights: • Cu{sub 2}ZnSnS{sub 4} nanoworm thin films were synthesized directly on FTO substrates. • Polyethylene glycol-400 was used as solvent and structure-directing agent. • CZTS nanoworm film showed a photoelectrical conversion efficiency of 1.18%. - Abstract: In this work, Cu{sub 2}ZnSnS{sub 4} (CZTS) nanoworm films have been directly deposited on fluorine-doped tin oxide (FTO) conductive glass substrates by a solvothermal method using polyethylene glycol 400 (PEG-400) as the solvent and structure-directing agent. The as-obtained CZTS thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectrum (XPS), UV–vis spectra and photoelectrochemical measurement. The synthetic conditions, such as reaction temperature, reaction time, solvents, were investigated to know the formation of CZTS thin films. The results showed that PEG-400 plays a key role in the formation of the nanoworms by affecting the crystal growth process. The p-type CZTS nanoworm film with the band gap of 1.62 eV was synthesized at 180 °C for 22 h and the photovoltaic performance was studied by forming a photoelectrochemical cell.

  20. Effects of Thermal Annealing Conditions on Cupric Oxide Thin Film

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Seon; Oh, Hee-bong; Ryu, Hyukhyun [Inje University, Gimhae (Korea, Republic of); Lee, Won-Jae [Dong-Eui University, Busan (Korea, Republic of)

    2015-07-15

    In this study, cupric oxide (CuO) thin films were grown on fluorine doped tin oxide(FTO) substrate by using spin coating method. We investigated the effects of thermal annealing temperature and thermal annealing duration on the morphological, structural, optical and photoelectrochemical properties of the CuO film. From the results, we could find that the morphologies, grain sizes, crystallinity and photoelectrochemical properties were dependent on the annealing conditions. As a result, the maximum photocurrent density of -1.47 mA/cm{sup 2} (vs. SCE) was obtained from the sample with the thermal annealing conditions of 500 ℃ and 40 min.

  1. Effect of fabrication conditions on the properties of indium tin oxide powders

    International Nuclear Information System (INIS)

    Xie Wei

    2008-01-01

    This paper reports that indium tin oxide (ITO) crystalline powders are prepared by coprecipitation method. Fabrication conditions mainly as sintering temperature and Sn doping content are correlated with the phase, microstructure, infrared emissivity in and powder resistivity of indium tin oxides by means of x-ray diffraction, Fourier transform infrared, and transmission electron microscope. The optimum sintering temperature of 1350°C and Sn doping content 6∼8wt% are determined. The application of ITO in the military camouflage field is proposed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. 3D FTO/FTO-Nanocrystal/TiO2 Composite Inverse Opal Photoanode for Efficient Photoelectrochemical Water Splitting.

    Science.gov (United States)

    Wang, Zhiwei; Li, Xianglin; Ling, Han; Tan, Chiew Kei; Yeo, Loo Pin; Grimsdale, Andrew Clive; Tok, Alfred Iing Yoong

    2018-05-01

    A 3D fluorine-doped SnO 2 (FTO)/FTO-nanocrystal (NC)/TiO 2 inverse opal (IO) structure is designed and fabricated as a new "host and guest" type of composite photoanode for efficient photoelectrochemical (PEC) water splitting. In this novel photoanode design, the highly conductive and porous FTO/FTO-NC IO acts as the "host" skeleton, which provides direct pathways for faster electron transport, while the conformally coated TiO 2 layer acts as the "guest" absorber layer. The unique composite IO structure is fabricated through self-assembly of colloidal spheres template, a hydrothermal method and atomic layer deposition (ALD). Owing to its large surface area and efficient charge collection, the FTO/FTO-NC/TiO 2 composite IO photoanode shows excellent photocatalytic properties for PEC water splitting. With optimized dimensions of the SnO 2 nanocrystals and the thickness of the ALD TiO 2 absorber layers, the 3D FTO/FTO-NC/TiO 2 composite IO photoanode yields a photocurrent density of 1.0 mA cm -2 at 1.23 V versus reversible hydrogen electrode (RHE) under AM 1.5 illumination, which is four times higher than that of the FTO/TiO 2 IO reference photoanode. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Spray deposited gallium doped tin oxide thinfilm for acetone sensor application

    Science.gov (United States)

    Preethi, M. S.; Bharath, S. P.; Bangera, Kasturi V.

    2018-04-01

    Undoped and gallium doped (1 at.%, 2 at.% and 3 at.%) tin oxide thin films were prepared using spray pyrolysis technique by optimising the deposition conditions such as precursor concentration, substrate temperature and spraying rate. X-ray diffraction analysis revealed formation of tetragonally structured polycrystalline films. The SEM micrographs of Ga doped films showed microstructures. The electrical resistivity of the doped films was found to be more than that of the undoped films. The Ga-doped tin oxide thin films were characterised for gas sensors. 1 at.% Ga doped thin films were found to be better acetone gas sensor, showed 68% sensitivity at 350°C temperature.

  4. Urea impedimetric biosensing using electrospun nanofibers modified with zinc oxide nanoparticles

    Science.gov (United States)

    Migliorini, Fernanda L.; Sanfelice, Rafaela C.; Mercante, Luiza A.; Andre, Rafaela S.; Mattoso, Luiz H. C.; Correa, Daniel. S.

    2018-06-01

    Reliable analytical techniques to evaluate dairy products, including milk, are of outmost importance to ensure food safety against contaminants. Among possible substances employed as adulterants in milk, urea raises deep concern due to its harmful effects to consumer's health. In the present study, a biosensing platform was developed to be applied in the electrochemical detection of urea. The sensing platform was fabricated using polymeric electrospun nanofibers of polyamide 6 (PA6) and polypyrrole (PPy) deposited onto fluorine doped tin oxide (FTO) electrodes, which were then modified with zinc oxide nanoparticles (ZnO). This material showed excellent properties for the immobilization of urease enzyme, conferring the FTO/PA6/PPy/ZnO/urease electrode high sensitivity for urea detection within the concentration range between 0.1 and 250 mg dL-1 with a limit of detection of 0.011 mg dL-1. The results achieved evidence the potential of electrospun nanofibers-based electrodes for applications in biosensors aiming at dairy products analysis.

  5. Photocatalytic degradation of phenol by iodine doped tin oxide nanoparticles under UV and sunlight irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdi, Abdullah M.; Sillanpää, Mika [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Dutta, Joydeep, E-mail: dutta@squ.edu.om [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman)

    2015-01-05

    Highlights: • A sol–gel method used to synthesize tin oxide nanoparticles. • Nanoparticles of tin oxide doped with different iodine concentrations. • Degradation studies carried up with UV–vis, TOC, HPLC and GC instruments. • 1% iodine doped tin dioxide showed maximum photodegradation efficiency. - Abstract: Iodine doped tin oxide (SnO{sub 2}:I) nanoparticles were prepared by sol–gel synthesis and their photocatalytic activities with phenol as a test contaminant were studied. In the presence of the catalysts, phenol degradation under direct sunlight was comparable to what was achieved under laboratory conditions. Photocatalytic oxidation reactions were studied by varying the catalyst loading, light intensity, illumination time, pH of the reactant and phenol concentration. Upon UV irradiation in the presence of SnO{sub 2}:I nanoparticles, phenol degrades very rapidly within 30 min, forming carboxylic acid which turns the solution acidic. Phenol degradation rate with 1% iodine doped SnO{sub 2} nanoparticles is at least an order of magnitude higher compared to the degradation achieved through undoped SnO{sub 2} nanoparticles under similar illumination conditions.

  6. Photocatalytic degradation of phenol by iodine doped tin oxide nanoparticles under UV and sunlight irradiation

    International Nuclear Information System (INIS)

    Al-Hamdi, Abdullah M.; Sillanpää, Mika; Dutta, Joydeep

    2015-01-01

    Highlights: • A sol–gel method used to synthesize tin oxide nanoparticles. • Nanoparticles of tin oxide doped with different iodine concentrations. • Degradation studies carried up with UV–vis, TOC, HPLC and GC instruments. • 1% iodine doped tin dioxide showed maximum photodegradation efficiency. - Abstract: Iodine doped tin oxide (SnO 2 :I) nanoparticles were prepared by sol–gel synthesis and their photocatalytic activities with phenol as a test contaminant were studied. In the presence of the catalysts, phenol degradation under direct sunlight was comparable to what was achieved under laboratory conditions. Photocatalytic oxidation reactions were studied by varying the catalyst loading, light intensity, illumination time, pH of the reactant and phenol concentration. Upon UV irradiation in the presence of SnO 2 :I nanoparticles, phenol degrades very rapidly within 30 min, forming carboxylic acid which turns the solution acidic. Phenol degradation rate with 1% iodine doped SnO 2 nanoparticles is at least an order of magnitude higher compared to the degradation achieved through undoped SnO 2 nanoparticles under similar illumination conditions

  7. Pretreatment of Platinum/Tin Oxide-Catalyst

    Science.gov (United States)

    Hess, Robert V.; Paulin, Patricia A.; Miller, Irvin M.; Schryer, David R.; Sidney, Barry D.; Wood, George M.; Upchurch, Billy T.; Brown, Kenneth G.

    1987-01-01

    Addition of CO to He pretreatment doubles catalytic activity. In sealed, high-energy, pulsed CO2 laser, CO and O2 form as decomposition products of CO2 in laser discharge zone. Products must be recombined, because oxygen concentration of more than few tenths of percent causes rapid deterioration of power, ending in unstable operation. Promising low-temperature catalyst for combining CO and O2 is platinum on tin oxide. New development increases activity of catalyst so less needed for recombination process.

  8. Chemical vapor deposition of tin oxide: fundamentals and applications

    NARCIS (Netherlands)

    Mol, A.M.B. van; Chae, Y.; McDaniel, A.H.; Allendorf, M.D.

    2006-01-01

    Tin oxide thin layers have very beneficial properties such as a high transparency for visible light and electrical conductivity making these coatings suitable for a wide variety of applications, such as solar cells, and low-emissivity coatings for architectural glass windows. Each application

  9. Mechanical Properties of Glass Surfaces Coated with Tin Oxide

    DEFF Research Database (Denmark)

    Swindlehurst, W. E.; Cantor, B.

    1978-01-01

    The effect of tin oxide coatings on the coefficient of friction and fracture strength of glass surfaces is studied. Experiments were performed partly on commercially treated glass bottles and partly on laboratory prepared microscope slides. Coatings were applied in the laboratory by decomposition...

  10. Synthesis and characterization of single-crystalline zinc tin oxide nanowires

    Science.gov (United States)

    Shi, Jen-Bin; Wu, Po-Feng; Lin, Hsien-Sheng; Lin, Ya-Ting; Lee, Hsuan-Wei; Kao, Chia-Tze; Liao, Wei-Hsiang; Young, San-Lin

    2014-05-01

    Crystalline zinc tin oxide (ZTO; zinc oxide with heavy tin doping of 33 at.%) nanowires were first synthesized using the electrodeposition and heat treatment method based on an anodic aluminum oxide (AAO) membrane, which has an average diameter of about 60 nm. According to the field emission scanning electron microscopy (FE-SEM) results, the synthesized ZTO nanowires are highly ordered and have high wire packing densities. The length of ZTO nanowires is about 4 μm, and the aspect ratio is around 67. ZTO nanowires with a Zn/(Zn + Sn) atomic ratio of 0.67 (approximately 2/3) were observed from an energy dispersive spectrometer (EDS). X-ray diffraction (XRD) and corresponding selected area electron diffraction (SAED) patterns demonstrated that the ZTO nanowire is hexagonal single-crystalline. The study of ultraviolet/visible/near-infrared (UV/Vis/NIR) absorption showed that the ZTO nanowire is a wide-band semiconductor with a band gap energy of 3.7 eV.

  11. Structural studies of supported tin catalysts

    Science.gov (United States)

    Nava, Noel; Viveros, Tomás

    1999-11-01

    Tin oxide was supported on aluminium oxide, titanium oxide, magnesium oxide and silicon oxide, and the resulting interactions between the components in the prepared samples and after reduction were characterized by Mössbauer spectroscopy. It was observed that in the oxide state, tin is present as SnO2 on alumina, magnesia and silica, but on titania tin occupies Ti sites in the structure. After hydrogen treatment at high temperatures, tin is reduced from Sn(4) to Sn(2) on alumina and titania; it is reduced from Sn(4) to Sn(0) on silica, and is practically not reduced on magnesia. These results reveal the degree of interaction between tin and the different supports studied.

  12. Structural studies of supported tin catalysts

    International Nuclear Information System (INIS)

    Nava, Noel; Viveros, Tomas

    1999-01-01

    Tin oxide was supported on aluminium oxide, titanium oxide, magnesium oxide and silicon oxide, and the resulting interactions between the components in the prepared samples and after reduction were characterized by Moessbauer spectroscopy. It was observed that in the oxide state, tin is present as SnO 2 on alumina, magnesia and silica, but on titania tin occupies Ti sites in the structure. After hydrogen treatment at high temperatures, tin is reduced from Sn(4) to Sn(2) on alumina and titania; it is reduced from Sn(4) to Sn(0) on silica, and is practically not reduced on magnesia. These results reveal the degree of interaction between tin and the different supports studied

  13. Photoelectrochemical performance of Mn-TiO{sub 2} thin films mounted on FTO prepared by sol-gel spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.C.; Song, G.H. [National Central Univ., Taoyuan, Taiwan (China). Dept. of Mechanical Engineering; Lu, C.W. [Jen-Teh Junior College, Hou- Lung, Taiwan (China). Dept. of Information Management; Tseng, C.J. [National Central Univ., Chung-Li, Taoyuan County, Taiwan (China). Dept. of Mechanical Engineering; Cheng, K.W. [Chang Gung Univ., Tao-Yuan, Taiwan (China). Dept. of Chemical and Materials Engineering

    2009-07-01

    Tin oxide (TiO{sub 2}) sol-gels with Mn{sup 2+} molar ratios ranging from 0 to 0.1 per cent were used to form nano-structured Mn(x)Ti(1-x)O(2) thin films. A layer-by-layer spincoating (LLSC) technique was used, in which 10 very thin and uniform coating layers of Mn(x)Ti(1-x)O(2) were deposited on fluorine doped tin oxide (FTO) glass. Properties of the thin films were determined as a function of annealing temperature and molar ratio of the Mn{sup 2+} ions by X-ray diffraction (XRD), scanning electron microscopy (SEM), Atomic Force microscopy (AFM) and photoelectrochemical (PEC) measurements. The PEC measurements were obtained in a dry-type three-electrode cell consisting of sample, platinized and reference Ag/AgCl electrodes. The results revealed that the Mn(x)Ti(1-x)O(2) thin films have better structure and electrochemical characteristics when the annealing temperature is 550 degrees C. The TiO{sub 2} thin films with Mn{sup 2+} ions also had higher photocurrent than undoped TiO{sub 2}. The optimum Mn{sup 2+} loading in this study was found to be 0.1 ml per cent. The maximum photocurrent of Mn(0.1)Ti(0.9)O(2) thin films is about 0.68 mA/cm2 when the bias potential is 0.8 V (vs.Ag/AgCl).

  14. Alkaline earth metal doped tin oxide as a novel oxygen storage material

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Qiang, E-mail: dong@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Yin, Shu; Yoshida, Mizuki; Wu, Xiaoyong; Liu, Bin [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro [Department of Research Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Miyamae cho-7, Kofu 400-8511 (Japan); Sato, Tsugio [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan)

    2015-09-15

    Alkaline earth metal doped tin oxide (SnO{sub 2}) hollow nanospheres with a diameter of 50 nm have been synthesized successfully via a facial solvothermal route in a very simple system composed of only ethanol, acetic acid, SnCl{sub 4}·5H{sub 2}O and A(NO{sub 3}){sub 2}·xH{sub 2}O (A = Mg, Ca, Sr, Ba). The synthesized undoped SnO{sub 2} and A-doped SnO{sub 2} hollow nanospheres were characterized by the oxygen storage capacity (OSC), X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique. The OSC values of all samples were measured using thermogravimetric-differential thermal analysis. The incorporation of alkaline earth metal ion into tin oxide greatly enhanced the thermal stability and OSC. Especially, Ba-doped SnO{sub 2} hollow nanospheres calcined at 1000 °C for 20 h with a BET surface area of 61 m{sup 2} g{sup −1} exhibited the considerably high OSC of 457 μmol-O g{sup −1} and good thermal stability. Alkaline earth metal doped tin oxide has the potential to be a novel oxygen storage material.

  15. Atomic layer epitaxy of hematite on indium tin oxide for application in solar energy conversion

    Science.gov (United States)

    Martinson, Alex B.; Riha, Shannon; Guo, Peijun; Emery, Jonathan D.

    2016-07-12

    A method to provide an article of manufacture of iron oxide on indium tin oxide for solar energy conversion. An atomic layer epitaxy method is used to deposit an uncommon bixbytite-phase iron (III) oxide (.beta.-Fe.sub.2O.sub.3) which is deposited at low temperatures to provide 99% phase pure .beta.-Fe.sub.2O.sub.3 thin films on indium tin oxide. Subsequent annealing produces pure .alpha.-Fe.sub.2O.sub.3 with well-defined epitaxy via a topotactic transition. These highly crystalline films in the ultra thin film limit enable high efficiency photoelectrochemical chemical water splitting.

  16. Antimony Doped Tin Oxides and Their Composites with Tin pyrophosphates as Catalyst Supports for Oxygen Evolution Reaction in Proton Exchange Membrane Water Electrolysis

    DEFF Research Database (Denmark)

    Xu, Junyuan; Li, Qingfeng; Christensen, Erik

    2012-01-01

    Proton exchange membrane water electrolysers operating at typically 80 °C or at further elevated temperatures suffer from insufficient catalyst activity and durability. In this work, antimony doped tin oxide nanoparticles were synthesized and further doped with an inorganic proton conducting phase...... based on tin pyrophosphates as the catalyst support. The materials showed an overall conductivity of 0.57 S cm−1 at 130 °C under the water vapor atmosphere with a contribution of the proton conduction. Using this composite support, iridium oxide nanoparticle catalysts were prepared and characterized...

  17. Improved Long-Term Stability of Transparent Conducting Electrodes Based on Double-Laminated Electrosprayed Antimony Tin Oxides and Ag Nanowires

    Directory of Open Access Journals (Sweden)

    Koo B.-R.

    2017-06-01

    Full Text Available We fabricated double-laminated antimony tin oxide/Ag nanowire electrodes by spin-coating and electrospraying. Compared to pure Ag nanowire electrodes and single-laminated antimony tin oxide/Ag nanowire electrodes, the double-laminated antimony tin oxide/Ag nanowire electrodes had superior transparent conducting electrode performances with sheet resistance ~19.8 Ω/□ and optical transmittance ~81.9%; this was due to uniform distribution of the connected Ag nanowires because of double lamination of the metallic Ag nanowires without Ag aggregation despite subsequent microwave heating at 250°C. They also exhibited excellent and superior long-term chemical and thermal stabilities and adhesion to substrate because double-laminated antimony tin oxide thin films act as the protective layers between Ag nanowires, blocking Ag atoms penetration.

  18. Defect Engineering and Interface Phenomena in Tin Oxide

    KAUST Repository

    Albar, Arwa

    2017-04-05

    The advance in transparent electronics requires high-performance transparent conducting oxide materials. The microscopic properties of these materials are sensitive to the presence of defects and interfaces and thus fundamental understanding is required for materials engineering. In this thesis, first principles density functional theory is used to investigate the possibility of tuning the structural, electronic and magnetic properties of tin oxide by means of defects and interfaces. Our aim is to reveal unique properties and the parameters to control them as well as to explain the origin of unique phenomena in oxide materials. The stability of native defect in tin monoxide (SnO) under strain is investigated using formation energy calculations. We find that the conductivity (which is controlled by native defects) can be switched from p-type to either n-type or undoped semiconducting by means of applied pressure. We then target inducing magnetism in SnO by 3d transition metal doping. We propose that V doping is efficient to realize spin polarization at high temperature. We discuss different tin oxide interfaces. Metallic states are found to form at the SnO/SnO2 interface with electronic properties that depend on the interface terminations. The origin of these states is explained in terms of charge transfer caused by chemical bonding and band alignment. For the SnO/SnO2 heterostructure, we observe the formation of a two dimensional hole gas at the interface, which is surprising as it cannot be explained by the standard polar catastrophe model. Thus, we propose a charge density discontinuity model to explain our results. The model can be generalized to other polar-polar interfaces. Motivated by technological applications, the electronic and structural properties of the MgO (100)/SnO2 (110) interface are investigated. Depending on the interface termination, we observe the formation of a two dimensional electron gas or spin polarized hole gas. Aiming to identify further

  19. Investigation of TiN thin film oxidation depending on the substrate temperature at vacuum break

    Energy Technology Data Exchange (ETDEWEB)

    Piallat, Fabien, E-mail: fabien.piallat@gmail.com [STMicroelectronics, 850 rue Jean Monnet, 38920 Crolles (France); CEA, LETI, Campus Minatec, F-38054 Grenoble (France); LTM-CNRS, 17 rue des Martyrs, 38054 Grenoble (France); Gassilloud, Remy [CEA, LETI, Campus Minatec, F-38054 Grenoble (France); Caubet, Pierre [STMicroelectronics, 850 rue Jean Monnet, 38920 Crolles (France); Vallée, Christophe [LTM-CNRS, 17 rue des Martyrs, 38054 Grenoble (France)

    2016-09-15

    Due to the reduction of the thickness of the layers used in the advanced technology nodes, there is a growing importance of the surface phenomena in the definition of the general properties of the materials. One of the least controlled and understood phenomenon is the oxidation of metals after deposition, at the vacuum break. In this study, the influence of the sample temperature at vacuum break on the oxidation level of TiN deposited by metalorganic chemical vapor deposition is investigated. TiN resistivity appears to be lower for samples which underwent vacuum break at high temperature. Using X-ray photoelectron spectrometry analysis, this change is correlated to the higher oxidation of the TiN layer. Moreover, angle resolved XPS analysis reveals that higher is the temperature at the vacuum break, higher is the surface oxidation of the sample. This surface oxidation is in turn limiting the diffusion of oxygen in the volume of the layer. Additionally, evolution of TiN layers resistivity was monitored in time and it shows that resistivity increases until a plateau is reached after about 10 days, with the lowest temperature at vacuum break resulting in the highest increase, i.e., the resistivity of the sample released to atmosphere at high temperature increased by a factor 1.7 whereas the resistivity of the sample cooled down under vacuum temperature increased by a factor 2.7.

  20. The directed preparation of TiO2 nanotubes film on FTO substrate via hydrothermal method for gas sensing application

    Directory of Open Access Journals (Sweden)

    Pham Van Viet

    2016-04-01

    Full Text Available In this research, we directly synthesized TiO2 nanotubes film on Fluorine doped Tin oxide (FTO substrate via hydrothermal method from commercial TiO2 in NaOH solution at 135 ℃ for 24 hours. The samples were characterized by X-ray diffraction (XRD pattern, field emission scanning electron microscopy (FESEM and transmitting electron microscopy (TEM. The average diameter of TiO2 nanotubes (TNTs is about 10–12 nm and their length is about a few hundred nanometers. The sensitivity ability of TNTs increases as the gas concentration increases and developing to the highest sensitivity of TNTs is 2.4 at 700 ppm of the ethanol concentration. The same as the gas concentration, the sensitivity of TNTs increases when the temperature increases. Besides, the sensitivity of samples at 250 ℃ is doubled compared to samples determined at 100 ℃.

  1. A novel electrode surface fabricated by directly attaching gold nanoparticles onto NH2+ ions implanted-indium tin oxide substrate

    International Nuclear Information System (INIS)

    Liu Chenyao; Jiao Jiao; Chen Qunxia; Xia Ji; Li Shuoqi; Hu Jingbo; Li Qilong

    2010-01-01

    A new type of gold nanoparticle attached to a NH 2 + ion implanted-indium tin oxide surface was fabricated without using peculiar binder molecules, such as 3-(aminopropyl)-trimethoxysilane. A NH 2 /indium tin oxide film was obtained by implantation at an energy of 80 keV with a fluence of 5 x 10 15 ions/cm 2 . The gold nanoparticle-modified film was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy and electrochemical techniques and compared with a modified bare indium tin oxide surface and 3-(aminopropyl)-trimethoxysilane linked surface, which exhibited a relatively low electron transfer resistance and high electrocatalytic activity. The results demonstrate that NH 2 + ion implanted-indium tin oxide films can provide an important route to immobilize nanoparticles, which is attractive in developing new biomaterials.

  2. Physical properties of pyrolytically sprayed tin-doped indium oxide coatings

    NARCIS (Netherlands)

    Haitjema, H.; Elich, J.J.P.

    1991-01-01

    The optical and electrical properties of tin-doped indium oxide coatings obviously depend on a number of production parameters. This dependence has been studied to obtain a more general insight into the relationships between the various coating properties. The coatings have been produced by spray

  3. Impact of soft annealing on the performance of solution-processed amorphous zinc tin oxide thin-film transistors

    KAUST Repository

    Nayak, Pradipta K.

    2013-05-08

    It is demonstrated that soft annealing duration strongly affects the performance of solution-processed amorphous zinc tin oxide thin-film transistors. Prolonged soft annealing times are found to induce two important changes in the device: (i) a decrease in zinc tin oxide film thickness, and (ii) an increase in oxygen vacancy concentration. The devices prepared without soft annealing exhibited inferior transistor performances, in comparison to devices in which the active channel layer (zinc tin oxide) was subjected to soft annealing. The highest saturation field-effect mobility - 5.6 cm2 V-1 s-1 with a drain-to-source on-off current ratio (Ion/Ioff) of 2 × 108 - was achieved in the case of devices with 10-min soft-annealed zinc tin oxide thin films as the channel layer. The findings of this work identify soft annealing as a critical parameter for the processing of chemically derived thin-film transistors, and it correlates device performance to the changes in material structure induced by soft annealing. © 2013 American Chemical Society.

  4. Effect of a Ga-doped ZnO thin film with a ZTO buffer layer fabricated by using pulsed DC magnetron sputter for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sang-Woo; Lee, Kyung-Ju; Roh, Ji-Hyung; Park, On-Jeon; Kim, Hwan-Sun; Moon, Byung-Moo [Korea University, Seoul (Korea, Republic of); Ji, Min-Woo [Yonsei University, Seoul (Korea, Republic of)

    2014-08-15

    The electrical property of a Ga-doped ZnO(GZO) thin film is well known to be similar that of commercialized fluorine-doped tin oxide(FTO). However GZO is limited for use at high process temperatures for solar cells because of its unstable resistivity at temperatures above 300 .deg. C. A GZO thin film compared to zinc tin oxide(ZTO)-GZO multilayer can be used at high process temperatures. A GZO thin film was deposited on glass by using pulsed DC magnetron sputter. Then, a ZTO buffer layer was deposited on the GZO surface. During the deposition, the working pressure was 5 mTorr (Z-1 glass) and 1 mTorr (Z-2 glass). Dye-sensitized solar cells (DSSCs) were fabricated using Z-1, Z-2 and commercialized FTO glasses. Z-2 showed a conversion efficiency of 4.265%, which was enhanced by 0.399% compared to that of the DSSCs using FTO(3.784%). The conversion efficiency for Z-1 (3.889%) was a little higher than that of FTO. Thus, the ZTO-GZO electrode showed better characteristics than those obtained using the FTO electrode, which can be attributed to the reduced charge recombination and series resistance.

  5. Low-cost fabrication of WO{sub 3} films using a room temperature and low-vacuum air-spray based deposition system for inorganic electrochromic device applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Ik [Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Kim, Sooyeun, E-mail: sooyeunk@u.washington.edu [Department of Mechanical Engineering, University of Washington, Seattle, WA (United States); Choi, Jung-Oh; Song, Ji-Hyeon [Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Taya, Minoru [Department of Mechanical Engineering, University of Washington, Seattle, WA (United States); Ahn, Sung-Hoon, E-mail: ahnsh@snu.ac.kr [Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Institute of Advanced Machines and Design, Seoul (Korea, Republic of)

    2015-08-31

    We report the deposition of tungsten oxide (WO{sub 3}) thin films on fluorine-doped tin oxide (FTO) and indium-doped tin oxide (ITO) glass substrates by using a room-temperature deposition system based on low-vacuum air-spray for the fabrication of inorganic electrochromic windows. The structure of the WO{sub 3} films was characterized using X-ray diffraction, and the surface morphology and film thickness were investigated using scanning electron microscopy and atomic force microscopy. The color of the prepared WO{sub 3} films changed from slight yellow to dark blue under applied voltages, demonstrating electrochromism. The WO{sub 3} film coated FTO glass exhibited a large electrochromic contrast of up to 50% at a wavelength of 800 nm. The electrochemical properties of the films were examined using cyclic voltammetry and chronocoulometry. - Highlights: • WO{sub 3} thin films were fabricated using an air-spray based deposition system at room temperature under low-vacuum conditions. • Dry WO{sub 3} particles were directly deposited on FTO and ITO glasses by using a low-cost deposition system. • The FTO glass based WO{sub 3} film showed the optical contrast of 50% at a wavelength of 800 nm.

  6. Gas Sensors Based on Tin Oxide Nanoparticles Synthesized from a Mini-Arc Plasma Source

    Directory of Open Access Journals (Sweden)

    Ganhua Lu

    2006-01-01

    Full Text Available Miniaturized gas sensors or electronic noses to rapidly detect and differentiate trace amount of chemical agents are extremely attractive. In this paper, we report on the fabrication and characterization of a functional tin oxide nanoparticle gas sensor. Tin oxide nanoparticles are first synthesized using a convenient and low-cost mini-arc plasma source. The nanoparticle size distribution is measured online using a scanning electrical mobility spectrometer (SEMS. The product nanoparticles are analyzed ex-situ by high resolution transmission electron microscopy (HRTEM for morphology and defects, energy dispersive X-ray (EDX spectroscopy for elemental composition, electron diffraction for crystal structure, and X-ray photoelectron spectroscopy (XPS for surface composition. Nonagglomerated rutile tin oxide (SnO2 nanoparticles as small as a few nm have been produced. Larger particles bear a core-shell structure with a metallic core and an oxide shell. The nanoparticles are then assembled onto an e-beam lithographically patterned interdigitated electrode using electrostatic force to fabricate the gas sensor. The nanoparticle sensor exhibits a fast response and a good sensitivity when exposed to 100 ppm ethanol vapor in air.

  7. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    CERN Document Server

    Morgado, J; Charas, A; Matos, M; Alcacer, L; Cacialli, F

    2003-01-01

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide.

  8. Post-deposition annealing effects in RF reactive magnetron sputtered indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M A; Herrero, J; Gutierrez, M T [Inst. de Energias Renovables (CIEMAT), Madrid (Spain)

    1992-05-01

    Indium tin oxide films have been grown by RF reactive magnetron sputtering. The influence of the deposition parameters on the properties of the films has been investigated and optimized, obtaining a value for the figure of merit of 6700 ({Omega} cm){sup -1}. As-grown indium tin oxide films were annealed in vacuum and O{sub 2} atmosphere. After these heat treatments the electro-optical properties were improved, with values for the resistivity of 1.9x10{sup -4} {Omega} cm and the figure of merit of 26700 ({Omega} cm){sup -1}. (orig.).

  9. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    International Nuclear Information System (INIS)

    Morgado, Jorge; Barbagallo, Nunzio; Charas, Ana; Matos, Manuel; Alcacer, Luis; Cacialli, Franco

    2003-01-01

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide

  10. A sol-gel method to synthesize indium tin oxide nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Xiuhua Li; Xiujuan xu; Xin Yin; Chunzhong Li; Jianrong Zhang

    2011-01-01

    Transparent conductive indium tin oxide (ITO) nanoparticles were synthesized by a novel sol-gel method.Granulated indium and tin were dissolved in HNO3 and partially complexed with citric acid.A sol-gel process was induced when tertiary butyl alcohol was added dropwise to the above solution.ITO nanoparticles with an average crystallite size of 18.5 nm and surface area of 32.6 m2/g were obtained after the gel was heat-treated at 700 C.The ITO nanoparticles showed good sinterability,the starting sintering temperature decreased sharply to 900 C,and the 1400 C sintered pellet had a density of 98.1 % of theoretical density (TD).

  11. Mn-implanted, polycrystalline indium tin oxide and indium oxide films

    International Nuclear Information System (INIS)

    Scarlat, Camelia; Vinnichenko, Mykola; Xu Qingyu; Buerger, Danilo; Zhou Shengqiang; Kolitsch, Andreas; Grenzer, Joerg; Helm, Manfred; Schmidt, Heidemarie

    2009-01-01

    Polycrystalline conducting, ca. 250 nm thick indium tin oxide (ITO) and indium oxide (IO) films grown on SiO 2 /Si substrates using reactive magnetron sputtering, have been implanted with 1 and 5 at.% of Mn, followed by annealing in nitrogen or in vacuum. The effect of the post-growth treatment on the structural, electrical, magnetic, and optical properties has been studied. The roughness of implanted films ranges between 3 and 15 nm and XRD measurements revealed a polycrystalline structure. A positive MR has been observed for Mn-implanted and post-annealed ITO and IO films. It has been interpreted by considering s-d exchange. Spectroscopic ellipsometry has been used to prove the existence of midgap electronic states in the Mn-implanted ITO and IO films reducing the transmittance below 80%.

  12. Surface characterization of sol–gel derived indium tin oxide films on ...

    Indian Academy of Sciences (India)

    Unknown

    , India ... 1. Introduction. Indium tin oxide (ITO) coating on glass is an important item in the field ..... In addition, contamination of carbon from environment cannot be ruled ..... processing of ceramics, glasses and composites (eds) L L. Hench and ...

  13. Effect of cationic/anionic organic surfactants on evaporation induced self assembled tin oxide nanostructured films

    International Nuclear Information System (INIS)

    Khun Khun, Kamalpreet; Mahajan, Aman; Bedi, R.K.

    2011-01-01

    Tin oxide nanostructures with well defined morphologies have been obtained through an evaporation induced self assembly process. The technique has been employed using an ultrasonic nebulizer for production of aersol and its subsequent deposition onto a heated glass substrate. The precursor used for aersol production was modified by introducing cationic and anionic surfactants namely cetyl trimethyl ammonium bromide and sodium dodecyl sulphate respectively. The effect of surfactants on the structural, electrical and optical properties of self assembled tin oxide nanostructures were investigated by using X-ray diffraction, field emission scanning electroscope microscopy, two probe technique and photoluminiscence studies. The results reveal that high concentration of surfactants in the precursor solution leads to reduction in crystallite size with significant changes in the morphology of tin oxide nanostructures. Photoluminiscence studies of the nanostructures show emissions in the visible region which exhibit marked changes in the intensities upon variation of surfactants in the precursor solutions.

  14. Effect of cationic/anionic organic surfactants on evaporation induced self assembled tin oxide nanostructured films

    Energy Technology Data Exchange (ETDEWEB)

    Khun Khun, Kamalpreet [Material Science Laboratory, Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Mahajan, Aman, E-mail: dramanmahajan@yahoo.co.in [Material Science Laboratory, Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Bedi, R.K. [Material Science Laboratory, Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India)

    2011-01-15

    Tin oxide nanostructures with well defined morphologies have been obtained through an evaporation induced self assembly process. The technique has been employed using an ultrasonic nebulizer for production of aersol and its subsequent deposition onto a heated glass substrate. The precursor used for aersol production was modified by introducing cationic and anionic surfactants namely cetyl trimethyl ammonium bromide and sodium dodecyl sulphate respectively. The effect of surfactants on the structural, electrical and optical properties of self assembled tin oxide nanostructures were investigated by using X-ray diffraction, field emission scanning electroscope microscopy, two probe technique and photoluminiscence studies. The results reveal that high concentration of surfactants in the precursor solution leads to reduction in crystallite size with significant changes in the morphology of tin oxide nanostructures. Photoluminiscence studies of the nanostructures show emissions in the visible region which exhibit marked changes in the intensities upon variation of surfactants in the precursor solutions.

  15. Reactivation of a tin oxide-containing catalyst

    Science.gov (United States)

    Upchurch, Billy T. (Inventor); Miller, Irvin M. (Inventor); Brown, Kenneth G. (Inventor); Hess, Robert V. (Inventor); Schryer, David R. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor); Paulin, Patricia A. (Inventor)

    1989-01-01

    A method for the reactivation of a tin oxide-containing catalyst of a CO.sub.2 laser is provided. First, the catalyst is pretreated by a standard procedure. When the catalyst experiences diminished activity during usage, the heated zone surrounding the catalyst is raised to a temperature which is the operating temperature of the laser and 400.degree. C. for approximately one hour. The catalyst is exposed to the same laser gas mixture during this period. The temperature of the heated zone is then lowered to the operating temperature of the CO.sub.2 laser.

  16. On the deposition parameters of indium oxide (IO) and tin oxide (TO) by reactive evaporation technique

    International Nuclear Information System (INIS)

    Hassan, F.; Abdullah, A.H.; Salam, R.

    1990-01-01

    Thin films of tin oxide (TO) and indium oxide (IO) are prepared by the reactive evaporation technique, where indium or tin sources are evaporated and made to react with oxygen gas injected close to the substrate. In both depositions a substrate temperature of 380 0 C and a chamber pressure of 2x10 -5 mbar are utilized, but however different oxygen flow rates has been maintained. For TO, the deposition rate is found to be constant up to about 55 minutes of deposition time with a deposition rate of about 0.10 A/s, but for longer deposition time the deposition rate increases rapidly up to about 0.30 A/s. The IO displays a higher deposition rate of about 0.80 A/s over a deposition time 30 minutes, beyond which the deposition rate increases gradually

  17. Poly(3,4-ethylenedioxythiophene)/reduced graphene oxide composites as counter electrodes for high efficiency dye-sensitized solar cells

    Science.gov (United States)

    Ma, Jinfu; Yuan, Shenghua; Yang, Shaolin; Lu, Hui; Li, Yingtao

    2018-05-01

    A facile, low cost, easy-controllable method to prepare Poly(3,4-ethylenedioxythiophene) (PEDOT)/reduced graphene oxide (rGO) composites by electrochemical deposition onto fluorinated tin oxide (FTO) as counter electrodes (CEs) in high performance dye-sensitized solar cells (DSSCs) is reported. The electro-deposition process was accomplished by electro-polymerization of graphene oxide (GO)/PEDOT composites onto FTO substrates followed by electrochemical reduction of the GO component. Electrochemical measurements show that the I-/I3- catalytic activity of the as-prepared PEDOT/rGO CE is improved compared with that of the pure PEDOT and PEDOT/GO electrode. Through the analysis of photoelectric properties, the performance of the electrodes fabricated with different polymerization times are compared, and the optimal preparation condition is determined. The photoelectric conversion efficiency (PCE) of the DSSC assembled with PEDOT/rGO electrode reaches 7.79%, close to 8.33% of the cell with Platinum (Pt) electrode, and increases by 13.2% compared with 6.88% of the device with the PEDOT electrode.

  18. Rapid synthesis of tin oxide nanostructures by microwave-assisted thermal oxidation for sensor applications

    Science.gov (United States)

    Phadungdhitidhada, S.; Ruankham, P.; Gardchareon, A.; Wongratanaphisan, D.; Choopun, S.

    2017-09-01

    In the present work nanostructures of tin oxides were synthesized by a microwave-assisted thermal oxidation. Tin precursor powder was loaded into a cylindrical quartz tube and further radiated in a microwave oven. The as-synthesized products were characterized by scanning electron microscope, transmission electron microscope, and x-ray diffractometer. The results showed that two different morphologies of SnO2 microwires (MWs) and nanoparticles (NPs) were obtained in one minute of microwave radiation under atmospheric ambient. A few tens of the SnO2 MWs with the length of 10-50 µm were found. Some parts of the MWs were decorated with the SnO2 NPs. However, most of the products were SnO2 NPs with the diameter ranging from 30-200 nm. Preparation under loosely closed system lead to mixed phase SnO-SnO2 NPs with diameter of 30-200 nm. The single-phase of SnO2 could be obtained by mixing the Sn precursor powders with CuO2. The products were mostly found to be SnO2 nanowires (NWs) and MWs. The diameter of SnO2 NWs was less than 50 nm. The SnO2 NPs, MWs, and NWs were in the cassiterite rutile structure phase. The SnO NPs was in the tetragonal structure phase. The growth direction of the SnO2 NWs was observed in (1 1 0) and (2 2 1) direction. The ethanol sensor performance of these tin oxide nanostructures showed that the SnO-SnO2 NPs exhibited extremely high sensitivity. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  19. Effect of post annealing treatment on electrochromic properties of spray deposited niobium oxide thin films

    International Nuclear Information System (INIS)

    Mujawar, S.H.; Inamdar, A.I.; Betty, C.A.; Ganesan, V.; Patil, P.S.

    2007-01-01

    Niobium oxide thin films were deposited on the glass and fluorine doped tin oxide (FTO) coated glass substrates using simple and inexpensive spray pyrolysis technique. During deposition of the films various process parameters like nozzle to substrate distance, spray rate, concentration of sprayed solution were optimized to obtain well adherent and transparent films. The films prepared were further annealed and effect of post annealing on the structural, morphological, optical and electrochromic properties was studied. Structural and morphological characterizations of the films were carried out using scanning electron microscopy, atomic force microscopy and X-ray diffraction techniques. Electrochemical properties of the niobium oxide thin films were studied by using cyclic-voltammetry, chronoamperometry and chronocoulometry

  20. Effect of annealing temperature on the PEC performance of electrodeposited copper oxides

    Science.gov (United States)

    Marathey, Priyanka; Pati, Ranjan; Mukhopadhyay, Indrajit; Ray, Abhijit

    2018-05-01

    In this work, we have deposited Cu2O film on fluorine doped tin oxide (FTO) substrate by electrodeposition. Pure CuO phase has been obtained by annealing the electrodeposited Cu2O film at optimized temperature (500°C) for two hours in air. Copper(I) oxide films showed good photo response with a current density of 0.54mA/cm2 at 0 V vs RHE. It is evident from UV-Visible spectroscopic analysis that the bandgap of Cu(I) and Cu(II) oxides differs from each other resulting in significant change in photo current for these two phases, observed in the PEC study. However CuO film showed better stability as compared to Cu2O film.

  1. A High Optical Transmittance and Low Cost Touch Screen without Patterning

    Directory of Open Access Journals (Sweden)

    SAMADZAMINI, K.

    2017-02-01

    Full Text Available Transparent Conducting Oxide (TCO materials such as Fluorine Tin Oxide (FTO and Indium Tin Oxide (ITO due to their optical and electrical properties are used in touch screens as electrodes and wires. This paper proposes a novel technique of using Electrical Resistivity Tomography (ERT method in order to produce touch screens without pattering. Unlike existing techniques, the proposed methodology employs a uniform TCO coated screen with a maximum optical transmittance to convert the touch point coordinates into side electrodes voltages. The performance of the proposed method is tested experimentally on a FTO coated glass with a sheet resistance of 20 ohms/sq. The proposed methodology is found to be less complicated and low cost, since no pattern or electrodes are implemented in the display area.

  2. Fundamental Factors Impacting the Stability of Phosphonate-Derivatized Ruthenium Polypyridyl Sensitizers Adsorbed on Metal Oxide Surfaces.

    Science.gov (United States)

    Raber, McKenzie; Brady, Matthew David; Troian-Gautier, Ludovic; Dickenson, John; Marquard, Seth L; Hyde, Jacob; Lopez, Santiago; Meyer, Gerald J; Meyer, Thomas J; Harrison, Daniel P

    2018-06-08

    A series of 18 ruthenium(II) polypyridyl complexes were synthesized and evaluated under electrochemically oxidative conditions, which generates the Ru(III) oxidation state and mimics the harsh conditions experienced during the kinetically-limited regime that can occur in dye-sensitized solar cells (DSSCs) and dye-sensitized photoelectrosynthesis cells (DSPECs), to further develop fundamental insights into the factors governing molecular sensitizer surface stability in aqueous 0.1 M HClO4 (aq). Both desorption and oxidatively induced ligand substitution were observed on planar fluorine doped tin oxide, FTO, electrodes, with a dependence on the E1/2 Ru(III/II) redox potential dictating the comparative ratios of the processes. Complexes such as RuP4OMe (E1/2 = 0.91 vs Ag/AgCl) displayed virtually only desorption, while complexes such as RuPbpz (E1/2 > 1.62 V vs Ag/AgCl) displayed only chemical decomposition. Comparing isomers of 4,4'- and 5,5-disubstituted-2,2'-bipyridine ancillary polypyridyl ligands, a dramatic increase in the rate of desorption of the Ru(III) complexes was observed for the 5,5'-ligands. Nanoscopic indium doped tin oxide thin films, nanoITO, were also sensitized and analyzed with cyclic voltammetry, UV-Vis absorption spectroscopy, and XPS, allowing for further distinction of desorption versus ligand substitution processes. Desorption loss to bulk solution associated with the planar surface of FTO is essentially non-existent on nanoITO, where both desorption and ligand substitution are shut down with RuP4OMe. These results revealed that minimizing time spent in the oxidized form, incorporating electron donating groups, maximizing hydrophobicity, and minimizing molecular bulk near the adsorbed ligand are critical to optimizing the performance of ruthenium(II) polypyridyl complexes in dye-sensitized solar cell devices.

  3. Urea impedimetric biosensor based on reactive RF magnetron sputtered zinc oxide nanoporous transducer

    International Nuclear Information System (INIS)

    Mozaffari, Sayed Ahmad; Rahmanian, Reza; Abedi, Mohammad; Amoli, Hossein Salar

    2014-01-01

    Graphical abstract: - Highlights: • Application and optimization of reactive RF magnetron sputtering for homogeneous nanoporous ZnO thin film formation. • Exploiting nanoporous ZnO thin film as a good porous framework with large surface area/volume for having stable immobilized enzyme with minimum loss of activity. • Application of impedimetric assessment for urea biosensing due to its rapidity, sensitivity, and repeatability. - Abstract: Uniform sputtered nanoporous zinc oxide (Nano-ZnO) thin film on the conductive fluorinated-tin oxide (FTO) layer was applied to immobilize urease enzyme (Urs) for urea detection. Highly uniform nanoporous ZnO thin film were obtained by reactive radio frequency (RF) magnetron sputtering system at the optimized instrumental deposition conditions. Characterization of the surface morphology and roughness of ZnO thin film by field emission-scanning electron microscopy (FE-SEM) exhibits cavities of nanoporous film as an effective biosensing area for enzyme immobilization. Step by step monitoring of FTO/Nano-ZnO/Urs biosensor fabrication were performed using electrochemical methods such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Fabricated FTO/Nano-ZnO/Urs biosensor was used for urea determination using EIS experiments. The impedimetric results show high sensitivity for urea detection within 0.83–23.24 mM and limit of detection as 0.40 mM

  4. Indium--tin oxide films radio frequency sputtered from specially formulated high density indium--tin oxide targets

    International Nuclear Information System (INIS)

    Kulkarni, S.; Bayard, M.

    1991-01-01

    High density ITO (indium--tin oxide) targets doped with Al 2 O 3 and SiO 2 manufactured in the Tektronix Ceramics Division have been used to rf sputter ITO films of various thicknesses on borosilicate glass substrates. Sputtering in an oxygen--argon gas mixture and annealing in forming gas, resulted in ITO films exhibiting 90% transmission at 550 nm and a sheet resistance of 15 Ω/sq for a thickness of 1100 A. Sputtering in an oxygen--argon gas mixture and annealing in air increased sheet resistance without a large effect on the transmission. Films sputtered in argon gas alone were transparent in the visible and the sheet resistance was found to be 100--180 Ω/sq for the same thickness, without annealing

  5. Effects of Post- Heat Treatment of Nanocrystalline ZnO Thin Films deposited on Zn-Deposited FTO Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ikhyun; Kim, Younggyu; Nam, Giwoong; Leem, Jae-Young [Inje University, Gimhae (Korea, Republic of)

    2015-10-15

    The effects of heat-treatment temperature on the structural and optical properties of ZnO thin films were investigated with field-effect scanning electron microscopy (SEM), X-ray diffraction analysis, and photoluminescence (PL) measurements. The ZnO thin films were grown on Zn-deposited fluorine-doped tin oxide substrates by sol-gel spin coating. The SEM images of the samples showed that their surfaces had a mountain-chain-like structure. The film annealed at 400 ℃ had the highest degree of alignment along the c-axis, and its residual stress was close to zero. The PL spectra of the ZnO thin films consisted of sharp near-band-edge emissions (NBE) and broad deep-level emissions (DLE) in the visible range. The DLE peaks exhibited a green-to-red shift with an increase in the temperature. The highest INBE/IDLE ratio was observed in the film annealed at 400 ℃. Thus, the optimal temperature for growing high-quality ZnO thin films on Zn-deposited FTO substrates is 400 ℃.

  6. Structural, optical and electrical properties of tin oxide thin films for application as a wide band gap semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, Riti; Ahmad, Shabir; Aziz, Anver; Siddiqui, Azher Majid, E-mail: amsiddiqui@jmi.ac.in [Department of Physics, Jamia Millia Islamia, New Delhi-110025 (India)

    2015-08-28

    Tin oxide (SnO) thin films were synthesized using thermal evaporation technique. Ultra pure metallic tin was deposited on glass substrates using thermal evaporator under high vacuum. The thickness of the tin deposited films was kept at 100nm. Subsequently, the as-deposited tin films were annealed under oxygen environment for a period of 3hrs to obtain tin oxide films. To analyse the suitability of the synthesized tin oxide films as a wide band gap semiconductor, various properties were studied. Structural parameters were studied using XRD and SEM-EDX. The optical properties were studied using UV-Vis Spectrophotometry and the electrical parameters were calculated using the Hall-setup. XRD and SEM confirmed the formation of SnO phase. Uniform texture of the film can be seen through the SEM images. Presence of traces of unoxidised Sn has also been confirmed through the XRD spectra. The band gap calculated was around 3.6eV and the optical transparency around 50%. The higher value of band gap and lower value of optical transparency can be attributed to the presence of unoxidised Sn. The values of resistivity and mobility as measured by the Hall setup were 78Ωcm and 2.92cm{sup 2}/Vs respectively. The reasonable optical and electrical parameters make SnO a suitable candidate for optoelectronic and electronic device applications.

  7. Generic Top-Functionalization of Patterned Antifouling Zwitterionic Polymers on Indium Tin Oxide

    NARCIS (Netherlands)

    Li, Y.; Giesbers, M.; Zuilhof, H.

    2012-01-01

    This paper presents a novel surface engineering approach that combines photochemical grafting and surface-initiated atom transfer radical polymerization (SI-ATRP) to attach zwitterionic polymer brushes onto indium tin oxide (ITO) substrates. The photochemically grafted hydroxyl-terminated organic

  8. Low-temperature Synthesis of Tin(II) Oxide From Tin(II) ketoacidoximate Precursor

    KAUST Repository

    Alshankiti, Buthainah

    2015-04-01

    Sn (II) oxide finds numerous applications in different fields such as thin film transistors1, solar cells2 and sensors.3 In this study we present the fabrication of tin monoxide SnO by using Sn (II) ketoacid oximate complexes as precursors. Tin (II) ketoacidoximates of the type [HON=CRCOO]2Sn where R= Me 1, R= CH2Ph 2, and [(MeON=CMeCOO)3Sn]- NH4 +.2H2O 3 were synthesized by in situ formation of the ketoacid oximate ligand. The crystal structures were determined via single crystal X- ray diffraction of the complexes 1-3 revealed square planar and square pyramidal coordination environments for the Sn atom. Intramolecular hydrogen bonding is observed in all the complexes. Furthermore, the complexes were characterized by Infrared (IR), Nuclear Magnetic Resonance (NMR) and elemental analysis. From thermogravimetric analysis of 1-3, it was found that the complexes decomposed in the range of 160 – 165 oC. Analysis of the gases evolved during decomposition indicated complete loss of the oximato ligand in one step and the formation of SnO. Spin coating of 1 on silicon or glass substrate show uniform coating of SnO. Band gaps of SnO films were measured and found to be in the range of 3.0 – 3.3 eV by UV-Vis spectroscopy. X-ray photoelectron spectroscopy indicated surface oxidation of the SnO film. Heating 1 above 140 oC in air gives SnO of size ranging from 10 – 500 nm and is spherical in shape. The SnO nanomaterial is characterized by powder X-ray diffraction(XRD), Raman spectroscopy, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM).

  9. Room temperature ferromagnetism of tin oxide nanocrystal based on synthesis methods

    Energy Technology Data Exchange (ETDEWEB)

    Sakthiraj, K.; Hema, M. [Department of Physics, Kamaraj College of Engineering and Technology, Virudhunagar 626001, Tamil Nadu (India); Balachandrakumar, K. [Department of Physics, Raja Doraisingam Government Arts College, Sivagangai 630561, Tamil Nadu (India)

    2016-04-15

    The experimental conditions used in the preparation of nanocrystalline oxide materials play an important role in the room temperature ferromagnetism of the product. In the present work, a comparison was made between sol–gel, microwave assisted sol–gel and hydrothermal methods for preparing tin oxide nanocrystal. X-ray diffraction analysis indicates the formation of tetragonal rutile phase structure for all the samples. The crystallite size was estimated from the HRTEM images and it is around 6–12 nm. Using optical absorbance measurement, the band gap energy value of the samples has been calculated. It reveals the existence of quantum confinement effect in all the prepared samples. Photoluminescence (PL) spectra confirms that the luminescence process originates from the structural defects such as oxygen vacancies present in the samples. Room temperature hysteresis loop was clearly observed in M–H curve of all the samples. But the sol–gel derived sample shows the higher values of saturation magnetization (M{sub s}) and remanence (M{sub r}) than other two samples. This study reveals that the sol–gel method is superior to the other two methods for producing room temperature ferromagnetism in tin oxide nanocrystal.

  10. A novel electrode surface fabricated by directly attaching gold nanoparticles onto NH{sub 2}{sup +} ions implanted-indium tin oxide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chenyao; Jiao Jiao; Chen Qunxia [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Xia Ji [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China); Li Shuoqi [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Hu Jingbo, E-mail: hujingbo@bnu.edu.c [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Li Qilong [College of Chemistry, Beijing Normal University, Beijing 100875 (China)

    2010-12-01

    A new type of gold nanoparticle attached to a NH{sub 2}{sup +} ion implanted-indium tin oxide surface was fabricated without using peculiar binder molecules, such as 3-(aminopropyl)-trimethoxysilane. A NH{sub 2}/indium tin oxide film was obtained by implantation at an energy of 80 keV with a fluence of 5 x 10{sup 15} ions/cm{sup 2}. The gold nanoparticle-modified film was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy and electrochemical techniques and compared with a modified bare indium tin oxide surface and 3-(aminopropyl)-trimethoxysilane linked surface, which exhibited a relatively low electron transfer resistance and high electrocatalytic activity. The results demonstrate that NH{sub 2}{sup +} ion implanted-indium tin oxide films can provide an important route to immobilize nanoparticles, which is attractive in developing new biomaterials.

  11. Study of optical characteristics of tin oxide thin film prepared by sol ...

    Indian Academy of Sciences (India)

    wear-resistant coating on glass containers (Nakagawa et al. 1997), Infrared reflectors for ... Tin oxide is a tetragonal n-type semiconductor having high bandgap energy ... (IV) chloride due to the cost factor and availability. The main purpose of ...

  12. Effect of passive film on electrochemical surface treatment for indium tin oxide

    International Nuclear Information System (INIS)

    Wu, Yung-Fu; Chen, Chi-Hao

    2013-01-01

    Highlights: ► Oxalic, tartaric, and citric acid baths accompanying with applied voltages were used to treat the ITO surface. ► We investigated the changes in ITO surfaces by examining the potentiodynamic behavior of ITO films. ► AFM analysis showed the formation of a passive layer could assist to planarize surface. ► XPS analysis indicated this passive layer was mainly composed of SnO 2. ► A better planarization was obtained by treating in 3.0 wt.% tartaric acid at 0.5 V due to weak complexation strength. - Abstract: Changes in indium tin oxide (ITO) film surface during electrochemical treatment in oxalic acid, tartaric acid, and citric acid were investigated. Controlling the voltage applied on ITO film allows the formation of a passive layer, effectively protecting the film surface. X-ray photoelectron spectrometry showed that the passive layer composition was predominantly SnO 2 in tartaric acid, while a composite of tin oxide and tin carboxylate in citric or oxalic acid. Even though the passive films on ITO surface generated in these organic acids, the indium or tin could complex with the organic acid anions, enhancing the dissolution of ITO films. The experimental results show that the interaction between the dissolution and passivation could assist to planarize the ITO surface. We found that the optimal treatment at 0.5 V in 3 wt.% tartaric acid could provide the ITO surface with root-mean-squared roughness less than 1.0 nm, due to the weak complexing characteristics of tartaric acid.

  13. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    International Nuclear Information System (INIS)

    Singh, Hemant Kr.; Avasthi, D.K.; Aggarwal, Shruti

    2015-01-01

    Highlights: •The objective is to study the effect of swift heavy ion (SHI) irradiation on photoanode of DSSC for better efficiency. •This work presents the effect of SHI irradiation on various Transparent conducting oxides (TCOs). •Effects are studied in terms of conductivity and transmittance of TCOs. •ITO-PET gives best results in comparison to ITO and FTO for DSSC application under SHI irradiation. -- Abstract: Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO 2 :F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In 2 O 3 :Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag +9 ions at fluences ranging from 3.0 × 10 11 ions/cm 2 to 3.0 × 10 13 ions/cm 2 . The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV–Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications

  14. Development of Nafion/tin oxide composite MEA for DMFC applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, F.; Mecheri, B.; D' Epifanio, A. [Department of Chemical Science and Technology, University of Rome ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Rome (Italy); Traversa, E. [Department of Chemical Science and Technology, University of Rome ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Rome (Italy); International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Licoccia, S.

    2010-10-15

    Nafion composite membranes containing either hydrated tin oxide (SnO{sub 2}. nH{sub 2}O) or sulphated tin oxide (S-SnO{sub 2}) at 5 and 10 wt.-% were prepared and characterised. The structural and electrochemical features of the samples were investigated using X-ray diffraction, electrochemical impedance spectroscopy, methanol crossover and direct methanol fuel cell (DMFC) tests. Highest conductivity values were obtained by using S-SnO{sub 2} as filler (0.094 S cm{sup -1} at T = 110 C and RH = 100%). The presence of the inorganic compound resulted in lower methanol crossover and improved DMFC performance with respect to a reference unfilled membrane. To improve the interface of the membrane electrode assembly (MEA), a layer of the composite electrolyte (i.e. the Nafion membrane containing 5 wt.-% S-SnO{sub 2}) was brushed on the electrodes, obtaining a DMFC operating at 110 C with a power density (PD) of 100 mW cm{sup -2} which corresponds to a PD improvement of 52% with respect to the unfilled Nafion membrane. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  15. Tin Oxide Nanoparticles: Synthesis, Characterization and Study their Particle Size at Different Current Density

    Directory of Open Access Journals (Sweden)

    Karzan A. Omar

    2013-11-01

    Full Text Available Tin oxide nanoparticles are prepared by electrochemical reduction method using tetrapropylammonium bromide (TPAB and tetrabutylammonium bromide (TBAB as structure directing agent in an organic medium viz. tetrahydrofuran (THF and acetonitrile (ACN in 4:1 ratio by optimizing current density and molar concentration of the ligand. The reduction process takes place under an inert atmosphere of nitrogen over a period of 2 h. Such nanoparticles are prepared by using a simple electrolysis cell in which the sacrificial anode as a commercially available in tin metal sheet and platinum (inert sheet act as a cathode. The parameters such as current density, solvent polarity, distance between electrodes and concentration of stabilizers are used to control the size of nanoparticles. The synthesized tin oxide nanoparticles are characterized by using UV–Visible, FT-IR and SEM–EDS analysis techniques. UV-Visible spectroscopy has revealed the optical band gap to be 4.13, 4.16 and 4.24 ev for (8, 10 and 12 mA/cm2 and the effect of current density on theirs particle size, respectively.

  16. Studies on Cementation of Tin on Copper and Tin Stripping from Copper Substrate

    Directory of Open Access Journals (Sweden)

    Rudnik E.

    2016-06-01

    Full Text Available Cementation of tin on copper in acid chloride-thiourea solutions leads to the formation of porous layers with a thickness dependent on the immersion time. The process occurs via Sn(II-Cu(I mechanism. Chemical stripping of tin was carried out in alkaline and acid solutions in the presence of oxidizing agents. It resulted in the dissolution of metallic tin, but refractory Cu3Sn phase remained on the copper surface. Electrochemical tin stripping allows complete tin removal from the copper substrate, but porosity and complex phase composition of the tin coating do not allow monitoring the process in unambiguous way.

  17. FTO genetic variants, dietary intake and body mass index

    DEFF Research Database (Denmark)

    Qi, Qibin; Kilpeläinen, Tuomas O; Downer, Mary K

    2014-01-01

    FTO is the strongest known genetic susceptibility locus for obesity. Experimental studies in animals suggest the potential roles of FTO in regulating food intake. The interactive relation among FTO variants, dietary intake and body mass index (BMI) is complex and results from previous often small...

  18. Hybrid nanocomposite based on cellulose and tin oxide: growth, structure, tensile and electrical characteristics

    International Nuclear Information System (INIS)

    Mahadeva, Suresha K; Kim, Jaehwan

    2011-01-01

    A highly flexible nanocomposite was developed by coating a regenerated cellulose film with a thin layer of tin oxide (SnO 2 ) by liquid-phase deposition. Tin oxide was crystallized in solution and formed nanocrystal coatings on regenerated cellulose. The nanocrystalline layers did not exfoliate from cellulose. Transmission electron microscopy and energy dispersive x-ray spectroscopy suggest that SnO 2 was not only deposited over the cellulose surface, but also nucleated and grew inside the cellulose film. Current-voltage characteristics of the nanocomposite revealed that its electrical resistivity decreases with deposition time, with the lowest value obtained for 24 h of deposition. The cellulose-SnO 2 hybrid nanocomposite can be used for biodegradable and disposable chemical, humidity and biosensors.

  19. Self-catalytic growth of tin oxide nanowires by chemical vapor deposition process

    CSIR Research Space (South Africa)

    Thabethe, BS

    2013-01-01

    Full Text Available The authors report on the synthesis of tin oxide (SnO(sub2)) nanowires by a chemical vapor deposition (CVD) process. Commercially bought SnO nanopowders were vaporized at 1050°C for 30 minutes with argon gas continuously passing through the system...

  20. Novel antimony doped tin oxide/carbon aerogel as efficient electrocatalytic filtration membrane

    Directory of Open Access Journals (Sweden)

    Zhimeng Liu

    2016-05-01

    Full Text Available A facile method was developed to prepare antimony doped tin oxide (Sb-SnO2/carbon aerogel (CA for use as an electrocatalytic filtration membrane. The preparation process included synthesis of a precursor sol, impregnation, and thermal decomposition. The Sb-SnO2, which was tetragonal in phase with an average crystallite size of 10.8 nm, was uniformly distributed on the CA surface and firmly attached via carbon-oxygen-tin chemical bonds. Preliminary filtration tests indicated that the Sb-SnO2/CA membrane had a high rate of total organic carbon removal for aqueous tetracycline owing to its high current efficiency and electrode stability.

  1. The role of transparent conducting oxides in metal organic chemical vapour deposition of CdTe/CdS Photovoltaic solar cells

    International Nuclear Information System (INIS)

    Irvine, S.J.C.; Lamb, D.A.; Barrioz, V.; Clayton, A.J.; Brooks, W.S.M.; Rugen-Hankey, S.; Kartopu, G.

    2011-01-01

    A systematic study is made between the relationship of Cd 0.9 Zn 0.1 S/CdTe photovoltaic (PV) device properties for three different commercial transparent conducting oxide (TCO) materials and some experimental CdO to determine the role of the TCO in device performance. The resistance contribution from the TCO was measured after depositing the gold contact architectures directly onto the TCOs. These were compared with the Cd 0.9 Zn 0.1 S/CdTe device properties using the same contact arrangements. Series resistance for the commercial TCOs correlated with their sheet resistance and gave good agreement with the PV device series resistance for the indium tin oxide (ITO) and fluorine doped tin oxide (FTO) 15 Ω/Sq. superstrates. The devices on the thicker FTO 7 Ω/sq superstrates were dominated by a low shunt resistance, which was attributed to the rough surface morphology causing micro-shorts. The device layers on the CdO substrate delaminated but devices were successfully made for ultra-thin CdTe (0.8 μm thick) and compared favourably with the comparable device on ITO. From the measurements on these TCOs it was possible to deduce the back contact resistance and gave an average value of 2 Ω.cm 2 . The correlation of fill factor with series resistance has been compared with the predictions of a 1-D device model and shows excellent agreement. For high efficiency devices the combined series resistance from the TCO and back contact need to be less than 1 Ω.cm 2 .

  2. Effects of gas flow rate on the structure and elemental composition of tin oxide thin films deposited by RF sputtering

    Science.gov (United States)

    Al-Mansoori, Muntaser; Al-Shaibani, Sahar; Al-Jaeedi, Ahlam; Lee, Jisung; Choi, Daniel; Hasoon, Falah S.

    2017-12-01

    Photovoltaic technology is one of the key answers for a better sustainable future. An important layer in the structure of common photovoltaic cells is the transparent conductive oxide. A widely applied transparent conductive oxide is tin oxide (SnO2). The advantage of using tin oxide comes from its high stability and low cost in processing. In our study, we investigate effects of working gas flow rate and oxygen content in radio frequency (RF)-sputtering system on the growth of intrinsic SnO2 (i-SnO2) layers. X-ray diffraction results showed that amorphous-like with nano-crystallite structure, and the surface roughness varied from 1.715 to 3.936 nm. X-Ray photoelectron spectroscopy analysis showed different types of point defects, such as tin interstitials and oxygen vacancies, in deposited i-SnO2 films.

  3. Effects of gas flow rate on the structure and elemental composition of tin oxide thin films deposited by RF sputtering

    Directory of Open Access Journals (Sweden)

    Muntaser Al-Mansoori

    2017-12-01

    Full Text Available Photovoltaic technology is one of the key answers for a better sustainable future. An important layer in the structure of common photovoltaic cells is the transparent conductive oxide. A widely applied transparent conductive oxide is tin oxide (SnO2. The advantage of using tin oxide comes from its high stability and low cost in processing. In our study, we investigate effects of working gas flow rate and oxygen content in radio frequency (RF-sputtering system on the growth of intrinsic SnO2 (i-SnO2 layers. X-ray diffraction results showed that amorphous-like with nano-crystallite structure, and the surface roughness varied from 1.715 to 3.936 nm. X-Ray photoelectron spectroscopy analysis showed different types of point defects, such as tin interstitials and oxygen vacancies, in deposited i-SnO2 films.

  4. Sensitivity, selectivity and stability of tin oxide nanostructures on large area arrays of microhotplates

    Science.gov (United States)

    Panchapakesan, Balaji; Cavicchi, Richard; Semancik, Steve; DeVoe, Don L.

    2006-01-01

    In this paper, the sensitivity, stability and selectivity of nanoparticle engineered tin oxide (SnO2) are reported, for microhotplate chemical sensing applications. 16 Å of metals such as nickel, cobalt, iron, copper and silver were selectively evaporated onto each column of the microhotplate array. Following evaporation, the microhotplates were heated to 500 °C and SnO2 was deposited on top of the microhotplates using a self-aligned chemical vapour deposition process. Scanning electron microscopy characterization revealed control of SnO2 nanostructures in the range of 20-121 nm. Gas sensing in seven different hydrocarbons revealed that metal nanoparticles that helped in producing faster nucleation of SnO2 resulted in smaller grain size and higher sensitivity. Sensitivity as a function of concentration and grain size is addressed for tin oxide nanostructures. Smaller grain sizes resulted in higher sensitivity of tin oxide nanostructures. Temperature programmed sensing of the devices yielded shape differences in the response between air and methanol, illustrating selectivity. Spiderweb plots were used to monitor the materials programmed selectivity. The shape differences between different gases in spiderweb plots illustrate materials selectivity as a powerful mapping approach for monitoring selectivity in various gases. Continuous monitoring in 80 ppm methanol yielded stable sensor response for more than 200 h. This comprehensive study illustrates the use of a nanoparticle engineering approach for sensitive, selective and stable gas sensing applications.

  5. Multi-band emission in a wide wavelength range from tin oxide/Au nanocomposites grown on porous anodic alumina substrate (AAO)

    International Nuclear Information System (INIS)

    Norek, Małgorzata; Michalska-Domańska, Marta; Stępniowski, Wojciech J.; Ayala, Israel; Bombalska, Aneta; Budner, Bogusław

    2013-01-01

    The photoluminescence (PL) properties of tin oxide nanostructures are investigated. Three samples of different morphology, induced by deposition process and various geometrical features of nanoporous anodic aluminum oxide (AAO) substrate, are analyzed. X-ray photoelectronic spectroscopy (XPS) analysis reveals the presence of two forms of tin oxide on the surface of all studied samples: SnO and SnO 2 . The former form is typical for reduced surface with bridging oxygen atoms and every other row of in-plane oxygen atoms removed. The oxygen defects give rise to a strong emission in visible region. Two intense PL peaks are observed centered at about 540 (band I) and 620 (band II) nm. The origin of these bands was ascribed to the recombination of electrons from the conduction band (band I) and shallow traps levels (band II) to the surface oxygen vacancy levels. Upon deposition of Au nanoparticles on the top of tin oxide nanostructures the emission at 540 and 620 nm disappears and a new band (band III) occurs in the range >760 nm. The PL mechanism operating in the studied systems is discussed. The tin oxide/Au nanocomposites can be used as efficient multi-band light emitters in a wide (from visible to near infrared) wavelength range.

  6. Structural, optical and electrical properties of indium tin oxide thin films prepared by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Benamar, E.; Rami, M.; Messaoudi, C.; Sayah, D.; Ennaoui, A. [Deptartmento de Physique, Laboratoire de Physique des Materiaux, Faculte des Sciences, BP 1014, Ave Inb Battouta, Rabat (Morocco)

    1998-11-27

    Spray pyrolysis process has been used to deposit highly transparent and conducting films of tin-doped indium oxide onto glass substrates. The electrical, structural and optical properties have been investigated as a function of various deposition parameters namely dopant concentrations, temperature and nature of substrate. The morphology of the surface as a function of the substrate temperature has been studied using atomic force microscopy. XRD has shown that deposited films are polycrystalline without second phases and have a preferred orientation (4 0 0). Indium tin oxide layers with low resistivity values around 4x10{sup -5} {Omega} cm and transmission coefficients in the visible and near-infrared range of about 85-90% have been easily obtained

  7. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

    Directory of Open Access Journals (Sweden)

    M. Morales-Masis

    2014-09-01

    Full Text Available Improving the conductivity of earth-abundant transparent conductive oxides (TCOs remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H2-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H2-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitive substrates.

  8. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Masis, M., E-mail: monica.moralesmasis@epfl.ch; Ding, L.; Dauzou, F. [Photovoltaics and Thin-Film Electronics Laboratory (PVLab), Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne - EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel (Switzerland); Jeangros, Q. [Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Hessler-Wyser, A. [Photovoltaics and Thin-Film Electronics Laboratory (PVLab), Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne - EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel (Switzerland); Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Nicolay, S. [Centre Suisse d’Electronique et de Microtechnique (CSEM) SA, Rue Jaquet-Droz 1, CH-2002 Neuchatel (Switzerland); Ballif, C. [Photovoltaics and Thin-Film Electronics Laboratory (PVLab), Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne - EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel (Switzerland); Centre Suisse d’Electronique et de Microtechnique (CSEM) SA, Rue Jaquet-Droz 1, CH-2002 Neuchatel (Switzerland)

    2014-09-01

    Improving the conductivity of earth-abundant transparent conductive oxides (TCOs) remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H{sub 2})-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H{sub 2}-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitive substrates.

  9. Rf reactive sputtering of indium-tin-oxide films

    International Nuclear Information System (INIS)

    Tvarozek, V.; Novotny, I.; Harman, R.; Kovac, J.

    1986-01-01

    Films of indium-tin-oxide (ITO) have been deposited by rf reactive diode sputtering of metallic InSn alloy targets, or ceramic ITO targets, in an Ar and Ar+0 2 atmosphere. Electrical as well as optical properties of ITO films were controlled by varying sputtering parameters and by post-deposition heat-treatment in Ar, H 2 , N 2 , H 2 +N 2 ambients. The ITO films exhibited low resistivity approx. 2 x 10 -4 Ω cm, high transmittance approx. 90% in the visible spectral region and high reflectance approx. 80% in the near infra-red region. (author)

  10. Influence of thermal treatment in N{sub 2} atmosphere on chemical, microstructural and optical properties of indium tin oxide and nitrogen doped indium tin oxide rf-sputtered thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stroescu, H.; Anastasescu, M.; Preda, S.; Nicolescu, M.; Stoica, M. [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Stefan, N. [National Institute for Lasers, Plasma and Radiation Physics, Atomistilor 409, RO-77125, Bucharest-Magurele (Romania); Kampylafka, V.; Aperathitis, E. [FORTH-IESL, Crete (Greece); Modreanu, M. [Tyndall National Institute, University College Cork, Cork (Ireland); Zaharescu, M. [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Gartner, M., E-mail: mgartner@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania)

    2013-08-31

    We report the influence of the normal thermal treatment (TT) and of rapid thermal annealing (RTA) on the microstructural, optical and electrical properties of indium tin oxide (ITO) and nitrogen doped indium tin oxide (ITO:N) thin films. The TT was carried out for 1 h at 400 °C and the RTA for 1 min up to 400 °C, both in N{sub 2} atmosphere. The ITO and ITO:N films were deposited by reactive sputtering in Argon, and respectively Nitrogen plasma, on Si with (100) and (111) orientation. The present study brings data about the microstructural and optical properties of ITO thin films with thicknesses around 300–400 nm. Atomic Force Microscopy analysis showed the formation of continuous and homogeneous films, fully covered by quasi-spherical shaped particles, with higher roughness values on Si(100) as compared to Si(111). Spectroscopic ellipsometry allowed the determination of film thickness, optical band gap as well as of the dispersion curves of n and k optical constants. X-ray diffraction analysis revealed the presence of diffraction peaks corresponding to the same nominal bulk composition of ITO, but with different intensities and preferential orientation depending on the substrate, atmosphere of deposition and type of thermal treatment. - Highlights: ► Stability of the films can be monitored by experimental ellipsometric spectra. ► The refractive index of indium tin oxide film on 0.3–30 μm range is reported. ► Si(100) substrate induces rougher film surfaces than Si(111). ► Rapid thermal annealing and normal thermal treatment lead to stable conductive film. ► The samples have a higher preferential orientation after rapid thermal annealing.

  11. Tin( ii ) ketoacidoximates: synthesis, X-ray structures and processing to tin( ii ) oxide

    KAUST Repository

    Khanderi, Jayaprakash

    2015-10-21

    Tin(ii) ketoacidoximates of the type [HONCRCOO]Sn (R = Me 1, CHPh 2) and (MeONCMeCOO)Sn] NH·2HO 3 were synthesized by reacting pyruvate- and hydroxyl- or methoxylamine RONH (R = H, Me) with tin(ii) chloride dihydrate SnCl·2HO. The single crystal X-ray structure reveals that the geometry at the Sn atom is trigonal bipyramidal in 1, 2 and trigonal pyramidal in 3. Inter- or intramolecular hydrogen bonding is observed in 1-3. Thermogravimetric (TG) analysis shows that the decomposition of 1-3 to SnO occurs at ca. 160 °C. The evolved gas analysis during TG indicates complete loss of the oximato ligand in one step for 1 whereas a small organic residue is additionally removed at temperatures >400 °C for 2. Above 140 °C, [HONC(Me)COO]Sn (1) decomposes in air to spherical SnO particles of size 10-500 nm. Spin coating of 1 on Si or a glass substrate followed by heating at 200 °C results in a uniform film of SnO. The band gap of the produced SnO film and nanomaterial was determined by diffuse reflectance spectroscopy to be in the range of 3.0-3.3 eV. X-ray photoelectron spectroscopy indicates surface oxidation of the SnO film to SnO in ambient atmosphere.

  12. One pot synthesis of multi-functional tin oxide nanostructures for high efficiency dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wali, Qamar; Fakharuddin, Azhar; Yasin, Amina; Ab Rahim, Mohd Hasbi; Ismail, Jamil; Jose, Rajan, E-mail: rjose@ump.edu.my

    2015-10-15

    Photoanode plays a key role in dye sensitized solar cells (DSSCs) as a scaffold for dye molecules, transport medium for photogenerated electrons, and scatters light for improved absorption. Herein, tin oxide nanostructures unifying the above three characteristics were optimized by a hydrothermal process and used as photoanode in DSSCs. The optimized morphology is a combination of hollow porous nanoparticles of size ∼50 nm and micron sized spheres with BET surface area (up to 29 m{sup 2}/g) to allow large dye-loading and light scattering as well as high crystallinity to support efficient charge transport. The optimized morphology gave the highest photovoltaic conversion efficiency (∼7.5%), so far achieved in DSSCs with high open circuit voltage (∼700 mV) and short circuit current density (∼21 mA/cm{sup 2}) employing conventional N3 dye and iodide/triiodide electrolyte. The best performing device achieved an incident photon to current conversion efficiency of ∼90%. The performance of the optimized tin oxide nanostructures was comparable to that of conventional titanium based DSSCs fabricated at similar conditions. - Graphical abstract: Tin oxide hollow nanostructure simultaneously supporting improved light scattering, dye-loading, and charge transport yielded high photovoltaic conversion efficiency in dye-sensitized solar cells. - Highlights: • Uniformly and bimodelly distributed tin oxide hollow nanospheres (HNS) are synthesized. • Uniform HNS are of size ∼10 nm; bimodel HNS has additional size up to ∼800 nm. • They are evaluated as photoelectrodes in dye-sensitized solar cells (DSSCs). • The uniform HNS increase dye-loading and the larger increase light scattering in DSSCs. • Photo conversion efficiency ∼7.5% is achieved using bimodel HNS.

  13. Indium tin oxide-rod/single walled carbon nanotube based transparent electrodes for ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Yun, Min Ju; Kim, Hee-Dong; Kim, Kyeong Heon; Sung, Hwan Jun; Park, Sang Young; An, Ho-Myoung; Kim, Tae Geun

    2013-01-01

    In this paper, we report a transparent conductive oxide electrode scheme working for ultraviolet light-emitting diodes based on indium tin oxide (ITO)-rod and a single walled carbon nanotube (SWCNT) layer. We prepared four samples with ITO-rod, SWCNT/ITO-rod, ITO-rod/SWCNT, and SWCNT/ITO-rod/SWCNT structures for comparison. As a result, the sample with SWCNT/ITO-rod/SWCNT structures showed the highest transmittance over 90% at 280 nm and the highest Ohmic behavior (with sheet resistance of 5.33 kΩ/□) in the current–voltage characteristic curves. - Highlights: • Transparent conductive oxide (TCO) electrodes are proposed for UV light-emitting diodes. • These TCO electrodes are based on evaporated indium tin oxide (ITO)-rods. • Single walled carbon nanotube (SWCNT) layers are used as a current spreading layer. • The proposed TCO electrode structures show more than 90% transmittance at 280 nm

  14. Electrochemical grafting of TiO2-based photo-anodes and its effect in dye-sensitized solar cells

    DEFF Research Database (Denmark)

    Lund, Torben; Phuong, Nguyen Tuyet; Ruhland, Thomas Gerhard Aloysius

    2015-01-01

    We demonstrate that hydroxyl-groups which are located on the surfaces of mesoporous metal oxides (in particular sintered layers of F-doped tin oxide (FTO) and TiO2 on glass plates) are capable of undergoing reactions with 4-nitrobenzene radicals. The highly reactive benzene radicals are generated...

  15. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Hemant Kr. [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India); Avasthi, D.K. [Inter University Accelerator Center, Post Box 10502, New Delhi (India); Aggarwal, Shruti, E-mail: shruti.al@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India)

    2015-06-15

    Highlights: •The objective is to study the effect of swift heavy ion (SHI) irradiation on photoanode of DSSC for better efficiency. •This work presents the effect of SHI irradiation on various Transparent conducting oxides (TCOs). •Effects are studied in terms of conductivity and transmittance of TCOs. •ITO-PET gives best results in comparison to ITO and FTO for DSSC application under SHI irradiation. -- Abstract: Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO{sub 2}:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In{sub 2}O{sub 3}:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag{sup +9} ions at fluences ranging from 3.0 × 10{sup 11} ions/cm{sup 2} to 3.0 × 10{sup 13} ions/cm{sup 2}. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV–Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  16. Tailor-made surface plasmon polaritons above the bulk plasma frequency: a design strategy for indium tin oxide

    International Nuclear Information System (INIS)

    Brand, S; Abram, R A; Kaliteevski, M A

    2010-01-01

    A simple phase-matching approach is employed as a design aid to engineer surface plasmon polariton states at the interface of an indium tin oxide layer on the top of a Bragg reflector. By altering the details of the reflector, and in particular the ordering of the layers and the thickness of the layer adjacent to the indium tin oxide, it is possible to readily adjust the energy of these states. Examples of structures engineered to give rise to distinctive features in the reflectivity spectra above the bulk screened plasma frequency for states of both possible polarizations are presented.

  17. Synthesis and Characterization of Nanocomposites Tin Oxide-Graphene Doping Pd Using Polyol Method

    Directory of Open Access Journals (Sweden)

    Aminuddin Debataraja

    2018-05-01

    Full Text Available This paper report on polyol method for Pd doped tin oxide-graphene nanocomposite thin film. XRD result shows sharp peaks at certain 2θ value and match with tin oxide, graphene, and Pd database. FTIR result shows peak from alcohol chain for –OH strong bonded absorption (3444 cm-1, also there are aldehyde and ketone which are indicated by C=O strong absorption (1751 cm-1. Moreover, alkene is also formed for decreasing symmetry intensity C=C (1616 cm-1, while alkyne is formed at strong deformation absorption at 646 and 613 cm-1. SEM and TEM result show SnO2 particles are attached uniformly on graphene surface layer. The composition for C, O, Sn, and Pd are 33.13, 25.58, 35.35 and 5.94%, respectively. This result indicated that the good composition is formed for Pd doped SnO2-graphene nanocomposite. The nanocomposite is promising materials for toxic gas sensor application at low temperature.

  18. Conversion electron Moessbauer spectroscopic studies on the chemical states of surface layers of corroded tin plates and tin-coated iron plates

    International Nuclear Information System (INIS)

    Kato, Akinori; Endo, Kazutoyo; Sano, Hirotoshi

    1980-01-01

    By means of the conversion electron Moessbauer spectroscopy (CEMS), we studied surface layers of ''tin'' plates and tin-coated iron plates corroded by various acids. Transmission Moessbauer spectra and X-ray diffraction patterns were also measured. Metastannic acid was formed, when the ''tin'' plate was corroded by nitric acid solution. In corrosion by phosphoric acid solution, the X-ray diffractometry revealed the formation of tin(IV) pyrophosphate. In corrosion by various organic acid solutions, the formation of oxides was identified by the 119 Sn CEMS, but not by the X-ray diffractometry because of the too thin corrosion layer. In corrosion of tin-coated iron plates, maleic acid, malonic acid, formic acid, and oxalic acid were used. It was determined by CEMS that the corrosion products caused by these acids were tin(IV) oxides, although they could not be identified by the X-ray diffractometry. CEMS also confirmed that the surface of uncorroded tin-coated iron plate was already oxidized by air. Colorimetric determinations of Sn and Fe dissolved from tin-coated iron plates to various acid solutions confirmed that maleic acid had the strongest corrosion effect among the organic acids studied. (author)

  19. Preparation of transparent conductive indium tin oxide thin films from nanocrystalline indium tin hydroxide by dip-coating method

    International Nuclear Information System (INIS)

    Koroesi, Laszlo; Papp, Szilvia; Dekany, Imre

    2011-01-01

    Indium tin oxide (ITO) thin films with well-controlled layer thickness were produced by dip-coating method. The ITO was synthesized by a sol-gel technique involving the use of aqueous InCl 3 , SnCl 4 and NH 3 solutions. To obtain stable sols for thin film preparation, as-prepared Sn-doped indium hydroxide was dialyzed, aged, and dispersed in ethanol. Polyvinylpyrrolidone (PVP) was applied to enhance the stability of the resulting ethanolic sols. The transparent, conductive ITO films on glass substrates were characterized by X-ray diffraction, scanning electron microscopy and UV-Vis spectroscopy. The ITO layer thickness increased linearly during the dipping cycles, which permits excellent controllability of the film thickness in the range ∼ 40-1160 nm. After calcination at 550 o C, the initial indium tin hydroxide films were transformed completely to nanocrystalline ITO with cubic and rhombohedral structure. The effects of PVP on the optical, morphological and electrical properties of ITO are discussed.

  20. A link between FTO, ghrelin, and impaired brain food-cue responsivity

    Science.gov (United States)

    Karra, Efthimia; O’Daly, Owen G.; Choudhury, Agharul I.; Yousseif, Ahmed; Millership, Steven; Neary, Marianne T.; Scott, William R.; Chandarana, Keval; Manning, Sean; Hess, Martin E.; Iwakura, Hiroshi; Akamizu, Takashi; Millet, Queensta; Gelegen, Cigdem; Drew, Megan E.; Rahman, Sofia; Emmanuel, Julian J.; Williams, Steven C.R.; Rüther, Ulrich U.; Brüning, Jens C.; Withers, Dominic J.; Zelaya, Fernando O.; Batterham, Rachel L.

    2013-01-01

    Polymorphisms in the fat mass and obesity-associated gene (FTO) are associated with human obesity and obesity-prone behaviors, including increased food intake and a preference for energy-dense foods. FTO demethylates N6-methyladenosine, a potential regulatory RNA modification, but the mechanisms by which FTO predisposes humans to obesity remain unclear. In adiposity-matched, normal-weight humans, we showed that subjects homozygous for the FTO “obesity-risk” rs9939609 A allele have dysregulated circulating levels of the orexigenic hormone acyl-ghrelin and attenuated postprandial appetite reduction. Using functional MRI (fMRI) in normal-weight AA and TT humans, we found that the FTO genotype modulates the neural responses to food images in homeostatic and brain reward regions. Furthermore, AA and TT subjects exhibited divergent neural responsiveness to circulating acyl-ghrelin within brain regions that regulate appetite, reward processing, and incentive motivation. In cell models, FTO overexpression reduced ghrelin mRNA N6-methyladenosine methylation, concomitantly increasing ghrelin mRNA and peptide levels. Furthermore, peripheral blood cells from AA human subjects exhibited increased FTO mRNA, reduced ghrelin mRNA N6-methyladenosine methylation, and increased ghrelin mRNA abundance compared with TT subjects. Our findings show that FTO regulates ghrelin, a key mediator of ingestive behavior, and offer insight into how FTO obesity-risk alleles predispose to increased energy intake and obesity in humans. PMID:23867619

  1. A link between FTO, ghrelin, and impaired brain food-cue responsivity.

    Science.gov (United States)

    Karra, Efthimia; O'Daly, Owen G; Choudhury, Agharul I; Yousseif, Ahmed; Millership, Steven; Neary, Marianne T; Scott, William R; Chandarana, Keval; Manning, Sean; Hess, Martin E; Iwakura, Hiroshi; Akamizu, Takashi; Millet, Queensta; Gelegen, Cigdem; Drew, Megan E; Rahman, Sofia; Emmanuel, Julian J; Williams, Steven C R; Rüther, Ulrich U; Brüning, Jens C; Withers, Dominic J; Zelaya, Fernando O; Batterham, Rachel L

    2013-08-01

    Polymorphisms in the fat mass and obesity-associated gene (FTO) are associated with human obesity and obesity-prone behaviors, including increased food intake and a preference for energy-dense foods. FTO demethylates N6-methyladenosine, a potential regulatory RNA modification, but the mechanisms by which FTO predisposes humans to obesity remain unclear. In adiposity-matched, normal-weight humans, we showed that subjects homozygous for the FTO "obesity-risk" rs9939609 A allele have dysregulated circulating levels of the orexigenic hormone acyl-ghrelin and attenuated postprandial appetite reduction. Using functional MRI (fMRI) in normal-weight AA and TT humans, we found that the FTO genotype modulates the neural responses to food images in homeostatic and brain reward regions. Furthermore, AA and TT subjects exhibited divergent neural responsiveness to circulating acyl-ghrelin within brain regions that regulate appetite, reward processing, and incentive motivation. In cell models, FTO overexpression reduced ghrelin mRNA N6-methyladenosine methylation, concomitantly increasing ghrelin mRNA and peptide levels. Furthermore, peripheral blood cells from AA human subjects exhibited increased FTO mRNA, reduced ghrelin mRNA N6-methyladenosine methylation, and increased ghrelin mRNA abundance compared with TT subjects. Our findings show that FTO regulates ghrelin, a key mediator of ingestive behavior, and offer insight into how FTO obesity-risk alleles predispose to increased energy intake and obesity in humans.

  2. Band alignment of TiO2/FTO interface determined by X-ray photoelectron spectroscopy: Effect of annealing

    Directory of Open Access Journals (Sweden)

    Haibo Fan

    2016-01-01

    Full Text Available The energy band alignment between pulsed-laser-deposited TiO2 and FTO was firstly characterized using high-resolution X-ray photoelectron spectroscopy. A valence band offset (VBO of 0.61 eV and a conduction band offset (CBO of 0.29 eV were obtained across the TiO2/FTO heterointerface. With annealing process, the VBO and CBO across the heterointerface were found to be -0.16 eV and 1.06 eV, respectively, with the alignment transforming from type-I to type-II. The difference in the band alignment is believed to be dominated by the core level down-shift of the FTO substrate, which is a result of the oxidation of Sn. Current-voltage test has verified that the band alignment has a significant effect on the current transport of the heterojunction.

  3. Correlation between the structure and optical transition characteristic energies of annealed tin oxide films

    International Nuclear Information System (INIS)

    Majid, W.H.A.; Muhamad, M.R.

    1990-01-01

    Thin films of tin oxide were prepared by room temperature thermal evaporation of blue-black stannous-oxide, SnO powder synthesized from metal tin. X-ray diffractograms reveal that as prepared amorphous samples form polycrystal of SnO by annealing at 300 0 C in air ambient for 30 minutes and they will be oxidized to polycrystal of SnO 2 with further annealing at 500 0 C or above. Optical measurements indicate that the dispersion energy E d and the single oscillator strength E 0 are highest for SnO polycrystal with a magnitude for about 14.0 eV and 4.0 eV respectively compared to 10.4 eV and 3.4 eV for SnO 2 . Further, the plasma energy E p was determined to be in the range of 3.4 eV to 8 eV; increases with increasing composition of SnO 2 . The density of valence electron N(E) can be estimated from the plasma energy E p

  4. Dietary intake, FTO genetic variants and adiposity

    DEFF Research Database (Denmark)

    Qi, Qibin; Downer, Mary K; Oskari Kilpeläinen, Tuomas

    2015-01-01

    The FTO gene harbors variation with the strongest effect on adiposity and obesity risk. Previous data support a role for FTO variation in influencing food intake. We conducted a combined analysis of 16,094 boys and girls aged 1–18 years from 14 studies to examine the following: 1) the association...

  5. Fabrication of organic light emitting diode using Molybdenum ...

    Indian Academy of Sciences (India)

    65

    efficiency is found to be increased compared to the single layer anode OLED. To study the ... their co-workers fabricated OLEDs on bilayer graphene electrode [5]. Daeil Kim ... On the other hand Fluorine doped Tin Oxide (FTO) though being.

  6. Hypothalamic FTO is associated with the regulation of energy intake not feeding reward

    Directory of Open Access Journals (Sweden)

    Radomska Katarzyna J

    2009-10-01

    Full Text Available Abstract Background Polymorphism in the FTO gene is strongly associated with obesity, but little is known about the molecular bases of this relationship. We investigated whether hypothalamic FTO is involved in energy-dependent overconsumption of food. We determined FTO mRNA levels in rodent models of short- and long-term intake of palatable fat or sugar, deprivation, diet-induced increase in body weight, baseline preference for fat versus sugar as well as in same-weight animals differing in the inherent propensity to eat calories especially upon availability of diverse diets, using quantitative PCR. FTO gene expression was also studied in organotypic hypothalamic cultures treated with anorexigenic amino acid, leucine. In situ hybridization (ISH was utilized to study FTO signal in reward- and hunger-related sites, colocalization with anorexigenic oxytocin, and c-Fos immunoreactivity in FTO cells at initiation and termination of a meal. Results Deprivation upregulated FTO mRNA, while leucine downregulated it. Consumption of palatable diets or macronutrient preference did not affect FTO expression. However, the propensity to ingest more energy without an effect on body weight was associated with lower FTO mRNA levels. We found that 4-fold higher number of FTO cells displayed c-Fos at meal termination as compared to initiation in the paraventricular and arcuate nuclei of re-fed mice. Moreover, ISH showed that FTO is present mainly in hunger-related sites and it shows a high degree of colocalization with anorexigenic oxytocin. Conclusion We conclude that FTO mRNA is present mainly in sites related to hunger/satiation control; changes in hypothalamic FTO expression are associated with cues related to energy intake rather than feeding reward. In line with that, neurons involved in feeding termination express FTO. Interestingly, baseline FTO expression appears linked not only with energy intake but also energy metabolism.

  7. Transparent and Flexible Zinc Tin Oxide Thin Film Transistors and Inverters using Low-pressure Oxygen Annealing Process

    Science.gov (United States)

    Lee, Kimoon; Kim, Yong-Hoon; Kim, Jiwan; Oh, Min Suk

    2018-05-01

    We report on the transparent and flexible enhancement-load inverters which consist of zinc tin oxide (ZTO) thin film transistors (TFTs) fabricated at low process temperature. To control the electrical characteristics of oxide TFTs by oxygen vacancies, we applied low-pressure oxygen rapid thermal annealing (RTA) process to our devices. When we annealed the ZTO TFTs in oxygen ambient of 2 Torr, they showed better electrical characteristics than those of the devices annealed in the air ambient of 760 Torr. To realize oxide thin film transistor and simple inverter circuits on flexible substrate, we annealed the devices in O2 of 2 Torr at 150° C and could achieve the decent electrical properties. When we used transparent conductive oxide electrodes such as indium zinc oxide (IZO) and indium tin oxide (ITO), our transparent and flexible inverter showed the total transmittance of 68% in the visible range and the voltage gain of 5. And the transition voltage in voltage transfer curve was located well within the range of operation voltage.

  8. Nitrogen-Doped Graphene/Platinum Counter Electrodes for Dye-Sensitized Solar Cells

    KAUST Repository

    Lin, Chinan; Lee, Chuanpei; Ho, Shute; Wei, Tzuchiao; Chi, Yuwen; Huang, Kunping; He, Jr-Hau

    2014-01-01

    Nitrogen-doped graphene (NGR) was utilized in dye-sensitized solar cells for energy harvesting. NGR on a Pt-sputtered fluorine-doped tin oxide substrate (NGR/Pt/FTO) as counter electrodes (CEs) achieves the high efficiency of 9.38% via the nitrogen

  9. Optimisation of chemical solution deposition of indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sunde, Tor Olav Løveng; Einarsrud, Mari-Ann; Grande, Tor, E-mail: grande@ntnu.no

    2014-12-31

    An environmentally friendly aqueous sol–gel process has been optimised to deposit indium tin oxide (ITO) thin films, aiming to improve the film properties and reduce the deposition costs. It was demonstrated how parameters such as cation concentration and viscosity could be applied to modify the physical properties of the sol and thereby reduce the need for multiple coatings to yield films with sufficient conductivity. The conductivity of the thin films was enhanced by adjusting the heat treatment temperature and atmosphere. Both increasing the heat treatment temperature of the films from 530 to 800 °C and annealing in reducing atmosphere significantly improved the electrical conductivity, and conductivities close to the state of the art sputtered ITO films were obtained. A pronounced decreased conductivity was observed after exposing the thin films to air and the thermal reduction and ageing of the film was studied by in situ conductivity measurements. - Highlights: • Spin coating of indium tin oxide using an aqueous solution was optimised. • The conductivity was enhanced by thermal annealing in reducing atmosphere. • The conductivity of is comparable to the conductivity of sputtered films. • A relaxation process in the reduced thin film was observed after exposure in air.

  10. The use of a hierarchically platinum-free electrode composed of tin oxide decorated polypyrrole on nanoporous copper in catalysis of methanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Asghari, Elnaz, E-mail: elnazasghari@yahoo.com; Ashassi-Sorkhabi, Habib; Vahed, Akram; Rezaei-Moghadam, Babak; Charmi, Gholam Reza

    2016-01-01

    Tin oxide nanoparticles were synthesized through a galvanostatic pathway on polypyrrole, PPy, coated nanoporous copper. The morphology and surface analysis of the assemblies were evaluated by field emission scanning electron microscopy, FESEM, and energy dispersive X-ray, EDX, analysis, respectively. The electrocatalytic behavior of electrodes was studied by cyclic voltammetry and chronoamperometry tests in methanol solution. FESEM results showed that uniformly distributed nanoparticles with diameters of about 20–30 nm have been dispersed on PPy matrix. Cyclic voltammetry and chronoamperometry tests in methanol solution showed a significant enhancement in the catalytic action of PPy after decoration of tin oxide nanoparticles. Porous Cu/PPy/SnO{sub x} electrodes showed enhanced anodic peak current density for methanol oxidation compared to smooth Cu/PPy/SnO{sub x} and porous Cu/PPy. The effects of synthesis current density and time on the electrocatalytic behavior of the electrodes were evaluated. The significant enhancement of electrocatalytic behavior of the Cu/PPy electrode after decoration of SnO{sub x} overlayer was attributed to the effect of tin oxide on the adsorption of intermediates of methanol oxidation as well as oxidation of bi-products such as CO; huge tendency of tin oxides for dehydrogenation of the alcohols and the increase in microscopic surface area of the electrodes were introduced as other affecting factors. - Highlights: • Nanoporous copper–zinc substrates were formed by chemical leaching of zinc. • Polypyrrole thin film was electrodeposited on nanoporous copper. • Thin oxide nanoparticles were synthesized electrochemically on polypyrrole layer. • The catalytic performance of the electrodes was evaluated for methanol oxidation.

  11. Au Nanoparticles as Interfacial Layer for CdS Quantum Dot-sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhu Guang

    2010-01-01

    Full Text Available Abstract Quantum dot-sensitized solar cells based on fluorine-doped tin oxide (FTO/Au/TiO2/CdS photoanode and polysulfide electrolyte are fabricated. Au nanoparticles (NPs as interfacial layer between FTO and TiO2 layer are dip-coated on FTO surface. The structure, morphology and impedance of the photoanodes and the photovoltaic performance of the cells are investigated. A power conversion efficiency of 1.62% has been obtained for FTO/Au/TiO2/CdS cell, which is about 88% higher than that for FTO/TiO2/CdS cell (0.86%. The easier transport of excited electron and the suppression of charge recombination in the photoanode due to the introduction of Au NP layer should be responsible for the performance enhancement of the cell.

  12. Epitaxy-enabled vapor-liquid-solid growth of tin-doped indium oxide nanowires with controlled orientations

    KAUST Repository

    Shen, Youde; Turner, Stuart G.; Yang, Ping; Van Tendeloo, Gustaaf; Lebedev, Oleg I.; Wu, Tao

    2014-01-01

    challenges in reliably achieving these goals of orientation-controlled nanowire synthesis and assembly. Here we report that growth of planar, vertical and randomly oriented tin-doped indium oxide (ITO) nanowires can be realized on yttria-stabilized zirconia

  13. Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases.

    Science.gov (United States)

    Melnik, Bodo C

    2015-12-21

    Single-nucleotide polymorphisms within intron 1 of the FTO (fat mass and obesity-associated) gene are associated with enhanced FTO expression, increased body weight, obesity and type 2 diabetes mellitus (T2DM). The N (6) -methyladenosine (m(6)A) demethylase FTO plays a pivotal regulatory role for postnatal growth and energy expenditure. The purpose of this review is to provide translational evidence that links milk signaling with FTO-activated transcription of the milk recipient. FTO-dependent demethylation of m(6)A regulates mRNA splicing required for adipogenesis, increases the stability of mRNAs, and affects microRNA (miRNA) expression and miRNA biosynthesis. FTO senses branched-chain amino acids (BCAAs) and activates the nutrient sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), which plays a key role in translation. Milk provides abundant BCAAs and glutamine, critical components increasing FTO expression. CpG hypomethylation in the first intron of FTO has recently been associated with T2DM. CpG methylation is generally associated with gene silencing. In contrast, CpG demethylation generally increases transcription. DNA de novo methylation of CpG sites is facilitated by DNA methyltransferases (DNMT) 3A and 3B, whereas DNA maintenance methylation is controlled by DNMT1. MiRNA-29s target all DNMTs and thus reduce DNA CpG methylation. Cow´s milk provides substantial amounts of exosomal miRNA-29s that reach the systemic circulation and target mRNAs of the milk recipient. Via DNMT suppression, milk exosomal miRNA-29s may reduce the magnitude of FTO methylation, thereby epigenetically increasing FTO expression in the milk consumer. High lactation performance with increased milk yield has recently been associated with excessive miRNA-29 expression of dairy cow mammary epithelial cells (DCMECs). Notably, the galactopoietic hormone prolactin upregulates the transcription factor STAT3, which induces miRNA-29 expression. In a retrovirus-like manner

  14. Band alignment of TiO{sub 2}/FTO interface determined by X-ray photoelectron spectroscopy: Effect of annealing

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Haibo, E-mail: hbfan@nwu.edu.cn, E-mail: liusz@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); School of Physics, Northwest University, Xi’an 710069 (China); Yang, Zhou; Ren, Xianpei; Gao, Fei [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); Yin, Mingli [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); School of Science, Xi’an Technological University, Xi’an, Shaanxi 710062 (China); Liu, Shengzhong, E-mail: hbfan@nwu.edu.cn, E-mail: liusz@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023 (China)

    2016-01-15

    The energy band alignment between pulsed-laser-deposited TiO{sub 2} and FTO was firstly characterized using high-resolution X-ray photoelectron spectroscopy. A valence band offset (VBO) of 0.61 eV and a conduction band offset (CBO) of 0.29 eV were obtained across the TiO{sub 2}/FTO heterointerface. With annealing process, the VBO and CBO across the heterointerface were found to be -0.16 eV and 1.06 eV, respectively, with the alignment transforming from type-I to type-II. The difference in the band alignment is believed to be dominated by the core level down-shift of the FTO substrate, which is a result of the oxidation of Sn. Current-voltage test has verified that the band alignment has a significant effect on the current transport of the heterojunction.

  15. Enhanced photocatalytic performance of TiO{sub 2} nanotube based heterojunction photocatalyst via the coupling of graphene and FTO

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Xiaoyou [College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Yu, Jianyuan [College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Department of Environmental and Chemical Engineering, Tangshan University, Tangshan 063000 (China); Wang, Likun; Fu, Chen; Wang, Jixia; Wang, Li [College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Zhao, Hongli, E-mail: zhaohongli@ysu.edu.cn [College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); State Key Laboratory of Metastable Materials Science and Technology, Qinhuangdao 066004 (China); Yang, Jingkai, E-mail: yangjk@ysu.edu.cn [National Defense Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2017-08-15

    Highlights: • The rGO-TONT composites have been deposited onto FTO. • Photocatalytic reaction rate shows 3 times greater than TONT. • Chemical interaction between rGO and TONT was analyzed. • Electron transfer process in rGO-TONT/FTO heterojunction was discussed. - Abstract: The TiO{sub 2} nanotube (TONT) based heterojunction photocatalyst was developed via the coupling of reduced graphene oxide (rGO) and SnO{sub 2}:F film (FTO). Based on the characterization of Raman analysis, XRD, SEM, TEM, XPS and ESR, the crystal phase, morphology, heterojunction interfacial interaction and the photoinduced electron chemical environment of the samples are studied. In the photodegradation of methylene blue (MB) solution under UV irradiation, the rGO-TONT/FTO heterojunction photocatalyst exhibits the improved photocatalytic reaction rate, 3 times greater than that of pure TONT. The enhanced photocatalytic mechanism was discussed by PL. The effectively separate charge in heterojunction structure of rGO-TONT/FTO is responsible for the enhanced photocatalytic activity. Wherein, the abundant oxygen vacancies at TiO{sub 2} surface and the chemically bonded interface in rGO-TONT heterojunction also contributes to the interfacial electron transfer. Besides, the introduction of rGO enhanced its optical absorption capacity.

  16. Effect of oxidizer on grain size and low temperature DC electrical conductivity of tin oxide nanomaterial synthesized by gel combustion method

    International Nuclear Information System (INIS)

    Rajeeva, M. P.; Jayanna, H. S.; Ashok, R. L.; Naveen, C. S.; Bothla, V. Prasad

    2014-01-01

    Nanocrystalline Tin oxide material with different grain size was synthesized using gel combustion method by varying the fuel (C 6 H 8 O 7 ) to oxidizer (HNO 3 ) molar ratio by keeping the amount of fuel as constant. The prepared samples were characterized by using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Analysis X-ray Spectroscopy (EDAX). The effect of fuel to oxidizer molar ratio in the gel combustion method was investigated by inspecting the grain size of nano SnO 2 powder. The grain size was found to be reduced with the amount of oxidizer increases from 0 to 6 moles in the step of 2. The X-ray diffraction patterns of the calcined product showed the formation of high purity tetragonal tin (IV) oxide with the grain size in the range of 12 to 31 nm which was calculated by Scherer's formula. Molar ratio and temperature dependence of DC electrical conductivity of SnO 2 nanomaterial was studied using Keithley source meter. DC electrical conductivity of SnO 2 nanomaterial increases with the temperature from 80K to 300K. From the study it was observed that the DC electrical conductivity of SnO 2 nanomaterial decreases with the grain size at constant temperature

  17. Enhancement of the electrical characteristics of thin-film transistors with indium-zinc-tin oxide/Ag/indium-zinc-tin oxide multilayer electrodes

    Science.gov (United States)

    Oh, Dohyun; Yun, Dong Yeol; Cho, Woon-Jo; Kim, Tae Whan

    2014-08-01

    Transparent indium-zinc-tin oxide (IZTO)-based thin-film transistors (TFTs) with IZTO/Ag/IZTO multilayer electrodes were fabricated on glass substrates using a tilted dual-target radio-frequency magnetron sputtering system. The IZTO TFTs with IZTO/Ag/IZTO multilayer electrodes exhibited a high optical transmittance in a visible region. The threshold voltage, the mobility, and the on/off-current ratio of the TFTs with IZTO/Ag/IZTO multilayer electrodes were enhanced in comparison with those of the TFTs with ITO electrodes. The source/drain contact resistance of the IZTO TFTs with IZTO/Ag/IZTO multilayer electrodes was smaller than that of the IZTO TFTs with ITO electrodes, resulting in enhancement of their electrical characteristics.

  18. Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors

    International Nuclear Information System (INIS)

    Tue, Phan Trong; Inoue, Satoshi; Takamura, Yuzuru; Shimoda, Tatsuya

    2016-01-01

    We report combustion solution synthesized (SCS) indium-tin-oxide (ITO) thin film, which is a well-known transparent conductive oxide, for source/drain (S/D) electrodes in solution-processed amorphous zirconium-indium-zinc-oxide TFT. A redox-based combustion synthetic approach is applied to ITO thin film using acetylacetone as a fuel and metal nitrate as oxidizer. The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. It was found that at optimal conditions the SCS-ITO thin film exhibited high crystalline quality, atomically smooth surface (RMS ∝ 4.1 Aa), and low electrical resistivity (4.2 x 10 -4 Ω cm). The TFT using SCS-ITO film as the S/D electrodes showed excellent electrical properties with negligible hysteresis. The obtained ''on/off'' current ratio, subthreshold swing factor, subthreshold voltage, and field-effect mobility were 5 x 10 7 , 0.43 V/decade, 0.7 V, and 2.1 cm 2 /V s, respectively. The performance and stability of the SCS-ITO TFT are comparable to those of the sputtered-ITO TFT, emphasizing that the SCS-ITO film is a promising candidate for totally solution-processed oxide TFTs. (orig.)

  19. Effect of TCO/μc-Si:H Interface Modification on Hydrogenated Microcrystalline Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Shin-Wei Liang

    2013-01-01

    Full Text Available The effects of H2 plasma exposure on optical, electrical, and structural properties of fluorine-doped tin oxide (FTO and AZO/FTO substrates have been investigated. With increasing the time of H2-plasma exposure, the hydrogen radical and ions penetrated through the FTO surface to form more suboxides such as SnO and metallic Sn, which was confirmed by the XPS analysis. The Sn reduction on the FTO surface can be effectively eliminated by capping the FTO with a very thin layer of sputtered aluminum-doped zinc oxide (AZO, as confirmed by the XPS analysis. By using the AZO/FTO as front TCO with the subsequent annealing, the p-i-n μc-Si:H cell exhibited a significantly enhanced JSC from 15.97 to 19.40 mA/cm2 and an increased conversion efficiency from 5.69% to 7.09%. This significant enhancement was ascribed to the effective elimination of the Sn reduction on the FTO surface by the thin AZO layer during the Si-based thin-film deposition with hydrogen-rich plasma exposure. Moreover, the subsequent annealing of the sputtered AZO could lead to less defects as well as a better interface of AZO/FTO.

  20. FTO is a relevant factor for the development of the metabolic syndrome in mice.

    Directory of Open Access Journals (Sweden)

    Kathrin Ikels

    Full Text Available The metabolic syndrome is a worldwide problem mainly caused by obesity. FTO was found to be a obesity-risk gene in humans and FTO deficiency in mice led to reduction in adipose tissue. Thus, FTO is an important factor for the development of obesity. Leptin-deficient mice are a well characterized model for analysing the metabolic syndrome. To determine the relevance of FTO for the development of the metabolic syndrome we analysed different parameters in combined homozygous deficient mice (Lep(ob/ob;Fto(-/-. Lep(ob/ob;Fto(-/- mice showed an improvement in analysed hallmarks of the metabolic syndrome in comparison to leptin-deficient mice wild type or heterozygous for Fto. Lep(ob/ob;Fto(-/- mice did not develop hyperglycaemia and showed an improved glucose tolerance. Furthermore, extension of beta-cell mass was prevented in Lep(ob/ob;Fto(-/-mice and accumulation of ectopic fat in the liver was reduced. In conclusion this study demonstrates that FTO deficiency has a protective effect not only on the development of obesity but also on the metabolic syndrome. Thus, FTO plays an important role in the development of metabolic disorders and is an interesting target for therapeutic agents.

  1. Synthesis and characterization of tin and antimony based composites derived by mechanochemical in situ reduction of oxides

    International Nuclear Information System (INIS)

    Patel, P.; Roy, S.; Kim, I.L.-Seok; Kumta, P.N.

    2004-01-01

    Composites consisting of tin and silicon dioxide or antimony and silicon dioxide were synthesized using high energy mechanical milling. The composites were made by the reactive milling of SnO or Sb 2 O 3 with pure Si, resulting in the oxidation of silicon and the reduction of the metal oxides. The minimum time required to complete the reaction for the tin system was 170 min, while the minimum time for the antimony system was 230 min. X-ray diffraction and infrared spectroscopy were used to determine the phases present in the composites. In addition, scanning electron microscopy, along with energy dispersive X-ray analysis (EDX), was used to characterize the microstructure and composition of the resultant material

  2. Fabrication and Characterization of Copper System Compound Semiconductor Solar Cells

    Directory of Open Access Journals (Sweden)

    Ryosuke Motoyoshi

    2010-01-01

    Full Text Available Copper system compound semiconductor solar cells were produced by a spin-coating method, and their cell performance and structures were investigated. Copper indium disulfide- (CIS- based solar cells with titanium dioxide (TiO2 were produced on F-doped SnO2 (FTO. A device based on an FTO/CIS/TiO2 structure provided better cell performance compared to that based on FTO/TiO2/CIS structure. Cupric oxide- (CuO- and cuprous oxide- (Cu2O- based solar cells with fullerene (C60 were also fabricated on FTO and indium tin oxide (ITO. The microstructure and cell performance of the CuO/C60 heterojunction and the Cu2O:C60 bulk heterojunction structure were investigated. The photovoltaic devices based on FTO/CuO/C60 and ITO/Cu2O:C60 structures provided short-circuit current density of 0.015 mAcm−2 and 0.11 mAcm−2, and open-circuit voltage of 0.045 V and 0.17 V under an Air Mass 1.5 illumination, respectively. The microstructures of the active layers were examined by X-ray diffraction and transmission electron microscopy.

  3. Studies on the optoelectronic properties of the thermally evaporated tin-doped indium oxide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Ko-Ying [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, ROC (China); Lin, Liang-Da [Institute of Materials Science and Nanotechnology, Chinese Culture University, Taipei 111, Taiwan, ROC (China); Chang, Li-Wei [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, ROC (China); Shih, Han C., E-mail: hcshih@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, ROC (China); Institute of Materials Science and Nanotechnology, Chinese Culture University, Taipei 111, Taiwan, ROC (China)

    2013-05-15

    Indium oxide (In{sub 2}O{sub 3}) nanorods, nanotowers and tin-doped (Sn:In = 1:100) indium oxide (ITO) nanorods have been fabricated by thermal evaporation. The morphology, microstructure and chemical composition of these three nanoproducts are characterized by FE-SEM, HRTEM and XPS. To further investigate the optoelectronic properties, the I–V curves and cathodoluminescence (CL) spectra are measured. The electrical resistivity of In{sub 2}O{sub 3} nanorods, nanotowers and ITO nanorods are 1.32 kΩ, 0.65 kΩ and 0.063 kΩ, respectively. CL spectra of these three nanoproducts clearly indicate that tin-doped (Sn:In = 1:100) indium oxide (ITO) nanorods cause a blue shift. No doubt ITO nanorods obtain the highest performance among these three nanoproducts, and this also means that Sn-doped In{sub 2}O{sub 3} nanostructures would be the best way to enhance the optoelectronic properties. Additionally, the growing mechanism and the optoelectronic properties of these three nanostructures are discussed. This study is beneficial to the applications of In{sub 2}O{sub 3} nanorods, nanotowers and ITO nanorods in optoelectronic nanodevices.

  4. FTO is expressed in neurones throughout the brain and its expression is unaltered by fasting.

    Science.gov (United States)

    McTaggart, James S; Lee, Sheena; Iberl, Michaela; Church, Chris; Cox, Roger D; Ashcroft, Frances M

    2011-01-01

    Single-nucleotide polymorphisms in the first intron of the ubiquitously expressed FTO gene are associated with obesity. Although the physiological functions of FTO remain unclear, food intake is often altered when Fto expression levels are manipulated. Furthermore, deletion of FTO from neurones alone has a similar effect on food intake to deletion of FTO in all tissues. These results indicate that FTO expression in the brain is particularly important. Considerable focus has been placed on the dynamic regulation of Fto mRNA expression in the hypothalamus after short-term (16-48 hour) fasting, but results have been controversial. There are no studies that quantify FTO protein levels across the brain, and assess its alteration following short-term fasting. Using immunohistochemistry, we found that FTO protein is widely expressed in mouse brain, and present in the majority of neurones. Using quantitative Western blotting and RT-qPCR we show that FTO protein and mRNA levels in the hypothalamus, cerebellum and rostral brain are relatively uniform, and levels in the brain are higher than in skeletal muscles of the lower limbs. Fasting for 18 hours does not alter the expression pattern, or levels, of FTO protein and mRNA. We further show that the majority of POMC neurones, which are critically involved in food intake regulation, also express FTO, but that the percentage of FTO-positive POMC neurones is not altered by fasting. In summary, we find no evidence that Fto/FTO expression is regulated by short-term (18-hour) fasting. Thus, it is unlikely that the hunger and increased post-fasting food intake caused by such food deprivation is driven by alterations in Fto/FTO expression. The widespread expression of FTO in neurones also suggests that physiological studies of this protein should not be limited to the hypothalamus.

  5. FTO is expressed in neurones throughout the brain and its expression is unaltered by fasting.

    Directory of Open Access Journals (Sweden)

    James S McTaggart

    Full Text Available Single-nucleotide polymorphisms in the first intron of the ubiquitously expressed FTO gene are associated with obesity. Although the physiological functions of FTO remain unclear, food intake is often altered when Fto expression levels are manipulated. Furthermore, deletion of FTO from neurones alone has a similar effect on food intake to deletion of FTO in all tissues. These results indicate that FTO expression in the brain is particularly important. Considerable focus has been placed on the dynamic regulation of Fto mRNA expression in the hypothalamus after short-term (16-48 hour fasting, but results have been controversial. There are no studies that quantify FTO protein levels across the brain, and assess its alteration following short-term fasting. Using immunohistochemistry, we found that FTO protein is widely expressed in mouse brain, and present in the majority of neurones. Using quantitative Western blotting and RT-qPCR we show that FTO protein and mRNA levels in the hypothalamus, cerebellum and rostral brain are relatively uniform, and levels in the brain are higher than in skeletal muscles of the lower limbs. Fasting for 18 hours does not alter the expression pattern, or levels, of FTO protein and mRNA. We further show that the majority of POMC neurones, which are critically involved in food intake regulation, also express FTO, but that the percentage of FTO-positive POMC neurones is not altered by fasting. In summary, we find no evidence that Fto/FTO expression is regulated by short-term (18-hour fasting. Thus, it is unlikely that the hunger and increased post-fasting food intake caused by such food deprivation is driven by alterations in Fto/FTO expression. The widespread expression of FTO in neurones also suggests that physiological studies of this protein should not be limited to the hypothalamus.

  6. Crack density and electrical resistance in indium-tin-oxide/polymer thin films under cyclic loading

    KAUST Repository

    Mora Cordova, Angel; Khan, Kamran; El Sayed, Tamer

    2014-01-01

    Here, we propose a damage model that describes the degradation of the material properties of indium-tin-oxide (ITO) thin films deposited on polymer substrates under cyclic loading. We base this model on our earlier tensile test model and show

  7. Surface modification effects of fluorine-doped tin dioxide by oxygen plasma ion implantation

    Science.gov (United States)

    Tang, Peng; Liu, Cai; Zhang, Jingquan; Wu, Lili; Li, Wei; Feng, Lianghuan; Zeng, Guanggen; Wang, Wenwu

    2018-04-01

    SnO2:F (FTO), as a kind of transparent conductive oxide (TCO), exhibits excellent transmittance and conductivity and is widely used as transparency electrodes in solar cells. It's very important to modifying the surface of FTO for it plays a critical role in CdTe solar cells. In this study, modifying effects of oxygen plasma on FTO was investigated systematically. Oxygen plasma treatment on FTO surface with ion accelerating voltage ranged from 0.4 kV to 1.6 kV has been processed. The O proportion of surface was increased after ion implantation. The Fermi level of surface measurement by XPS valance band spectra was lowered as the ion accelerating voltage increased to 1.2 kV and then raised as accelerating voltage was elevated to 1.6 kV. The work function measured by Kelvin probe force microscopy increased after ion implanting, and it was consistent with the variation of Fermi level. The change of energy band structure of FTO surface mainly originated from the surface composition variation. As FTO conduction was primarily due to oxyanion hole, the carrier was electron and its concentration was reduced while O proportion was elevated at the surface of FTO, as a result, the Fermi level lowered and the work function was enlarged. It was proved that oxygen plasma treatment is an effective method to modulate the energy band structure of the surface as well as other properties of FTO, which provides much more space for interface and surface modification and then photoelectric device performance promotion.

  8. Dye-sensitized solar cell architecture based on indium-tin oxide nanowires coated with titanium dioxide

    International Nuclear Information System (INIS)

    Joanni, Ednan; Savu, Raluca; Sousa Goes, Marcio de; Bueno, Paulo Roberto; Nei de Freitas, Jilian; Nogueira, Ana Flavia; Longo, Elson; Varela, Jose Arana

    2007-01-01

    A new architecture for dye-sensitized solar cells is employed, based on a nanostructured transparent conducting oxide protruding from the substrate, covered with a separate active oxide layer. The objective is to decrease electron-hole recombination. The concept was tested by growing branched indium-tin oxide nanowires on glass using pulsed laser deposition followed by deposition of a sputtered titanium dioxide layer covering the wires. The separation of charge generation and charge transport functions opens many possibilities for dye-sensitized solar cell optimization

  9. Transparent heaters based on solution-processed indium tin oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Im, Kiju [Department of Electrical Engineering and Institute for Nano Science, Korea University, 5-1, Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of); Research Institute of TNB Nanoelec Co. Ltd., Seoul 136-701 (Korea, Republic of); Cho, Kyoungah [Department of Electrical Engineering and Institute for Nano Science, Korea University, 5-1, Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of); Kim, Jonghyun [Research Institute of TNB Nanoelec Co. Ltd., Seoul 136-701 (Korea, Republic of); Kim, Sangsig, E-mail: sangsig@korea.ac.k [Department of Electrical Engineering and Institute for Nano Science, Korea University, 5-1, Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of)

    2010-05-03

    We demonstrate transparent heaters constructed on glass substrates using solution-processed indium tin oxide (ITO) nanoparticles (NPs) and their heating capability. The heat-generating characteristics of the heaters depended significantly on the sintering temperature at which the ITO NPs deposited on a glass substrate by spin-coating were transformed thermally into a solid film. The steady-state temperature of the ITO NP film sintered at 400 {sup o}C was 163 {sup o}C at a bias voltage of 20 V, and the defrosting capability of the film was confirmed by using dry-ice.

  10. A comparative study of TiN and TiC: Oxidation resistance and retention of xenon at high temperature and under degraded vacuum

    International Nuclear Information System (INIS)

    Gavarini, S.; Bes, R.; Millard-Pinard, N.; Peaucelle, C.; Perrat-Mabilon, A.; Gaillard, C.; Cardinal, S.; Garnier, V.

    2011-01-01

    Dense TiN and TiC samples were prepared by hot pressing using micrometric powders. Xenon species (simulating rare gas fission products) were then implanted into the ceramics. The samples were annealed for 1 h at 1500 deg. C under several degraded vacuums with P O 2 varying from 10 -6 to 2x10 -4 mbars. The oxidation resistance of the samples and their retention properties with respect to preimplanted xenon species were analyzed using scanning electron microscopy, grazing incidence x-ray diffraction, Rutherford backscattering spectrometry, and nuclear backscattering spectrometry. Results indicate that TiC is resistant to oxidation and does not release xenon for P O 2 ≤6x10 -6 mbars. When P O 2 increases, geometric oxide crystallites appear at the surface depending on the orientation and size of TiC grains. These oxide phases are Ti 2 O 3 , Ti 3 O 5 , and TiO 2 . Apparition of oxide crystallites is associated with the beginning of xenon release. TiC surface is completely covered by the oxide phases at P O 2 =2x10 -4 mbars up to a depth of 3 μm and the xenon is then completely released. For TiN samples, the results show a progressive apparition of oxide crystallites (Ti 3 O 5 mainly) at the surface when P O 2 increases. The presence of the oxide crystallites is also directly correlated with xenon release, the more oxide crystallites are growing the more xenon is released. TiN surface is completely covered by an oxide layer at P O 2 =2x10 -4 mbars up to 1 μm. A correlation between the initial fine microstructure of TiN and the properties of the growing layer is suggested.

  11. FTO polymorphisms moderate the association of food reinforcement with energy intake.

    Science.gov (United States)

    Scheid, Jennifer L; Carr, Katelyn A; Lin, Henry; Fletcher, Kelly D; Sucheston, Lara; Singh, Prashant K; Salis, Robbert; Erbe, Richard W; Faith, Myles S; Allison, David B; Epstein, Leonard H

    2014-06-10

    Food reinforcement (RRVfood) is related to increased energy intake, cross-sectionally related to obesity, and prospectively related to weight gain. The fat mass and obesity-associated (FTO) gene is related to elevated body mass index and increased energy intake. The primary purpose of the current study was to determine whether any of 68 FTO single nucleotide polymorphisms (SNPs) or a FTO risk score moderate the association between food reinforcement and energy or macronutrient intake. Energy and macronutrient intake was measured using a laboratory ad libitum snack food consumption task in 237 adults of varying BMI. Controlling for BMI, the relative reinforcing value of reading (RRVreading) and proportion of African ancestry, RRVfood predicted 14.2% of the variance in energy intake, as well as predicted carbohydrate, fat, protein and sugar intake. In individual analyses, six FTO SNPs (rs12921970, rs9936768, rs12446047, rs7199716, rs8049933 and rs11076022, spanning approximately 251kbp) moderated the relationship between RRVfood and energy intake to predict an additional 4.9-7.4% of variance in energy intake. We created an FTO risk score based on 5 FTO SNPs (rs9939609, rs8050136, rs3751812, rs1421085, and rs1121980) that are related to BMI in multiple studies. The FTO risk score did not increase variance accounted for beyond individual FTO SNPs. rs12921970 and rs12446047 served as moderators of the relationship between RRVfood and carbohydrate, fat, protein, and sugar intake. This study shows for the first time that the relationship between RRVfood and energy intake is moderated by FTO SNPs. Research is needed to understand how these processes interact to predict energy and macronutrient intake. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Screen-printed Tin-doped indium oxide (ITO) films for NH3 gas sensing

    International Nuclear Information System (INIS)

    Mbarek, Hedia; Saadoun, Moncef; Bessais, Brahim

    2006-01-01

    Gas sensors using metal oxides have several advantageous features such as simplicity in device structure and low cost fabrication. In this work, Tin-doped indium oxide (ITO) films were prepared by the screen printing technique onto glass substrates. The granular and porous structure of screen-printed ITO are suitable for its use in gas sensing devices. The resistance of the ITO films was found to be strongly dependent on working temperatures and the nature and concentration of the ambient gases. We show that screen-printed ITO films have good sensing properties toward NH 3 vapours. The observed behaviors are explained basing on the oxidizing or the reducer nature of the gaseous species that react on the surface of the heated semi-conducting oxide

  13. Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells

    KAUST Repository

    Barbe, Jeremy

    2017-02-08

    Chemical bath deposition (CBD) of tin oxide (SnO) thin films as an electron-transport layer (ETL) in a planar-heterojunction n-i-p organohalide lead perovskite and organic bulk-heterojunction (BHJ) solar cells is reported. The amorphous SnO (a-SnO) films are grown from a nontoxic aqueous bath of tin chloride at a very low temperature (55 °C) and do not require postannealing treatment to work very effectively as an ETL in a planar-heterojunction n-i-p organohalide lead perovskite or organic BHJ solar cells, in lieu of the commonly used ETL materials titanium oxide (TiO) and zinc oxide (ZnO), respectively. Ultraviolet photoelectron spectroscopy measurements on the glass/indium-tin oxide (ITO)/SnO/methylammonium lead iodide (MAPbI)/2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene device stack indicate that extraction of photogenerated electrons is facilitated by a perfect alignment of the conduction bands at the SnO/MAPbI interface, while the deep valence band of SnO ensures strong hole-blocking properties. Despite exhibiting very low electron mobility, the excellent interfacial energetics combined with high transparency (E > 4 eV) and uniform substrate coverage make the a-SnO ETL prepared by CBD an excellent candidate for the potentially low-cost and large-scale fabrication of organohalide lead perovskite and organic photovoltaics.

  14. Intramolecular charge separation in spirobifluorene-based donor–acceptor compounds adsorbed on Au and indium tin oxide electrodes

    International Nuclear Information System (INIS)

    Heredia, Daniel; Otero, Luis; Gervaldo, Miguel; Fungo, Fernando; Dittrich, Thomas; Lin, Chih-Yen; Chi, Liang-Chen; Fang, Fu-Chuan; Wong, Ken-Tsung

    2013-01-01

    Surface photovoltage (SPV) measurements were performed with a Kelvin-probe in spirobifluorene-based donor (diphenylamine)–acceptor (dicyano or cyanoacrylic acid moieties) compounds adsorbed from highly diluted solutions onto Au and indium tin oxide electrode surfaces. Strong intramolecular charge separation (negative SPV signals up to more than 0.1 V) due to directed molecule adsorption was observed only for spirobifluorene donor–acceptor compounds with carboxylic acid moiety. SPV signals and onset energies of electronic transitions depended on ambience conditions. - Highlights: ► Fluorene donor–acceptor derivatives were adsorbed at Au and indium tin oxide. ► Surface photovoltage measurements were performed with a Kelvin-probe. ► Strong intra-molecular charge separation was observed. ► SPV signals depended on ambience conditions

  15. Inkjet printed ambipolar transistors and inverters based on carbon nanotube/zinc tin oxide heterostructures

    International Nuclear Information System (INIS)

    Kim, Bongjun; Jang, Seonpil; Dodabalapur, Ananth; Geier, Michael L.; Prabhumirashi, Pradyumna L.; Hersam, Mark C.

    2014-01-01

    We report ambipolar field-effect transistors (FETs) consisting of inkjet printed semiconductor bilayer heterostructures utilizing semiconducting single-walled carbon nanotubes (SWCNTs) and amorphous zinc tin oxide (ZTO). The bilayer structure allows for electron transport to occur principally in the amorphous oxide layer and hole transport to occur exclusively in the SWCNT layer. This results in balanced electron and hole mobilities exceeding 2 cm 2 V −1 s −1 at low operating voltages ( 10). This work provides a pathway for realizing solution processable, inkjet printable, large area electronic devices, and systems based on SWCNT-amorphous oxide heterostructures

  16. Loss of FTO antagonises Wnt signaling and leads to developmental defects associated with ciliopathies.

    Directory of Open Access Journals (Sweden)

    Daniel P S Osborn

    Full Text Available Common intronic variants in the Human fat mass and obesity-associated gene (FTO are found to be associated with an increased risk of obesity. Overexpression of FTO correlates with increased food intake and obesity, whilst loss-of-function results in lethality and severe developmental defects. Despite intense scientific discussions around the role of FTO in energy metabolism, the function of FTO during development remains undefined. Here, we show that loss of Fto leads to developmental defects such as growth retardation, craniofacial dysmorphism and aberrant neural crest cells migration in Zebrafish. We find that the important developmental pathway, Wnt, is compromised in the absence of FTO, both in vivo (zebrafish and in vitro (Fto(-/- MEFs and HEK293T. Canonical Wnt signalling is down regulated by abrogated β-Catenin translocation to the nucleus whilst non-canonical Wnt/Ca(2+ pathway is activated via its key signal mediators CaMKII and PKCδ. Moreover, we demonstrate that loss of Fto results in short, absent or disorganised cilia leading to situs inversus, renal cystogenesis, neural crest cell defects and microcephaly in Zebrafish. Congruently, Fto knockout mice display aberrant tissue specific cilia. These data identify FTO as a protein-regulator of the balanced activation between canonical and non-canonical branches of the Wnt pathway. Furthermore, we present the first evidence that FTO plays a role in development and cilia formation/function.

  17. Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc

    International Nuclear Information System (INIS)

    Chim, Y.C.; Ding, X.Z.; Zeng, X.T.; Zhang, S.

    2009-01-01

    In this paper, four kinds of hard coatings, TiN, CrN, TiAlN and CrAlN (with Al/Ti or Al/Cr atomic ratio around 1:1), were deposited on stainless steel substrates by a lateral rotating cathode arc technique. The as-deposited coatings were annealed in ambient atmosphere at different temperatures (500-1000 o C) for 1 h. The evolution of chemical composition, microstructure, and microhardness of these coatings after annealing at different temperatures was systematically analyzed by energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and nanoindentation experiments. The oxidation behaviour and its influence on overall hardness of these four coatings were compared. It was found that the ternary TiAlN and CrAlN coatings have better oxidation resistance than their binary counterparts, TiN and CrN coatings. The Cr-based coatings (CrN and CrAlN) exhibited evidently better oxidation resistance than the Ti-based coatings (TiN and TiAlN). TiN coating started to oxidize at 500 o C. After annealing at 700 o C no N could be detected by EDX, indicating that the coating was almost fully oxidized. After annealed at 800 o C, the coating completely delaminated from the substrate. TiAlN started to oxidize at 600 o C. It was nearly fully oxidized (with little residual nitrogen detected in the coating by EDX) and partially delaminated at 1000 o C. Both CrN and CrAlN started to oxidize at 700 o C. CrN was almost fully oxidized (with little residual nitrogen detected in the coating by EDX) and partially delaminated at 900 o C. The oxidation rate of the CrAlN coating is quite slow. After annealing at 1000 o C, only about 19 at.% oxygen was detected and the coating showed no delamination. The Ti-based (TiN and TiAlN) coatings were not able to retain their hardness at higher temperatures (≥ 700 o C). On the other hand, the hardness of CrAlN was stable at a high level between 33 and 35 GPa up to an annealing temperature of 800 o C and still kept at a comparative high value of

  18. Deposition of indium tin oxide thin films by cathodic arc ion plating

    International Nuclear Information System (INIS)

    Yang, M.-H.; Wen, J.-C.; Chen, K.-L.; Chen, S.-Y.; Leu, M.-S.

    2005-01-01

    Indium tin oxide (ITO) thin films have been deposited by cathodic arc ion plating (CAIP) using sintered oxide target as the source material. In an oxygen atmosphere of 200 deg. C, ITO films with a lowest resistivity of 2.2x10 -4 Ω-cm were obtained at a deposition rate higher than 450 nm/min. The carrier mobility of ITO shows a maximum at some medium pressures. Although morphologically ITO films with a very fine nanometer-sized structure were observed to possess the lowest resistivity, more detailed analyses based on X-ray diffraction are attempted to gain more insight into the factors that govern electron mobility in this investigation

  19. Indium Tin Oxide thin film gas sensors for detection of ethanol vapours

    International Nuclear Information System (INIS)

    Vaishnav, V.S.; Patel, P.D.; Patel, N.G.

    2005-01-01

    Indium Tin Oxide (ITO: In 2 O 3 + 17% SnO 2 ) thin films grown on alumina substrate at 648 K temperatures using direct evaporation method with two gold pads deposited on the top for electrical contacts were exposed to ethanol vapours (200-2500 ppm). The operating temperature of the sensor was optimized. The sensitivity variation of films having different thickness was studied. The sensitivity of the films deposited on Si substrates was studied. The response of the film with MgO catalytic layer on sensitivity and selectivity was observed. A novel approach of depositing thin stimulating layer of various metals/oxides below the ITO film was tried and tested

  20. The Obesity-Associated FTO Gene Encodes a 2-Oxoglutarate–Dependent Nucleic Acid Demethylase

    Science.gov (United States)

    Gerken, Thomas; Girard, Christophe A.; Tung, Yi-Chun Loraine; Webby, Celia J.; Saudek, Vladimir; Hewitson, Kirsty S.; Yeo, Giles S. H.; McDonough, Michael A.; Cunliffe, Sharon; McNeill, Luke A.; Galvanovskis, Juris; Rorsman, Patrik; Robins, Peter; Prieur, Xavier; Coll, Anthony P.; Ma, Marcella; Jovanovic, Zorica; Farooqi, I. Sadaf; Sedgwick, Barbara; Barroso, Inês; Lindahl, Tomas; Ponting, Chris P.; Ashcroft, Frances M.; O'Rahilly, Stephen; Schofield, Christopher J.

    2009-01-01

    Variants in the FTO (fat mass and obesity associated) gene are associated with increased body mass index in humans. Here, we show by bioinformatics analysis that FTO shares sequence motifs with Fe(II)- and 2-oxoglutarate–dependent oxygenases. We find that recombinant murine Fto catalyzes the Fe(II)- and 2OG-dependent demethylation of 3-methylthymine in single-stranded DNA, with concomitant production of succinate, formaldehyde, and carbon dioxide. Consistent with a potential role in nucleic acid demethylation, Fto localizes to the nucleus in transfected cells. Studies of wild-type mice indicate that Fto messenger RNA (mRNA) is most abundant in the brain, particularly in hypothalamic nuclei governing energy balance, and that Fto mRNA levels in the arcuate nucleus are regulated by feeding and fasting. Studies can now be directed toward determining the physiologically relevant FTO substrate and how nucleic acid methylation status is linked to increased fat mass. PMID:17991826

  1. Electrical and optical properties of thin indium tin oxide films produced by pulsed laser ablation in oxygen or rare gas atmospheres

    DEFF Research Database (Denmark)

    Thestrup, B.; Schou, Jørgen; Nordskov, A.

    1999-01-01

    Films of indium tin oxide (ITO) have been produced in different background gases by pulsed laser deposition (PLD). The Films deposited in rare gas atmospheres on room temperature substrates were metallic, electrically conductive, but had poor transmission of visible light. For substrate temperatu......Films of indium tin oxide (ITO) have been produced in different background gases by pulsed laser deposition (PLD). The Films deposited in rare gas atmospheres on room temperature substrates were metallic, electrically conductive, but had poor transmission of visible light. For substrate...

  2. The effect of substrate temperature on atomic layer deposited zinc tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lindahl, Johan, E-mail: johan.lindahl@angstrom.uu.se; Hägglund, Carl, E-mail: carl.hagglund@angstrom.uu.se; Wätjen, J. Timo, E-mail: timo.watjen@angstrom.uu.se; Edoff, Marika, E-mail: marika.edoff@angstrom.uu.se; Törndahl, Tobias, E-mail: tobias.torndahl@angstrom.uu.se

    2015-07-01

    Zinc tin oxide (ZTO) thin films were deposited on glass substrates by atomic layer deposition (ALD), and the film properties were investigated for varying deposition temperatures in the range of 90 to 180 °C. It was found that the [Sn]/([Sn] + [Zn]) composition is only slightly temperature dependent, while properties such as growth rate, film density, material structure and band gap are more strongly affected. The growth rate dependence on deposition temperature varies with the relative number of zinc or tin containing precursor pulses and it correlates with the growth rate behavior of pure ZnO and SnO{sub x} ALD. In contrast to the pure ZnO phase, the density of the mixed ZTO films is found to depend on the deposition temperature and it increases linearly with about 1 g/cm{sup 3} in total over the investigated range. Characterization by transmission electron microscopy suggests that zinc rich ZTO films contain small (~ 10 nm) ZnO or ZnO(Sn) crystallites embedded in an amorphous matrix, and that these crystallites increase in size with increasing zinc content and deposition temperature. These crystallites are small enough for quantum confinement effects to reduce the optical band gap of the ZTO films as they grow in size with increasing deposition temperature. - Highlights: • Zinc tin oxide thin films were deposited by atomic layer deposition. • The structure and optical properties were studied at different growth temperatures. • The growth temperature had only a small effect on the composition of the films. • Small ZnO or ZnO(Sn) crystallites were observed by TEM in zinc rich ZTO films. • The growth temperature affects the crystallite size, which influences the band gap.

  3. The effect of substrate temperature on atomic layer deposited zinc tin oxide

    International Nuclear Information System (INIS)

    Lindahl, Johan; Hägglund, Carl; Wätjen, J. Timo; Edoff, Marika; Törndahl, Tobias

    2015-01-01

    Zinc tin oxide (ZTO) thin films were deposited on glass substrates by atomic layer deposition (ALD), and the film properties were investigated for varying deposition temperatures in the range of 90 to 180 °C. It was found that the [Sn]/([Sn] + [Zn]) composition is only slightly temperature dependent, while properties such as growth rate, film density, material structure and band gap are more strongly affected. The growth rate dependence on deposition temperature varies with the relative number of zinc or tin containing precursor pulses and it correlates with the growth rate behavior of pure ZnO and SnO x ALD. In contrast to the pure ZnO phase, the density of the mixed ZTO films is found to depend on the deposition temperature and it increases linearly with about 1 g/cm 3 in total over the investigated range. Characterization by transmission electron microscopy suggests that zinc rich ZTO films contain small (~ 10 nm) ZnO or ZnO(Sn) crystallites embedded in an amorphous matrix, and that these crystallites increase in size with increasing zinc content and deposition temperature. These crystallites are small enough for quantum confinement effects to reduce the optical band gap of the ZTO films as they grow in size with increasing deposition temperature. - Highlights: • Zinc tin oxide thin films were deposited by atomic layer deposition. • The structure and optical properties were studied at different growth temperatures. • The growth temperature had only a small effect on the composition of the films. • Small ZnO or ZnO(Sn) crystallites were observed by TEM in zinc rich ZTO films. • The growth temperature affects the crystallite size, which influences the band gap

  4. Oxygen effect of transparent conducting amorphous Indium Zinc Tin Oxide films on Polyimide substrate for flexible electrode

    International Nuclear Information System (INIS)

    Ko, Yoon Duk; Lee, Chang Hun; Moon, Doo Kyung; Kim, Young Sung

    2013-01-01

    This paper discusses the effect of oxygen on the transparent conducting properties and mechanical durability of the amorphous indium zinc tin oxide (IZTO) films. IZTO films deposited on flexible clear polyimide (PI) substrate using pulsed direct current (DC) magnetron sputtering at room temperature under various oxygen partial pressures. All IZTO films deposited at room temperature exhibit an amorphous structure. The electrical and optical properties of the IZTO films were sensitively influenced by oxygen partial pressures. At optimized deposition condition of 3.0% oxygen partial pressure, the IZTO film shows the lowest resistivity of 6.4 × 10 −4 Ωcm, high transmittance of over 80% in the visible range, and figure of merit value of 3.6 × 10 −3 Ω −1 without any heat controls. In addition, high work function and good mechanical flexibility of amorphous IZTO films are beneficial to flexible applications. It is proven that the proper oxygen partial pressure is important parameter to enhance the transparent conducting properties of IZTO films on PI substrate deposited at room temperature. - Highlights: • Indium zinc tin oxide (IZTO) films were deposited on polyimide at room temperature. • Transparent conducting properties of IZTO were influenced with oxygen partial pressure. • The smooth surface and high work function of IZTO were beneficial to anode layer. • The mechanical reliability of IZTO shows better performance to indium tin oxide film

  5. Growth kinetics of tin oxide nanocrystals in colloidal suspensions under hydrothermal conditions

    International Nuclear Information System (INIS)

    Lee, Eduardo J.H.; Ribeiro, Caue; Longo, Elson; Leite, Edson R.

    2006-01-01

    Colloidal suspensions of tin oxide nanocrystals were synthesized at room temperature by the hydrolysis reaction of tin chloride (II), in an ethanolic solution. The coarsening kinetics of such nanocrystals was studied by submitting the as-prepared suspensions to hydrothermal treatments at temperatures of 100, 150 and 200 deg. C for periods between 60 and 12,000 min. Transmission electron microscopy (TEM) was used to characterize the samples (i.e. distribution of nanocrystal size, average particle radius and morphology). The results show that the usual Ostwald ripening coarsening mechanism does not fit well the experimental data, which is an indicative that this process is not significant for SnO 2 nanocrystals, in the studied experimental conditions. The morphology evolution of the nanocrystals upon hydrothermal treatment indicates that growth by oriented attachment (OA) should be significant. A kinetic model that describes OA growth is successfully applied to fit the data

  6. Deposition efficiency in the preparation of ozone-producing nickel and antimony doped tin oxide anodes

    Directory of Open Access Journals (Sweden)

    Staffan Sandin

    2017-03-01

    Full Text Available The influence of precursor salts in the synthesis of nickel and antimony doped tin oxide (NATO electrodes using thermal decomposition from dissolved chloride salts was investigated. The salts investigated were SnCl4×5H2O, SnCl2×2H2O, SbCl3 and NiCl2×6H2O. It was shown that the use of SnCl4×5H20 in the preparation process leads to a tin loss of more than 85 %. The loss of Sb can be as high as 90 % while no indications of Ni loss was observed. As a consequence, the concentration of Ni in the NATO coating will be much higher than in the precursor solution. This high and uncontrolled loss of precursors during the preparation process will lead to an unpredictable composition in the NATO coating and will have negative economic and environmental effects. It was found that using SnCl2×2H20 instead of SnCl4×5H2O can reduce the tin loss to less than 50 %. This tin loss occurs at higher temperatures than when using SnCl4×5H2O where the tin loss occurs from 56 – 147 °C causing the composition to change both during the drying (80 – 110 °C and calcination (460 -550 °C steps of the preparation process. Electrodes coated with NATO based on the two different tin salts were investigated for morphology, composition, structure, and ozone electrocatalytic properties.

  7. Influence of Rare Earth Doping on the Structural and Catalytic Properties of Nanostructured Tin Oxide

    Directory of Open Access Journals (Sweden)

    Maciel Adeilton

    2008-01-01

    Full Text Available AbstractNanoparticles of tin oxide, doped with Ce and Y, were prepared using the polymeric precursor method. The structural variations of the tin oxide nanoparticles were characterized by means of nitrogen physisorption, carbon dioxide chemisorption, X-ray diffraction, and X-ray photoelectron spectroscopy. The synthesized samples, undoped and doped with the rare earths, were used to promote the ethanol steam reforming reaction. The SnO2-based nanoparticles were shown to be active catalysts for the ethanol steam reforming. The surface properties, such as surface area, basicity/base strength distribution, and catalytic activity/selectivity, were influenced by the rare earth doping of SnO2and also by the annealing temperatures. Doping led to chemical and micro-structural variations at the surface of the SnO2particles. Changes in the catalytic properties of the samples, such as selectivity toward ethylene, may be ascribed to different dopings and annealing temperatures.

  8. Indium Tin Oxide-Free Polymer Solar Cells: Toward Commercial Reality

    DEFF Research Database (Denmark)

    Angmo, Dechan; Espinosa Martinez, Nieves; Krebs, Frederik C

    2014-01-01

    Polymer solar cell (PSC) is the latest of all photovoltaic technologies which currently lies at the brink of commercialization. The impetus for its rapid progress in the last decade has come from low-cost high throughput production possibility which in turn relies on the use of low-cost materials...... and vacuum-free manufacture. Indium tin oxide (ITO), the commonly used transparent conductor, imposes the majority of the cost of production of PSCs, limits flexibility, and is feared to create bottleneck in the dawning industry due to indium scarcity and the resulting large price fluctuations. As such...

  9. Gas Sensing Properties of Indium Tin Oxide Nanofibers

    Directory of Open Access Journals (Sweden)

    Shiyou Xu

    2009-11-01

    Full Text Available Indium Tin Oxide (ITO nanofibers were fabricated by the electrospinning process. The morphology and crystal structure of ITO nanofibers were studied by SEM, XRD, and TEM respectively. The results showed that polycrystalline ITO nanofibers with an average diameter of 80 nm were obtained. Sensors based on these nanofibers were fabricated by collecting these nanofibers on the integrated sensor platforms. The ITO nanofiber-based sensors showed very fast and high sensor responses at both room and elevated temperatures for NO2. The ratios of resistance in NO2 over that in air were 5 at room temperature and 34 at the optimal working temperature, respectively. The ITO nanofiber-based sensor can be repeatedly used. The details for the fast, enhanced sensor responses and the optimal temperature were discussed.

  10. Transparent conductive electrodes of mixed TiO2−x–indium tin oxide for organic photovoltaics

    KAUST Repository

    Lee, Kyu-Sung; Lim, Jong-Wook; Kim, Han-Ki; Alford, T. L.; Jabbour, Ghassan E.

    2012-01-01

    A transparent conductive electrode of mixed titanium dioxide (TiO2−x)–indium tin oxide (ITO) with an overall reduction in the use of indium metal is demonstrated. When used in organic photovoltaicdevices based on bulk heterojunction photoactive

  11. Spray deposited CeO2–TiO2 counter electrode for electrochromic ...

    Indian Academy of Sciences (India)

    Abstract. Optically passive thin films of CeO2–TiO2 mixed oxides with molar ratio of Ce/Ti of 0.05 were deposited by the spray pyrolysis technique (SPT) on a glass and fluorine-doped tin oxide (FTO)-coated glass substrates. Precur- sor solution containing cerium nitrate hexahydrate (Ce(NO3)2·6H2O) and titanium ...

  12. Thermal transport properties of polycrystalline tin-doped indium oxide films

    International Nuclear Information System (INIS)

    Ashida, Toru; Miyamura, Amica; Oka, Nobuto; Sato, Yasushi; Shigesato, Yuzo; Yagi, Takashi; Taketoshi, Naoyuki; Baba, Tetsuya

    2009-01-01

    Thermal diffusivity of polycrystalline tin-doped indium oxide (ITO) films with a thickness of 200 nm has been characterized quantitatively by subnanosecond laser pulse irradiation and thermoreflectance measurement. ITO films sandwiched by molybdenum (Mo) films were prepared on a fused silica substrate by dc magnetron sputtering using an oxide ceramic ITO target (90 wt %In 2 O 3 and 10 wt %SnO 2 ). The resistivity and carrier density of the ITO films ranged from 2.9x10 -4 to 3.2x10 -3 Ω cm and from 1.9x10 20 to 1.2x10 21 cm -3 , respectively. The thermal diffusivity of the ITO films was (1.5-2.2)x10 -6 m 2 /s, depending on the electrical conductivity. The thermal conductivity carried by free electrons was estimated using the Wiedemann-Franz law. The phonon contribution to the heat transfer in ITO films with various resistivities was found to be almost constant (λ ph =3.95 W/m K), which was about twice that for amorphous indium zinc oxide films

  13. Sputter-Deposited Indium–Tin Oxide Thin Films for Acetaldehyde Gas Sensing

    Directory of Open Access Journals (Sweden)

    Umut Cindemir

    2016-04-01

    Full Text Available Reactive dual-target DC magnetron sputtering was used to prepare In–Sn oxide thin films with a wide range of compositions. The films were subjected to annealing post-treatment at 400 °C or 500 °C for different periods of time. Compositional and structural characterizations were performed by X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, Rutherford backscattering and scanning electron microscopy. Films were investigated for gas sensing at 200 °C by measuring their resistance response upon exposure to acetaldehyde mixed with synthetic air. We found that the relative indium-to-tin content was very important and that measurable sensor responses could be recorded at acetaldehyde concentrations down to 200 ppb, with small resistance drift between repeated exposures, for both crystalline SnO2-like films and for amorphous films consisting of about equal amounts of In and Sn. We also demonstrated that it is not possible to prepare crystalline sensors with intermediate indium-to-tin compositions by sputter deposition and post-annealing up to 500 °C.

  14. Fto colocalizes with a satiety mediator oxytocin in the brain and upregulates oxytocin gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Pawel K., E-mail: olsze005@umn.edu [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Minnesota Obesity Center, Saint Paul, MN 55108 (United States); Fredriksson, Robert; Eriksson, Jenny D. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Mitra, Anaya [Department of Food Science and Nutrition, Saint Paul, MN 55108 (United States); Radomska, Katarzyna J. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Gosnell, Blake A. [Department of Food Science and Nutrition, Saint Paul, MN 55108 (United States); Solvang, Maria N. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Levine, Allen S. [Minnesota Obesity Center, Saint Paul, MN 55108 (United States); Department of Food Science and Nutrition, Saint Paul, MN 55108 (United States); Schioeth, Helgi B. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden)

    2011-05-13

    Highlights: {yields} The majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto. {yields} The level of colocalization is similar in the male and female brain. {yields} Fto overexpression in hypothalamic neurons increases oxytocin mRNA levels by 50%. {yields} Oxytocin does not affect Fto expression through negative feedback mechanisms. -- Abstract: Single nucleotide polymorphisms in the fat mass and obesity-associated (FTO) gene have been associated with obesity in humans. Alterations in Fto expression in transgenic animals affect body weight, energy expenditure and food intake. Fto, a nuclear protein and proposed transcription co-factor, has been speculated to affect energy balance through a functional relationship with specific genes encoding feeding-related peptides. Herein, we employed double immunohistochemistry and showed that the majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto in the brain of male and female mice. We then overexpressed Fto in a murine hypothalamic cell line and, using qPCR, detected a 50% increase in the level of oxytocin mRNA. Expression levels of several other feeding-related genes, including neuropeptide Y (NPY) and Agouti-related protein (AgRP), were unaffected by the FTO transfection. Addition of 10 and 100 nmol oxytocin to the cell culture medium did not affect Fto expression in hypothalamic cells. We conclude that Fto, a proposed transcription co-factor, influences expression of the gene encoding a satiety mediator, oxytocin.

  15. Fto colocalizes with a satiety mediator oxytocin in the brain and upregulates oxytocin gene expression

    International Nuclear Information System (INIS)

    Olszewski, Pawel K.; Fredriksson, Robert; Eriksson, Jenny D.; Mitra, Anaya; Radomska, Katarzyna J.; Gosnell, Blake A.; Solvang, Maria N.; Levine, Allen S.; Schioeth, Helgi B.

    2011-01-01

    Highlights: → The majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto. → The level of colocalization is similar in the male and female brain. → Fto overexpression in hypothalamic neurons increases oxytocin mRNA levels by 50%. → Oxytocin does not affect Fto expression through negative feedback mechanisms. -- Abstract: Single nucleotide polymorphisms in the fat mass and obesity-associated (FTO) gene have been associated with obesity in humans. Alterations in Fto expression in transgenic animals affect body weight, energy expenditure and food intake. Fto, a nuclear protein and proposed transcription co-factor, has been speculated to affect energy balance through a functional relationship with specific genes encoding feeding-related peptides. Herein, we employed double immunohistochemistry and showed that the majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto in the brain of male and female mice. We then overexpressed Fto in a murine hypothalamic cell line and, using qPCR, detected a 50% increase in the level of oxytocin mRNA. Expression levels of several other feeding-related genes, including neuropeptide Y (NPY) and Agouti-related protein (AgRP), were unaffected by the FTO transfection. Addition of 10 and 100 nmol oxytocin to the cell culture medium did not affect Fto expression in hypothalamic cells. We conclude that Fto, a proposed transcription co-factor, influences expression of the gene encoding a satiety mediator, oxytocin.

  16. Spectroscopic and luminescent properties of Co2+ doped tin oxide thin films by spray pyrolysis

    Directory of Open Access Journals (Sweden)

    K. Durga Venkata Prasad

    2016-07-01

    Full Text Available The wide variety of electronic and chemical properties of metal oxides makes them exciting materials for basic research and for technological applications alike. Oxides span a wide range of electrical properties from wide band-gap insulators to metallic and superconducting. Tin oxide belongs to a class of materials called Transparent Conducting Oxides (TCO which constitutes an important component for optoelectronic applications. Co2+ doped tin oxide thin films were prepared by chemical spray pyrolysis synthesis and characterized by powder X-ray diffraction, SEM, TEM, FT-IR, optical, EPR and PL techniques to collect the information about the crystal structure, coordination/local site symmetry of doped Co2+ ions in the host lattice and the luminescent properties of the prepared sample. Powder XRD data revealed that the crystal structure belongs to tetragonal rutile phase and its lattice cell parameters are evaluated. The average crystallite size was estimated to be 26 nm. The morphology of prepared sample was analyzed by using SEM and TEM studies. Functional groups of the prepared sample were observed in the FT-IR spectrum. Optical absorption and EPR studies have shown that on doping, Co2+ ions enter in the host lattice as octahedral site symmetry. PL studies of Co2+ doped SnO2 thin films exhibit blue and yellow emission bands. CIE chromaticity coordinates were also calculated from emission spectrum of Co2+ doped SnO2 thin films.

  17. Transparent Conducting Films of Antimony-Doped Tin Oxide with Uniform Mesostructure Assembled from Preformed Nanocrystals

    Czech Academy of Sciences Publication Activity Database

    Müller, V.; Rasp, M.; Rathouský, Jiří; Schütz, B.; Niederberger, M.; Fattakhova-Rohlfing, D.

    2010-01-01

    Roč. 6, č. 5 (2010), s. 633-637 ISSN 1613-6810 R&D Projects: GA ČR GA104/08/0435 Institutional research plan: CEZ:AV0Z40400503 Keywords : antimony -doped tin oxide * msoporous materials * nanoparticles Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.333, year: 2010

  18. Surface Modification of Indium Tin Oxide Nanoparticles to Improve Its Distribution in Epoxy-Silica Polymer Matrix

    Directory of Open Access Journals (Sweden)

    Mostafa Jafari

    2014-10-01

    Full Text Available A semiconducting nanoparticle indium tin oxide (ITO was modified with silane groups and for this purpose trimethoxysilane (TMOS precursor was used under specific experimental conditions for surface modification of ITO nanoparticles. It is found that the modification of ITO nanoparticles increases the interactions between the filler and the matrix and subsequently improves the distibution of indium tin oxide nanoparticles in the polymer matrix. The epoxisilica polymer matrix was produced using trimethoxysilane and 3-glycidyloxypropyl trimethoxysilane precursors and ethylenediamine (EDA as curing agent at low temperature by sol-gel process. The sol-gel process was very useful due to its easily controllable process, solution concentration and homogeneity without using expensive and complicated equipments in comparison with other methods. Then, Fourier transform infrared (FTIR spectroscopy was employed to study the formation of Si-O-Si and Si-OH groups on ITO nanoparticles. X-Ray diffraction (XRD technique and thermal gravimetric analysis (TGA were employed to investigate the modification and weight loss of the modified ITO, respectively, as an indication of the presence of organic groups on these nanoparticles. The separation analyzer tests were performed to check the stability of the nanoparticles suspension and it revealed that due to better interaction of nanoparticles with the polymer matrix the stability of modified ITO suspention is higher than the unmodified sample. The morphology and particle distribution were determined by scanning electron microscopy (SEM. It was found that the distibution of modified indium tin oxide in epoxy-silica polymer matrix was improved in comparison with pure ITO.

  19. Impact of soft annealing on the performance of solution-processed amorphous zinc tin oxide thin-film transistors

    KAUST Repository

    Nayak, Pradipta K.; Hedhili, Mohamed N.; Cha, Dong Kyu; Alshareef, Husam N.

    2013-01-01

    It is demonstrated that soft annealing duration strongly affects the performance of solution-processed amorphous zinc tin oxide thin-film transistors. Prolonged soft annealing times are found to induce two important changes in the device: (i) a

  20. An Indium-Free Anode for Large-Area Flexible OLEDs: Defect-Free Transparent Conductive Zinc Tin Oxide

    NARCIS (Netherlands)

    Morales-Masis, M.; Dauzou, F.; Jeangros, Q.; Dabirian, A.; Lifka, H.; Gierth, R.; Ruske, M.; Moet, D.; Hessler-Wyser, A.; Ballif, C.

    2016-01-01

    Flexible large-area organic light-emitting diodes (OLEDs) require highly conductive and transparent anodes for efficient and uniform light emission. Tin-doped indium oxide (ITO) is the standard anode in industry. However, due to the scarcity of indium, alternative anodes that eliminate its use are

  1. Transparent indium-tin oxide/indium-gallium-zinc oxide Schottky diodes formed by gradient oxygen doping

    Science.gov (United States)

    Ho, Szuheng; Yu, Hyeonggeun; So, Franky

    2017-11-01

    Amorphous InGaZnO (a-IGZO) is promising for transparent electronics due to its high carrier mobility and optical transparency. However, most metal/a-IGZO junctions are ohmic due to the Fermi-level pinning at the interface, restricting their device applications. Here, we report that indium-tin oxide/a-IGZO Schottky diodes can be formed by gradient oxygen doping in the a-IGZO layer that would otherwise form an ohmic contact. Making use of back-to-back a-IGZO Schottky junctions, a transparent IGZO permeable metal-base transistor is also demonstrated with a high common-base gain.

  2. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Science.gov (United States)

    Singh, Hemant Kr.; Avasthi, D. K.; Aggarwal, Shruti

    2015-06-01

    Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO2:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In2O3:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag+9 ions at fluences ranging from 3.0 × 1011 ions/cm2 to 3.0 × 1013 ions/cm2. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  3. Indium Tin Oxide Resistor-Based Nitric Oxide Microsensors

    Science.gov (United States)

    Xu, Jennifer C.; Hunter, Gary W.; Gonzalez, Jose M., III; Liu, Chung-Chiun

    2012-01-01

    A sensitive resistor-based NO microsensor, with a wide detection range and a low detection limit, has been developed. Semiconductor microfabrication techniques were used to create a sensor that has a simple, robust structure with a sensing area of 1.10 0.99 mm. A Pt interdigitated structure was used for the electrodes to maximize the sensor signal output. N-type semiconductor indium tin oxide (ITO) thin film was sputter-deposited as a sensing material on the electrode surface, and between the electrode fingers. Alumina substrate (250 m in thickness) was sequentially used for sensor fabrication. The resulting sensor was tested by applying a voltage across the two electrodes and measuring the resulting current. The sensor was tested at different concentrations of NO-containing gas at a range of temperatures. Preliminary results showed that the sensor had a relatively high sensitivity to NO at 450 C and 1 V. NO concentrations from ppm to ppb ranges were detected with the low limit of near 159 ppb. Lower NO concentrations are being tested. Two sensing mechanisms were involved in the NO gas detection at ppm level: adsorption and oxidation reactions, whereas at ppb level of NO, only one sensing mechanism of adsorption was involved. The NO microsensor has the advantages of high sensitivity, small size, simple batch fabrication, high sensor yield, low cost, and low power consumption due to its microsize. The resistor-based thin-film sensor is meant for detection of low concentrations of NO gas, mainly in the ppb or lower range, and is being developed concurrently with other sensor technology for multispecies detection. This development demonstrates that ITO is a sensitive sensing material for NO detection. It also provides crucial information for future selection of nanostructured and nanosized NO sensing materials, which are expected to be more sensitive and to consume less power.

  4. Pilot-scale electron cyclotron resonance-metal organic chemical vapor deposition system for the preparation of large-area fluorine-doped SnO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Bup Ju [Department of Energy and Environmental Engineering, Shinhan University, 233-1, Sangpae-dong, Dongducheon, Gyeonggi-do 483-777 (Korea, Republic of); Hudaya, Chairul [Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI, Depok 16424 (Indonesia); Center for Energy Convergence, Green City Research Institute, Korea Institute of Science and Technology, Hwarangno 14 gil 5, Seoul 136-791 (Korea, Republic of); Department of Energy and Environmental Engineering, Korea University of Science and Technology, 176 Gajungro Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Lee, Joong Kee, E-mail: leejk@kist.re.kr [Center for Energy Convergence, Green City Research Institute, Korea Institute of Science and Technology, Hwarangno 14 gil 5, Seoul 136-791 (Korea, Republic of); Department of Energy and Environmental Engineering, Korea University of Science and Technology, 176 Gajungro Yuseong-gu, Daejeon 305-350 (Korea, Republic of)

    2016-05-15

    The authors report the surface morphology, optical, electrical, thermal and humidity impacts, and electromagnetic interference properties of fluorine-doped tin oxide (SnO{sub 2}:F or “FTO”) thin films on a flexible polyethylene terephthalate (PET) substrate fabricated by a pilot-scale electron cyclotron resonance–metal organic chemical vapor deposition (PS ECR-MOCVD). The characteristics of large area FTO thin films were compared with a commercially available transparent conductive electrode made of tin-doped indium oxide (ITO), prepared with an identical film and PET thickness of 125 nm and 188 μm, respectively. The results revealed that the as-prepared FTO thin films exhibited comparable performances with the incumbent ITO films, including a high optical transmittance of 97% (substrate-subtracted), low electrical resistivity of about 5 × 10{sup −3} Ω cm, improved electrical and optical performances due to the external thermal and humidity impact, and an excellent shielding effectiveness of electromagnetic interference of nearly 2.3 dB. These excellent performances of the FTO thin films were strongly attributed to the design of the PS ECR-MOCVD, which enabled a uniform plasma environment resulting from a proper mixture of electromagnetic profiles and microwave power.

  5. Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells

    KAUST Repository

    Werner, Jérémie

    2016-12-05

    Perovskite/crystalline silicon tandem solar cells have the potential to reach efficiencies beyond those of silicon single-junction record devices. However, the high-temperature process of 500 °C needed for state-of-the-art mesoscopic perovskite cells has, so far, been limiting their implementation in monolithic tandem devices. Here, we demonstrate the applicability of zinc tin oxide as a recombination layer and show its electrical and optical stability at temperatures up to 500 °C. To prove the concept, we fabricate monolithic tandem cells with mesoscopic top cell with up to 16% efficiency. We then investigate the effect of zinc tin oxide layer thickness variation, showing a strong influence on the optical interference pattern within the tandem device. Finally, we discuss the perspective of mesoscopic perovskite cells for high-efficiency monolithic tandem solar cells. © 2016 Author(s)

  6. Highly conducting and crystalline doubly doped tin oxide films fabricated using a low-cost and simplified spray technique

    Energy Technology Data Exchange (ETDEWEB)

    Ravichandran, K., E-mail: kkr1365@yahoo.co [P.G. and Research Department of Physics, AVVM. Sri Pushpum College, Poondi, Thanjavur District, Tamil Nadu 613503 (India); Muruganantham, G.; Sakthivel, B. [P.G. and Research Department of Physics, AVVM. Sri Pushpum College, Poondi, Thanjavur District, Tamil Nadu 613503 (India)

    2009-11-15

    Doubly doped (simultaneous doping of antimony and fluorine) tin oxide films (SnO{sub 2}:Sb:F) have been fabricated by employing an inexpensive and simplified spray technique using perfume atomizer from aqueous solution of SnCl{sub 2} precursor. The structural studies revealed that the films are highly crystalline in nature with preferential orientation along the (2 0 0) plane. It is found that the size of the crystallites of the doubly doped tin oxide films is larger (69 nm) than that (27 nm) of their undoped counterparts. The dislocation density of the doubly doped film is lesser (2.08x10{sup 14} lines/m{sup 2}) when compared with that of the undoped film (13.2x10{sup 14} lines/m{sup 2}), indicating the higher degree of crystallinity of the doubly doped films. The SEM images depict that the films are homogeneous and uniform. The optical transmittance in the visible range and the optical band gap of the doubly doped films are 71% and 3.56 eV respectively. The sheet resistance (4.13 OMEGA/square) attained for the doubly doped film in this study is lower than the values reported for spray deposited fluorine or antimony doped tin oxide films prepared from aqueous solution of SnCl{sub 2} precursor (without using methanol or ethanol).

  7. Association of FTO Polymorphisms with Early Age of Obesity in Obese Italian Subjects

    Directory of Open Access Journals (Sweden)

    Federica Sentinelli

    2012-01-01

    Aims of our study are to investigate: (1 the association of FTO gene SNPs rs9939609 and rs9930506 with body mass index (BMI and obesity-related parameters in a large cohort (n=752 of Italian obese subjects; (2 the association between the two FTO SNPs and age of onset of obesity. Our results demonstrate a strong association between FTO SNPs rs9939609 (P<0.043 and rs9930506 (P<0.029 with BMI in the Italian population. FTO rs9930506 was significantly associated with higher BMI in a G allele dose-dependent manner (BMI+1.4 kg/m2 per G allele. We also observed that the association with BMI of the two FTO variants varied with age, with the carriers of the risk alleles developing an increase in body weight earlier in life. In conclusion, our study further demonstrates a role of the genetic variability in FTO on BMI in a large Italian population.

  8. Nanocrystalline CdTe thin films by electrochemical synthesis

    Directory of Open Access Journals (Sweden)

    Ramesh S. Kapadnis

    2013-03-01

    Full Text Available Cadmium telluride thin films were deposited onto different substrates as copper, Fluorine-doped tin oxide (FTO, Indium tin oxide (ITO, Aluminum and zinc at room temperature via electrochemical route. The morphology of the film shows the nanostructures on the deposited surface of the films and their growth in vertical direction. Different nanostructures developed on different substrates. The X-ray diffraction study reveals that the deposited films are nanocrystalline in nature. UV-Visible absorption spectrum shows the wide range of absorption in the visible region. Energy-dispersive spectroscopy confirms the formation of cadmium telluride.

  9. Single-Stroke Synthesis of Tin Sulphide/Oxide Nanocomposites Within Engineering Thermoplastic and Their Humidity Response.

    Science.gov (United States)

    Adkar, Dattatraya; Adhyapak, Parag; Mulik, Uttamrao; Jadkar, Sandesh; Vutova, Katia; Amalnerkar, Dinesh

    2018-05-01

    SnS nanostructured materials have attracted enormous interest due to their important properties and potential application in low cost solar energy conversion systems and optical devices. From the perspective of SnS based device fabrication, we offer single-stroke in-situ technique for the generation of Sn based sulphide and oxide nanostructures inside the polymer network via polymer-inorganic solid state reaction route. In this method, polyphenylene sulphide (PPS)-an engineering thermoplastic-acts as chalcogen source as well as stabilizing matrix for the resultant nano products. Typical solid state reaction was accomplished by simply heating the physical admixtures of the tin salts (viz. tin acetate/tin chloride) with PPS at the crystalline melting temperature (285 °C) of PPS in inert atmosphere. The synthesized products were characterized by using various physicochemical characterization techniques. The prima facie observations suggest the concurrent formation of nanocrystalline SnS with extraneous oxide phase. The TEM analysis revealed formation of nanosized particles of assorted morphological features with polydispersity confined to 5 to 50 nm. However, agglomerated particles of nano to submicron size were also observed. The humidity sensing characterization of these nanocomposites was also performed. The resistivity response with the level of humidity (20 to 85% RH) was compared for these nanocomposites. The linear response was obtained for both the products. Nevertheless, the nanocomposite product obtained from acetate precursor showed higher sensitivity towards the humidity than that of one prepared from chloride precursor.

  10. FTO genotype is associated with exercise training-induced changes in body composition

    Science.gov (United States)

    Rankinen, Tuomo; Rice, Treva; Teran-Garcia, Margarita; Rao, D.C.; Bouchard, Claude

    2010-01-01

    The fat mass and obesity associated (FTO) gene is the first obesity-susceptibility gene identified by genome-wide association scans and confirmed in several follow-up studies. Homozygotes for the risk allele (A/A) have 1.67 times greater risk of obesity than those who do not have the allele. However, it is not known if regular exercise-induced changes in body composition are influenced by the FTO genotype. The purpose of our study was to test if the FTO genotype is associated with exercise-induced changes in adiposity. Body composition was derived from underwater weighing before and after a 20-week endurance training program in 481 previously sedentary white subjects of the HERITAGE Family Study. FTO SNP rs8050136 was genotyped using Illumina GoldenGate assay. In the sedentary state, the A/A homozygotes were significantly heavier and fatter than the heterozygotes and the C/C homozygotes in men (p=0.004) but not in women (p=0.331; gene-by-sex interaction p=0.0053). The FTO genotype was associated with body fat responses to regular exercise (p<0.005; adjusted for age, sex, and baseline value of response trait): carriers of the C-allele showed three times greater fat mass and %body fat losses than the A/A homozygotes. The FTO genotype explained 2% of the variance in adiposity changes. Our data suggest that the FTO obesity-susceptibility genotype influences the body fat responses to regular exercise. Resistance to exercise-induced reduction in total adiposity may represent one mechanism by which the FTO A allele promotes overweight and obesity. PMID:19543202

  11. Chemical Vapor Identification by Plasma Treated Thick Film Tin Oxide Gas Sensor Array and Pattern Recognition

    Directory of Open Access Journals (Sweden)

    J. K. Srivastava

    2011-02-01

    Full Text Available Present study deals the class recognition potential of a four element plasma treated thick film tin oxide gas sensor array exposed with volatile organic compounds (VOCs. Methanol, Ethanol and Acetone are selected as target VOCs and exposed on sensor array at different concentration in range from 100-1000 ppm. Sensor array consist of four tin oxide sensors doped with 1-4 % PbO concentrations were fabricated by thick film technology and then treated with oxygen plasma for 5-10 minute durations. Sensor signal is analyzed by principal component analysis (PCA for visual classification of VOCs. Further output of PCA is used as input for classification of VOCs by four pattern classification techniques as: linear discriminant analysis (LDA, k-nearest neighbor (KNN, back propagation neural network (BPNN and support vector machine (SVM. All the four classifier results 100 % correct classification rate of VOCs by response analysis of sensor array treated with plasma for 5 minute.

  12. Compositional influence on the electrical performance of zinc indium tin oxide transparent thin-film transistors

    International Nuclear Information System (INIS)

    Marsal, A.; Carreras, P.; Puigdollers, J.; Voz, C.; Galindo, S.; Alcubilla, R.; Bertomeu, J.; Antony, A.

    2014-01-01

    In this work, zinc indium tin oxide layers with different compositions are used as the active layer of thin film transistors. This multicomponent transparent conductive oxide is gaining great interest due to its reduced content of the scarce indium element. Experimental data indicate that the incorporation of zinc promotes the creation of oxygen vacancies, which results in a higher free carrier density. In thin-film transistors this effect leads to a higher off current and threshold voltage values. The field-effect mobility is also strongly degraded, probably due to coulomb scattering by ionized defects. A post deposition annealing in air reduces the density of oxygen vacancies and improves the field-effect mobility by orders of magnitude. Finally, the electrical characteristics of the fabricated thin-film transistors have been analyzed to estimate the density of states in the gap of the active layers. These measurements reveal a clear peak located at 0.3 eV from the conduction band edge that could be attributed to oxygen vacancies. - Highlights: • Zinc promotes the creation of oxygen vacancies in zinc indium tin oxide transistors. • Post deposition annealing in air reduces the density of oxygen. • Density of states reveals a clear peak located at 0.3 eV from the conduction band

  13. ZnO Nanowires Synthesized by Vapor Phase Transport Deposition on Transparent Oxide Substrates

    Directory of Open Access Journals (Sweden)

    Taylor Curtis

    2010-01-01

    Full Text Available Abstract Zinc oxide nanowires have been synthesized without using metal catalyst seed layers on fluorine-doped tin oxide (FTO substrates by a modified vapor phase transport deposition process using a double-tube reactor. The unique reactor configuration creates a Zn-rich vapor environment that facilitates formation and growth of zinc oxide nanoparticles and wires (20–80 nm in diameter, up to 6 μm in length, density <40 nm apart at substrate temperatures down to 300°C. Electron microscopy and other characterization techniques show nanowires with distinct morphologies when grown under different conditions. The effect of reaction parameters including reaction time, temperature, and carrier gas flow rate on the size, morphology, crystalline structure, and density of ZnO nanowires has been investigated. The nanowires grown by this method have a diameter, length, and density appropriate for use in fabricating hybrid polymer/metal oxide nanostructure solar cells. For example, it is preferable to have nanowires no more than 40 nm apart to minimize exciton recombination in polymer solar cells.

  14. Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells

    KAUST Repository

    Werner, Jé ré mie; Walter, Arnaud; Rucavado, Esteban; Moon, Soo Jin; Sacchetto, Davide; Rienaecker, Michael; Peibst, Robby; Brendel, Rolf; Niquille, Xavier; De Wolf, Stefaan; Lö per, Philipp; Morales-Masis, Monica; Nicolay, Sylvain; Niesen, Bjoern; Ballif, Christophe

    2016-01-01

    the concept, we fabricate monolithic tandem cells with mesoscopic top cell with up to 16% efficiency. We then investigate the effect of zinc tin oxide layer thickness variation, showing a strong influence on the optical interference pattern within the tandem

  15. Pengaruh Temperatur Kalsinasi pada Kaca FTO yang di-coating ZnO terhadap Efisiensi DSSC (Dye Sensitized Solar Cell yang Menggunakan Dye dari Buah Terung Belanda (Solanum betaceum

    Directory of Open Access Journals (Sweden)

    Akbar Nur Prasetya

    2013-09-01

    Full Text Available Penelitian mengenai dye sensitized solar cell dilakukan dengan dye dari ekstrak buah terung belanda sebagai sumber energi alternatif dari tenaga surya. Dye sensitized solar cell (DSSC dibuat dengan menggunakan semikonduktor ZnO yang dilapiskan pada kaca konduktif Fluorine Doped Tin Oxide (FTO dan dikalsinasi  dengan variasi temperatur 5000C, 5500C, dan 6000C, dengan waktu tahan 30 menit pada tiap temperaturnya. Lapisan ZnO pada substrat dikarakterisasi dengan menggunakan SEM dan XRD. Luas permukaan aktif diukur dengan pengujian BET. Hasil SEM menunjukkan ukuran bentuk partikel ZnO berupa hexagonal. Hasil XRD menunjukkan struktur kristal ZnO adalah Wurthzite. Luas permukaan aktif dibandingkan dengan hasil kelistrikan DSSC, yang selaras meningkat dari temperatur 5000C ke 5500C, namun menurun pada 6000C. Densitas arus dan voltase maksimum diperoleh pada variasi temperatur 550oC yaitu sebesar 0,591 mA/cm2 dan 1140 mV. Efisiensi maksimum yang diperoleh sebesar 0,150%. Karena sampel 550oC memiliki luas permukaan aktif paling besar 146,185 m2/gr.

  16. Loss of FTO in adipose tissue decreases Angptl4 translation and alters triglyceride metabolism.

    Science.gov (United States)

    Wang, Chao-Yung; Shie, Shian-Sen; Wen, Ming-Shien; Hung, Kuo-Chun; Hsieh, I-Chang; Yeh, Ta-Sen; Wu, Delon

    2015-12-15

    A common variant of the FTO (fat mass- and obesity-associated) gene is a risk factor for obesity. We found that mice with an adipocyte-specific deletion of FTO gained more weight than control mice on a high-fat diet. Analysis of mice lacking FTO in adipocytes fed a normal diet or adipocytes from these mice revealed alterations in triglyceride metabolism that would be expected to favor increased fatty acid storage by adipose tissue. Mice lacking FTO in adipocytes showed increased serum triglyceride breakdown and clearance, which was associated with lower serum triglyceride concentrations. In addition, lipolysis in response to β-adrenergic stimulation was decreased in adipocytes and ex vivo adipose explants from the mutant mice. FTO is a nucleic acid demethylase that removes N(6)-methyladenosine (m(6)A) from mRNAs. We found that FTO bound to Angptl4, which encodes an adipokine that stimulates intracellular lipolysis in adipocytes. Unexpectedly, the adipose tissue of fasted or fed mice lacking FTO in adipocytes had greater Angptl4 mRNA abundance. However, after high-fat feeding, the mutant mice had less Angptl4 protein and more m(6)A-modified Angptl4 than control mice, suggesting that lack of FTO prevented the translation of Angptl4. Injection of Angptl4-encoding adenovirus into mice lacking FTO in adipocytes restored serum triglyceride concentrations and lipolysis to values similar to those in control mice and abolished excessive weight gain from a high-fat diet. These results reveal that FTO regulates fatty acid mobilization in adipocytes and thus body weight in part through posttranscriptional regulation of Angptl4. Copyright © 2015, American Association for the Advancement of Science.

  17. Studies on tin based inorganic ion exchangers for fission products separation

    International Nuclear Information System (INIS)

    Dash, A.; Balasubramanian, K.R.; Murthy, T.S.

    1993-01-01

    Tin(IV) antimonate and hydrous tin(IV) oxide have been prepared and their characteristics are evaluated. A new method has been finalized for the separation of 95 Zr- 95 Nb from irradiated uranium using hydrous tin(IV) oxide. In this process, the irradiated sample is dissolved in concentrated HNO 3 , evaporated to near dryness and taken up in 0.5 M HNO 3 . The solution is passed over tin(IV) oxide column and the isotope eluted with 10 M HNO 3 . The product is obtained in pure nitrate form which is generally preferred for different applications. A method has been finalized for the separation of 106 Ru from fission product solution using tin(IV) antimonate. In this method fission product solution is adjusted to 2 M with respect to nitric acid, 137 Cs is separated on a column of ammonium phosphomolybdate, the effluent after adjustment of acidity to 0.2 M is then passed over a column of tin(IV) antimonate where the effluent contains pure 106 Ru. (author). 14 refs., 6 figs., 2 tabs

  18. Synthesis of p-type nickel oxide nanosheets on n-type titanium dioxide nanorod arrays for p-n heterojunction-based UV photosensor

    Science.gov (United States)

    Yusoff, M. M.; Mamat, M. H.; Malek, M. F.; Abdullah, M. A. R.; Ismail, A. S.; Saidi, S. A.; Mohamed, R.; Suriani, A. B.; Khusaimi, Z.; Rusop, M.

    2018-05-01

    Titanium dioxide (TiO2) nanorod arrays (TNAs) were synthesized and deposited on fluorine tin oxide (FTO)-coated glass substrate using a novel and facile immersion method in a glass container. The synthesis and deposition of p-type nickel oxide (NiO) nanosheets (NS) on the n-type TNAs was investigated in the p-n heterojunction photodiode (PD) for the application of ultraviolet (UV) photosensor. The fabricated TNAs/NiO NS based UV photosensor exhibited a highly increased photocurrent of 4.3 µA under UV radiation (365 nm, 750 µW/cm2) at 1.0 V reverse bias. In this study, the fabricated TNAs/NiO NS p-n heterojunction based photodiode showed potential applications for UV photosensor based on the stable photo-generated current attained under UV radiation.

  19. Genotoxicity of indium tin oxide by comet test

    Directory of Open Access Journals (Sweden)

    İbrahim Hakkı Ciğerci

    2015-06-01

    Full Text Available Indium tin oxide (ITO is used for liquid crystal display (LCDs, electrochromic displays, flat panel displays, field emission displays, touch or laptop computer screens, cell phones, energy conserving architectural windows, defogging aircraft and automobile windows, heat-reflecting coatings to increase light bulb efficiency, gas sensors, antistatic window coatings, wear resistant layers on glass, nanowires and nanorods because of its unique properties of high electrical conductivity, transparency and mechanical resistance.Genotoxic effects of ITO were investigated on the root cells of Allium cepa by Comet assay. A. cepa roots were treated with the aqueous dispersions of ITO at 5 different concentrations (12.5, 25, 50, 75, and 100 ppm for 4 h. A significant increase in DNA damage was a observed at all concentrations of ITO by Comet assay. These result indicate that ITO exhibit genotoxic activity in A. cepa root meristematic cells.

  20. New Transparent Laser-Drilled Fluorine-doped Tin Oxide covered Quartz Electrodes for Photo-Electrochemical Water Splitting

    International Nuclear Information System (INIS)

    Hernández, Simelys; Tortello, Mauro; Sacco, Adriano; Quaglio, Marzia; Meyer, Toby; Bianco, Stefano; Saracco, Guido; Pirri, C. Fabrizio; Tresso, Elena

    2014-01-01

    Graphical abstract: - Highlights: • A new transparent, conductive and porous electrode was developed. • It has a high effective surface area available for catalyst molecules attachment. • It is an ideal support for testing new anodic and cathodic photoactive materials. • The proof-of-concept was achieved in an appositely designed water photo-electrolyzer. • The EIS technique was used as a very powerful tool to characterize the new designed electrode. - Abstract: A new-designed transparent, conductive and porous electrode was developed for application in a compact laboratory-scale proton exchange membrane (PEM) photo-electrolyzer. The electrode is made of a thin transparent quartz sheet covered with fluorine-doped tin oxide (FTO), in which an array of holes is laser-drilled to allow water and gas permeation. The electrical, morphological, optical and electrochemical characterization of the drilled electrodes is presented in comparison with a non-drilled one. The drilled electrode exhibits, in the visible region, a good transmittance (average value of 62%), a noticeable reflectance due to the light scattering effect of the hole-drilled internal region, and a higher effective surface area than the non-drilled electrode. The proof-of-concept of the applicability of the drilled electrode was achieved by using it as a support for a traditional photocatalyst (i.e. commercial TiO 2 nanoparticles). The latter, coupled with a polymeric electrolyte membrane (i.e.Nafion 117) and a Pt counter electrode, forms a transparent membrane electrode assembly (MEA), with a good conductivity, wettability and porosity. Electrochemical impedance spectroscopy (EIS) was used as a very powerful tool to gain information on the real active surface of the new drilled electrode and the main electrochemical parameters driving the charge transfer reactions on it. This new electrode architecture is demonstrated to be an ideal support for testing new anodic and cathodic photoactive

  1. Indium tin oxide films prepared via wet chemical route

    International Nuclear Information System (INIS)

    Legnani, C.; Lima, S.A.M.; Oliveira, H.H.S.; Quirino, W.G.; Machado, R.; Santos, R.M.B.; Davolos, M.R.; Achete, C.A.; Cremona, M.

    2007-01-01

    In this work, indium tin oxide (ITO) films were prepared using a wet chemical route, the Pechini method. This consists of a polyesterification reaction between an α-hydroxicarboxylate complex (indium citrate and tin citrate) with a polyalcohol (ethylene glycol) followed by a post annealing at 500 deg. C. A 10 at.% of doping of Sn 4+ ions into an In 2 O 3 matrix was successfully achieved through this method. In order to characterize the structure, the morphology as well as the optical and electrical properties of the produced ITO films, they were analyzed using different experimental techniques. The obtained films are highly transparent, exhibiting transmittance of about 85% at 550 nm. They are crystalline with a preferred orientation of [222]. Microscopy discloses that the films are composed of grains of 30 nm average size and 0.63 nm RMS roughness. The films' measured resistivity, mobility and charge carrier concentration were 5.8 x 10 -3 Ω cm, 2.9 cm 2 /V s and - 3.5 x 10 20 /cm 3 , respectively. While the low mobility value can be related to the small grain size, the charge carrier concentration value can be explained in terms of the high oxygen concentration level resulting from the thermal treatment process performed in air. The experimental conditions are being refined to improve the electrical characteristics of the films while good optical, chemical, structural and morphological qualities already achieved are maintained

  2. FTO gene variant modulates the neural correlates of visual food perception.

    Science.gov (United States)

    Kühn, Anne B; Feis, Delia-Lisa; Schilbach, Leonhard; Kracht, Lutz; Hess, Martin E; Mauer, Jan; Brüning, Jens C; Tittgemeyer, Marc

    2016-03-01

    Variations in the fat mass and obesity associated (FTO) gene are currently the strongest known genetic factor predisposing humans to non-monogenic obesity. Recent experiments have linked these variants to a broad spectrum of behavioural alterations, including food choice and substance abuse. Yet, the underlying neurobiological mechanisms by which these genetic variations influence body weight remain elusive. Here, we explore the brain structural substrate of the obesity-predisposing rs9939609 T/A variant of the FTO gene in non-obese subjects by means of multivariate classification and use fMRI to investigate genotype-specific differences in neural food-cue reactivity by analysing correlates of a visual food perception task. Our findings demonstrate that MRI-derived measures of morphology along middle and posterior fusiform gyrus (FFG) are highly predictive for FTO at-risk allele carriers, who also show enhanced neural responses elicited by food cues in the same posterior FFG area. In brief, these findings provide first-time evidence for FTO-specific differences in both brain structure and function already in non-obese individuals, thereby contributing to a mechanistic understanding of why FTO is a predisposing factor for obesity. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Superhydrophobic and anti-reflective ZnO nanorod-coated FTO transparent conductive thin films prepared by a three-step method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bao-jia, E-mail: li_bjia@126.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, 212013 (China); Huang, Li-jing; Ren, Nai-fei [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, 212013 (China); School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Kong, Xia; Cai, Yun-long; Zhang, Jie-lu [Jiangsu Tailong Reduction Box Co. Ltd., Taixing, 225400 (China)

    2016-07-25

    A ZnO nanorod-coated FTO film was prepared by sputtering an AZO layer on FTO glass, thermal annealing of the AZO/FTO film, and hydrothermal growth of ZnO nanorods at 70 °C on the annealed AZO/FTO film using zinc foils as zinc source. Two other ZnO nanorod-coated FTO films were also prepared by hydrothermal growths of ZnO nanorods on the FTO glass and the unannealed AZO/FTO film respectively for comparison purpose. The results were observed in detail using X-ray diffraction, scanning electron microscopy, water contact/sliding angle measurement, spectrophotometry and four-point probe measurement. The ZnO nanorods on the annealed AZO/FTO film were found to exhibit denser distribution and better orientation than those on the FTO glass and the unannealed AZO/FTO film. As a result, the ZnO nanorod-coated annealed AZO/FTO film demonstrated superhydrophobicity, high transparency and low reflectance in the visible range. Also this film had the lowest sheet resistance of 4.0 Ω/sq, implying its good electrical conductivity. This investigation provides a valuable reference for developing multifunctional transparent conductive films. - Highlights: • ZnO nanorod-coated annealed AZO/FTO film was obtained by a three-step method. • FTO and unannealed AZO/FTO films were also used as substrates for comparison. • ZnO nanorods on the annealed AZO/FTO film were denser and more vertically-oriented. • The ZnO nanorod-coated annealed AZO/FTO film (Z/TA-FTO) had superhydrophobicity. • The Z/TA-FTO exhibited high transparency, low reflectance and good conductivity.

  4. Employment of fluorine doped zinc tin oxide (ZnSnOx:F) coating layer on stainless steel 316 for a bipolar plate for PEMFC

    International Nuclear Information System (INIS)

    Park, Ji Hun; Byun, Dongjin; Lee, Joong Kee

    2011-01-01

    Highlights: → Preparation of fluorine doped tin oxide (SnOx:F) and fluorine doped zinc tin oxide (ZnSnOx:F) coating layer on the surface of stainless steel 316 bipolar plate for PEMFCs (Proton Exchange Membrane Fuel Cells). → Evaluations of the corrosion resistance and the interfacial contact resistance of the bare, SnOx:F and ZnSnOx:F thin film coated stainless steel 316 bipolar plates. → Evaluation of single cell performance such as cell voltage and power density using bare stainless steel, SnOx:F and ZnSnOx:F film coated bipolar plates. - Abstract: The investigation of the electrochemical characteristics of the fluorine doped tin oxide (SnOx:F) and fluorine doped zinc tin oxide (ZnSnOx:F) was carried out in the simulated PEMFC environment and bare stainless steel 316 was used as a reference. The results showed that the ZnSnOx:F coating enhanced both the corrosion resistance and interfacial contact resistance (ICR). The corrosion current for ZnSnOx:F was 1.2 μA cm -2 which was much lower than that of bare stainless steel of 50.16 μA cm -2 . The ZnSnOx:F coated film had the smallest corrosion current due to the formation of a tight surface morphology with very few pin-holes. The ZnSnOx:F coated film exhibited the highest values of the cell voltage and power density due to its having the lowest ICR values.

  5. Polycrystalline Mn-alloyed indium tin oxide films

    International Nuclear Information System (INIS)

    Scarlat, Camelia; Schmidt, Heidemarie; Xu, Qingyu; Vinnichenko, Mykola; Kolitsch, Andreas; Helm, Manfred; Iacomi, Felicia

    2008-01-01

    Magnetic ITO films are interesting for integrating ITO into magneto-optoelectronic devices. We investigated n-conducting indium tin oxide (ITO) films with different Mn doping concentration which have been grown by chemical vapour deposition using targets with the atomic ratio In:Sn:Mn=122:12:0,114:12:7, and 109:12:13. The average film roughness ranges between 30 and 50 nm and XRD patterns revealed a polycrystalline structure. Magnetotransport measurements revealed negative magnetoresistance for all the samples, but high field positive MR can be clearly observed at 5 K with increasing Mn doping concentration. Spectroscopic ellipsometry (SE) has been used to prove the existence of midgap states in the Mn-alloyed ITO films revealing a transmittance less than 80%. A reasonable model for the ca. 250 nm thick Mn-alloyed ITO films has been developed to extract optical constants from SE data below 3 eV. Depending on the Mn content, a Lorentz oscillator placed between 1 and 2 eV was used to model optical absorption below the band gap

  6. Modulating indium doped tin oxide electrode properties for laccase electron transfer enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Diaconu, Mirela [National Institute for Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, Bucharest 060031 (Romania); Chira, Ana [National Institute for Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, Bucharest 060031 (Romania); Politehnica University of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu Str., 011061 (Romania); Radu, Lucian, E-mail: gl_radu@chim.upb.ro [Politehnica University of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu Str., 011061 (Romania)

    2014-08-28

    Indium doped tin oxide (ITO) electrodes were functionalized with gold nanoparticles (GNPs) and cysteamine monolayer to enhance the heterogeneous electron transfer process of laccase from Trametes versicolor. The assembly of GNP on ITO support was performed through generation of H{sup +} species at the electrode surface by hydroquinone electrooxidation at 0.9 V vs Ag/AgCl. Uniform distribution of gold nanoparticle aggregates on electrode surfaces was confirmed by atomic force microscopy. The size of GNP aggregates was in the range of 200–500 nm. The enhanced charge transfer at the GNP functionalized ITO electrodes was observed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy. Electrocatalytic behavior of laccase immobilized on ITO modified electrode toward oxygen reduction reaction was evaluated using CV in the presence of 2,2′-azino-bis 3-ethylbenzothiazoline-6-sulfuric acid (ABTS). The obtained sigmoidal-shaped voltammograms for ABTS reduction in oxygen saturated buffer solution are characteristic for a catalytic process. The intensity of catalytic current increased linearly with mediator concentration up to 6.2 × 10{sup −4} M. The registered voltammogram in the absence of ABTS mediator clearly showed a significant faradaic current which is the evidence of the interfacial oxygen reduction. - Highlights: • Assembly of gold nanoparticles on indium tin oxide support at positive potentials • Electrochemical and morphological evaluation of the gold nanoparticle layer assembly • Bioelectrocatalytic oxygen reduction on laccase modified electrode.

  7. Prediction of crack density and electrical resistance changes in indium tin oxide/polymer thin films under tensile loading

    KAUST Repository

    Mora Cordova, Angel; Khan, Kamran; El Sayed, Tamer

    2014-01-01

    We present unified predictions for the crack onset strain, evolution of crack density, and changes in electrical resistance in indium tin oxide/polymer thin films under tensile loading. We propose a damage mechanics model to quantify and predict

  8. Planar Indium Tin Oxide Heater for Improved Thermal Distribution for Metal Oxide Micromachined Gas Sensors

    Directory of Open Access Journals (Sweden)

    M. Cihan Çakır

    2016-09-01

    Full Text Available Metal oxide gas sensors with integrated micro-hotplate structures are widely used in the industry and they are still being investigated and developed. Metal oxide gas sensors have the advantage of being sensitive to a wide range of organic and inorganic volatile compounds, although they lack selectivity. To introduce selectivity, the operating temperature of a single sensor is swept, and the measurements are fed to a discriminating algorithm. The efficiency of those data processing methods strongly depends on temperature uniformity across the active area of the sensor. To achieve this, hot plate structures with complex resistor geometries have been designed and additional heat-spreading structures have been introduced. In this work we designed and fabricated a metal oxide gas sensor integrated with a simple square planar indium tin oxide (ITO heating element, by using conventional micromachining and thin-film deposition techniques. Power consumption–dependent surface temperature measurements were performed. A 420 °C working temperature was achieved at 120 mW power consumption. Temperature distribution uniformity was measured and a 17 °C difference between the hottest and the coldest points of the sensor at an operating temperature of 290 °C was achieved. Transient heat-up and cool-down cycle durations are measured as 40 ms and 20 ms, respectively.

  9. Planar Indium Tin Oxide Heater for Improved Thermal Distribution for Metal Oxide Micromachined Gas Sensors.

    Science.gov (United States)

    Çakır, M Cihan; Çalışkan, Deniz; Bütün, Bayram; Özbay, Ekmel

    2016-09-29

    Metal oxide gas sensors with integrated micro-hotplate structures are widely used in the industry and they are still being investigated and developed. Metal oxide gas sensors have the advantage of being sensitive to a wide range of organic and inorganic volatile compounds, although they lack selectivity. To introduce selectivity, the operating temperature of a single sensor is swept, and the measurements are fed to a discriminating algorithm. The efficiency of those data processing methods strongly depends on temperature uniformity across the active area of the sensor. To achieve this, hot plate structures with complex resistor geometries have been designed and additional heat-spreading structures have been introduced. In this work we designed and fabricated a metal oxide gas sensor integrated with a simple square planar indium tin oxide (ITO) heating element, by using conventional micromachining and thin-film deposition techniques. Power consumption-dependent surface temperature measurements were performed. A 420 °C working temperature was achieved at 120 mW power consumption. Temperature distribution uniformity was measured and a 17 °C difference between the hottest and the coldest points of the sensor at an operating temperature of 290 °C was achieved. Transient heat-up and cool-down cycle durations are measured as 40 ms and 20 ms, respectively.

  10. FTO genotype and weight loss

    DEFF Research Database (Denmark)

    Livingstone, Katherine M; Celis-Morales, Carlos; Papandonatos, George D

    2016-01-01

    OBJECTIVE: To assess the effect of the FTO genotype on weight loss after dietary, physical activity, or drug based interventions in randomised controlled trials. DESIGN: Systematic review and random effects meta-analysis of individual participant data from randomised controlled trials. DATA SOURC...

  11. Physicochemical characterization of point defects in fluorine doped tin oxide films

    Science.gov (United States)

    Akkad, Fikry El; Joseph, Sudeep

    2012-07-01

    The physical and chemical properties of spray deposited FTO films are studied using FESEM, x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), electrical and optical measurements. The results of XRD measurements showed that the films are polycrystalline (grain size 20-50 nm) with Rutile structure and mixed preferred orientation along the (200) and (110) planes. An angular shift of the XRD peaks after F-doping is observed and interpreted as being due to the formation of substitutional fluorine defects (FO) in presence of high concentration of oxygen vacancies (VO) that are electrically neutral. The electrical neutrality of oxygen vacancies is supported by the observation that the electron concentration n is two orders of magnitude lower than the VO concentration calculated from chemical analyses using XPS measurements. It is shown that an agreement between XPS, XRD, and Hall effect results is possible provided that the degree of deviation from stoichiometry is calculated with the assumption that the major part of the bulk carbon content is involved in O-C bonds. High temperature thermal annealing is found to cause an increase in the FO concentration and a decrease in both n and VO concentrations with the increase of the annealing temperature. These results could be interpreted in terms of a high temperature chemical exchange reaction between the SnO2 matrix and a precipitated fluoride phase. In this reaction, fluorine is released to the matrix and Sn is trapped by the fluoride phase, thus creating substitutional fluorine FO and tin vacancy VSn defects. The enthalpy of this reaction is determined to be approximately 2.4 eV while the energy of formation of a VSn through the migration of SnSn host atom to the fluoride phase is approximately 0.45 eV.

  12. Morphology and phase transformations of tin oxide nanostructures synthesized by the hydrothermal method in the presence of dicarboxylic acids

    International Nuclear Information System (INIS)

    Zima, Tatyana; Bataev, Ivan

    2016-01-01

    A new approach to the synthesis of non-stoichiometric tin oxide structures with different morphologies and the phase compositions has been evaluated. The nanostructures were synthesized by hydrothermal treatment of the mixtures of dicarboxylic acids ― aminoterephthalic or oxalic ― with nanocrystalline SnO 2 powder, which was obtained via the sol-gel technology. The products were characterized by Raman and IR spectroscopy, SEM, HRTEM, and XRD analysis. It was shown that the controlled addition of a dicarboxylic acid leads not only to a change in the morphology of the nanostructures, but also to SnO 2 –SnO 2 /Sn 3 O 4 –Sn 3 O 4 –SnO phase transformations. A single-phase Sn 3 O 4 in the form of the well-separated hexagonal nanoplates and mixed SnO 2 /Sn 3 O 4 phases in the form of hierarchical flower-like structures were obtained in the presence of organic additives. The effects of concentration, redox activity of the acids and heat treatment on the basic characteristics of the synthesized tin oxide nanostructures and phase transformations in the synthesized materials are discussed. - Graphical abstract: The controlled addition of aminoterephthalic or oxalic acid leads not only to a change in the morphology of the nanostructures, but also to SnO 2 –SnO 2 /Sn 3 O 4 –Sn 3 O 4 –SnO phase transformations. - Highlights: • A new approach to the synthesis of non-stoichiometric tin oxide structures is studied. • Tin oxide structures are synthesized via hydrothermal method with dicarboxylic acids. • Morphology and phase composition are changed with redox activity and dosage of acid. • The redox activity of acid has an effect on ratio of SnO and SnO 2 in crystal structure. • A pure phase Sn 3 O 4 nanoplates and SnO 2 /Sn 3 O 4 hierarchical structures are formed.

  13. The electronic structure of co-sputtered zinc indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, Paz; Antony, Aldrin; Bertomeu, Joan [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, 08028 Barcelona (Spain); Gutmann, Sebastian [Department of Chemistry, University of South Florida, Tampa, Florida 33620 (United States); Schlaf, Rudy [Department of Electrical Engineering, University of South Florida, Tampa, Florida 33620 (United States)

    2011-10-01

    Zinc indium tin oxide (ZITO) transparent conductive oxide layers were deposited via radio frequency (RF) magnetron co-sputtering at room temperature. A series of samples with gradually varying zinc content was investigated. The samples were characterized with x-ray and ultraviolet photoemission spectroscopy (XPS, UPS) to determine the electronic structure of the surface. Valence and conduction bands maxima (VBM, CBM), and work function were determined. The experiments indicate that increasing Zn content results in films with a higher defect rate at the surface leading to the formation of a degenerately doped surface layer if the Zn content surpasses {approx}50%. Furthermore, the experiments demonstrate that ZITO is susceptible to ultraviolet light induced work function reduction, similar to what was earlier observed on ITO and TiO{sub 2} films.

  14. Sol–gel synthesis of nanostructured indium tin oxide with controlled morphology and porosity

    Energy Technology Data Exchange (ETDEWEB)

    Kőrösi, László, E-mail: ltkorosi@gmail.com [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Scarpellini, Alice [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Petrik, Péter [Institute for Technical Physics and Materials Science, Konkoly-Thege út 29-33, H-1121 Budapest (Hungary); Papp, Szilvia [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Dékány, Imre [MTA-SZTE Supramolecular and Nanostructured Materials Research Group, University of Szeged, Dóm tér 8, H-6720 Szeged (Hungary)

    2014-11-30

    Graphical abstract: - Highlights: • Nanocrystalline ITO thin films and powders were prepared by a sol–gel method. • The nature of the compounds used for hydrolysis plays a key role in the morphology. • Hydrolysis of In{sup 3+}/Sn{sup 4+} with EA led to a rod-like morphology. • Monodisperse spherical ITO nanoparticles were obtained on the use of AC. • ITO{sub E}A was highly porous, while ITO{sub A}C contained densely packed nanocrystals. - Abstract: Nanostructured indium tin oxide (ITO) powders and thin films differing in morphology and porosity were prepared by a sol–gel method. In{sup 3+} and Sn{sup 4+} were hydrolyzed in aqueous medium through the use of ethanolamine (EA) or sodium acetate (AC). X-ray diffraction measurements demonstrated that both EA and AC furnished indium tin hydroxide, which became nanocrystalline after aging for one day. The indium tin hydroxide samples calcined at 550 °C afforded ITO with a cubic crystal structure, but the morphology differed significantly, depending on the agent used for hydrolysis. Electron microscopy revealed the formation of round monodisperse nanoparticles when AC was used, whereas the application of EA led to rod-like ITO nanoparticles. Both types of nanoparticles were suitable for the preparation of transparent and conductive ITO thin films. The influence of the morphology and porosity on the optical properties is discussed.

  15. Deposition and surface treatment of Ag-embedded indium tin oxide by plasma processing

    International Nuclear Information System (INIS)

    Kim, Jun Young; Kim, Jae-Kwan; Kim, Ja-Yeon; Kwon, Min-Ki; Yoon, Jae-Sik; Lee, Ji-Myon

    2013-01-01

    Ag-embedded indium tin oxide (ITO) films were deposited on Corning 1737 glass by radio-frequency magnetron sputtering under an Ar or Ar/O 2 mixed gas ambient with a combination of ITO and Ag targets that were sputtered alternately by switching on and off the shutter of the sputter gun. The effects of a subsequent surface treatment using H 2 and H 2 + O 2 mixed gas plasma were also examined. The specific resistance of the as-deposited Ag-embedded ITO sample was lower than that of normal ITO. The transmittance was quenched when Ag was incorporated in ITO. To enhance the specific resistance of Ag-embedded ITO, a surface treatment was conducted using H 2 or H 2 + O 2 mixed gas plasma. Although all samples showed improved specific resistance after the H 2 plasma treatment, the transmittance was quenched due to the formation of agglomerated metals on the surface. The specific resistance of the film was improved without any deterioration of the transmittance after a H 2 + O 2 mixed gas plasma treatment. - Highlights: • Ag-embedded indium tin oxide was deposited. • The contact resistivity was decreased by H 2 + O 2 plasma treatment. • The process was carried out at room temperature without thermal treatment. • The mechanism of enhancing the contact resistance was clarified

  16. Microcontroller based instrumentation for heater control circuit of tin oxide based hydrogen sensor

    International Nuclear Information System (INIS)

    Premalatha, S.; Krithika, P.; Gunasekaran, G.; Ramakrishnan, R.; Ramanarayanan, R.R.; Prabhu, E.; Jayaraman, V.; Parthasarathy, R.

    2015-01-01

    A thin film sensor based on tin oxide developed in IGCAR is used to monitor very low levels of hydrogen (concentration ranging from 2 ppm to 80 ppm). The heater and the sensor patterns are integrated on a miniature alumina substrate and necessary electrical leads are taken out. For proper functioning of the sensor, the heater has to be maintained at a constant temperature of 350°C. The sensor output (voltage signal) varies with H 2 concentration. In fast breeder reactors, liquid sodium is used as coolant. The sensor is used to detect water/steam leak in secondary sodium circuit. During the start up of the reactor, steam leak into sodium circuit generates hydrogen gas as a product that doesn't dissolve in sodium, but escapes to the surge tank containing argon i.e. in cover gas plenum of sodium circuit. On-line monitoring of hydrogen in cover gas is done to detect an event of water/steam leakage. The focus of this project is on the instrumentation pertaining to the temperature control for the sensor heater. The tin oxide based hydrogen sensor is embedded in a substrate which consists of a platinum heater, essentially a resistor. There is no provision of embedding a temperature sensor on the heater surface due to the physical constraints, without which maintaining a constant heater temperature is a complex task

  17. Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells

    KAUST Repository

    Barbe, Jeremy; Tietze, Max Lutz; Neophytou, Marios; Banavoth, Murali; Alarousu, Erkki; El Labban, Abdulrahman; Abulikemu, Mutalifu; Yue, Wan; Mohammed, Omar F.; McCulloch, Iain; Amassian, Aram; Del Gobbo, Silvano

    2017-01-01

    Chemical bath deposition (CBD) of tin oxide (SnO) thin films as an electron-transport layer (ETL) in a planar-heterojunction n-i-p organohalide lead perovskite and organic bulk-heterojunction (BHJ) solar cells is reported. The amorphous SnO (a

  18. Compact hematite buffer layer as a promoter of nanorod photoanode performances

    Science.gov (United States)

    Milan, R.; Cattarin, S.; Comisso, N.; Baratto, C.; Kaunisto, K.; Tkachenko, N. V.; Concina, I.

    2016-10-01

    The effect of a thin α-Fe2O3 compact buffer layer (BL) on the photoelectrochemical performances of a bare α-Fe2O3 nanorods photoanode is investigated. The BL is prepared through a simple spray deposition onto a fluorine-doped tin oxide (FTO) conducting glass substrate before the growth of a α-Fe2O3 nanorods via a hydrothermal process. Insertion of the hematite BL between the FTO and the nanorods markedly enhances the generated photocurrent, by limiting undesired losses of photogenerated charges at the FTO||electrolyte interface. The proposed approach warrants a marked improvement of material performances, with no additional thermal treatment and no use/dispersion of rare or toxic species, in agreement with the principles of green chemistry.

  19. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    KAUST Repository

    Wang, Zhenwei

    2015-04-20

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

  20. Amplified electrochemical determination of maltol in food based on graphene oxide-wrapped tin oxide@carbon nanospheres.

    Science.gov (United States)

    Gan, Tian; Sun, Junyong; Yu, Miaomiao; Wang, Kaili; Lv, Zhen; Liu, Yanming

    2017-01-01

    The study presents a new approach for rapid and ultrasensitive detection of maltol using a glassy carbon electrode (GCE) modified with graphene oxide-wrapped tin oxide@carbon nanospheres (SnO2@C@GO). The morphological and components properties of SnO2@C@GO nanocomposites were investigated by means of X-ray diffraction spectroscopy, Raman spectroscopy, field emission scanning electron microscopy, high resolution transmission electron microscopy, and electrochemical impedance spectroscopy. SnO2@C@GO nanocomposite on a GCE had a synergetic effect on the electrochemical oxidation of maltol by means of square wave voltammetry. Under the optimum conditions, anodic peak current response of maltol was linear with its concentration in the range of 80nM-10μM, and a detection limit of 12nM was achieved for maltol. The experiment results presented that the method showed good selectivity, sensitivity, reproducibility, and long-term stability, as well as excellent potential for use as an ideal inexpensive voltammetric method applicable for complex food matrices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Fat mass and obesity associated gene (FTO expression is regulated negatively by the transcription factor Foxa2.

    Directory of Open Access Journals (Sweden)

    Jianjin Guo

    Full Text Available Fat mass and obesity associated gene (FTO is the first gene associated with body mass index (BMI and risk for diabetes. FTO is highly expressed in the brain and pancreas, and is involved in regulating dietary intake and energy expenditure. To investigate the transcriptional regulation of FTO expression, we created 5'-deletion constructs of the FTO promoter to determine which transcription factors are most relevant to FTO expression. The presence of an activation region at -201/+34 was confirmed by luciferase activity analysis. A potential Foxa2 (called HNF-3β binding site and an upstream stimulatory factor (USF-binding site was identified in the -100 bp fragment upstream of the transcription start site (TSS. Furthermore, using mutagenesis, we identified the Foxa2 binding sequence (-26/-14 as a negative regulatory element to the activity of the human FTO promoter. The USF binding site did not affect the FTO promoter activity. Chromatin immunoprecipitation (ChIP assays were performed to confirm Foxa2 binding to the FTO promoter. Overexpression of Foxa2 in HEK 293 cells significantly down-regulated FTO promoter activity and expression. Conversely, knockdown of Foxa2 by siRNA significantly up-regulated FTO expression. These findings suggest that Foxa2 negatively regulates the basal transcription and expression of the human FTO gene.

  2. FTO genotype and weight loss

    DEFF Research Database (Denmark)

    Livingstone, Katherine M; Celis-Morales, Carlos; Papandonatos, George D

    2016-01-01

    : Ovid Medline, Scopus, Embase, and Cochrane from inception to November 2015. ELIGIBILITY CRITERIA FOR STUDY SELECTION: Randomised controlled trials in overweight or obese adults reporting reduction in body mass index, body weight, or waist circumference by FTO genotype (rs9939609 or a proxy) after...

  3. Low-temperature growth and electronic structures of ambipolar Yb-doped zinc tin oxide transparent thin films

    Science.gov (United States)

    Oh, Seol Hee; Ferblantier, Gerald; Park, Young Sang; Schmerber, Guy; Dinia, Aziz; Slaoui, Abdelilah; Jo, William

    2018-05-01

    The compositional dependence of the crystal structure, optical transmittance, and surface electric properties of the zinc tin oxide (Zn-Sn-O, shortened ZTO) thin films were investigated. ZTO thin films with different compositional ratios were fabricated on glass and p-silicon wafers using radio frequency magnetron sputtering. The binding energy of amorphous ZTO thin films was examined by a X-ray photoelectron spectroscopy. The optical transmittance over 70% in the visible region for all the ZTO films was observed. The optical band gap of the ZTO films was changed as a result of the competition between the Burstein-Moss effect and renormalization. An electron concentration in the films and surface work function distribution were measured by a Hall measurement and Kelvin probe force microscopy, respectively. The mobility of the n- and p-type ZTO thin films have more than 130 cm2/V s and 15 cm2/V s, respectively. We finally constructed the band structure which contains band gap, work function, and band edges such as valence band maximum and conduction band minimum of ZTO thin films. The present study results suggest that the ZTO thin film is competitive compared with the indium tin oxide, which is a representative material of the transparent conducting oxides, regarding optoelectronic devices applications.

  4. Optically active polyurethane@indium tin oxide nanocomposite: Preparation, characterization and study of infrared emissivity

    International Nuclear Information System (INIS)

    Yang, Yong; Zhou, Yuming; Ge, Jianhua; Yang, Xiaoming

    2012-01-01

    Highlights: ► Silane coupling agent of KH550 was used to connect the ITO and polyurethanes. ► Infrared emissivity values of the hybrids were compared and analyzed. ► Interfacial synergistic action and orderly secondary structure were the key factors. -- Abstract: Optically active polyurethane@indium tin oxide and racemic polyurethane@indium tin oxide nanocomposites (LPU@ITO and RPU@ITO) were prepared by grafting the organics onto the surfaces of modified ITO nanoparticles. LPU@ITO and RPU@ITO composites based on the chiral and racemic tyrosine were characterized by FT-IR, UV–vis spectroscopy, X-ray diffraction (XRD), SEM, TEM, and thermogravimetric analysis (TGA), and the infrared emissivity values (8–14 μm) were investigated in addition. The results indicated that the polyurethanes had been successfully grafted onto the surfaces of ITO without destroying the crystalline structure. Both composites possessed the lower infrared emissivity values than the bare ITO nanoparticles, which indicated that the interfacial interaction had great effect on the infrared emissivity. Furthermore, LPU@ITO based on the optically active polyurethane had the virtue of regular secondary structure and more interfacial synergistic actions between organics and inorganics, thus it exhibited lower infrared emissivity value than RPU@ITO based on the racemic polyurethane.

  5. Work function tuning of tin-doped indium oxide electrodes with solution-processed lithium fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Ow-Yang, C.W., E-mail: cleva@sabanciuniv.edu [Materials Science and Engineering Program, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey); Nanotechnology Application Center, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey); Jia, J. [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258 (Japan); Aytun, T. [Materials Science and Engineering Program, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey); Zamboni, M.; Turak, A. [Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L8 (Canada); Saritas, K. [Materials Science and Engineering Program, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey); Shigesato, Y. [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258 (Japan)

    2014-05-30

    Solution-processed lithium fluoride (sol-LiF) nanoparticles synthesized in polymeric micelle nanoreactors enabled tuning of the surface work function of tin-doped indium oxide (ITO) films. The micelle reactors provided the means for controlling surface coverage by progressively building up the interlayer through alternating deposition and plasma etch removal of the polymer. In order to determine the surface coverage and average interparticle distance, spatial point pattern analysis was applied to scanning electron microscope images of the nanoparticle dispersions. The work function of the sol-LiF modified ITO, obtained from photoelectron emission yield spectroscopy analysis, was shown to increase with surface coverage of the sol-LiF particles, suggesting a lateral depolarization effect. Analysis of the photoelectron emission energy distribution in the near threshold region revealed the contribution of surface states for surface coverage in excess of 14.1%. Optimization of the interfacial barrier was achieved through contributions from both work function modification and surface states. - Highlights: • Work function of indium tin oxide increased with LiF nanoparticle coverage. • Work function was analyzed via photoelectron emission yield (PEYS). • At higher surface coverage, the energy distribution of PEYS increased. • Pre-threshold increase in PEYS consistent with emission from surface states.

  6. Magnetoresistance and Microstructure of Magnetite Nanocrystals Dispersed in Indium−Tin Oxide Thin Films

    OpenAIRE

    Okada, Koichi; Kohiki, Shigemi; Mitome, Masanori; Tanaka, Hidekazu; Arai, Masao; Mito, Masaki; Deguchi, Hiroyuki

    2009-01-01

    Epitaxial indium−tin oxide (ITO) thin films were fabricated on a yttria-stabilized zirconia (YSZ) substrate by pulsed-laser deposition using magnetite (Fe3O4) nanoparticle dispersed ITO powders as a target. Magnetoresistance of the film at a field of 1 T was 39% at 45 K, and it stayed at 3% above 225 K. The film demonstrated cooling hysteresis in the temperature dependence of direct-current magnetization. Transmission electron microscopy revealed that phase-separated Fe3O4 nanocrystals with w...

  7. Effect of Source/Drain Electrodes on the Electrical Properties of Silicon–Tin Oxide Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Xianzhe Liu

    2018-05-01

    Full Text Available Ultra-high definition displays have become a trend for the current flat plane displays. In this study, the contact properties of amorphous silicon–tin oxide thin-film transistors (a-STO TFTs employed with source/drain (S/D electrodes were analyzed. Ohmic contact with a good device performance was achieved when a-STO was matched with indium-tin-oxide (ITO or Mo electrodes. The acceptor-like densities of trap states (DOS of a-STO TFTs were further investigated by using low-frequency capacitance–voltage (C–V characteristics to understand the impact of the electrode on the device performance. The reason of the distinct electrical performances of the devices with ITO and Mo contacts was attributed to different DOS caused by the generation of local defect states near the electrodes, which distorted the electric field distribution and formed an electrical potential barrier hindering the flow of electrons. It is of significant importance for circuit designers to design reliable integrated circuits with SnO2-based devices applied in flat panel displays.

  8. Regulation and function of FTO mRNA expression in human skeletal muscle and subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Grunnet, Louise G; Nilsson, Emma; Ling, Charlotte

    2009-01-01

    Objective. Common variants in FTO (the fat-mass and obesity-associated gene) associate with obesity and type 2 diabetes. The regulation and biological function of FTO mRNA expression in target tissue is unknown. We investigated the genetic and non-genetic regulation of FTO mRNA in skeletal muscle...... and adipose tissue, and their influence on in vivo glucose and fat metabolism. Research Design and Methods. The FTO rs9939609 polymorphism was genotyped in two twin cohorts: 1) 298 elderly twins aged 62-83 years with glucose tolerance ranging from normal to type 2 diabetes and 2) 196 young (25-32 years......) and elderly (58-66 years) non-diabetic twins examined by a hyperinsulinemic euglycemic clamp including indirect calorimetry. FTO mRNA expression was determined in subcutaneous adipose tissue (n=226) and skeletal muscle biopsies (n=158). Results. Heritability of FTO expression in both tissues was low, and FTO...

  9. Plasma vapor deposited n-indium tin oxide/p-copper indium oxide heterojunctions for optoelectronic device applications

    Science.gov (United States)

    Jaya, T. P.; Pradyumnan, P. P.

    2017-12-01

    Transparent crystalline n-indium tin oxide/p-copper indium oxide diode structures were fabricated on quartz substrates by plasma vapor deposition using radio frequency (RF) magnetron sputtering. The p-n heterojunction diodes were highly transparent in the visible region and exhibited rectifying current-voltage (I-V) characteristics with a good ideality factor. The sputter power during fabrication of the p-layer was found to have a profound effect on I-V characteristics, and the diode with the p-type layer deposited at a maximum power of 200 W exhibited the highest value of the diode ideality factor (η value) of 2.162, which suggests its potential use in optoelectronic applications. The ratio of forward current to reverse current exceeded 80 within the range of applied voltages of -1.5 to +1.5 V in all cases. The diode structure possessed an optical transmission of 60-70% in the visible region.

  10. Optical properties of tin oxide nanoparticles prepared by laser ablation in water: Influence of laser ablation time duration and laser fluence

    International Nuclear Information System (INIS)

    Desarkar, Himadri Sankar; Kumbhakar, P.; Mitra, A.K.

    2012-01-01

    Colloidal tin oxide nanoparticles are prepared by laser (having a wavelength of 1064 nm) ablation of tin metallic target immersed in pure deionized water. The influences of laser ablation time and laser fluence on the size and optical properties of the synthesized nanoparticles are studied. Prepared tin oxide nanoparticles are characterized by transmission electron microscope, selected area electron diffraction and UV–Visible absorption spectroscopy. The morphology of prepared tin oxide nanoparticles is found to be mostly spherical and with sizes in the nanometric range (mean radius of 3.2 to 7.3 nm). The measured UV–Visible absorption spectra show the presence of absorption peaks in the ultraviolet region. The band gap energy of samples prepared with different laser ablation time duration is calculated and is found to be increased with decrease in size (radius) of the prepared nanoparticles. Photoluminescence emission measurements at room temperature show that all the samples exhibit photoluminescence in the visible region. The peak photoluminescence emission intensity in the sample prepared with 50 min of laser ablation time is 3.5 times larger than that obtained in the sample prepared with 10 min of laser ablation time. - Highlights: ► SnO 2 nanoparticles (6.4–14.6 nm) are prepared by laser ablation in liquid technique. ► The influences of laser ablation time and laser fluence are studied. ► Samples are characterized by TEM and UV–Visible absorption spectroscopy. ► UV–Visible absorption spectra exhibit quantum confinement effect. ► Samples exhibit enhanced photoluminescence emissions in the visible region.

  11. Large-area SnO2: F thin films by offline APCVD

    International Nuclear Information System (INIS)

    Wang, Yan; Wu, Yucheng; Qin, Yongqiang; Zhang, Zhihai; Shi, Chengwu; Zhang, Qingfeng; Li, Changhao; Xia, Xiaohong; Sun, Stanley; Chen, Leon

    2011-01-01

    Highlights: → Large-area (1245 mm x 635 mm) FTO thin films were successfully deposited by offline APCVD process. → The as-prepared FTO thin films with sheet resistance 8-11 Ω/□ and direct transmittance more than 83% exhibited better than that of the online ones. → The maximum quantum efficiency of the solar cells based on offline FTO substrate was 0.750 at wavelength 540 nm. → The power of the solar modules using the offline FTO as glass substrates was 51.639 W, higher than that of the modules based on the online ones. -- Abstract: In this paper, we reported the successful preparation of fluorine-doped tin oxide (FTO) thin films on large-area glass substrates (1245 mm x 635 mm x 3 mm) by self-designed offline atmospheric pressure chemical vapor deposition (APCVD) process. The FTO thin films were achieved through a combinatorial chemistry approach using tin tetrachloride, water and oxygen as precursors and Freon (F-152, C2H4F2) as dopant. The deposited films were characterized for crystallinity, morphology (roughness) and sheet resistance to aid optimization of materials suitable for solar cells. We got the FTO thin films with sheet resistance 8-11 Ω/□ and direct transmittance more than 83%. X-ray diffraction (XRD) characterization suggested that the as-prepared FTO films were composed of multicrystal, with the average crystal size 200-300 nm and good crystallinity. Further more, the field emission scanning electron microscope (FESEM) images showed that the films were produced with good surface morphology (haze). Selected samples were used for manufacturing tandem amorphous silicon (a-Si:H) thin film solar cells and modules by plasma enhanced chemical vapor deposition (PECVD). Compared with commercially available FTO thin films coated by online chemical vapor deposition, our FTO coatings show excellent performance resulting in a high quantum efficiency yield for a-Si:H solar cells and ideal open voltage and short circuit current for a-Si:H solar

  12. The acidic properties of mixed tin and antimony oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Irving, E.A.; Taylor, D.

    1978-01-01

    The acidic properties of mixed tin + antimony oxide catalysts were studied in the isomerization of 3,3-dimethyl-1-butene, cyclopropane, 1-butene, and cis-2-butene and the dehydration of isopropanol over the mixed oxides outgassed at room temperature and 698/sup 0/K. Only the zero-order portions of the reaction were used for calculations. With catalysts outgassed at room temperature, weakly acidic sites were present, and all the reactions probably occurred by a carbonium ion mechanism with Broensted acid sites as a source of protons. The rates increased with increasing antimony content to a maximum at approx. 50 at. % and then decreased with further increase in the antimony content. Outgassing of the catalysts at 698/sup 0/K increased the isomerization rate of 3,3-dimethyl-1-butene, but decreased those for cyclopropane and isopropanol due to poisoning by the propylene produced. For 1-butene and cis-2-butene and catalysts outgassed at 698/sup 0/K, only catalysts with less than 50Vertical Bar3< antimony were active. The catalysts were poisoned by treatment with bases or with sodium acetate. A proposed correlation between rates and acidity led to the conclusion that the catalyst composition corresponding to maximum acidity differs from that for maximum selective oxidation activity. Graphs and 10 references.

  13. Microstructure and growth mechanism of tin whiskers on RESn3 compounds

    International Nuclear Information System (INIS)

    Li Caifu; Liu Zhiquan

    2013-01-01

    Graphical abstract: Large amount of intact tin whiskers were firstly prepared without post handling, and their microstructures were investigated systematically with TEM. A growth model was proposed to explain the observed growth characteristics from Sn–RE alloys. - Abstract: An exclusive method was developed to prepare intact tin whiskers as transmission electron microscope specimens, and with this technique in situ observation of tin whisker growth from RESn 3 (RE = Nd, La, Ce) film specimen was first achieved. Electron irradiation was discovered to have an effect on the growth of a tin whisker through its root. Large quantities of tin whiskers with diameters from 20 nm to 10 μm and lengths ranging from 50 nm to 500 μm were formed at a growth rate of 0.1–1.8 nm s −1 on the surface of RESn 3 compounds. Most (>85%) of these tin whiskers have preferred growth directions of 〈1 0 0〉, 〈0 0 1〉, 〈1 0 1〉 and 〈1 0 3〉, as determined by statistics. This kind of tin whisker is single-crystal β-Sn even if it has growth striations, steps and kinks, and no dislocations or twin or grain boundaries were observed within the whisker body. RESn 3 compounds undergo selective oxidation during whisker growth, and the oxidation provides continuous tin atoms for tin whisker growth until they are exhausted. The driving force for whisker growth is the compressive stress resulting from the restriction of the massive volume expansion (38–43%) during the oxidation by the surface RE(OH) 3 layer. Tin atoms diffuse and flow to feed the continuous growth of tin whiskers under a compressive stress gradient formed from the extrusion of tin atoms/clusters at weak points on the surface RE(OH) 3 layers. A growth model was proposed to discuss the characteristics and growth mechanism of tin whiskers from RESn 3 compounds.

  14. Structural, photoconductivity, and dielectric studies of polythiophene-tin oxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Murugavel, S., E-mail: starin85@gmail.com; Malathi, M., E-mail: mmalathi@vit.ac.in

    2016-09-15

    Highlights: • Synthesis of polythiophene-tin oxide nanocomposites confirmed by FTIR and EDAX. • SEM shows SnO{sub 2} nanoparticles embedded within polythiophene matrix. • Stability and isoelectric point suggest nanoparticle–matrix interaction. • High dielectric constant due to high Maxwell–Wagner interfacial polarization. - Abstract: Polythiophene-tinoxide (PT-SnO{sub 2}) nanocomposites were prepared by in situ chemical oxidative polymerization, in the presence of various concentrations of SnO{sub 2} nanoparticles. Samples were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy and Zeta potential measurements. Morphologies and elemental compositions were investigated by transmission electron microscopy, field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. The photoconductivity of the nanocomposites was studied by field-dependent dark and photo conductivity measurements. Their dielectric properties were investigated using dielectric spectroscopy, in the frequency range of 1kHz–1 MHz. The results indicated that the SnO{sub 2} nanoparticles in the PT-SnO{sub 2} nanocomposite were responsible for its enhanced dielectric performance.

  15. Inkjet printed ambipolar transistors and inverters based on carbon nanotube/zinc tin oxide heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bongjun; Jang, Seonpil; Dodabalapur, Ananth, E-mail: ananth.dodabalapur@engr.utexas.edu [Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States); Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Geier, Michael L.; Prabhumirashi, Pradyumna L. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Hersam, Mark C. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States); Department of Medicine, Northwestern University, Evanston, Illinois 60208 (United States)

    2014-02-10

    We report ambipolar field-effect transistors (FETs) consisting of inkjet printed semiconductor bilayer heterostructures utilizing semiconducting single-walled carbon nanotubes (SWCNTs) and amorphous zinc tin oxide (ZTO). The bilayer structure allows for electron transport to occur principally in the amorphous oxide layer and hole transport to occur exclusively in the SWCNT layer. This results in balanced electron and hole mobilities exceeding 2 cm{sup 2} V{sup −1} s{sup −1} at low operating voltages (<5 V) in air. We further show that the SWCNT-ZTO hybrid ambipolar FETs can be integrated into functional inverter circuits that display high peak gain (>10). This work provides a pathway for realizing solution processable, inkjet printable, large area electronic devices, and systems based on SWCNT-amorphous oxide heterostructures.

  16. Electrochemical migration of tin in electronics and microstructure of the dendrites

    Energy Technology Data Exchange (ETDEWEB)

    Minzari, Daniel, E-mail: dmin@mek.dtu.d [Section for Materials and Surface Technology, Department for Mechanical Engineering, Technical University of Denmark (Denmark); Grumsen, Flemming Bjerg; Jellesen, Morten S.; Moller, Per; Ambat, Rajan [Section for Materials and Surface Technology, Department for Mechanical Engineering, Technical University of Denmark (Denmark)

    2011-05-15

    Graphical abstract: The electrochemical migration of tin in electronics forms dendritic structures, consisting of a metallic tin core, which is surrounded by oxide layers having various thickness. Display Omitted Research highlights: Electrochemical migration occurs if two conductors are connected by condensed moisture. Metallic ions are dissolved and grow in a dendritic structure that short circuit the electrodes. The dendrite consists of a metallic tin core with oxide layers of various thickness surrounding. Detailed microstructure of dendrites is investigated using electron microscopy. The dendrite microstructure is heterogeneous along the growth direction. - Abstract: The macro-, micro-, and nano-scale morphology and structure of tin dendrites, formed by electrochemical migration on a surface mount ceramic chip resistor having electrodes consisting of tin with small amounts of Pb ({approx}2 wt.%) was investigated by scanning electron microscopy and transmission electron microscopy including Energy dispersive X-ray spectroscopy and electron diffraction. The tin dendrites were formed under 5 or 12 V potential bias in 10 ppm by weight NaCl electrolyte as a micro-droplet on the resistor during electrochemical migration experiments. The dendrites formed were found to have heterogeneous microstructure along the growth direction, which is attributed to unstable growth conditions inside the micro-volume of electrolyte. Selected area electron diffraction showed that the dendrites are metallic tin having sections of single crystal orientation and lead containing intermetallic particles embedded in the structure. At certain areas, the dendrite structure was found to be surrounded by an oxide crust, which is believed to be due to unstable growth conditions during the dendrite formation. The oxide layer was found to be of nanocrystalline structure, which is expected to be formed by the dehydration of the hydrated oxide originally formed in solution ex-situ in ambient air.

  17. Surface properties of nanostructured NiO undergoing electrochemical oxidation in 3-methoxy-propionitrile

    Science.gov (United States)

    Bonomo, Matteo; Marrani, Andrea Giacomo; Novelli, Vittoria; Awais, Muhammad; Dowling, Denis P.; Vos, Johannes G.; Dini, Danilo

    2017-05-01

    Nanostructured nickel oxide (NiO) was deposited in the configuration of thin film (thickness, l = 2-6 μm) onto fluorine-doped tin oxide (FTO) substrates via plasma-assisted rapid discharge sintering (RDS). Electrochemical cycling of RDS NiO in 3-methoxy-propionitrile (3-MPN) revealed two characteristic peaks of NiO oxidation which were associated to the surface-confined redox processes Ni(II) → Ni(III) and Ni(III) → Ni(IV). Grazing angle X-ray photoelectron spectroscopy (XPS) was conducted ex-situ on NiO electrodes in both pristine and oxidized states. Oxidized NiO samples for XPS experiments were obtained in the potentiostatic mode through the polarization of NiO at its two characteristic potentials of oxidation. The XPS analysis allowed to ascertain the electronic structure of the nanoporous NiO framework, and verify the adsorption of perchlorate and chloride anions onto NiO surface due to the compensation of the charge stored in oxidized NiO. XPS also revealed that the spectrum within the region characteristic of Ni 2p ionization does not vary considerably with the state of charge of the nickel centres. This finding is in evident contrast to what has been observed for the same system when it undergoes electrochemical oxidation in aqueous electrolyte.

  18. Efficient solar-assisted O2 reduction by a cofacial iron porphyrin dimer integrated to a p-CuBi2O4 photocathode prepared by a simple novel method.

    Science.gov (United States)

    Zahran, Zaki N; Mohamed, Eman A; Naruta, Yoshinori; Haleem, Ashraf

    2017-10-04

    A cofacial iron porphyrin hetero-dimer, Fe2TPFPP-TMP showed high electro-catalytic activity, selectivity, and stability for the O2 reduction to H2O both in homogeneous non-aqueous and heterogeneous neutral aqueous solutions. Moreover, when it is integrated to FTO/p-CuBi2O4 (FTO = fluorine doped tin oxide) photocathode prepared by a simple novel method, a remarkable efficient solar-assisted O2 reduction is achieved in neutral potassium phosphate (KPi) or basic NaOH solutions saturated with O2. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Sulfated tin oxide (STO – Structural properties and application in catalysis: A review

    Directory of Open Access Journals (Sweden)

    Ravi Varala

    2016-07-01

    Full Text Available Catalysis is an important area of chemistry, with an extensive amount of work going on in this area of sciences, toward synthesis and evaluation of newer catalysts. There are many reports for different conversion reactions such as oxidation, reduction, coupling, alkylation, and acylation for which various catalysts have been used such as mixed metal oxides, metal nanoparticles, metal organic complexes and many others. Among the many catalysts reported, the one catalyst that caught our attention due to its exploitation for a plethora of organic conversions is the sulfated tin oxide (STO, which is due to the low cost, greater stability and high efficiency of the catalyst. In this review, we have attempted to compile data about the structural properties of STO, and its applications as catalysts in various organic synthesis are presented. The literature data up to 2014 were collected and considered for the review.

  20. Effect of annealing temperature on optical properties of binary zinc tin oxide nano-composite prepared by sol-gel route using simple precursors: structural and optical studies by DRS, FT-IR, XRD, FESEM investigations.

    Science.gov (United States)

    Habibi, Mohammad Hossein; Mardani, Maryam

    2015-02-25

    Binary zinc tin oxide nano-composite was synthesized by a facile sol-gel method using simple precursors from the solutions consisting of zinc acetate, tin(IV) chloride and ethanol. Effect of annealing temperature on optical and structural properties was investigated using X-ray diffraction (XRD), diffuse reflectance spectra (DRS), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). XRD results revealed the existence of the ZnO and SnO2 phases. FESEM results showed that binary zinc tin oxide nano-composites ranges from 56 to 60 nm in diameter at 400°C and 500°C annealing temperatures respectively. The optical band gap was increased from 2.72 eV to 3.11 eV with the increasing of the annealing temperature. FTIR results confirmed the presence of zinc oxide and tin oxide and the broad absorption peaks at 3426 and 1602 cm(-1) can be ascribed to the vibration of absorptive water, and the absorption peaks at 546, 1038 and 1410 cm(-1) are due to the vibration of Zn-O or Sn-O groups in binary zinc tin oxide. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Exogenous Expressions of FTO Wild-Type and R316Q Mutant Proteins Caused an Increase in HNRPK Levels in 3T3-L1 Cells as Demonstrated by DIGE Analysis

    Directory of Open Access Journals (Sweden)

    Nil Guzel

    2017-01-01

    Full Text Available Fat mass and obesity-associated protein is an enzyme that oxidatively demethylates DNA. Although there are numerous studies regarding the catalytic function of FTO, the overall existence or absence of FTO on cellular proteome has not been investigated. This study investigated the changes in the soluble proteome of 3T3-L1 cells upon expression of the WT and the mutant (R316Q FTO proteins. Protein extracts prepared from 3T3-L1 cells expressing either the WT or the mutant FTO proteins were used in DIGE experiments. Analysis of the data revealed the number of spots matched to every member and there were 350 ± 20 spots with 30.5% overall mean coefficient of variation. Eleven regulated protein spots were excised from the gels and identified by MALDI-TOF/TOF. One of the identified proteins was heterogeneous nuclear ribonucleoprotein K, which displayed more than 2.6- and 3.7-fold increases in its abundance in the WT and the mutant FTO expressing cells, respectively. Western blot analysis validated these observations. This is the first study revealing the presence of a parallel increase in expressions of FTO and HNRNPK proteins. This increase may codictate the metabolic changes occurring in the cell and may attribute a significance to HNRNPK in FTO-associated transformations.

  2. Growth Kinetics and Oxidation Mechanism of ALD TiN Thin Films Monitored by In Situ Spectroscopic Ellipsometry

    NARCIS (Netherlands)

    Van Hao, B.; Groenland, A.W.; Aarnink, Antonius A.I.; Wolters, Robertus A.M.; Schmitz, Jurriaan; Kovalgin, Alexeij Y.

    2011-01-01

    Spectroscopic ellipsometry (SE) was employed to investigate the growth of atomic layer deposited (ALD) TiN thin films from titanium chloride (TiCl4) and ammonia (NH3) and the followed oxidation in dry oxygen. Two regimes were found in the growth including a transient stage prior to a linear regime.

  3. High Mobility Thin Film Transistors Based on Amorphous Indium Zinc Tin Oxide

    Directory of Open Access Journals (Sweden)

    Imas Noviyana

    2017-06-01

    Full Text Available Top-contact bottom-gate thin film transistors (TFTs with zinc-rich indium zinc tin oxide (IZTO active layer were prepared at room temperature by radio frequency magnetron sputtering. Sintered ceramic target was prepared and used for deposition from oxide powder mixture having the molar ratio of In2O3:ZnO:SnO2 = 2:5:1. Annealing treatment was carried out for as-deposited films at various temperatures to investigate its effect on TFT performances. It was found that annealing treatment at 350 °C for 30 min in air atmosphere yielded the best result, with the high field effect mobility value of 34 cm2/Vs and the minimum subthreshold swing value of 0.12 V/dec. All IZTO thin films were amorphous, even after annealing treatment of up to 350 °C.

  4. Properties of Semiconductors: Synthesis of Oriented ZnO for Photoelectrochemistry and Photoremediation

    Science.gov (United States)

    Koenig, Emma; Jacobs, Ari; Lisensky, George

    2017-01-01

    Semiconductors are an important class of materials; preparing ZnO nanorods allows semiconducting properties to be easily observed. The week before lab, groups of four students take 15 min to setup two fluorine-doped tin oxide glass (FTO) slides in a zinc nitrate and hexamethylenetetramine solution stored at 90°C until the next lab. Hexagonal ZnO…

  5. Cyclic etching of tin-doped indium oxide using hydrogen-induced modified layer

    Science.gov (United States)

    Hirata, Akiko; Fukasawa, Masanaga; Nagahata, Kazunori; Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi; Tatsumi, Tetsuya

    2018-06-01

    The rate of etching of tin-doped indium oxide (ITO) and the effects of a hydrogen-induced modified layer on cyclic, multistep thin-layer etching were investigated. It was found that ITO cyclic etching is possible by precisely controlling the hydrogen-induced modified layer. Highly selective etching of ITO/SiO2 was also investigated, and it was suggested that cyclic etching by selective surface adsorption of Si can precisely control the etch rates of ITO and SiO2, resulting in an almost infinite selectivity for ITO over SiO2 and in improved profile controllability.

  6. Nanostructured tin oxide films: Physical synthesis, characterization, and gas sensing properties.

    Science.gov (United States)

    Ingole, S M; Navale, S T; Navale, Y H; Bandgar, D K; Stadler, F J; Mane, R S; Ramgir, N S; Gupta, S K; Aswal, D K; Patil, V B

    2017-05-01

    Nanostructured tin oxide (SnO 2 ) films are synthesized using physical method i.e. thermal evaporation and are further characterized with X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy measurement techniques for confirming its structure and morphology. The chemiresistive properties of SnO 2 films are studied towards different oxidizing and reducing gases where these films have demonstrated considerable selectivity towards oxidizing nitrogen dioxide (NO 2 ) gas with a maximum response of 403% to 100ppm @200°C, and fast response and recovery times of 4s and 210s, respectively, than other test gases. In addition, SnO 2 films are enabling to detect as low as 1ppm NO 2 gas concentration @200°C with 23% response enhancement. Chemiresistive performances of SnO 2 films are carried out in the range of 1-100ppm and reported. Finally, plausible adsorption and desorption reaction mechanism of NO 2 gas molecules with SnO 2 film surface has been thoroughly discussed by means of an impedance spectroscopy analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Chemically-modified electrodes in photoelectrochemical cells. [Tin oxide and TiO/sub 2/ semiconductor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fox, M A; Hohman, J R; Kamat, P V

    1893-01-01

    Tin oxide and titanium dioxide semiconductor electrodes hae been covalently modified by the attachment of functionalized olefins and arenes through surface silanation or via a cyanuric chloride linkage. The excited state and electrochemical properties of the molecules so attached are significantly affected by the semiconductor. Photocurrent measurements and time-resolved laser coulostatic monitoring have been employed to elucidate the mechanism of charge injection on these modified surfaces. 17 references, 7 figures.

  8. Dual roles of a flouride-doped SnO2/TiO2 bilayer based on inverse opal/nanoparticle structure for water oxidation

    Science.gov (United States)

    Yun, Gun; Balamurugan, Maheswari; Ahn, Kwang-Soon; Lee, Sang-Kwon; Kang, Soon Hyung; Lim, Dong-Ha

    2018-01-01

    Fluorine-doped tin dioxide (FTO) inverse opals (IOs) were fabricated on a template of polystyrene (PS) beads (diameter = 400 nm (±20 nm)) by using a spin-coating method. The concentration of the FTO precursor, in particular, the 1.0 M FTO concentration solution significantly influenced the morphology of the IO film. The FTO nanoparticles upon the FTO IO film were sparsely formed relative to these formed from the 0.5 M FTO solution. To compensate for the large band gap ( E g = 3.8 eV) of FTO in the photoelectrochemical (PEC) reaction, we deposited a photoactive TiO2 shell on the FTO IO film by using the sol-gel method. The morphological change and the crystalline properties of the FTO IO and TiO2-coated FTO IO (hereafter referred to as FTO IO/TiO2) films, were investigated with field emission scanning electron microscopy and X-ray diffraction, respectively. The PEC behaviors of the samples were tested in a 0.1 M KOH solution under one sun illumination (100 mW/cm2 with an AM 1.5 filter). The highest PEC performance was obtained with the 1.0 M FTO IO/TiO2 film, which produced a photocurrent density (Jsc) of 3.28 mA/cm2 at 1.23 V (vs. normal hydrogen electrode (NHE), as briefly expressed to 1.23 VNHE) compared to 2.42 mA/cm2 at 1.23 VNHE with the 0.5 M FTO IO/TiO2 film. The approximately 30% enhanced performance of the 1.0 M FTO IO/TiO2 film was mainly attributed to the peculiar structure comprised of the FTO nanoparticle layer and IO films to form a bilayer structure, providing a much larger surface area, as well as complete coverage of the photoactive TiO2 nanoparticles through the FTO IO skeleton in the proper band alignment to boost the charge separation/transfer phenomenon, finally resulting in the enhanced PEC activity.

  9. Dependence of the optical constants and the performance in the SPREE gas measurement on the thickness of doped tin oxide over coatings

    Science.gov (United States)

    Fischer, D.; Hertwig, A.; Beck, U.; Negendank, D.; Lohse, V.; Kormunda, M.; Esser, N.

    2017-11-01

    In this study, thickness related changes of the optical properties of doped tin oxide were studied. Two different sets of samples were prepared. The first set was doped with iron or nickel on silicon substrate with thicknesses of 29-56 nm, the second was iron doped on gold/glass substrate with 1.6-6.3 nm. The optical constants were determined by using spectral ellipsometry (SE) followed by modelling of the dielectric function with an oscillator model using Gaussian peaks. The analysis of the optical constants shows a dependence of the refraction and the absorption on the thickness of the doped tin oxide coating. In addition to the tin oxide absorption in the UV, one additional absorption peak was found in the near-IR/red which is related to plasmonic effects due to the doping. This peak shifts from the near-IR to the red part of the visible spectrum and becomes stronger by reducing the thickness, probably due to the formation of metal nanoparticles in this layer. These results were found for two different sets of samples by using the same optical model. Afterwards the second sample set was tested in the Surface Plasmon Resonance Enhanced Ellipsometric (SPREE) gas measurement with CO gas. It was found that the thickness has significant influence on the sensitivity and thus the adsorption of the CO gas. By increasing the thickness from 1.6 nm to 5.1 nm, the sensing ability is enhanced due to a higher coverage of the surface with the over coating. This is explained by the high affinity of CO molecules to the incorporated Fe-nanoparticles in the tin oxide coating. By increasing the thickness further to 6.3 nm, the sensing ability drops because the layer disturbs the SPR sensing effect too much.

  10. Electrical and optical properties of indium tin oxide/epoxy composite film

    International Nuclear Information System (INIS)

    Guo Xia; Guo Chun-Wei; Chen Yu; Su Zhi-Ping

    2014-01-01

    The electrical and optical properties of the indium tin oxide (ITO)/epoxy composite exhibit dramatic variations as functions of the ITO composition and ITO particle size. Sharp increases in the conductivity in the vicinity of a critical volume fraction have been found within the framework of percolation theory. A conductive and insulating transition model is extracted by the ITO particle network in the SEM image, and verified by the resistivity dependence on the temperature. The dependence of the optical transmittance on the particle size was studied. Further decreasing the ITO particle size could further improve the percolation threshold and light transparency of the composite film. (condensed matter: structural, mechanical, and thermal properties)

  11. The optical and structural properties of graphene nanosheets and tin oxide nanocrystals composite

    Science.gov (United States)

    Farheen, Parveen, Azra; Azam, Ameer

    2018-05-01

    A nanocomposite material consisting of metal oxide and reduced graphene oxide was prepared via simple, economic, and effective chemical reduction method. The synthesis strategy was based on the reduction of GO with Sn2+ ion that combines tin oxidation and GO reduction in one step, which provides a simple, low-cost and effective way to prepare graphene nanosheets/SnO2 nanocrystals composites because no additional chemicals were needed. SEM and TEM images shows the uniform distribution of the SnO2 nanocrystals on the Graphene nanosheets (GNs) surface and transmission electron microscope shows an average particle size of 2-4 nm. The mean crystallite size was calculated by Debye Scherrer formula and was found to be about 4.0 nm. Optical analysis was done by using UV-Visible spectroscopy technique and the band gap energy of the GNs/SnO2 nanocomposite was calculated by Tauc relation and came out to be 3.43eV.

  12. Surface modification of indium tin oxide for direct writing of silver nanoparticulate ink micropatterns

    International Nuclear Information System (INIS)

    Vunnam, Swathi; Ankireddy, Krishnamraju; Kellar, Jon; Cross, William

    2013-01-01

    Surface treatment techniques were deployed to alter the surface of indium tin oxide (ITO) samples to attain a favorable interface between printed nano-inks and ITO surface. Surface free energy components of treated ITO substrates were calculated for each treatment using the van Oss–Chaudhury–Good method. The surface treatments of ITO changed the Lifshitz–van der Waals and Lewis acid–base components, and contact angle hysteresis significantly. Among all the surface treatments, air plasma treated samples showed high polar in nature, whereas dodecyltrichlorosilane self-assembled monolayer treated sample showed the lowest. In addition to the polarity and homogeneity, the surface roughness of the ITO was studied with respect to the surface treatment. Silver nanoparticulate ink was printed on treated ITO surfaces using aerosol jet printing system. Printed silver nano-ink line width and morphology strongly depended on the surface treatment of the ITO, ink properties and printing parameters. - Highlights: ► Surface treatments on indium tin oxide (ITO) altered its surface free energy. ► Surface free energies were studied in terms of acid–base components. ► ITO surface morphology and roughness were changed with the surface treatment. ► Silver ink was printed on treated ITO samples using aerosol jet printing system. ► Line widths of printed patterns clearly depended on the surface free energy of ITO

  13. Surface modification of indium tin oxide for direct writing of silver nanoparticulate ink micropatterns

    Energy Technology Data Exchange (ETDEWEB)

    Vunnam, Swathi, E-mail: swathi.vunnam@mines.sdsmt.edu [Nanoscience and Nanoengineering Department, South Dakota School of Mines and Technology, Rapid City, SD-57701 (United States); Ankireddy, Krishnamraju; Kellar, Jon; Cross, William [Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD-57701 (United States)

    2013-03-01

    Surface treatment techniques were deployed to alter the surface of indium tin oxide (ITO) samples to attain a favorable interface between printed nano-inks and ITO surface. Surface free energy components of treated ITO substrates were calculated for each treatment using the van Oss–Chaudhury–Good method. The surface treatments of ITO changed the Lifshitz–van der Waals and Lewis acid–base components, and contact angle hysteresis significantly. Among all the surface treatments, air plasma treated samples showed high polar in nature, whereas dodecyltrichlorosilane self-assembled monolayer treated sample showed the lowest. In addition to the polarity and homogeneity, the surface roughness of the ITO was studied with respect to the surface treatment. Silver nanoparticulate ink was printed on treated ITO surfaces using aerosol jet printing system. Printed silver nano-ink line width and morphology strongly depended on the surface treatment of the ITO, ink properties and printing parameters. - Highlights: ► Surface treatments on indium tin oxide (ITO) altered its surface free energy. ► Surface free energies were studied in terms of acid–base components. ► ITO surface morphology and roughness were changed with the surface treatment. ► Silver ink was printed on treated ITO samples using aerosol jet printing system. ► Line widths of printed patterns clearly depended on the surface free energy of ITO.

  14. Respiration sensor made from indium tin oxide-coated conductive fabrics

    Science.gov (United States)

    Kim, Sun Hee; Lee, Joo Hyeon; Jee, Seung Hyun

    2015-02-01

    Conductive fabrics with new properties and applications have been the subject of extensive research over the last few years, with wearable respiration sensors attracting much attention. Different methods can be used to obtain fabrics that are electrically conducting, an essential property for various applications. For instance, fabrics can be coated with conductive polymers. Here, indium tin oxide (ITO)-coated conductive fabrics with cross-linked polyvinyl alcohol (C-PVA) were prepared using a doctor-blade. The C-PVA was employed in the synthesis to bind ITO on the fabrics with the highest possible mechanical strength. The feasibility of a respiration sensor prepared using the ITO-coated conductive fabric was investigated. The ITO-coated conductive fabric with the C-PVA was demonstrated to have a high potential for use in respiration sensors.

  15. Synthesis and properties of ternary mixture of nickel/cobalt/tin oxides for supercapacitors

    Science.gov (United States)

    Ferreira, C. S.; Passos, R. R.; Pocrifka, L. A.

    2014-12-01

    The present study reports the synthesis and morphological, structural and electrochemical characterization of ternary oxides mixture containing nickel, cobalt and tin. The ternary oxide is synthesized by Pechini method with subsequent deposition onto a titanium substrate in a thin-film form. XRD and EDS analysis confirm the formation of ternary film with amorphous nature. SEM analysis show that cracks on the film favor the gain of the surface area that is an interesting feature for electrochemical capacitors. The ternary film is investigated in KOH electrolyte solution using cyclic voltammetry and charge-discharge study with a specific capacitance of 328 F g-1, and a capacitance retention of 86% over 600 cycles. The values of specific power and specific energy was 345.7 W kg-1 and 18.92 Wh kg-1, respectively.

  16. FTO Inhibits Insulin Secretion and Promotes NF-κB Activation through Positively Regulating ROS Production in Pancreatic β cells.

    Directory of Open Access Journals (Sweden)

    Hong-Qi Fan

    Full Text Available FTO (Fat mass and obesity-associated is associated with increased risk of obesity and type 2 diabetes incurrence. Pancreas islet β cells dysfunction and insulin resistance are major causes of type 2 diabetes. However, whether FTO plays an important functional role in pancreatic β cells as well as the related molecular mechanism is still unclear. In the present study, the tissue expression profile of FTO was firstly determined using quantitative PCR and western blot. FTO is widely expressed in various tissues and presented with relative high expression in pancreas tissue, especially in endocrine pancreas. FTO overexpression in MIN6 cells achieved by lentivirus delivery significantly inhibits insulin secretion in the presence of glucose stimulus as well as KCl. FTO silence has no effect on insulin secretion of MIN6 cells. However, FTO overexpression doesn't affect the transcription of insulin gene. Furthermore, reactive oxygen species (ROS production and NF-κB activation are significantly promoted by FTO overexpression. Inhibition of intracellular ROS production by N-acetyl-L-cysteine (NAC can alleviate NF-κB activation and restore the insulin secretion mediated by FTO overexpression. A whole transcript-microarray is employed to analyze the differential gene expression mediated by FTO overexpression. The genes which are modulated by FTO are involved in many important biological pathways such as G-protein coupled receptor signaling and NF-κB signaling. Therefore, our study indicates that FTO may contribute to pancreas islet β cells dysfunction and the inhibition of FTO activity is a potential target for the treatment of diabetes.

  17. Impact of variation at the FTO locus on milk fat yield in Holstein dairy cattle.

    Science.gov (United States)

    Zielke, Lea G; Bortfeldt, Ralf H; Reissmann, Monika; Tetens, Jens; Thaller, Georg; Brockmann, Gudrun A

    2013-01-01

    This study explores the biological role of the Fat Mass and Obesity associated (FTO) gene locus on milk composition in German Holstein cattle. Since FTO controls energy homeostasis and expenditure and the FTO locus has repeatedly shown association with obesity in human studies, we tested FTO as a candidate gene in particular for milk fat yield, which represents a high amount of energy secreted during lactation. The study was performed on 2,402 bulls and 860 cows where dense milk composition data were available. Genetic information was taken from a 2 Mb region around FTO. Five SNPs and two haplotype blocks in a 725 kb region covering FTO and the neighboring genes RPGRIP1L, U6ATAC, and 5 S rRNA were associated with milk fat yield and also affected protein yield in the same direction. Interestingly, higher frequency SNP alleles and haplotypes within the FTO gene increased milk fat and protein yields by up to 2.8 and 2.2 kg per lactation, respectively, while the most frequent haplotype in the upstream block covering exon 1 of FTO to exon 15 of RPGRIP1L had opposite effects with lower fat and milk yield. Both haplotype blocks were also significant in cows. The loci accounted for about 1% of the corresponding trait variance in the population. The association signals not only provided evidence for at least two causative mutations in the FTO locus with a functional effect on milk but also milk protein yield. The pleiotropic effects suggest a biological function on the usage of energy resources and the control of energy balance rather than directly affecting fat and protein synthesis. The identified effect of the obesity gene locus on milk energy content suggests an impact on infant nutrition by breast feeding in humans.

  18. Impact of variation at the FTO locus on milk fat yield in Holstein dairy cattle.

    Directory of Open Access Journals (Sweden)

    Lea G Zielke

    Full Text Available This study explores the biological role of the Fat Mass and Obesity associated (FTO gene locus on milk composition in German Holstein cattle. Since FTO controls energy homeostasis and expenditure and the FTO locus has repeatedly shown association with obesity in human studies, we tested FTO as a candidate gene in particular for milk fat yield, which represents a high amount of energy secreted during lactation. The study was performed on 2,402 bulls and 860 cows where dense milk composition data were available. Genetic information was taken from a 2 Mb region around FTO. Five SNPs and two haplotype blocks in a 725 kb region covering FTO and the neighboring genes RPGRIP1L, U6ATAC, and 5 S rRNA were associated with milk fat yield and also affected protein yield in the same direction. Interestingly, higher frequency SNP alleles and haplotypes within the FTO gene increased milk fat and protein yields by up to 2.8 and 2.2 kg per lactation, respectively, while the most frequent haplotype in the upstream block covering exon 1 of FTO to exon 15 of RPGRIP1L had opposite effects with lower fat and milk yield. Both haplotype blocks were also significant in cows. The loci accounted for about 1% of the corresponding trait variance in the population. The association signals not only provided evidence for at least two causative mutations in the FTO locus with a functional effect on milk but also milk protein yield. The pleiotropic effects suggest a biological function on the usage of energy resources and the control of energy balance rather than directly affecting fat and protein synthesis. The identified effect of the obesity gene locus on milk energy content suggests an impact on infant nutrition by breast feeding in humans.

  19. Adult onset global loss of the fto gene alters body composition and metabolism in the mouse.

    Directory of Open Access Journals (Sweden)

    Fiona McMurray

    Full Text Available The strongest BMI-associated GWAS locus in humans is the FTO gene. Rodent studies demonstrate a role for FTO in energy homeostasis and body composition. The phenotypes observed in loss of expression studies are complex with perinatal lethality, stunted growth from weaning, and significant alterations in body composition. Thus understanding how and where Fto regulates food intake, energy expenditure, and body composition is a challenge. To address this we generated a series of mice with distinct temporal and spatial loss of Fto expression. Global germline loss of Fto resulted in high perinatal lethality and a reduction in body length, fat mass, and lean mass. When ratio corrected for lean mass, mice had a significant increase in energy expenditure, but more appropriate multiple linear regression normalisation showed no difference in energy expenditure. Global deletion of Fto after the in utero and perinatal period, at 6 weeks of age, removed the high lethality of germline loss. However, there was a reduction in weight by 9 weeks, primarily as loss of lean mass. Over the subsequent 10 weeks, weight converged, driven by an increase in fat mass. There was a switch to a lower RER with no overall change in food intake or energy expenditure. To test if the phenotype can be explained by loss of Fto in the mediobasal hypothalamus, we sterotactically injected adeno-associated viral vectors encoding Cre recombinase to cause regional deletion. We observed a small reduction in food intake and weight gain with no effect on energy expenditure or body composition. Thus, although hypothalamic Fto can impact feeding, the effect of loss of Fto on body composition is brought about by its actions at sites elsewhere. Our data suggest that Fto may have a critical role in the control of lean mass, independent of its effect on food intake.

  20. Genetic association of SNPs in the FTO gene and predisposition to obesity in Malaysian Malays

    International Nuclear Information System (INIS)

    Apalasamy, Y.D.; Ming, M.F.; Rampal, S.; Bulgiba, A.; Mohamed, Z.

    2012-01-01

    The common variants in the fat mass- and obesity-associated (FTO) gene have been previously found to be associated with obesity in various adult populations. The objective of the present study was to investigate whether the single nucleotide polymorphisms (SNPs) and linkage disequilibrium (LD) blocks in various regions of the FTO gene are associated with predisposition to obesity in Malaysian Malays. Thirty-one FTO SNPs were genotyped in 587 (158 obese and 429 non-obese) Malaysian Malay subjects. Obesity traits and lipid profiles were measured and single-marker association testing, LD testing, and haplotype association analysis were performed. LD analysis of the FTO SNPs revealed the presence of 57 regions with complete LD (D' = 1.0). In addition, we detected the association of rs17817288 with low-density lipoprotein cholesterol. The FTO gene may therefore be involved in lipid metabolism in Malaysian Malays. Two haplotype blocks were present in this region of the FTO gene, but no particular haplotype was found to be significantly associated with an increased risk of obesity in Malaysian Malays

  1. Genetic association of SNPs in the FTO gene and predisposition to obesity in Malaysian Malays

    Energy Technology Data Exchange (ETDEWEB)

    Apalasamy, Y.D. [Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur (Malaysia); Ming, M.F.; Rampal, S.; Bulgiba, A. [Julius Centre University of Malaya, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur (Malaysia); Mohamed, Z. [Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur (Malaysia)

    2012-08-24

    The common variants in the fat mass- and obesity-associated (FTO) gene have been previously found to be associated with obesity in various adult populations. The objective of the present study was to investigate whether the single nucleotide polymorphisms (SNPs) and linkage disequilibrium (LD) blocks in various regions of the FTO gene are associated with predisposition to obesity in Malaysian Malays. Thirty-one FTO SNPs were genotyped in 587 (158 obese and 429 non-obese) Malaysian Malay subjects. Obesity traits and lipid profiles were measured and single-marker association testing, LD testing, and haplotype association analysis were performed. LD analysis of the FTO SNPs revealed the presence of 57 regions with complete LD (D' = 1.0). In addition, we detected the association of rs17817288 with low-density lipoprotein cholesterol. The FTO gene may therefore be involved in lipid metabolism in Malaysian Malays. Two haplotype blocks were present in this region of the FTO gene, but no particular haplotype was found to be significantly associated with an increased risk of obesity in Malaysian Malays.

  2. Association between FTO variant and change in body weight and its interaction with dietary factors

    DEFF Research Database (Denmark)

    Vimaleswaran, Karani S; Ängquist, Lars; Hansen, Rikke D

    2012-01-01

    Although FTO is an established obesity-susceptibility locus, it remains unknown whether it influences weight change in adult life and whether diet attenuates this association. Therefore, we investigated the association of FTO-rs9939609 with changes in weight and waist circumference (WC) during 6......-analyses, FTO-rs9939609 was associated with BMI (β (SE), 0.17 (0.08) kg·m(-2)/allele; P = 0.034) and WC (0.47 (0.21) cm/allele; P = 0.026) at baseline, but not with weight change (5.55 (12.5) g·year(-1)/allele; P = 0.66) during follow up. In the CNC-analysis, FTO-rs9939609 was associated with increased risk...... of being a weight-gainer (OR: 1.1; P = 0.045). We observed no interaction between FTO-rs9939609 and dietary fat, protein and carbohydrate, and GI on BMI and WC at baseline or on change in weight and WC. FTO-rs9939609 is associated with BMI and WC at baseline, but association with weight gain is weak...

  3. Genetic association of SNPs in the FTO gene and predisposition to obesity in Malaysian Malays

    Directory of Open Access Journals (Sweden)

    Y.D. Apalasamy

    2012-12-01

    Full Text Available The common variants in the fat mass- and obesity-associated (FTO gene have been previously found to be associated with obesity in various adult populations. The objective of the present study was to investigate whether the single nucleotide polymorphisms (SNPs and linkage disequilibrium (LD blocks in various regions of the FTO gene are associated with predisposition to obesity in Malaysian Malays. Thirty-one FTO SNPs were genotyped in 587 (158 obese and 429 non-obese Malaysian Malay subjects. Obesity traits and lipid profiles were measured and single-marker association testing, LD testing, and haplotype association analysis were performed. LD analysis of the FTO SNPs revealed the presence of 57 regions with complete LD (D’ = 1.0. In addition, we detected the association of rs17817288 with low-density lipoprotein cholesterol. The FTO gene may therefore be involved in lipid metabolism in Malaysian Malays. Two haplotype blocks were present in this region of the FTO gene, but no particular haplotype was found to be significantly associated with an increased risk of obesity in Malaysian Malays.

  4. Macronutrients and the FTO gene expression in hypothalamus; a systematic review of experimental studies.

    Science.gov (United States)

    Doaei, Saeid; Kalantari, Naser; Mohammadi, Nastaran Keshavarz; Tabesh, Ghasem Azizi; Gholamalizadeh, Maryam

    The various studies have examined the relationship between FTO gene expression and macronutrients levels. In order to obtain better viewpoint from this interactions, all of existing studies were reviewed systematically. All published papers have been obtained and reviewed using standard and sensitive keywords from databases such as CINAHL, Embase, PubMed, PsycInfo, and the Cochrane, from 1990 to 2016. The results indicated that all of 6 studies that met the inclusion criteria (from a total of 428 published article) found FTO gene expression changes at short-term follow-ups. Four of six studies found an increased FTO gene expression after calorie restriction, while two of them indicated decreased FTO gene expression. The effect of protein, carbohydrate and fat were separately assessed and suggested by all of six studies. In Conclusion, The level of FTO gene expression in hypothalamus is related to macronutrients levels. Future research should evaluate the long-term impact of dietary interventions. Copyright © 2017. Published by Elsevier B.V.

  5. Macronutrients and the FTO gene expression in hypothalamus; a systematic review of experimental studies

    Directory of Open Access Journals (Sweden)

    Saeid Doaei

    2017-03-01

    Full Text Available The various studies have examined the relationship between FTO gene expression and macronutrients levels. In order to obtain better viewpoint from this interactions, all of existing studies were reviewed systematically. All published papers have been obtained and reviewed using standard and sensitive keywords from databases such as CINAHL, Embase, PubMed, PsycInfo, and the Cochrane, from 1990 to 2016. The results indicated that all of 6 studies that met the inclusion criteria (from a total of 428 published article found FTO gene expression changes at short-term follow-ups. Four of six studies found an increased FTO gene expression after calorie restriction, while two of them indicated decreased FTO gene expression. The effect of protein, carbohydrate and fat were separately assessed and suggested by all of six studies. In Conclusion, The level of FTO gene expression in hypothalamus is related to macronutrients levels. Future research should evaluate the long-term impact of dietary interventions.

  6. Immobilization of azurin with retention of its native electrochemical properties at alkylsilane self-assembled monolayer modified indium tin oxide

    International Nuclear Information System (INIS)

    Ashur, Idan; Jones, Anne K.

    2012-01-01

    Highlights: ► Immobilization of azurin at indium tin oxide causes modification of the native redox properties. ► Azurin was immobilized at alkylsilane self-assembled monolayer on indium tin oxide. ► Native, solution redox properties are retained for the immobilized protein on the SAM. ► Technique should be widely applicable to other redox proteins. - Abstract: Indium tin oxide (ITO) is a promising material for developing spectroelectrochemical methods due to its combination of excellent transparency in the visible region and high conductivity over a broad range of potential. However, relatively few examples of immobilization of redox proteins at ITO with retention of the ability to transfer electrons with the underlying material with native characteristics have been reported. In this work, we utilize an alkylsilane functionalized ITO surface as a biocompatible interface for immobilization of the blue copper protein azurin. Adsorption of azurin at ITO as well as ITO coated with self-assembled monolayers of (3-mercaptopropyl)trimethoxysilane (MPTMS) and n-decyltrimethoxysilane (DTMS) was achieved, and immobilized protein probed using protein film electrochemistry. The native redox properties of the protein were perturbed by adsorption directly to ITO or to the MPTMS layer on an ITO surface. However, azurin adsorbed at a DTMS covered ITO surface retained native electrochemical properties (E 1/2 = 122 ± 5 mV vs. Ag/AgCl) and could exchange electrons directly with the underlying ITO layer without need for an intervening chemical mediator. These results open new opportunities for immobilizing functional redox proteins at ITO and developing spectroelectrochemical methods for investigating them.

  7. Tin

    Science.gov (United States)

    Kamilli, Robert J.; Kimball, Bryn E.; Carlin, James F.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Tin (Sn) is one of the first metals to be used by humans. Almost without exception, tin is used as an alloy. Because of its hardening effect on copper, tin was used in bronze implements as early as 3500 B.C. The major uses of tin today are for cans and containers, construction materials, transportation materials, and solder. The predominant ore mineral of tin, by far, is cassiterite (SnO2).In 2015, the world’s total estimated mine production of tin was 289,000 metric tons of contained tin. Total world reserves at the end of 2016 were estimated to be 4,700,000 metric tons. China held about 24 percent of the world’s tin reserves and accounted for 38 percent of the world’s 2015 production of tin.The proportion of scrap used in tin production is between 10 and 25 percent. Unlike many metals, tin recycling is relatively efficient, and the fraction of tin in discarded products that get recycled is greater than 50 percent.Only about 20 percent of the world’s identified tin resources occur as primary hydrothermal hard-rock veins, or lodes. These lodes contain predominantly high-temperature minerals and almost invariably occur in close association with silicic, peraluminous granites. About 80 percent of the world’s identified tin resources occur as unconsolidated secondary or placer deposits in riverbeds and valleys or on the sea floor. The largest concentration of both onshore and offshore placers is in the extensive tin belt of Southeast Asia, which stretches from China in the north, through Thailand, Burma (also referred to as Myanmar), and Malaysia, to the islands of Indonesia in the south. Furthermore, tin placers are almost always found closely allied to the granites from which they originate. Other countries with significant tin resources are Australia, Bolivia, and Brazil.Most hydrothermal tin deposits belong to what can be thought of as a superclass of porphyry-greisen deposits. The hydrothermal tin deposits are all characterized by a close spatial

  8. Expression studies of the obesity candidate gene FTO in pig

    DEFF Research Database (Denmark)

    Madsen, Majbritt Busk; Birck, Malene Muusfeldt; Fredholm, Merete

    2010-01-01

    Obesity is an increasing problem worldwide and research on candidate genes in good animal models is highly needed. The pig is an excellent model as its metabolism, organ size, and eating habits resemble that of humans. The present study is focused on the characterization of the fat mass and obesity...... associated gene (FTO) in pig. This gene has recently been associated with increased body mass index in several human populations. To establish information on the expression profile of FTO in the pig we performed quantitative PCR in a panel of adult pig tissues and in tissues sampled at different...... and cerebellum). Additionally, in order to see the involvement of the FTO gene in obesity, the changes in expression level were investigated in a nutritional study in brain of Gottingen minipigs under a high cholesterol diet. Significantly higher (P

  9. Photoelectrochemical Properties of FeO Supported on TiO2-Based Thin Films Converted from Self-Assembled Hydrogen Titanate Nanotube Powders

    Directory of Open Access Journals (Sweden)

    Kyung-Jong Noh

    2012-01-01

    Full Text Available A photoanode was fabricated using hematite (α-Fe2O3 nanoparticles which had been held in a thin film of hydrogen titanate nanotubes (H-TiNT, synthesized by repetitive self-assembling method on FTO (fluorine-doped tin oxide glass, which were incorporated via dipping process in aqueous Fe(NO33 solution. Current voltage (I-V electrochemical properties of the photoanode heat-treated at 500°C for 10 min in air were evaluated under ultraviolet-visible light irradiation. Microstructure and crystallinity changes were also investigated. The prepared Fe2O3/H-TiNT/FTO composite thin film exhibited about threefold as much photocurrent as the Fe2O3/FTO film. The improvement in photocurrent was considered to be caused by reduced recombination of electrons and holes, with an appropriate amount of Fe2O3 spherical nanoparticles supported on the H-TiNT/FTO film. Nanosized spherical Fe2O3 particles with about 65 wt% on the H-TiNT/FTO film showed best performance in our study.

  10. Effect of tin oxide nano particles and heat treatment on decay resistance and physical properties of beech wood (Fagus orientalis

    Directory of Open Access Journals (Sweden)

    Maryam Ghorbani

    2014-11-01

    Full Text Available This research was conducted to investigate the effect of Tin oxide nanoparticles and heat treatment on decay resistance and physical properties of beech wood. Biological and physical test samples were prepared according to EN-113 and ASTM-D4446-05 standards respectively. Samples were classified into 4 groups: control, impregnation with Tin oxide nanoparticles, heat treatment and nano-heat treatment. Impregnation with Tin oxide nano at 5000ppm concentration was carried out in the cylinder according to Bethell method. Then, samples were heated at 140, 160 and 185˚C for 2 and 4 hours. According to results, decay resistance improved with increasing time and temperature of heat treatment. Least weight loss showed 46.39% reduction in nano-heat samples treated at 180˚C for 4 hours in comparison with control at highest weight loss. Nano-heat treated samples demonstrated the maximum amount of water absorption without significant difference with control and nanoparticles treated samples. Increase in heat treatment temperature reduced water absorption so that it is revealed 47.8% reduction in heat treated samples at 180°C for 4h after 24h immersion in water. In nano-heat treated samples at 180˚C for 2h was measured least volume swelling. Volume swelling in nano-treated samples decreased 8.7 and 22.76% after 2 and 24 h immersion in comparison with the control samples respectively.

  11. Effect of Temperature on Nucleation of Nanocrystalline Indium Tin Oxide Synthesized by Electron-Beam Evaporation

    Science.gov (United States)

    Shen, Yan; Zhao, Yujun; Shen, Jianxing; Xu, Xiangang

    2017-07-01

    Indium tin oxide (ITO) has been widely applied as a transparent conductive layer and optical window in light-emitting diodes, solar cells, and touch screens. In this paper, crystalline nano-sized ITO dendrites are obtained using an electron-beam evaporation technique. The surface morphology of the obtained ITO was studied for substrate temperatures of 25°C, 130°C, 180°C, and 300°C. Nano-sized crystalline dendrites were synthesized only at a substrate temperature of 300°C. The dendrites had a cubic structure, confirmed by the results of x-ray diffraction and transmission electron microscopy. The growth mechanism of the nano-crystalline dendrites could be explained by a vapor-liquid-solid (VLS) growth model. The catalysts of the VLS process were indium and tin droplets, confirmed by varying the substrate temperature, which further influenced the nucleation of the ITO dendrites.

  12. Fabrication of Polymeric Antireflection Film Manufactured by Anodic Aluminum Oxide Template on Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Jenn-Kai Tsai

    2017-03-01

    Full Text Available In this study, high energy conversion efficient dye-sensitized solar cells (DSSCs were successfully fabricated by attaching a double anti-reflection (AR layer, which is composed of a subwavelength moth-eye structured polymethyl methacrylate (PMMA film and a polydimethylsiloxane (PDMS film. An efficiency of up to 6.79% was achieved. The moth-eye structured PMMA film was fabricated by using an anodic aluminum oxide (AAO template which is simple, low-cost and scalable. The nano-pattern of the AAO template was precisely reproduced onto the PMMA film. The photoanode was composed of Titanium dioxide (TiO2 nanoparticles (NPs with a diameter of 25 nm deposited on the fluorine-doped tin oxide (FTO glass substrate and the sensitizer N3. The double AR layer was proved to effectively improve the short-circuit current density (JSC and conversion efficiency from 14.77 to 15.79 mA/cm2 and from 6.26% to 6.79%, respectively.

  13. Wrinkle-free graphene electrodes in zinc tin oxide thin-film transistors for large area applications

    Science.gov (United States)

    Lee, Se-Hee; Kim, Jae-Hee; Park, Byeong-Ju; Park, Jozeph; Kim, Hyun-Suk; Yoon, Soon-Gil

    2017-02-01

    Wrinkle-free graphene was used to form the source-drain electrodes in thin film transistors based on a zinc tin oxide (ZTO) semiconductor. A 10 nm thick titanium adhesion layer was applied prior to transferring a conductive graphene film on top of it by chemical detachment. The formation of an interlayer oxide between titanium and graphene allows the achievement of uniform surface roughness over the entire substrate area. The resulting devices were thermally treated in ambient air, and a substantial decrease in field effect mobility is observed with increasing annealing temperature. The increase in electrical resistivity of the graphene film at higher annealing temperatures may have some influence, however the growth of the oxide interlayer at the ZTO/Ti boundary is suggested to be most influential, thereby inducing relatively high contact resistance.

  14. ZnO-Nanorod Dye-Sensitized Solar Cells: New Structure without a Transparent Conducting Oxide Layer

    Directory of Open Access Journals (Sweden)

    Ming-Hong Lai

    2010-01-01

    Full Text Available Conventional nanorod-based dye-sensitized solar cells (DSSCs are fabricated by growing nanorods on top of a transparent conducting oxide (TCO, typically fluorine-doped tin oxide—FTO. The heterogeneous interface between the nanorod and TCO forms a source for carrier scattering. This work reports on a new DSSC architecture without a TCO layer. The TCO-less structure consists of ZnO nanorods grown on top of a ZnO film. The ZnO film replaced FTO as the TCO layer and the ZnO nanorods served as the photoanode. The ZnO nanorod/film structure was grown by two methods: (1 one-step chemical vapor deposition (CVD (2 two-step chemical bath deposition (CBD. The thicknesses of the nanorods/film grown by CVD is more uniform than that by CBD. We demonstrate that the TCO-less DSSC structure can operate properly as solar cells. The new DSSCs yield the best short-current density of 3.96 mA/cm2 and a power conversion efficiency of 0.73% under 85 mW/cm2 of simulated solar illumination. The open-circuit voltage of 0.80 V is markedly higher than that from conventional ZnO DSSCs.

  15. An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Yu Hua; Zhang Shanqing; Zhao Huijun; Will, Geoffrey; Liu Porun

    2009-01-01

    A TiO 2 organic sol was synthesised for the preparation of a compact TiO 2 layer on fluorine-doped tin oxide (FTO) glass by a dip-coating technique. The resultant thin film was used for the fabrication of dye-sensitized solar cells (DSSCs). The compact layer typically has a thickness of ca. 110 nm as indicated by its SEM, and consists of anatase as confirmed by the XRD pattern. Compared with the traditional DSSCs without this compact layer, the solar energy-to-electricity conversion efficiency, short-circuit current and open-circuit potential of the DSSCs with the compact layer were improved by 33.3%, 20.3%, and 10.2%, respectively. This can be attributed to the merits brought by the compact layer. It can effectively improve adherence of TiO 2 to FTO surface, provide a larger TiO 2 /FTO contact area, and reduce the electron recombination by blocking the direct contact between the redox electrolyte and the conductive FTO surface

  16. Ethylene Gas Sensing Properties of Tin Oxide Nanowires Synthesized via CVD Method

    Science.gov (United States)

    Akhir, Maisara A. M.; Mohamed, Khairudin; Rezan, Sheikh A.; Arafat, M. M.; Haseeb, A. S. M. A.; Uda, M. N. A.; Nuradibah, M. A.

    2018-03-01

    This paper studies ethylene gas sensing performance of tin oxide (SnO2) nanowires (NWs) as sensing material synthesized using chemical vapor deposition (CVD) technique. The effect of NWs diameter on ethylene gas sensing characteristics were investigated. SnO2 NWs with diameter of ∼40 and ∼240 nm were deposited onto the alumina substrate with printed gold electrodes and tested for sensing characteristic toward ethylene gas. From the finding, the smallest diameter of NWs (42 nm) exhibit fast response and recovery time and higher sensitivity compared to largest diameter of NWs (∼240 nm). Both sensor show good reversibility features for ethylene gas sensor.

  17. Gold island films on indium tin oxide for localized surface plasmon sensing

    International Nuclear Information System (INIS)

    Szunerits, Sabine; Praig, Vera G; Manesse, Mael; Boukherroub, Rabah

    2008-01-01

    Mechanically, chemically and optically stable gold island films were prepared on indium tin oxide (ITO) substrates by direct thermal evaporation of thin gold films (2-6 nm) without the need for pre- or post-coating. The effect of mild thermal annealing (150 deg. C, 12 h) or short high temperature annealing (500 deg. C, 1 min) on the morphology of the gold nanostructures was investigated. ITO covered with 2 nm gold nanoislands and annealed at 500 deg. C for 1 min was investigated for its ability to detect the adsorption of biotinylated bovine serum albumin using local surface plasmon resonance (LSPR), and its subsequent molecular recognition of avidin

  18. Heterojunction Structures for Photon Detector Applications

    Science.gov (United States)

    2014-07-21

    IR: Fourier-transform infrared FTO: Fluorine doped tin oxide G-R: generation-recombination HEIWIP: heterojunction interfacial workfunction internal...SECURITY CLASSIFICATION OF: The work presented here report findings in (1) infrared detectors based on p-GaAs/AlGaAs heterojunctions , (2) J and H...aggregate sensitized heterojunctions for solar cell and photon detection applications, (3) heterojunctions sensitized with quantum dots as low cost

  19. The fat mass and obesity associated gene FTO functions in the brain to regulate postnatal growth in mice.

    Directory of Open Access Journals (Sweden)

    Xue Gao

    2010-11-01

    Full Text Available FTO (fat mass and obesity associated was identified as an obesity-susceptibility gene by several independent large-scale genome association studies. A cluster of SNPs (single nucleotide polymorphism located in the first intron of FTO was found to be significantly associated with obesity-related traits, such as body mass index, hip circumference, and body weight. FTO encodes a protein with a novel C-terminal α-helical domain and an N-terminal double-strand β-helix domain which is conserved in Fe(II and 2-oxoglutarate-dependent oxygenase family. In vitro, FTO protein can demethylate single-stranded DNA or RNA with a preference for 3-methylthymine or 3-methyluracil. Its physiological substrates and function, however, remain to be defined. Here we report the generation and analysis of mice carrying a conditional deletion allele of Fto. Our results demonstrate that Fto plays an essential role in postnatal growth. The mice lacking Fto completely display immediate postnatal growth retardation with shorter body length, lower body weight, and lower bone mineral density than control mice, but their body compositions are relatively normal. Consistent with the growth retardation, the Fto mutant mice have reduced serum levels of IGF-1. Moreover, despite the ubiquitous expression of Fto, its specific deletion in the nervous system results in similar phenotypes as the whole body deletion, indicating that Fto functions in the central nerve system to regulate postnatal growth.

  20. Correlative scanning electron and confocal microscopy imaging of labeled cells coated by indium-tin-oxide

    KAUST Repository

    Rodighiero, Simona

    2015-03-22

    Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field-of-view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold-labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium-tin-oxide was deposited by ion-sputtering on gold-decorated HeLa cells and neurons. Indium-tin-oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold-conjugated markers. © 2015 Wiley Periodicals, Inc.

  1. Oxidation of Hydrocarbons on the Surface of Tin Dioxide Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Izabela Polowczyk

    2011-04-01

    Full Text Available The paper presents the results of our investigation on the effect of the molecular structure of organic vapors on the characteristics of resistive chemical gas sensors. The sensors were based on tin dioxide and prepared by means of thick film technology. The electrical and catalytic examinations showed that the abstraction of two hydrogen atoms from the organic molecule and formation of a water in result of reaction with a chemisorbed oxygen ion, determine the rate of oxidation reactions, and thus the sensor performance. The rate of the process depends on the order of carbon atoms and Lewis acidity of the molecule. Therefore, any modification of the surface centers of a sensor material, modifies not only the sensor sensitivity, but also its selectivity.

  2. Indium tin oxide surface smoothing by gas cluster ion beam

    CERN Document Server

    Song, J H; Choi, W K

    2002-01-01

    CO sub 2 cluster ions are irradiated at the acceleration voltage of 25 kV to remove hillocks on indium tin oxide (ITO) surfaces and thus to attain highly smooth surfaces. CO sub 2 monomer ions are also bombarded on the ITO surfaces at the same acceleration voltage to compare sputtering phenomena. From the atomic force microscope results, the irradiation of monomer ions makes the hillocks sharper and the surfaces rougher from 1.31 to 1.6 nm in roughness. On the other hand, the irradiation of CO sub 2 cluster ions reduces the height of hillocks and planarize the ITO surfaces as smooth as 0.92 nm in roughness. This discrepancy could be explained by large lateral sputtering yield of the cluster ions and re-deposition of sputtered particles by the impact of the cluster ions on surfaces.

  3. Fabrication of nickel oxide and Ni-doped indium tin oxide thin films using pyrosol process

    International Nuclear Information System (INIS)

    Nakasa, Akihiko; Adachi, Mami; Usami, Hisanao; Suzuki, Eiji; Taniguchi, Yoshio

    2006-01-01

    Organic light emitting diodes (OLEDs) need indium tin oxide (ITO) anodes with highly smooth surface. The work function of ITO, about 4.8 eV, is generally rather lower than the optimum level for application to OLEDs. In this work, NiO was deposited by pyrosol process on pyrosol ITO film to increase the work function of the ITO for improving the performance of OLEDs. It was confirmed that NiO was successfully deposited on pyrosol ITO film and the NiO deposition increased the work function of pyrosol ITO, using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and atmospheric photoelectron spectroscopy. Furthermore, doping ITO with Ni succeeded in producing the Ni-doped ITO film with high work function and lower sheet resistance

  4. Photovoltaic performance of multi-wall carbon nanotube/PEDOT:PSS composite on the counter electrode of a dye-sensitized solar cell

    Science.gov (United States)

    Rhee, Yonghoon; Ko, Minjae; Jin, Hwayoung; Jin, Joon-Hyung; Min, Nam Ki

    2014-08-01

    A composite of poly(3,4-ethylendioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and multi-walled carbon nanotubes (MWCNTs) was cyclovoltametrically electropolymerized on a fluorine-doped tin oxide (FTO) substrate and used as a counter electrode for a dye-sensitized solar cell. The PEDOT:PSS-MWCNT composite film was investigated using scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The CV diagrams showed that the PEDOT:PSS-MWCNT composite film has better electro-catalytic activity for the I-/I3- redox reaction than the conventional platinized FTO. The best energy conversion efficiency was observed in EIS data with an MWCNT content of 0.002 wt %.

  5. Deposition of indium tin oxide films on acrylic substrates by radiofrequency magnetron sputtering

    International Nuclear Information System (INIS)

    Chiou, B.S.; Hsieh, S.T.; Wu, W.F.

    1994-01-01

    Indium tin oxide (ITO) films were deposited onto acrylic substrates by rf magnetron sputtering. Low substrate temperature (< 80 C) and low rf power (< 28 W) were maintained during sputtering to prevent acrylic substrate deformation. The influence of sputtering parameters, such as rf power, target-to-substrate distance, and chamber pressure, on the film deposition rate, the electrical properties, as well as the optical properties of the deposited films was investigated. Both the refractive index and the extinction coefficient were derived. The high reflection at wavelengths greater than 3 μm made these sputtered ITO films applicable to infrared mirrors

  6. Low Reflectivity and High Flexibility of Tin-Doped Indium Oxide Nanofiber Transparent Electrodes

    KAUST Repository

    Wu, Hui

    2011-01-12

    Tin-doped indium oxide (ITO) has found widespread use in solar cells, displays, and touch screens as a transparent electrode; however, two major problems with ITO remain: high reflectivity (up to 10%) and insufficient flexibility. Together, these problems severely limit the applications of ITO films for future optoelectronic devices. In this communication, we report the fabrication of ITO nanofiber network transparent electrodes. The nanofiber networks show optical reflectivity as low as 5% and high flexibility; the nanofiber networks can be bent to a radius of 2 mm with negligible changes in the sheet resistance. © 2010 American Chemical Society.

  7. Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Hsu, Ryan S; Higgins, Drew; Chen Zhongwei

    2010-01-01

    Novel tin-oxide (SnO 2 )-coated single-walled carbon nanotube (SWNT) bundles supporting platinum (Pt) electrocatalysts for ethanol oxidation were developed for direct ethanol fuel cells. SnO 2 -coated SWNT (SnO 2 -SWNT) bundles were synthesized by a simple chemical-solution route. SnO 2 -SWNT bundles supporting Pt (Pt/SnO 2 -SWNTs) electrocatalysts and SWNT-supported Pt (Pt/SWNT) electrocatalysts were prepared by an ethylene glycol reduction method. The catalysts were physically characterized using TGA, XRD and TEM and electrochemically evaluated through cyclic voltammetry experiments. The Pt/SnO 2 -SWNTs showed greatly enhanced electrocatalytic activity for ethanol oxidation in acid medium, compared to the Pt/SWNT. The optimal SnO 2 loading of Pt/SnO 2 -SWNT catalysts with respect to specific catalytic activity for ethanol oxidation was also investigated.

  8. Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells.

    Science.gov (United States)

    Hsu, Ryan S; Higgins, Drew; Chen, Zhongwei

    2010-04-23

    Novel tin-oxide (SnO(2))-coated single-walled carbon nanotube (SWNT) bundles supporting platinum (Pt) electrocatalysts for ethanol oxidation were developed for direct ethanol fuel cells. SnO(2)-coated SWNT (SnO(2)-SWNT) bundles were synthesized by a simple chemical-solution route. SnO(2)-SWNT bundles supporting Pt (Pt/SnO(2)-SWNTs) electrocatalysts and SWNT-supported Pt (Pt/SWNT) electrocatalysts were prepared by an ethylene glycol reduction method. The catalysts were physically characterized using TGA, XRD and TEM and electrochemically evaluated through cyclic voltammetry experiments. The Pt/SnO(2)-SWNTs showed greatly enhanced electrocatalytic activity for ethanol oxidation in acid medium, compared to the Pt/SWNT. The optimal SnO(2) loading of Pt/SnO(2)-SWNT catalysts with respect to specific catalytic activity for ethanol oxidation was also investigated.

  9. Fabrication and performance of the Pt-Ru/Ni-P/FTO counter electrode for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ma, Huanmei; Tian, Jianhua; Bai, Shuming; Liu, Xiaodong; Shan, Zhongqiang

    2014-01-01

    Highlights: • Pt-Ru alloy acts as the catalyst of counter electrodes in dye-sensitized solar cell. • Ni-P/FTO (fluorine-doped SnO 2 ) substrate is prepared by electroless plating method. • Pt-Ru/Ni-P/FTO counter electrode is fabricated by electrodeposition method. • The Ni-P sublayer improves the conductivity and light reflectance of FTO substrate. • The cell with Pt-Ru/Ni-P/FTO counter electrode exhibits an improved efficiency. - Abstract: In this paper, Pt-Ru/Ni-P/FTO has been designed and fabricated as the counter electrode for dye-sensitized solar cells. The Pt-Ru catalytic layer and Ni-P alloy sublayer are prepared by traditional electrodeposition method and a simple electroless plating method, respectively, and the preparation conditions have been optimized. The scanning electron microscopy (SEM) images show that the Pt-Ru particles are evenly distributed on FTO and Ni-P/FTO substrate. By X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), it is confirmed that the Ni-P amorphous alloy has been formed, and no other compounds involved Ni and P have been formed. The electrochemical measurement results reveal that the Pt-Ru electrode has higher catalytic activity and stability towards tri-iodine reduction reaction than Pt electrode in the organic medium. The Ni-P sublayer deposited on FTO glasses increases the conductivity and light-reflection ability of the counter electrode, and this contributes to lowering the inner resistance of the cell and improving the light utilization efficiency. Through the photovoltaic test, it is confirmed that the energy conversion efficiency of a single DSSC with the optimized Pt-Ru/Ni-P/FTO counter electrode is increased by 29% compared with that of the cell based on the Pt/FTO counter electrode under the same conditions

  10. FTO genotype, physical activity, and coronary heart disease risk in Swedish men and women.

    Science.gov (United States)

    Gustavsson, Jaana; Mehlig, Kirsten; Leander, Karin; Lissner, Lauren; Björck, Lena; Rosengren, Annika; Nyberg, Fredrik

    2014-04-01

    Variants in the fat mass- and obesity-associated gene (FTO) predisposing to obesity and diabetes mellitus have also been associated with cardiovascular disease. Physical activity has been suggested to attenuate the FTO effect on obesity, but it is unknown whether this is also true for cardiovascular disease. Therefore, we explored whether physical activity modifies the FTO association with coronary heart disease (CHD). FTO rs9939609 (T>A) polymorphism was genotyped in 2 Swedish population-based case-control studies with 1743 CHD cases and 4402 population controls (25-74 years of age; 41% women). Leisure time physical activity was assessed by questionnaires, and 3 levels were defined: low, medium, and high. Overall, carriers of the FTO A allele had an increased risk of CHD (odds ratio, 1.20; 95% confidence interval, 1.06-1.37) adjusted for age, sex, study, and body mass index. Although A-allele carriers with low physical activity had the highest CHD risk (odds ratio, 3.30; 95% confidence interval, 2.44-4.46) compared with those with TT genotype and high activity, the effects of FTO genotype and physical activity on CHD risk were approximately additive, indicating the absence of additive interaction. The stratum-specific relative risks of CHD from the A allele in subjects with low, medium, and high physical activity were odds ratio 1.11 (95% confidence interval, 0.77-1.60), 1.22 (1.04-1.44), and 1.38 (1.06-1.80), respectively, but the suggested multiplicative interaction was not significant. FTO rs9939609 A-allele carriers have an increased CHD risk, and the association is not counteracted by increased physical activity.

  11. Loss-of-Function Mutation in the Dioxygenase-Encoding FTO Gene Causes Severe Growth Retardation and Multiple Malformations

    Science.gov (United States)

    Boissel, Sarah; Reish, Orit; Proulx, Karine; Kawagoe-Takaki, Hiroko; Sedgwick, Barbara; Yeo, Giles S.H.; Meyre, David; Golzio, Christelle; Molinari, Florence; Kadhom, Noman; Etchevers, Heather C.; Saudek, Vladimir; Farooqi, I. Sadaf; Froguel, Philippe; Lindahl, Tomas; O'Rahilly, Stephen; Munnich, Arnold; Colleaux, Laurence

    2009-01-01

    FTO is a nuclear protein belonging to the AlkB-related non-haem iron- and 2-oxoglutarate-dependent dioxygenase family. Although polymorphisms within the first intron of the FTO gene have been associated with obesity, the physiological role of FTO remains unknown. Here we show that a R316Q mutation, inactivating FTO enzymatic activity, is responsible for an autosomal-recessive lethal syndrome. Cultured skin fibroblasts from affected subjects showed impaired proliferation and accelerated senescence. These findings indicate that FTO is essential for normal development of the central nervous and cardiovascular systems in human and establish that a mutation in a human member of the AlkB-related dioxygenase family results in a severe polymalformation syndrome. PMID:19559399

  12. The Association Between the FTO rs9939609 Variant and Malignant Pleural Mesothelioma Risk: A Case-Control Study.

    Science.gov (United States)

    Khella, Mina S; Salem, Ahmed M; Abdel-Rahman, Omar; Saad, Amr S

    2018-02-01

    Despite the established link between malignant pleural mesothelioma (MPM) and asbestos exposure, genetic risk factors may play a key role in MPM pathogenesis. The rs9939609 polymorphism in the FTO gene has recently been implicated as a risk factor for some types of cancer, such as breast, pancreatic, and prostate cancers. FTO variation is associated with altered adipocytokine expression and oxidative stress inflammation, which may influence asbestos mediated-carcinogenesis. This is the first study to investigate a possible association between this polymorphism and MPM risk. FTO rs9939609 (T >A) genotypes were screened using a TaqMan ® Genotyping Assay in a total of 235 Egyptian subjects (86 MPM patients versus 149 controls). The chi-square test and logistic regression were used to evaluate the association between the candidate variant and MPM risk using a case-control design. In the additive genetic model, the AT and AA genotypes were associated with a 2.48-fold (95% confidence intervals [CI] = 1.04-5.92, p = 0.04) and a 3.46-fold (95% CI = 0.99-12.01, p = 0.051) increase in the odds of developing MPM, respectively, when compared to the TT genotype after adjustment for body mass index, age, and gender. Additionally, in the dominant genetic model AT/AA genotypes were associated with a 2.63-fold increase in the odds of developing MPM (95% CI = 1.13-6.12, p = 0.025). The present study shows for the first time that rs9939609 polymorphism in the FTO gene may be a genetic risk factor for MPM. This study highlights the association of this genetic polymorphism with cancer susceptibility, and therefore, it should be investigated in various other populations, in relation to different types of cancer, and with larger sample sizes.

  13. TDPAC characterization of tin oxides using 181Ta

    International Nuclear Information System (INIS)

    Moreno, M.S.; Desimoni, J.; Requejo, F.G.; Renteria, M.; Bibiloni, A.G.

    1991-01-01

    In connection with a general study of the evolution of tin-oxygen thin films, we report here on the hyperfine interactions of 181 Ta substitutionally replacing tin in the isolated phases SnO and SnO 2 . For this purpose, pure SnO pressed powder and a thin SnO 2 film were implanted with 181 Hf. In both cases, unique quadrupole frequencies were found after thermal annealing treatments. The results indicate that the following hyperfine parameters: ν Q =740.6(2.1) MHz, η=0.07(2) and ν Q =971.5(1.9) MHz, η=0.72(1) characterize 181 Ta and SnO and SnO 2 , respectively. (orig.)

  14. Photoelectrochemical properties of orthorhombic and metastable phase SnS nanocrystals synthesized by a facile colloidal method

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Po-Chia [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Huang, Jow-Lay [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan, ROC (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan, ROC (China); Wang, Sheng-Chang; Shaikh, Muhammad Omar [Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan, ROC (China); Lin, Chia-Yu [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China)

    2015-12-01

    SnS of orthorhombic (OR) and metastable (SnS) phases were synthesized by using a simple and facile colloidal method. The tin precursor was synthesized using tin oxide (SnO) and oleic acid (OA), while the sulfur precursor was prepared using sulfur powder (S) and oleyamine (OLA). The sulfur precursor was injected into the tin precursor and the prepared SnS nanocrystals were precipitated at a final reaction temperature of 180 °C. The results show that hexamethyldisilazane (HMDS) can be successfully used as a surfactant to synthesize monodisperse 20 nm metastable SnS nanoparticles, while OR phase SnS nanosheets were obtained without HMDS. The direct bandgap observed for the metastable SnS phase is higher (1.66 eV) as compared to the OR phase (1.46 eV). The large blueshift in the direct bandgap of metastable SnS is caused by the difference in crystal structure. The blueshift in the direct band gap value for OR-SnS could be explained by quantum confinement in two dimensions in the very thin nanosheets. SnS thin films used as a photo anode in a photoelectrochemical (PEC) cell were prepared by spin coating on the fluorine-doped tin oxide (FTO) substrates. The photocurrent density of the SnS (metastable SnS)/FTO and SnS (OR)/FTO are 191.8 μA/cm{sup 2} and 57.61 μA/cm{sup 2} at an applied voltage of − 1 V at 150 W, respectively. These narrow band gap and low cost nanocrystals can be used for applications in future optoelectronic devices. - Highlights: • A facile method to synthesize two different phases of SnS having different morphological and optical properties. • The phases and morphologies of SnS nanocrystal can be controlled by adding capping surfactant hexamethyldisilazane (HMDS). • As we know, this is the first metastable SnS photoanode for application in a photoelectrochemical cell.

  15. Influence of gaseous annealing environment on the properties of indium-tin-oxide thin films

    International Nuclear Information System (INIS)

    Wang, R.X.; Beling, C.D.; Fung, S.; Djurisic, A.B.; Ling, C.C.; Li, S.

    2005-01-01

    The influence of postannealing in different gaseous environments on the optical properties of indiu-tin-oxide (ITO) thin films deposited on glass substrates using e-beam evaporation has been systematically investigated. It is found that the annealing conditions affect the optical and electrical properties of the films. Atomic force microscopy, x-ray diffraction, and x-ray photoemission spectroscopy (XPS) were employed to obtain information on the chemical state and crystallization of the films. These data suggest that the chemical states and surface morphology of the ITO film are strongly influenced by the gaseous environment during the annealing process. The XPS data indicate that the observed variations in the optical transmittance can be explained by oxygen incorporation into the film, decomposition of the indium oxide phases, as well as the removal of metallic In

  16. Leidt een goed FTO tot beter voorschrijven?

    NARCIS (Netherlands)

    Eimers, M.; Aalst, A. van der; Pelzer, B.J.; Teichert, M.; Wit, H. de

    2008-01-01

    Inleiding - We onderzochten of de kwaliteit van voorschrijven van huisartsen samenhangt met de kwaliteit van het farmacotherapieoverleg (FTO) waaraan deze huisartsen deelnemen. Methode - Als maat voor de kwaliteit van voorschrijven gebruiken we negen voorschrijfindicatoren die ontwikkeld zijn door

  17. Fat phenotype, associated factors and rs9939609 polymorphism of the FTO gene

    Directory of Open Access Journals (Sweden)

    William Alves Lima

    2010-02-01

    Full Text Available The purpose of this work was to review the main results of studies that have analysed the relationship between the rs9939609 single nucleotide polymorphism (SNP of the FTO gene and the manifestation of overweight/obesity with its associated co-morbidity, and to discuss the interaction of this polymorphism with the other factors which cause obesity. The search was performed using the MEDLINE, Highwire, Science Direct and SciELO databases, applying the following key words: FTO rs9939609, obesity genetic, gene associated obesity, FTO contributes obesity. Inclusion criteria were: original articles where the search was performed in humans and including the rs9939609. Articles that analysed the FTO gene associated with preinstalled hormonal diseases were excluded. Of the several SNP associated with the FTO gene, rs9939609 has been the most researched (studied. This SNP comprises the A and T alleles, with the A homozygote being most susceptible to the development of overweight/obesity in all age ranges, especially in the caucasian population. In this situation, the control of environmental factors (alimentation and physical activity can prevent the excessive build up of fats. Obesity is related to the development of non-transmissible chronic illnesses. Association of rs9939609 polymorphism with the lipidic profile and glycemia were observed. The practicing of physical exercise and feeding habits seem to be the main contributors in the development of overweight/obesity and its resulting co-morbidity.

  18. Heat treatable indium tin oxide films deposited with high power pulse magnetron sputtering

    International Nuclear Information System (INIS)

    Horstmann, F.; Sittinger, V.; Szyszka, B.

    2009-01-01

    In this study, indium tin oxide (ITO) films were prepared by high power pulse magnetron sputtering [D. J. Christie, F. Tomasel, W. D. Sproul, D. C. Carter, J. Vac. Sci. Technol. A, 22 (2004) 1415. ] without substrate heating. The ITO films were deposited from a ceramic target at a deposition rate of approx. 5.5 nm*m/min kW. Afterwards, the ITO films were covered with a siliconoxynitride film sputtered from a silicon alloy target in order to prevent oxidation of the ITO film during annealing at 650 deg. C for 10 min in air. The optical and electrical properties as well as the texture and morphology of these films were investigated before and after annealing. Mechanical durability of the annealed films was evaluated at different test conditions. The results were compared with state-of-the art ITO films which were obtained at optimized direct current magnetron sputtering conditions

  19. Hybrid composite thin films composed of tin oxide nanoparticles and cellulose

    International Nuclear Information System (INIS)

    Mahadeva, Suresha K; Nayak, Jyoti; Kim, Jaehwan

    2013-01-01

    This paper reports the preparation and characterization of hybrid thin films consisting of tin oxide (SnO 2 ) nanoparticles and cellulose. SnO 2 nanoparticle loaded cellulose hybrid thin films were fabricated by a solution blending technique, using sodium dodecyl sulfate as a dispersion agent. Scanning and transmission electron microscopy studies revealed uniform dispersion of the SnO 2 nanoparticles in the cellulose matrix. Reduction in the crystalline melting transition temperature and tensile properties of cellulose was observed due to the SnO 2 nanoparticle loading. Potential application of these hybrid thin films as low cost, flexible and biodegradable humidity sensors is examined in terms of the change in electrical resistivity of the material exposed to a wide range of humidity as well as its response–recovery behavior. (paper)

  20. Surface passivation function of indium-tin-oxide-based nanorod structural sensors

    International Nuclear Information System (INIS)

    Lin, Tzu-Shun; Lee, Ching-Ting; Lee, Hisn-Ying; Lin, Chih-Chien

    2012-01-01

    Employing self-shadowing traits of an oblique-angle electron-beam deposition system, various indium tin oxide (ITO) nanorod arrays were deposited on a silicon substrate and used as extended-gate field-effect-transistor (EGFET) pH sensors. The length and morphology of the deposited ITO nanorod arrays could be changed and controlled under different deposition conditions. The ITO nanorod structural EGFET pH sensors exhibited high sensing performances owing to the larger sensing surface area. The sensitivity of the pH sensors with 150-nm-length ITO nanorod arrays was 53.96 mV/pH. By using the photoelectrochemical treatment of the ITO nanorod arrays, the sensitivity of the pH sensors with 150-nm-length passivated ITO nanorod arrays was improved to 57.21 mV/pH.

  1. Signatures of natural selection at the FTO (fat mass and obesity associated locus in human populations.

    Directory of Open Access Journals (Sweden)

    Xuanshi Liu

    Full Text Available Polymorphisms in the first intron of FTO have been robustly replicated for associations with obesity. In the Sorbs, a Slavic population resident in Germany, the strongest effect on body mass index (BMI was found for a variant in the third intron of FTO (rs17818902. Since this may indicate population specific effects of FTO variants, we initiated studies testing FTO for signatures of selection in vertebrate species and human populations.First, we analyzed the coding region of 35 vertebrate FTO orthologs with Phylogenetic Analysis by Maximum Likelihood (PAML, ω = dN/dS to screen for signatures of selection among species. Second, we investigated human population (Europeans/CEU, Yoruba/YRI, Chinese/CHB, Japanese/JPT, Sorbs SNP data for footprints of selection using DnaSP version 4.5 and the Haplotter/PhaseII. Finally, using ConSite we compared transcription factor (TF binding sites at sequences harbouring FTO SNPs in intron three.PAML analyses revealed strong conservation in coding region of FTO (ω<1. Sliding-window results from population genetic analyses provided highly significant (p<0.001 signatures for balancing selection specifically in the third intron (e.g. Tajima's D in Sorbs = 2.77. We observed several alterations in TF binding sites, e.g. TCF3 binding site introduced by the rs17818902 minor allele.Population genetic analysis revealed signatures of balancing selection at the FTO locus with a prominent signal in intron three, a genomic region with strong association with BMI in the Sorbs. Our data support the hypothesis that genes associated with obesity may have been under evolutionary selective pressure.

  2. Predictive Design of Interfacial Functionality in Polymer Matrix Composites

    Science.gov (United States)

    2017-05-24

    conventional practice the materials design cycle involves the iterative synthesis of materials components in the laboratory, fabrication of a prototype...sible by using the Brillouin light scattering (BLS) technique and by sandwiching the samples between trans- parent fluoride-doped tin oxide (FTO...the role of bonding vs. non-bonding interactions. During 2015-16 PI Kieffer was on sabbatical leave, freed of teaching and service requirements. The

  3. Enhanced photovoltaic performance of inverted hybrid bulk-heterojunction solar cells using TiO2/reduced graphene oxide films as electron transport layers

    Science.gov (United States)

    Morais, Andreia; Alves, João Paulo C.; Lima, Francisco Anderson S.; Lira-Cantu, Monica; Nogueira, Ana Flavia

    2015-01-01

    In this study, we investigated inverted hybrid bulk-heterojunction solar cells with the following configuration: fluorine-doped tin oxide (FTO) |TiO2/RGO|P3HT:PC61BM|V2O5 or PEDOT:PSS|Ag. The TiO2/GO dispersions were prepared by sol-gel method, employing titanium isopropoxide and graphene oxide (GO) as starting materials. The GO concentration was varied from 0.1 to 4.0 wt%. The corresponding dispersions were spin-coated onto FTO substrates and a thermal treatment was performed to remove organic materials and to reduce GO to reduced graphene oxide (RGO). The TiO2/RGO films were characterized by x-ray diffraction, Raman spectroscopy, and microscopy techniques. Atomic force microscopy (AFM) images showed that the addition of RGO significantly changes the morphology of the TiO2 films, with loss of uniformity and increase in surface roughness. Independent of the use of V2O5 or PEDOT: PSS films as the hole transport layer, the incorporation of 2.0 wt% of RGO into TiO2 films was the optimal concentration for the best organic photovoltaic performance. The solar cells based on TiO2/RGO (2.0 wt%) electrode exhibited a ˜22.3% and ˜28.9% short circuit current density (Jsc) and a power conversion efficiency enhancement, respectively, if compared with the devices based on pure TiO2 films. Kelvin probe force microscopy images suggest that the incorporation of RGO into TiO2 films can promote the appearance of regions with different charge dissipation capacities.

  4. Semi-transparent ordered TiO_2 nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate

    International Nuclear Information System (INIS)

    Szkoda, Mariusz; Lisowska-Oleksiak, Anna; Grochowska, Katarzyna; Skowroński, Łukasz; Karczewski, Jakub; Siuzdak, Katarzyna

    2016-01-01

    Highlights: • High quality titanium coatings were doposited using industrial magnetron sputtering equipment. • Semi-transparent TiO_2 were prepared via anodization realized in various conditions. • Depending on electrolyte type, ordered tubular or porous TiO_2 layers were obtained. • Prepared material can act as semiconducting layer in photovoltaic cells. - Abstract: In a significant amount of cases, the highly ordered TiO_2 nanotube arrays grow through anodic oxidation of a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practical applications, e.g. solar cells or electrochromic windows, the semi-transparent TiO_2 formed directly on the transparent, conductive substrate is very much desired. This work shows that high-quality Ti coating could be formed at room temperature using an industrial magnetron sputtering system within 50 min. Under optimized conditions, the anodization process was performed on 2 μm titanium films deposited onto the FTO (fluorine-tin-oxide) support. Depending on the electrolyte type, highly ordered tubular or porous titania layers were obtained. The fabricated samples, after their thermal annealing, were investigated using scanning electron microscopy, Raman spectroscopy and UV–vis spectroscopy in order to investigate their morphology, crystallinity and absorbance ability. The photocurrent response curves indicate that materials are resistant to the photocorrosion process and their activity is strongly connected to optical properties. The most transparent TiO_2 films were fabricated when Ti was anodized in water electrolyte, whereas the highest photocurrent densities (12 μA cm"−"2) were registered for titania received after Ti anodization in ethylene glycol solution. The obtained results are of significant importance in the production of thin, semi-transparent titania nanostructures on a commercial scale.

  5. Associations between FTO genotype and total energy and macronutrient intake in adults: A systematic review and meta-analysis

    NARCIS (Netherlands)

    Livingstone K.M.; Celis-Morales C.; Lara J.; Ashor A.W.; Lovegrove J.A.; Martinez J.A.; Saris W.H.; Gibney M.; Manios Y.; Traczyk I.; Drevon C.A.; Daniel H.; Gibney E.R.; Brennan L.; Bouwman J.; Grimaldi K.A.; Mathers J.C.

    2015-01-01

    Risk variants of fat mass and obesity-associated (FTO) gene have been associated with increased obesity. However, the evidence for associations between FTO genotype and macronutrient intake has not been reviewed systematically. Our aim was to evaluate the potential associations between FTO genotype

  6. An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Chhina, H.; Campbell, S. [Ballard Power Systems Inc., 9000 Glenlyon Parkway, Burnaby, BC V5J 5J8 (Canada); Kesler, O. [Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4 (Canada)

    2006-10-27

    The oxidation of carbon catalyst supports causes degradation in catalyst performance in proton exchange membrane fuel cells (PEMFCs). Indium tin oxide (ITO) is considered as a candidate for an alternative catalyst support. The electrochemical stability of ITO was studied by use of a rotating disk electrode (RDE). Oxidation cycles between +0.6 and +1.8V were applied to ITO supporting a Pt catalyst. Cyclic voltammograms (CVs) both before and after the oxidation cycles were obtained for Pt on ITO, Hispec 4000 (a commercially available catalyst), and 40wt.% Pt dispersed in-house on Vulcan XC-72R. Pt on ITO showed significantly better electrochemical stability, as determined by the relative change in electrochemically active surface area after cycling. Hydrogen desorption peaks in the CVs existed even after 100 cycles from 0.6 to 1.8V for Pt on ITO. On the other hand, most of the active surface area was lost after 100 cycles of the Hispec 4000 catalyst. The 40wt.% Pt on Vulcan made in-house also lost most of its active area after only 50 cycles. Pt on ITO was significantly more electrochemically stable than both Hispec 4000 and Pt on Vulcan XC-72R. In this study, it was found that the Pt on ITO had average crystallite sizes of 13nm for Pt and 38nm for ITO. Pt on ITO showed extremely high thermal stability, with only {approx}1wt.% loss of material for ITO versus {approx}57wt.% for Hispec 4000 on heating to 1000{sup o}C. The TEM data show Pt clusters dispersed on small crystalline ITO particles. The SEM data show octahedral shaped ITO particles supporting Pt. (author)

  7. Sputtering yields and surface chemical modification of tin-doped indium oxide in hydrocarbon-based plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi, E-mail: hamaguch@ppl.eng.osaka-u.ac.jp [Center for Atomic and Molecular Technologies, Osaka University, Yamadaoka 2-1, Suita 565-0871 (Japan); Fukasawa, Masanaga; Nagahata, Kazunori; Tatsumi, Tetsuya [Device and Material R& D Group, RDS Platform, Sony Corporation, Kanagawa 243-0014 (Japan)

    2015-11-15

    Sputtering yields and surface chemical compositions of tin-doped indium oxide (or indium tin oxide, ITO) by CH{sup +}, CH{sub 3}{sup +}, and inert-gas ion (He{sup +}, Ne{sup +}, and Ar{sup +}) incidence have been obtained experimentally with the use of a mass-selected ion beam system and in-situ x-ray photoelectron spectroscopy. It has been found that etching of ITO is chemically enhanced by energetic incidence of hydrocarbon (CH{sub x}{sup +}) ions. At high incident energy incidence, it appears that carbon of incident ions predominantly reduce indium (In) of ITO and the ITO sputtering yields by CH{sup +} and CH{sub 3}{sup +} ions are found to be essentially equal. At lower incident energy (less than 500 eV or so), however, a hydrogen effect on ITO reduction is more pronounced and the ITO surface is more reduced by CH{sub 3}{sup +} ions than CH{sup +} ions. Although the surface is covered more with metallic In by low-energy incident CH{sub 3}{sup +} ions than CH{sup +} ions and metallic In is in general less resistant against physical sputtering than its oxide, the ITO sputtering yield by incident CH{sub 3}{sup +} ions is found to be lower than that by incident CH{sup +} ions in this energy range. A postulation to account for the relation between the observed sputtering yield and reduction of the ITO surface is also presented. The results presented here offer a better understanding of elementary surface reactions observed in reactive ion etching processes of ITO by hydrocarbon plasmas.

  8. Characterization of lead zirconate titanate (PZT)--indium tin oxide (ITO) thin film interface

    International Nuclear Information System (INIS)

    Sreenivas, K.; Sayer, M.; Laursen, T.; Whitton, J.L.; Pascual, R.; Johnson, D.J.; Amm, D.T.

    1990-01-01

    In this paper the interface between ultrathin sputtered lead zirconate titanate (PZT) films and a conductive electrode (indium tin oxide-ITO) is investigated. Structural and compositional changes at the PZT-ITO interface have been examined by surface analysis and depth profiling techniques of glancing angle x-ray diffraction, Rutherford backscattering (RBS), SIMS, Auger electron spectroscopy (AES), and elastic recoil detection analysis (ERDA). Studies indicate significant interdiffusion of lead into the underlying ITP layer and glass substrate with a large amount of residual stress at the interface. Influence of such compositional deviations at the interface is correlated to an observed thickness dependence in the dielectric properties of PZT films

  9. Indium-tin oxide surface treatments: Effects on the performance of liquid crystal devices

    International Nuclear Information System (INIS)

    Abderrahmen, A.; Romdhane, F.F.; Ben Ouada, H.; Gharbi, A.

    2006-01-01

    In this work, we investigate the effect of indium tin oxide (ITO) substrate cleaning on the surface properties. Wettability technique was used to measure the contact angle and the surface energy of the different treated ITO substrates. It is found that treatment with the methanol without dehydration gives the lowest water contact angle (most hydrophilic surface) and the highest surface energy compared to other solvents. This result was confirmed by impedance measurements performed on nematic liquid crystal cells with ITO electrodes. Indeed, we check the decrease of ionic entities in the interface ITO/liquid crystal. The polarity and dielectric parameters of the used solvents explain the obtained results

  10. Indium-tin oxide surface treatments: Effects on the performance of liquid crystal devices

    Energy Technology Data Exchange (ETDEWEB)

    Abderrahmen, A. [Laboratoire de physique et chimie des interfaces, Faculte des sciences, 5000, Monastir (Tunisia)]. E-mail: asma_abderrahmen@yahoo.fr; Romdhane, F.F. [Laboratoire de la matiere molle, Faculte des sciences, Tunis (Tunisia); Ben Ouada, H. [Laboratoire de physique et chimie des interfaces, Faculte des sciences, 5000, Monastir (Tunisia); Gharbi, A. [Laboratoire de la matiere molle, Faculte des sciences, Tunis (Tunisia)

    2006-03-15

    In this work, we investigate the effect of indium tin oxide (ITO) substrate cleaning on the surface properties. Wettability technique was used to measure the contact angle and the surface energy of the different treated ITO substrates. It is found that treatment with the methanol without dehydration gives the lowest water contact angle (most hydrophilic surface) and the highest surface energy compared to other solvents. This result was confirmed by impedance measurements performed on nematic liquid crystal cells with ITO electrodes. Indeed, we check the decrease of ionic entities in the interface ITO/liquid crystal. The polarity and dielectric parameters of the used solvents explain the obtained results.

  11. Modified band alignment effect in ZnO/Cu2O heterojunction solar cells via Cs2O buffer insertion

    Science.gov (United States)

    Eom, Kiryung; Lee, Dongyoon; Kim, Seunghwan; Seo, Hyungtak

    2018-02-01

    The effects of a complex buffer layer of cesium oxide (Cs2O) on the photocurrent response in oxide heterojunction solar cells (HSCs) were investigated. A p-n junction oxide HSC was fabricated using p-type copper (I) oxide (Cu2O) and n-type zinc oxide (ZnO); the buffer layer was inserted between the Cu2O and fluorine-doped tin oxide (FTO). Ultraviolet-visible (UV-vis) and x-ray and ultraviolet photoelectron spectroscopy analyses were performed to characterize the electronic band structures of cells, both with and without this buffer layer. In conjunction with the measured band electronic structures, the significantly improved visible-range photocurrent spectra of the buffer-inserted HSC were analyzed in-depth. As a result, the 1 sun power conversion efficiency was increased by about three times by the insertion of buffer layer. The physicochemical origin of the photocurrent enhancement was mainly ascribed to the increased photocarrier density in the buffer layer and modified valence band offset to promote the effective hole transfer at the interface to FTO on the band-alignment model.

  12. Selectivity of Catalytically Modified Tin Dioxide to CO and NH3 Gas Mixtures

    Directory of Open Access Journals (Sweden)

    Artem Marikutsa

    2015-10-01

    Full Text Available This paper is aimed at selectivity investigation of gas sensors, based on chemically modified nanocrystalline tin dioxide in the detection of CO and ammonia mixtures in air. Sol-gel prepared tin dioxide was modified by palladium and ruthenium oxides clusters via an impregnation technique. Sensing behavior to CO, NH3 and their mixtures in air was studied by in situ resistance measurements. Using the appropriate match of operating temperatures, it was shown that the reducing gases mixed in a ppm-level with air could be discriminated by the noble metal oxide-modified SnO2. Introducing palladium oxide provided high CO-sensitivity at 25–50 °C. Tin dioxide modified by ruthenium oxide demonstrated increased sensor signals to ammonia at 150–200 °C, and selectivity to NH3 in presence of higher CO concentrations.

  13. Sputtered indium-tin oxide/cadmium telluride junctions and cadmium telluride surfaces

    International Nuclear Information System (INIS)

    Courreges, F.G.; Fahrenbruch, A.L.; Bube, R.H.

    1980-01-01

    The properties of indium-tin oxide (ITO)/CdTe junction solar cells prepared by rf sputtering of ITO on P-doped CdTe single-crystal substrates have been investigated through measurements of the electrical and photovoltaic properties of ITO/CdTe and In/CdTe junctions, and of electron beam induced currents (EBIC) in ITO/CdTe junctions. In addition, surface properties of CdTe related to the sputtering process were investigated as a function of sputter etching and thermal oxidation using the techniques of surface photovoltage and photoluminescence. ITO/CdTe cells prepared by this sputtering method consist of an n + -ITO/n-CdTe/p-CdTe buried homojunction with about a 1-μm-thick n-type CdTe layer formed by heating of the surface of the CdTe during sputtering. Solar efficiencies up to 8% have been observed with V/sub 0c/=0.82 V and J/sub s/c=14.5 mA/cm 2 . The chief degradation mechanism involves a decrease in V/sub 0c/ with a transformation of the buried homojunction structure to an actual ITO/CdTe heterojunction

  14. Preparation of porous titanium oxide films onto indium tin oxide for application in organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Andreia G. [Laboratorio de Dispositivos Nanoestruturados, Departamento de Fisica, Universidade Federal do Parana, Curitiba, Parana (Brazil); Mattos, Luana L.; Spada, Edna R.; Serpa, Rafael B.; Campos, Cristiani S. [Laboratorio de Sistemas Nanoestruturados, Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina (Brazil); Grova, Isabel R.; Ackcelrud, Leni [Laboratorio de Polimeros Paulo Scarpa, Departamento de Quimica, Universidade Federal do Parana, Curitiba, Parana (Brazil); Reis, Francoise T.; Sartorelli, Maria L. [Laboratorio de Sistemas Nanoestruturados, Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina (Brazil); Roman, Lucimara S., E-mail: lsroman@fisica.ufpr.br [Laboratorio de Dispositivos Nanoestruturados, Departamento de Fisica, Universidade Federal do Parana, Curitiba, Parana (Brazil)

    2012-05-01

    In this work, porous ordered TiO{sub 2} films were prepared through sol gel route by using a monolayer of polystyrene spheres as template on indium-tin oxide/glass substrate. These films were characterized by SEM, AFM, Raman spectroscopy, UV-vis absorbance and XRD. The UV-vis absorbance spectrum show a pseudo band gap (PBG) with maxima at 460 nm arising from the light scattering and partial or total suppression of the photon density of states, this PBG can be controlled by the size of the pore. We also propose the use of this porous film as electron acceptor electrode in organic photovoltaic cells; we show that devices prepared with porous titania displayed higher efficiencies than devices using compact titania films as electrode. Such behaviour was observed in both bilayer and bulk heterojunction devices.

  15. Preparation of porous titanium oxide films onto indium tin oxide for application in organic photovoltaic devices

    International Nuclear Information System (INIS)

    Macedo, Andreia G.; Mattos, Luana L.; Spada, Edna R.; Serpa, Rafael B.; Campos, Cristiani S.; Grova, Isabel R.; Ackcelrud, Leni; Reis, Françoise T.; Sartorelli, Maria L.; Roman, Lucimara S.

    2012-01-01

    In this work, porous ordered TiO 2 films were prepared through sol gel route by using a monolayer of polystyrene spheres as template on indium-tin oxide/glass substrate. These films were characterized by SEM, AFM, Raman spectroscopy, UV-vis absorbance and XRD. The UV-vis absorbance spectrum show a pseudo band gap (PBG) with maxima at 460 nm arising from the light scattering and partial or total suppression of the photon density of states, this PBG can be controlled by the size of the pore. We also propose the use of this porous film as electron acceptor electrode in organic photovoltaic cells; we show that devices prepared with porous titania displayed higher efficiencies than devices using compact titania films as electrode. Such behaviour was observed in both bilayer and bulk heterojunction devices.

  16. SiFTO: An Empirical Method for Fitting SN Ia Light Curves

    Science.gov (United States)

    Conley, A.; Sullivan, M.; Hsiao, E. Y.; Guy, J.; Astier, P.; Balam, D.; Balland, C.; Basa, S.; Carlberg, R. G.; Fouchez, D.; Hardin, D.; Howell, D. A.; Hook, I. M.; Pain, R.; Perrett, K.; Pritchet, C. J.; Regnault, N.

    2008-07-01

    We present SiFTO, a new empirical method for modeling Type Ia supernova (SN Ia) light curves by manipulating a spectral template. We make use of high-redshift SN data when training the model, allowing us to extend it bluer than rest-frame U. This increases the utility of our high-redshift SN observations by allowing us to use more of the available data. We find that when the shape of the light curve is described using a stretch prescription, applying the same stretch at all wavelengths is not an adequate description. SiFTO therefore uses a generalization of stretch which applies different stretch factors as a function of both the wavelength of the observed filter and the stretch in the rest-frame B band. We compare SiFTO to other published light-curve models by applying them to the same set of SN photometry, and demonstrate that SiFTO and SALT2 perform better than the alternatives when judged by the scatter around the best-fit luminosity distance relationship. We further demonstrate that when SiFTO and SALT2 are trained on the same data set the cosmological results agree. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS.

  17. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    Science.gov (United States)

    Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki

    2014-08-01

    We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕinterface with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.

  18. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    OpenAIRE

    Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki

    2014-01-01

    We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕ_ with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.

  19. Ru-bis(pyridine)pyrazolate (bpp)-Based Water-Oxidation Catalysts Anchored on TiO2: The Importance of the Nature and Position of the Anchoring Group.

    Science.gov (United States)

    Francàs, Laia; Richmond, Craig; Garrido-Barros, Pablo; Planas, Nora; Roeser, Stephan; Benet-Buchholz, Jordi; Escriche, Lluís; Sala, Xavier; Llobet, Antoni

    2016-04-04

    Three distinct functionalisation strategies have been applied to the in,in-[{Ru(II)(trpy)}2(μ-bpp)(H2O)2](3+) (trpy=2,2':6',2''-terpyridine, bpp=bis(pyridine)pyrazolate) water-oxidation catalyst framework to form new derivatives that can adsorb onto titania substrates. Modifications included the addition of sulfonate, carboxylate, and phosphonate anchoring groups to the terpyridine and bis(pyridyl)pyrazolate ligands. The complexes were characterised in solution by using 1D NMR, 2D NMR, and UV/Vis spectroscopic analysis and electrochemical techniques. The complexes were then anchored on TiO2-coated fluorinated tin oxide (FTO) films, and the reactivity of these new materials as water-oxidation catalysts was tested electrochemically through controlled-potential electrolysis (CPE) with oxygen evolution detected by headspace analysis with a Clark electrode. The results obtained highlight the importance of the catalyst orientation with respect to the titania surface in regard to its capacity to catalytically oxidize water to dioxygen. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. One step aqueous solution preparation of nanosize iron-doped tin oxide from SnO{sub 2}.xH{sub 2}O gel

    Energy Technology Data Exchange (ETDEWEB)

    Melghit, Khaled [Chemistry Department, College of Science, P.O. Box 36, Al-Khodh 123, Sultan Qaboos University (Oman)]. E-mail: melghit@squ.edu.om; Bouziane, Khalid [Physics Department, College of Science, P.O. Box 36, Al-Khodh 123, Sultan Qaboos University (Oman)

    2006-03-15

    Nanosized iron-doped tin oxide solid solution was prepared by mixing tin oxide gel SnO{sub 2}.xH{sub 2}O with a boiling solution of iron nitrate. The XRD data of the as-prepared and annealed sample at 773 K show that the patterns are indexed to the rutile phase without any trace of an extra phase. SEM and TEM results performed on different selected area of the samples reveal a homogeneous composition of 8 at.% of Fe content and a size of about 2 nm of the particles. The particles size was found to increase slightly with temperature; about 7 nm after 24 h at 773 K. Structural and magnetic results seem to indicate that Fe{sup 3+} substitute for Sn{sup 4+} on the as-prepared sample. The system presents some weak ferromagnetic character at room temperature.

  1. Inorganic ion exchanger based on tin/titanium mixed oxide doped with europium to be used in radioactive waste

    International Nuclear Information System (INIS)

    Paganini, Paula P.; Felinto, Maria Claudia F.C.; Kodaira, Claudia A.; Brito, Hermi F.

    2009-01-01

    This work presents the results of synthesis and characterization of an inorganic ion exchanger based on tin/titanium mixed oxides doped with europium (SnO 2 /TiO 2 :Eu 3+ ) to be used in environmental field. The adsorption study of nickel was realized in this exchanger to recover the nickel metal which is in thorium-nickel alloys used as electrode of discharge lamps. The studied exchanger was synthesized by neutralization of tin chloride (IV) and titanium chloride (III) mixed solution and characterized by thermogravimetric measurement (TG), Differential Scanning Calorimetry (DSC), X-Ray Powder Diffraction (XRD), Infrared Spectroscopy (IR) and Scanning Electron Microscopy (SEM). The adsorption study showed that these inorganic ion exchangers are good materials to recovery nickel with high weight distribution ratios (Dw Ni 2+ ) and percent adsorption. (author)

  2. Influence of indium tin oxide electrodes deposited at room temperature on the properties of organic light-emitting devices

    International Nuclear Information System (INIS)

    Satoh, Toshikazu; Fujikawa, Hisayoshi; Taga, Yasunori

    2005-01-01

    The influence of indium tin oxide (ITO) electrodes deposited at room temperature (ITO-RT) on the properties of organic light-emitting devices (OLEDs) has been studied. The OLED on the ITO-RT showed an obvious shorter lifetime and higher operating voltage than that on the conventional ITO electrode deposited at 573 K. The result of an in situ x-ray photoelectron spectroscopy analysis of the ITO electrode and the organic layer suggested that many of the hydroxyl groups that originate in the amorphous structure of the ITO-RT electrode oxidize the organic layer. The performance of the OLED on the ITO-RT is able to be explained by the oxidation of the organic layer

  3. Size-dependent electronic structure controls activity for ethanol electro-oxidation at Ptn/indium tin oxide (n = 1 to 14).

    Science.gov (United States)

    von Weber, Alexander; Baxter, Eric T; Proch, Sebastian; Kane, Matthew D; Rosenfelder, Michael; White, Henry S; Anderson, Scott L

    2015-07-21

    Understanding the factors that control electrochemical catalysis is essential to improving performance. We report a study of electrocatalytic ethanol oxidation - a process important for direct ethanol fuel cells - over size-selected Pt centers ranging from single atoms to Pt14. Model electrodes were prepared by soft-landing of mass-selected Ptn(+) on indium tin oxide (ITO) supports in ultrahigh vacuum, and transferred to an in situ electrochemical cell without exposure to air. Each electrode had identical Pt coverage, and differed only in the size of Pt clusters deposited. The small Ptn have activities that vary strongly, and non-monotonically with deposited size. Activity per gram Pt ranges up to ten times higher than that of 5 to 10 nm Pt particles dispersed on ITO. Activity is anti-correlated with the Pt 4d core orbital binding energy, indicating that electron rich clusters are essential for high activity.

  4. Rapid thermal processing of nano-crystalline indium tin oxide transparent conductive oxide coatings on glass by flame impingement technology

    International Nuclear Information System (INIS)

    Schoemaker, S.; Willert-Porada, M.

    2009-01-01

    Indium tin oxide (ITO) is still the best suited material for transparent conductive oxides, when high transmission in the visible range, high infrared reflection or high electrical conductivity is needed. Current approaches on powder-based printable ITO coatings aim at minimum consumption of active coating and low processing costs. The paper describes how fast firing by flame impingement is used for effective sintering of ITO-coatings applied on glass. The present study correlates process parameters of fast firing by flame impingement with optoelectronic properties and changes in the microstructure of suspension derived nano-particulate films. With optimum process parameters the heat treated coatings had a sheet resistance below 0.5 kΩ/ □ combined with a transparency higher than 80%. To characterize the influence of the burner type on the process parameters and the coating functionality, two types of methane/oxygen burner were compared: a diffusion burner and a premixed burner

  5. Application of argon atmospheric cold plasma for indium tin oxide (ITO) based diodes

    Science.gov (United States)

    Akbari Nia, S.; Jalili, Y. Seyed; Salar Elahi, A.

    2017-09-01

    Transparent Conductive Oxide (TCO) layers due to transparency, high conductivity and hole injection capability have attracted a lot of attention. One of these layers is Indium Tin Oxide (ITO). ITO due to low resistance, transparency in the visible spectrum and its proper work function is widely used in the manufacture of organic light emitting diodes and solar cells. One way for improving the ITO surface is plasma treatment. In this paper, changes in surface morphology, by applying argon atmospheric pressure cold plasma, was studied through Atomic Force Microscopic (AFM) image analysis and Fourier Transform Infrared Spectroscopy (FTIR) analysis. FTIR analysis showed functional groups were not added or removed, but chemical bond angle and bonds strength on the surface were changed and also AFM images showed that surface roughness was increased. These factors lead to the production of diodes with enhanced Ohmic contact and injection mechanism which are more appropriate in industrial applications.

  6. Indium tin oxide with titanium doping for transparent conductive film application on CIGS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei-Sheng; Cheng, Huai-Ming; Hu, Hung-Chun; Li, Ying-Tse; Huang, Shi-Da; Yu, Hau-Wei [Department of Photonics Engineering, Yuan Ze University, Chung-Li 32003, Taiwan (China); Pu, Nen-Wen, E-mail: nwpuccit@gmail.com [Department of Photonics Engineering, Yuan Ze University, Chung-Li 32003, Taiwan (China); Liang, Shih-Chang [Materials & Electro-Optics Research Division, National Chung-Shan Institute of Science and Technology, Lung Tan 32599, Taiwan (China)

    2015-11-01

    Highlights: • Ti-doped indium tin oxide (ITO) films were deposited by DC magnetron sputtering. • Optimal optoelectronic properties were achieved at a sputtering power of 100 W. • Resistivity = 3.2 × 10{sup −4} Ω-cm without substrate heating or post growth annealing. • Mean visible and NIR transmittances of 83 and 80%, respectively, were achieved. • Efficient batteries (11.3%) were fabricated by applying ITO:Ti to CIGS solar cells. - Abstract: In this study, Ti-doped indium tin oxide (ITO:Ti) thin films were fabricated using a DC-magnetron sputtering deposition method. The thin films were grown without introducing oxygen or heating the substrate, and no post-growth annealing was performed after fabrication. The thickness of the ITO:Ti thin films (350 nm) was controlled while increasing the sputtering power from 50 to 150 W. According to the results, the optimal optoelectronic properties were observed in ITO:Ti thin films grown at a sputtering power of 100 W, yielding a reduced resistivity of 3.2 × 10{sup −4} Ω-cm and a mean high transmittance of 83% at wavelengths ranging from 400 to 800 nm. The optimal ITO:Ti thin films were used to fabricate a Cu(In,Ga)Se{sub 2} solar cell that exhibited a photoelectric conversion efficiency of 11.3%, a short-circuit current density of 33.1 mA/cm{sup 2}, an open-circuit voltage of 0.54 V, and a fill factor of 0.64.

  7. Fabrication and excellent conductive performance of antimony-doped tin oxide-coated diatomite with porous structure

    International Nuclear Information System (INIS)

    Du Yucheng; Yan Jing; Meng Qi; Wang Jinshu; Dai Hongxing

    2012-01-01

    Graphical abstract: Antimony-doped tin oxide (ATO)-coated diatomite with porous structures are fabricated using the co-precipitation method. The porous ATO-coated diatomite material shows excellent conductive performance. Highlights: ► Sb-doped SnO 2 (ATO)-coated diatomite materials with porous structures are prepared. ► Sn/Sb ratio, ATO coating amount, pH value, and temperature influence resistivity. ► Porous ATO-coated diatomite materials show excellent conductive performance. ► The lowest resistivity of the porous ATO-coated diatomite sample is 10 Ω cm. - Abstract: Diatomite materials coated with antimony-doped tin oxide (ATO) were prepared by the co-precipitation method, and characterized by means of the techniques, such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, selected-area electron diffraction, X-ray fluorescence spectroscopy, and N 2 adsorption–desorption measurement. It was shown that the coated ATO possessed a tetragonal rutile crystal structure, and the ATO-coated diatomite materials had a multi-pore (micro- meso-, and macropores) architecture. The porous ATO-coated diatomite materials exhibited excellent electrical conductive behaviors. The best conductive performance (volume resistivity = 10 Ω cm) was achieved for the sample that was prepared under the conditions of Sn/Sb molar ratio = 5.2, Sn/Sb coating amount = 45 wt%, pH = 1.0, and reaction temperature = 50 °C. Such a conductive porous material is useful for the applications in physical and chemical fields.

  8. Data on the effect of improved TiO2/FTO interface and Ni(OH2 cocatalyst on the photoelectrochemical performances and stability of CdS cased ZnIn2S4/TiO2 heterojunction

    Directory of Open Access Journals (Sweden)

    Mahadeo A. Mahadik

    2018-04-01

    Full Text Available This data article presents the experimental evidences of the effect of TiO2-fluorine doped tin oxide interface annealing and Ni(OH2 cocatalysts on the photoelectrochemical, structural, morphological and optical properties of Ni(OH2/CdS/ZnIn2S4/TiO2 heterojunction. The Raman spectroscopy exhibits the sharp features of the rutile phase of TiO2 and in agreement with the X-ray diffraction data. The band gap energy of the 500 °C sample was found to be 3.12 eV, further it was increased to 3.20, 3.22 eV for samples annealed at 600 and 700 °C respectively. The decrease in the band gap energy at 500 °C related to the oxygen vacancies and was analysed by photoluminescence spectroscopy analysis. The synthesis, characterization methods and other experimental details of TiO2 based heterostructure are also provided. The presence of CdS and ZnIn2S4 coating on surface of TiO2 electrodes providing a high surface area, extended visible absorption and helps to improve the change separation. This data article contains data related to the research article entitled “Highly efficient and stable 3D Ni(OH2/CdS/ZnIn2S4/TiO2 heterojunction under solar light: Effect of an improved TiO2/FTO interface and cocatalyst” (Mahadik et al., 2017 [1]. Keywords: Annealed TiO2 nanorods, CdS/ZnIn2S4/TiO2 heterostructure, Ni(OH2 cocatalyst, TiO2-FTO interface

  9. Fast Inline Roll-to-Roll Printing for Indium-Tin-Oxide-Free Polymer Solar Cells Using Automatic Registration

    DEFF Research Database (Denmark)

    Hösel, Markus; Søndergaard, Roar R.; Jørgensen, Mikkel

    2013-01-01

    layer. The third and fourth layers were slot-die coated at the same time again using inline processing at a web speed of 10 mmin1 of firstly zinc oxide as the electron transport layer followed by P3HT:PCBM as the active layer. The first three layers (silver-grid/PEDOT:PSS/ZnO) comprise a generally......Fast inline roll-to-roll printing and coating on polyethylene terephthalate (PET) and barrier foil was demonstrated under ambient conditions at web speeds of 10 mmin1 for the manufacture of indium-tin-oxide-free (ITO-free) polymer solar cells comprising a 6-layer stack: silver-grid/PEDOT:PSS/ Zn...

  10. Electrochemical impedance spectroscopy investigation on indium tin oxide films under cathodic polarization in NaOH solution

    International Nuclear Information System (INIS)

    Gao, Wenjiao; Cao, Si; Yang, Yanze; Wang, Hao; Li, Jin; Jiang, Yiming

    2012-01-01

    The electrochemical corrosion behaviors of indium tin oxide (ITO) films under the cathodic polarization in 0.1 M NaOH solution were investigated by electrochemical impedance spectroscopy. The as-received and the cathodically polarized ITO films were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction for morphological, compositional and structural studies. The results showed that ITO films underwent a corrosion process during the cathodic polarization and the main component of the corrosion products was body-centered cubic indium. The electrochemical impedance parameters were related to the effect of the cathodic polarization on the ITO specimens. The capacitance of ITO specimens increased, while the charge transfer resistance and the inductance decreased with the increase of the polarization time. The proposed mechanism indicated that the corrosion products (metallic indium) were firstly formed during the cathodic polarization and then absorbed on the surface of the ITO film. As the surface was gradually covered by indium particles, the corrosion process was suppressed. - Highlights: ► Cathodic polarization of indium tin oxide (ITO) in 0.1 M NaOH. ► Cathodic polarization studied with electrochemical impedance spectroscopy. ► ITO underwent a corrosion attack during cathodic polarization, indium was observed. ► Electrochemical parameters of ITO were obtained using equivalent electrical circuit. ► A corrosion mechanism is proposed.

  11. Controlled Deposition of Tin Oxide and Silver Nanoparticles Using Microcontact Printing

    Directory of Open Access Journals (Sweden)

    Joo C. Chan

    2015-02-01

    Full Text Available This report describes extensive studies of deposition processes involving tin oxide (SnOx nanoparticles on smooth glass surfaces. We demonstrate the use of smooth films of these nanoparticles as a platform for spatially-selective electroless deposition of silver by soft lithographic stamping. The edge and height roughness of the depositing metallic films are 100 nm and 20 nm, respectively, controlled by the intrinsic size of the nanoparticles. Mixtures of alcohols as capping agents provide further control over the size and shape of nanoparticles clusters. The distribution of cluster heights obtained by atomic force microscopy (AFM is modeled through a modified heterogeneous nucleation theory as well as Oswald ripening. The thermodynamic modeling of the wetting properties of nanoparticles aggregates provides insight into their mechanism of formation and how their properties might be further exploited in wide-ranging applications.

  12. Indium oxide co-doped with tin and zinc: A simple route to highly conducting high density targets for TCO thin-film fabrication

    Science.gov (United States)

    Saadeddin, I.; Hilal, H. S.; Decourt, R.; Campet, G.; Pecquenard, B.

    2012-07-01

    Indium oxide co-doped with tin and zinc (ITZO) ceramics have been successfully prepared by direct sintering of the powders mixture at 1300 °C. This allowed us to easily fabricate large highly dense target suitable for sputtering transparent conducting oxide (TCO) films, without using any cold or hot pressing techniques. Hence, the optimized ITZO ceramic reaches a high relative bulk density (˜ 92% of In2O3 theoretical density) and higher than the well-known indium oxide doped with tin (ITO) prepared under similar conditions. All X-ray diagrams obtained for ITZO ceramics confirms a bixbyte structure typical for In2O3 only. This indicates a higher solubility limit of Sn and Zn when they are co-doped into In2O3 forming a solid-solution. A very low value of electrical resistivity is obtained for [In2O3:Sn0.10]:Zn0.10 (1.7 × 10-3 Ω cm, lower than ITO counterpart) which could be fabricated to high dense ceramic target suing pressure-less sintering.

  13. Dye-sensitized solar cells fabricated with black raspberry, black carrot and rosella juice

    Science.gov (United States)

    Tekerek, S.; Kudret, A.; Alver, Ü.

    2011-10-01

    In this work, dye sensitized solar cells (DSSC's) were constructed from black raspberry ( Rubus Ideaus), black carrot ( Daucuscarota L.) and rosella juice ( Hibiscus Sabdariffa L.). In order to fabricate a DSSC the fluorine-doped tin (IV) oxide (FTO) thin films obtained by using spray pyrolysis technique were used as a substrate. TiO2 films on FTO layers were prepared by doctor-blading technique. Platinum-coated counter electrode and liquid Iodide/Iodine electrolyte solution were used to fabricate DSSC's. The efficiencies of solar cells produced with black carrot, rosella and black raspberry juice were calculated as 0.25%, 0.16% and 0.16% respectively, under a sunny day in Kahramanmaraş-Turkey.

  14. Structural, morphological and optical studies of F doped SnO2 thin films

    Science.gov (United States)

    Chandel, Tarun; Thakur, Vikas; Dwivedi, Shailendra Kumar; Zaman, M. Burhanuz; Rajaram, Poolla

    2018-05-01

    Highly conducting and transparent FTO (flourine doped tin Oxide) thin films were grown on the glass substrates using a low cost spray pyrolysis technique. The films were characterized for their structural, morphological and optical studies using XRD, SEM and UV-Vis spectroscopy. XRD studies show that the FTO films crystallize in Tetragonal cassiterite structure. Morphological analysis using SEM show that the films are uniformly covered with spherical grains albeit high in surface roughness. The average optical transmission greater than 80% in the visible region along with the appearance of interference fringes in the transmission curves confirms the high quality of the films. Electrical studies show that the films exhibit sheet resistance below 10 Ω ϒ-1.

  15. A study on linear and non-linear optical constants of Rhodamine B thin film deposited on FTO glass

    Science.gov (United States)

    Yahia, I. S.; Jilani, Asim; Abutalib, M. M.; AlFaify, S.; Shkir, M.; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; El-Naggar, A. M.

    2016-06-01

    The aim of this research was to fabricate/deposit the good quality thin film of Rhodamine B dye on fluorine doped tin oxide glass substrate by the low cost spin coating technique and study their linear and nonlinear optical parameters. The thickness of the thin film was measured about 300 nm with alpha step system. The transmittance of the fabricated thin film was found to be above 75% corresponding to the fluorine doped tin oxide layer. The structural analysis was performed with X-rays diffraction spectroscopy. Atomic force microscope showed the topographic image of deposited thin film. Linear optical constant like absorption coefficient, band gap, and extinction index was calculated. The dielectric constant was calculated to know the optical response of Rhodamine B dye over fluorine doped tin oxide substrate. The nonlinear optical constant like linear optical susceptibility χ(1), nonlinear optical susceptibility χ(3), nonlinear refractive index (n2) were calculated by spectroscopic method. This method has advantage over the experimental method like Z-Scan for organic dye base semiconductors for future advance optoelectronics applications like dye synthesis solar cell.

  16. Gold nanoparticle arrays directly grown on nanostructured indium tin oxide electrodes: Characterization and electroanalytical application

    International Nuclear Information System (INIS)

    Zhang Jingdong; Oyama, Munetaka

    2005-01-01

    This work describes an improved seed-mediated growth approach for the direct attachment and growth of mono-dispersed gold nanoparticles on nanostructured indium tin oxide (ITO) surfaces. It was demonstrated that, when the seeding procedure of our previously reported seed-mediated growth process on an ITO surface was modified, the density of gold nanospheres directly grown on the surface could be highly improved, while the emergence of nanorods was restrained. By field emission scanning electron microscopy (FE-SEM) and cyclic voltammetry, the growth of gold nanoparticles with increasing growth time on the defect sites of nanostructured ITO surface was monitored. Using a [Fe(China) 6 ] 3- /[Fe(China) 6 ] 4- redox probe, the increasingly facile heterogeneous electron transfer kinetics resulting from the deposition and growth of gold nanoparticle arrays was observed. The as-prepared gold nanoparticle arrays exhibited high catalytic activity toward the electrooxidation of nitric oxide, which could provide electroanalytical application for nitric oxide sensing

  17. Semi-transparent ordered TiO{sub 2} nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate

    Energy Technology Data Exchange (ETDEWEB)

    Szkoda, Mariusz, E-mail: mariusz-szkoda@wp.pl [Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233 (Poland); Lisowska-Oleksiak, Anna [Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233 (Poland); Grochowska, Katarzyna [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Science, Fiszera 14, 80-231 Gdańsk (Poland); Skowroński, Łukasz [Institute of Mathematics and Physics, UTP University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz (Poland); Karczewski, Jakub [Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland); Siuzdak, Katarzyna [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Science, Fiszera 14, 80-231 Gdańsk (Poland)

    2016-09-15

    Highlights: • High quality titanium coatings were doposited using industrial magnetron sputtering equipment. • Semi-transparent TiO{sub 2} were prepared via anodization realized in various conditions. • Depending on electrolyte type, ordered tubular or porous TiO{sub 2} layers were obtained. • Prepared material can act as semiconducting layer in photovoltaic cells. - Abstract: In a significant amount of cases, the highly ordered TiO{sub 2} nanotube arrays grow through anodic oxidation of a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practical applications, e.g. solar cells or electrochromic windows, the semi-transparent TiO{sub 2} formed directly on the transparent, conductive substrate is very much desired. This work shows that high-quality Ti coating could be formed at room temperature using an industrial magnetron sputtering system within 50 min. Under optimized conditions, the anodization process was performed on 2 μm titanium films deposited onto the FTO (fluorine-tin-oxide) support. Depending on the electrolyte type, highly ordered tubular or porous titania layers were obtained. The fabricated samples, after their thermal annealing, were investigated using scanning electron microscopy, Raman spectroscopy and UV–vis spectroscopy in order to investigate their morphology, crystallinity and absorbance ability. The photocurrent response curves indicate that materials are resistant to the photocorrosion process and their activity is strongly connected to optical properties. The most transparent TiO{sub 2} films were fabricated when Ti was anodized in water electrolyte, whereas the highest photocurrent densities (12 μA cm{sup −2}) were registered for titania received after Ti anodization in ethylene glycol solution. The obtained results are of significant importance in the production of thin, semi-transparent titania nanostructures on a commercial scale.

  18. Swift heavy ion induced modification in morphological and physico-chemical properties of tin oxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Manoj Kumar [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110 078 (India); Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Kumar, Rajesh, E-mail: rajeshkumaripu@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110 078 (India)

    2013-11-15

    Nanocomposite thin films of tin oxide (SnO{sub 2})/titanium oxide (TiO{sub 2}) were grown on silicon (1 0 0) substrates by electron beam evaporation deposition technique using sintered nanocomposite pellet of SnO{sub 2}/TiO{sub 2} in the percentage ratio of 95:5. Sintering of the nanocomposite pellet was done at 1300 °C for 24 h. The thicknesses of these films were measured to be 100 nm during deposition using piezo-sensor attached to the deposition chamber. TiO{sub 2} doped SnO{sub 2} nanocomposite films were irradiated by 100 MeV Au{sup 8+} ion beam at fluence range varying from 1 × 10{sup 11} ions/cm{sup 2} to 5 × 10{sup 13} ions/cm{sup 2} at Inter University Accelerator Center (IUAC), New Delhi, India. Chemical properties of pristine and ion irradiation modified thin films were characterized by Fourier Transform Infrared (FTIR) spectroscopy. FTIR peak at 610 cm{sup −1} confirms the presence of O–Sn–O bridge of tin (IV) oxide signifying the composite nature of pristine and irradiated thin films. Atomic Force Microscope (AFM) in tapping mode was used to study the surface morphology and grain growth due to swift heavy ion irradiation at different fluencies. Grain size calculations obtained from sectional analysis of AFM images were compared with results obtained from Glancing Angle X-ray Diffraction (GAXRD) measurements using Scherrer’s formulae. Phase transformation due to irradiation was observed from Glancing Angle X-ray Diffraction (GAXRD) results. The prominent 2θ peaks observed in GAXRD spectrum are at 30.67°, 32.08°, 43.91°, 44.91° and 52.35° in the irradiated films.

  19. Selective oxidation of propene on bismuth molybdate and mixed oxides of tin and antimony and of uranium and antimony

    International Nuclear Information System (INIS)

    Pendleton, P.; Taylor, D.

    1976-01-01

    Propene + 18 0 2 reactions have been studied in a static reaction system on bismuth molybdate and mixed oxides of tin and antimony and of uranium and antimony. The [ 16 0] acrolein content of the total acrolein formed and the proportion of 16 0 in the oxygen of the carbon dioxide by-product have been determined. The results indicate that for each catalyst the lattice is the only direct source of the oxygen in the aldehyde, and that lattice and/or gas phase oxygen is used in carbon dioxide formation. Oxygen anion mobility appears to be greater in the molybdate catalyst than in the other two. (author)

  20. All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2009-01-01

    of a bottom electrode comprising silver nanoparticles on a 130 micron thick polyethyleneternaphthalate (PEN) substrate. Subsequently an electron transporting layer of zinc oxide nanoparticles was applied from solution followed by an active layer of P3HT-PCBM and a hole transporting layer of PEDOT......, 3 and 8 stripes. All five layers in the device were processed from solution in air and no vacuum steps were employed. An additional advantage is that the use of indium-tin-oxide (ITO) is avoided in this process. The devices were tested under simulated sunlight (1000 W m−2, AM1.5G) and gave a typical...

  1. Physical activity modifies the FTO effect on BMI change in Japanese adolescents.

    Science.gov (United States)

    Shinozaki, Keiko; Okuda, Masayuki; Okayama, Naoko; Kunitsugu, Ichiro

    2018-04-14

    Evidence of the effects of fat mass and obesity-associated (FTO) gene variation and long-term effects of physical activity (PA) on adiposity in adolescents is largely scarce. This study aimed to investigate whether physical activity modulates the effects of the FTO gene on body mass index (BMI) changes in Japanese adolescents between the ages of 13 and 18 years. Data of 343 subjects (156 boys; 187 girls) who were enrolled in 2006 and 2007 from schools on Shunan City, Japan, were collected. Genotyping (rs1558902) was conducted, and anthropometric measurements and blood test results were recorded for subjects in the eighth grade. A second survey involving self-reporting of anthropometric measurements was conducted when the subjects were in the twelfth grade. PA was estimated using the International Physical Activity Questionnaire in this survey. BMI and the standard deviation score for BMI (BMI-SDS) were calculated. BMI changes and BMI-SDS changes were compared among FTO genotypes using a multivariate model. The effect of the interaction between PA and the FTO genotype on BMI changes was significant among boys but not girls. Among boys, PA had a significant negative influence on BMI-SDS changes in those with the AA genotype and a significant positive influence on BMI and BMI-SDS changes in those with the TT genotype. These data suggest that the influence of PA on BMI changes and BMI-SDS changes varied on the basis of genotype. PA modified the effect of the FTO gene on BMI changes in Japanese boys. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Obtención de columnas de ZnO. Variables a controlar (y II)

    OpenAIRE

    Marí, B.; Cembrero, J.; Mollar, M.; Pascual, M.; Perales, M.

    2006-01-01

    The growth process via electrodeposition technique, of zinc oxide (ZnO) columns, on a glass substrate coated with conductor tin oxide and fluorine (FTO), is analysed. An exponential law of columns growth is determined to relate the columns height with exposition time in electrolytic mean. The columns growing is governed by an exponential law for electrolytic exposition times under 103 s, with constant temperature (65±2 ºC) and current density (i = 2,5 mA/ cm2); for exposition times larger tha...

  3. Vanadocene reactions with mixed acylates of silicon, germanium and tin

    International Nuclear Information System (INIS)

    Latyaeva, V.N.; Lineva, A.N.; Zimina, S.V.; Gordetsov, A.S.; Dergunov, Yu.I.

    1981-01-01

    Vanadocene interaction with di-and tri-alkyl (aryl)-derivatives of silicon, tin and germanium is studied. Dibutyltin dibenzoate under mild conditions (20 deg C, toluene) oxidates vanadocene to [CpV(OCOC 6 H 5 ) 2 ] 2 , at that, the splitting off of one Cp group in the form of cyclopentadiene and formation of the products of tin-organic fragment disproportionation (tributyltin benzoate, dibutyltin, metallic tin) take place. Tributyltin benzoate oxidates vanadocene at the mole ratio 2:1 and during prolong heating (120 deg C) in the absence of the solvent, [CpV(OCOC 6 H 5 ) 2 ] 2 and hexabutyldistannate are the products of the reaction. Acetates R 3 SnOCOCH 3 react in the similar way. The reactivity of mono- and diacylates of germanium and silicon decreases in the series of derivatives Sn>Ge>Si [ru

  4. Microscopically crumpled indium-tin-oxide thin films as compliant electrodes with tunable transmittance

    International Nuclear Information System (INIS)

    Ong, Hui-Yng; Shrestha, Milan; Lau, Gih-Keong

    2015-01-01

    Indium-tin-oxide (ITO) thin films are perceived to be stiff and brittle. This letter reports that crumpled ITO thin films on adhesive poly-acrylate dielectric elastomer can make compliant electrodes, sustaining compression of up to 25% × 25% equi-biaxial strain and unfolding. Its optical transmittance reduces with crumpling, but restored with unfolding. A dielectric elastomer actuator (DEA) using the 14.2% × 14.2% initially crumpled ITO thin-film electrodes is electrically activated to produce a 37% areal strain. Such electric unfolding turns the translucent DEA to be transparent, with transmittance increased from 39.14% to 52.08%. This transmittance tunability promises to make a low-cost smart privacy window

  5. Microscopically crumpled indium-tin-oxide thin films as compliant electrodes with tunable transmittance

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Hui-Yng [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); School of Engineering, Nanyang Polytechnic, Singapore 569830 (Singapore); Shrestha, Milan; Lau, Gih-Keong, E-mail: mgklau@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-09-28

    Indium-tin-oxide (ITO) thin films are perceived to be stiff and brittle. This letter reports that crumpled ITO thin films on adhesive poly-acrylate dielectric elastomer can make compliant electrodes, sustaining compression of up to 25% × 25% equi-biaxial strain and unfolding. Its optical transmittance reduces with crumpling, but restored with unfolding. A dielectric elastomer actuator (DEA) using the 14.2% × 14.2% initially crumpled ITO thin-film electrodes is electrically activated to produce a 37% areal strain. Such electric unfolding turns the translucent DEA to be transparent, with transmittance increased from 39.14% to 52.08%. This transmittance tunability promises to make a low-cost smart privacy window.

  6. Induced nano-scale self-formed metal-oxide interlayer in amorphous silicon tin oxide thin film transistors.

    Science.gov (United States)

    Liu, Xianzhe; Xu, Hua; Ning, Honglong; Lu, Kuankuan; Zhang, Hongke; Zhang, Xiaochen; Yao, Rihui; Fang, Zhiqiang; Lu, Xubing; Peng, Junbiao

    2018-03-07

    Amorphous Silicon-Tin-Oxide thin film transistors (a-STO TFTs) with Mo source/drain electrodes were fabricated. The introduction of a ~8 nm MoO x interlayer between Mo electrodes and a-STO improved the electron injection in a-STO TFT. Mo adjacent to the a-STO semiconductor mainly gets oxygen atoms from the oxygen-rich surface of a-STO film to form MoO x interlayer. The self-formed MoO x interlayer acting as an efficient interface modification layer could conduce to the stepwise internal transport barrier formation while blocking Mo atoms diffuse into a-STO layer, which would contribute to the formation of ohmic contact between Mo and a-STO film. It can effectively improve device performance, reduce cost and save energy for the realization of large-area display with high resolution in future.

  7. High-performance a-IGZO thin-film transistor with conductive indium-tin-oxide buried layer

    Science.gov (United States)

    Ahn, Min-Ju; Cho, Won-Ju

    2017-10-01

    In this study, we fabricated top-contact top-gate (TCTG) structure of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) with a thin buried conductive indium-tin oxide (ITO) layer. The electrical performance of a-IGZO TFTs was improved by inserting an ITO buried layer under the IGZO channel. Also, the effect of the buried layer's length on the electrical characteristics of a-IGZO TFTs was investigated. The electrical performance of the transistors improved with increasing the buried layer's length: a large on/off current ratio of 1.1×107, a high field-effect mobility of 35.6 cm2/Vs, a small subthreshold slope of 116.1 mV/dec, and a low interface trap density of 4.2×1011 cm-2eV-1 were obtained. The buried layer a-IGZO TFTs exhibited enhanced transistor performance and excellent stability against the gate bias stress.

  8. Improved optical response and photocatalysis for N-doped titanium oxide (TiO2) films prepared by oxidation of TiN

    International Nuclear Information System (INIS)

    Wan, L.; Li, J.F.; Feng, J.Y.; Sun, W.; Mao, Z.Q.

    2007-01-01

    In order to improve the photocatalytic activity, N-doped titanium oxide (TiO 2 ) films were obtained by thermal oxidation of TiN films, which were prepared on Ti substrates by ion beam assisted deposition (IBAD). The dominating rutile TiO 2 phase was found in films after thermal oxidation. According to the results of X-ray photoelectron spectroscopy (XPS), the residual N atoms occupied O-atom sites in TiO 2 lattice to form Ti-O-N bonds. UV-vis spectra revealed the N-doped TiO 2 film had a red shift of absorption edge. The maximum red shift was assigned to the sample annealed at 750 deg. C, with an onset wavelength at 600 nm. The onset wavelength corresponded to the photon energy of 2.05 eV, which was nearly 1.0 eV below the band gap of pure rutile TiO 2 . The effect of nitrogen was responsible for the enhancement of photoactivity of N-doped TiO 2 films in the range of visible light

  9. Organic derivatives of tin (II/IV): Investigation of their structure

    Energy Technology Data Exchange (ETDEWEB)

    Szirtes, L., E-mail: szirtes@iki.kfki.h [Institute of Isotopes of the Hungarian Academy of Sciences, Budapest H-1525, P.O. Box 77 (Hungary); Megyeri, J., E-mail: megyeri@iki.kfki.h [Institute of Isotopes of the Hungarian Academy of Sciences, Budapest H-1525, P.O. Box 77 (Hungary); Kuzmann, E. [Laboratory of Nuclear Chemistry, CRC of the Hungarian Academy of Science at Eoetvoes University, H-1518 Budapest, P.O. Box 32 (Hungary); Beck, A. [Institute of Isotopes of the Hungarian Academy of Sciences, Budapest H-1525, P.O. Box 77 (Hungary)

    2011-07-15

    The structures of tin(II)-oxalate, tin(IV)Na-EDTA and tin(IV)Na{sub 8}-inositol hexaphosphate were investigated using XRD analysis. Samples were identified using the Moessbauer study, thermal analysis and FTIR spectrometry. The Moessbauer study determined two different oxidation states of tin atoms, and consequently two different tin surroundings in the end products. The tin oxalate was found to be orthorhombic with space group Pnma, a=9.2066(3) A, b=9.7590(1) A, c=13.1848(5) A, V=1184.62 A{sup 3} and Z=8. SnNa-EDTA was found to be monoclinic with space group P2{sub 1}/c{sub 1}, a=10.7544(3) A, b=10.1455(3) A, c=16.5130(6) A, {beta}=98.59(2){sup o}, V=1781.50(4) A{sup 3} and Z=4. Sn(C{sub 6}H{sub 6}Na{sub 8}O{sub 24}P{sub 6}) was found to be amorphous.

  10. Fast, versatile x-ray fluorescence method for measuring tin in impregnated wood

    DEFF Research Database (Denmark)

    Drabæk, I.; Christensen, Leif Højslet

    1985-01-01

    The present paper describes an energy-dispersive x-ray fluorescence method for measuring tin in bis(tri-n-butyl)tin-oxide impregnated wood. The proposed method is of the backscatter/fundamental parameter type. Its versatility, precision, and accuracy is demonstrated by analyses of eleven samples...

  11. Dietary energy density affects fat mass in early adolescence and is not modified by FTO variants.

    Directory of Open Access Journals (Sweden)

    Laura Johnson

    Full Text Available Dietary energy density (DED does not have a simple linear relationship to fat mass in children, which suggests that some children are more susceptible than others to the effects of DED. Children with the FTO (rs9939609 variant that increases the risk of obesity may have a higher susceptibility to the effects of DED because their internal appetite control system is compromised. We tested the relationship between DED and fat mass in early adolescence and its interaction with FTO variants.We carried out a prospective analysis on 2,275 children enrolled in the Avon Longitudinal Study of Parents and Children (ALSPAC. Diet was assessed at age 10 y using 3-day diet diaries. DED (kJ/g was calculated excluding drinks. Children were genotyped for the FTO (rs9939609 variant. Fat mass was estimated at age 13 y using the Lunar Prodigy Dual-energy X-ray Absorptiometry scanner. There was no evidence of interaction between DED at age 10 y and the high risk A allele of the FTO gene in relation to fat mass at age 13 y (beta = 0.005, p = 0.51, suggesting that the FTO gene has no effect on the relation between DED at 10 y and fat mass at 13 y. When DED at 10 y and the A allele of FTO were in the same model they were independently related to fat mass at 13 y. Each A allele of FTO was associated with 0.35+/-0.13 kg more fat mass at 13 y and each 1 kJ/g DED at 10 y was associated with 0.16+/-0.06 kg more fat mass at age 13 y, after controlling for misreporting of energy intake, gender, puberty, overweight status at 10 y, maternal education, TV watching, and physical activity.This study reveals the multi-factorial origin of obesity and indicates that although FTO may put some children at greater risk of obesity, encouraging a low dietary energy density may be an effective strategy to help all children avoid excessive fat gain.

  12. Performance of GaN-Based LEDs with Nanopatterned Indium Tin Oxide Electrode

    Directory of Open Access Journals (Sweden)

    Zhanxu Chen

    2016-01-01

    Full Text Available The indium tin oxide (ITO has been widely applied in light emitting diodes (LEDs as the transparent current spreading layer. In this work, the performance of GaN-based blue light LEDs with nanopatterned ITO electrode is investigated. Periodic nanopillar ITO arrays are fabricated by inductive coupled plasma etching with the mask of polystyrene nanosphere. The light extraction efficiency (LEE of LEDs can be improved by nanopatterned ITO ohmic contacts. The light output intensity of the fabricated LEDs with nanopatterned ITO electrode is 17% higher than that of the conventional LEDs at an injection current of 100 mA. Three-dimensional finite difference time domain simulation matches well with the experimental result. This method may serve as a practical approach to improving the LEE of the LEDs.

  13. Effect of wastewater quality parameters on coliform inactivation by tin oxide anodes.

    Science.gov (United States)

    Teel, Amy L; Watts, Richard J

    2018-04-16

    The effect of six water quality constituents on wastewater effluent disinfection by tin oxide anodes (TOAs) was investigated in single cell laboratory reactors. Several concentrations of suspended solids, chemical oxygen demand (COD), alkalinity, ammonia-nitrogen, nitrite-nitrogen, and nitrate-nitrogen were added to media containing 10 6 total coliform bacteria mL -1 . Current was applied through the TOAs, and coliform bacteria viability was analyzed over time. Over 99.9% inactivation of coliform bacteria was found over 15 min in TOA reactors. Concentrations of the six water quality constituents typical of concentrations found in wastewaters had no effect on TOA disinfection efficacy. The results of this research demonstrate that TOAs, which could potentially be powered by solar panels, have potential as a sustainable disinfection process compared to chlorine, ozone, and ultraviolet light.

  14. Fabricate heterojunction diode by using the modified spray pyrolysis method to deposit nickel-lithium oxide on indium tin oxide substrate.

    Science.gov (United States)

    Wu, Chia-Ching; Yang, Cheng-Fu

    2013-06-12

    P-type lithium-doped nickel oxide (p-LNiO) thin films were deposited on an n-type indium tin oxide (ITO) glass substrate using the modified spray pyrolysis method (SPM), to fabricate a transparent p-n heterojunction diode. The structural, optical, and electrical properties of the p-LNiO and ITO thin films and the p-LNiO/n-ITO heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectroscopy, Hall effect measurement, and current-voltage (I-V) measurements. The nonlinear and rectifying I-V properties confirmed that a heterojunction diode characteristic was successfully formed in the p-LNiO/n-ITO (p-n) structure. The I-V characteristic was dominated by space-charge-limited current (SCLC), and the Anderson model demonstrated that band alignment existed in the p-LNiO/n-ITO heterojunction diode.

  15. Study of the Morphological, Structural, Optical and Photoelectrochemical Properties of Zinc Oxide Nanorods Grown Using a Microwave Chemical Bath Deposition Method

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sungjin; Ryu, Hyukhyun [Inje University, Gimhae (Korea, Republic of); Lee, Won-Jae [Dong-Eui University, Busan (Korea, Republic of)

    2017-04-15

    In this study, zinc oxide (ZnO) nanostructures were grown on a ZnO-buffered fluorine-doped tin oxide (FTO) substrate using a microwave chemical bath deposition method with different zinc oxide precursor concentrations from 0.01 to 0.5 M. We investigated the effects of the zinc oxide precursor concentration on the morphological, structural, optical and photoelectrochemical properties of the ZnO nanostructures. From this work, we found that ZnO one-dimensional structures mainly grew along the (002) plane, and the nanorod length, diameter, surface area and photoelectrochemical properties were largely dependent on the precursor concentration. That is, the photoelectrochemical properties were affected by the morphological and structural properties of the ZnO. The morphological, structural, optical and photoelectrochemical properties of the ZnO nanostructure were investigated by field emission scanning electron microscopy (FE-SEM) and atomic force microscope (AFM), X-ray diffraction (XRD), UV-visible spectroscopy and 3-electrode potentiostat. We obtained the highest photocurrent density of 0.37 mA/cm{sup 2} (at 1.1 V vs. SCE) from the precursor concentration of 0.07 M, which resulted in ZnO nanostructures with proper length and diameter, large surface area and good structural properties.

  16. Tin-Assisted Synthesis of ɛ -Ga2O3 by Molecular Beam Epitaxy

    Science.gov (United States)

    Kracht, M.; Karg, A.; Schörmann, J.; Weinhold, M.; Zink, D.; Michel, F.; Rohnke, M.; Schowalter, M.; Gerken, B.; Rosenauer, A.; Klar, P. J.; Janek, J.; Eickhoff, M.

    2017-11-01

    The synthesis of ɛ -Ga2O3 and β -Ga2O3 by plasma-assisted molecular beam epitaxy on (001 )Al2O3 substrates is studied. The growth window of β -Ga2O3 in the Ga-rich regime, usually limited by the formation of volatile gallium suboxide, is expanded due to the presence of tin during the growth process, which stabilizes the formation of gallium oxides. X-ray diffraction, transmission electron microscopy, time-of-flight secondary-ion mass spectrometry, Raman spectroscopy, and atomic force microscopy are used to analyze the influence of tin on the layer formation. We demonstrate that it allows the synthesis of phase-pure ɛ -Ga2O3 . A growth model based on the oxidation of gallium suboxide by reduction of an intermediate sacrificial tin oxide is suggested.

  17. Structural and optical studies of 100 MeV Au irradiated thin films of tin oxide

    Science.gov (United States)

    Jaiswal, Manoj Kumar; Kanjilal, D.; Kumar, Rajesh

    2013-11-01

    Thin films of tin(IV) oxide (SnO2) of 100 nm thickness were grown on silicon (1 0 0) matrices by electron beam evaporation deposition technique under high vacuum. The thicknesses of these films were monitored by piezo-sensor attached to the deposition chamber. Nanocrystallinity is achieved in these thin films by 100 MeV Au8+ using 1 pnA current at normal incidence with ion fluences varying from 1 × 1011 ions/cm2 to 5 × 1013 ions/cm2. Swift Heavy Ion beam irradiation was carried out by using 15 UD Pelletron Accelerator at IUAC, New Delhi, India. Optical studies of pristine and ion irradiated thin films were characterized by UV-Visible spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. Prominent peak at 610 cm-1 in FTIR spectrum confirmed the O-Sn-O bonding of tin(IV) oxide. For Surface topographical studies and grain size calculations, these films were characterized by Atomic Force Microscope (AFM) using Nanoscope III-A. Crystallinity and phase transformation due to irradiation of pristine and irradiated films were characterized by Glancing Angle X-ray Diffraction (GAXRD) using Brucker-D8 advance model. GAXRD results show improvement in crystallinity and phase transformation due to swift heavy ion irradiation. Grain size distribution was verified by AFM and GAXRD results. Swift heavy ion induced modifications in thin films of SnO2 were confirmed by the presence of prominent peaks at 2θ values of 30.65°, 32.045°, 43.94°, 44.96° and 52.36° in GAXRD spectrum.

  18. Fabrication and excellent conductive performance of antimony-doped tin oxide-coated diatomite with porous structure

    Energy Technology Data Exchange (ETDEWEB)

    Du Yucheng, E-mail: ychengdu@bjut.edu.cn [Key Lab of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Yan Jing; Meng Qi; Wang Jinshu [Key Lab of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Dai Hongxing, E-mail: hxdai@bjut.edu.cn [Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China)

    2012-04-16

    Graphical abstract: Antimony-doped tin oxide (ATO)-coated diatomite with porous structures are fabricated using the co-precipitation method. The porous ATO-coated diatomite material shows excellent conductive performance. Highlights: Black-Right-Pointing-Pointer Sb-doped SnO{sub 2} (ATO)-coated diatomite materials with porous structures are prepared. Black-Right-Pointing-Pointer Sn/Sb ratio, ATO coating amount, pH value, and temperature influence resistivity. Black-Right-Pointing-Pointer Porous ATO-coated diatomite materials show excellent conductive performance. Black-Right-Pointing-Pointer The lowest resistivity of the porous ATO-coated diatomite sample is 10 {Omega} cm. - Abstract: Diatomite materials coated with antimony-doped tin oxide (ATO) were prepared by the co-precipitation method, and characterized by means of the techniques, such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, selected-area electron diffraction, X-ray fluorescence spectroscopy, and N{sub 2} adsorption-desorption measurement. It was shown that the coated ATO possessed a tetragonal rutile crystal structure, and the ATO-coated diatomite materials had a multi-pore (micro- meso-, and macropores) architecture. The porous ATO-coated diatomite materials exhibited excellent electrical conductive behaviors. The best conductive performance (volume resistivity = 10 {Omega} cm) was achieved for the sample that was prepared under the conditions of Sn/Sb molar ratio = 5.2, Sn/Sb coating amount = 45 wt%, pH = 1.0, and reaction temperature = 50 Degree-Sign C. Such a conductive porous material is useful for the applications in physical and chemical fields.

  19. Synthesis and characterization of porous structured ZnO thin film for dye sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Marimuthu, T.; Anandhan, N., E-mail: anandhan-kn@rediffmail.com; Mummoorthi, M. [School of Physics, Alagappa University, Karaikudi – 630 003 (India); Dharuman, V. [Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi – 630 003 (India)

    2016-05-23

    Zinc oxide (ZnO) and zinc oxide/eosin yellow (ZnO/EY) thin films were potentiostatically deposited onto fluorine doped tin oxide (FTO) glass substrate. Effect of eosin yellow dye on structural, morphological and optical properties was studied. X-ray diffraction patterns, micro Raman spectra and photoluminescence (PL) spectra reveal hexagonal wurtzite structure with less atomic defects in 101 plane orientation of the ZnO/EY film. Scanning electron microscopy (SEM) images show flower for ZnO and porous like structure for ZnO/EY thin film, respectively. DSSC was constructed and evaluated by measuring the current density verses voltage curve.

  20. Tin - an unlikely ally for silicon field effect transistors?

    KAUST Repository

    Hussain, Aftab M.

    2014-01-13

    We explore the effectiveness of tin (Sn), by alloying it with silicon, to use SiSn as a channel material to extend the performance of silicon based complementary metal oxide semiconductors. Our density functional theory based simulation shows that incorporation of tin reduces the band gap of Si(Sn). We fabricated our device with SiSn channel material using a low cost and scalable thermal diffusion process of tin into silicon. Our high-κ/metal gate based multi-gate-field-effect-transistors using SiSn as channel material show performance enhancement, which is in accordance with the theoretical analysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Oxidation of Pb-Sn and Pb-Sn-In alloys

    International Nuclear Information System (INIS)

    Sluzewski, D.A.; Chang, Y.A.; Marcotte, V.C.

    1990-01-01

    Air oxidized Pb-Sn and Pb-Sn-In single phase alloys have been studied with scanning Auger microscopy. Line scans across grain boundaries combined with argon ion sputter etching revealed grain boundary oxidation. In the Pb-Sn samples, tin is preferentially oxidized with the grain boundary regions having a much higher percentage of tin oxide than the bulk surface oxide. In the Pb-Sn-In alloys, both tin and indium are preferentially oxidized with the grain boundary regions being enriched with tin and indium oxides

  2. Control of the electrical conductivity of composites of antimony doped tin oxide (ATO) nanoparticles and acrylate by grafting of 3-methacryloxpropyltrimethoxysilane (MPS)

    NARCIS (Netherlands)

    Posthumus, W.; Laven, J.; With, de G.; Linde, van der R.

    2006-01-01

    The effect of the addition of antimony doped tin oxide (ATO) nanoparticles on the electrical conductivity of acrylate films is described. To enable dispersing of ATO in acrylate matrices, 3-methacryloxypropyltrimethoxysilane (MPS) was grafted on the surface of the filler. The amount of MPS used for

  3. Ac conductivity and dielectric spectroscopy studies on tin oxide thin films formed by spray deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Barış, Behzad, E-mail: behzadbaris@gmail.com

    2014-04-01

    Au/tin oxide/n-Si (1 0 0) structure has been created by forming a tin oxide (SnO{sub 2}) on n-type Si by using the spray deposition technique. The ac electrical conductivity (σ{sub ac}) and dielectric properties of the structure have been investigated between 30 kHz and 1 MHz at room temperature. The values of ε', ε″, tanδ, σ{sub ac}, M' and M″ were determined as 1.404, 0.357, 0.253, 1.99×10{sup −7} S/cm, 0.665 and 0.168 for 1 MHz and 6.377, 6.411, 1.005, 1.07×10{sup −7} S/cm, 0.077 and 0.078 for 30 kHz at zero bias, respectively. These changes were attributed to variation of the charge carriers from the interface traps located between semiconductor and metal in the band gap. It is concluded that the values of the ε', ε″ and tanδ increase with decreasing frequency while a decrease is seen in σ{sub ac} and the real (M') and imaginary (M″) components of the electrical modulus. The M″ parameter of the structure has a relaxation peak as a function of frequency for each examined voltage. The relaxation time of M″(τ{sub M″}) varies from 0.053 ns to 0.018 ns with increasing voltage. The variation of Cole–Cole plots of the sample shows that there is one relaxation.

  4. InGaN/AlGaInN-based ultraviolet light-emitting diodes with indium gallium tin oxide electrodes

    International Nuclear Information System (INIS)

    Kim, Sukwon; Kim, Tae Geun

    2015-01-01

    In this study, In- and Sn-doped GaO (IGTO) is proposed as an alternative transparent conductive electrode for indium tin oxide (ITO) to improve the performance of InGaN/AlGaInN-based near ultraviolet light-emitting diodes (NUV LEDs). IGTO films were prepared by co-sputtering the ITO and Ga_2O_3 targets under various target power ratios. Among those, IGTO films post-annealed at 700 °C under a hydrogen environment gave rise to a transmittance of 94% at 385 nm and a contact resistance of 9.4 × 10"−"3 Ω-cm"2 with a sheet resistance of 124 Ω/ϒ. Compared to ITO-based NUV LEDs, the IGTO-based NUV LED showed a 9% improvement in the light output power, probably due to IGTO's higher transmittance, although the forward voltage was still higher by 0.23 V. - Highlights: • Indium gallium tin oxide (IGTO) for near-ultraviolet light-emitting diode is proposed. • IGTO is fabricated by co-sputtering the ITO and Ga_2O_3 targets and hydrogen annealing. • IGTO shows a 94% transmittance at 385 nm and a 9.4 × 10"−"3 Ω-cm"2 contact resistance. • Near-ultraviolet light-emitting diode with IGTO shows improved optical performance.

  5. Preparation and characterization of indium tin oxide thin films for their application as gas sensors

    International Nuclear Information System (INIS)

    Vaishnav, V.S.; Patel, P.D.; Patel, N.G.

    2005-01-01

    The structural and electrical properties of indium tin oxide (In 2 O 3 /SnO 2 ) thin films grown using direct evaporation technique on various substrates at different temperatures were studied. The effect of annealing, of films with different weight percent concentration of SnO 2 in In 2 O 3 and of different thickness on the structural and electrical properties were studied and optimized for use as gas sensor. The stability of the films against time and temperature variations was studied. The effect of the catalytic layers on the sensor microstructure and its performance towards the gas sensing application was observed

  6. Morphology, structural and optical properties of iron oxide thin film photoanodes in photoelectrochemical cell: Effect of electrochemical oxidation

    Science.gov (United States)

    Maabong, Kelebogile; Machatine, Augusto G.; Hu, Yelin; Braun, Artur; Nambala, Fred J.; Diale, Mmantsae

    2016-01-01

    Hematite (α-Fe2O3) is a promising semiconductor as photoanode in solar hydrogen production from photoelectrolysis of water due to its appropriate band gap, low cost and high electrochemical stability in aqueous caustic electrolytes. Operation of such photoanode in a biased photoelectrochemical cell constitutes an anodization with consequent redox reactions at the electrode surface. α-Fe2O3 thin film photoanodes were prepared by simple and inexpensive dip coating method on fluorine doped tin oxide (FTO) glass substrate, annealed in air at 500 °C for 2 h, then electrochemically oxidized (anodized) in 1 M KOH at 500 mV for 1 min in dark and light conditions. Changes in structural properties and morphology of α-Fe2O3 nanoparticles films were investigated by XRD, Raman spectroscopy and a high resolution FE-SEM. The average grain size was observed to increase from 57 nm for pristine samples to 73 and 77 nm for anodized samples in dark and light respectively. Broadening and red shift in Raman spectra in anodized samples may be attributed to lattice expansion upon oxidation. The UV-visible measurements revealed enhanced absorption in the photoanodes after the treatment. The findings suggest that the anodization of the photoelectrode in a biased cell causes not only changes of the molecular structure at the surface, but also changes in the crystallographic structure which can be detected with x-ray diffractometry.

  7. Morphology, structural and optical properties of iron oxide thin film photoanodes in photoelectrochemical cell: Effect of electrochemical oxidation

    International Nuclear Information System (INIS)

    Maabong, Kelebogile; Machatine, Augusto G.; Hu, Yelin; Braun, Artur; Nambala, Fred J.; Diale, Mmantsae

    2016-01-01

    Hematite (α-Fe_2O_3) is a promising semiconductor as photoanode in solar hydrogen production from photoelectrolysis of water due to its appropriate band gap, low cost and high electrochemical stability in aqueous caustic electrolytes. Operation of such photoanode in a biased photoelectrochemical cell constitutes an anodization with consequent redox reactions at the electrode surface. α-Fe_2O_3 thin film photoanodes were prepared by simple and inexpensive dip coating method on fluorine doped tin oxide (FTO) glass substrate, annealed in air at 500 °C for 2 h, then electrochemically oxidized (anodized) in 1 M KOH at 500 mV for 1 min in dark and light conditions. Changes in structural properties and morphology of α-Fe_2O_3 nanoparticles films were investigated by XRD, Raman spectroscopy and a high resolution FE-SEM. The average grain size was observed to increase from ~57 nm for pristine samples to 73 and 77 nm for anodized samples in dark and light respectively. Broadening and red shift in Raman spectra in anodized samples may be attributed to lattice expansion upon oxidation. The UV–visible measurements revealed enhanced absorption in the photoanodes after the treatment. The findings suggest that the anodization of the photoelectrode in a biased cell causes not only changes of the molecular structure at the surface, but also changes in the crystallographic structure which can be detected with x-ray diffractometry.

  8. Morphology, structural and optical properties of iron oxide thin film photoanodes in photoelectrochemical cell: Effect of electrochemical oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Maabong, Kelebogile [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Laboratory of High Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf (Switzerland); Department of Physics, University of Botswana, Private Bag 002, Gaborone (Botswana); Machatine, Augusto G. [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Hu, Yelin [Laboratory of High Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf (Switzerland); Laboratory for Photonics and Interfaces, EPFL, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Braun, Artur [Laboratory of High Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf (Switzerland); Nambala, Fred J. [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); University of Zambia, Box 32379, Great East Road Campus, Lusaka (Zambia); Diale, Mmantsae, E-mail: mmantsae.diale@up.ac.za [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Laboratory of High Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf (Switzerland)

    2016-01-01

    Hematite (α-Fe{sub 2}O{sub 3}) is a promising semiconductor as photoanode in solar hydrogen production from photoelectrolysis of water due to its appropriate band gap, low cost and high electrochemical stability in aqueous caustic electrolytes. Operation of such photoanode in a biased photoelectrochemical cell constitutes an anodization with consequent redox reactions at the electrode surface. α-Fe{sub 2}O{sub 3} thin film photoanodes were prepared by simple and inexpensive dip coating method on fluorine doped tin oxide (FTO) glass substrate, annealed in air at 500 °C for 2 h, then electrochemically oxidized (anodized) in 1 M KOH at 500 mV for 1 min in dark and light conditions. Changes in structural properties and morphology of α-Fe{sub 2}O{sub 3} nanoparticles films were investigated by XRD, Raman spectroscopy and a high resolution FE-SEM. The average grain size was observed to increase from ~57 nm for pristine samples to 73 and 77 nm for anodized samples in dark and light respectively. Broadening and red shift in Raman spectra in anodized samples may be attributed to lattice expansion upon oxidation. The UV–visible measurements revealed enhanced absorption in the photoanodes after the treatment. The findings suggest that the anodization of the photoelectrode in a biased cell causes not only changes of the molecular structure at the surface, but also changes in the crystallographic structure which can be detected with x-ray diffractometry.

  9. Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fat accumulation

    DEFF Research Database (Denmark)

    Andreasen, Camilla H; Stender-Petersen, Kirstine L; Mogensen, Mette S

    2008-01-01

    (-16)). Furthermore, obesity-related quantitative traits such as body weight, waist circumference, fat mass, and fasting serum leptin levels were significantly elevated in A-allele carriers. An interaction between the FTO rs9939609 genotype and physical activity (P = 0.007) was found, where physically inactive...... homozygous risk A-allele carriers had a 1.95 +/- 0.3 kg/m(2) increase in BMI compared with homozygous T-allele carriers. CONCLUSIONS: We validate that variation in FTO is associated with type 2 diabetes when not adjusted for BMI and with an overall increase in body fat mass. Furthermore, low physical......OBJECTIVE: Three independent studies have shown that variation in the fat mass and obesity-associated (FTO) gene associates with BMI and obesity. In the present study, the effect of FTO variation on metabolic traits including obesity, type 2 diabetes, and related quantitative phenotypes...

  10. IMPEDANCE SPECTROSCOPY OF POLYCRYSTALLINE TIN DIOXIDE FILMS

    Directory of Open Access Journals (Sweden)

    D. V. Adamchuck

    2016-01-01

    Full Text Available The aim of this work is the analysis of the influence of annealing in an inert atmosphere on the electrical properties and structure of non-stoichiometric tin dioxide films by means of impedance spectroscopy method. Non-stoichiometric tin dioxide films were fabricated by two-step oxidation of metallic tin deposited on the polycrystalline Al2O3 substrates by DC magnetron sputtering. In order to modify the structure and stoichiometric composition, the films were subjected to the high temperature annealing in argon atmosphere in temperature range 300–800 °С. AC-conductivity measurements of the films in the frequency range 20 Hz – 2 MHz were carried out. Variation in the frequency dependencies of the real and imaginary parts of the impedance of tin dioxide films was found to occur as a result of high-temperature annealing. Equivalent circuits for describing the properties of films with various structure and stoichiometric composition were proposed. Possibility of conductivity variation of the polycrystalline tin dioxide films as a result of аnnealing in an inert atmosphere was demonstrated by utilizing impedance spectroscopy. Annealing induces the recrystallization of the films, changing in their stoichiometry as well as increase of the sizes of SnO2 crystallites. Variation of electrical conductivity and structure of tin dioxide films as a result of annealing in inert atmosphere was confirmed by X-ray diffraction analysis. Analysis of the impedance diagrams of tin dioxide films was found to be a powerful tool to study their electrical properties. 

  11. A study on linear and non-linear optical constants of Rhodamine B thin film deposited on FTO glass

    Energy Technology Data Exchange (ETDEWEB)

    Yahia, I.S. [Nano-Science & Semiconductor Labs, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Jilani, Asim, E-mail: asim.jilane@gmail.com [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); Abutalib, M.M. [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); AlFaify, S. [Nano-Science & Semiconductor Labs, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Shkir, M. [Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Abdel-wahab, M.Sh.; Al-Ghamdi, Attieh A. [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); El-Naggar, A.M. [Exploitation of Renewable Energy Applications in Saudi Arabia, Physics & Astronomy Department, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451 (Saudi Arabia)

    2016-06-01

    The aim of this research was to fabricate/deposit the good quality thin film of Rhodamine B dye on fluorine doped tin oxide glass substrate by the low cost spin coating technique and study their linear and nonlinear optical parameters. The thickness of the thin film was measured about 300 nm with alpha step system. The transmittance of the fabricated thin film was found to be above 75% corresponding to the fluorine doped tin oxide layer. The structural analysis was performed with X-rays diffraction spectroscopy. Atomic force microscope showed the topographic image of deposited thin film. Linear optical constant like absorption coefficient, band gap, and extinction index was calculated. The dielectric constant was calculated to know the optical response of Rhodamine B dye over fluorine doped tin oxide substrate. The nonlinear optical constant like linear optical susceptibility χ{sup (1)}, nonlinear optical susceptibility χ{sup (3)}, nonlinear refractive index (n{sub 2}) were calculated by spectroscopic method. This method has advantage over the experimental method like Z-Scan for organic dye base semiconductors for future advance optoelectronics applications like dye synthesis solar cell.

  12. Sintered indium-tin oxide particles induce pro-inflammatory responses in vitro, in part through inflammasome activation.

    Directory of Open Access Journals (Sweden)

    Melissa A Badding

    Full Text Available Indium-tin oxide (ITO is used to make transparent conductive coatings for touch-screen and liquid crystal display electronics. As the demand for consumer electronics continues to increase, so does the concern for occupational exposures to particles containing these potentially toxic metal oxides. Indium-containing particles have been shown to be cytotoxic in cultured cells and pro-inflammatory in pulmonary animal models. In humans, pulmonary alveolar proteinosis and fibrotic interstitial lung disease have been observed in ITO facility workers. However, which ITO production materials may be the most toxic to workers and how they initiate pulmonary inflammation remain poorly understood. Here we examined four different particle samples collected from an ITO production facility for their ability to induce pro-inflammatory responses in vitro. Tin oxide, sintered ITO (SITO, and ventilation dust particles activated nuclear factor kappa B (NFκB within 3 h of treatment. However, only SITO induced robust cytokine production (IL-1β, IL-6, TNFα, and IL-8 within 24 h in both RAW 264.7 mouse macrophages and BEAS-2B human bronchial epithelial cells. Our lab and others have previously demonstrated SITO-induced cytotoxicity as well. These findings suggest that SITO particles activate the NLRP3 inflammasome, which has been implicated in several immune-mediated diseases via its ability to induce IL-1β release and cause subsequent cell death. Inflammasome activation by SITO was confirmed, but it required the presence of endotoxin. Further, a phagocytosis assay revealed that pre-uptake of SITO or ventilation dust impaired proper macrophage phagocytosis of E. coli. Our results suggest that adverse inflammatory responses to SITO particles by both macrophage and epithelial cells may initiate and propagate indium lung disease. These findings will provide a better understanding of the molecular mechanisms behind an emerging occupational health issue.

  13. FTO at rs9939609, Food Responsiveness, Emotional Control and Symptoms of ADHD in Preschool Children

    NARCIS (Netherlands)

    F.P. Velders (Fleur); F.R.C. de Wit (Frank); P.W. Jansen (Pauline); V.W.V. Jaddoe (Vincent); A. Hofman (Albert); F.C. Verhulst (Frank); H.W. Tiemeier (Henning)

    2012-01-01

    textabstractThe FTO minor allele at rs9939609 has been associated with body mass index (BMI: weight (kg)/height (m)2) in children from 5 years onwards, food intake, and eating behaviour. The high expression of FTO in the brain suggests that this gene may also be associated with behavioural

  14. Effect of ion plating TiN on the oxidation of sputtered NiCrAlY-coated Ti3Al-Nb in air at 850-950 C

    International Nuclear Information System (INIS)

    Rizzo, F.C.; Zeng, C.; Chinese Academy of Sciences, Shenyang; Wu, W.

    1998-01-01

    A single sputtered NiCrAlY coating and a complex coating of inner ion-plated TiN and outer sputtered NiCrAlY were prepared on the intermetallic compound Ti 3 Al-Nb. Their oxidation behavior was examined at 850, 900, and 950 C in air by thermal gravimetry combined with XRD, SEM, and EDAX. The results showed that Ti 3 Al-Nb followed approximately parabolic oxidation, forming an outer thin Al 2 O 3 -rich scale and an inner TiO 2 -rich layer doped with Nb at the three temperatures. The TiO 2 -rich layer doped with Nb dominated the oxidation reaction. The single NiCrAlY coating did not follow parabolic oxidation exactly at 850 and 950 C, but oxidized approximately in a parabolic manner, because the instantaneous parabolic constants changed slightly with time. Besides the Al 2 O 3 scale, TiO 2 formed from the coating surface at the coating-substrate interface. The deterioration of the coating accelerated with increasing temperature. The NiCrAlY-TiN coating showed two-stage parabolic oxidation at 850 and 900 C, and an approximate parabolic oxidation at 950 C. The TiN layer was effective as a barrier to inhibit coating-alloy interdiffusion

  15. Screening for coding variants in FTO and SH2B1 genes in Chinese patients with obesity.

    Directory of Open Access Journals (Sweden)

    Zhaojing Zheng

    Full Text Available To investigate potential functional variants in FTO and SH2B1 genes among Chinese children with obesity.Sanger sequencing of PCR products of all FTO and SH2B1 exons and their flanking regions were performed in 338 Chinese Han children with obesity and 221 age- and sex-matched lean controls.A total of seven and five rare non-synonymous variants were identified in FTO and SH2B1, respectively. The overall frequencies of FTO and SH2B1 rare non-synonymous variants were similar in obese and lean children (2.37% and 0.90% vs. 1.81% and 1.36%, P>0.05. However, four out of the seven variants in FTO were novel and all were unique to obese children (p>0.05. None of the novel variants was consistently being predicted to be deleterious. Four out of five variants in SH2B1 were novel and one was unique to obese children (p>0.05. One variant (L293R that was consistently being predicted as deleterious in SH2B1 gene was unique to lean control. While rare missense mutations were more frequently detected in girls from obesity as well as lean control than boys, the difference was not statistically significant. In addition, it's shown that the prevalence of rare missense mutations of FTO as well as SH2B1 was similar across different ethnic groups.The rare missense mutations of FTO and SH2B1 did not confer risks of obesity in Chinese Han children in our cohort.

  16. Dip-Coating Process Engineering and Performance Optimization for Three-State Electrochromic Devices

    Science.gov (United States)

    Wu, Lu; Yang, Dejiang; Fei, Lixun; Huang, Yue; Wu, Fang; Sun, Yiling; Shi, Jiayuan; Xiang, Yong

    2017-06-01

    Titanium dioxide (TiO2) nanoparticles were modified onto fluorine-doped tin oxide (FTO) via dip-coating technique with different nanoparticle sizes, lifting speeds, precursor concentrations, and dipping numbers. Electrodeposition-based electrochromic device with reversible three-state optical transformation (transparent, mirror, and black) was fabricated subsequently by sandwiching a suitable amount of gel electrolyte between modified FTO electrode and flat FTO electrode. Correlation between dip-coating process engineering, morphological features of TiO2 thin films, i.e., thickness and roughness, as well as performance of electrochromic devices, i.e., optical contrast, switching time, and cycling stability, were investigated. The modified device exhibits high optical contrast of 57%, the short coloration/bleaching switching time of 6 and 20 s, and excellent cycling stability after 1500 cycles of only 27% decrement rate by adjusting dip-coating processes engineering. The results in this study will provide valuable guidance for rational design of the electrochromic device with satisfactory performance.

  17. ZnO/CdS bi-layer nanostructures photoelectrode for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dalal, Paresh V., E-mail: paresh10dalal@gmail.com [Physics Research Lab, Shri V. S. Naik Arts, Commerce and Science College, Raver-425508 (M. S.) (India); Deshpande, Milind P., E-mail: vishwadeshpande@yahoo.co.in [Department of Physics, Sardar Patel University, Vallabh Vidyanagar-388120 (Gujarat) (India); Solanki, Bharat G., E-mail: bhrt.solanki17@gmail.com; Soni, Saurabh S., E-mail: soni-b21@yahoo.co.in [Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar-388120 (Gujarat) (India)

    2016-05-06

    Simple chemical deposition method for the synthesis of ZnO/CdS bilayer photoelectrode on fluorine doped tin oxide (FTO) coated glass substrate in aqueous medium at low temperature (< 373K) is described. The different preparative parameters such as deposition time, bath temperature, concentration of precursor solution and, pH of the bath etc. were optimized. Nanograined ZnO was deposited on FTO coated glass substrates by dip-coating method, whereas CdS nanorods were successfully synthesized on pre-deposited ZnO film by Chemical Bath Deposition (CBD) method. The Photovoltaic properties of FTO/ZnO/CdS bilayer photo electrodes were also studied. A maximum short circuit current density of 9.1 mA cm-2 and conversion efficiency 1.05% are observed for ZnO/CdS-10min. Layer, which supports fast electron injection kinetics due to hetero structured nanorod, while minimum values of 0.53mA cm-2 and 0.01% respectively are observed for only ZnO deposited layer.

  18. Synthesize of Graphene-Tin Oxide Nanocomposite and Its Photocatalytic Properties for the Degradation of Organic Pollutants Under Visible Light.

    Science.gov (United States)

    Shanmugam, M; Jayavel, R

    2015-09-01

    Graphene-tinoxide nanocomposite has been synthesised by coating SnO2 nanoparticles on graphene sheets by the redox reaction between graphene oxide (GO) and tin chloride. Graphene oxide was reduced to graphene and Sn2+ was oxidized to SnO2 during the redox reaction, resulting in the uniform distribution of SnO2 nanoparticles on graphene sheets. The synthesised material was characterized by XRD, SEM, AFM, FT-IR, UV-vis, TGA and Raman spectroscopic studies. SEM and AFM studies reveal the formation of wrinkled paper like structure of graphene sheets with uniform coating of SnO2 nanoparticles on either side. The strong photocatalytic degradation of Methylene orange (MO) dye was analysed using G-SnO2 nanocomposite under the visible light irradiation.

  19. Recovery Of Valuable Metals In Tin-Based Anodic Slimes By Carbothermic Reaction

    OpenAIRE

    Han Chulwoong; Kim Young-Min; Son Seong Ho; Choi Hanshin; Kim Tae Bum; Kim Yong Hwan

    2015-01-01

    This study investigated the recovery of anodic slimes by carbothermic reaction in the temperature range of 973~1,273K and amount of carbon as a function of time. Tin anodic slime samples were collected from the bottom of the electrolytic cells during the electro-refining of tin. The anodic slimes are consisted of high concentrated tin, silver, copper and lead oxides. The kinetics of reduction were determined by means of the weight-loss measurement technique. In order to understand in detail o...

  20. Bio-active synthesis of tin oxide nanoparticles using eggshell membrane for energy storage application

    Science.gov (United States)

    Celina Selvakumari, J.; Nishanthi, S. T.; Dhanalakshmi, J.; Ahila, M.; Pathinettam Padiyan, D.

    2018-05-01

    Nano-sized tin oxide (SnO2) particles were synthesized using eggshell membrane (ESM), a natural bio-waste from the chicken eggshell. The crystallization of SnO2 into the tetragonal structure was confirmed from powder X-ray diffraction and the crystallite size ranged from 13 to 40 nm. Various shapes including rod, hexagonal and spherical SnO2 nanoparticles were observed from the morphological studies. The electrochemical impedance study revealed a lower charge transfer resistance (Rct) of 8.565 Ω and the presence of a constant phase element which arised due to surface roughness and porosity. Capacitive behavior seen in the cyclic voltammetry curve of the prepared SnO2 nanoparticles, find future applications in supercapacitors.

  1. The FTO (fat mass and obesity associated gene codes for a novel member of the non-heme dioxygenase superfamily

    Directory of Open Access Journals (Sweden)

    Andrade-Navarro Miguel A

    2007-11-01

    Full Text Available Abstract Background Genetic variants in the FTO (fat mass and obesity associated gene have been associated with an increased risk of obesity. However, the function of its protein product has not been experimentally studied and previously reported sequence similarity analyses suggested the absence of homologs in existing protein databases. Here, we present the first detailed computational analysis of the sequence and predicted structure of the protein encoded by FTO. Results We performed a sequence similarity search using the human FTO protein as query and then generated a profile using the multiple sequence alignment of the homologous sequences. Profile-to-sequence and profile-to-profile based comparisons identified remote homologs of the non-heme dioxygenase family. Conclusion Our analysis suggests that human FTO is a member of the non-heme dioxygenase (Fe(II- and 2-oxoglutarate-dependent dioxygenases superfamily. Amino acid conservation patterns support this hypothesis and indicate that both 2-oxoglutarate and iron should be important for FTO function. This computational prediction of the function of FTO should suggest further steps for its experimental characterization and help to formulate hypothesis about the mechanisms by which it relates to obesity in humans.

  2. Structural and optical studies of 100 MeV Au irradiated thin films of tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Manoj Kumar [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110 078 (India); Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Kumar, Rajesh, E-mail: rajeshkumaripu@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110 078 (India)

    2013-11-01

    Thin films of tin(IV) oxide (SnO{sub 2}) of 100 nm thickness were grown on silicon (1 0 0) matrices by electron beam evaporation deposition technique under high vacuum. The thicknesses of these films were monitored by piezo-sensor attached to the deposition chamber. Nanocrystallinity is achieved in these thin films by 100 MeV Au{sup 8+} using 1 pnA current at normal incidence with ion fluences varying from 1 × 10{sup 11} ions/cm{sup 2} to 5 × 10{sup 13} ions/cm{sup 2}. Swift Heavy Ion beam irradiation was carried out by using 15 UD Pelletron Accelerator at IUAC, New Delhi, India. Optical studies of pristine and ion irradiated thin films were characterized by UV–Visible spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. Prominent peak at 610 cm{sup −1} in FTIR spectrum confirmed the O–Sn–O bonding of tin(IV) oxide. For Surface topographical studies and grain size calculations, these films were characterized by Atomic Force Microscope (AFM) using Nanoscope III-A. Crystallinity and phase transformation due to irradiation of pristine and irradiated films were characterized by Glancing Angle X-ray Diffraction (GAXRD) using Brucker-D8 advance model. GAXRD results show improvement in crystallinity and phase transformation due to swift heavy ion irradiation. Grain size distribution was verified by AFM and GAXRD results. Swift heavy ion induced modifications in thin films of SnO{sub 2} were confirmed by the presence of prominent peaks at 2θ values of 30.65°, 32.045°, 43.94°, 44.96° and 52.36° in GAXRD spectrum.

  3. Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity

    OpenAIRE

    Deepak Kumar Kaushik; K. Uday Kumar; A. Subrahmanyam

    2017-01-01

    Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes) in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl∼1; kF is the Fermi wave vector and l ...

  4. Electrochemical Characterization of Nanoporous Nickel Oxide Thin Films Spray-Deposited onto Indium-Doped Tin Oxide for Solar Conversion Scopes

    Directory of Open Access Journals (Sweden)

    Muhammad Awais

    2015-01-01

    Full Text Available Nonstoichiometric nickel oxide (NiOx has been deposited as thin film utilizing indium-doped tin oxide as transparent and electrically conductive substrate. Spray deposition of a suspension of NiOx nanoparticles in alcoholic medium allowed the preparation of uniform NiOx coatings. Sintering of the coatings was conducted at temperatures below 500°C for few minutes. This scalable procedure allowed the attainment of NiOx films with mesoporous morphology and reticulated structure. The electrochemical characterization showed that NiOx electrodes possess large surface area (about 1000 times larger than their geometrical area. Due to the openness of the NiOx morphology, the underlying conductive substrate can be contacted by the electrolyte and undergo redox processes within the potential range in which NiOx is electroactive. This requires careful control of the conditions of polarization in order to prevent the simultaneous occurrence of reduction/oxidation processes in both components of the multilayered electrode. The combination of the open structure with optical transparency and elevated electroactivity in organic electrolytes motivated us to analyze the potential of the spray-deposited NiOx films as semiconducting cathodes of dye-sensitized solar cells of p-type when erythrosine B was the sensitizer.

  5. Tin electrodeposition from sulfate solution containing a benzimidazolone derivative

    Directory of Open Access Journals (Sweden)

    Said BAKKALI

    2016-11-01

    Full Text Available Tin electrodeposition in an acidic medium in the presence of N,N’-1,3-bis-[N-3-(6-deoxy-3-O-methyl-D-glucopyranose-6-yl-2-oxobenzimidazol-1-yl]-2-tetradecyloxypropane as an additive was investigated in this work. The adequate current density and the appropriate additive concentration were determined by gravimetric measurements. Chronopotentiometric curves showed that the presence of the additive caused an increase in the overpotential of tin reduction. The investigations by cyclic voltammetry technique revealed that, in the presence and in absence of the additive, there were two peaks, one in the cathodic side attributed to the reduction of Sn2+ and the other one in the anodic side assigned to the oxidation of tin previously formed during the cathodic scan. The surface morphology of the tin deposits was studied by scanning electron microscopy (SEM and XRD.

  6. Minimizing energy losses in perovskite solar cells using plasma-treated transparent conducting layers

    Energy Technology Data Exchange (ETDEWEB)

    Dao, Van-Duong [Department of Chemical Engineering, Chungnam National University, Yuseong-Gu, Daejeon 305-764 (Korea, Republic of); Larina, Liudmila L. [Department of Chemical Engineering, Chungnam National University, Yuseong-Gu, Daejeon 305-764 (Korea, Republic of); Department of Solar Photovoltaics, Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow (Russian Federation); Choi, Ho-Suk, E-mail: hchoi@cnu.ac.kr [Department of Chemical Engineering, Chungnam National University, Yuseong-Gu, Daejeon 305-764 (Korea, Republic of)

    2015-10-30

    This study reports for increasing the efficiency of perovskite solar cells (PSCs) by modifying the surface of a fluorine-doped indium tin oxide (FTO) substrate using an atmospheric pressure plasma treatment. Surface modification of the FTO film involved several challenges, such as control of the blocking layer uniformity, removal of pinholes, and deposition of a dense layer. This strategy allows the suppression of charge recombination at the interface between the FTO substrate and hole conductor. Electrochemical impedance spectroscopy analysis showed that the plasma treatment increased the charge transfer resistance between the FTO and hole conductor from 95.1 to 351.1 Ω, indicating enhanced resistance to the electron back reaction. Analyses of the open-circuit photovoltage decay revealed that modification of the surface of the FTO substrate by plasma treatment increased time constant from 6.44 ms to 13.15 ms. The effect is ascribed to suppression of the electron recombination rate. PSCs based on the newly developed electrode had 39% higher efficiency than reference devices. The obtained results provide direct evidence in favor of the developed strategy. - Highlights: • Plasma treatment of FTO glass effectively increases the efficiency of PSCs. • The surface becomes superhydrophilic after plasma treatment. • The superhydrophilic surface provides uniform and pinhole-free coverage of TiO{sub 2} BL. • The transmittance of the plasma-treated FTO/BL is higher than the pristine FTO/BL. • The electron recombination is reduced due to its high quality of TiO{sub 2} BL.

  7. Nanotextured Spikes of α-Fe2O3/NiFe2O4 Composite for Efficient Photoelectrochemical Oxidation of Water.

    Science.gov (United States)

    Hussain, Shabeeb; Tavakoli, Mohammad Mahdi; Waleed, Aashir; Virk, Umar Siddique; Yang, Shihe; Waseem, Amir; Fan, Zhiyong; Nadeem, Muhammad Arif

    2018-03-27

    We demonstrate for the first time the application of p-NiFe 2 O 4 /n-Fe 2 O 3 composite thin films as anode materials for light-assisted electrolysis of water. The p-NiFe 2 O 4 /n-Fe 2 O 3 composite thin films were deposited on planar fluorinated tin oxide (FTO)-coated glass as well as on 3D array of nanospike (NSP) substrates. The effect of substrate (planar FTO and 3D-NSP) and percentage change of each component (i.e., NiFe 2 O 4 and Fe 2 O 3 ) of composite was studied on photoelectrochemical (PEC) water oxidation reaction. This work also includes the performance comparison of p-NiFe 2 O 4 /n-Fe 2 O 3 composite (planar and NSP) devices with pure hematite for PEC water oxidation. Overall, the nanostructured p-NiFe 2 O 4 /n-Fe 2 O 3 device with equal molar 1:1 ratio of NiFe 2 O 4 and Fe 2 O 3 was found to be highly efficient for PEC water oxidation as compared with pure hematite, 1:2 and 1:3 molar ratios of composite. The photocurrent density of 1:1 composite thin film on planar substrate was equal to 1.07 mA/cm 2 at 1.23 V RHE , which was 1.7 times higher current density as compared with pure hematite device (0.63 mA/cm 2 at 1.23 V RHE ). The performance of p-NiFe 2 O 4 /n-Fe 2 O 3 composites in PEC water oxidation was further enhanced by their deposition over 3D-NSP substrate. The highest photocurrent density of 2.1 mA/cm 2 at 1.23 V RHE was obtained for the 1:1 molar ratio p-NiFe 2 O 4 /n-Fe 2 O 3 composite on NSP (NF1-NSP), which was 3.3 times more photocurrent density than pure hematite. The measured applied bias photon-to-current efficiency (ABPE) value of NF1-NSP (0.206%) was found to be 1.87 times higher than that of NF1-P (0.11%) and 4.7 times higher than that of pure hematite deposited on FTO-coated glass (0.044%). The higher PEC water oxidation activity of p-NiFe 2 O 4 /n-Fe 2 O 3 composite thin film as compared with pure hematite is attributed to the Z-path scheme and better separation of electrons and holes. The increased surface area and greater light

  8. The Effects of Oxidation Layer, Temperature, and Stress on Tin Whisker Growth: A Short Review

    Science.gov (United States)

    Mahim, Z.; Salleh, M. A. A.; Khor, C. Y.

    2018-03-01

    In order to reduce the Tin (Sn) whisker growth phenomenon in solder alloys, the researcher all the world has studied the factor of this behaviour. However, this phenomenon still hunted the electronic devices and industries. The whiskers growth were able to cause the electrical short, which would lead to the catastrophic such as plane crush, the failure of heart pacemaker, and the lost satellite connection. This article focuses on the three factors that influence the whiskers growth in solder alloys which is stress, oxidation layer and temperature. This findings were allowed the researchers to develop various method on how to reduce the growth of the Sn whiskers.

  9. Effects of annealing temperature on mechanical durability of indium-tin oxide film on polyethylene terephthalate substrate

    International Nuclear Information System (INIS)

    Machinaga, Hironobu; Ueda, Eri; Mizuike, Atsuko; Takeda, Yuuki; Shimokita, Keisuke; Miyazaki, Tsukasa

    2014-01-01

    Effects of the annealing temperature on mechanical durability of indium-tin oxide (ITO) thin films deposited on polyethylene terephthalate (PET) substrates were investigated. The ITO films were annealed at the range from 150 °C to 195 °C after the DC sputtering deposition for the production of polycrystalline ITO layers on the substrates. The onset strains of cracking in the annealed ITO films were evaluated by the uniaxial stretching tests with electrical resistance measurements during film stretching. The results indicate that the onset strain of cracking in the ITO film is clearly increased by increasing the annealing temperature. The in-situ measurements of the inter-planer spacing of the (222) plane in the crystalline ITO films during film stretching by using synchrotron radiation strongly suggest that the large compressive stress in the ITO film increases the onset strain of cracking in the film. X-ray stress analyses of the annealed ITO films and thermal mechanical analyses of the PET substrates also clarifies that the residual compressive stress in the ITO film is enhanced with increasing the annealing temperature due to the considerably larger shrinkage of the PET substrate. - Highlights: • Indium-tin oxide (ITO) films were deposited on polyethylene terephthalate (PET). • Mechanical durability of the ITO is improved by high temperature post-annealing. • The shrinkage in the PET increases with rising the post-annealing temperature. • The shrinkage of the PET enhances the compressive stress in the ITO film. • Large compressive stress in the ITO film may improve its mechanical durability

  10. A facile preparation of immobilized BiOCl nanosheets/TiO{sub 2} arrays on FTO with enhanced photocatalytic activity and reusability

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yinghua [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Yu, Xiang [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Analytical & Testing Center, Jinan University, Guangzhou 510632 (China); Lin, Weitian; Zhu, Yi [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Zhang, Yuanming, E-mail: tzhangym@jnu.edu.cn [Department of Chemistry, Jinan University, Guangzhou 510632 (China)

    2017-03-31

    Highlights: • Immobilized BiOCl nanosheets/TiO{sub 2} arrays hybrid photocatalyst were fabricated. • The degradation efficiency of BCTO-3 can still reach 91.7% after eight cycles. • The immobilized BCTO-3 can be recycled for removal of organic pollutants in water. - Abstract: Forming a hybrid structure is considered as an efficient strategy toward improving the photocatalytic activity of TiO{sub 2}-based photocatalyst. In this work, we report a facile impregnation method to prepare BiOCl nanosheets on rutile TiO{sub 2} nanorod arrays on transparent conductive fluorine-doped tin oxide (FTO) substrate. According to RhB photocatalytic degradation experiments, the degradation efficiency of the immobilized BiOCl/TiO{sub 2} (denoted as BCTO-3) hybrid photocatalyst can reach 99.1% after visible light irradiation for 3 h, and its efficiency is higher than that of pure BiOCl (42.7%) and TiO{sub 2} (44.8%), respectively. The enhancement is demonstrated to be the match of energy level between BiOCl and TiO{sub 2}. Hence, the separation and transfer of photogenerated electron-hole pairs are obviously improved, which have been illustrated by the result of the photoluminescence spectra analysis and photoelectrochemical performance. Moreover, the degradation efficiency of BCTO-3 can still reach 91.7% after eight times photodegradation cycle experiments. Due to the easy recycling and excellent durability, the immobilized BCTO-3 photocatalyst is considered as a promising photocatalytic material for the removal of organic pollutants in aqueous eco-environments.

  11. Room temperature synthesis of indium tin oxide nanotubes with high precision wall thickness by electroless deposition

    Directory of Open Access Journals (Sweden)

    Mario Boehme

    2011-02-01

    Full Text Available Conductive nanotubes consisting of indium tin oxide (ITO were fabricated by electroless deposition using ion track etched polycarbonate templates. To produce nanotubes (NTs with thin walls and small surface roughness, the tubes were generated by a multi-step procedure under aqueous conditions. The approach reported below yields open end nanotubes with well defined outer diameter and wall thickness. In the past, zinc oxide films were mostly preferred and were synthesized using electroless deposition based on aqueous solutions. All these methods previously developed, are not adaptable in the case of ITO nanotubes, even with modifications. In the present work, therefore, we investigated the necessary conditions for the growth of ITO-NTs to achieve a wall thickness of around 10 nm. In addition, the effects of pH and reductive concentrations for the formation of ITO-NTs are also discussed.

  12. Surface energy for electroluminescent polymers and indium-tin-oxide

    International Nuclear Information System (INIS)

    Zhong Zhiyou; Yin Sheng; Liu Chen; Zhong Youxin; Zhang Wuxing; Shi Dufang; Wang Chang'an

    2003-01-01

    The contact angles on the thin films of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and indium-tin-oxide (ITO) were measured by the sessile-drop technique. The surface energies of the films were calculated using the Owens-Wendt (OW) and van Oss-Chaudhury-Good (vOCG) approaches. The overall total surface energies of MEH-PPV and the as-received ITO were 30.75 and 30.07 mJ/m 2 , respectively. Both approaches yielded almost the same surface energies. The surface energies were mainly contributed from the dispersion interactions or Lifshitz-van der Waals (LW) interactions for both MEH-PPV and ITO. The changes in the contact angles and surface energies of the ITO films, due to different solvent cleaning processes and oxygen plasma treatments, were analyzed. Experimental results revealed that the total surface energy of the ITO films increased after various cleaning processes. In comparison with different solvents used in this study, we found that methanol is an effective solvent for ITO cleaning, as a higher surface energy was observed. ITO films treated with oxygen plasma showed the highest surface energy. This work demonstrated that contact angle measurement is a useful method to diagnose the cleaning effect on ITO films

  13. Electrophoretic deposition (EPD) of multi-walled carbon nano tubes (MWCNT) onto indium-tin-oxide (ITO) glass substrates

    International Nuclear Information System (INIS)

    Mohd Roslie Ali; Shahrul Nizam Mohd Salleh

    2009-01-01

    Full text: Multi-Walled Carbon Nano tubes (MWCNT) were deposited onto Indium-Tin-Oxide (ITO)-coated glass substrates by introducing the use of Electrophoretic Deposition (EPD) as the method. The Multi-Walled Carbon Nano tubes (MWCNT) were dispersed ultrasonically in ethanol and sodium hydroxide (NaOH) to form stable suspension. The addition of Sodium Hydroxide in ethanol can stabilize the suspension, which was very important step before the deposition take place. Two substrates of Indium-Tin-Oxide(ITO)-coated glass placed in parallel facing each other (conductive side) into the suspension. The deposition occurs at room temperature, which the distance fixed at 1 cm between both electrodes and the voltage level applied was fixed at 400 V, respectively. The deposition time also was fixed at 30 minutes. The deposited ITO-Glass with Multi-Walled Carbon Nano tubes (MWCNT) will be characterized using Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), and Raman Microscope. The images of SEM shows that the Multi -Walled Carbon Nano tubes (MWCNT) were distributed uniformly onto the surface of ITO-Glass. The deposited ITO-Glass with Multi-Walled Carbon Nano tubes (MWCNT) could be the potential material in various practical applications such as field emission devices, fuel cells, and super capacitors. Electrophoretic deposition (EPD) technique was found to be an efficient technique in forming well distribution of Multi-Walled Carbon Nano tubes (MWCNT) onto ITO-Glass substrates, as proved in characterization methods, in which the optimum conditions will play the major role. (author)

  14. InGaN/AlGaInN-based ultraviolet light-emitting diodes with indium gallium tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sukwon; Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr

    2015-09-30

    In this study, In- and Sn-doped GaO (IGTO) is proposed as an alternative transparent conductive electrode for indium tin oxide (ITO) to improve the performance of InGaN/AlGaInN-based near ultraviolet light-emitting diodes (NUV LEDs). IGTO films were prepared by co-sputtering the ITO and Ga{sub 2}O{sub 3} targets under various target power ratios. Among those, IGTO films post-annealed at 700 °C under a hydrogen environment gave rise to a transmittance of 94% at 385 nm and a contact resistance of 9.4 × 10{sup −3} Ω-cm{sup 2} with a sheet resistance of 124 Ω/ϒ. Compared to ITO-based NUV LEDs, the IGTO-based NUV LED showed a 9% improvement in the light output power, probably due to IGTO's higher transmittance, although the forward voltage was still higher by 0.23 V. - Highlights: • Indium gallium tin oxide (IGTO) for near-ultraviolet light-emitting diode is proposed. • IGTO is fabricated by co-sputtering the ITO and Ga{sub 2}O{sub 3} targets and hydrogen annealing. • IGTO shows a 94% transmittance at 385 nm and a 9.4 × 10{sup −3} Ω-cm{sup 2} contact resistance. • Near-ultraviolet light-emitting diode with IGTO shows improved optical performance.

  15. Effect of Target Density on Microstructural, Electrical, and Optical Properties of Indium Tin Oxide Thin Films

    Science.gov (United States)

    Zhu, Guisheng; Zhi, Li; Yang, Huijuan; Xu, Huarui; Yu, Aibing

    2012-09-01

    In this paper, indium tin oxide (ITO) targets with different densities were used to deposit ITO thin films. The thin films were deposited from these targets at room temperature and annealed at 750°C. Microstructural, electrical, and optical properties of the as-prepared films were studied. It was found that the target density had no effect on the properties or deposition rate of radiofrequency (RF)-sputtered ITO thin films, different from the findings for direct current (DC)-sputtered films. Therefore, when using RF sputtering, the target does not require a high density and may be reused.

  16. Catalyst for Decomposition of Nitrogen Oxides

    Science.gov (United States)

    Schryer, David R. (Inventor); Jordan, Jeffrey D. (Inventor); Akyurtlu, Ates (Inventor); Akyurtlu, Jale (Inventor)

    2015-01-01

    This invention relates generally to a platinized tin oxide-based catalyst. It relates particularly to an improved platinized tin oxide-based catalyst able to decompose nitric oxide to nitrogen and oxygen without the necessity of a reducing gas.

  17. The role of surface and deep-level defects on the emission of tin oxide quantum dots

    International Nuclear Information System (INIS)

    Kumar, Vinod; Kumar, Vijay; Som, S; Ntwaeaborwa, O M; Swart, H C; Neethling, J H; Lee, Mike

    2014-01-01

    This paper reports on the role of surface and deep-level defects on the blue emission of tin oxide quantum dots (SnO 2 QDs) synthesized by the solution-combustion method at different combustion temperatures. X-ray diffraction studies showed the formation of a single rutile SnO 2 phase with a tetragonal lattice structure. High resolution transmission electron microscopy studies revealed an increase in the average dot size from 2.2 to 3.6 nm with an increase of the combustion temperature from 350 to 550 °C. A decrease in the band gap value from 3.37 to 2.76 eV was observed with the increase in dot size due to the quantum confinement effect. The photoluminescence emission was measured for excitation at 325 nm and it showed a broad blue emission band for all the combustion temperatures studied. This was due to the creation of various oxygen and tin vacancies/defects as confirmed by x-ray photoelectron spectroscopy data. The origin of the blue emission in the SnO 2 QDs is discussed with the help of an energy band diagram. (paper)

  18. Study of quartz crystal microbalance NO2 sensor coated with sputtered indium tin oxide film

    Science.gov (United States)

    Georgieva, V.; Aleksandrova, M.; Stefanov, P.; Grechnikov, A.; Gadjanova, V.; Dilova, T.; Angelov, Ts

    2014-12-01

    A study of NO2 gas sorption ability of thin indium tin oxide (ITO) deposited on 16 MHz quartz crystal microbalance (QCM) is presented. ITO films are grown by RF sputtering of indium/tin target with weight proportion 95:5 in oxygen environment. The ITO films have been characterized by X-ray photoelectron spectroscopy measurements. The ITO surface composition in atomic % is defined to be: In-40.6%, Sn-4.3% and O-55%. The thickness and refractive index of the films are determined by ellipsometric method. The frequency shift of QCM-ITO is measured at different NO2 concentrations. The QCM-ITO system becomes sensitive at NO2 concentration >= 500 ppm. The sorbed mass for each concentration is calculated according the Sauerbrey equation. The results indicated that the 1.09 ng of the gas is sorbed into 150 nm thick ITO film at 500 ppm NO2 concentration. When the NO2 concentration increases 10 times the calculated loaded mass is 5.46 ng. The sorption process of the gas molecules is defined as reversible. The velocity of sorbtion /desorption processes are studied, too. The QCM coated with thin ITO films can be successfully used as gas sensors for detecting NO2 in the air at room temperature.

  19. Study of quartz crystal microbalance NO2 sensor coated with sputtered indium tin oxide film

    International Nuclear Information System (INIS)

    Georgieva, V; Gadjanova, V; Angelov, Ts; Aleksandrova, M; Acad. Georgi Bonchev str.bl. 11, 1113, Sofia (Bulgaria))" data-affiliation=" (Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev str.bl. 11, 1113, Sofia (Bulgaria))" >Stefanov, P; Acad. Georgi Bonchev str.bl. 11, 1113, Sofia (Bulgaria))" data-affiliation=" (Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev str.bl. 11, 1113, Sofia (Bulgaria))" >Dilova, T; Grechnikov, A

    2014-01-01

    A study of NO 2 gas sorption ability of thin indium tin oxide (ITO) deposited on 16 MHz quartz crystal microbalance (QCM) is presented. ITO films are grown by RF sputtering of indium/tin target with weight proportion 95:5 in oxygen environment. The ITO films have been characterized by X-ray photoelectron spectroscopy measurements. The ITO surface composition in atomic % is defined to be: In-40.6%, Sn-4.3% and O-55%. The thickness and refractive index of the films are determined by ellipsometric method. The frequency shift of QCM-ITO is measured at different NO 2 concentrations. The QCM-ITO system becomes sensitive at NO 2 concentration ≥ 500 ppm. The sorbed mass for each concentration is calculated according the Sauerbrey equation. The results indicated that the 1.09 ng of the gas is sorbed into 150 nm thick ITO film at 500 ppm NO 2 concentration. When the NO 2 concentration increases 10 times the calculated loaded mass is 5.46 ng. The sorption process of the gas molecules is defined as reversible. The velocity of sorbtion /desorption processes are studied, too. The QCM coated with thin ITO films can be successfully used as gas sensors for detecting NO 2 in the air at room temperature

  20. Enhanced photovoltaic performance of dye-sensitized solar cells based on nickel oxide supported on nitrogen-doped graphene nanocomposite as a photoanode.

    Science.gov (United States)

    Ranganathan, Palraj; Sasikumar, Ragu; Chen, Shen-Ming; Rwei, Syang-Peng; Sireesha, Pedaballi

    2017-10-15

    We applied the nitrogen-doped graphene@nickel oxide (NGE/NiO) nanocomposite doped TiO 2 as a photo-anode for dye-sensitized solar cells (DSSCs) on fluorine-doped tin oxide (FTO) substrates by screen printing method. Power conversion efficiency (PCE) of 9.75% was achieved for this DSSCs device, which is greater than that of DSSCs devices using GO/TiO 2 , and NiO/TiO 2 based photo-anodes (PCE=8.55, and 9.11%). Also, the fill factor (FF) of the DSSCs devices using the NGE/NiO/TiO 2 nanocomposite photo-anode was better than that of other photo-anodes. The NGE/NiO/TiO 2 short-circuit photocurrent density (J sc ) of 19.04mAcm -2 , open circuit voltage (V oc ) of 0.76V, fill factor (FF) of 0.67 and dye absorption rate 0.21×10 -6 molcm -2 . The obtained results suggest that as-prepared NGE/NiO/TiO 2 nanocomposite is suitable photo-anode for DSSCs application. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Electrochemical preparation of vertically aligned, hollow CdSe nanotubes and their p-n junction hybrids with electrodeposited Cu2O.

    Science.gov (United States)

    Debgupta, Joyashish; Devarapalli, Ramireddy; Rahman, Shakeelur; Shelke, Manjusha V; Pillai, Vijayamohanan K

    2014-08-07

    Vertically aligned, hollow nanotubes of CdSe are grown on fluorine doped tin oxide (FTO) coated glass substrates by ZnO nanowire template-assisted electrodeposition technique, followed by selective removal of the ZnO core using NH4OH. A detailed mechanism of nucleation and anisotropic growth kinetics of nanotubes have been studied by a combination of characterization tools such as chronoamperometry, SEM and TEM. Interestingly, "as grown" CdSe nanotubes (CdSe NTs) on FTO coated glass plates behave as n-type semiconductors exhibiting an excellent photo-response (with a generated photocurrent density value of ∼ 470 μA cm(-2)) while in contact with p-type Cu2O (p-type semiconductor, grown separately on FTO plates) because of the formation of a n-p heterojunction (type II). The observed photoresponse is 3 times higher than that of a similar device prepared with electrodeposited CdSe films (not nanotubes) and Cu2O on FTO. This has been attributed to the hollow 1-D nature of CdSe NTs, which provides enhanced inner and outer surface areas for better absorption of light and also assists faster transport of photogenerated charge carriers.

  2. Structural and photoluminescence characterization of SnO{sub 2}: F thin films deposited by advanced spray pyrolysis technique at low substrate temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shewale, P.S. [Thin Film Physics Laboratory, Department of Electronics, Shivaji University, Kolhapur 416004 (India); Ung Sim, Kyu; Kim, Ye-bin; Kim, J.H. [Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-Dong, Buk-Gu, Gwangju 500757 (Korea, Republic of); Moholkar, A.V. [Department of Physics, Shivaji University, Kolhapur 416004 (India); Uplane, M.D., E-mail: mdu_eln@unishivaji.ac.in [Thin Film Physics Laboratory, Department of Electronics, Shivaji University, Kolhapur 416004 (India)

    2013-07-15

    Fluorine doped tin oxide (FTO) thin films were deposited on glass substrates, at different substrate temperatures using advanced spray pyrolysis technique. X-ray diffraction studies showed that the crystallinity of the thin films increased with increasing substrate temperature. FESEM and AFM studies support the conclusions drawn from X-ray diffraction studies. X-ray photoelectron studies confirm oxygen deficiency in formation of the FTO nanocrystallites. The photoluminescence of the FTO films were investigated. It was found that, room temperature photoluminescence spectra are dominated by oxygen vacancies and exhibit a rich violet photoluminescence band about ∼404 nm with an extensively feeble red emission about 700 nm. The Photoluminescence intensity varies with the substrate temperature. The photoemission position is observed to be independent of substrate temperature. -- Highlights: ► Photoluminescent FTO thin films were deposited at low substrate temperatures. ► Influence of substrate temperature on the PL characteristics was studied. ► The samples are polycrystalline with a cassiterite tetragonal crystal structure. ► The room temperature UV/violet PL emission was dominated by the oxygen vacancies. ► PL efficiency is optimum at 613 K substrate temperature.

  3. Genetic association of FTO/IRX region with obesity and overweight in the Polish population.

    Directory of Open Access Journals (Sweden)

    Marta Sobalska-Kwapis

    Full Text Available Genome-wide association studies (GWAS have identified many loci associated with body mass index (BMI in many different populations. Variants in the FTO locus are reported to be one of the strongest genetic predictors of obesity. Recent publications pointed also to a topologically associated domain (TAD which is identified as a novel region affecting BMI. The TAD area encompasses the IRXB cluster (IRX3, IRX5, IRX6, FTO and RPGRIP1L genes.In this study, we investigated the relationship between variation of the FTO and IRX genes and obesity in Poles. We presented a case-control association analysis (normal versus overweight and/or obesity group of Polish adult individuals (N = 5418. We determined whether or not the chromosomal region 16:53 500 000-55 500 000 contains polymorphic variants which are correlated with BMI in Polish population, including sex and age stratified analysis.The obtained results showed that the problem of weight-height abnormalities differently affects populations of Polish women and men (χ2 = 187.1; p0.98, r2>0.80. We confirmed presence of the genetic susceptibility loci located in intron 1 of the FTO gene, which were correlated with BMI in our study group. For the first time, our analyses revealed strong association of FTO intronic variants (block 8 with overweight in group of men only. We have also identified association of the IRX region with overweight and/or obesity in Polish individuals.Our study demonstrated how tested SNPs make differential contributions to obesity and overweight risk. We revealed sex dependent differences in the distribution of tested loci which are associated with BMI in the population of Poles.

  4. Ultra-Low-Power Smart Electronic Nose System Based on Three-Dimensional Tin Oxide Nanotube Arrays.

    Science.gov (United States)

    Chen, Jiaqi; Chen, Zhuo; Boussaid, Farid; Zhang, Daquan; Pan, Xiaofang; Zhao, Huijuan; Bermak, Amine; Tsui, Chi-Ying; Wang, Xinran; Fan, Zhiyong

    2018-06-04

    In this work, we present a high-performance smart electronic nose (E-nose) system consisting of a multiplexed tin oxide (SnO 2 ) nanotube sensor array, read-out circuit, wireless data transmission unit, mobile phone receiver, and data processing application (App). Using the designed nanotube sensor device structure in conjunction with multiple electrode materials, high-sensitivity gas detection and discrimination have been achieved at room temperature, enabling a 1000 times reduction of the sensor's power consumption as compared to a conventional device using thin film SnO 2 . The experimental results demonstrate that the developed E-nose can identify indoor target gases using a simple vector-matching gas recognition algorithm. In addition, the fabricated E-nose has achieved state-of-the-art sensitivity for H 2 and benzene detection at room temperature with metal oxide sensors. Such a smart E-nose system can address the imperative needs for distributed environmental monitoring in smart homes, smart buildings, and smart cities.

  5. Interfacial reactions between indium tin oxide and triphenylamine tetramer layers induced by photoirradiation

    International Nuclear Information System (INIS)

    Satoh, Toshikazu; Fujikawa, Hisayoshi; Yamamoto, Ichiro; Murasaki, Takanori; Kato, Yoshifumi

    2008-01-01

    The effects of photoirradiation on the interfacial chemical reactions between indium tin oxide (ITO) films and layers of triphenylamine tetramer (TPTE) were investigated by using in situ x-ray photoelectron spectroscopy (XPS). Thin TPTE layers deposited onto sputter-deposited ITO films were irradiated with violet light-emitting diodes (peak wavelength: 380 nm). Shifts in the peak positions of spectral components that originated in the organic layer toward the higher binding-energy side were observed in the XPS profiles during the early stages of irradiation. No further peak shifts were observed after additional irradiation. An increase in the ratio of the organic component in the O 1s spectra was also observed during the photoirradiation. The ratio of the organic component increased in proportion to the cube root of the irradiation time. These results suggest that photoirradiation induces an increase in the height of the carrier injection barrier at the interface between TPTE and ITO in the early stages of the irradiation, possibly due to the rapid diffusion controlled formation and growth of an oxidized TPTE layer, which is considered to act as a high resistance layer

  6. Organic-inorganic hybrid thin film solar cells using conducting polymer and gold nanoparticles

    Science.gov (United States)

    Hwan Jung, Hyung; Ho Kim, Dong; Su Kim, Chang; Bae, Tae-Sung; Bum Chung, Kwun; Yoon Ryu, Seung

    2013-05-01

    We employed poly(styrenesulfonate)-doped poly (3,4-ethylenedioxythiophene) (PEDOT:PSS) as a p-layer on textured fluorine-tin-oxide (FTO) glass in pin-type hydrogenated amorphous silicon solar cells (a-Si:H SCs). An amorphous tungsten oxide (WO3) layer and gold nanoparticles (Au-NPs) 10 nm in size were included to prevent the degradation and to increase short-circuit current by the Plasmon effect, respectively, between the PEDOT:PSS and intrinsic-Si layer. The energy band between PEDOT:PSS and WO3 was meaningfully adjusted by Au-NPs. The p-type PEDOT:PSS layer in these organic-inorganic hybrid a-Si:H SCs results in an increased conversion efficiency from ˜2.42% to ˜5.49% and an increased open-circuit voltage from ˜0.29 V to ˜0.56 V. PEDOT:PSS on textured FTO glass is sufficiently showing that it can replace the p-type Si layer in pin-type a-Si:H SCs.

  7. All-nanoparticle self-assembly ZnO/TiO₂ heterojunction thin films with remarkably enhanced photoelectrochemical activity.

    Science.gov (United States)

    Yuan, Sujun; Mu, Jiuke; Mao, Ruiyi; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi

    2014-04-23

    The multilaminated ZnO/TiO2 heterojunction films were successfully deposited on conductive substrates including fluorine-doped tin oxide (FTO) glass and flexible indium tin oxide coated poly(ethylene terephthalate) via the layer-by-layer (LBL) self assembly method from the oxide colloids without using any polyelectrolytes. The positively charged ZnO nanoparticles and the negatively charged TiO2 nanoparticles were directly used as the components in the consecutive deposition process to prepare the heterojunction thin films by varying the thicknesses. Moreover, the crystal growth of both oxides could be efficiently inhibited by the good connection between ZnO and TiO2 nanoparticles even after calcination at 500 °C, especially for ZnO which was able to keep the crystallite size under 25 nm. The as-prepared films were used as the working electrodes in the three-electrode photoelectrochemical cells. Because the well-contacted nanoscale heterojunctions were formed during the LBL self-assembling process, the ZnO/TiO2 all-nanoparticle films deposited on both substrates showed remarkably enhanced photoelectrochemical properties compared to that of the well-established TiO2 LBL thin films with similar thicknesses. The photocurrent response collected from the ZnO/TiO2 electrode on the FTO glass substrate was about five times higher than that collected from the TiO2 electrode. Owing to the absence of the insulating layer of dried polyelectrolytes, the ZnO/TiO2 all-nanoparticle heterojunction films were expected to be used in the photoelectrochemical device before calcination.

  8. Spray Pyrolyzed Polycrystalline Tin Oxide Thin Film as Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    Ganesh E. Patil

    2010-09-01

    Full Text Available Polycrystalline tin oxide (SnO2 thin film was prepared by using simple and inexpensive spray pyrolysis technique (SPT. The film was characterized for their phase and morphology by X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively. The crystallite size calculated from the XRD pattern is 84 nm. Conductance responses of the polycrystalline SnO2 were measured towards gases like hydrogen (H2, liquefied petroleum gas (LPG, ethanol vapors (C2H5OH, NH3, CO, CO2, Cl2 and O2. The gas sensing characteristics were obtained by measuring the sensor response as a function of various controlling factors like operating temperature, operating voltages (1 V, 5 V, 10 V 15 V, 20 V and 25 V and concentration of gases. The sensor response measurement showed that the SnO2 has maximum response to hydrogen. Furthermore; the SnO2 based sensor exhibited fast response and good recovery towards hydrogen at temperature 150 oC. The result of response towards H2 reveals that SnO2 thin film prepared by SPT would be a suitable material for the fabrication of the hydrogen sensor.

  9. Molecular diversity of the ammonia-oxidizing bacteria community in disused tin-mining ponds located within Kampar, Perak, Malaysia.

    Science.gov (United States)

    Sow, S L S; Khoo, G; Chong, L K; Smith, T J; Harrison, P L; Ong, H K A

    2014-02-01

    Disused tin-mining ponds make up a significant amount of water bodies in Malaysia particularly at the Kinta Valley in the state of Perak where tin-mining activities were the most extensive, and these abundantly available water sources are widely used in the field of aquaculture and agriculture. However, the natural ecology and physicochemical conditions of these ponds, many of which have been altered due to secondary post-mining activities, remains to be explored. As ammonia-oxidizing bacteria (AOB) are directly related to the nutrient cycles of aquatic environments and are useful bioindicators of environmental variations, the focus of this study was to identify AOBs associated with disused tin-mining ponds that have a history of different secondary activities in comparison to ponds which were left untouched and remained as part of the landscape. The 16S rDNA gene was used to detect AOBs in the sediment and water sampled from the three types of disused mining ponds, namely ponds without secondary activity, ponds that were used for lotus cultivation and post-aquaculture ponds. When the varying pond types were compared with the sequence and phylogenetic analysis of the AOB clone libraries, both Nitrosomonas and Nitrosospira-like AOB were detected though Nitrosospira spp. was seen to be the most ubiquitous AOB as it was present in all ponds types. However, AOBs were not detected in the sediments of idle ponds. Based on rarefaction analysis and diversity indices, the disused mining pond with lotus culture indicated the highest richness of AOBs. Canonical correspondence analysis indicated that among the physicochemical properties of the pond sites, TAN and nitrite were shown to be the main factors that influenced the community structure of AOBs in these disused tin-mining ponds.

  10. Crystallinity, etchability, electrical and mechanical properties of Ga doped amorphous indium tin oxide thin films deposited by direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Lee, Hyun-Jun; Song, Pung-Keun

    2014-01-01

    Indium tin oxide (ITO) and Ga-doped ITO (ITO:Ga) films were deposited on glass and polyimide (PI) substrates by direct current (DC) magnetron sputtering using different ITO:Ga targets (doped-Ga: 0, 0.1 and 2.9 wt.%). The films were deposited with a thickness of 50 nm and then post-annealed at various temperatures (room temperature-250 °C) in a vacuum chamber for 30 min. The amorphous ITO:Ga (0.1 wt.% Ga) films post-annealed at 220 °C exhibited relatively low resistivity (4.622x10 −4 Ω cm), indicating that the crystallinity of the ITO:Ga films decreased with increasing Ga content. In addition, the amorphous ITO:Ga films showed a better surface morphology, etchability and mechanical properties than the ITO films. - Highlights: • The Ga doped indium tin oxide (ITO) films crystallized at higher temperatures than the ITO films. • The amorphisation of ITO films increases with increasing Ga content. • Similar resistivity was observed between crystalline ITO and amorphous Ga doped ITO films. • Etching property of ITO film was improved with increasing Ga content

  11. Improvement of transistor characteristics and stability for solution-processed ultra-thin high-valence niobium doped zinc-tin oxide thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Jeng, Jiann-Shing, E-mail: jsjeng@mail.nutn.edu.tw

    2016-08-15

    Nb-doped Zinc tin oxide (NZTO) channel materials have been prepared by solution process in combination with the spin-coating method. All NZTO thin film transistors (TFTs) are n-type enhancement-mode devices, either without or with Nb additives. High-valence niobium ion (ionic charge = +5) has a larger ionic potential and similar ionic radius to Zn{sup 2+} and Sn{sup 4+} ions. As compared with the pure ZTO device, introducing Nb{sup 5+} ions into the ZTO channel layers can improve the electrical properties and bias stability of TFTs because of the reduction of the oxygen vacancies. This study discusses the connection among the material properties of the NZTO films and the electrical performance and bias stability of NZTO TFTs and how they are influenced by the Nb/(Nb + Sn) molar ratios of NZTO films. - Highlights: • Ultra-thin high-valence niobium doped zinc-tin oxide (NZTO) thin films are prepared using a solution process. • Nb dopants in ZTO films reduce the oxygen vacancy and subgap adsorption of the ZTO films. • The Nb-doping concentration of the NZTO channel layer has a strong influence on the TFT performance.

  12. Electrochemical migration of tin in electronics and microstructure of the dendrites

    DEFF Research Database (Denmark)

    Minzari, Daniel; Grumsen, Flemming Bjerg; Jellesen, Morten Stendahl

    2011-01-01

    The macro-, micro-, and nano-scale morphology and structure of tin dendrites, formed by electrochemical migration on a surface mount ceramic chip resistor having electrodes consisting of tin with small amounts of Pb (∼2wt.%) was investigated by scanning electron microscopy and transmission electr...... by the dehydration of the hydrated oxide originally formed in solution ex-situ in ambient air.......The macro-, micro-, and nano-scale morphology and structure of tin dendrites, formed by electrochemical migration on a surface mount ceramic chip resistor having electrodes consisting of tin with small amounts of Pb (∼2wt.%) was investigated by scanning electron microscopy and transmission electron...... microscopy including Energy dispersive X-ray spectroscopy and electron diffraction. The tin dendrites were formed under 5 or 12V potential bias in 10ppm by weight NaCl electrolyte as a micro-droplet on the resistor during electrochemical migration experiments. The dendrites formed were found to have...

  13. Effects of tin concentrations on structural characteristics and electrooptical properties of tin-doped indium oxide films prepared by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Choong-Hoon; Yasui, Itaru; Shigesato, Yuzo [Tokyo Univ. (Japan). Inst. of Industrial Science

    1995-02-01

    Structural characteristics and electrooptical properties of Sn-doped In{sub 2}O{sub 3} (ITO) films were investigated in terms of Sn concentrations from 5.34 to 8.99 (Sn/In at.%) with changing oxygen partial pressure and substrate temperature during deposition, in spite of using an ITO target with the same Sn concentration (7.50 SnO{sub 2} wt%, 7.17 Sn/In at.%). The resistivity of the films deposited at 200 and 300degC had a clear tendency to decrease with decrease of the total Sn content. Sn atoms incorporated in the ITO films were classified into two types, i.e., electrically active substitutional Sn atoms contributing to carrier density and electrically nonactive impurities forming nonreducible tin-oxide complexes, which were revealed by precise lattice constant measurement. The change in the Sn concentration was found to be associated with the preferred orientation of the crystal grains, which was dominated by the deposition conditions and should reflect the crystal growth processes. (author).

  14. Effects of tin concentrations on structural characteristics and electrooptical properties of tin-doped indium oxide films prepared by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Yi, Choong-Hoon; Yasui, Itaru; Shigesato, Yuzo

    1995-01-01

    Structural characteristics and electrooptical properties of Sn-doped In 2 O 3 (ITO) films were investigated in terms of Sn concentrations from 5.34 to 8.99 (Sn/In at.%) with changing oxygen partial pressure and substrate temperature during deposition, in spite of using an ITO target with the same Sn concentration (7.50 SnO 2 wt%, 7.17 Sn/In at.%). The resistivity of the films deposited at 200 and 300degC had a clear tendency to decrease with decrease of the total Sn content. Sn atoms incorporated in the ITO films were classified into two types, i.e., electrically active substitutional Sn atoms contributing to carrier density and electrically nonactive impurities forming nonreducible tin-oxide complexes, which were revealed by precise lattice constant measurement. The change in the Sn concentration was found to be associated with the preferred orientation of the crystal grains, which was dominated by the deposition conditions and should reflect the crystal growth processes. (author)

  15. Patterning crystalline indium tin oxide by high repetition rate femtosecond laser-induced crystallization

    International Nuclear Information System (INIS)

    Cheng, Chung-Wei; Lin, Cen-Ying; Shen, Wei-Chih; Lee, Yi-Ju; Chen, Jenq-Shyong

    2010-01-01

    A method is proposed for patterning crystalline indium tin oxide (c-ITO) patterns on amorphous ITO (a-ITO) thin films by femtosecond laser irradiation at 80 MHz repetition rate followed by chemical etching. In the proposed approach, the a-ITO film is transformed into a c-ITO film over a predetermined area via the heat accumulation energy supplied by the high repetition rate laser beam, and the unirradiated a-ITO film is then removed using an acidic etchant solution. The fabricated c-ITO patterns are observed using scanning electron microscopy and cross-sectional transmission electron microscopy. The crystalline, optical, electrical properties were measured by X-ray diffraction, spectrophotometer, and four point probe station, respectively. The experimental results show that a high repetition rate reduces thermal shock and yields a corresponding improvement in the surface properties of the c-ITO patterns.

  16. Gas Sensing of Fluorine Doped Tin Oxide Thin Films Prepared by Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    A. A. YADAV

    2008-05-01

    Full Text Available Fluorine doped tin oxide (F: SnO2 films have been prepared onto the amorphous glass substrates by a spray pyrolysis. XRD studies reveal that the material deposited is polycrystalline SnO2 and have tetragonal structure. It is observed that films are highly orientated along (200 direction. The direct optical band gap energy for the F: SnO2 films are found to be 4.15 eV. Gas sensing properties of the sensor were checked against combustible gases like H2, CO2 CO, C3H8, CH4.The H2 sensitivity of the F-doped SnO2 sensor was found to be increased. The increase in the sensitivity is discussed in terms of increased resistivity and reduced permeation of gaseous oxygen into the underlying sensing layer due to the surface modification of the sensor.

  17. Investigation of the Optoelectronic Properties of Ti-doped Indium Tin Oxide Thin Film.

    Science.gov (United States)

    Pu, Nen-Wen; Liu, Wei-Sheng; Cheng, Huai-Ming; Hu, Hung-Chun; Hsieh, Wei-Ting; Yu, Hau-Wei; Liang, Shih-Chang

    2015-09-21

    : In this study, direct-current magnetron sputtering was used to fabricate Ti-doped indium tin oxide (ITO) thin films. The sputtering power during the 350-nm-thick thin-film production process was fixed at 100 W with substrate temperatures increasing from room temperature to 500 °C. The Ti-doped ITO thin films exhibited superior thin-film resistivity (1.5 × 10 - ⁴ Ω/cm), carrier concentration (4.1 × 10 21 cm - ³), carrier mobility (10 cm²/Vs), and mean visible-light transmittance (90%) at wavelengths of 400-800 nm at a deposition temperature of 400 °C. The superior carrier concentration of the Ti-doped ITO alloys (>10 21 cm - ³) with a high figure of merit (81.1 × 10 - ³ Ω - ¹) demonstrate the pronounced contribution of Ti doping, indicating their high suitability for application in optoelectronic devices.

  18. Surface engineering of one-dimensional tin oxide nanostructures for chemical sensors

    International Nuclear Information System (INIS)

    Ma, Yuanyuan; Qu, Yongquan; Zhou, Wei

    2013-01-01

    Nanostructured materials are promising candidates for chemical sensors due to their fascinating physicochemical properties. Among various candidates, tin oxide (SnO 2 ) has been widely explored in gas sensing elements due to its excellent chemical stability, low cost, ease of fabrication and remarkable reproducibility. We are presenting an overview on recent investigations on 1-dimensional (1D) SnO 2 nanostructures for chemical sensing. In particular, we focus on the performance of devices based on surface engineered SnO 2 nanostructures, and on aspects of morphology, size, and functionality. The synthesis and sensing mechanism of highly selective, sensitive and stable 1D nanostructures for use in chemical sensing are discussed first. This is followed by a discussion of the relationship between the surface properties of the SnO 2 layer and the sensor performance from a thermodynamic point of view. Then, the opportunities and recent progress of chemical sensors fabricated from 1D SnO 2 heterogeneous nanostructures are discussed. Finally, we summarize current challenges in terms of improving the performance of chemical (gas) sensors using such nanostructures and suggest potential applications. (author)

  19. Tin Whisker Formation — A Stress Relieve Phenomenon

    Science.gov (United States)

    Dittes, M.; Oberndorff, P.; Crema, P.; Su, P.

    2006-02-01

    With the move towards lead-free electronics also the solderable finish of electronic components' terminations are converted. While the typical finish was containing 5 % to 20 % lead (Pb) and thus was almost whisker free, lead (Pb)-free finishes such as pure tin or high tin alloys are rather prone to grow whisker. These whiskers are spontaneous protrusions that grow to a significant length of up to millimeters with a typical diameter in the range of few microns and are suspect to cause shorts in electronic assemblies. The latest details of the mechanisms are not yet understood. However it appears to be well established that the driving force for tin whisker growth is a compressive stress in the tin layer and that this stress is released by whisker formation. Besides the mechanism for whisker growth therefore the mechanism of the stress induction is of interest. The origin of that stress may have multiple sources. Among others the most important one is the volume increase within the tin layer due the formation of intermetallics at the interface to the base material. This applies to all copper based material. For base materials with a coefficient of thermal expansion (cte) significantly different from the tin finish another mechanism plays the dominant role. This is the induction of stress during thermal cycling due to the different expansion of the materials with every temperature change. Another mechanism for stress induction may be the oxidation of the finish, which also leads to a local volume increase. Based on the knowledge of stress induction various mitigation strategies can be deducted. Most common is the introduction of a diffusion barrier (e.g. Ni) in order to prevent the growth of the Cu-Sn intermetallics, the controlled growth of Cu-Sn intermetallics in order to prevent their irregularity or the introduction of a mechanical buffer material targeting at the minimisation of the cte mismatch between base and finish material. With respect to the stress

  20. Spark Plasma Sintering and Densification Mechanisms of Antimony-Doped Tin Oxide Nanoceramics

    Directory of Open Access Journals (Sweden)

    Junyan Wu

    2013-01-01

    Full Text Available Densification of antimony-doped tin oxide (ATO ceramics without sintering aids is very difficult, due to the volatilization of SnO2, formation of deleterious phases above 1000°C, and poor sintering ability of ATO particles. In this paper, monodispersed ATO nanoparticles were synthesized via sol-gel method, and then ATO nanoceramics with high density were prepared by spark plasma sintering (SPS technology using the as-synthesized ATO nanoparticles without the addition of sintering aids. The effect of Sb doping content on the densification was investigated, and the densification mechanisms were explored. The results suggest that ATO nanoparticles derived from sol-gel method show good crystallinity with a crystal size of 5–20 nm and Sb is incorporated into the SnO2 crystal structure. When the SPS sintering temperature is 1000°C and the Sb doping content is 5 at.%, the density of ATO nanoceramics reaches a maximum value of 99.2%. Densification mechanisms are explored in detail.

  1. Influence of indium doping on the properties of zinc tin oxide films and its application to transparent thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Mu Hee; Ma, Tae Young, E-mail: tyma@gnu.ac.kr

    2014-01-01

    In this study, the effects of indium (In) doping on the properties of zinc tin oxide (ZTO) films are reported. ZTO films were prepared by RF magnetron sputtering followed by In layer deposition, for use as the diffusion source. In order to protect the In layer from peeling, a second ZTO film was deposited on the In film. The annealing at 400 °C for 30 min was carried out to diffuse In atoms into the ZTO films. The structural, optical, and elemental properties of the annealed ZTO/In/ZTO films were investigated by X-ray diffraction, UV/vis spectrophotometry, and X-ray photoluminescence spectroscopy, respectively. The ZTO transparent thin film transistors employing the ZTO/In/ZTO films as the source/drain were prepared, and the effects of the In doped source/drain on the threshold voltage and mobility were characterized and analyzed. - Highlights: • We successfully doped zinc tin oxide (ZTO) films using In as a diffusion source. • Indium (In) was diffused in both directions with the diffusion coefficient of ∼ 4.3 × 10{sup −16} cm{sup 2}/s. • The mobility of ZTO thin film transistor was increased 1.6-times by adopting the In-diffused source/drain.

  2. The Photocatalytic Activity and Compact Layer Characteristics of TiO2 Films Prepared Using Radio Frequency Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    H. C. Chang

    2014-01-01

    Full Text Available TiO2 compact layers are used in dye-sensitized solar cells (DSSCs to prevent charge recombination between the electrolyte and the transparent conductive substrate (indium tin oxide, ITO; fluorine-doped tin oxide, FTO. Thin TiO2 compact layers are deposited onto ITO/glass by means of radio frequency (rf magnetron sputtering, using deposition parameters that ensure greater photocatalytic activity and increased DSSC conversion efficiency. The photoinduced decomposition of methylene blue (MB and the photoinduced hydrophilicity of the TiO2 thin films are also investigated. The photocatalytic performance characteristics for the deposition of TiO2 films are improved by using the Grey-Taguchi method. The average transmittance in the visible region exceeds 85% for all samples. The XRD patterns of the TiO2 films, for sol-gel with spin coating of porous TiO2/TiO2 compact/ITO/glass, show a good crystalline structure. In contrast, without the TiO2 compact layer (only porous TiO2, the peak intensity of the anatase (101 plane in the XRD patterns for the TiO2 film has a lower value, which demonstrates inferior crystalline quality. With a TiO2 compact layer to prevent charge recombination, a higher short-circuit current density is obtained. The DSSC with the FTO/glass and Pt counter electrode demonstrates the energy conversion efficiency increased.

  3. Gender-Dependent Association of FTO Polymorphisms with Body Mass Index in Mexicans.

    Directory of Open Access Journals (Sweden)

    Yolanda Saldaña-Alvarez

    Full Text Available To evaluate the associations between six single-nucleotide polymorphisms (SNPs in intron 1 of FTO and body mass index (BMI, a case-control association study of 2314 unrelated Mexican-Mestizo adult subjects was performed. The association between each SNP and BMI was tested using logistic and linear regression adjusted for age, gender, and ancestry and assuming additive, recessive, and dominant effects of the minor allele. Association analysis after BMI stratification showed that all five FTO SNPs (rs1121980, rs17817449, rs3751812, rs9930506, and rs17817449, were significantly associated with obesity class II/III under an additive model (P<0.05. Interestingly, we also documented a genetic model-dependent influence of gender on the effect of FTO variants on increased BMI. Two SNPs were specifically associated in males under a dominant model, while the remainder were associated with females under additive and recessive models (P<0.05. The SNP rs9930506 showed the highest increased in obesity risk in females (odds ratio = 4.4. Linear regression using BMI as a continuous trait also revealed differential FTO SNP contributions. Homozygous individuals for the risk alleles of rs17817449, rs3751812, and rs9930506 were on average 2.18 kg/m(2 heavier than homozygous for the wild-type alleles; rs1121980 and rs8044769 showed significant but less-strong effects on BMI (1.54 kg/m(2 and 0.9 kg/m(2, respectively. Remarkably, rs9930506 also exhibited positive interactions with age and BMI in a gender-dependent manner. Women carrying the minor allele of this variant have a significant increase in BMI by year (0.42 kg/m(2, P = 1.17 x 10(-10. Linear regression haplotype analysis under an additive model, confirmed that the TGTGC haplotype harboring all five minor alleles, increased the BMI of carriers by 2.36 kg/m(2 (P = 1.15 x 10(-5. Our data suggest that FTO SNPs make differential contributions to obesity risk and support the hypothesis that gender differences in the

  4. Gender-Dependent Association of FTO Polymorphisms with Body Mass Index in Mexicans

    Science.gov (United States)

    Saldaña-Alvarez, Yolanda; Salas-Martínez, María Guadalupe; García-Ortiz, Humberto; Luckie-Duque, Angélica; García-Cárdenas, Gustavo; Vicenteño-Ayala, Hermenegildo; Cordova, Emilio J.; Esparza-Aguilar, Marcelino; Contreras-Cubas, Cecilia; Carnevale, Alessandra; Chávez-Saldaña, Margarita; Orozco, Lorena

    2016-01-01

    To evaluate the associations between six single-nucleotide polymorphisms (SNPs) in intron 1 of FTO and body mass index (BMI), a case-control association study of 2314 unrelated Mexican-Mestizo adult subjects was performed. The association between each SNP and BMI was tested using logistic and linear regression adjusted for age, gender, and ancestry and assuming additive, recessive, and dominant effects of the minor allele. Association analysis after BMI stratification showed that all five FTO SNPs (rs1121980, rs17817449, rs3751812, rs9930506, and rs17817449), were significantly associated with obesity class II/III under an additive model (P<0.05). Interestingly, we also documented a genetic model-dependent influence of gender on the effect of FTO variants on increased BMI. Two SNPs were specifically associated in males under a dominant model, while the remainder were associated with females under additive and recessive models (P<0.05). The SNP rs9930506 showed the highest increased in obesity risk in females (odds ratio = 4.4). Linear regression using BMI as a continuous trait also revealed differential FTO SNP contributions. Homozygous individuals for the risk alleles of rs17817449, rs3751812, and rs9930506 were on average 2.18 kg/m2 heavier than homozygous for the wild-type alleles; rs1121980 and rs8044769 showed significant but less-strong effects on BMI (1.54 kg/m2 and 0.9 kg/m2, respectively). Remarkably, rs9930506 also exhibited positive interactions with age and BMI in a gender-dependent manner. Women carrying the minor allele of this variant have a significant increase in BMI by year (0.42 kg/m2, P = 1.17 x 10−10). Linear regression haplotype analysis under an additive model, confirmed that the TGTGC haplotype harboring all five minor alleles, increased the BMI of carriers by 2.36 kg/m2 (P = 1.15 x 10−5). Our data suggest that FTO SNPs make differential contributions to obesity risk and support the hypothesis that gender differences in the mechanisms

  5. Influences of Indium Tin Oxide Layer on the Properties of RF Magnetron-Sputtered (BaSr)TiO3 Thin Films on Indium Tin Oxide-Coated Glass Substrate

    Science.gov (United States)

    Kim, Tae Song; Oh, Myung Hwan; Kim, Chong Hee

    1993-06-01

    Nearly stoichiometric ((Ba+Sr)/Ti=1.08-1.09) and optically transparent (BaSr)TiO3 thin films were deposited on an indium tin oxide (ITO)-coated glass substrate by means of rf magnetron sputtering for their application to the insulating layer of an electroluminescent flat panel display. The influence of the ITO layer on the properties of (BaSr)TiO3 thin films deposited on the ITO-coated substrate was investigated. The ITO layer did not affect the crystallographic orientation of (BaSr)TiO3 thin film, but enhanced the grain growth. Another effect of the ITO layer on (BaSr)TiO3 thin films was the interdiffusion phenomenon, which was studied by means of secondary ion mass spectrometry (SIMS). As the substrate temperature increased, interdiffusion intensified at the interface not only between the grown film and ITO layer but also between the ITO layer and base glass substrate. The refractive index (nf) of (BaSr)TiO3 thin film deposited on a bare glass substrate was 2.138-2.286, as a function of substrate temperature.

  6. Realization of ultrathin silver layers in highly conductive and transparent zinc tin oxide/silver/zinc tin oxide multilayer electrodes deposited at room temperature for transparent organic devices

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Thomas; Schmidt, Hans; Fluegge, Harald; Nikolayzik, Fabian; Baumann, Ihno; Schmale, Stephan; Johannes, Hans-Hermann; Rabe, Torsten [Institut fuer Hochfrequenztechnik, Technische Universitaet Braunschweig, Schleinitzstr. 22, 38106 Braunschweig (Germany); Hamwi, Sami, E-mail: sami.hamwi@ihf.tu-bs.de [Institut fuer Hochfrequenztechnik, Technische Universitaet Braunschweig, Schleinitzstr. 22, 38106 Braunschweig (Germany); Riedl, Thomas [Institute of Electronic Devices, Bergische Universitaet Wuppertal, Rainer-Gruenter Str. 21, 42119 Wuppertal (Germany); Kowalsky, Wolfgang [Institut fuer Hochfrequenztechnik, Technische Universitaet Braunschweig, Schleinitzstr. 22, 38106 Braunschweig (Germany)

    2012-05-01

    We report on transparent and highly conductive multilayer electrodes prepared at room temperature by RF sputtering of zinc tin oxide (ZTO) and thermal evaporation of ultrathin silver (Ag) as top contact for transparent organic light emitting diodes (TOLED). Specifically, we study the morphological, electrical and optical properties of the multilayer structure in particular of the thin Ag film. The tendency of Ag to form agglomerates over time on top of ZTO is shown by atomic force microscopy. From the optical constants derived from ellipsometric measurements we evidenced a bulk like behavior of an Ag film with a thickness of 8 nm embedded in ZTO leading to a low sheet resistance of 9 {Omega}/sq. Furthermore we verify the optical constants by simulation of an optimized ZTO/Ag/ZTO structure. As an application we present a highly efficient TOLED providing a device transmittance of > 82% in the visible part of the spectrum. The TOLED shows no damage caused by sputtering on a lighting area of 80 mm{sup 2} and exhibits efficiencies of 43 cd/A and 36 lm/W.

  7. TiN-conductive carbon black composite as counter electrode for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Li, G.R.; Wang, F.; Song, J.; Xiong, F.Y.; Gao, X.P.

    2012-01-01

    Highlights: ► The TiN nanoparticles are highly dispersed on conductive carbon black matrix (CCB). ► The well dispersion of TiN nanoparticles can improve electrochemical performance. ► The TiN/CCB shows a high photovoltaic performance with high conversion efficiency. - Abstract: TiN-conductive carbon black (CCB)/Ti electrodes are prepared by the nitridation of TiO 2 –CCB mixtures filmed on metallic Ti substrate in ammonia atmosphere. It is demonstrated from X-ray diffraction (XRD) and scanning electron microscopy (SEM) that TiN nanoparticles are highly dispersed on the CCB matrix in the composites. TiN–CCB/Ti electrodes show outstanding electrochemical performances as compared to individual TiN/Ti and CCB/Ti electrodes. In particular, the dye-sensitized solar cell (DSSC) using TiN–CCB (1:1, mass ratio)/Ti electrode presents an energy conversion efficiency of 7.92%, which is higher than that (6.59%) of the device using Pt/FTO (fluorine doped tin oxide) electrode measured under the same test conditions. Based on the analysis of cyclic voltammetry (CV) and electrochemical impedance spectra (EIS), the enhancements for the electrochemical and photochemical performance of TiN–CCB/Ti electrodes are attributed to the fact that the dispersed TiN nanoparticles in the CCB matrix provide an improved electrocatalytic activity and a facilitated diffusion for triiodine ions. This work shows a facile approach to develop metal nitrides–carbon composites as counter electrodes for DSSCs. High energy conversion efficiency and low lost will make the composites have significant potential for replacing the conventional Pt/FTO electrodes in DSSCs.

  8. Effect of thermal processing on silver thin films of varying thickness deposited on zinc oxide and indium tin oxide

    International Nuclear Information System (INIS)

    Sivaramakrishnan, K.; Ngo, A. T.; Alford, T. L.; Iyer, S.

    2009-01-01

    Silver films of varying thicknesses (25, 45, and 60 nm) were deposited on indium tin oxide (ITO) on silicon and zinc oxide (ZnO) on silicon. The films were annealed in vacuum for 1 h at different temperatures (300-650 deg. C). Four-point-probe measurements were used to determine the resistivity of the films. All films showed an abrupt change in resistivity beyond an onset temperature that varied with thickness. Rutherford backscattering spectrometry measurements revealed agglomeration of the Ag films upon annealing as being responsible for the resistivity change. X-ray pole figure analysis determined that the annealed films took on a preferential texturing; however, the degree of texturing was significantly higher in Ag/ZnO/Si than in Ag/ITO/Si samples. This observation was accounted for by interface energy minimization. Atomic force microscopy (AFM) measurements revealed an increasing surface roughness of the annealed films with temperature. The resistivity behavior was explained by the counterbalancing effects of increasing crystallinity and surface roughness. Average surface roughness obtained from the AFM measurements were also used to model the agglomeration of Ag based on Ostwald ripening theory

  9. Transparent conductive electrodes of mixed TiO2−x–indium tin oxide for organic photovoltaics

    KAUST Repository

    Lee, Kyu-Sung

    2012-05-22

    A transparent conductive electrode of mixed titanium dioxide (TiO2−x)–indium tin oxide (ITO) with an overall reduction in the use of indium metal is demonstrated. When used in organic photovoltaicdevices based on bulk heterojunction photoactive layer of poly (3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester, a power conversion efficiency of 3.67% was obtained, a value comparable to devices having sputtered ITO electrode. Surface roughness and optical efficiency are improved when using the mixed TiO2−x–ITO electrode. The consumption of less indium allows for lower fabrication cost of such mixed thin filmelectrode.

  10. Dietary Intake, FTO Genetic Variants, and Adiposity : A Combined Analysis of Over 16,000 Children and Adolescents

    NARCIS (Netherlands)

    Qi, Qibin; Downer, Mary K.; Kilpelaeinen, Tuomas O.; Taal, H. Rob; Barton, Sheila J.; Ntalla, Ioanna; Standl, Marie; Boraska, Vesna; Huikari, Ville; Kiefte-de Jong, Jessica C.; Koerner, Antje; Lakka, Timo A.; Liu, Gaifen; Magnusson, Jessica; Okuda, Masayuki; Raitakari, Olli; Richmond, Rebecca; Scott, Robert A.; Bailey, Mark E. S.; Scheuermann, Kathrin; Holloway, John W.; Inskip, Hazel; Isasi, Carmen R.; Mossavar-Rahmani, Yasmin; Jaddoe, Vincent W. V.; Laitinen, Jaana; Lindi, Virpi; Melen, Erik; Pitsiladis, Yannis; Pitkaenen, Niina; Snieder, Harold; Heinrich, Joachim; Timpson, Nicholas J.; Wang, Tao; Yuji, Hinoda; Zeggini, Eleftheria; Dedoussis, George V.; Kaplan, Robert C.; Wylie-Rosett, Judith; Loos, Ruth J. F.; Hu, Frank B.; Qi, Lu

    The FTO gene harbors variation with the strongest effect on adiposity and obesity risk. Previous data support a role for FTO variation in influencing food intake. We conducted a combined analysis of 16,094 boys and girls aged 1-18 years from 14 studies to examine the following: 1) the association

  11. FTO Is Associated with Aortic Valve Stenosis in a Gender Specific Manner of Heterozygote Advantage: A Population-Based Case-Control Study.

    Directory of Open Access Journals (Sweden)

    Cindy Thron

    Full Text Available Single nucleotide polymorphisms (SNPs within the Fat mass and obesity associated (FTO gene have been linked with increased body weight. However, the data on an association of FTO with cardiovascular diseases remains conflicting. Therefore, we ascertained whether FTO is associated with aortic valve stenosis (AVS, one of the most frequent cardiovascular diseases in the Western world.In this population-based case-control study the FTO SNP rs9939609 was analyzed in 300 German patients with AVS and 429 German controls of the KORA survey S4, representing a random population. Blood samples were collected prior to aortic valve replacement in AVS cases and FTO rs9939609 was genotyped via ARMS-PCR. Genotype frequencies differed significantly between AVS cases and KORA controls (p = 0.004. Separate gender-analyses uncovered an association of FTO with AVS exclusively in males; homozygote carriers for the risk-allele (A had a higher risk to develop AVS (p = 0.017, odds ratio (OR 1.727; 95% confidence interval (CI 1.087-2.747, recessive model, whereas heterozygote carriers for the risk-allele showed a lower risk (p = 0.002, OR 0.565, 95% CI 0.384-0.828, overdominant model. After adjustment for multiple co-variables, the odds ratios of heterozygotes remained significant for an association with AVS (p = 0.008, OR 0.565, 95% CI 0.369-0.861.This study revealed an association of FTO rs9939609 with AVS. Furthermore, this association was restricted to men, with heterozygotes having a significantly lower chance to develop AVS. Lastly, the association between FTO and AVS was independent of BMI and other variables such as diabetes mellitus.

  12. FTO Is Associated with Aortic Valve Stenosis in a Gender Specific Manner of Heterozygote Advantage: A Population-Based Case-Control Study.

    Science.gov (United States)

    Thron, Cindy; Akhyari, Payam; Godehardt, Erhard; Lichtenberg, Artur; Rüther, Ulrich; Seehaus, Stefanie

    2015-01-01

    Single nucleotide polymorphisms (SNPs) within the Fat mass and obesity associated (FTO) gene have been linked with increased body weight. However, the data on an association of FTO with cardiovascular diseases remains conflicting. Therefore, we ascertained whether FTO is associated with aortic valve stenosis (AVS), one of the most frequent cardiovascular diseases in the Western world. In this population-based case-control study the FTO SNP rs9939609 was analyzed in 300 German patients with AVS and 429 German controls of the KORA survey S4, representing a random population. Blood samples were collected prior to aortic valve replacement in AVS cases and FTO rs9939609 was genotyped via ARMS-PCR. Genotype frequencies differed significantly between AVS cases and KORA controls (p = 0.004). Separate gender-analyses uncovered an association of FTO with AVS exclusively in males; homozygote carriers for the risk-allele (A) had a higher risk to develop AVS (p = 0.017, odds ratio (OR) 1.727; 95% confidence interval (CI) 1.087-2.747, recessive model), whereas heterozygote carriers for the risk-allele showed a lower risk (p = 0.002, OR 0.565, 95% CI 0.384-0.828, overdominant model). After adjustment for multiple co-variables, the odds ratios of heterozygotes remained significant for an association with AVS (p = 0.008, OR 0.565, 95% CI 0.369-0.861). This study revealed an association of FTO rs9939609 with AVS. Furthermore, this association was restricted to men, with heterozygotes having a significantly lower chance to develop AVS. Lastly, the association between FTO and AVS was independent of BMI and other variables such as diabetes mellitus.

  13. The effect of reaction temperature on the room temperature ferromagnetic property of sol-gel derived tin oxide nanocrystal

    Science.gov (United States)

    Sakthiraj, K.; Hema, M.; Balachandra Kumar, K.

    2018-06-01

    In the present study, nanocrystalline tin oxide materials were prepared using sol-gel method with different reaction temperatures (25 °C, 50 °C, 75 °C & 90 °C) and the relation between the room temperature ferromagnetic property of the sample with processing temperature has been analysed. The X-ray diffraction pattern and infrared absorption spectra of the as-prepared samples confirm the purity of the samples. Transmission electron microscopy images visualize the particle size variation with respect to reaction temperature. The photoluminescence spectra of the samples demonstrate that luminescence process in materials is originated due to the electron transition mediated by defect centres. The room temperature ferromagnetic property is observed in all the samples with different amount, which was confirmed using vibrating sample magnetometer measurements. The saturation magnetization value of the as-prepared samples is increased with increasing the reaction temperature. From the photoluminescence & magnetic measurements we accomplished that, more amount of surface defects like oxygen vacancy and tin interstitial are created due to the increase in reaction temperature and it controls the ferromagnetic property of the samples.

  14. Tin - an unlikely ally for silicon field effect transistors?

    KAUST Repository

    Hussain, Aftab M.; Fahad, Hossain M.; Singh, Nirpendra; Sevilla, Galo T.; Schwingenschlö gl, Udo; Hussain, Muhammad Mustafa

    2014-01-01

    We explore the effectiveness of tin (Sn), by alloying it with silicon, to use SiSn as a channel material to extend the performance of silicon based complementary metal oxide semiconductors. Our density functional theory based simulation shows

  15. Association of genetic variation in FTO with risk of obesity and type 2 diabetes with data from 96,551 East and South Asians

    DEFF Research Database (Denmark)

    Li, H; Oskari Kilpeläinen, Tuomas; Liu, C

    2012-01-01

    FTO harbours the strongest known obesity-susceptibility locus in Europeans. While there is growing evidence for a role for FTO in obesity risk in Asians, its association with type 2 diabetes, independently of BMI, remains inconsistent. To test whether there is an association of the FTO locus...

  16. Properties of indium tin oxide films deposited using High Target Utilisation Sputtering

    International Nuclear Information System (INIS)

    Calnan, S.; Upadhyaya, H.M.; Thwaites, M.J.; Tiwari, A.N.

    2007-01-01

    Indium tin oxide (ITO) films were deposited on soda lime glass and polyimide substrates using an innovative process known as High Target Utilisation Sputtering (HiTUS). The influence of the oxygen flow rate, substrate temperature and sputtering pressure, on the electrical, optical and thermal stability properties of the films was investigated. High substrate temperature, medium oxygen flow rate and moderate pressure gave the best compromise of low resistivity and high transmittance. The lowest resistivity was 1.6 x 10 -4 Ω cm on glass while that on the polyimide was 1.9 x 10 -4 Ω cm. Substrate temperatures above 100 deg. C were required to obtain visible light transmittance exceeding 85% for ITO films on glass. The thermal stability of the films was mainly influenced by the oxygen flow rate and thus the initial degree of oxidation. The film resistivity was either unaffected or reduced after heating in vacuum but generally increased for oxygen deficient films when heated in air. The greatest increase in transmittance of oxygen deficient films occurred for heat treatment in air while that of the highly oxidised films was largely unaffected by heating in both media. This study has demonstrated the potential of HiTUS as a favourable deposition method for high quality ITO suitable for use in thin film solar cells

  17. Flexible organic light-emitting diodes consisting of a platinum doped indium tin oxide anode

    International Nuclear Information System (INIS)

    Hsu, C-M; Huang, C-Y; Cheng, H-E; Wu, W-T

    2009-01-01

    This paper demonstrates that a flexible organic light-emitting diode (OLED) with a platinum (Pt)-doped indium tin oxide (ITO) anode could show superior electro-optical characteristics to those of a conventional device. The threshold voltage and turn-on voltage of an OLED device consisting of an aluminium/lithium fluoride/tris(8-hydroxyquinoline) aluminium/N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4, 4'-diamine/Pt-doped ITO/ITO structure were reduced by 1.2 V and 0.8 V, respectively. Current efficiency was found improved for a driving voltage of less than 6.5 V as a result of the enhanced hole-injection rate, attributed mainly to the elevated surface work function and partly reduced surface roughness of ITO by the incorporated Pt atoms in the ITO matrix.

  18. Characteristics of indium-tin-oxide (ITO) nanoparticle ink-coated layers recycled from ITO scraps

    Science.gov (United States)

    Cha, Seung-Jae; Hong, Sung-Jei; Lee, Jae Yong

    2015-09-01

    This study investigates the characteristics of an indium-tin-oxide (ITO) ink layer that includes nanoparticles synthesized from ITO target scraps. The particle size of the ITO nanoparticle was less than 15 nm, and the crystal structure was cubic with a (222) preferred orientation. Also, the composition ratio of In to Sn was 92.7 to 7.3 in weight. The ITO nanoparticles were well dispersed in the ink solvent to formulate a 20-wt% ITO nanoparticle ink. Furthermore, the ITO nanoparticle ink was coated onto a glass substrate, followed by heat-treatment at 600 °C. The layer showed good sheet resistances below 400 Ω/□ and optical transmittances higher than 88% at 550 nm. Thus, we can conclude that the characteristics of the layer make it highly applicable to a transparent conductive electrode.

  19. Preparation of RF reactively sputtered indium-tin oxide thin films with optical properties suitable for heat mirrors

    International Nuclear Information System (INIS)

    Boyadzhiev, S; Dobrikov, G; Rassovska, M

    2008-01-01

    Technologies are discussed for preparing and characterizing indium-tin oxide (ITO) thin films with properties appropriate for usage as heat mirrors in solar thermal collectors. The samples were prepared by means of radio frequency (RF) reactive sputtering of indium-tin targets in oxygen. The technological parameters were optimized to obtain films with optimal properties for heat mirrors. The optical properties of the films were studied by visible and infra-red (IR) spectrophotometry and laser ellipsometry. The reflectance of the films in the thermal IR range was investigated by a Fourier transform infra-red (FTIR) spectrophotometer. Heating of the substrates during the sputtering and their post deposition annealing in different environments were also studied. The ultimate purpose of the present research being the development of a technological process leading to low-cost ITO thin films with high transparency in the visible and near IR (0.3-2.4 μm) and high reflection in the thermal IR range (2.5-25 μm), we investigated the correlation of the ITO thin films structural and optical properties with the technological process parameters - target composition and heat treatment

  20. Optimization of nanoparticulate indium tin oxide slurries for the manufacture of ultra-thin indium tin oxide coatings with the slot-die coating process

    International Nuclear Information System (INIS)

    Wegener, M.; Riess, K.; Roosen, A.

    2016-01-01

    This paper deals with the optimization of colloidal processing to achieve suitable nanoparticulate indium tin oxide (ITO) slurries for the production of sub-μm-thin ITO coatings with the slot die coating process. For application in printed electronics these ITO coatings, which are composite films consisting of nanoparticulate ITO and a polymeric binder, should offer high flexibility, transparency and electrical conductivity. To preserve their flexibility, the composite films are not subject to any heat treatment, instead they are used as deposited and dried. To achieve very good transparency and electrical conductivity at the same time, the slurries must exhibit excellent dispersivity to result in a dense particle packing during film formation and drying. To reduce materials costs, films with thicknesses of several 100 nm are of interest. Therefore, the slot-die technique was applied as a fast, pre-dosing technique to produce sub-μm-thin ITO/binder composite films. The resulting ITO/binder films were characterized with regard to their key properties such as total transmission and specific electrical resistance. With the colloidal optimization of ethanol- and water-based nanoparticulate ITO slurries using PVP and PVB as binders, it was possible to achieve films of 250 nm in thickness exhibiting high total transmission of ∝ 93 % and a low specific electrical resistance of ∝ 10 Ω.cm.

  1. Optimization of nanoparticulate indium tin oxide slurries for the manufacture of ultra-thin indium tin oxide coatings with the slot-die coating process

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, M.; Riess, K.; Roosen, A. [Erlangen-Nuremberg Univ., Erlangen (Germany). Dept. of Materials Science, Glass and Ceramics

    2016-07-01

    This paper deals with the optimization of colloidal processing to achieve suitable nanoparticulate indium tin oxide (ITO) slurries for the production of sub-μm-thin ITO coatings with the slot die coating process. For application in printed electronics these ITO coatings, which are composite films consisting of nanoparticulate ITO and a polymeric binder, should offer high flexibility, transparency and electrical conductivity. To preserve their flexibility, the composite films are not subject to any heat treatment, instead they are used as deposited and dried. To achieve very good transparency and electrical conductivity at the same time, the slurries must exhibit excellent dispersivity to result in a dense particle packing during film formation and drying. To reduce materials costs, films with thicknesses of several 100 nm are of interest. Therefore, the slot-die technique was applied as a fast, pre-dosing technique to produce sub-μm-thin ITO/binder composite films. The resulting ITO/binder films were characterized with regard to their key properties such as total transmission and specific electrical resistance. With the colloidal optimization of ethanol- and water-based nanoparticulate ITO slurries using PVP and PVB as binders, it was possible to achieve films of 250 nm in thickness exhibiting high total transmission of ∝ 93 % and a low specific electrical resistance of ∝ 10 Ω.cm.

  2. Determination of tungsten and tin ions after preconcentration by flotation

    International Nuclear Information System (INIS)

    Dietze, U.; Kunze, S.

    1990-01-01

    A highly sensitive and selective combined method of flotation followed by spectrophotometry/d.c. polarography for the determination of tungsten and tin ions in acid and alkaline waste waters and hydrometallurgical solutions is presented here. Both kinds of ions are coprecipitated in the analyte solution with zirconium hydroxide after addition of ZrOCl 2 solution and ammonia. Afterwards, the collector precipitate is separated from the aqueous phase and preconcentrated by flotation for which sodium oleate and a frother are added. The precipitate is dissolved in a small amount of acid, with the organic reagents being destroyed by oxidation. The enrichment factor of the proposed technique is 100, with variations possible. Recovery is 94 % for tungsten and 99 % for tin. Spectrophotometry of the thiocyanate complex and d.c. polarography are applied as determination techniques for tungsten and tin, respectively. Detection limits attainable by this technique are 6 ng.ml -1 for tungsten and 5 ng.ml -1 for tin for the initial sample. (Authors)

  3. Phenome Wide Association Studies demonstrating pleiotropy of genetic variants within FTO with and without adjustment for body mass index

    Directory of Open Access Journals (Sweden)

    Robert Michael Cronin

    2014-08-01

    Full Text Available Phenome-wide association studies (PheWAS have demonstrated utility in validating genetic associations derived from traditional genetic studies as well as identifying novel genetic associations. Here we used an electronic health record (EHR-based PheWAS to explore pleiotropy of genetic variants in the fat mass and obesity associated gene (FTO, some of which have been previously associated with obesity and type 2 diabetes (T2D. We used a population of 10,487 individuals of European ancestry with genome-wide genotyping from the Electronic Medical Records and Genomics (eMERGE Network and another population of 13,711 individuals of European ancestry from the BioVU DNA biobank at Vanderbilt genotyped using Illumina HumanExome BeadChip. A meta-analysis of the two study populations replicated the well-described associations between FTO variants and obesity (odds ratio [OR]=1.25, 95% Confidence Interval=1.11-1.24, p=2.10 x 10 9 and FTO variants and T2D (OR=1.14, 95% CI=1.08-1.21, p=2.34 x 10 6. The meta-analysis also demonstrated that FTO variant rs8050136 was significantly associated with sleep apnea (OR=1.14, 95% CI=1.07-1.22, p=3.33 x 10 5; however, the association was attenuated after adjustment for body mass index (BMI. Novel phenotype associations with obesity-associated FTO variants included fibrocystic breast disease (rs9941349, OR=0.81, 95% CI=0.74-0.91, p=5.41x10 5 and trends toward associations with nonalcoholic liver disease and gram-positive bacterial infections. FTO variants not associated with obesity demonstrated other potential disease associations including noninflammatory disorders of the cervix and chronic periodontitis. These results suggest that genetic variants in FTO may have pleiotropic associations, some of which are not mediated by obesity.

  4. Electrical and Optical Characterization of Sputtered Silicon Dioxide, Indium Tin Oxide, and Silicon Dioxide/Indium Tin Oxide Antireflection Coating on Single-Junction GaAs Solar Cells

    Directory of Open Access Journals (Sweden)

    Wen-Jeng Ho

    2017-06-01

    Full Text Available This study characterized the electrical and optical properties of single-junction GaAs solar cells coated with antireflective layers of silicon dioxide (SiO2, indium tin oxide (ITO, and a hybrid layer of SiO2/ITO applied using Radio frequency (RF sputtering. The conductivity and transparency of the ITO film were characterized prior to application on GaAs cells. Reverse saturation-current and ideality factor were used to evaluate the passivation performance of the various coatings on GaAs solar cells. Optical reflectance and external quantum efficiency response were used to evaluate the antireflective performance of the coatings. Photovoltaic current-voltage measurements were used to confirm the efficiency enhancement obtained by the presence of the anti-reflective coatings. The conversion efficiency of the GaAs cells with an ITO antireflective coating (23.52% exceeded that of cells with a SiO2 antireflective coating (21.92%. Due to lower series resistance and higher short-circuit current-density, the carrier collection of the GaAs cell with ITO coating exceeded that of the cell with a SiO2/ITO coating.

  5. Controllable Electrochemical Synthesis of Reduced Graphene Oxide Thin-Film Constructed as Efficient Photoanode in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Soon Weng Chong

    2016-01-01

    Full Text Available A controllable electrochemical synthesis to convert reduced graphene oxide (rGO from graphite flakes was introduced and investigated in detail. Electrochemical reduction was used to prepare rGO because of its cost effectiveness, environmental friendliness, and ability to produce rGO thin films in industrial scale. This study aimed to determine the optimum applied potential for the electrochemical reduction. An applied voltage of 15 V successfully formed a uniformly coated rGO thin film, which significantly promoted effective electron transfer within dye-sensitized solar cells (DSSCs. Thus, DSSC performance improved. However, rGO thin films formed in voltages below or exceeding 15 V resulted in poor DSSC performance. This behavior was due to poor electron transfer within the rGO thin films caused by poor uniformity. These results revealed that DSSC constructed using 15 V rGO thin film exhibited high efficiency (η = 1.5211% attributed to its higher surface uniformity than other samples. The addition of natural lemon juice (pH ~ 2.3 to the electrolyte accelerated the deposition and strengthened the adhesion of rGO thin film onto fluorine-doped tin oxide (FTO glasses.

  6. Investigation of the Optoelectronic Properties of Ti-doped Indium Tin Oxide Thin Film

    Directory of Open Access Journals (Sweden)

    Nen-Wen Pu

    2015-09-01

    Full Text Available : In this study, direct-current magnetron sputtering was used to fabricate Ti-doped indium tin oxide (ITO thin films. The sputtering power during the 350-nm-thick thin-film production process was fixed at 100 W with substrate temperatures increasing from room temperature to 500 °C. The Ti-doped ITO thin films exhibited superior thin-film resistivity (1.5 × 10−4 Ω/cm, carrier concentration (4.1 × 1021 cm−3, carrier mobility (10 cm2/Vs, and mean visible-light transmittance (90% at wavelengths of 400–800 nm at a deposition temperature of 400 °C. The superior carrier concentration of the Ti-doped ITO alloys (>1021 cm−3 with a high figure of merit (81.1 × 10−3 Ω−1 demonstrate the pronounced contribution of Ti doping, indicating their high suitability for application in optoelectronic devices.

  7. Associations of variants in FTO and near MC4R with obesity traits in South Asian Indians.

    Science.gov (United States)

    Vasan, Senthil K; Fall, Tove; Neville, Matthew J; Antonisamy, Belavendra; Fall, Caroline H; Geethanjali, Finney S; Gu, Harvest F; Raghupathy, Palany; Samuel, Prasanna; Thomas, Nihal; Brismar, Kerstin; Ingelsson, Erik; Karpe, Fredrik

    2012-11-01

    Recent genome-wide association studies show that loci in FTO and melanocortin 4 receptor (MC4R) associate with obesity-related traits. Outside Western populations the associations between these variants have not always been consistent and in Indians it has been suggested that FTO relates to diabetes without an obvious intermediary obesity phenotype. We investigated the association between genetic variants in FTO (rs9939609) and near MC4R (rs17782313) with obesity- and type 2 diabetes (T2DM)-related traits in a longitudinal birth cohort of 2,151 healthy individuals from the Vellore birth cohort in South India. The FTO locus displayed significant associations with several conventional obesity-related anthropometric traits. The per allele increase is about 1% for BMI, waist circumference (WC), hip circumference (HC), and waist-hip ratio. Consistent associations were observed for adipose tissue-specific measurements such as skinfold thickness reinforcing the association with obesity-related traits. Obesity associations for the MC4R locus were weak or nonsignificant but a signal for height (P work poorly in the Indian "thin-fat" phenotype.

  8. Oxidation state of sulfur, iron and tin at the surface of float glasses

    International Nuclear Information System (INIS)

    Lagarde, P; Flank, A-M; Jupille, J; Montigaud, H

    2009-01-01

    Sulfur is an important element of glasses, not because of its amount, always very low (less than 0.4 % in weight of SO 3 ), but because of its role since it actively participates to the refinement process and, combined to other elements, it can be responsible for the coloration of the glass. Iron is also of a major importance in most of the glasses. In the case of the float glass, the two faces, because of the fabrication process, are different in terms of composition (presence of Sn for one face) and also in terms of oxidation state of these minority elements (Fe, Sn, S). There should be a subtle interplay between the concentrations and the oxidation states of these different minority elements, and anyway these variations occur over a thickness of the order of few micrometers below the surface. Using the high intensity and the focusing properties (3 x 3 μm 2 ) of the x-ray beam from the Lucia beamline, we have therefore studied the speciation of iron and sulfur near the face of a float glass in relation with the behavior of tin. This has been obtained by combining elemental x-ray fluorescence cartography and x-ray micro-absorption at the different K-edges.

  9. Oxidation state of sulfur, iron and tin at the surface of float glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lagarde, P; Flank, A-M [Synchrotron SOLEIL, l' Orme des Merisiers, BP 48 91192 Gif/Yvette cedex (France); Jupille, J [IMPMC, Universite P. and M. Curie, Campus de Boucicaut, 140 rue de Lourmel 75015 Paris (France); Montigaud, H [Saint-Gobain Recherche 39, quai Lucien Lefranc, BP 135 93303 Aubervilliers Cedex (France)

    2009-11-15

    Sulfur is an important element of glasses, not because of its amount, always very low (less than 0.4 % in weight of SO{sub 3}), but because of its role since it actively participates to the refinement process and, combined to other elements, it can be responsible for the coloration of the glass. Iron is also of a major importance in most of the glasses. In the case of the float glass, the two faces, because of the fabrication process, are different in terms of composition (presence of Sn for one face) and also in terms of oxidation state of these minority elements (Fe, Sn, S). There should be a subtle interplay between the concentrations and the oxidation states of these different minority elements, and anyway these variations occur over a thickness of the order of few micrometers below the surface. Using the high intensity and the focusing properties (3 x 3 {mu}m{sup 2}) of the x-ray beam from the Lucia beamline, we have therefore studied the speciation of iron and sulfur near the face of a float glass in relation with the behavior of tin. This has been obtained by combining elemental x-ray fluorescence cartography and x-ray micro-absorption at the different K-edges.

  10. Surface properties of nanostructured NiO undergoing electrochemical oxidation in 3-methoxy-propionitrile

    International Nuclear Information System (INIS)

    Bonomo, Matteo; Marrani, Andrea Giacomo; Novelli, Vittoria; Awais, Muhammad; Dowling, Denis P.; Vos, Johannes G.; Dini, Danilo

    2017-01-01

    Highlights: • NiO porous thin films were prepared via RDS technique. • NiO electrodes were characterized in a nitrile based electrochemical cell. • NiO electrodes were studied by means of XPS. • The XP spectra excluded the formation of phases other than NiO. • The presence of ClO 4 − as charge balancing species was evidenced. - Abstract: Nanostructured nickel oxide (NiO) was deposited in the configuration of thin film (thickness, l = 2–6 μm) onto fluorine-doped tin oxide (FTO) substrates via plasma-assisted rapid discharge sintering (RDS). Electrochemical cycling of RDS NiO in 3-methoxy-propionitrile (3-MPN) revealed two characteristic peaks of NiO oxidation which were associated to the surface-confined redox processes Ni(II) → Ni(III) and Ni(III) → Ni(IV). Grazing angle X-ray photoelectron spectroscopy (XPS) was conducted ex-situ on NiO electrodes in both pristine and oxidized states. Oxidized NiO samples for XPS experiments were obtained in the potentiostatic mode through the polarization of NiO at its two characteristic potentials of oxidation. The XPS analysis allowed to ascertain the electronic structure of the nanoporous NiO framework, and verify the adsorption of perchlorate and chloride anions onto NiO surface due to the compensation of the charge stored in oxidized NiO. XPS also revealed that the spectrum within the region characteristic of Ni 2p ionization does not vary considerably with the state of charge of the nickel centres. This finding is in evident contrast to what has been observed for the same system when it undergoes electrochemical oxidation in aqueous electrolyte.

  11. Surface properties of nanostructured NiO undergoing electrochemical oxidation in 3-methoxy-propionitrile

    Energy Technology Data Exchange (ETDEWEB)

    Bonomo, Matteo [Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome (Italy); Marrani, Andrea Giacomo, E-mail: andrea.marrani@uniroma1.it [Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome (Italy); Novelli, Vittoria [Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome (Italy); Awais, Muhammad [Department of Industrial Engineering, “King Abdulaziz” University, Rabigh (Saudi Arabia); Solar Energy Conversion Strategic Research Cluster, University College Dublin (UCD), Belfield, Dublin 4 (Ireland); Dowling, Denis P. [Solar Energy Conversion Strategic Research Cluster, University College Dublin (UCD), Belfield, Dublin 4 (Ireland); School of Mechanical and Materials Engineering, University College Dublin (UCD), Belfield, Dublin 4 (Ireland); Vos, Johannes G. [School of Chemical Sciences, Dublin City University (DCU), Glasnevin, Dublin 9 (Ireland); Dini, Danilo [Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome (Italy); Solar Energy Conversion Strategic Research Cluster, University College Dublin (UCD), Belfield, Dublin 4 (Ireland)

    2017-05-01

    Highlights: • NiO porous thin films were prepared via RDS technique. • NiO electrodes were characterized in a nitrile based electrochemical cell. • NiO electrodes were studied by means of XPS. • The XP spectra excluded the formation of phases other than NiO. • The presence of ClO{sub 4}{sup −} as charge balancing species was evidenced. - Abstract: Nanostructured nickel oxide (NiO) was deposited in the configuration of thin film (thickness, l = 2–6 μm) onto fluorine-doped tin oxide (FTO) substrates via plasma-assisted rapid discharge sintering (RDS). Electrochemical cycling of RDS NiO in 3-methoxy-propionitrile (3-MPN) revealed two characteristic peaks of NiO oxidation which were associated to the surface-confined redox processes Ni(II) → Ni(III) and Ni(III) → Ni(IV). Grazing angle X-ray photoelectron spectroscopy (XPS) was conducted ex-situ on NiO electrodes in both pristine and oxidized states. Oxidized NiO samples for XPS experiments were obtained in the potentiostatic mode through the polarization of NiO at its two characteristic potentials of oxidation. The XPS analysis allowed to ascertain the electronic structure of the nanoporous NiO framework, and verify the adsorption of perchlorate and chloride anions onto NiO surface due to the compensation of the charge stored in oxidized NiO. XPS also revealed that the spectrum within the region characteristic of Ni 2p ionization does not vary considerably with the state of charge of the nickel centres. This finding is in evident contrast to what has been observed for the same system when it undergoes electrochemical oxidation in aqueous electrolyte.

  12. FTO genotype, dietary protein, and change in appetite: the Preventing Overweight Using Novel Dietary Strategies trial.

    Science.gov (United States)

    Huang, Tao; Qi, Qibin; Li, Yanping; Hu, Frank B; Bray, George A; Sacks, Frank M; Williamson, Donald A; Qi, Lu

    2014-05-01

    A common obesity-risk variant rs9939609 in the fat mass- and obesity-associated (FTO) gene was recently shown to affect appetite, and the gene is sensitive to the regulation of amino acids. We examined the interaction between FTO genotype and protein intake on the long-term changes in appetite in a randomized controlled trial. We genotyped FTO rs9939609 in 737 overweight adults in the 2-y Preventing Overweight Using Novel Dietary Strategies trial and assessed 4 appetite-related traits including cravings, fullness, hunger, and prospective consumption. We showed that dietary protein significantly modified genetic effects on changes in food cravings and appetite scores at 6 mo after adjustment for age, sex, ethnicity, baseline body mass index, weight change, and baseline value for respective outcomes (P-interaction = 0.027 and 0.048, respectively). The A allele was associated with a greater decrease in food cravings and appetite scores in participants with high-protein-diet intake (P = 0.027 and 0.047, respectively) but not in subjects in the low-protein-diet group (P = 0.384 and 0.078, respectively). The weight regain from 6 to 24 mo attenuated gene-protein interactions. Protein intakes did not modify FTO genotype effects on other appetite measures. Our data suggest that individuals with the FTO rs9939609 A allele might obtain more benefits in a reduction of food cravings and appetite by choosing a hypocaloric and higher-protein weight-loss diet. This trial was registered at clinicaltrials.gov as NCT00072995.

  13. Enhancement of open-circuit voltage on organic photovoltaic devices by Al-doped TiO2 modifying layer produced by sol–gel method

    International Nuclear Information System (INIS)

    Valaski, R.; Arantes, C.; Senna, C.A.; Carôzo, Victor; Achete, C.A.; Cremona, M.

    2014-01-01

    Sol–gel method has shown several advantages for oxide synthesis, such as lower cost production, coating large areas, lower processing temperatures and ease insertion of doping materials. Therefore, it is attractive for production of intermediate and electrode modifying layers in organic optoelectronic devices. Herein, spin-coated aluminum-doped titanium dioxide (AlTiO 2 ) thin films were produced by sol–gel method onto glass and fluorine-doped tin oxide (FTO) substrates, using different Al-dopant concentrations and post-done annealing temperatures. Electrical measurements were performed in order to investigate the improvement of the TiO 2 resistivity. Additionally, structural, compositional, morphological, optical and electrical properties of the optimal AlTiO 2 modifying layers onto FTO substrates were probed by different techniques, and compared with those obtained from the undoped thin films produced under similar conditions. Organic photovoltaic devices (OPVs) with the structure FTO/AlTiO 2 (30 nm)/C 60 (50 nm)/CuPc(50 nm)/Al with an Al concentration of 0.03 M in AlTiO 2 layer were produced. The insertion of AlTiO 2 thin films improved the short-circuit current density (J sc ) as well as the open circuit voltage (V oc ) in comparison with non-modified electrode FTO based devices. This behavior is discussed in terms of induced interface phenomena as dipole formation induced by Al. - Highlights: • Easy and cheap solution-process for AlTiO 2 modification of FTO electrode for OPVs • Electrical, structural and optical characterization of TiO 2 layers with Al-dopant • Improvement of Voc and Jsc of inverted OPVs with AlTiO 2 modified electrode

  14. A freeze-dried graphene counter electrode enhances the performance of dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Kai-Hsiang; Wang, Hong-Wen, E-mail: hongwen@cycu.edu.tw

    2014-01-01

    A flexible graphene/polyimide (PI) counter electrode without a fluorine-doped tin oxide (FTO) layer has been fabricated for dye-sensitized solar cell (DSSCs) applications. The flexible counter electrode consists of polyimide double-sided tape as a substrate beneath a graphene film acting as the conductive and catalytic layer. Chemically reduced graphene oxide (rGO) on the PI electrode (rGO-PI) shows comparable catalytic activity to that of the reference sputtered platinum/FTO counter electrodes (Sputter-Pt/FTO). A DSSC with a freeze-dried rGO-PI (FD-rGO-PI) counter electrode shows an overall conversion efficiency (η) of 5.45%, while that of the conventional Sputter-Pt/FTO electrode is 5.52%. The DSSC with a thermally dried rGO-PI (Gel-rGO-PI) counter electrode (not freeze-dried) exhibits a smooth morphology and much poorer performance (η = 1.61%). Field emission scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry measurements demonstrate that the FD-rGO-PI electrode possesses a porous structure, numerous edges, minimum charge-transfer resistance and a higher electrocatalytic activity toward the I{sub 3}{sup −}/I{sup −} redox couple than that of the Gel-rGO-PI electrode. The high electrocatalytic activity, facile preparation procedure, absence of FTO, and material flexibility render the FD-rGO-PI electrode an ideal alternative to conventional DSSC counter electrodes. - Highlights: • Highly rough and conductive graphene-based counter electrode is synthesized. • The characteristics of graphene surface by freeze drying are different. • The graphene counter electrode exhibits comparable performance to that of sputtered Pt one.

  15. Efficient indium-tin-oxide free inverted organic solar cells based on aluminum-doped zinc oxide cathode and low-temperature aqueous solution processed zinc oxide electron extraction layer

    International Nuclear Information System (INIS)

    Chen, Dazheng; Zhang, Chunfu; Wang, Zhizhe; Zhang, Jincheng; Tang, Shi; Wei, Wei; Sun, Li; Hao, Yue

    2014-01-01

    Indium-tin-oxide (ITO) free inverted organic solar cells (IOSCs) based on aluminum-doped zinc oxide (AZO) cathode, low-temperature aqueous solution processed zinc oxide (ZnO) electron extraction layer, and poly(3-hexylthiophene-2, 5-diyl):[6, 6]-phenyl C 61 butyric acid methyl ester blend were realized in this work. The resulted IOSC with ZnO annealed at 150 °C shows the superior power conversion efficiency (PCE) of 3.01%, if decreasing the ZnO annealing temperature to 100 °C, the obtained IOSC also shows a PCE of 2.76%, and no light soaking issue is observed. It is found that this ZnO film not only acts as an effective buffer layer but also slightly improves the optical transmittance of AZO substrates. Further, despite the relatively inferior air-stability, these un-encapsulated AZO/ZnO IOSCs show comparable PCEs to the referenced ITO/ZnO IOSCs, which demonstrates that the AZO cathode is a potential alternative to ITO in IOSCs. Meanwhile, this simple ZnO process is compatible with large area deposition and plastic substrates, and is promising to be widely used in IOSCs and other relative fields.

  16. Hydrogen ion sensors based on indium tin oxide thin film using radio frequency sputtering system

    International Nuclear Information System (INIS)

    Chiang, Jung-Lung; Jhan, Syun-Sheng; Hsieh, Shu-Chen; Huang, An-Li

    2009-01-01

    Indium tin oxide (ITO) thin films were deposited onto Si and SiO 2 /Si substrates using a radio frequency sputtering system with a grain size of 30-50 nm and thickness of 270-280 nm. ITO/Si and ITO/SiO 2 /Si sensing structures were achieved and connected to a standard metal-oxide-semiconductor field-effect transistor (MOSFET) as an ITO pH extended-gate field-effect transistor (ITO pH-EGFET). The semiconductor parameter analysis measurement (Keithley 4200) was utilized to measure the current-voltage (I-V) characteristics curves and study the sensing properties of the ITO pH-EGFET. The linear pH voltage sensitivities were about 41.43 and 43.04 mV/pH for the ITO/Si and ITO/SiO 2 /Si sensing structures, respectively. At the same time, both pH current sensitivities were about 49.86 and 51.73 μA/pH, respectively. Consequently, both sensing structures can be applied as extended-gate sensing heads. The separative structure is suitable for application as a disposable pH sensor.

  17. FTO POLYMORPHISM AND PHYSICAL FITNESS IN OBESE SCHOOLCHILDREN AFTER AN INTERVENTION PROGRAM

    Directory of Open Access Journals (Sweden)

    Greice Graziela Moraes

    Full Text Available ABSTRACT Introduction: Recent studies have shown that the association of FTO rs9939609 gene polymorphism with obesity depends on the level of the individual’s physical activity. However, there are some studies that evaluated physical fitness, health, and motor performance in relation to the rs9939609 FTO gene polymorphism. Objective: To evaluate how the rs9939609 FTO gene polymorphism affects the results of physical fitness tests related to health and athletic performance in schoolchildren after 4 months of intervention of physical exercise. Method: The rs9939609 FTO gene polymorphism was genotyped in a total of 36 schoolchildren from southern Brazil, aged 8 to 16 years. Body mass index (BMI, health-related physical fitness (cardiorespiratory fitness, abdominal strength/endurance, and flexibility and motor performance (upper and lower limb strength, agility, and speed were evaluated. The intervention included exercise strategies based on Physical Education, healthy eating, and oral and postural care. Results: In the experimental group, after the intervention, significant differences were noted in individuals with the TT genotype. These individuals showed improvements in abdominal strength (p=0.025, lower limb strength (p=0.037 and agility (p=0.021. For individuals with the AA/AT genotype, improvements in flexibility (p=0.026, abdominal strength (p=0.002, upper limb strength (p=0.008 and lower limb strength (p=0.001 were observed. However, these differences were not statistically significant when comparing the TT and AT/AA genotypes. Conclusions: The experimental group showed improvements in abdominal strength, lower limb strength, and speed. Yet, individuals with different genotypes (AA/AT and TT for polymorphism rs9939609 exhibited similar values for indicators of physical fitness, health, and motor performance. Level of Evidence II; Lesser quality RCT.

  18. Ab Initio Study of the Atomic Level Structure of the Rutile TiO2(110)-Titanium Nitride (TiN) Interface.

    Science.gov (United States)

    Gutiérrez Moreno, José Julio; Nolan, Michael

    2017-11-01

    Titanium nitride (TiN) is widely used in industry as a protective coating due to its hardness and resistance to corrosion and can spontaneously form a thin oxide layer when it is exposed to air, which could modify the properties of the coating. With limited understanding of the TiO 2 -TiN interfacial system at present, this work aims to describe the structural and electronic properties of oxidized TiN based on a density functional theory (DFT) study of the rutile TiO 2 (110)-TiN(100) interface model system, also including Hubbard +U correction on Ti 3d states. The small lattice mismatch gives a good stability to the TiO 2 -TiN interface after depositing the oxide onto TiN through the formation of interfacial Ti-O bonds. Our DFT+U study shows the presence of Ti 3+ cations in the TiO 2 region, which are preferentially located next to the interface region as well as the rotation of the rutile TiO 2 octahedra in the interface structure. The DFT+U TiO 2 electronic density of states (EDOS) shows localized Ti 3+ defect states forming in the midgap between the top edge of the valence and the bottom of the conduction band. We increase the complexity of our models by the introduction of nonstoichiometric compositions. Although the vacancy formation energies for Ti in TiN (E vac (Ti) ≥ 4.03 eV) or O in the oxide (E vac (O) ≥ 3.40 eV) are quite high relative to perfect TiO 2 -TiN, defects are known to form during the oxide growth and can therefore be present after TiO 2 formation. Our results show that a structure with exchanged O and N can lie 0.82 eV higher in energy than the perfect system, suggesting the stability of structures with interdiffused O and N anions at ambient conditions. The presence of N in TiO 2 introduces N 2p states localized between the top edge of the O 2p valence states and the midgap Ti 3+ 3d states, thus reducing the band gap in the TiO 2 region for the exchanged O/N interface EDOS. The outcomes of these simulations give us a most comprehensive

  19. Dehydrogenation and concurrent isomerization of n-butenes on mixed tin and antimony oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Irvine, E.A.; Taylor, D.

    1978-01-01

    The dehydrogenation and concurrent isomerization of n-butenes on mixed tin and antimony oxide catalysts which had been outgassed at 698/sup 0/K were carried out in the presence of oxygen at 474/sup 0/K, and the initial approximately zero-order rates of 1,3-butadiene formation and rates of isomerization were used as a measure of catalytic activity to construct activity patterns as a function of catalyst composition. A comparison of the patterns with those for the isomerization of 3,3-dimethyl-1-butene and for the selective oxidation of propane on the same catalysts indicated that the dehydrogenation of 1-butene involves a m-allyl intermediate, but isomerization occurs through carbonium ion formation. For the cis- and trans-isomers, both reactions apparently occurred via a common allyl (but not m-allyl) intermediate. Dehydrogenation to butadiene decreased in the order 1-butene > cis-2-butene trans-2-butene and was maximum at 10% antimony for 1-butene and 21% antimony for 2-butene. Isomerization was always slower than dehydrogenation and showed two maEima, at 21 (or 27%) and at 75% antimony.

  20. Fabrication and characterization of vacuum deposited fluorescein thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jalkanen, Pasi, E-mail: pasi.jalkanen@gmail.co [University of Jyvaeskylae, Department of Physics, Nanoscience center (NSC), P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Kulju, Sampo, E-mail: sampo.j.kulju@jyu.f [University of Jyvaeskylae, Department of Physics, Nanoscience center (NSC), P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Arutyunov, Konstantin, E-mail: konstantin.arutyunov@jyu.f [University of Jyvaeskylae, Department of Physics, Nanoscience center (NSC), P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Antila, Liisa, E-mail: liisa.j.antila@jyu.f [University of Jyvaeskylae, Department of Chemistry, Nanoscience center (NSC) P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Myllyperkioe, Pasi, E-mail: pasi.myllyperkio@jyu.f [University of Jyvaeskylae, Department of Chemistry, Nanoscience center (NSC) P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Ihalainen, Teemu, E-mail: teemu.o.ihalainen@jyu.f [University of Jyvaeskylae, Department of Biology, Nanoscience center (NSC), P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Kaeaeriaeinen, Tommi, E-mail: tommi.kaariainen@lut.f [Lappeenranta University of Technology, ASTRal, P.O. Box 181, FI-50101 Mikkeli (Finland); Kaeaeriaeinen, Marja-Leena, E-mail: marja-leena.kaariainen@lut.f [Lappeenranta University of Technology, ASTRal, P.O. Box 181, FI-50101 Mikkeli (Finland); Korppi-Tommola, Jouko, E-mail: jouko.korppi-tommola@jyu.f [University of Jyvaeskylae, Department of Biology, Nanoscience center (NSC), P.O. Box 35, FI-40014 Jyvaeskylae (Finland)

    2011-03-31

    Simple vacuum evaporation technique for deposition of dyes on various solid surfaces has been developed. The method is compatible with conventional solvent-free nanofabrication processing enabling fabrication of nanoscale optoelectronic devices. Thin films of fluorescein were deposited on glass, fluorine-tin-oxide (FTO) coated glass with and without atomically layer deposited (ALD) nanocrystalline 20 nm thick anatase TiO{sub 2} coating. Surface topology, absorption and emission spectra of the films depend on their thickness and the material of supporting substrate. On a smooth glass surface the dye initially forms islands before merging into a uniform layer after 5 to 10 monolayers. On FTO covered glass the absorption spectra are similar to fluorescein solution in ethanol. Absorption spectra on ALD-TiO{sub 2} is red shifted compared to the film deposited on bare FTO. The corresponding emission spectra at {lambda} = 458 nm excitation show various thickness and substrate dependent features, while the emission of films deposited on TiO{sub 2} is quenched due to the effective electron transfer to the semiconductor conduction band.