WorldWideScience

Sample records for timing climate patterns

  1. Separation of spatial-temporal patterns ('climatic modes') by combined analysis of really measured and generated numerically vector time series

    Science.gov (United States)

    Feigin, A. M.; Mukhin, D.; Volodin, E. M.; Gavrilov, A.; Loskutov, E. M.

    2013-12-01

    The new method of decomposition of the Earth's climate system into well separated spatial-temporal patterns ('climatic modes') is discussed. The method is based on: (i) generalization of the MSSA (Multichannel Singular Spectral Analysis) [1] for expanding vector (space-distributed) time series in basis of spatial-temporal empirical orthogonal functions (STEOF), which makes allowance delayed correlations of the processes recorded in spatially separated points; (ii) expanding both real SST data, and longer by several times SST data generated numerically, in STEOF basis; (iii) use of the numerically produced STEOF basis for exclusion of 'too slow' (and thus not represented correctly) processes from real data. The application of the method allows by means of vector time series generated numerically by the INM RAS Coupled Climate Model [2] to separate from real SST anomalies data [3] two climatic modes possessing by noticeably different time scales: 3-5 and 9-11 years. Relations of separated modes to ENSO and PDO are investigated. Possible applications of spatial-temporal climatic patterns concept to prognosis of climate system evolution is discussed. 1. Ghil, M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, et al. (2002) "Advanced spectral methods for climatic time series", Rev. Geophys. 40(1), 3.1-3.41. 2. http://83.149.207.89/GCM_DATA_PLOTTING/GCM_INM_DATA_XY_en.htm 3. http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/

  2. The Space-Time Variation of Global Crop Yields, Detecting Simultaneous Outliers and Identifying the Teleconnections with Climatic Patterns

    Science.gov (United States)

    Najafi, E.; Devineni, N.; Pal, I.; Khanbilvardi, R.

    2017-12-01

    An understanding of the climate factors that influence the space-time variability of crop yields is important for food security purposes and can help us predict global food availability. In this study, we address how the crop yield trends of countries globally were related to each other during the last several decades and the main climatic variables that triggered high/low crop yields simultaneously across the world. Robust Principal Component Analysis (rPCA) is used to identify the primary modes of variation in wheat, maize, sorghum, rice, soybeans, and barley yields. Relations between these modes of variability and important climatic variables, especially anomalous sea surface temperature (SSTa), are examined from 1964 to 2010. rPCA is also used to identify simultaneous outliers in each year, i.e. systematic high/low crop yields across the globe. The results demonstrated spatiotemporal patterns of these crop yields and the climate-related events that caused them as well as the connection of outliers with weather extremes. We find that among climatic variables, SST has had the most impact on creating simultaneous crop yields variability and yield outliers in many countries. An understanding of this phenomenon can benefit global crop trade networks.

  3. Climate change. Climate in Medieval time.

    Science.gov (United States)

    Bradley, Raymond S; Hughes, Malcolm K; Diaz, Henry F

    2003-10-17

    Many papers have referred to a "Medieval Warm Period." But how well defined is climate in this period, and was it as warm as or warmer than it is today? In their Perspective, Bradley et al. review the evidence and conclude that although the High Medieval (1100 to 1200 A.D.) was warmer than subsequent centuries, it was not warmer than the late 20th century. Moreover, the warmest Medieval temperatures were not synchronous around the globe. Large changes in precipitation patterns are a particular characteristic of "High Medieval" time. The underlying mechanisms for such changes must be elucidated further to inform the ongoing debate on natural climate variability and anthropogenic climate change.

  4. Identification of Extreme Events Under Climate Change Conditions Over Europe and The Northwest-atlantic Region: Spatial Patterns and Time Series Characteristics

    Science.gov (United States)

    Leckebusch, G.; Ulbrich, U.; Speth, P.

    In the context of climate change and the resulting possible impacts on socio-economic conditions for human activities it seems that due to a changed occurrence of extreme events more severe consequences have to be expected than from changes in the mean climate. These extreme events like floods, excessive heats and droughts or windstorms possess impacts on human social and economic life in different categories such as forestry, agriculture, energy use, tourism and the reinsurance business. Reinsurances are affected by nearly 70% of all insured damages over Europe in the case of wind- storms. Especially the December 1999 French windstorms caused damages about 10 billion. A new EU-founded project (MICE = Modelling the Impact of Climate Ex- tremes) will focus on these impacts caused by changed occurrences of extreme events over Europe. Based upon the output of general circulation models as well as regional climate models, investigations are carried out with regard to time series characteristics as well as the spatial patterns of extremes under climate changed conditions. After the definition of specific thresholds for climate extremes, in this talk we will focus on the results of the analysis for the different data sets (HadCM3 and CGCMII GCM's and RCM's, re-analyses, observations) with regard to windstorm events. At first the results of model outputs are validated against re-analyses and observations. Especially a comparison of the stormtrack (2.5 to 8 day bandpass filtered 500 hPa geopotential height), cyclone track, cyclone frequency and intensity is presented. Highly relevant to damages is the extreme wind near the ground level, so the 10 m wind speed will be investigated additionally. of special interest to possible impacts is the changed spatial occurrence of windspeed maxima under 2xCO2-induced climate change.

  5. Adapting urban land use in a time of climate change; Optimising future land-use patterns to decrease flood risks

    NARCIS (Netherlands)

    van Leeuwen, E.S.; Koomen, E.; Lal, R.; Augustin, B.

    2012-01-01

    It is increasingly acknowledged that a careful planning of urban areas is needed to cope with the negative effects of future climate changes. The planning process calls for fi nding a balance between various ecosystem services, such as, water and air purifi cation, the regulation of rainfall, the

  6. The Dependencies of Ecosystem Pattern, Structure, and Dynamics on Climate, Climate Variability, and Climate Change

    Science.gov (United States)

    Flanagan, S.; Hurtt, G. C.; Fisk, J. P.; Rourke, O.

    2012-12-01

    A robust understanding of the sensitivity of the pattern, structure, and dynamics of ecosystems to climate, climate variability, and climate change is needed to predict ecosystem responses to current and projected climate change. We present results of a study designed to first quantify the sensitivity of ecosystems to climate through the use of climate and ecosystem data, and then use the results to test the sensitivity of the climate data in a state-of the art ecosystem model. A database of available ecosystem characteristics such as mean canopy height, above ground biomass, and basal area was constructed from sources like the National Biomass and Carbon Dataset (NBCD). The ecosystem characteristics were then paired by latitude and longitude with the corresponding climate characteristics temperature, precipitation, photosynthetically active radiation (PAR) and dew point that were retrieved from the North American Regional Reanalysis (NARR). The average yearly and seasonal means of the climate data, and their associated maximum and minimum values, over the 1979-2010 time frame provided by NARR were constructed and paired with the ecosystem data. The compiled results provide natural patterns of vegetation structure and distribution with regard to climate data. An advanced ecosystem model, the Ecosystem Demography model (ED), was then modified to allow yearly alterations to its mechanistic climate lookup table and used to predict the sensitivities of ecosystem pattern, structure, and dynamics to climate data. The combined ecosystem structure and climate data results were compared to ED's output to check the validity of the model. After verification, climate change scenarios such as those used in the last IPCC were run and future forest structure changes due to climate sensitivities were identified. The results of this study can be used to both quantify and test key relationships for next generation models. The sensitivity of ecosystem characteristics to climate data

  7. Late-Middle Quaternary lithostratigraphy and sedimentation patterns on the Alpha Ridge, central Arctic Ocean: Implications for Arctic climate variability on orbital time scales

    Science.gov (United States)

    Wang, Rujian; Polyak, Leonid; Xiao, Wenshen; Wu, Li; Zhang, Taoliang; Sun, Yechen; Xu, Xiaomei

    2018-02-01

    We use sediment cores collected by the Chinese National Arctic Research Expeditions from the Alpha Ridge to advance Quaternary stratigraphy and paleoceanographic reconstructions for the Arctic Ocean. Our cores show a good litho/biostratigraphic correlation to sedimentary records developed earlier for the central Arctic Ocean, suggesting a recovered stratigraphic range of ca. 0.6 Ma, suitable for paleoclimatic studies on orbital time scales. This stratigraphy was tested by correlating the stacked Alpha Ridge record of bulk XRF manganese, calcium and zirconium (Mn, Ca, Zr), to global stable-isotope (LR04-δ18O) and sea-level stacks and tuning to orbital parameters. Correlation results corroborate the applicability of presumed climate/sea-level controlled Mn variations in the Arctic Ocean for orbital tuning. This approach enables better understanding of the global and orbital controls on the Arctic climate. Orbital tuning experiments for our records indicate strong eccentricity (100-kyr) and precession (∼20-kyr) controls on the Arctic Ocean, probably implemented via glaciations and sea ice. Provenance proxies like Ca and Zr are shown to be unsuitable as orbital tuning tools, but useful as indicators of glacial/deglacial processes and circulation patterns in the Arctic Ocean. Their variations suggest an overall long-term persistence of the Beaufort Gyre circulation in the Alpha Ridge region. Some glacial intervals, e.g., MIS 6 and 4/3, are predominated by material presumably transported by the Transpolar Drift. These circulation shifts likely indicate major changes in the Arctic climatic regime, which yet need to be investigated. Overall, our results demonstrate applicability of XRF data to paleoclimatic studies of the Arctic Ocean.

  8. TECA: Petascale pattern recognition for climate science

    Energy Technology Data Exchange (ETDEWEB)

    Prabhat, . [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Byna, Surendra [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vishwanath, Venkatram [Argonne National Lab. (ANL), Argonne, IL (United States); Dart, Eli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wehner, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Collins, William D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-26

    Climate Change is one of the most pressing challenges facing humanity in the 21st century. Climate simulations provide us with a unique opportunity to examine effects of anthropogenic emissions. Highresolution climate simulations produce “Big Data”: contemporary climate archives are ≈ 5PB in size and we expect future archives to measure on the order of Exa-Bytes. In this work, we present the successful application of TECA (Toolkit for Extreme Climate Analysis) framework, for extracting extreme weather patterns such as Tropical Cyclones, Atmospheric Rivers and Extra-Tropical Cyclones from TB-sized simulation datasets. TECA has been run at full-scale on Cray XE6 and IBM BG/Q systems, and has reduced the runtime for pattern detection tasks from years to hours. TECA has been utilized to evaluate the performance of various computational models in reproducing the statistics of extreme weather events, and for characterizing the change in frequency of storm systems in the future.

  9. Climate, the time for action

    International Nuclear Information System (INIS)

    Petit, Michel; Barlier, F.; Bauer, P.; Besancenot, J.P.; Boe, J.; Bonneville, A.; Boucher, O.; Boy, D.; Cazenave, A.; Combarnous, M.; Dandonneau, Y.; Decampsk, H.; Drobrinski, P.; Ducrocq, V.; Durand, B.; Fouquart, Y.; Gautier, C.; Geistdoerfer, P.; Grandjean, A.; Guillou, M.; Labeyrie, L.; Laval, K.; Le Cozannet, G.; Lefebvre, M.; Le Treut, H.; Masson-Delmotte, V.; Merle, J.; Ngo, C.; Pailleux, J.; Painter, J.; Pouyaud, B.; Salas y Melia, D.; Terray, L.; Vautard, R.; Voituriez, B.; Zaharia, R.; Tubiana, Laurence; Orsenna, Erik

    2015-01-01

    The objective of this collective book is to provide the public with elements of information showing that there is an actual risk that climate-related risk severely affects mankind during the next decades. A first part proposes a summary of the most recent works which place the problematic of climate change within its scientific context at different time and space scales. The second part describes the nature and properties of various greenhouse gases. The third part addresses the future evolution of some regional climates which are relevant for impact studies (possible evolutions during this century and beyond, associated uncertainties). The fourth part proposes a rather detailed presentation of possible consequences of local climate changes. The authors assess possible ecological consequences, analyse human and social risks and measures which could make these climate changes more bearable. The fifth part identifies actions to be performed to reduce carbon dioxide emissions in the atmosphere, and the possibility to correct modifications we have imposed to the planet climate. The last part analyses the evolution of world awareness of the climate issue

  10. Attribution of the Regional Patterns of North American Climate Trends

    Science.gov (United States)

    Hoerling, M.; Kumar, A.; Karoly, D.; Rind, D.; Hegerl, G.; Eischeid, J.

    2007-12-01

    North American trends in surface temperature and precipitation during 1951-2006 exhibit large spatial and seasonal variations. We seek to explain these by synthesizing new information based on existing model simulations of climate and its forcing, and based on modern reanalyses that describe past and current conditions within the free atmosphere. The presentation focuses on current capabilities to explain the spatial variations and seasonal differences in North American climate trends. It will address whether various heterogeneities in space and time can be accounted for by the climate system's sensitivity to time evolving anthropogenic forcing, and examines the influences of non-anthropogenic processes. New findings are presented that indicate anthropogenic forcing alone was unlikely the cause for key regional and seasonal patterns of change, including the absence of summertime warming over the Great Plains of the United States, and the absence of warming during both winter and summer over the southern United States. Key regional features are instead attributed to trends in the principal patterns of atmospheric flow that affect North American climate. It is demonstrated that observed variations in global sea surface temperatures have significantly influenced these patterns of atmospheric flow.

  11. Impacts of Climate Change on Tibetan Lakes: Patterns and Processes

    Directory of Open Access Journals (Sweden)

    Dehua Mao

    2018-02-01

    Full Text Available High-altitude inland-drainage lakes on the Tibetan Plateau (TP, the earth’s third pole, are very sensitive to climate change. Tibetan lakes are important natural resources with important religious, historical, and cultural significance. However, the spatial patterns and processes controlling the impacts of climate and associated changes on Tibetan lakes are largely unknown. This study used long time series and multi-temporal Landsat imagery to map the patterns of Tibetan lakes and glaciers in 1977, 1990, 2000, and 2014, and further to assess the spatiotemporal changes of lakes and glaciers in 17 TP watersheds between 1977 and 2014. Spatially variable changes in lake and glacier area as well as climatic factors were analyzed. We identified four modes of lake change in response to climate and associated changes. Lake expansion was predominantly attributed to increased precipitation and glacier melting, whereas lake shrinkage was a main consequence of a drier climate or permafrost degradation. These findings shed new light on the impacts of recent environmental changes on Tibetan lakes. They suggest that protecting these high-altitude lakes in the face of further environmental change will require spatially variable policies and management measures.

  12. Has climate change disrupted stratification patterns in Lake Victoria ...

    African Journals Online (AJOL)

    Has climate change disrupted stratification patterns in Lake Victoria, East Africa? ... Climate change may threaten the fisheries of Lake Victoria by increasing density differentials in the water column, thereby strengthening stratification and increasing the ... Keywords: deoxygenation, fisheries, global warming, thermocline

  13. Characterizing the "Time of Emergence" of Air Quality Climate Penalties

    Science.gov (United States)

    Rothenberg, D. A.; Garcia-Menendez, F.; Monier, E.; Solomon, S.; Selin, N. E.

    2017-12-01

    By driving not only local changes in temperature, but also precipitation and regional-scale changes in seasonal circulation patterns, climate change can directly and indirectly influence changes in air quality and its extremes. These changes - often referred to as "climate penalties" - can have important implications for human health, which is often targeted when assessing the potential co-benefits of climate policy. But because climate penalties are driven by slow, spatially-varying, temporal changes in the climate system, their emergence in the real world should also have a spatio-temporal component following regional variability in background air quality. In this work, we attempt to estimate the spatially-varying "time of emergence" of climate penalty signals by using an ensemble modeling framework based on the MIT Integrated Global System Model (MIT IGSM). With this framework we assess three climate policy scenarios assuming three different underlying climate sensitivities, and conduct a 5-member ensemble for each case to capture internal variability within the model. These simulations are used to drive offline chemical transport modeling (using CAM-Chem and GEOS-Chem). In these simulations, we find that the air quality response to climate change can vary dramatically across different regions of the globe. To analyze these regionally-varying climate signals, we employ a hierarchical clustering technique to identify regions with similar seasonal patterns of air quality change. Our simulations suggest that the earliest emergence of ozone climate penalties would occur in Southern Europe (by 2035), should the world neglect climate change and rely on a "business-as-usual" emissions policy. However, even modest climate policy dramatically pushes back the time of emergence of these penalties - to beyond 2100 - across most of the globe. The emergence of climate-forced changes in PM2.5 are much more difficult to detect, partially owing to the large role that changes in

  14. Seasonal climate change patterns due to cumulative CO2 emissions

    Science.gov (United States)

    Partanen, Antti-Ilari; Leduc, Martin; Damon Matthews, H.

    2017-07-01

    Cumulative CO2 emissions are near linearly related to both global and regional changes in annual-mean surface temperature. These relationships are known as the transient climate response to cumulative CO2 emissions (TCRE) and the regional TCRE (RTCRE), and have been shown to remain approximately constant over a wide range of cumulative emissions. Here, we assessed how well this relationship holds for seasonal patterns of temperature change, as well as for annual-mean and seasonal precipitation patterns. We analyzed an idealized scenario with CO2 concentration growing at an annual rate of 1% using data from 12 Earth system models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Seasonal RTCRE values for temperature varied considerably, with the highest seasonal variation evident in the Arctic, where RTCRE was about 5.5 °C per Tt C for boreal winter and about 2.0 °C per Tt C for boreal summer. Also the precipitation response in the Arctic during boreal winter was stronger than during other seasons. We found that emission-normalized seasonal patterns of temperature change were relatively robust with respect to time, though they were sub-linear with respect to emissions particularly near the Arctic. Moreover, RTCRE patterns for precipitation could not be quantified robustly due to the large internal variability of precipitation. Our results suggest that cumulative CO2 emissions are a useful metric to predict regional and seasonal changes in precipitation and temperature. This extension of the TCRE framework to seasonal and regional climate change is helpful for communicating the link between emissions and climate change to policy-makers and the general public, and is well-suited for impact studies that could make use of estimated regional-scale climate changes that are consistent with the carbon budgets associated with global temperature targets.

  15. Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress.

    Science.gov (United States)

    Allen, J D; Hall, L W; Collier, R J; Smith, J F

    2015-01-01

    Cattle show several responses to heat load, including spending more time standing. Little is known about what benefit this may provide for the animals. Data from 3 separate cooling management trials were analyzed to investigate the relationship between behavioral patterns in lactating dairy cows experiencing mild to moderate heat stress and their body temperature. Cows (n=157) were each fitted with a leg data logger that measured position and an intravaginal data logger that measures core body temperature (CBT). Ambient conditions were also collected. All data were standardized to 5-min intervals, and information was divided into several categories: when standing and lying bouts were initiated and the continuance of each bout (7,963 lying and 6,276 standing bouts). In one location, cows were continuously subjected to heat-stress levels according to temperature-humidity index (THI) range (THI≥72). The THI range for the other 2 locations was below and above a heat-stress threshold of 72 THI. Overall and regardless of period of day, cows stood up at greater CBT compared with continuing to stand or switching to a lying position. In contrast, cows lay down at lower CBT compared with continuing to lie or switching to a standing position, and lying bouts lasted longer when cows had lower CBT. Standing bouts also lasted longer when cattle had greater CBT, and they were less likely to lie down (less than 50% of lying bouts initiated) when their body temperature was over 38.8°C. Also, cow standing behavior was affected once THI reached 68. Increasing CBT decreased lying duration and increased standing duration. A CBT of 38.93°C marked a 50% likelihood a cow would be standing. This is the first physiological evidence that standing may help cool cows and provides insight into a communally observed behavioral response to heat. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Climate change and amphibian diversity patterns in Mexico

    DEFF Research Database (Denmark)

    Ochoa-Ochoa, Leticia M.; Rodríguez, Pilar; Mora, Franz

    2012-01-01

    The aim of this article is to characterize at fine scale alpha and beta diversity patterns for Mexican amphibians and analyze how these patterns might change under a moderate climate-change scenario, highlighting the overall consequences for amphibian diversity at the country level. We used a geo...

  17. Climatic extremes improve predictions of spatial patterns of tree species

    Science.gov (United States)

    Zimmermann, N.E.; Yoccoz, N.G.; Edwards, T.C.; Meier, E.S.; Thuiller, W.; Guisan, Antoine; Schmatz, D.R.; Pearman, P.B.

    2009-01-01

    Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D2, +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.

  18. On the nature of rainfall in dry climate: Space-time patterns of convective rain cells over the Dead Sea region and their relations with synoptic state and flash flood generation

    Science.gov (United States)

    Belachsen, Idit; Marra, Francesco; Peleg, Nadav; Morin, Efrat

    2017-04-01

    Space-time patterns of rainfall are important climatic characteristics that influence runoff generation and flash flood magnitude. Their derivation requires high-resolution measurements to adequately represent the rainfall distribution, and is best provided by remote sensing tools. This need is further emphasized in dry climate regions, where rainfall is scarce and, often, local and highly variable. Our research is focused on understanding the nature of rainfall events in the dry Dead Sea region (Eastern Mediterranean) by identifying and characterizing the spatial structure and the dynamics of convective storm cores (known as rain cells). To do so, we take advantage of 25 years of corrected and gauge-adjusted weather radar data. A statistical analysis of convective rain-cells spatial and temporal characteristics was performed with respect to synoptic pattern, geographical location, and flash flood generation. Rain cells were extracted from radar data using a cell segmentation method and a tracking algorithm and were divided into rain events. A total of 10,500 rain cells, 2650 cell tracks and 424 rain events were elicited. Rain cell properties, such as mean areal and maximal rain intensity, area, life span, direction and speed, were derived. Rain events were clustered, according to several ERA-Interim atmospheric parameters, and associated with three main synoptic patterns: Cyprus Low, Low to the East of the study region and Active Red Sea Trough. The first two originate from the Mediterranean Sea, while the third is an extension of the African monsoon. On average, the convective rain cells in the region are 90 km2 in size, moving from West to East in 13 ms-1 and living 18 minutes. Several significant differences between rain cells of the various synoptic types were observed. In particular, Active Red Sea Trough rain cells are characterized by higher rain intensities and lower speeds, suggesting a higher flooding potential for small catchments. The north

  19. LAND USE PATTERN, CLIMATE CHANGE, AND ITS IMPLICATION ...

    African Journals Online (AJOL)

    Osondu

    2012-01-30

    Jan 30, 2012 ... impacted seriously on Ethiopia's rich biodiversity, crop production ... change in the rural areas of Ethiopia, this paper therefore reviewed ... Key words: Climate change, Land use pattern, and Food security. .... releasing greenhouse gases, and the major driver ... Agricultural systems worldwide over the last.

  20. Climate induced changes in the circulation and dispersal patterns of ...

    Indian Academy of Sciences (India)

    Climate induced changes in the circulation and dispersal patterns of the fluvial sources during late Quaternary in the middle Bengal Fan ... in 14C dated box cores from the eastern, the central and the western regions were studied to determine ...

  1. Climate and weather impact timing of emergence of bats.

    Directory of Open Access Journals (Sweden)

    Winifred F Frick

    Full Text Available Interest in forecasting impacts of climate change have heightened attention in recent decades to how animals respond to variation in climate and weather patterns. One difficulty in determining animal response to climate variation is lack of long-term datasets that record animal behaviors over decadal scales. We used radar observations from the national NEXRAD network of Doppler weather radars to measure how group behavior in a colonially-roosting bat species responded to annual variation in climate and daily variation in weather over the past 11 years. Brazilian free-tailed bats (Tadarida brasiliensis form dense aggregations in cave roosts in Texas. These bats emerge from caves daily to forage at high altitudes, which makes them detectable with Doppler weather radars. Timing of emergence in bats is often viewed as an adaptive trade-off between emerging early and risking predation or increased competition and emerging late which restricts foraging opportunities. We used timing of emergence from five maternity colonies of Brazilian free-tailed bats in south-central Texas during the peak lactation period (15 June-15 July to determine whether emergence behavior was associated with summer drought conditions and daily temperatures. Bats emerged significantly earlier during years with extreme drought conditions than during moist years. Bats emerged later on days with high surface temperatures in both dry and moist years, but there was no relationship between surface temperatures and timing of emergence in summers with normal moisture levels. We conclude that emergence behavior is a flexible animal response to climate and weather conditions and may be a useful indicator for monitoring animal response to long-term shifts in climate.

  2. Climate change induced rainfall patterns affect wheat productivity and agroecosystem functioning dependent on soil types

    Science.gov (United States)

    Tabi Tataw, James; Baier, Fabian; Krottenthaler, Florian; Pachler, Bernadette; Schwaiger, Elisabeth; Whylidal, Stefan; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas; Zaller, Johann G.

    2014-05-01

    Wheat is a crop of global importance supplying more than half of the world's population with carbohydrates. We examined, whether climate change induced rainfall patterns towards less frequent but heavier events alter wheat agroecosystem productivity and functioning under three different soil types. Therefore, in a full-factorial experiment Triticum aestivum L. was cultivated in 3 m2 lysimeter plots containing the soil types sandy calcaric phaeozem, gleyic phaeozem or calcic chernozem. Prognosticated rainfall patterns based on regionalised climate change model calculations were compared with current long-term rainfall patterns; each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat growth and yield, reduced the leaf area index, accelerated crop development, reduced arbuscular mycorrhizal fungi colonisation of roots, increased weed density and the stable carbon isotope signature (δ13C) of both old and young wheat leaves. Different soil types affected wheat growth and yield, ecosystem root production as well as weed abundance and biomass. The interaction between climate and soil type was significant only for the harvest index. Our results suggest that even slight changes in rainfall patterns can significantly affect the functioning of wheat agroecosystems. These rainfall effects seemed to be little influenced by soil types suggesting more general impacts of climate change across different soil types. Wheat production under future conditions will likely become more challenging as further concurrent climate change factors become prevalent.

  3. Microhabitat and Climatic Niche Change Explain Patterns of Diversification among Frog Families.

    Science.gov (United States)

    Moen, Daniel S; Wiens, John J

    2017-07-01

    A major goal of ecology and evolutionary biology is to explain patterns of species richness among clades. Differences in rates of net diversification (speciation minus extinction over time) may often explain these patterns, but the factors that drive variation in diversification rates remain uncertain. Three important candidates are climatic niche position (e.g., whether clades are primarily temperate or tropical), rates of climatic niche change among species within clades, and microhabitat (e.g., aquatic, terrestrial, arboreal). The first two factors have been tested separately in several studies, but the relative importance of all three is largely unknown. Here we explore the correlates of diversification among families of frogs, which collectively represent ∼88% of amphibian species. We assemble and analyze data on phylogeny, climate, and microhabitat for thousands of species. We find that the best-fitting phylogenetic multiple regression model includes all three types of variables: microhabitat, rates of climatic niche change, and climatic niche position. This model explains 67% of the variation in diversification rates among frog families, with arboreal microhabitat explaining ∼31%, niche rates ∼25%, and climatic niche position ∼11%. Surprisingly, we show that microhabitat can have a much stronger influence on diversification than climatic niche position or rates of climatic niche change.

  4. Shift of biome patterns due to simulated climate variability and climate change

    International Nuclear Information System (INIS)

    Claussen, M.

    1993-01-01

    The variability of simulated equilibrium-response patterns of biomes caused by simulated climate variability and climate shift is analysed. This investigation is based on various realisations of simulated present-day climate and climate shift. It has been found that the difference between biomes computed from three 10-year climatologies and from the corresponding 30-year climatology, simulated by the Hamburg climate model at T21 resolution, amounts to approximately 6% of the total land area, Antarctica excluded. This difference is mainly due to differences in annual moisture availability and winter temperatures. When intercomparing biomes from the 10-year climatologies a 10% difference is seen, but there is no unique difference pattern. In contrast to the interdecadal variability, the shift of conditions favorable for biomes due to a shift in climate in the next 100 years, caused by an increase in sea-surface temperatures and atmospheric CO 2 , reveals a unique trend pattern. It turns out that the strongest and most significant signal is the north-east shift of conditions for boreal biomes. This signal is caused by an increase of annual temperature sums as well as mean temperatures of the coldest and warmest months. Trends in annual moisture availability are of secondary importance globally. Regionally, a decrease in water availability affects biomes in Central and East Europe and an increase of water availability leads to a potential increase in tropical rain forest. In total, all differences amount to roughly 30% of the total land surface, Antarctica excluded. (orig./KW)

  5. Motor control by precisely timed spike patterns

    DEFF Research Database (Denmark)

    Srivastava, Kyle H; Holmes, Caroline M; Vellema, Michiel

    2017-01-01

    whether the information in spike timing actually plays a role in brain function. By examining the activity of individual motor units (the muscle fibers innervated by a single motor neuron) and manipulating patterns of activation of these neurons, we provide both correlative and causal evidence......A fundamental problem in neuroscience is understanding how sequences of action potentials ("spikes") encode information about sensory signals and motor outputs. Although traditional theories assume that this information is conveyed by the total number of spikes fired within a specified time...... interval (spike rate), recent studies have shown that additional information is carried by the millisecond-scale timing patterns of action potentials (spike timing). However, it is unknown whether or how subtle differences in spike timing drive differences in perception or behavior, leaving it unclear...

  6. Modelling of Patterns in Space and Time

    CERN Document Server

    Murray, James

    1984-01-01

    This volume contains a selection of papers presented at the work­ shop "Modelling of Patterns in Space and Time", organized by the 80nderforschungsbereich 123, "8tochastische Mathematische Modelle", in Heidelberg, July 4-8, 1983. The main aim of this workshop was to bring together physicists, chemists, biologists and mathematicians for an exchange of ideas and results in modelling patterns. Since the mathe­ matical problems arising depend only partially on the particular field of applications the interdisciplinary cooperation proved very useful. The workshop mainly treated phenomena showing spatial structures. The special areas covered were morphogenesis, growth in cell cultures, competition systems, structured populations, chemotaxis, chemical precipitation, space-time oscillations in chemical reactors, patterns in flames and fluids and mathematical methods. The discussions between experimentalists and theoreticians were especially interesting and effective. The editors hope that these proceedings reflect ...

  7. Patterns of change in climate and Pacific salmon production

    Science.gov (United States)

    Nathan J. Mantua

    2009-01-01

    For much of the 20th century a clear north-south inverse production pattern for Pacific salmon had a time dynamic that closely followed that of the Pacific Decadal Oscillation (PDO), which is the dominant pattern of North Pacific sea surface temperature variability. Total Alaska salmon production was high during warm regimes of the PDO, and total Alaska salmon...

  8. Regionalizing Africa: Patterns of Precipitation Variability in Observations and Global Climate Models

    Science.gov (United States)

    Badr, Hamada S.; Dezfuli, Amin K.; Zaitchik, Benjamin F.; Peters-Lidard, Christa D.

    2016-01-01

    Many studies have documented dramatic climatic and environmental changes that have affected Africa over different time scales. These studies often raise questions regarding the spatial extent and regional connectivity of changes inferred from observations and proxies and/or derived from climate models. Objective regionalization offers a tool for addressing these questions. To demonstrate this potential, applications of hierarchical climate regionalizations of Africa using observations and GCM historical simulations and future projections are presented. First, Africa is regionalized based on interannual precipitation variability using Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data for the period 19812014. A number of data processing techniques and clustering algorithms are tested to ensure a robust definition of climate regions. These regionalization results highlight the seasonal and even month-to-month specificity of regional climate associations across the continent, emphasizing the need to consider time of year as well as research question when defining a coherent region for climate analysis. CHIRPS regions are then compared to those of five GCMs for the historic period, with a focus on boreal summer. Results show that some GCMs capture the climatic coherence of the Sahel and associated teleconnections in a manner that is similar to observations, while other models break the Sahel into uncorrelated subregions or produce a Sahel-like region of variability that is spatially displaced from observations. Finally, shifts in climate regions under projected twenty-first-century climate change for different GCMs and emissions pathways are examined. A projected change is found in the coherence of the Sahel, in which the western and eastern Sahel become distinct regions with different teleconnections. This pattern is most pronounced in high-emissions scenarios.

  9. ALBEDO PATTERN RECOGNITION AND TIME-SERIES ANALYSES IN MALAYSIA

    Directory of Open Access Journals (Sweden)

    S. A. Salleh

    2012-07-01

    Full Text Available Pattern recognition and time-series analyses will enable one to evaluate and generate predictions of specific phenomena. The albedo pattern and time-series analyses are very much useful especially in relation to climate condition monitoring. This study is conducted to seek for Malaysia albedo pattern changes. The pattern recognition and changes will be useful for variety of environmental and climate monitoring researches such as carbon budgeting and aerosol mapping. The 10 years (2000–2009 MODIS satellite images were used for the analyses and interpretation. These images were being processed using ERDAS Imagine remote sensing software, ArcGIS 9.3, the 6S code for atmospherical calibration and several MODIS tools (MRT, HDF2GIS, Albedo tools. There are several methods for time-series analyses were explored, this paper demonstrates trends and seasonal time-series analyses using converted HDF format MODIS MCD43A3 albedo land product. The results revealed significance changes of albedo percentages over the past 10 years and the pattern with regards to Malaysia's nebulosity index (NI and aerosol optical depth (AOD. There is noticeable trend can be identified with regards to its maximum and minimum value of the albedo. The rise and fall of the line graph show a similar trend with regards to its daily observation. The different can be identified in term of the value or percentage of rises and falls of albedo. Thus, it can be concludes that the temporal behavior of land surface albedo in Malaysia have a uniform behaviours and effects with regards to the local monsoons. However, although the average albedo shows linear trend with nebulosity index, the pattern changes of albedo with respects to the nebulosity index indicates that there are external factors that implicates the albedo values, as the sky conditions and its diffusion plotted does not have uniform trend over the years, especially when the trend of 5 years interval is examined, 2000 shows high

  10. Useful Pattern Mining on Time Series

    DEFF Research Database (Denmark)

    Goumatianos, Nikitas; Christou, Ioannis T; Lindgren, Peter

    2013-01-01

    We present the architecture of a “useful pattern” mining system that is capable of detecting thousands of different candlestick sequence patterns at the tick or any higher granularity levels. The system architecture is highly distributed and performs most of its highly compute-intensive aggregation...... calculations as complex but efficient distributed SQL queries on the relational databases that store the time-series. We present initial results from mining all frequent candlestick sequences with the characteristic property that when they occur then, with an average at least 60% probability, they signal a 2...

  11. Climate change and farmers’ cropping patterns in Cemoro watershed area, Central Java, Indonesia

    Science.gov (United States)

    Sugihardjo; Sutrisno, J.; Setyono, P.; Suntoro

    2018-03-01

    Cropping pattern applied by farmers is usually based on the availability of water. Farmers cultivate rice when water is available. If it is unavailable, farmers will choose to plant crops that need less water. Climate change greatly affects to farmers in determining the cropping pattern as it alters the rainfall pattern and distribution in the region. This condition requires farmers to adjust the cropping pattern so that they can do the farming successfully. This study aims to examine the application of cropping patterns applied by the farmers in the Cemoro Watershed, Central Java, Indonesia. Descriptive analysis approach is employed in this research. The results showed that farmers’ cropping pattern is not based on the availability of water. However, it adopts a habit that has been practiced since long time ago or just adopt others farmer's habit. The cropping pattern applied by irrigated paddy farmers in Cemoro watershed area consists of two types: rice-rice-rice and rice-rice-secondary crops. Among those two types, most farmers apply the rice-rice-rice pattern. Meanwhile, there are three cropping patterns applied in the rain-land, namely rice-rice-rice, rice-rice-secondary crop, and rice-rice-fallow. The majority of farmers apply the second pattern (rice-rice-secondary crops). It was also found that farmers’ cropping pattern was not in accordance with the recommendation of the local government.

  12. Assessing the impact of climate variability on cropping patterns in Kenya

    Science.gov (United States)

    Wahome, A.; Ndungu, L. W.; Ndubi, A. O.; Ellenburg, W. L.; Flores Cordova, A. I.

    2017-12-01

    Climate variability coupled with over-reliance on rain-fed agricultural production on already strained land that is facing degradation and declining soil fertility; highly impacts food security in Africa. In Kenya, dependence on the approximately 20% of land viable for agricultural production under climate stressors such as variations in amount and frequency of rainfall within the main growing season in March-April-May(MAM) and changing temperatures influence production. With time, cropping zones have changed with the changing climatic conditions. In response, the needs of decision makers to effectively assess the current cropped areas and the changes in cropping patterns, SERVIR East and Southern Africa developed updated crop maps and change maps. Specifically, the change maps depict the change in cropping patterns between 2000 and 2015 with a further assessment done on important food crops such as maize. Between 2001 and 2015 a total of 5394km2 of land was converted to cropland with 3370km2 being conversion to maize production. However, 318 sq km were converted from maize to other crops or conversion to other land use types. To assess the changes in climatic conditions, climate parameters such as precipitation trends, variation and averages over time were derived from CHIRPs (Climate Hazards Infra-red Precipitation with stations) which is a quasi-global blended precipitation dataset available at a resolution of approximately 5km. Water Requirements Satisfaction Index (WRSI) water balance model was used to assess long term trends in crop performance as a proxy for maize yields. From the results, areas experiencing declining and varying precipitation with a declining WRSI index during the long rains displayed agricultural expansion with new areas being converted to cropland. In response to climate variability, farmers have converted more land to cropland instead of adopting better farming methods such as adopting drought resistant cultivars and using better farm

  13. Visual pattern discovery in timed event data

    Science.gov (United States)

    Schaefer, Matthias; Wanner, Franz; Mansmann, Florian; Scheible, Christian; Stennett, Verity; Hasselrot, Anders T.; Keim, Daniel A.

    2011-01-01

    Business processes have tremendously changed the way large companies conduct their business: The integration of information systems into the workflows of their employees ensures a high service level and thus high customer satisfaction. One core aspect of business process engineering are events that steer the workflows and trigger internal processes. Strict requirements on interval-scaled temporal patterns, which are common in time series, are thereby released through the ordinal character of such events. It is this additional degree of freedom that opens unexplored possibilities for visualizing event data. In this paper, we present a flexible and novel system to find significant events, event clusters and event patterns. Each event is represented as a small rectangle, which is colored according to categorical, ordinal or intervalscaled metadata. Depending on the analysis task, different layout functions are used to highlight either the ordinal character of the data or temporal correlations. The system has built-in features for ordering customers or event groups according to the similarity of their event sequences, temporal gap alignment and stacking of co-occurring events. Two characteristically different case studies dealing with business process events and news articles demonstrate the capabilities of our system to explore event data.

  14. Changing seasonality patterns in Central Europe from Miocene Climate Optimum to Miocene Climate Transition deduced from the Crassostrea isotope archive

    Science.gov (United States)

    Harzhauser, Mathias; Piller, Werner E.; Müllegger, Stefan; Grunert, Patrick; Micheels, Arne

    2011-03-01

    The Western Tethyan estuarine oyster Crassostrea gryphoides is an excellent climate archive due to its large size and rapid growth. It is geologically long lived and allows a stable isotope-based insight into climatic trends during the Miocene. Herein we utilised the climate archive of 5 oyster shells from the Miocene Climate Optimum (MCO) and the subsequent Miocene Climate Transition (MCT) to evaluate changes of seasonality patterns. MCO shells exhibit highly regular seasonal rhythms of warm-wet and dry-cool seasons. Optimal conditions resulted in extraordinary growth rates of the oysters. δ 13C profiles are in phase with δ 18O although phytoplankton blooms may cause a slight offset. Estuarine waters during the MCO in Central Europe display a seasonal temperature range of c. 9-10 °C. Absolute water temperatures have ranged from 17 to 19 °C during cool seasons and up to 28 °C in warm seasons. Already during the early phase of the MCO, the growth rates are distinctly declining, although gigantic and extremely old shells have been formed at that time. Still, a very regular and well expressed seasonality is dominating the isotope profiles, but episodically occurring extreme climate events influence the environments. The seasonal temperature range is still c. 9 °C but the cool season temperature seems to be slightly lower (16 °C) and the warm season water temperature does not exceed c. 25 °C. In the later MCT at c. 12.5-12.0 Ma the seasonality pattern is breaking down and is replaced by successions of dry years with irregular precipitation events. No correlation between δ 18O and δ 13C is documented maybe due to a suboptimal nutrition level which would explain the low growth rates and small sizes. The amplitude of seasonal temperature range is decreasing to 5-8 °C. No clear cooling trend can be postulated for that time as the winter season water temperatures range from 15 to 20 °C. This may point to unstable precipitation rhythms on a multi-annual to

  15. Climate teleconnections and recent patterns of human and animal disease outbreaks.

    Directory of Open Access Journals (Sweden)

    Assaf Anyamba

    2012-01-01

    Full Text Available Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Although Rift Valley fever outbreaks have been known to follow periods of above-normal rainfall, the timing of the outbreak events has largely been unknown. Similarly, there is inadequate knowledge on climate drivers of chikungunya outbreaks. We analyze a variety of climate and satellite-derived vegetation measurements to explain the coupling between patterns of climate variability and disease outbreaks of Rift Valley fever and chikungunya.We derived a teleconnections map by correlating long-term monthly global precipitation data with the NINO3.4 sea surface temperature (SST anomaly index. This map identifies regional hot-spots where rainfall variability may have an influence on the ecology of vector borne disease. Among the regions are Eastern and Southern Africa where outbreaks of chikungunya and Rift Valley fever occurred 2004-2009. Chikungunya and Rift Valley fever case locations were mapped to corresponding climate data anomalies to understand associations between specific anomaly patterns in ecological and climate variables and disease outbreak patterns through space and time. From these maps we explored associations among Rift Valley fever disease occurrence locations and cumulative rainfall and vegetation index anomalies. We illustrated the time lag between the driving climate conditions and the timing of the first case of Rift Valley fever. Results showed that reported outbreaks of Rift Valley fever occurred after ∼3-4 months of sustained above-normal rainfall and associated green-up in vegetation, conditions ideal for Rift Valley fever mosquito vectors. For chikungunya we explored associations among surface air temperature, precipitation anomalies, and chikungunya outbreak locations. We found

  16. Sensitivity of peak flow to the change of rainfall temporal pattern due to warmer climate

    Science.gov (United States)

    Fadhel, Sherien; Rico-Ramirez, Miguel Angel; Han, Dawei

    2018-05-01

    The widely used design storms in urban drainage networks has different drawbacks. One of them is that the shape of the rainfall temporal pattern is fixed regardless of climate change. However, previous studies have shown that the temporal pattern may scale with temperature due to climate change, which consequently affects peak flow. Thus, in addition to the scaling of the rainfall volume, the scaling relationship for the rainfall temporal pattern with temperature needs to be investigated by deriving the scaling values for each fraction within storm events, which is lacking in many parts of the world including the UK. Therefore, this study analysed rainfall data from 28 gauges close to the study area with a 15-min resolution as well as the daily temperature data. It was found that, at warmer temperatures, the rainfall temporal pattern becomes less uniform, with more intensive peak rainfall during higher intensive times and weaker rainfall during less intensive times. This is the case for storms with and without seasonal separations. In addition, the scaling values for both the rainfall volume and the rainfall fractions (i.e. each segment of rainfall temporal pattern) for the summer season were found to be higher than the corresponding results for the winter season. Applying the derived scaling values for the temporal pattern of the summer season in a hydrodynamic sewer network model produced high percentage change of peak flow between the current and future climate. This study on the scaling of rainfall fractions is the first in the UK, and its findings are of importance to modellers and designers of sewer systems because it can provide more robust scenarios for flooding mitigation in urban areas.

  17. Time to refine key climate policy models

    Science.gov (United States)

    Barron, Alexander R.

    2018-05-01

    Ambition regarding climate change at the national level is critical but is often calibrated with the projected costs — as estimated by a small suite of energy-economic models. Weaknesses in several key areas in these models will continue to distort policy design unless collectively addressed by a diversity of researchers.

  18. Time series patterns and language support in DBMS

    Science.gov (United States)

    Telnarova, Zdenka

    2017-07-01

    This contribution is focused on pattern type Time Series as a rich in semantics representation of data. Some example of implementation of this pattern type in traditional Data Base Management Systems is briefly presented. There are many approaches how to manipulate with patterns and query patterns. Crucial issue can be seen in systematic approach to pattern management and specific pattern query language which takes into consideration semantics of patterns. Query language SQL-TS for manipulating with patterns is shown on Time Series data.

  19. Climate Signals: An On-Line Digital Platform for Mapping Climate Change Impacts in Real Time

    Science.gov (United States)

    Cutting, H.

    2016-12-01

    Climate Signals is an on-line digital platform for cataloging and mapping the impacts of climate change. The CS platform specifies and details the chains of connections between greenhouse gas emissions and individual climate events. Currently in open-beta release, the platform is designed to to engage and serve the general public, news media, and policy-makers, particularly in real-time during extreme climate events. Climate Signals consists of a curated relational database of events and their links to climate change, a mapping engine, and a gallery of climate change monitors offering real-time data. For each event in the database, an infographic engine provides a custom attribution "tree" that illustrates the connections to climate change. In addition, links to key contextual resources are aggregated and curated for each event. All event records are fully annotated with detailed source citations and corresponding hyper links. The system of attribution used to link events to climate change in real-time is detailed here. This open-beta release is offered for public user testing and engagement. Launched in May 2016, the operation of this platform offers lessons for public engagement in climate change impacts.

  20. Key principles for adapting South African settlement patterns to climate change

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn

    2017-06-01

    Full Text Available The aim of the paper is to identify key principles for adapting SA settlement patterns to climate change. Section 1 reviews the range of climate-related impacts likely to affect SA settlements using climate change models and scenarios as a context...

  1. Climate and landscape drive the pace and pattern of conifer encroachment into subalpine meadows.

    Science.gov (United States)

    Lubetkin, Kaitlin C; Westerling, Anthony LeRoy; Kueppers, Lara M

    2017-09-01

    Mountain meadows have high biodiversity and help regulate stream water release following the snowmelt pulse. However, many meadows are experiencing woody plant encroachment, threatening these ecosystem services. While there have been field surveys of individual meadows and remote sensing-based landscape-scale studies of encroachment, what is missing is a broad-scale, ground-based study to understand common regional drivers, especially at high elevations, where land management has often played a less direct role. With this study, we ask: What are the climate and landscape conditions conducive to woody plant encroachment at the landscape scale, and how has historical climate variation affected tree recruitment in subalpine meadows over time? We measured density of encroaching trees across 340 subalpine meadows in the central Sierra Nevada, California, USA, and used generalized additive models (GAMs) to determine the relationship between landscape-scale patterns of encroachment and meadow environmental properties. We determined ages of trees in 30 survey meadows, used observed climate and GAMs to model the relationship between timing of recruitment and climate since the early 1900s, and extrapolated recruitment patterns into the future using downscaled climate scenarios. Encroachment was high among meadows with lodgepole pine (Pinus contorta Douglas ex Loudon var. murrayana (Balf.) Engelm.) in the immediate vicinity, at lower elevations, with physical conditions favoring strong soil drying, and with maximum temperatures above or below average. Climatic conditions during the year of germination were unimportant, with tree recruitment instead depending on a 3-yr seed production period prior to germination and a 6-yr seedling establishment period following germination. Recruitment was high when the seed production period had high snowpack, and when the seedling establishment period had warm summer maximum temperatures, high summer precipitation, and high snowpack

  2. Land Use Pattern, Climate Change, and Its Implication for Food ...

    African Journals Online (AJOL)

    While Ethiopia has always suffered from climatic variability like droughts and consequently food shortage and famine, climate change is set to make the lives of the poorest even harder. Climate change has the potential to adversely affect net farm revenues of small holders with increasing land fragmentation due to ...

  3. Climatic change during historical times in japan : reconstruction from climatic hazard records

    OpenAIRE

    Maejima, Ikuo; Tagami, Yoshio

    1986-01-01

    A synoptic analysis of climatic hazard records in historical times of Japan is presented. The cool age (7-9c.), the warm age (10-14c.) and the cold age (15-19c.) are indicated. The relationship between summer and winter conditions in the climatic change is also shown. Thus, the knowledge of the climatic change in Japan from the 7th to the 19th century was systematically summarized.

  4. Building a satellite climate diagnostics data base for real-time climate monitoring

    International Nuclear Information System (INIS)

    Ropelewski, C.F.

    1991-01-01

    The paper discusses the development of a data base, the Satellite Climate Diagnostic Data Base (SCDDB), for real time operational climate monitoring utilizing current satellite data. Special attention is given to the satellite-derived quantities useful for monitoring global climate changes, the requirements of SCDDB, and the use of conventional meteorological data and model assimilated data in developing the SCDDB. Examples of prototype SCDDB products are presented. 10 refs

  5. Global Ocean Sedimentation Patterns: Plate Tectonic History Versus Climate Change

    Science.gov (United States)

    Goswami, A.; Reynolds, E.; Olson, P.; Hinnov, L. A.; Gnanadesikan, A.

    2014-12-01

    Global sediment data (Whittaker et al., 2013) and carbonate content data (Archer, 1996) allows examination of ocean sedimentation evolution with respect to age of the underlying ocean crust (Müller et al., 2008). From these data, we construct time series of ocean sediment thickness and carbonate deposition rate for the Atlantic, Pacific, and Indian ocean basins for the past 120 Ma. These time series are unique to each basin and reflect an integrated response to plate tectonics and climate change. The goal is to parameterize ocean sedimentation tied to crustal age for paleoclimate studies. For each basin, total sediment thickness and carbonate deposition rate from 0.1 x 0.1 degree cells are binned according to basement crustal age; area-corrected moments (mean, variance, etc.) are calculated for each bin. Segmented linear fits identify trends in present-day carbonate deposition rates and changes in ocean sedimentation from 0 to 120 Ma. In the North and South Atlantic and Indian oceans, mean sediment thickness versus crustal age is well represented by three linear segments, with the slope of each segment increasing with increasing crustal age. However, the transition age between linear segments varies among the three basins. In contrast, mean sediment thickness in the North and South Pacific oceans are numerically smaller and well represented by two linear segments with slopes that decrease with increasing crustal age. These opposing trends are more consistent with the plate tectonic history of each basin being the controlling factor in sedimentation rates, rather than climate change. Unlike total sediment thickness, carbonate deposition rates decrease smoothly with crustal age in all basins, with the primary controls being ocean chemistry and water column depth.References: Archer, D., 1996, Global Biogeochem. Cycles 10, 159-174.Müller, R.D., et al., 2008, Science, 319, 1357-1362.Whittaker, J., et al., 2013, Geochem., Geophys., Geosyst. DOI: 10.1002/ggge.20181

  6. Climate change: Time to Do Something Different

    Directory of Open Access Journals (Sweden)

    Nadine ePage

    2014-11-01

    Full Text Available There is now very little, if any, doubt that the global climate is changing and that this is in some way related to human behaviour through unsustainable preferences in lifestyle and organisational practices. Despite the near conclusive evidence of the positive relationship between greenhouse gas emissions and global warming, a small proportion of people remain unconvinced. More importantly, even among the much larger number of people who accept a link between human behaviour and climate change, many are inactive, or insufficiently active, in attempting to remedy the situation. We suggest this is partly because people are unaware both of how their day-to-day behaviours connect with energy consumption and carbon emissions, and of the behavioural alternatives that are available to them. This, we believe, is a key reason why individual lifestyles and organisational practices continue in an unsustainable way. We also suggest that the psychologists and behavioural researchers who seek to develop a better understanding of people’s relationship with, and reaction to, environmental issues, might also be on track to suffer a similar blindness. They risk becoming fixed on investigating a limited range of established variables, perhaps to the detriment of alternative approaches that are more practically oriented though, so far, less well explored empirically. In this article, we present the FIT framework as an alternative perspective on the variables that might underpin pro-environmental activity and behaviour change. After briefly reviewing the related literature, we outline that framework. Then we present some early empirical data to show its relationship to a range of pro-environmental indices. We follow with a discussion of the framework’s relevance in relation to pro-environmental behaviour change and make proposals for future research.

  7. Global patterns of NDVI-indicated vegetation extremes and their sensitivity to climate extremes

    International Nuclear Information System (INIS)

    Liu Guo; Liu Hongyan; Yin Yi

    2013-01-01

    Extremes in climate have significant impacts on ecosystems and are expected to increase under future climate change. Extremes in vegetation could capture such impacts and indicate the vulnerability of ecosystems, but currently have not received a global long-term assessment. In this study, a robust method has been developed to detect significant extremes (low values) in biweekly time series of global normalized difference vegetation index (NDVI) from 1982 to 2006 and thus to acquire a global pattern of vegetation extreme frequency. This pattern coincides with vegetation vulnerability patterns suggested by earlier studies using different methods over different time spans, indicating a consistent mechanism of regulation. Vegetation extremes were found to aggregate in Amazonia and in the semi-arid and semi-humid regions in low and middle latitudes, while they seldom occurred in high latitudes. Among the environmental variables studied, extreme low precipitation has the highest slope against extreme vegetation. For the eight biomes analyzed, these slopes are highest in temperate broadleaf forest and temperate grassland, suggesting a higher sensitivity in these environments. The results presented here contradict the hypothesis that vegetation in water-limited semi-arid and semi-humid regions might be adapted to drought and suggest that vegetation in these regions (especially temperate broadleaf forest and temperate grassland) is highly prone to vegetation extreme events under more severe precipitation extremes. It is also suggested here that more attention be paid to precipitation-induced vegetation changes than to temperature-induced events. (letter)

  8. Macroscale patterns in body size of intertidal crustaceans provide insights on climate change effects

    Science.gov (United States)

    Dugan, Jenifer E.; Hubbard, David M.; Contreras, Heraldo; Duarte, Cristian; Acuña, Emilio; Schoeman, David S.

    2017-01-01

    Predicting responses of coastal ecosystems to altered sea surface temperatures (SST) associated with global climate change, requires knowledge of demographic responses of individual species. Body size is an excellent metric because it scales strongly with growth and fecundity for many ectotherms. These attributes can underpin demographic as well as community and ecosystem level processes, providing valuable insights for responses of vulnerable coastal ecosystems to changing climate. We investigated contemporary macroscale patterns in body size among widely distributed crustaceans that comprise the majority of intertidal abundance and biomass of sandy beach ecosystems of the eastern Pacific coasts of Chile and California, USA. We focused on ecologically important species representing different tidal zones, trophic guilds and developmental modes, including a high-shore macroalga-consuming talitrid amphipod (Orchestoidea tuberculata), two mid-shore scavenging cirolanid isopods (Excirolana braziliensis and E. hirsuticauda), and a low-shore suspension-feeding hippid crab (Emerita analoga) with an amphitropical distribution. Significant latitudinal patterns in body sizes were observed for all species in Chile (21° - 42°S), with similar but steeper patterns in Emerita analoga, in California (32°- 41°N). Sea surface temperature was a strong predictor of body size (-4% to -35% °C-1) in all species. Beach characteristics were subsidiary predictors of body size. Alterations in ocean temperatures of even a few degrees associated with global climate change are likely to affect body sizes of important intertidal ectotherms, with consequences for population demography, life history, community structure, trophic interactions, food-webs, and indirect effects such as ecosystem function. The consistency of results for body size and temperature across species with different life histories, feeding modes, ecological roles, and microhabitats inhabiting a single widespread coastal

  9. Nonlinear effects on Turing patterns: Time oscillations and chaos

    KAUST Repository

    Aragó n, J. L.; Barrio, R. A.; Woolley, T. E.; Baker, R. E.; Maini, P. K.

    2012-01-01

    consequence, the patterns oscillate in time. When varying a single parameter, a series of bifurcations leads to period doubling, quasiperiodic, and chaotic oscillations without modifying the underlying Turing pattern. A Ruelle-Takens-Newhouse route to chaos

  10. If climate action becomes urgent: The importance of response times for various climate strategies

    NARCIS (Netherlands)

    van Vuuren, D.P.; Stehfest, E.

    2013-01-01

    Most deliberations on climate policy are based on a mitigation response that assumes a gradually increasing reduction over time. However, situations may occur where a more urgent response is needed. A key question for climate policy in general, but even more in the case a rapid response is needed,

  11. Recurrent Patterns in Dst Time Series

    Directory of Open Access Journals (Sweden)

    Hee-Jeong Kim

    2003-06-01

    Full Text Available This study reports one approach for the classification of magnetic storms into recurrent patterns. A storm event is defined as a local minimum of Dst index. The analysis of Dst index for the period of year 1957 through year 2000 has demonstrated that a large portion of the storm events can be classified into a set of recurrent patterns. In our approach, the classification is performed by seeking a categorization that minimizes thermodynamic free energy which is defined as the sum of classification errors and entropy. The error is calculated as the squared sum of the value differences between events. The classification depends on the noise parameter T that represents the strength of the intrinsic error in the observation and classification process. The classification results would be applicable in space weather forecasting.

  12. Spatial patterns and temporal dynamics of global scale climate-groundwater interactions

    Science.gov (United States)

    Cuthbert, M. O.; Gleeson, T. P.; Moosdorf, N.; Schneider, A. C.; Hartmann, J.; Befus, K. M.; Lehner, B.

    2017-12-01

    The interactions between groundwater and climate are important to resolve in both space and time as they influence mass and energy transfers at Earth's land surface. Despite the significance of these processes, little is known about the spatio-temporal distribution of such interactions globally, and many large-scale climate, hydrological and land surface models oversimplify groundwater or exclude it completely. In this study we bring together diverse global geomatic data sets to map spatial patterns in the sensitivity and degree of connectedness between the water table and the land surface, and use the output from a global groundwater model to assess the locations where the lateral import or export of groundwater is significant. We also quantify the groundwater response time, the characteristic time for groundwater systems to respond to a change in boundary conditions, and map its distribution globally to assess the likely dynamics of groundwater's interaction with climate. We find that more than half of the global land surface significantly exports or imports groundwater laterally. Nearly 40% of Earth's landmass has water tables that are strongly coupled to topography with water tables shallow enough to enable a bi-directional exchange of moisture with the climate system. However, only a small proportion (around 12%) of such regions have groundwater response times of 100 years or less and have groundwater fluxes that would significantly respond to rapid environmental changes over this timescale. We last explore fundamental relationships between aridity, groundwater response times and groundwater turnover times. Our results have wide ranging implications for understanding and modelling changes in Earth's water and energy balance and for informing robust future water management and security decisions.

  13. Assessing the Impact of Climate Variability on Cropland Productivity in the Canadian Prairies Using Time Series MODIS FAPAR

    OpenAIRE

    Taifeng Dong; Jiangui Liu; Jiali Shang; Budong Qian; Ted Huffman; Yinsuo Zhang; Catherine Champagne; Bahram Daneshfar

    2016-01-01

    Cropland productivity is impacted by climate. Knowledge on spatial-temporal patterns of the impacts at the regional scale is extremely important for improving crop management under limiting climatic factors. The aim of this study was to investigate the effects of climate variability on cropland productivity in the Canadian Prairies between 2000 and 2013 based on time series of MODIS (Moderate Resolution Imaging Spectroradiometer) FAPAR (Fraction of Absorbed Photosynthetically Active Radiation...

  14. Climate drives temporal replacement and nested-resultant richness patterns of Scottish coastal vegetation

    DEFF Research Database (Denmark)

    Lewis, Rob; Marrs, Rob H.; Pakeman, Robin J.

    2016-01-01

    Beta diversity quantifies spatial and/or temporal variation in species composition. It is comprised of two distinct components, species replacement and nestedness, which derive from opposing ecological processes. Using Scotland as a case study and a β-diversity partitioning framework, we......) investigate whether patterns from one β-diversity component can mask observable patterns in the other. We summarised key aspects of climate driven macro-ecological variation as measures of variance, long-term trends, between-year similarity and extremes, for three important climatic predictors (minimum...... contribution of each on temporal replacement and nestedness patterns. Temporal β-diversity patterns were reasonably well explained by climate change but weakly explained by changes in landscape-scale heterogeneity. Climate was shown to have a greater influence on temporal nestedness than replacement patterns...

  15. Policy innovation in a changing climate: Sources, patterns and effects

    NARCIS (Netherlands)

    Jordan, A.; Huitema, D.

    2014-01-01

    States have been widely criticized for failing to advance the international climate regime. Many observers now believe that a "new" climate governance is emerging through transnational and/or local forms of action that will eventually plug the resulting governance gaps. Yet states, which remain

  16. Space can substitute for time in predicting climate-change effects on biodiversity.

    Science.gov (United States)

    Blois, Jessica L; Williams, John W; Fitzpatrick, Matthew C; Jackson, Stephen T; Ferrier, Simon

    2013-06-04

    "Space-for-time" substitution is widely used in biodiversity modeling to infer past or future trajectories of ecological systems from contemporary spatial patterns. However, the foundational assumption--that drivers of spatial gradients of species composition also drive temporal changes in diversity--rarely is tested. Here, we empirically test the space-for-time assumption by constructing orthogonal datasets of compositional turnover of plant taxa and climatic dissimilarity through time and across space from Late Quaternary pollen records in eastern North America, then modeling climate-driven compositional turnover. Predictions relying on space-for-time substitution were ∼72% as accurate as "time-for-time" predictions. However, space-for-time substitution performed poorly during the Holocene when temporal variation in climate was small relative to spatial variation and required subsampling to match the extent of spatial and temporal climatic gradients. Despite this caution, our results generally support the judicious use of space-for-time substitution in modeling community responses to climate change.

  17. NEW PATTERNS IN SCHEDULING WORKING TIME

    OpenAIRE

    Claudiu George BOCEAN; Catalina Soriana SITNIKOV

    2010-01-01

    Flexible work arrangements should focus on providing employees with more options for when and how they do their work. Organizations can provide a suite of flexible options to enable employees to choose the arrangements that best balance their work with family and lifestyle preferences. In this paper we intended to investigate the flexibilization process of working time determined by the new trends of work organization. For this purpose, the various aspects of working time in a company were an...

  18. Phenological Characterization of Desert Sky Island Vegetation Communities with Remotely Sensed and Climate Time Series Data

    Directory of Open Access Journals (Sweden)

    Stuart E. Marsh

    2010-01-01

    Full Text Available Climate change and variability are expected to impact the synchronicity and interactions between the Sonoran Desert and the forested sky islands which represent steep biological and environmental gradients. The main objectives were to examine how well satellite greenness time series data and derived phenological metrics (e.g., season start, peak greenness can characterize specific vegetation communities across an elevation gradient, and to examine the interactions between climate and phenological metrics for each vegetation community. We found that representative vegetation types (11, varying between desert scrub, mesquite, grassland, mixed oak, juniper and pine, often had unique seasonal and interannual phenological trajectories and spatial patterns. Satellite derived land surface phenometrics (11 for each of the vegetation communities along the cline showed numerous distinct significant relationships in response to temperature (4 and precipitation (7 metrics. Satellite-derived sky island vegetation phenology can help assess and monitor vegetation dynamics and provide unique indicators of climate variability and patterns of change.

  19. Climatic and hydrologic influences on wading bird foraging patterns in Everglades National Park

    Science.gov (United States)

    Kwon, H.; Lall, U.; Engel, V.

    2007-12-01

    A goal of the Everglades National Park (ENP) restoration project is to ensure that the ecological health of the ENP improves as a direct result of management activities. Achieving hydrologic targets through the proper timing and amount of releases from control structures is a first step in the management process. Significant climate and weather variations in the region influence the ability to make releases and also determine the ecological outcomes. An assessment of the relative impact of climate variations and water releases to ENP in determining ecological outcomes is consequently a key to the evaluation of the success or failure of any restoration plan. Seasonal water depths in ENP depend on managed surface water releases from control structures and on direct rainfall. Here we link wading bird foraging patterns - a fundamental aspect of Everglades' ecology - to hydrologic management and climate variability in the National Park. Our objective is multifold. First, we relate the water levels at P33 and Shark Slough to the synoptic hydrologic conditions. Second, we develop a statistical model relating water levels at a station in central Shark Slough (P33) to wading birds foraging patterns throughout ENP. We attempt to apply a Hierarchical Bayesian scheme to a time series of wading bird to provide an uncertainty distribution of the population over specified time periods given hydrologic condition. Third, we develop a set of hydrologic index derived by recorded water level at P33 for a use of the statistical model of wading birds as an input. Our study will focus on great egret and white ibis that are major species among wading birds in the ENP. The great egret and white ibis prediction predicted by the model using the proposed predictors exhibits strong correlation with the observed streamflow, with an correlation 0.8.

  20. Managing time in a changing world: Timing of avian annual cycle stages under climate change

    NARCIS (Netherlands)

    Tomotani, B.M.

    2017-01-01

    Animals need to time their seasonal activities such as breeding and migration to occur at the right time. They use cues from the environment to predict changes and organise their activities accordingly. What happens, then, when climate change interferes with this ability to make predictions? Climate

  1. Pattern Discovery in Time-Ordered Data; TOPICAL

    International Nuclear Information System (INIS)

    CONRAD, GREGORY N.; BRITANIK, JOHN M.; DELAND, SHARON M.; JENKIN, CHRISTINA L.

    2002-01-01

    This report describes the results of a Laboratory-Directed Research and Development project on techniques for pattern discovery in discrete event time series data. In this project, we explored two different aspects of the pattern matching/discovery problem. The first aspect studied was the use of Dynamic Time Warping for pattern matching in continuous data. In essence, DTW is a technique for aligning time series along the time axis to optimize the similarity measure. The second aspect studied was techniques for discovering patterns in discrete event data. We developed a pattern discovery tool based on adaptations of the A-priori and GSP (Generalized Sequential Pattern mining) algorithms. We then used the tool on three different application areas-unattended monitoring system data from a storage magazine, computer network intrusion detection, and analysis of robot training data

  2. Outdoor time and dietary patterns in children around the world.

    Science.gov (United States)

    Chaput, Jean-Philippe; Tremblay, Mark S; Katzmarzyk, Peter T; Fogelholm, Mikael; Mikkilä, Vera; Hu, Gang; Lambert, Estelle V; Maher, Carol; Maia, Jose; Olds, Timothy; Onywera, Vincent; Sarmiento, Olga L; Standage, Martyn; Tudor-Locke, Catrine; LeBlanc, Allana G

    2018-04-19

    Whether outdoor time is linked to dietary patterns of children has yet to be empirically tested. The objective of this study was to examine the association between outdoor time and dietary patterns of children from 12 countries around the world. This multinational, cross-sectional study included 6229 children 9-11 years of age. Children self-reported the time that they spent outside before school, after school and on weekends. A composite score was calculated to reflect overall daily outdoor time. Dietary patterns were assessed using a food frequency questionnaire, and two components were used for analysis: healthy and unhealthy dietary pattern scores. On average, children spent 2.5 h outside per day. After adjusting for age, sex, parental education, moderate-to-vigorous physical activity, screen time and body mass index z-score, greater time spent outdoors was associated with healthier dietary pattern scores. No association was found between outdoor time and unhealthy dietary pattern scores. Similar associations between outdoor time and dietary patterns were observed for boys and girls and across study sites. Greater time spent outside was associated with a healthier dietary pattern in this international sample of children. Future research should aim to elucidate the mechanisms behind this association.

  3. Resource contrast in patterned peatlands increases along a climatic gradient

    NARCIS (Netherlands)

    Eppinga, M.B.; Rietkerk, M.; Belyea, L.R.; Nilsson, M.B.; Ruiter, de P.C.; Wassen, M.J.

    2010-01-01

    Spatial patterning of ecosystems can be explained by several mechanisms. One approach to disentangling the influence of these mechanisms is to study a patterned ecosystem along a gradient of environmental conditions. This study focused on hummock–hollow patterning of peatlands. Previous models

  4. LAND USE PATTERN, CLIMATE CHANGE, AND ITS IMPLICATION ...

    African Journals Online (AJOL)

    Osondu

    2012-01-30

    Jan 30, 2012 ... additional socio-economics, geographical and political factors, focusing on ... arable lands that are already fragmented, thus ... done on global warming and the impact of climate .... Therefore new cropping systems which are.

  5. Time-Zone-Pattern Satellite Broadcasting Antenna

    Science.gov (United States)

    Galindo, Victor; Rahmat-Samii, Yahya; Imbriale, William A.; Cohen, Herb; Cagnon, Ronald R.

    1988-01-01

    Direct-broadcast satellite antenna designs provide contoured beams to match four time zones in 48 contiguous states and spot beams for Alaska, Hawaii, and Puerto Rico presented in 29-page report. Includes descriptions of procedures used to arrive at optimized designs. Arrangements, amplitudes, and phases of antenna feeds presented in tables. Gain contours shown graphically. Additional tables of performance data given for cities in service area of Eastern satellite.

  6. NASA Climate Days: Promoting Climate Literacy One Ambassador and One Event at a Time

    Science.gov (United States)

    Weir, H. M.; Lewis, P. M.; Chambers, L. H.; Millham, R. A.; Richardson, A.

    2012-12-01

    presentations from the training, along with downloadable Climate Day Kit materials. Utilizing informal educators from museums, aquariums, libraries and other similar venues allow the hard-to-understand, sometimes-controversial, topic of climate change to be presented to the public in tailored events that suit an individual community's needs. Included in the process of scheduling and executing these climate events, the Ambassadors participate in virtual conferences to discuss progress, to ensure proper evaluation and to allow ample time for questions from the trainers and scientists. This ensures an accurate stream of information from the scientist to the public in a fashion that can be understood and digested by the layperson, helping them to make better-informed decisions about societal issues related to global climate change. Through a series of local Climate Day events, it is hoped that the public will have the opportunity to have first hand experience with the topic of climate change, leaving with a better understanding of its scientific basis. Outcome: This paper will summarize the various methods and strategies used in the Climate Day training events. A discussion of methods that work and those that do not for informal education will help provide a better understanding of the challenges faced in educating the public on such a controversial and hard-to-understand topic.

  7. Effect of climate change on crop production patterns with implications to transport flows and inland waterways.

    Science.gov (United States)

    2011-12-01

    This project analyzed the demand for transportation capacity and changes in transportation flows on : inland waterways due to shifts in crop production patterns induced by climate change. Shifts in the crop : production mix have been observed in rece...

  8. The time scales of the climate-economy feedback and the climatic cost of growth

    International Nuclear Information System (INIS)

    Hallegatte, Stephane

    2005-04-01

    This paper is based on the perception that the inertia of climate and socio-economic systems are key parameters in the climate change issue. In a first part, it develops and implements a new approach based on a simple integrated model with a particular focus on an innovative transient impact and adaptation modelling. In a second part, a climate-economy feedback is defined and characterized. It is found that: (i) it has a 70-year characteristic time, which is long when compared to the system's other time-scales, and it cannot act as a natural damping process of climate change; (ii) mitigation has to be anticipated since the feedback of an emission reduction on the economy is significant only after a 20-year delay and really efficient after a one-century delay; (iii) the IPCC methodology, that neglects the feedback from impacts to emissions, is acceptable up to 2100, whatever is the level of impacts. This analysis allows also to define a climatic cost of growth as the additional climate change damages due to the additional emissions linked to economic growth. Usefully, this metric for climate change damages is particularly independent of the baseline scenario. (orig.)

  9. The time scales of the climate-economy feedback and the climatic cost of growth

    Energy Technology Data Exchange (ETDEWEB)

    Hallegatte, Stephane [CIRED - CNRM, Nogent-sur-Marne (France)

    2005-04-01

    This paper is based on the perception that the inertia of climate and socio-economic systems are key parameters in the climate change issue. In a first part, it develops and implements a new approach based on a simple integrated model with a particular focus on an innovative transient impact and adaptation modelling. In a second part, a climate-economy feedback is defined and characterized. It is found that: (i) it has a 70-year characteristic time, which is long when compared to the system's other time-scales, and it cannot act as a natural damping process of climate change; (ii) mitigation has to be anticipated since the feedback of an emission reduction on the economy is significant only after a 20-year delay and really efficient after a one-century delay; (iii) the IPCC methodology, that neglects the feedback from impacts to emissions, is acceptable up to 2100, whatever is the level of impacts. This analysis allows also to define a climatic cost of growth as the additional climate change damages due to the additional emissions linked to economic growth. Usefully, this metric for climate change damages is particularly independent of the baseline scenario. (orig.)

  10. Analysis of time-varying psoriasis lesion image patterns

    DEFF Research Database (Denmark)

    Maletti, Gabriela Mariel; Ersbøll, Bjarne Kjær; Nielsen, Allan Aasbjerg

    2004-01-01

    The multivariate alteration detection transform is applied to pairs of within and between time varying registered psoriasis image patterns. Color band contribution to the variates explaining maximal change is analyzed.......The multivariate alteration detection transform is applied to pairs of within and between time varying registered psoriasis image patterns. Color band contribution to the variates explaining maximal change is analyzed....

  11. Time activity patterns: a case of south Durban, South Africa

    CSIR Research Space (South Africa)

    Matooane, M

    2010-08-01

    Full Text Available Exposure modelling in south Durban is constrained by a lack of population specific time-activity patterns data. We argue that the application of time-activity patterns from elsewhere in the world in exposure modelling in south Durban would...

  12. Space can substitute for time in predicting climate-change effects on biodiversity

    Science.gov (United States)

    Blois, Jessica L.; Williams, John W.; Fitzpatrick, Matthew C.; Jackson, Stephen T.; Ferrier, Simon

    2013-01-01

    “Space-for-time” substitution is widely used in biodiversity modeling to infer past or future trajectories of ecological systems from contemporary spatial patterns. However, the foundational assumption—that drivers of spatial gradients of species composition also drive temporal changes in diversity—rarely is tested. Here, we empirically test the space-for-time assumption by constructing orthogonal datasets of compositional turnover of plant taxa and climatic dissimilarity through time and across space from Late Quaternary pollen records in eastern North America, then modeling climate-driven compositional turnover. Predictions relying on space-for-time substitution were ∼72% as accurate as “time-for-time” predictions. However, space-for-time substitution performed poorly during the Holocene when temporal variation in climate was small relative to spatial variation and required subsampling to match the extent of spatial and temporal climatic gradients. Despite this caution, our results generally support the judicious use of space-for-time substitution in modeling community responses to climate change.

  13. Fractal patterns in Stock Intertrading Times

    Science.gov (United States)

    White, Ainslie; Lee, Youngki; Ivanov, Plamen Ch.

    2003-03-01

    We study intertrades times (ITT) of stock trades of a range of companies included in the New York Stock Exchange's Trades and Quotes (TAQ) database. The time between transactions is an indicator of the dynamics of the market, and in the field of econometrics, intertrade durations play a key role in the understanding of the market activity and microstructure. Previous work has mainly focused on the properties of price changes of individual company stocks as well as global financial indices (e.g. SP500, DJ etc.). We hypothesize that there is a relation between the dynamics of price change and the trading activity. To investigate this relation we first study the statistical features of ITT data. The TAQ database covers all transactions on the NSE, AMEX, NASDAQ and the US regional exchanges. We have performed a preliminary analysis of 100 company stocks from a range of industries of the US economy selecting predominantly those companies which have large market capitalisations (MC). We focus on companies with large MC, since the dynamics of the price change and trading activity of stocks of such companies has a considerable impact on the market behaviour.

  14. Relationship between Eurasian large-scale patterns and regional climate variability over the Black and Baltic Seas

    Energy Technology Data Exchange (ETDEWEB)

    Stankunavicius, G.; Pupienis, D. [Vilnius Univ. (Lithuania). Dept. of Hydrology and Climatology; Basharin, D. [National Academy of Science of Ukraine, Sevastopol (Ukraine). Sevastopol Marine Hydrophysical Inst.

    2012-11-01

    Using a NCEP/NCAR Reanalysis dataset and the empirical orthogonal function (EOF) analysis approach we studied interannual to decadal variabilities of the sea-level air pressure (SLP) and the surface air temperature (SAT) fields over Eurasia during the 2nd part of the 20th century. Our results agree with those of the previous studies, which conclude that Eurasian trends are the result of storm-path changes driven by the interdecadal behaviour of the NAO-like meridional dipole pattern in the Atlantic. On interannual and decadal time scales, significant synchronous correlations between correspondent modes of SAT and SLP EOF patterns were found. This fact suggests that there is a strong and stable Eurasian interrelationship between SAT and SLP large-scale fields which affects the local climate of two sub-regions: the Black and Baltic Seas. The climate variability in these sub-regions was studied in terms of Eurasian large-scale surface-temperature and air-pressure patterns responses. We concluded that the sub-regional climate variability substantially differs over the Black and Baltic Seas, and depends on different Eurasian large-scale patterns. We showed that the Baltic Sea region is influenced by the patterns arising primary from NAO-like meridional dipole, as well as Scandinavian patterns, while the Black Sea's SAT/SLP variability is influenced mainly by the second mode EOF (eastern Atlantic) and large scale tropospheric wave structures. (orig.)

  15. Climatic changes and uplift patterns - past, present and future

    International Nuclear Information System (INIS)

    Bjoerck, S.; Svensson, N.O.

    1992-11-01

    Our knowledge about the Pleistocene (= last 2.5 million years) climatic changes and their global environmental effects on the Earth system, e.g. the glacial-interglacial cycles, the sea level changes, and the significant crustal movements in glaciated regions, has increased greatly during the last decades. This report outlines the historical background and the present state-of-the-arts on these matters. Because the driving mechanisms and feed-back effects behind these changes have been more and more discussed in earth-science literature, analysed, and probably also better and better understood, it has become possible to present theoretical models for future climates (not including mans influence on the earth system). The report presents and discusses one such climate model (short of predicting mans future behaviour and its consequent effect on climate) and its likely implications on future climatic and glacial conditions, and bedrock movements, with focus on the Stockholm region. Possibilities for quaternary geologists to establish and map post glacial fault zones, related to irregular bedrock movements, are also briefly outlined in the report. (222 refs.)

  16. Methods for assessment of climate variability and climate changes in different time-space scales

    International Nuclear Information System (INIS)

    Lobanov, V.; Lobanova, H.

    2004-01-01

    Main problem of hydrology and design support for water projects connects with modern climate change and its impact on hydrological characteristics as observed as well as designed. There are three main stages of this problem: - how to extract a climate variability and climate change from complex hydrological records; - how to assess the contribution of climate change and its significance for the point and area; - how to use the detected climate change for computation of design hydrological characteristics. Design hydrological characteristic is the main generalized information, which is used for water management and design support. First step of a research is a choice of hydrological characteristic, which can be as a traditional one (annual runoff for assessment of water resources, maxima, minima runoff, etc) as well as a new one, which characterizes an intra-annual function or intra-annual runoff distribution. For this aim a linear model has been developed which has two coefficients connected with an amplitude and level (initial conditions) of seasonal function and one parameter, which characterizes an intensity of synoptic and macro-synoptic fluctuations inside a year. Effective statistical methods have been developed for a separation of climate variability and climate change and extraction of homogeneous components of three time scales from observed long-term time series: intra annual, decadal and centural. The first two are connected with climate variability and the last (centural) with climate change. Efficiency of new methods of decomposition and smoothing has been estimated by stochastic modeling and well as on the synthetic examples. For an assessment of contribution and statistical significance of modern climate change components statistical criteria and methods have been used. Next step has been connected with a generalization of the results of detected climate changes over the area and spatial modeling. For determination of homogeneous region with the same

  17. Hydrospatial Analysis of Inundation Patterns for a Restored Floodplain to Evaluate Potential Climate Change Impacts

    Science.gov (United States)

    Whipple, A. A.; Viers, J. H.

    2017-12-01

    Interaction between rivers and their floodplains create dynamic physical conditions supporting freshwater ecosystems. The natural flood regimes to which native species are adapted are often profoundly altered by interacting factors including water management, land use change, and climate change. Reintroducing dynamic flood regimes through enhancing river-floodplain connectivity is a common floodplain restoration objective. However, it is often difficult to determine how various actions (or a combination of actions), such as levee setbacks or environmental flow releases, will impact physical conditions relevant to ecological functions, such as depth, velocity, duration, timing, and connectivity, and how these might change in the future. Understanding changes to these dynamic conditions requires improved quantification of spatiotemporal variability of floodplain inundation patterns, in essence a floodplain's hydrospatial regime. The research presented here develops this concept by quantifying the hydrospatial regime of a floodplain along the lower Cosumnes River, California, both before and after levee-removal restoration, and uses this to evaluate how effects of restoration may be altered with changing hydrology due to climate change. This approach uses spatial analysis in R to summarize metrics based on estimated spatially-distributed depth and velocity, derived from 2D hydrodynamic modeling output for pre- and post-restoration conditions. This is performed for an historical and two future periods of daily flow of the largely unregulated Cosumnes River, driven by a subset of global climate models. We show that responses to restoration vary across the hydrospatial domain and further consider these differences in floodplain dynamics in relation to hydroclimatic change. This research refines expectations for restoration and overall provides readily applied methods to inform planning and management of floodplain ecosystems within the context of climate change

  18. Regime Behavior in Paleo-Reconstructed Streamflow: Attributions to Atmospheric Dynamics, Synoptic Circulation and Large-Scale Climate Teleconnection Patterns

    Science.gov (United States)

    Ravindranath, A.; Devineni, N.

    2017-12-01

    Studies have shown that streamflow behavior and dynamics have a significant link with climate and climate variability. Patterns of persistent regime behavior from extended streamflow records in many watersheds justify investigating large-scale climate mechanisms as potential drivers of hydrologic regime behavior and streamflow variability. Understanding such streamflow-climate relationships is crucial to forecasting/simulation systems and the planning and management of water resources. In this study, hidden Markov models are used with reconstructed streamflow to detect regime-like behaviors - the hidden states - and state transition phenomena. Individual extreme events and their spatial variability across the basin are then verified with the identified states. Wavelet analysis is performed to examine the signals over time in the streamflow records. Joint analyses of the climatic data in the 20th century and the identified states are undertaken to better understand the hydroclimatic connections within the basin as well as important teleconnections that influence water supply. Compositing techniques are used to identify atmospheric circulation patterns associated with identified states of streamflow. The grouping of such synoptic patterns and their frequency are then examined. Sliding time-window correlation analysis and cross-wavelet spectral analysis are performed to establish the synchronicity of basin flows to the identified synoptic and teleconnection patterns. The Missouri River Basin (MRB) is examined in this study, both as a means of better understanding the synoptic climate controls in this important watershed and as a case study for the techniques developed here. Initial wavelet analyses of reconstructed streamflow at major gauges in the MRB show multidecadal cycles in regime behavior.

  19. Gambler's fallacy, hot hand belief, and the time of patterns

    Directory of Open Access Journals (Sweden)

    Hongbin Wang

    2010-04-01

    Full Text Available The gambler's fallacy and the hot hand belief have been classified as two exemplars of human misperceptions of random sequential events. This article examines the times of pattern occurrences where a fair or biased coin is tossed repeatedly. We demonstrate that, due to different pattern composition, two different statistics (mean time and waiting time can arise from the same independent Bernoulli trials. When the coin is fair, the mean time is equal for all patterns of the same length but the waiting time is the longest for streak patterns. When the coin is biased, both mean time and waiting time change more rapidly with the probability of heads for a streak pattern than for a non-streak pattern. These facts might provide a new insight for understanding why people view streak patterns as rare and remarkable. The statistics of waiting time may not justify the prediction by the gambler's fallacy, but paying attention to streaks in the hot hand belief appears to be meaningful in detecting the changes in the underlying process.

  20. What trees tell us about the climate of past times

    International Nuclear Information System (INIS)

    Graf, W.; Trimborn, P.; Stichler, W.

    1999-01-01

    The air temperatures in Central Europe have risen by approximately one degree centigrade since the last century. Climate models predict a further warming of the earth's atmosphere. The causes are still disputed. Most scientists attribute the rise in temperature to the increase in greenhouse gases in the earth's atmosphere. Others point out that the observed variations will probably not exceed the extent of the natural climate fluctuations that occurred during the Holocene period - the warm period that began approximately 11,000 years ago. Who is right? Palaeoclimatologists try to assess the natural variability of the climate, and to decide whether the 20th century is really unusual in comparison with the preceding millennia. There are various climate archives available for this. The Institute of Hydrology investigates fossilised trees. Fossilised trees store information about the climate in earlier times in, amongst others, cellulose: specifically in the ratios of the stable isotopes of carbon ( 13 C/ 12 C), hydrogen ( 2 H/ 1 H) and oxygen ( 18 O/ 16 O). As a result of the development of annual rings, the trees represent a climate archive with high temporal resolution. (orig.) [de

  1. Geographical patterns in cyanobacteria distribution: climate influence at regional scale.

    Science.gov (United States)

    Pitois, Frédéric; Thoraval, Isabelle; Baurès, Estelle; Thomas, Olivier

    2014-01-28

    Cyanobacteria are a component of public health hazards in freshwater environments because of their potential as toxin producers. Eutrophication has long been considered the main cause of cyanobacteria outbreak and proliferation, whereas many studies emphasized the effect of abiotic parameters (mainly temperature and light) on cell growth rate or toxin production. In view of the growing concerns of global change consequences on public health parameters, this study attempts to enlighten climate influence on cyanobacteria at regional scale in Brittany (NW France). The results show that homogeneous cyanobacteria groups are associated with climatic domains related to temperature, global radiation and pluviometry, whereas microcystins (MCs) occurrences are only correlated to local cyanobacteria species composition. As the regional climatic gradient amplitude is similar to the projected climate evolution on a 30-year timespan, a comparison between the present NW and SE situations was used to extrapolate the evolution of geographical cyanobacteria distribution in Brittany. Cyanobacteria composition should shift toward species associated with more frequent Microcystins occurrences along a NW/SE axis whereas lakes situated along a SW/NE axis should transition to species (mainly Nostocales) associated with lower MCs detection frequencies.

  2. 507 community perception on climate change and usage patterns

    African Journals Online (AJOL)

    Osondu

    forest-dependent communities as a strategy to cope with the impacts of climate change and variability around the ..... minimize or spread risks by managing a mix of crops, crop ... harvesting, processing and marketing of NTFPs is needed so as ...

  3. Socioeconomic response patterns of farmers to climate change in ...

    African Journals Online (AJOL)

    The potential of African agriculture to support livelihoods for millions of people and employment for up to 60% labour has been heavily impeded by the growing threat of climate change. This challenge has left farmers to face the pressure to adjust the agricultural systems under widespread poverty, high population and low ...

  4. Climate induced changes in the circulation and dispersal patterns of ...

    Indian Academy of Sciences (India)

    C dated box cores from the eastern, the central and the western regions were studied to determine climate induced changes in the hydrography. Clay assemblages have spatial and temporal changes and are markedly different in the eastern and the western bay. From a high abundance of the clay smectite, which has its ...

  5. Sensitivity of climate models: Comparison of simulated and observed patterns for past climates

    International Nuclear Information System (INIS)

    Prell, W.L.; Webb, T. III.

    1992-08-01

    Predicting the potential climatic effects of increased concentrations of atmospheric carbon dioxide requires the continuing development of climate models. Confidence in the predictions will be much enhanced once the models are thoroughly tested in terms of their ability to simulate climates that differ significantly from today's climate. As one index of the magnitude of past climate change, the global mean temperature increase during the past 18,000 years is similar to that predicted for carbon dioxide--doubling. Simulating the climatic changes of the past 18,000 years, as well as the warmer-than-present climate of 6000 years ago and the climate of the last interglacial, around 126,000 years ago, provides an excellent opportunity to test the models that are being used in global climate change research. During the past several years, we have used paleoclimatic data to test the accuracy of the National Center for Atmospheric Research, Community Climate Model, Version 0, after changing its boundary conditions to those appropriate for past climates. We have assembled regional and near-global paleoclimatic data sets of pollen, lake level, and marine plankton data and calibrated many of the data in terms of climatic variables. We have also developed methods that permit direct quantitative comparisons between the data and model results. Our research has shown that comparing the model results with the data is an evolutionary process, because the models, the data, and the methods for comparison are continually being improved. During 1992, we have completed new modeling experiments, further analyzed previous model experiments, compiled new paleodata, made new comparisons between data and model results, and participated in workshops on paleoclimatic modeling

  6. Simulated Vegetation Response to Climate Change in California: The Importance of Seasonal Production Patterns

    Science.gov (United States)

    Kim, J. B.; Pitts, B.

    2013-12-01

    MC1 dynamic global vegetation model simulates vegetation response to climate change by simulating vegetation production, soil biogeochemistry, plant biogeography and fire. It has been applied at a wide range of spatial scales, yet the spatio-temporal patterns of simulated vegetation production, which drives the model's response to climate change, has not been examined in detail. We ran MC1 for California at a relatively fine scale, 30 arc-seconds, for the historical period (1895-2006) and for the future (2007-2100), using downscaled data from four CMIP3-based climate projections: A2 and B1 GHG emissions scenarios simulated by PCM and GFDL GCMs. The use of these four climate projections aligns our work with a body of climate change research work commissioned by the California Public Interest Energy Research (PIER) Program. The four climate projections vary not only in terms of changes in their annual means, but in the seasonality of projected climate change. We calibrated MC1 using MODIS NPP data for 2000-2011 as a guide, and adapting a published technique for adjusting simulated vegetation production by increasing the simulated plant rooting depths. We evaluated the simulation results by comparing the model output for the historical period with several benchmark datasets, summarizing by EPA Level 3 Ecoregions. Multi-year summary statistics of model predictions compare moderately well with Kuchler's potential natural vegetation map, National Biomass and Carbon Dataset, Leenhouts' compilation of fire return intervals, and, of course, the MODIS NPP data for 2000-2011. When we compared MC1's monthly NPP values with MODIS monthly GPP data (2000-2011), however, the seasonal patterns compared very poorly, with NPP/GPP ratio for spring (Mar-Apr-May) often exceeding 1, and the NPP/GPP ratio for summer (Jun-Jul-Aug) often flattening to zero. This suggests MC1's vegetation production algorithms are overly biased for spring production at the cost of summer production. We

  7. Response time patterns in a stated choice experiment

    DEFF Research Database (Denmark)

    Börjesson, Maria; Fosgerau, Mogens

    2015-01-01

    This paper studies how response times vary between unlabelled binary choice occasions in a stated choice (SC) experiment, with alternatives differing with respect to in-vehicle travel time and travel cost. The pattern of response times is interpreted as an indicator of the cognitive processes...... employed by the respondents when making their choices. We find clear signs of reference-dependence in response times in the form of a strong gain–loss asymmetry. Moreover, different patterns of response times for travel time and travel cost indicate that these attributes are processed in different ways...

  8. Multi-Scale Entropy Analysis as a Method for Time-Series Analysis of Climate Data

    Directory of Open Access Journals (Sweden)

    Heiko Balzter

    2015-03-01

    Full Text Available Evidence is mounting that the temporal dynamics of the climate system are changing at the same time as the average global temperature is increasing due to multiple climate forcings. A large number of extreme weather events such as prolonged cold spells, heatwaves, droughts and floods have been recorded around the world in the past 10 years. Such changes in the temporal scaling behaviour of climate time-series data can be difficult to detect. While there are easy and direct ways of analysing climate data by calculating the means and variances for different levels of temporal aggregation, these methods can miss more subtle changes in their dynamics. This paper describes multi-scale entropy (MSE analysis as a tool to study climate time-series data and to identify temporal scales of variability and their change over time in climate time-series. MSE estimates the sample entropy of the time-series after coarse-graining at different temporal scales. An application of MSE to Central European, variance-adjusted, mean monthly air temperature anomalies (CRUTEM4v is provided. The results show that the temporal scales of the current climate (1960–2014 are different from the long-term average (1850–1960. For temporal scale factors longer than 12 months, the sample entropy increased markedly compared to the long-term record. Such an increase can be explained by systems theory with greater complexity in the regional temperature data. From 1961 the patterns of monthly air temperatures are less regular at time-scales greater than 12 months than in the earlier time period. This finding suggests that, at these inter-annual time scales, the temperature variability has become less predictable than in the past. It is possible that climate system feedbacks are expressed in altered temporal scales of the European temperature time-series data. A comparison with the variance and Shannon entropy shows that MSE analysis can provide additional information on the

  9. Impacts of Seasonal Patterns of Climate on Recurrent Fluctuations in Tourism Demand: Evidence from Aruba

    NARCIS (Netherlands)

    Ridderstaat, J.R.; Oderber, M.; Croes, R.; Nijkamp, P.; Martens, P.

    2014-01-01

    This study estimates the effect of seasonal patterns of pull and push climate elements (rainfall, temperature, wind, and cloud coverage) on recurrent fluctuations in tourism demand from the United States (USA) and Venezuela to Aruba. The seasonal patterns were first isolated from the series using

  10. The pattern of cognitive symptoms predicts time to dementia onset.

    NARCIS (Netherlands)

    Sacuiu, S.; Gustafson, D.; Johansson, B.; Thorvaldsson, V.; Berg, S.; Sjogren, J.M.C.; Guo, X.; Ostling, S.; Skoog, I.

    2009-01-01

    BACKGROUND: Few studies have examined whether cognitive symptom patterns differ by age and length of time before dementia onset. Our objective was to investigate whether different patterns of cognitive symptoms at ages 70, 75, and 79 years predict short-term (< or =5 years) and long-term (>5 years)

  11. Patterns in household-level engagement with climate change in Indonesia

    Science.gov (United States)

    Bohensky, Erin L.; Smajgl, Alex; Brewer, Tom

    2013-04-01

    Understanding how individuals engage with climate change is critical for developing successful climate adaptation policies. Indonesia ranks among the world's top CO2 emitters, affirming its relevance to the global climate change policy arena, yet the dynamics of climate change engagement in Indonesia may differ from developed countries from which much research on this issue derives. We surveyed 6,310 households in two Indonesian regions to investigate patterns in four steps of engagement: observation, risk perception, reactive action (in response to present climate change) and proactive action (in anticipation of future climate change). We show that 89.5% of households exhibited a pattern whereby taking each of these steps in sequence implied taking all steps that precede it. Exceptions occurred in urban areas, where households were more likely to take action without having observed climate change or perceiving risks. In rural areas, households were more likely to observe climate change without taking action. These variations suggest a potentially nonlinear relationship between steps of engagement. We distinguish three types of household requiring adaptation support, and stress that Indonesian climate policy should shift emphasis from raising awareness to identifying broader institutional structures and processes to facilitate household engagement.

  12. Climate controls on fire pattern in African and Australian continents

    Science.gov (United States)

    Zubkova, M.; Boschetti, L.; Abatzoglou, J. T.

    2017-12-01

    Studies have primarily attributed the recent decrease in global fire activity in many savanna and grassland regions as detected by the Global Fire Emission Database (GFEDv4s) to anthropogenic changes such as deforestation and cropland expansion (Andela et al. 2017, van der Werf et al. 2008). These changes have occurred despite increases in fire weather season length (Jolly et al. 2015). Efforts to better resolve retrospective and future changes in fire activity require refining the host of influences on societal and environmental factors on fire activity. In this study, we analyzed how climate variability influences interannual fire activity in Africa and Australia, the two continents most affected by fire and responsible for over half of the global pyrogenic emissions. We expand on the analysis presented in Andela et al. (2017) by using the most recent Collection 6 MODIS MCD64 Burned Area Product and exploring the explanatory power of a broader suite of climate variables that have been previously shown to explain fire variability (Bowman et al. 2017). We examined which climate metrics show a strong interannual relationship with the amount of burned area and fire size accounting for antecedent and in-season atmospheric conditions. Fire characteristics were calculated using the 500m resolution MCD64A1 product (2002-2016); the analysis was conducted at the ecoregion scale, and further stratified by landcover using a broad aggregation (forest, shrublands and grasslands) of the Landcover CCI maps (CCI-LC, 2014); all agricultural areas fires were excluded from the analysis. The results of the analysis improve our knowledge of climate controls on fire dynamics in the most fire-prone places in the world which is critical for statistical fire and vegetation models. Being able to predict the impact of climate on fire activity has a strategic importance in designing future fire management scenarios, help to avoid degradation of biodiversity and ecosystem services and improve

  13. On the relationship between large-scale climate modes and regional synoptic patterns that drive Victorian rainfall

    Science.gov (United States)

    Verdon-Kidd, D. C.; Kiem, A. S.

    2009-04-01

    In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and/or the Southern Annular Mode (SAM) are associated with a shift in the relative frequency of wet and dry synoptic types on an annual to inter-annual timescale. In addition, the relative frequency of synoptic types is shown to vary on a multi-decadal timescale, associated with changes in the Inter-decadal Pacific Oscillation (IPO). Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.

  14. Accounting for sampling patterns reverses the relative importance of trade and climate for the global sharing of exotic plants

    Science.gov (United States)

    Sofaer, Helen R.; Jarnevich, Catherine S.

    2017-01-01

    AimThe distributions of exotic species reflect patterns of human-mediated dispersal, species climatic tolerances and a suite of other biotic and abiotic factors. The relative importance of each of these factors will shape how the spread of exotic species is affected by ongoing economic globalization and climate change. However, patterns of trade may be correlated with variation in scientific sampling effort globally, potentially confounding studies that do not account for sampling patterns.LocationGlobal.Time periodMuseum records, generally from the 1800s up to 2015.Major taxa studiedPlant species exotic to the United States.MethodsWe used data from the Global Biodiversity Information Facility (GBIF) to summarize the number of plant species with exotic occurrences in the United States that also occur in each other country world-wide. We assessed the relative importance of trade and climatic similarity for explaining variation in the number of shared species while evaluating several methods to account for variation in sampling effort among countries.ResultsAccounting for variation in sampling effort reversed the relative importance of trade and climate for explaining numbers of shared species. Trade was strongly correlated with numbers of shared U.S. exotic plants between the United States and other countries before, but not after, accounting for sampling variation among countries. Conversely, accounting for sampling effort strengthened the relationship between climatic similarity and species sharing. Using the number of records as a measure of sampling effort provided a straightforward approach for the analysis of occurrence data, whereas species richness estimators and rarefaction were less effective at removing sampling bias.Main conclusionsOur work provides support for broad-scale climatic limitation on the distributions of exotic species, illustrates the need to account for variation in sampling effort in large biodiversity databases, and highlights the

  15. Climate Prediction Center (CPC) Pacific Transition Teleconnection Pattern Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly tabulated index of the Pacific Transition teleconnection pattern. The data spans the period 1950 to present. The index is derived from a rotated principal...

  16. Climate Prediction Center (CPC) East Atlantic Teleconnection Pattern Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly tabulated index of the East Atlantic Teleconnection pattern. The data spans the period 1950 to present. The index is derived from a rotated principal...

  17. Climate Prediction Center (CPC) West Pacific Teleconnection Pattern Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly tabulated index of the West Pacific (WP) teleconnection pattern. The data spans the period 1950 to present. The index is derived from a rotated principal...

  18. Climate Prediction Center (CPC) Scandinavia Teleconnection Pattern Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly tabulated index of the Scandinavia teleconnection pattern. The data spans the period 1950 to present. The index is derived from a rotated principal component...

  19. Species distributions and climate change:current patterns and future scenarios for biodiversity

    DEFF Research Database (Denmark)

    Hof, Christian

    by shifts of their distributional ranges, which affects the spatial patterns of species richness and turnover. Global temperatures are projected to rise by 1.8 - 4°C until the end of the century; hence climate change will most likely leave further imprints on species and ecosystems. This PhD thesis aims......-thirds of the areas harboring the richest amphibian faunas may be heavily impacted by at least one of the major threats by 2080. The stability of the climatic niche influences the need for a species to track climate change via dispersal, or its potential to adapt to novel climatic conditions. I therefore explore...... the phylogenetic signal in climatic niches of the world's amphibians, which serves as a surrogate quantification of niche stability. Results indicate an overall tendency of phylogenetic signal to be present in realised climatic niches, but signal strength varies across biogeographical regions and among amphibian...

  20. Interglacial climate dynamics and advanced time series analysis

    Science.gov (United States)

    Mudelsee, Manfred; Bermejo, Miguel; Köhler, Peter; Lohmann, Gerrit

    2013-04-01

    Studying the climate dynamics of past interglacials (IGs) helps to better assess the anthropogenically influenced dynamics of the current IG, the Holocene. We select the IG portions from the EPICA Dome C ice core archive, which covers the past 800 ka, to apply methods of statistical time series analysis (Mudelsee 2010). The analysed variables are deuterium/H (indicating temperature) (Jouzel et al. 2007), greenhouse gases (Siegenthaler et al. 2005, Loulergue et al. 2008, L¨ü thi et al. 2008) and a model-co-derived climate radiative forcing (Köhler et al. 2010). We select additionally high-resolution sea-surface-temperature records from the marine sedimentary archive. The first statistical method, persistence time estimation (Mudelsee 2002) lets us infer the 'climate memory' property of IGs. Second, linear regression informs about long-term climate trends during IGs. Third, ramp function regression (Mudelsee 2000) is adapted to look on abrupt climate changes during IGs. We compare the Holocene with previous IGs in terms of these mathematical approaches, interprete results in a climate context, assess uncertainties and the requirements to data from old IGs for yielding results of 'acceptable' accuracy. This work receives financial support from the Deutsche Forschungsgemeinschaft (Project ClimSens within the DFG Research Priority Program INTERDYNAMIK) and the European Commission (Marie Curie Initial Training Network LINC, No. 289447, within the 7th Framework Programme). References Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317:793. Köhler P, Bintanja R

  1. High Performance Embedded System for Real-Time Pattern Matching

    CERN Document Server

    Sotiropoulou, Calliope Louisa; The ATLAS collaboration; Gkaitatzis, Stamatios; Citraro, Saverio; Giannetti, Paola; Dell'Orso, Mauro

    2016-01-01

    In this paper we present an innovative and high performance embedded system for real-time pattern matching. This system is based on the evolution of hardware and algorithms developed for the field of High Energy Physics (HEP) and more specifically for the execution of extremely fast pattern matching for tracking of particles produced by proton-proton collisions in hadron collider experiments. A miniaturised version of this complex system is being developed for pattern matching in generic image processing applications. The system works as a contour identifier able to extract the salient features of an image. It is based on the principles of cognitive image processing, which means that it executes fast pattern matching and data reduction mimicking the operation of the human brain. The pattern matching can be executed by a custom designed Associative Memory (AM) chip. The reference patterns are chosen by a complex training algorithm implemented on an FPGA device. Post processing algorithms (e.g. pixel clustering...

  2. Exploring the impact of climate variability during the Last Glacial Maximum on the pattern of human occupation of Iberia.

    Science.gov (United States)

    Burke, Ariane; Levavasseur, Guillaume; James, Patrick M A; Guiducci, Dario; Izquierdo, Manuel Arturo; Bourgeon, Lauriane; Kageyama, Masa; Ramstein, Gilles; Vrac, Mathieu

    2014-08-01

    The Last Glacial Maximum (LGM) was a global climate event, which had significant repercussions for the spatial distribution and demographic history of prehistoric populations. In Eurasia, the LGM coincides with a potential bottleneck for modern humans and may mark the divergence date for Asian and European populations (Keinan et al., 2007). In this research, the impact of climate variability on human populations in the Iberian Peninsula during the Last Glacial Maximum (LGM) is examined with the aid of downscaled high-resolution (16 × 16 km) numerical climate experiments. Human sensitivity to short time-scale (inter-annual) climate variability during this key time period, which follows the initial modern human colonisation of Eurasia and the extinction of the Neanderthals, is tested using the spatial distribution of archaeological sites. Results indicate that anatomically modern human populations responded to small-scale spatial patterning in climate variability, specifically inter-annual variability in precipitation levels as measured by the standard precipitation index. Climate variability at less than millennial scale, therefore, is shown to be an important component of ecological risk, one that played a role in regulating the spatial behaviour of prehistoric human populations and consequently affected their social networks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Patterns and biases of climate change threats in the IUCN Red List.

    Science.gov (United States)

    Trull, Nicholas; Böhm, Monika; Carr, Jamie

    2018-02-01

    International Union for Conservation of Nature (IUCN) Red List assessments rely on published data and expert inputs, and biases can be introduced where underlying definitions and concepts are ambiguous. Consideration of climate change threat is no exception, and recently numerous approaches to assessing the threat of climate change to species have been developed. We explored IUCN Red List assessments of amphibians and birds to determine whether species listed as threatened by climate change display distinct patterns in terms of habitat occupied and additional nonclimatic threats faced. We compared IUCN Red List data with a published data set of species' biological and ecological traits believed to infer high vulnerability to climate change and determined whether distributions of climate change-threatened species on the IUCN Red List concur with those of climate change-threatened species identified with the trait-based approach and whether species possessing these traits are more likely to have climate change listed as a threat on the IUCN Red List. Species in some ecosystems (e.g., grassland, shrubland) and subject to particular threats (e.g., invasive species) were more likely to have climate change as a listed threat. Geographical patterns of climate change-threatened amphibians and birds on the IUCN Red List were incongruent with patterns of global species richness and patterns identified using trait-based approaches. Certain traits were linked to increases or decreases in the likelihood of a species being threatened by climate change. Broad temperature tolerance of a species was consistently related to an increased likelihood of climate change threat, indicating counterintuitive relationships in IUCN assessments. To improve the robustness of species assessments of the vulnerability or extinction risk associated with climate change, we suggest IUCN adopt a more cohesive approach whereby specific traits highlighted by our results are considered in Red List

  4. Vegetation-climate feedbacks modulate rainfall patterns in Africa under future climate change

    Science.gov (United States)

    Wu, Minchao; Schurgers, Guy; Rummukainen, Markku; Smith, Benjamin; Samuelsson, Patrick; Jansson, Christer; Siltberg, Joe; May, Wilhelm

    2016-07-01

    Africa has been undergoing significant changes in climate and vegetation in recent decades, and continued changes may be expected over this century. Vegetation cover and composition impose important influences on the regional climate in Africa. Climate-driven changes in vegetation structure and the distribution of forests versus savannah and grassland may feed back to climate via shifts in the surface energy balance, hydrological cycle and resultant effects on surface pressure and larger-scale atmospheric circulation. We used a regional Earth system model incorporating interactive vegetation-atmosphere coupling to investigate the potential role of vegetation-mediated biophysical feedbacks on climate dynamics in Africa in an RCP8.5-based future climate scenario. The model was applied at high resolution (0.44 × 0.44°) for the CORDEX-Africa domain with boundary conditions from the CanESM2 general circulation model. We found that increased tree cover and leaf-area index (LAI) associated with a CO2 and climate-driven increase in net primary productivity, particularly over subtropical savannah areas, not only imposed important local effect on the regional climate by altering surface energy fluxes but also resulted in remote effects over central Africa by modulating the land-ocean temperature contrast, Atlantic Walker circulation and moisture inflow feeding the central African tropical rainforest region with precipitation. The vegetation-mediated feedbacks were in general negative with respect to temperature, dampening the warming trend simulated in the absence of feedbacks, and positive with respect to precipitation, enhancing rainfall reduction over the rainforest areas. Our results highlight the importance of accounting for vegetation-atmosphere interactions in climate projections for tropical and subtropical Africa.

  5. Stochastic characterization of regional circulation patterns for climate model diagnosis and estimation of local precipitation

    International Nuclear Information System (INIS)

    Zorita, E.; Hughes, J.P.

    1993-01-01

    Two statistical approaches for linking large-scale atmospheric circulation patterns and daily local rainfall are described and applied to several GCM (general circulation model) climate simulations. The ultimate objective is to simulate local precipitation associated with alternative climates. The index stations are located near the West and East North American coasts. The first method is based on CART analysis (Classification and Regression trees). It finds the classification of observed daily SLR (sea level pressure) fields in weather types that are most strongly associated with the presence/absence of rainfall in a set of index stations. The best results were obtained for winter rainfall for the West Coast, where a set of physically reasonable weather types could be identified, whereas for the East Coast the rainfall process seemed to be spatially less coherent. The GCM simulations were validated against observations in terms of probability of occurrence and survival time of these weather states. Some discrepancies werefound but there was no systematic bias, indicating that this behavior depends on the particular dynamics of each model. This classification method was then used for the generation of daily rainfall time series from the daily SLP fields from historical observation and from the GCM simulations. Whereas the mean rainfall and probability distributions were rather well replicated, the simulated dry periods were in all cases shorter than in the rainfall observations. The second rainfall generator is based on the analog method and uses information on the evolution of the SLP field in several previous days. It was found to perform reasonably well, although some downward bias in the simulated rainfall persistence was still present. Rainfall changes in a 2xCO 2 climate were investigated by applying both methods to the output of a greenhouse-gas experiment. The simulated precipitation changes were small. (orig.)

  6. Observations of Local Positive Low Cloud Feedback Patterns and Their Role in Internal Variability and Climate Sensitivity

    Science.gov (United States)

    Yuan, Tianle; Oreopoulos, Lazaros; Platnick, Steven E.; Meyer, Kerry

    2018-05-01

    Modeling studies have shown that cloud feedbacks are sensitive to the spatial pattern of sea surface temperature (SST) anomalies, while cloud feedbacks themselves strongly influence the magnitude of SST anomalies. Observational counterparts to such patterned interactions are still needed. Here we show that distinct large-scale patterns of SST and low-cloud cover (LCC) emerge naturally from objective analyses of observations and demonstrate their close coupling in a positive local SST-LCC feedback loop that may be important for both internal variability and climate change. The two patterns that explain the maximum amount of covariance between SST and LCC correspond to the Interdecadal Pacific Oscillation and the Atlantic Multidecadal Oscillation, leading modes of multidecadal internal variability. Spatial patterns and time series of SST and LCC anomalies associated with both modes point to a strong positive local SST-LCC feedback. In many current climate models, our analyses suggest that SST-LCC feedback strength is too weak compared to observations. Modeled local SST-LCC feedback strength affects simulated internal variability so that stronger feedback produces more intense and more realistic patterns of internal variability. To the extent that the physics of the local positive SST-LCC feedback inferred from observed climate variability applies to future greenhouse warming, we anticipate significant amount of delayed warming because of SST-LCC feedback when anthropogenic SST warming eventually overwhelm the effects of internal variability that may mute anthropogenic warming over parts of the ocean. We postulate that many climate models may be underestimating both future warming and the magnitude of modeled internal variability because of their weak SST-LCC feedback.

  7. Montane ecosystem productivity responds more to global circulation patterns than climatic trends

    Science.gov (United States)

    Desai, A. R.; Wohlfahrt, G.; Zeeman, M. J.; Katata, G.; Eugster, W.; Montagnani, L.; Gianelle, D.; Mauder, M.; Schmid, H.-P.

    2016-02-01

    Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.

  8. Climatic controls on hurricane patterns: a 1200-y near-annual record from Lighthouse Reef, Belize

    Science.gov (United States)

    Denommee, K. C.; Bentley, S. J.; Droxler, A. W.

    2014-01-01

    Tropical cyclones (TCs) are powerful agents of destruction, and understanding climatic controls on TC patterns is of great importance. Over timescales of seasons to several decades, relationships among TC track, frequency, intensity and basin-scale climate changes are well documented by instrumental records. Over centuries to millennia, climate-shift influence on TC regimes remains poorly constrained. To better understand these relationships, records from multiple locations of TC strikes spanning millennia with high temporal resolution are required, but such records are rare. Here we report on a highly detailed sedimentary proxy record of paleo-TC strikes from the Blue Hole of Lighthouse Reef, Belize. Our findings provide an important addition to other high-resolution records, which collectively demonstrate that shifts between active and inactive TC regimes have occurred contemporaneously with shifts hemispheric-scale oceanic and atmospheric circulation patterns such as MDR SSTs and NAO mode, rather than with changes in local climate phenomena as has previously been suggested.

  9. Montane ecosystem productivity responds more to global circulation patterns than climatic trends

    International Nuclear Information System (INIS)

    Desai, A R; Wohlfahrt, G; Zeeman, M J; Katata, G; Mauder, M; Schmid, H-P; Eugster, W; Montagnani, L; Gianelle, D

    2016-01-01

    Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies. (letter)

  10. Functional and phylogenetic relatedness in temporary wetland invertebrates: current macroecological patterns and implications for future climatic change scenarios.

    Science.gov (United States)

    Ruhí, Albert; Boix, Dani; Gascón, Stéphanie; Sala, Jordi; Batzer, Darold P

    2013-01-01

    In freshwater ecosystems, species compositions are known to be determined hierarchically by large to small‑scale environmental factors, based on the biological traits of the organisms. However, in ephemeral habitats this heuristic framework remains largely untested. Although temporary wetland faunas are constrained by a local filter (i.e., desiccation), we propose its magnitude may still depend on large-scale climate characteristics. If this is true, climate should be related to the degree of functional and taxonomic relatedness of invertebrate communities inhabiting seasonal wetlands. We tested this hypothesis in two ways. First, based on 52 biological traits for invertebrates, we conducted a case study to explore functional trends among temperate seasonal wetlands differing in the harshness (i.e., dryness) of their dry season. After finding evidence of trait filtering, we addressed whether it could be generalized across a broader climatic scale. To this end, a meta-analysis (225 seasonal wetlands spread across broad climatic categories: Arid, Temperate, and Cold) allowed us to identify whether an equivalent climate-dependent pattern of trait richness was consistent between the Nearctic and the Western Palearctic. Functional overlap of invertebrates increased from mild (i.e., Temperate) to harsher climates (i.e., Arid and Cold), and phylogenetic clustering (using taxonomy as a surrogate) was highest in Arid and lowest in Temperate wetlands. We show that, (i) as has been described in streams, higher relatedness than would be expected by chance is generally observed in seasonal wetland invertebrate communities; and (ii) this relatedness is not constant but climate-dependent, with the climate under which a given seasonal wetland is located determining the functional overlap and the phylogenetic clustering of the community. Finally, using a space-for-time substitution approach we suggest our results may anticipate how the invertebrate biodiversity embedded in these

  11. Future climate and changes in flow patterns in Czech headwater catchments

    Czech Academy of Sciences Publication Activity Database

    Benčoková, A.; Krám, P.; Hruška, Jakub

    2011-01-01

    Roč. 49, č. 1 (2011), s. 1-15 ISSN 0936-577X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : climate change impact * flow pattern * regional climate scenarios * Headwater catchments * hydrological modelling * Broo90 Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.994, year: 2011

  12. Patterns and Drivers of Tree Mortality in Iberian Forests: Climatic Effects Are Modified by Competition

    Science.gov (United States)

    Ruiz-Benito, Paloma; Lines, Emily R.; Gómez-Aparicio, Lorena; Zavala, Miguel A.; Coomes, David A.

    2013-01-01

    Tree mortality is a key process underlying forest dynamics and community assembly. Understanding how tree mortality is driven by simultaneous drivers is needed to evaluate potential effects of climate change on forest composition. Using repeat-measure information from c. 400,000 trees from the Spanish Forest Inventory, we quantified the relative importance of tree size, competition, climate and edaphic conditions on tree mortality of 11 species, and explored the combined effect of climate and competition. Tree mortality was affected by all of these multiple drivers, especially tree size and asymmetric competition, and strong interactions between climate and competition were found. All species showed L-shaped mortality patterns (i.e. showed decreasing mortality with tree size), but pines were more sensitive to asymmetric competition than broadleaved species. Among climatic variables, the negative effect of temperature on tree mortality was much larger than the effect of precipitation. Moreover, the effect of climate (mean annual temperature and annual precipitation) on tree mortality was aggravated at high competition levels for all species, but especially for broadleaved species. The significant interaction between climate and competition on tree mortality indicated that global change in Mediterranean regions, causing hotter and drier conditions and denser stands, could lead to profound effects on forest structure and composition. Therefore, to evaluate the potential effects of climatic change on tree mortality, forest structure must be considered, since two systems of similar composition but different structure could radically differ in their response to climatic conditions. PMID:23451096

  13. Spatial patterns in Central Asian climate and equilibrium line altitudes

    International Nuclear Information System (INIS)

    Rupper, Summer; Koppes, Michele

    2010-01-01

    A suite of general circulation model (GCM) simulations and a glacier equilibrium line altitude (ELA) model are compared to reconstructed glacier advances from geomorphic data and used to test the sensitivity of Central Asian glaciers to simulated climate changes at the Last Glacial Maximum (LGM). Results highlight temperature changes as being the most important influence on glacier ELA changes during the LGM. With the exception of the southern Himalaya, for much of Central Asia there is consistency between GCMs for simulated LGM temperature changes, with a mean cooling of 4 0 C. Further research will necessarily need to focus on detailed analysis of the inter-model differences in temperature in the southern Himalaya, and acquiring additional paleoclimate proxies in the region in order to further constrain the GCMs.

  14. Modeling climate change impacts on combined sewer overflow using synthetic precipitation time series.

    Science.gov (United States)

    Bendel, David; Beck, Ferdinand; Dittmer, Ulrich

    2013-01-01

    In the presented study climate change impacts on combined sewer overflows (CSOs) in Baden-Wuerttemberg, Southern Germany, were assessed based on continuous long-term rainfall-runoff simulations. As input data, synthetic rainfall time series were used. The applied precipitation generator NiedSim-Klima accounts for climate change effects on precipitation patterns. Time series for the past (1961-1990) and future (2041-2050) were generated for various locations. Comparing the simulated CSO activity of both periods we observe significantly higher overflow frequencies for the future. Changes in overflow volume and overflow duration depend on the type of overflow structure. Both values will increase at simple CSO structures that merely divide the flow, whereas they will decrease when the CSO structure is combined with a storage tank. However, there is a wide variation between the results of different precipitation time series (representative for different locations).

  15. High Performance Embedded System for Real-Time Pattern Matching

    CERN Document Server

    Sotiropoulou, Calliope Louisa; The ATLAS collaboration; Gkaitatzis, Stamatios; Citraro, Saverio; Giannetti, Paola; Dell'Orso, Mauro

    2016-01-01

    We present an innovative and high performance embedded system for real-time pattern matching. This system is based on the evolution of hardware and algorithms developed for the field of High Energy Physics (HEP) and more specifically for the execution of extremely fast pattern matching for tracking of particles produced by proton-proton collisions in hadron collider experiments. A miniaturized version of this complex system is being developed for pattern matching in generic image processing applications. The design uses the flexibility of Field Programmable Gate Arrays (FPGAs) and the powerful Associative Memory Chip (ASIC) to achieve real-time performance. The system works as a contour identifier able to extract the salient features of an image. It is based on the principles of cognitive image processing, which means that it executes fast pattern matching and data reduction mimicking the operation of the human brain.

  16. Clinical implications of ST segment time-course recovery patterns ...

    African Journals Online (AJOL)

    Arun Kumar Agnihotri

    Journal home page: http://www.akspublication.com/ijmu. Original Work. 3. Copyrighted © by Dr. ... KEY WORDS: Exercise stress test; ST segment time course patterns. INTRODUCTIONᴪ .... using simple descriptive statistics (mean ± SD) and contingency .... two patients who had the recovery time of less than. 3 minutes, had ...

  17. Analysis of climate change impact on rainfall pattern of Sambas district, West Kalimantan

    Science.gov (United States)

    Berliana Sipayung, Sinta; Nurlatifah, Amalia; Siswanto, Bambang; Slamet S, Lilik

    2018-05-01

    Climate change is one of the most important issues being discussed globally. It caused by global warming and indirectly affecting the world climate cycle. This research discussed the effect of climate change on rainfall pattern of Sambas District and predicted the future rainfall pattern due to climate change. CRU and TRMM were used and has been validated using in situ data. This research was used Climate Modelling and Prediction using CCAM (Conformal Cubic Atmospheric Model) which also validated by in situ data (correlation= 0.81). The results show that temperature trends in Sambas regency increased to 0.082°C/yr from 1991-2014 according to CRU data. High temperature trigger changes in rainfall patterns. Rainfall pattern in Sambas District has an equatorial type where the peak occurs when the sun is right on the equator. Rainfall in Sambas reaches the maximum in March and September when the equinox occurs. The CCAM model is used to project rainfall in Sambas District in the future. The model results show that rainfall in Sambas District is projected to increase to 0.018 mm/month until 2055 so the flow rate increase 0.006 m3/month and the water balance increase 0.009 mm/month.

  18. Soil Carbon in the Time of Climate Change

    Science.gov (United States)

    Amundson, R.

    2017-12-01

    The Earth is in the midst of human induced climate change driven by the emission of greenhouse gases largely through fossil fuels and land conversion. Drastically and rapidly reducing the net emissions are critical to avoid societally disruptive climate changes by the end of the Century. In the midst of this change are soils, that have a vast store of C and for a given change in conditions, can either rapidly add or remove C from the atmosphere. Mainstream soil and agricultural science has focused on the former for nearly two decades, conducting research and estimates of the potential global C sequestration potential of soils due to changed land management. This has culminated with the French 4 per mille initiative. While it is possible that in some countries, at some times, economic or political forces may drive farming practices one way or another, the estimated requirement that 30 to 70% of all farms on Earth adopt the best practices needed to achieve this goal is simply unrealistic. In addition, it diverts attention and resources from much more viable alternatives, and is clouding the growing need for climate adaption strategies that soil and environmental science will need to provide. Soil C sequestration will never be a significant "bridge" to C-free energy during the next few decades, which is the time frame of critical importance. Most likely, soil will be part of the CO2 sources. Few agricultural sequestration studies explicitly consider the positive feedback between soil C and temperature, and on-going loss of soil C to the atmosphere. Truly comprehensive studies of the combined management vs. climate feedback effects on soil C are few, but tend to conclude that even managed soils will continue to be a net source of CO2 this century. Only by reducing fossil fuel C emissions will we successfully, and in a time frame required by the Earth's climate system, contend with the greenhouse gas issue. Better soil C management is unlikely to slow or hold off

  19. High performance embedded system for real-time pattern matching

    International Nuclear Information System (INIS)

    Sotiropoulou, C.-L.; Luciano, P.; Gkaitatzis, S.; Citraro, S.; Giannetti, P.; Dell'Orso, M.

    2017-01-01

    In this paper we present an innovative and high performance embedded system for real-time pattern matching. This system is based on the evolution of hardware and algorithms developed for the field of High Energy Physics and more specifically for the execution of extremely fast pattern matching for tracking of particles produced by proton–proton collisions in hadron collider experiments. A miniaturized version of this complex system is being developed for pattern matching in generic image processing applications. The system works as a contour identifier able to extract the salient features of an image. It is based on the principles of cognitive image processing, which means that it executes fast pattern matching and data reduction mimicking the operation of the human brain. The pattern matching can be executed by a custom designed Associative Memory chip. The reference patterns are chosen by a complex training algorithm implemented on an FPGA device. Post processing algorithms (e.g. pixel clustering) are also implemented on the FPGA. The pattern matching can be executed on a 2D or 3D space, on black and white or grayscale images, depending on the application and thus increasing exponentially the processing requirements of the system. We present the firmware implementation of the training and pattern matching algorithm, performance and results on a latest generation Xilinx Kintex Ultrascale FPGA device. - Highlights: • A high performance embedded system for real-time pattern matching is proposed. • It is based on a system developed for High Energy Physics experiment triggers. • It mimics the operation of the human brain (cognitive image processing). • The process can be executed on 2D and 3D, black and white or grayscale images. • The implementation uses FPGAs and custom designed associative memory (AM) chips.

  20. High performance embedded system for real-time pattern matching

    Energy Technology Data Exchange (ETDEWEB)

    Sotiropoulou, C.-L., E-mail: c.sotiropoulou@cern.ch [University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); INFN-Pisa Section, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Luciano, P. [University of Cassino and Southern Lazio, Gaetano di Biasio 43, Cassino 03043 (Italy); INFN-Pisa Section, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Gkaitatzis, S. [Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Citraro, S. [University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); INFN-Pisa Section, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Giannetti, P. [INFN-Pisa Section, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Dell' Orso, M. [University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); INFN-Pisa Section, Largo B. Pontecorvo 3, 56127 Pisa (Italy)

    2017-02-11

    In this paper we present an innovative and high performance embedded system for real-time pattern matching. This system is based on the evolution of hardware and algorithms developed for the field of High Energy Physics and more specifically for the execution of extremely fast pattern matching for tracking of particles produced by proton–proton collisions in hadron collider experiments. A miniaturized version of this complex system is being developed for pattern matching in generic image processing applications. The system works as a contour identifier able to extract the salient features of an image. It is based on the principles of cognitive image processing, which means that it executes fast pattern matching and data reduction mimicking the operation of the human brain. The pattern matching can be executed by a custom designed Associative Memory chip. The reference patterns are chosen by a complex training algorithm implemented on an FPGA device. Post processing algorithms (e.g. pixel clustering) are also implemented on the FPGA. The pattern matching can be executed on a 2D or 3D space, on black and white or grayscale images, depending on the application and thus increasing exponentially the processing requirements of the system. We present the firmware implementation of the training and pattern matching algorithm, performance and results on a latest generation Xilinx Kintex Ultrascale FPGA device. - Highlights: • A high performance embedded system for real-time pattern matching is proposed. • It is based on a system developed for High Energy Physics experiment triggers. • It mimics the operation of the human brain (cognitive image processing). • The process can be executed on 2D and 3D, black and white or grayscale images. • The implementation uses FPGAs and custom designed associative memory (AM) chips.

  1. Multi-Scale Influences of Climate, Spatial Pattern, and Positive Feedback on 20th Century Tree Establishment at Upper Treeline in the Rocky Mountains, USA

    Science.gov (United States)

    Elliott, G. P.

    2009-12-01

    The influences of 20th century climate, spatial pattern of tree establishment, and positive feedback were assessed to gain a more holistic understanding of how broad scale abiotic and local scale biotic components interact to govern upper treeline ecotonal dynamics along a latitudinal gradient (ca. 35°N-45°N) in the Rocky Mountains. Study sites (n = 22) were in the Bighorn, Medicine Bow, Front Range, and Sangre de Cristo mountain ranges. Dendroecological techniques were used for a broad scale analysis of climate at treeline. Five-year age-structure classes were compared with identical five-year bins of 20th century climate data using Spearman’s rank correlation and regime shift analysis. Local scale biotic interactions capable of ameliorating broad scale climate inputs through positive feedback were examined by using Ripley’s K to determine the spatial patterns of tree establishment above timberline. Significant correlations (p Medicine Bow and Sangre de Cristo Mountains primarily contain clustered spatial patterns of trees above timberline, which indicates a strong reliance on the amelioration of abiotic conditions through positive feedback with nearby vegetation. Although clustered spatial patterns likely originate in response to harsh abiotic conditions such as drought or constant strong winds, the local scale biotic interactions within a clustered formation of trees appears to override the immediate influence of broad scale climate. This is evidenced both by a lack of significant correlations between tree establishment and climate in these mountain ranges, as well as the considerable lag times between initial climate regime shifts and corresponding shifts in tree age structure. Taken together, this research suggests that the influence of broad scale climate on upper treeline ecotonal dynamics is contingent on the local scale spatial patterns of tree establishment and related influences of positive feedback. These findings have global implications for our

  2. Can Real-Time Data Also Be Climate Quality?

    Science.gov (United States)

    Brewer, M.; Wentz, F. J.

    2015-12-01

    GMI, AMSR-2 and WindSat herald a new era of highly accurate and timely microwave data products. Traditionally, there has been a large divide between real-time and re-analysis data products. What if these completely separate processing systems could be merged? Through advanced modeling and physically based algorithms, Remote Sensing Systems (RSS) has narrowed the gap between real-time and research-quality. Satellite microwave ocean products have proven useful for a wide array of timely Earth science applications. Through cloud SST capabilities have enormously benefited tropical cyclone forecasting and day to day fisheries management, to name a few. Oceanic wind vectors enhance operational safety of shipping and recreational boating. Atmospheric rivers are of import to many human endeavors, as are cloud cover and knowledge of precipitation events. Some activities benefit from both climate and real-time operational data used in conjunction. RSS has been consistently improving microwave Earth Science Data Records (ESDRs) for several decades, while making near real-time data publicly available for semi-operational use. These data streams have often been produced in 2 stages: near real-time, followed by research quality final files. Over the years, we have seen this time delay shrink from months or weeks to mere hours. As well, we have seen the quality of near real-time data improve to the point where the distinction starts to blur. We continue to work towards better and faster RFI filtering, adaptive algorithms and improved real-time validation statistics for earlier detection of problems. Can it be possible to produce climate quality data in real-time, and what would the advantages be? We will try to answer these questions…

  3. A unified nonlinear stochastic time series analysis for climate science.

    Science.gov (United States)

    Moon, Woosok; Wettlaufer, John S

    2017-03-13

    Earth's orbit and axial tilt imprint a strong seasonal cycle on climatological data. Climate variability is typically viewed in terms of fluctuations in the seasonal cycle induced by higher frequency processes. We can interpret this as a competition between the orbitally enforced monthly stability and the fluctuations/noise induced by weather. Here we introduce a new time-series method that determines these contributions from monthly-averaged data. We find that the spatio-temporal distribution of the monthly stability and the magnitude of the noise reveal key fingerprints of several important climate phenomena, including the evolution of the Arctic sea ice cover, the El Nio Southern Oscillation (ENSO), the Atlantic Nio and the Indian Dipole Mode. In analogy with the classical destabilising influence of the ice-albedo feedback on summertime sea ice, we find that during some time interval of the season a destabilising process operates in all of these climate phenomena. The interaction between the destabilisation and the accumulation of noise, which we term the memory effect, underlies phase locking to the seasonal cycle and the statistical nature of seasonal predictability.

  4. An evaluation of space time cube representation of spatiotemporal patterns.

    Science.gov (United States)

    Kristensson, Per Ola; Dahlbäck, Nils; Anundi, Daniel; Björnstad, Marius; Gillberg, Hanna; Haraldsson, Jonas; Mårtensson, Ingrid; Nordvall, Mathias; Ståhl, Josefine

    2009-01-01

    Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a data set to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap, we report on a between-subjects experiment comparing novice users' error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions, the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the data set, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users analyzing complex spatiotemporal patterns.

  5. Nonlinear effects on Turing patterns: Time oscillations and chaos

    KAUST Repository

    Aragón, J. L.

    2012-08-08

    We show that a model reaction-diffusion system with two species in a monostable regime and over a large region of parameter space produces Turing patterns coexisting with a limit cycle which cannot be discerned from the linear analysis. As a consequence, the patterns oscillate in time. When varying a single parameter, a series of bifurcations leads to period doubling, quasiperiodic, and chaotic oscillations without modifying the underlying Turing pattern. A Ruelle-Takens-Newhouse route to chaos is identified. We also examine the Turing conditions for obtaining a diffusion-driven instability and show that the patterns obtained are not necessarily stationary for certain values of the diffusion coefficients. These results demonstrate the limitations of the linear analysis for reaction-diffusion systems. © 2012 American Physical Society.

  6. Impact of Urban Climate Landscape Patterns on Land Surface Temperature in Wuhan, China

    Directory of Open Access Journals (Sweden)

    Yasha Wang

    2017-09-01

    Full Text Available Facing urban warming, mitigation and adaptation strategies are not efficient enough to tackle excessive urban heat, especially at the local scale. The local climate zone (LCZ classification scheme is employed to examine the diversity and complexity of the climate response within a city. This study suggests that zonal practice could be an efficient way to bridge the knowledge gap between climate research and urban planning. Urban surfaces classified by LCZ are designated as urban climate landscapes, which extends the LCZ concept to urban planning applications. Selecting Wuhan as a case study, we attempt to explore the climatic effect of landscape patterns. Thermal effects are compared across the urban climate landscapes, and the relationships between patch metrics and land surface temperature (LST are quantified. Results indicate that climate landscape layout is a considerable factor impacting local urban climate. For Wuhan, 500 m is an optimal scale for exploring landscape pattern-temperature relationships. Temperature contrast between surrounding landscape patches has a major influence on LST. Generally, fragmental landscape patches contribute to heat release. For most climate landscape types, patch metrics also have a significant effect on thermal response. When three metrics are included as predictive variables, 53.3% of the heating intensity variation can be explained for the Large Lowrise landscape, while 57.4% of the cooling intensity variation can be explained for the Water landscape. Therefore, this article claims that land-based layout optimization strategy at local scale, which conforms to planning manner, should be taken into account in terms of heat management.

  7. A sensitive slope: estimating landscape patterns of forest resilience in a changing climate

    Science.gov (United States)

    Jill F. Johnstone; Eliot J.B. McIntire; Eric J. Pedersen; Gregory King; Michael J.F. Pisaric

    2010-01-01

    Changes in Earth's environment are expected to stimulate changes in the composition and structure of ecosystems, but it is still unclear how the dynamics of these responses will play out over time. In long-lived forest systems, communities of established individuals may be resistant to respond to directional climate change, but may be highly sensitive to climate...

  8. Etude Climat no. 38 'The economic tools of Chinese climate and energy policy at the time of the at the time of the 12. five-year plan'

    International Nuclear Information System (INIS)

    Zhou, Di; Delbosc, Anais

    2013-01-01

    Among the publications of CDC Climat Research, 'Climate Reports' offer in-depth analyses on a given subject. This issue addresses the following points: The largest developing country and the main source of GHG emissions in the world, China has undertaken in its 12. five-year plan (2011-2015) to strengthen the strategy initiated in the 11. five-year plan. It proposes making the Chinese economy more flexible - hence its change of name to five-year 'guide'-, particularly through increased use of market instruments. This change applies across all fields, including energy and climate policies. Economic instruments are especially expected to help achieve the 2020 strategic energy and climate objectives which China committed to at the Copenhagen Conference in 2009. The five-year plan forms a programmatic document requiring translation into law to develop details of the measures required to achieve the objectives set out. Following the publication of the 12. five-year plan, the Chinese central government therefore introduced a series of regulations to promote energy conservation and reduction of greenhouse gas (GHG) emissions, including at a regional and sectoral level. Local governments are particularly expected to participate, by incorporating progress in achieving their climate and energy policy objectives into the system of administrative appraisal. In relation to energy policy, the economic tools put in place exist side by side with pre-existing administrative tools and remain subject to very strong administrative control. They concern the adjustment of both the production pattern - reinforcement of exchanges of production rights and renewable energy production quotas - and the structure of energy consumption - market for energy savings certificates coordinated at a regional level. In terms of climate policy, the Chinese government is testing a range of instruments, including market and taxation mechanisms. The 12. five-year plan notably includes the development of a

  9. The role of local sea surface temperature pattern changes in shaping climate change in the North Atlantic sector

    Science.gov (United States)

    Hand, Ralf; Keenlyside, Noel S.; Omrani, Nour-Eddine; Bader, Jürgen; Greatbatch, Richard J.

    2018-03-01

    Beside its global effects, climate change is manifested in many regionally pronounced features mainly resulting from changes in the oceanic and atmospheric circulation. Here we investigate the influence of the North Atlantic SST on shaping the winter-time response to global warming. Our results are based on a long-term climate projection with the Max Planck Institute Earth System Model (MPI-ESM) to investigate the influence of North Atlantic sea surface temperature pattern changes on shaping the atmospheric climate change signal. In sensitivity experiments with the model's atmospheric component we decompose the response into components controlled by the local SST structure and components controlled by global/remote changes. MPI-ESM simulates a global warming response in SST similar to other climate models: there is a warming minimum—or "warming hole"—in the subpolar North Atlantic, and the sharp SST gradients associated with the Gulf Stream and the North Atlantic Current shift northward by a few a degrees. Over the warming hole, global warming causes a relatively weak increase in rainfall. Beyond this, our experiments show more localized effects, likely resulting from future SST gradient changes in the North Atlantic. This includes a significant precipitation decrease to the south of the Gulf Stream despite increased underlying SSTs. Since this region is characterised by a strong band of precipitation in the current climate, this is contrary to the usual case that wet regions become wetter and dry regions become drier in a warmer climate. A moisture budget analysis identifies a complex interplay of various processes in the region of modified SST gradients: reduced surface winds cause a decrease in evaporation; and thermodynamic, modified atmospheric eddy transports, and coastal processes cause a change in the moisture convergence. The changes in the the North Atlantic storm track are mainly controlled by the non-regional changes in the forcing. The impact of

  10. CLIMATE PATTERNS OF HABITABLE EXOPLANETS IN ECCENTRIC ORBITS AROUND M DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuwei; Hu, Yongyun [Laboratory for Climate and Ocean-Atmosphere Sciences, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871 China (China); Tian, Feng, E-mail: yyhu@pku.edu.cn [Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University, Beijing 100084 (China)

    2014-08-10

    Previous studies show that synchronous rotating habitable exoplanets around M dwarfs should have an ''eyeball'' climate pattern—a limited region of open water on the day side and ice on the rest of the planet. However, exoplanets with nonzero eccentricities could have spin-orbit resonance states different from the synchronous rotation state. Here, we show that a striped-ball climate pattern, with a global belt of open water at low and middle latitudes and ice over both polar regions, should be common on habitable exoplanets in eccentric orbits around M dwarfs. We further show that these different climate patterns can be observed by future exoplanet detection missions.

  11. Climate Data Provenance Tracking for Just-In-Time Computation

    Science.gov (United States)

    Fries, S.; Nadeau, D.; Doutriaux, C.; Williams, D. N.

    2016-12-01

    The "Climate Data Management System" (CDMS) was created in 1996 as part of the Climate Data Analysis Tools suite of software. It provides a simple interface into a wide variety of climate data formats, and creates NetCDF CF-Compliant files. It leverages the NumPy framework for high performance computation, and is an all-in-one IO and computation package. CDMS has been extended to track manipulations of data, and trace that data all the way to the original raw data. This extension tracks provenance about data, and enables just-in-time (JIT) computation. The provenance for each variable is packaged as part of the variable's metadata, and can be used to validate data processing and computations (by repeating the analysis on the original data). It also allows for an alternate solution for sharing analyzed data; if the bandwidth for a transfer is prohibitively expensive, the provenance serialization can be passed in a much more compact format and the analysis rerun on the input data. Data provenance tracking in CDMS enables far-reaching and impactful functionalities, permitting implementation of many analytical paradigms.

  12. Environmental Sound Recognition Using Time-Frequency Intersection Patterns

    Directory of Open Access Journals (Sweden)

    Xuan Guo

    2012-01-01

    Full Text Available Environmental sound recognition is an important function of robots and intelligent computer systems. In this research, we use a multistage perceptron neural network system for environmental sound recognition. The input data is a combination of time-variance pattern of instantaneous powers and frequency-variance pattern with instantaneous spectrum at the power peak, referred to as a time-frequency intersection pattern. Spectra of many environmental sounds change more slowly than those of speech or voice, so the intersectional time-frequency pattern will preserve the major features of environmental sounds but with drastically reduced data requirements. Two experiments were conducted using an original database and an open database created by the RWCP project. The recognition rate for 20 kinds of environmental sounds was 92%. The recognition rate of the new method was about 12% higher than methods using only an instantaneous spectrum. The results are also comparable with HMM-based methods, although those methods need to treat the time variance of an input vector series with more complicated computations.

  13. Just-in-time Time Data Analytics and Visualization of Climate Simulations using the Bellerophon Framework

    Science.gov (United States)

    Anantharaj, V. G.; Venzke, J.; Lingerfelt, E.; Messer, B.

    2015-12-01

    Climate model simulations are used to understand the evolution and variability of earth's climate. Unfortunately, high-resolution multi-decadal climate simulations can take days to weeks to complete. Typically, the simulation results are not analyzed until the model runs have ended. During the course of the simulation, the output may be processed periodically to ensure that the model is preforming as expected. However, most of the data analytics and visualization are not performed until the simulation is finished. The lengthy time period needed for the completion of the simulation constrains the productivity of climate scientists. Our implementation of near real-time data visualization analytics capabilities allows scientists to monitor the progress of their simulations while the model is running. Our analytics software executes concurrently in a co-scheduling mode, monitoring data production. When new data are generated by the simulation, a co-scheduled data analytics job is submitted to render visualization artifacts of the latest results. These visualization output are automatically transferred to Bellerophon's data server located at ORNL's Compute and Data Environment for Science (CADES) where they are processed and archived into Bellerophon's database. During the course of the experiment, climate scientists can then use Bellerophon's graphical user interface to view animated plots and their associated metadata. The quick turnaround from the start of the simulation until the data are analyzed permits research decisions and projections to be made days or sometimes even weeks sooner than otherwise possible! The supercomputer resources used to run the simulation are unaffected by co-scheduling the data visualization jobs, so the model runs continuously while the data are visualized. Our just-in-time data visualization software looks to increase climate scientists' productivity as climate modeling moves into exascale era of computing.

  14. Hydroclimatic variability in the Lake Mondsee region and its relationships with large-scale climate anomaly patterns

    Science.gov (United States)

    Rimbu, Norel; Ionita, Monica; Swierczynski, Tina; Brauer, Achim; Kämpf, Lucas; Czymzik, Markus

    2017-04-01

    Flood triggered detrital layers in varved sediments of Lake Mondsee, located at the northern fringe of the European Alps (47°48'N,13°23'E), provide an important archive of regional hydroclimatic variability during the mid- to late Holocene. To improve the interpretation of the flood layer record in terms of large-scale climate variability, we investigate the relationships between observational hydrological records from the region, like the Mondsee lake level, the runoff of the lake's main inflow Griesler Ache, with observed precipitation and global climate patterns. The lake level shows a strong positive linear trend during the observational period in all seasons. Additionally, lake level presents important interannual to multidecadal variations. These variations are associated with distinct seasonal atmospheric circulation patterns. A pronounced anomalous anticyclonic center over the Iberian Peninsula is associated with high lake levels values during winter. This center moves southwestward during spring, summer and autumn. In the same time, a cyclonic anomaly center is recorded over central and western Europe. This anomalous circulation extends southwestward from winter to autumn. Similar atmospheric circulation patterns are associated with river runoff and precipitation variability from the region. High lake levels are associated with positive local precipitation anomalies in all seasons as well as with negative local temperature anomalies during spring, summer and autumn. A correlation analysis reveals that lake level, runoff and precipitation variability is related to large-scale sea surface temperature anomaly patterns in all seasons suggesting a possible impact of large-scale climatic modes, like the North Atlantic Oscillation and Atlantic Multidecadal Oscillation on hydroclimatic variability in the Lake Mondsee region. The results presented in this study can be used for a more robust interpretation of the long flood layer record from Lake Mondsee sediments

  15. Time-dependent patterns in quasivertical cylindrical binary convection

    Science.gov (United States)

    Alonso, Arantxa; Mercader, Isabel; Batiste, Oriol

    2018-02-01

    This paper reports on numerical investigations of the effect of a slight inclination α on pattern formation in a shallow vertical cylindrical cell heated from below for binary mixtures with a positive value of the Soret coefficient. By using direct numerical simulation of the three-dimensional Boussinesq equations with Soret effect in cylindrical geometry, we show that a slight inclination of the cell in the range α ≈0.036 rad =2∘ strongly influences pattern selection. The large-scale shear flow (LSSF) induced by the small tilt of gravity overcomes the squarelike arrangements observed in noninclined cylinders in the Soret regime, stratifies the fluid along the direction of inclination, and produces an enhanced separation of the two components of the mixture. The competition between shear effects and horizontal and vertical buoyancy alters significantly the dynamics observed in noninclined convection. Additional unexpected time-dependent patterns coexist with the basic LSSF. We focus on an unsual periodic state recently discovered in an experiment, the so-called superhighway convection state (SHC), in which ascending and descending regions of fluid move in opposite directions. We provide numerical confirmation that Boussinesq Navier-Stokes equations with standard boundary conditions contain the essential ingredients that allow for the existence of such a state. Also, we obtain a persistent heteroclinic structure where regular oscillations between a SHC pattern and a state of nearly stationary longitudinal rolls take place. We characterize numerically these time-dependent patterns and investigate the dynamics around the threshold of convection.

  16. It's time for a crisper image of the Face of the Earth: Landsat and climate time series for massive land cover & climate change mapping at detailed resolution.

    Science.gov (United States)

    Pons, Xavier; Miquel, Ninyerola; Oscar, González-Guerrero; Cristina, Cea; Pere, Serra; Alaitz, Zabala; Lluís, Pesquer; Ivette, Serral; Joan, Masó; Cristina, Domingo; Maria, Serra Josep; Jordi, Cristóbal; Chris, Hain; Martha, Anderson; Juanjo, Vidal

    2014-05-01

    Combining climate dynamics and land cover at a relative coarse resolution allows a very interesting approach to global studies, because in many cases these studies are based on a quite high temporal resolution, but they may be limited in large areas like the Mediterranean. However, the current availability of long time series of Landsat imagery and spatially detailed surface climate models allow thinking on global databases improving the results of mapping in areas with a complex history of landscape dynamics, characterized by fragmentation, or areas where relief creates intricate climate patterns that can be hardly monitored or modeled at coarse spatial resolutions. DinaCliVe (supported by the Spanish Government and ERDF, and by the Catalan Government, under grants CGL2012-33927 and SGR2009-1511) is the name of the project that aims analyzing land cover and land use dynamics as well as vegetation stress, with a particular emphasis on droughts, and the role that climate variation may have had in such phenomena. To meet this objective is proposed to design a massive database from long time series of Landsat land cover products (grouped in quinquennia) and monthly climate records (in situ climate data) for the Iberian Peninsula (582,000 km2). The whole area encompasses 47 Landsat WRS2 scenes (Landsat 4 to 8 missions, from path 197 to 202 and from rows 30 to 34), and 52 Landsat WRS1 scenes (for the previous Landsat missions, 212 to 221 and 30 to 34). Therefore, a mean of 49.5 Landsat scenes, 8 quinquennia per scene and a about 6 dates per quinquennium , from 1975 to present, produces around 2376 sets resulting in 30 m x 30 m spatial resolution maps. Each set is composed by highly coherent geometric and radiometric multispectral and multitemporal (to account for phenology) imagery as well as vegetation and wetness indexes, and several derived topographic information (about 10 Tbyte of data). Furthermore, on the basis on a previous work: the Digital Climatic Atlas of

  17. Application of hierarchical clustering method to classify of space-time rainfall patterns

    Science.gov (United States)

    Yu, Hwa-Lung; Chang, Tu-Je

    2010-05-01

    Understanding the local precipitation patterns is essential to the water resources management and flooding mitigation. The precipitation patterns can vary in space and time depending upon the factors from different spatial scales such as local topological changes and macroscopic atmospheric circulation. The spatiotemporal variation of precipitation in Taiwan is significant due to its complex terrain and its location at west pacific and subtropical area, where is the boundary between the pacific ocean and Asia continent with the complex interactions among the climatic processes. This study characterizes local-scale precipitation patterns by classifying the historical space-time precipitation records. We applied the hierarchical ascending clustering method to analyze the precipitation records from 1960 to 2008 at the six rainfall stations located in Lan-yang catchment at the northeast of the island. Our results identify the four primary space-time precipitation types which may result from distinct driving forces from the changes of atmospheric variables and topology at different space-time scales. This study also presents an important application of the statistical downscaling to combine large-scale upper-air circulation with local space-time precipitation patterns.

  18. Regional Famine Patterns of The Last Millennium as Influenced by Aggregated Climate Teleconnections

    Science.gov (United States)

    Santoro, Michael Melton

    Famine is the result of a complex set of environmental and social factors. Climate conditions are established as environmental factors contributing to famine occurrence, often through teleconnective patterns. This dissertation is designed to investigate the combined influence on world famine patterns of teleconnections, specifically the North Atlantic Oscillation (NAO), Southern Oscillation (SO), Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), or regional climate variations such as the South Asian Summer Monsoon (SASM). The investigation is three regional case studies of famine patterns specifically, Egypt, the British Isles, and India. The first study (published in Holocene) employs the results of a Principal Component Analysis (PCA) yielding a SO-NAO eigenvector to predict major Egyptian famines between AD 1049-1921. The SO-NAO eigenvector (1) successfully discriminates between the 5-10 years preceding a famine and the other years, (2) predicts eight of ten major famines, and (3) correctly identifies fifty out of eighty events (63%) of food availability decline leading up to major famines. The second study investigates the impact of the NAO, PDO, SO, and AMO on 63 British Isle famines between AD 1049 and 1914 attributed to climate causes in historical texts. Stepwise Regression Analysis demonstrates that the 5-year lagged NAO is the primary teleconnective influence on famine patterns; it successfully discriminates 73.8% of weather-related famines in the British Isles from 1049 to 1914. The final study identifies the aggregated influence of the NAO, SO, PDO, and SASM on 70 Indian famines from AD 1049 to 1955. PCA results in a NAO-SOI vector and SASM vector that predicts famine conditions with a positive NAO and negative SO, distinct from the secondary SASM influence. The NAO-famine relationship is consistently the strongest; 181 of 220 (82%) of all famines occurred during positive NAO years. Ultimately, the causes of famine are complex

  19. Climatic potential for passive cooling of buildings by night-time ventilation in Europe

    International Nuclear Information System (INIS)

    Artmann, N.; Manz, H.; Heiselberg, P.

    2007-01-01

    Due to an overall trend towards less heating and more cooling demands in buildings in many European countries over the last few decades, passive cooling by night-time ventilation is seen as a promising technique, particularly for commercial buildings in the moderate or cold climates of Central, Eastern and Northern Europe. The basic concept involves cooling the building structure overnight in order to provide a heat sink that is available during the occupancy period. In this study, the potential for passive cooling of buildings by night-time ventilation was evaluated by analysing climatic data, without considering any building-specific parameters. An approach for calculating degree-hours based on a variable building temperature - within a standardized range of thermal comfort - is presented and applied to climatic data of 259 stations all over Europe. The results show a high potential for night-time ventilative cooling over the whole of Northern Europe and still significant potential in Central, Eastern and even some regions of Southern Europe. However, due to the inherent stochastic properties of weather patterns, a series of warmer nights can occur at some locations, where passive cooling by night-time ventilation alone might not be sufficient to guarantee thermal comfort

  20. Waiting Time Distributions for Pattern Occurrence in a Constrained Sequence

    Directory of Open Access Journals (Sweden)

    Valeri Stefanov

    2007-01-01

    Full Text Available A binary sequence of zeros and ones is called a (d,k-sequence if it does not contain runs of zeros of length either less than d or greater than k, where d and k are arbitrary, but fixed, non-negative integers and d < k. Such sequences find an abundance of applications in communications, in particular for magnetic and optical recording. Occasionally, one requires that (d,k-sequences do not contain a specific pattern w. Therefore, distribution results concerning pattern occurrence in (d,k-sequences are of interest. In this paper we study the distribution of the waiting time until the r th occurrence of a pattern w in a random (d,k-sequence generated by a Markov source. Numerical examples are also provided.

  1. Continental-scale patterns and climatic drivers of fruiting phenology: A quantitative Neotropical review

    Science.gov (United States)

    Mendoza, Irene; Peres, Carlos A.; Morellato, Leonor Patrícia C.

    2017-01-01

    environmental cues such as water level (6%), solar radiation or photoperiod (3.2%), and ENSO events (1.4%) were rarely addressed. In addition, drivers were analyzed statistically in only 38% of datasets and techniques were basically correlative, with only 4.8% of studies including any consideration of the inherently autocorrelated character of phenological time series. Fruiting peaks were significantly more often reported during the rainy season both in rainforests and cerrado woodlands, which is at odds with the relatively aseasonal character of the former vegetation type. Given that climatic models predict harsh future conditions for the tropics, we urgently need to determine the magnitude of changes in plant reproductive phenology and distinguish those from cyclical oscillations. Long-term monitoring and herbarium data are therefore key for detecting these trends. Our review shows that the unevenness in geographic distribution of studies, and diversity of sampling methods, vegetation types, and research motivation hinder the emergence of clear general phenological patterns and drivers for the Neotropics. We therefore call for prioritizing research in unexplored areas, and improving the quantitative component and statistical design of reproductive phenology studies to enhance our predictions of climate change impacts on tropical plants and animals.

  2. Patterns of Tree Species Diversity in Relation to Climatic Factors on the Sierra Madre Occidental, Mexico

    Science.gov (United States)

    Silva-Flores, Ramón; Pérez-Verdín, Gustavo; Wehenkel, Christian

    2014-01-01

    Biological diversity can be defined as variability among living organisms from all sources, including terrestrial organisms, marine and other aquatic ecosystems, and the ecological complexes which they are part of. This includes diversity within species, between species, and of ecosystems. Numerous diversity indices combine richness and evenness in a single expression, and several climate-based explanations have been proposed to explain broad-scale diversity patterns. However, climate-based water-energy dynamics appears to be an essential factor that determines patterns of diversity. The Mexican Sierra Madre Occidental occupies an area of about 29 million hectares and is located between the Neotropical and Holarctic ecozones. It shelters a high diversity of flora, including 24 different species of Pinus (ca. 22% on the whole), 54 species of Quercus (ca. 9–14%), 7 species of Arbutus (ca. 50%) and many other trees species. The objectives of this study were to model how tree species diversity is related to climatic and geographic factors and stand density and to test the Metabolic Theory, Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis, Mid-Domain Effect, and the Water-Energy Dynamic Theory on the Sierra Madre Occidental, Durango. The results supported the Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis and Water-Energy Dynamic Theory, but not the Mid-Domain Effect or Metabolic Theory. The annual aridity index was the variable most closely related to the diversity indices analyzed. Contemporary climate was found to have moderate to strong effects on the minimum, median and maximum tree species diversity. Because water-energy dynamics provided a satisfactory explanation for the patterns of minimum, median and maximum diversity, an understanding of this factor is critical to future biodiversity research. Quantile regression of the data showed that the three diversity parameters of tree species are generally higher in cold

  3. Patterns of tree species diversity in relation to climatic factors on the Sierra Madre Occidental, Mexico.

    Science.gov (United States)

    Silva-Flores, Ramón; Pérez-Verdín, Gustavo; Wehenkel, Christian

    2014-01-01

    Biological diversity can be defined as variability among living organisms from all sources, including terrestrial organisms, marine and other aquatic ecosystems, and the ecological complexes which they are part of. This includes diversity within species, between species, and of ecosystems. Numerous diversity indices combine richness and evenness in a single expression, and several climate-based explanations have been proposed to explain broad-scale diversity patterns. However, climate-based water-energy dynamics appears to be an essential factor that determines patterns of diversity. The Mexican Sierra Madre Occidental occupies an area of about 29 million hectares and is located between the Neotropical and Holarctic ecozones. It shelters a high diversity of flora, including 24 different species of Pinus (ca. 22% on the whole), 54 species of Quercus (ca. 9-14%), 7 species of Arbutus (ca. 50%) and many other trees species. The objectives of this study were to model how tree species diversity is related to climatic and geographic factors and stand density and to test the Metabolic Theory, Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis, Mid-Domain Effect, and the Water-Energy Dynamic Theory on the Sierra Madre Occidental, Durango. The results supported the Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis and Water-Energy Dynamic Theory, but not the Mid-Domain Effect or Metabolic Theory. The annual aridity index was the variable most closely related to the diversity indices analyzed. Contemporary climate was found to have moderate to strong effects on the minimum, median and maximum tree species diversity. Because water-energy dynamics provided a satisfactory explanation for the patterns of minimum, median and maximum diversity, an understanding of this factor is critical to future biodiversity research. Quantile regression of the data showed that the three diversity parameters of tree species are generally higher in cold

  4. Disentangling the climate-driven bimodal growth pattern in coastal and continental Mediterranean pine stands.

    Science.gov (United States)

    Pacheco, Arturo; Camarero, J Julio; Ribas, Montse; Gazol, Antonio; Gutierrez, E; Carrer, Marco

    2018-02-15

    Mediterranean climate promotes two distinct growth peaks separated by summer quiescence in trees. This bimodal pattern has been associated to favourable growing conditions during spring and autumn when mild temperatures and soil-water availability enhance cambial activity. Climatic models predict progressive warming and drying for the Mediterranean Basin, which could shorten or shift the spring and autumn growing seasons. We explored this idea by comparing two sites with different Mediterranean climate types (continental/dry and coastal/wet) and studied how climate drives the bimodal growth pattern in Aleppo pine (Pinus halepensis). Specifically we investigated the intra-annual changes in wood anatomy and the corresponding formation of density fluctuations (IADF). Trees on both sites were analyzed by dendrometer monitoring and by developing chronologies of wood anatomical traits. Radial-increment dynamics followed a similar bimodal pattern in both sites but coastal trees showed higher increments during the spring and autumn growth peaks, especially in autumn. The summer rest of cambium activity occurs almost one month earlier in the coastal than in the inland site. Lumen area and cell-wall thickness were significantly smaller in the continental site, while the increment rate of cell-wall thickness during an IADF event was much higher in the coastal pines. The accumulated soil moisture deficit was the main climatic constraint of tracheid enlargement in continental pines. Intra-annual density fluctuations were more frequent in the coastal trees where wood anatomy features recover to average values after such events, meanwhile inland trees presented a much lower recovery rate. Growth bimodality and the formation of density fluctuations were linked, but mild climate of the coastal site allows a longer growing season, which explains why trees in this area showed higher and more variable growth rates. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Observed variations in U.S. frost timing linked to atmospheric circulation patterns.

    Science.gov (United States)

    Strong, Courtenay; McCabe, Gregory J

    2017-05-23

    Several studies document lengthening of the frost-free season within the conterminous United States (U.S.) over the past century, and report trends in spring and fall frost timing that could stem from hemispheric warming. In the absence of warming, theory and case studies link anomalous frost timing to atmospheric circulation anomalies. However, recent efforts to relate a century of observed changes in U.S. frost timing to various atmospheric circulations yielded only modest correlations, leaving the relative importance of circulation and warming unclear. Here, we objectively partition the U.S. into four regions and uncover atmospheric circulations that account for 25-48% of spring and fall-frost timing. These circulations appear responsive to historical warming, and they consistently account for more frost timing variability than hemispheric or regional temperature indices. Reliable projections of future variations in growing season length depend on the fidelity of these circulation patterns in global climate models.

  6. Climate Teleconnections and Recent Patterns of Human and Animal Disease Outbreaks

    Science.gov (United States)

    Anyamba, Assaf; Linthicum, Kenneth J.; Small, Jennifer L.; Collins, Katherine M.; Tucker, Compton J.; Pak, Edwin W.; Britch, Seth C.; Eastman, James Ronald; Pinzon, Jorge E.; Russell, Kevin L.

    2011-01-01

    Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Extremes in rainfall (drought and flood) during the period 2004 - 2009 have privileged different disease vectors. Chikungunya outbreaks occurred during the severe drought from late 2004 to 2006 over coastal East Africa and the western Indian Ocean islands and in the later years India and Southeast Asia. The chikungunya pandemic was caused by a Central/East African genotype that appears to have been precipitated and then enhanced by global-scale and regional climate conditions in these regions. Outbreaks of Rift Valley fever occurred following excessive rainfall period from late 2006 to late 2007 in East Africa and Sudan, and then in 2008 - 2009 in Southern Africa. The shift in the outbreak patterns of Rift Valley fever from East Africa to Southern Africa followed a transition of the El Nino/Southern Oscillation (ENSO) phenomena from the warm El Nino phase (2006-2007) to the cold La Nina phase (2007-2009) and associated patterns of variability in the greater Indian Ocean basin that result in the displacement of the centres of above normal rainfall from Eastern to Southern Africa. Understanding the background patterns of climate variability both at global and regional scale and their impacts on ecological drivers of vector borne-diseases is critical in long-range planning of appropriate response and mitigation measures.

  7. Memory for Random Time Patterns in Audition, Touch, and Vision.

    Science.gov (United States)

    Kang, HiJee; Lancelin, Denis; Pressnitzer, Daniel

    2018-03-22

    Perception deals with temporal sequences of events, like series of phonemes for audition, dynamic changes in pressure for touch textures, or moving objects for vision. Memory processes are thus needed to make sense of the temporal patterning of sensory information. Recently, we have shown that auditory temporal patterns could be learned rapidly and incidentally with repeated exposure [Kang et al., 2017]. Here, we tested whether rapid incidental learning of temporal patterns was specific to audition, or if it was a more general property of sensory systems. We used a same behavioral task in three modalities: audition, touch, and vision, for stimuli having identical temporal statistics. Participants were presented with sequences of acoustic pulses for audition, motion pulses to the fingertips for touch, or light pulses for vision. Pulses were randomly and irregularly spaced, with all inter-pulse intervals in the sub-second range and all constrained to be longer than the temporal acuity in any modality. This led to pulse sequences with an average inter-pulse interval of 166 ms, a minimum inter-pulse interval of 60 ms, and a total duration of 1.2 s. Results showed that, if a random temporal pattern re-occurred at random times during an experimental block, it was rapidly learned, whatever the sensory modality. Moreover, patterns first learned in the auditory modality displayed transfer of learning to either touch or vision. This suggests that sensory systems may be exquisitely tuned to incidentally learn re-occurring temporal patterns, with possible cross-talk between the senses. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Modeling activity patterns of wildlife using time-series analysis.

    Science.gov (United States)

    Zhang, Jindong; Hull, Vanessa; Ouyang, Zhiyun; He, Liang; Connor, Thomas; Yang, Hongbo; Huang, Jinyan; Zhou, Shiqiang; Zhang, Zejun; Zhou, Caiquan; Zhang, Hemin; Liu, Jianguo

    2017-04-01

    The study of wildlife activity patterns is an effective approach to understanding fundamental ecological and evolutionary processes. However, traditional statistical approaches used to conduct quantitative analysis have thus far had limited success in revealing underlying mechanisms driving activity patterns. Here, we combine wavelet analysis, a type of frequency-based time-series analysis, with high-resolution activity data from accelerometers embedded in GPS collars to explore the effects of internal states (e.g., pregnancy) and external factors (e.g., seasonal dynamics of resources and weather) on activity patterns of the endangered giant panda ( Ailuropoda melanoleuca ). Giant pandas exhibited higher frequency cycles during the winter when resources (e.g., water and forage) were relatively poor, as well as during spring, which includes the giant panda's mating season. During the summer and autumn when resources were abundant, pandas exhibited a regular activity pattern with activity peaks every 24 hr. A pregnant individual showed distinct differences in her activity pattern from other giant pandas for several months following parturition. These results indicate that animals adjust activity cycles to adapt to seasonal variation of the resources and unique physiological periods. Wavelet coherency analysis also verified the synchronization of giant panda activity level with air temperature and solar radiation at the 24-hr band. Our study also shows that wavelet analysis is an effective tool for analyzing high-resolution activity pattern data and its relationship to internal and external states, an approach that has the potential to inform wildlife conservation and management across species.

  9. Average chewing pattern improvements following Disclusion Time reduction.

    Science.gov (United States)

    Kerstein, Robert B; Radke, John

    2017-05-01

    Studies involving electrognathographic (EGN) recordings of chewing improvements obtained following occlusal adjustment therapy are rare, as most studies lack 'chewing' within the research. The objectives of this study were to determine if reducing long Disclusion Time to short Disclusion Time with the immediate complete anterior guidance development (ICAGD) coronoplasty in symptomatic subjects altered their average chewing pattern (ACP) and their muscle function. Twenty-nine muscularly symptomatic subjects underwent simultaneous EMG and EGN recordings of right and left gum chewing, before and after the ICAGD coronoplasty. Statistical differences in the mean Disclusion Time, the mean muscle contraction cycle, and the mean ACP resultant from ICAGD underwent the Student's paired t-test (α = 0.05). Disclusion Time reductions from ICAGD were significant (2.11-0.45 s. p = 0.0000). Post-ICAGD muscle changes were significant in the mean area (p = 0.000001), the peak amplitude (p = 0.00005), the time to peak contraction (p chewing position became closer to centric occlusion (p chewing velocities increased (p chewing pattern (ACP) shape, speed, consistency, muscular coordination, and vertical opening improvements can be significantly improved in muscularly dysfunctional TMD patients within one week's time of undergoing the ICAGD enameloplasty. Computer-measured and guided occlusal adjustments quickly and physiologically improved chewing, without requiring the patients to wear pre- or post-treatment appliances.

  10. Time-dependent scaling patterns in high frequency financial data

    Science.gov (United States)

    Nava, Noemi; Di Matteo, Tiziana; Aste, Tomaso

    2016-10-01

    We measure the influence of different time-scales on the intraday dynamics of financial markets. This is obtained by decomposing financial time series into simple oscillations associated with distinct time-scales. We propose two new time-varying measures of complexity: 1) an amplitude scaling exponent and 2) an entropy-like measure. We apply these measures to intraday, 30-second sampled prices of various stock market indices. Our results reveal intraday trends where different time-horizons contribute with variable relative amplitudes over the course of the trading day. Our findings indicate that the time series we analysed have a non-stationary multifractal nature with predominantly persistent behaviour at the middle of the trading session and anti-persistent behaviour at the opening and at the closing of the session. We demonstrate that these patterns are statistically significant, robust, reproducible and characteristic of each stock market. We argue that any modelling, analytics or trading strategy must take into account these non-stationary intraday scaling patterns.

  11. Time-series analysis of foreign exchange rates using time-dependent pattern entropy

    Science.gov (United States)

    Ishizaki, Ryuji; Inoue, Masayoshi

    2013-08-01

    Time-dependent pattern entropy is a method that reduces variations to binary symbolic dynamics and considers the pattern of symbols in a sliding temporal window. We use this method to analyze the instability of daily variations in foreign exchange rates, in particular, the dollar-yen rate. The time-dependent pattern entropy of the dollar-yen rate was found to be high in the following periods: before and after the turning points of the yen from strong to weak or from weak to strong, and the period after the Lehman shock.

  12. Acute ischaemic stroke prediction from physiological time series patterns

    Directory of Open Access Journals (Sweden)

    Qing Zhang,

    2013-05-01

    Full Text Available BackgroundStroke is one of the major diseases with human mortality. Recent clinical research has indicated that early changes in common physiological variables represent a potential therapeutic target, thus the manipulation of these variables may eventually yield an effective way to optimise stroke recovery.AimsWe examined correlations between physiological parameters of patients during the first 48 hours after a stroke, and their stroke outcomes after 3 months. We wanted to discover physiological determinants that could be used to improve health outcomes by supporting the medical decisions that need to be made early on a patient’s stroke experience.Method We applied regression-based machine learning techniques to build a prediction algorithm that can forecast 3-month outcomes from initial physiological time series data during the first 48 hours after stroke. In our method, not only did we use statistical characteristics as traditional prediction features, but also we adopted trend patterns of time series data as new key features.ResultsWe tested our prediction method on a real physiological data set of stroke patients. The experiment results revealed an average high precision rate: 90%. We also tested prediction methods only considering statistical characteristics of physiological data, and concluded an average precision rate: 71%.ConclusionWe demonstrated that using trend pattern features in prediction methods improved the accuracy of stroke outcome prediction. Therefore, trend patterns of physiological time series data have an important role in the early treatment of patients with acute ischaemic stroke.

  13. Time scale interaction in low-order climate models

    NARCIS (Netherlands)

    Veen, Lennaert van

    2002-01-01

    Over the last decades, the study of climate variability has attracted ample attention. The observation of structural climatic change has led to questions about the causes and the mechanisms involved. The task to understand interactions in the complex climate system is particularly di±cult because of

  14. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world.

    Science.gov (United States)

    Melillo, J M; Frey, S D; DeAngelis, K M; Werner, W J; Bernard, M J; Bowles, F P; Pold, G; Knorr, M A; Grandy, A S

    2017-10-06

    In a 26-year soil warming experiment in a mid-latitude hardwood forest, we documented changes in soil carbon cycling to investigate the potential consequences for the climate system. We found that soil warming results in a four-phase pattern of soil organic matter decay and carbon dioxide fluxes to the atmosphere, with phases of substantial soil carbon loss alternating with phases of no detectable loss. Several factors combine to affect the timing, magnitude, and thermal acclimation of soil carbon loss. These include depletion of microbially accessible carbon pools, reductions in microbial biomass, a shift in microbial carbon use efficiency, and changes in microbial community composition. Our results support projections of a long-term, self-reinforcing carbon feedback from mid-latitude forests to the climate system as the world warms. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  15. Time-series analysis of multiple foreign exchange rates using time-dependent pattern entropy

    Science.gov (United States)

    Ishizaki, Ryuji; Inoue, Masayoshi

    2018-01-01

    Time-dependent pattern entropy is a method that reduces variations to binary symbolic dynamics and considers the pattern of symbols in a sliding temporal window. We use this method to analyze the instability of daily variations in multiple foreign exchange rates. The time-dependent pattern entropy of 7 foreign exchange rates (AUD/USD, CAD/USD, CHF/USD, EUR/USD, GBP/USD, JPY/USD, and NZD/USD) was found to be high in the long period after the Lehman shock, and be low in the long period after Mar 2012. We compared the correlation matrix between exchange rates in periods of high and low of the time-dependent pattern entropy.

  16. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006

    Science.gov (United States)

    Xia, Jiangzhou; Liu, Shuguang; Liang, Shunlin; Chen, Yang; Xu, Wenfang; Yuan, Wenping

    2014-01-01

    Grassland ecosystems play an important role in subsistence agriculture and the global carbon cycle. However, the global spatio-temporal patterns and environmental controls of grassland biomass are not well quantified and understood. The goal of this study was to estimate the spatial and temporal patterns of the global grassland biomass and analyze their driving forces using field measurements, Normalized Difference Vegetation Index (NDVI) time series from satellite data, climate reanalysis data, and a satellite-based statistical model. Results showed that the NDVI-based biomass carbon model developed from this study explained 60% of the variance across 38 sites globally. The global carbon stock in grassland aboveground live biomass was 1.05 Pg·C, averaged from 1982 to 2006, and increased at a rate of 2.43 Tg·C·y−1 during this period. Temporal change of the global biomass was significantly and positively correlated with temperature and precipitation. The distribution of biomass carbon density followed the precipitation gradient. The dynamics of regional grassland biomass showed various trends largely determined by regional climate variability, disturbances, and management practices (such as grazing for meat production). The methods and results from this study can be used to monitor the dynamics of grassland aboveground biomass and evaluate grassland susceptibility to climate variability and change, disturbances, and management.

  17. Physical Activity Behavior Patterns during School Leisure Time in Children

    Directory of Open Access Journals (Sweden)

    Chad Smith

    2016-01-01

    Full Text Available Optimizing physical activity (PA in children is paramount to attenuate the incidence of chronic disease and to improve social and cognitive health. Limited research exists examining the observed PA patterns during school leisure times in children from the U.S. The purpose of this study was to examine the observed PA patterns of children during three school leisure times: before school, during lunch, and after school. The SOPLAY instrument was used to observe PA during the three leisure times across six weeks at four elementary schools in the U.S. Observer PA counts were stratified by sex, PA intensity (sedentary, walking, and very active, and leisure time. Multi-level models were employed to examine the effect of leisure time and PA intensity on observer PA counts, adjusting for day and school-level clustering. Lunch displayed the greatest number of counts for sedentary, walking, and very active PA intensities (p 0.05. After school displayed the fewest counts for walking and very active PA in both sexes (p < 0.05. An emphasis should be placed on increasing walking and very active PA intensities before school and during lunch in girls and after school in both sexes. Keywords: after school, before school, lunch, SOPLAY, systematic observation

  18. Assessing the relationship between surface urban heat islands and landscape patterns across climatic zones in China.

    Science.gov (United States)

    Yang, Qiquan; Huang, Xin; Li, Jiayi

    2017-08-24

    The urban heat island (UHI) effect exerts a great influence on the Earth's environment and human health and has been the subject of considerable attention. Landscape patterns are among the most important factors relevant to surface UHIs (SUHIs); however, the relationship between SUHIs and landscape patterns is poorly understood over large areas. In this study, the surface UHI intensity (SUHII) is defined as the temperature difference between urban and suburban areas, and the landscape patterns are quantified by the urban-suburban differences in several typical landscape metrics (ΔLMs). Temperature and land-cover classification datasets based on satellite observations were applied to analyze the relationship between SUHII and ΔLMs in 332 cities/city agglomerations distributed in different climatic zones of China. The results indicate that SUHII and its correlations with ΔLMs are profoundly influenced by seasonal, diurnal, and climatic factors. The impacts of different land-cover types on SUHIs are different, and the landscape patterns of the built-up and vegetation (including forest, grassland, and cultivated land) classes have the most significant effects on SUHIs. The results of this study will help us to gain a deeper understanding of the relationship between the SUHI effect and landscape patterns.

  19. Discovering significant evolution patterns from satellite image time series.

    Science.gov (United States)

    Petitjean, François; Masseglia, Florent; Gançarski, Pierre; Forestier, Germain

    2011-12-01

    Satellite Image Time Series (SITS) provide us with precious information on land cover evolution. By studying these series of images we can both understand the changes of specific areas and discover global phenomena that spread over larger areas. Changes that can occur throughout the sensing time can spread over very long periods and may have different start time and end time depending on the location, which complicates the mining and the analysis of series of images. This work focuses on frequent sequential pattern mining (FSPM) methods, since this family of methods fits the above-mentioned issues. This family of methods consists of finding the most frequent evolution behaviors, and is actually able to extract long-term changes as well as short term ones, whenever the change may start and end. However, applying FSPM methods to SITS implies confronting two main challenges, related to the characteristics of SITS and the domain's constraints. First, satellite images associate multiple measures with a single pixel (the radiometric levels of different wavelengths corresponding to infra-red, red, etc.), which makes the search space multi-dimensional and thus requires specific mining algorithms. Furthermore, the non evolving regions, which are the vast majority and overwhelm the evolving ones, challenge the discovery of these patterns. We propose a SITS mining framework that enables discovery of these patterns despite these constraints and characteristics. Our proposal is inspired from FSPM and provides a relevant visualization principle. Experiments carried out on 35 images sensed over 20 years show the proposed approach makes it possible to extract relevant evolution behaviors.

  20. Harvest time of Cryptomeria japonica seeds depending on climate factors

    Science.gov (United States)

    Son, Seog-Gu; Kim, Hyo-Jeong; Kim, Chang-Soo; Byun, Kwang-Ok

    2010-05-01

    Sound seeds should have good germination rates and seed germination can be influenced by several factors. Seed picking time is regarded as one of the necessary elements to obtain sound seeds. From a clonal seed orchard of Cryptomeria japonica located in southern part of Korean peninsular, cones were picked about every 10 days from 30th of July 2005 to 30th of October in both 2005 and 2006. We have also analyzed the effects of climatic factors about two consecutive years on seed productivity. From the picked cones, seeds were collected and these germination ability, seed size and embryo shapes were investigated according to cone picking time. The 1,000-seed weight picked on 18th of August was 3.3 g and 5.3 g on 30th of September 2005and 2006. The size of seeds picked from 18th of August to 30th of September increased from 19.3 mm to 21.3 mm in length and from 15.8 mm to 18.5 mm in width. Depending on picking time, various shapes of embryos, including embryos with liquid material, jellied material and fully matured ones were observed. Germination aspects also varied throughout the test days. About two weeks after seeding in a glass petri-dish, germinal apparatuses appeared from each test seed sets which had been picked from after 10 August 2005 and 10 August 2006. The germination rates started from 10.7% from seeds picked 20 August 2006. Average germination rate in 2005 was 18.3 and 19.6 in 2006. In 2005, the highest germination rate was 34.3% from seeds picked on the 30th of September. In 2006, the highest germination rate was 31.7% for seeds picked at the same date as the 2005 seeds. After September, the highest germination rate for picked seeds decreased in both 2005 and 2006. Among the climatic factors, monthly sum of temperature and of precipitation were the main factors for maturation of C. japonica seeds. The results implied that the best cone picking time for the Korean C. japonica seed orchard to be around the end of September.

  1. Patterns of distribution, abundance, and change over time in a subarctic marine bird community

    Science.gov (United States)

    Cushing, Daniel A.; Roby, Daniel D.; Irons, David B.

    2018-01-01

    Over recent decades, marine ecosystems of Prince William Sound (PWS), Alaska, have experienced concurrent effects of natural and anthropogenic perturbations, including variability in the climate system of the northeastern Pacific Ocean. We documented spatial and temporal patterns of variability in the summer marine bird community in relation to habitat and climate variability using boat-based surveys of marine birds conducted during the period 1989-2012. We hypothesized that a major factor structuring marine bird communities in PWS would be proximity to the shoreline, which is theorized to relate to aspects of food web structure. We also hypothesized that shifts in physical ecosystem drivers differentially affected nearshore-benthic and pelagic components of PWS food webs. We evaluated support for our hypotheses using an approach centered on community-level patterns of spatial and temporal variability. We found that an environmental gradient related to water depth and distance from shore was the dominant factor spatially structuring the marine bird community. Responses of marine birds to this onshore-offshore environmental gradient were related to dietary specialization, and separated marine bird taxa by prey type. The primary form of temporal variability over the study period was monotonic increases or decreases in abundance for 11 of 18 evaluated genera of marine birds; 8 genera had declined, whereas 3 had increased. The greatest declines occurred in genera associated with habitats that were deeper and farther from shore. Furthermore, most of the genera that declined primarily fed on pelagic prey resources, such as forage fish and mesozooplankton, and few were directly affected by the 1989 Exxon Valdez oil spill. Our observations of synchronous declines are indicative of a shift in pelagic components of PWS food webs. This pattern was correlated with climate variability at time-scales of several years to a decade.

  2. Patterns of distribution, abundance, and change over time in a subarctic marine bird community

    Science.gov (United States)

    Cushing, Daniel; Roby, Daniel D.; Irons, David B.

    2017-01-01

    Over recent decades, marine ecosystems of Prince William Sound (PWS), Alaska, have experienced concurrent effects of natural and anthropogenic perturbations, including variability in the climate system of the northeastern Pacific Ocean. We documented spatial and temporal patterns of variability in the summer marine bird community in relation to habitat and climate variability using boat-based surveys of marine birds conducted during the period 1989–2012. We hypothesized that a major factor structuring marine bird communities in PWS would be proximity to the shoreline, which is theorized to relate to aspects of food web structure. We also hypothesized that shifts in physical ecosystem drivers differentially affected nearshore-benthic and pelagic components of PWS food webs. We evaluated support for our hypotheses using an approach centered on community-level patterns of spatial and temporal variability. We found that an environmental gradient related to water depth and distance from shore was the dominant factor spatially structuring the marine bird community. Responses of marine birds to this onshore-offshore environmental gradient were related to dietary specialization, and separated marine bird taxa by prey type. The primary form of temporal variability over the study period was monotonic increases or decreases in abundance for 11 of 18 evaluated genera of marine birds; 8 genera had declined, whereas 3 had increased. The greatest declines occurred in genera associated with habitats that were deeper and farther from shore. Furthermore, most of the genera that declined primarily fed on pelagic prey resources, such as forage fish and mesozooplankton, and few were directly affected by the 1989 Exxon Valdez oil spill. Our observations of synchronous declines are indicative of a shift in pelagic components of PWS food webs. This pattern was correlated with climate variability at time-scales of several years to a decade.

  3. Time-warp invariant pattern detection with bursting neurons

    International Nuclear Information System (INIS)

    Gollisch, Tim

    2008-01-01

    Sound patterns are defined by the temporal relations of their constituents, individual acoustic cues. Auditory systems need to extract these temporal relations to detect or classify sounds. In various cases, ranging from human speech to communication signals of grasshoppers, this pattern detection has been found to display invariance to temporal stretching or compression of the sound signal ('linear time-warp invariance'). In this work, a four-neuron network model is introduced, designed to solve such a detection task for the example of grasshopper courtship songs. As an essential ingredient, the network contains neurons with intrinsic bursting dynamics, which allow them to encode durations between acoustic events in short, rapid sequences of spikes. As shown by analytical calculations and computer simulations, these neuronal dynamics result in a powerful mechanism for temporal integration. Finally, the network reads out the encoded temporal information by detecting equal activity of two such bursting neurons. This leads to the recognition of rhythmic patterns independent of temporal stretching or compression

  4. Sequentially firing neurons confer flexible timing in neural pattern generators

    International Nuclear Information System (INIS)

    Urban, Alexander; Ermentrout, Bard

    2011-01-01

    Neuronal networks exhibit a variety of complex spatiotemporal patterns that include sequential activity, synchrony, and wavelike dynamics. Inhibition is the primary means through which such patterns are implemented. This behavior is dependent on both the intrinsic dynamics of the individual neurons as well as the connectivity patterns. Many neural circuits consist of networks of smaller subcircuits (motifs) that are coupled together to form the larger system. In this paper, we consider a particularly simple motif, comprising purely inhibitory interactions, which generates sequential periodic dynamics. We first describe the dynamics of the single motif both for general balanced coupling (all cells receive the same number and strength of inputs) and then for a specific class of balanced networks: circulant systems. We couple these motifs together to form larger networks. We use the theory of weak coupling to derive phase models which, themselves, have a certain structure and symmetry. We show that this structure endows the coupled system with the ability to produce arbitrary timing relationships between symmetrically coupled motifs and that the phase relationships are robust over a wide range of frequencies. The theory is applicable to many other systems in biology and physics.

  5. Loss pattern identification in near-real-time accounting systems

    International Nuclear Information System (INIS)

    Argentesi, F.

    1983-01-01

    To maximize the benefits from an advanced safeguards technique such as near-real-time accounting, sophisticated methods of analysing sequential material accounting data are necessary. The methods must be capable of controlling the overall false-alarm rate while assuring good power of detection against all possible diversion scenarios. A method drawn from the field of pattern recognition and related to the alarm-sequence chart appears to be promising. Power curves based on Monte Carlo calculations illustrate the improvements over more conventional methods. (author)

  6. Climate limits across space and time on European forest structure

    Science.gov (United States)

    Moreno, A. L. S.; Neumann, M.; Hasenauer, H.

    2017-12-01

    The impact climate has on forests has been extensively studied. However, the large scale effect climate has on forest structures, such as average diameters, heights and basal area are understudied in a spatially explicit manner. The limits, tipping points and thresholds that climate places on forest structures dictate the services a forest may provide, the vulnerability of a forest to mortality and the potential value of the timber there within. The majority of current research either investigates climate impacts on forest pools and fluxes, on a tree physiological scale or on case studies that are used to extrapolate results and potential impacts. A spatially explicit study on how climate affects forest structure over a large region would give valuable information to stakeholders who are more concerned with ecosystem services that cannot be described by pools and fluxes but require spatially explicit information - such as biodiversity, habitat suitability, and market values. In this study, we quantified the limits that climate (maximum, minimum temperature and precipitation) places on 3 forest structures, diameter at breast height, height, and basal area throughout Europe. Our results show clear climatic zones of high and low upper limits for each forest structure variable studied. We also spatially analyzed how climate restricts the potential bio-physical upper limits and creates tipping points of each forest structure variable and which climate factors are most limiting. Further, we demonstrated how the climate change has affected 8 individual forests across Europe and then the continent as a whole. We find that diameter, height and basal area are limited by climate in different ways and that areas may have high upper limits in one structure and low upper limits in another limitted by different climate variables. We also found that even though individual forests may have increased their potential upper limit forest structure values, European forests as a whole

  7. Impact of severe climate variability on lion home range and movement patterns in the Amboseli ecosystem, Kenya

    Directory of Open Access Journals (Sweden)

    J.H. Tuqa

    2014-12-01

    Full Text Available In this study, we were interested in understanding if droughts influence the home range of predators such as lions, and if it does, in what ways the droughts influenced lions to adjust their home range, in response to prey availability. We monitored movements of ten lions fitted with GPS-GSM collars in order to analyze their home range and movement patterns over a six year period (2007–2012. We assessed the impact of a severe drought on the lion home range and movement patterns in the Amboseli ecosystem. There was a strong positive correlation between the home range size and distance moved in 24 h before and during the drought (2007–2009, while after the drought there was a significant negative correlation. A weak positive correlation was evident between the lion home range and rainfall amounts (2010–2012. The male and female home ranges varied over the study period. The home range size and movement patterns coincided with permanent swamps and areas of high prey density inside the protected area. Over the course of the dry season and following the drought, the ranges initially shrank and then expanded in response to decreasing prey densities. The lions spent considerable time outside the park boundaries, particularly after severe the drought. We conclude that under conditions of fragmented habitats, severe climate conditions create new challenges for lion conservation due to effects on prey availability and subsequent influences on carnivore species ranging patterns. Stochastic weather patterns can force wide-ranging species beyond current reserve boundaries, into areas where there will be greater conflicts with humans. Keywords: Climate change, African lion, Panthera leo

  8. Benthic foraminiferal and isotopic patterns during the Early Eocene Climatic Optimum (Aktulagay section, Kazakhstan)

    Science.gov (United States)

    Deprez, Arne; Tesseur, Steven; Stassen, Peter; D'haenens, Simon; Steurbaut, Etienne; King, Christopher; Claeys, Philippe; Speijer, Robert P.

    2015-04-01

    The early Eocene is characterized by long-term global warming culminating in the Early Eocene Climatic Optimum (EECO). During this time interval, the Peri-Tethys was connected to the Arctic and Atlantic Oceans by north-south and east-west trending seaways. The Aktulagay section in Kazakhstan provides an expanded record of the middle Ypresian (NP11-13, ~54-50 Ma; King et al., 2013), including the EECO. The marl sequence features a series of sapropel beds, observed throughout the Peri-Tethys, indicative of basin-wide episodic hypoxic events. In order to unravel paleoenvironmental changes, we carried out quantitative faunal studies and stable isotopic (C, O) investigations on excellently preserved foraminiferal assemblages. The period from 54 to 52.5 Ma (NP11 to lower NP12; Alashen Formation) is characterized by a diverse assemblage of deep outer neritic (~200-250 m) benthic foraminifera, with common Pulsiphonina prima and Paralabamina lunata. The initially (54 Ma) well-ventilated oligo- to mesotrophic seafloor conditions gradually changed to more eutrophic and oxygen-limited. These conditions were more permanent in the sapropel-bearing unit at 52.5-52 Ma (middle NP12; Aktulagay B1 unit). This observation is based on the dominance of Anomalinoides acutus and Bulimina aksuatica and the lower diversity. Also the upward migration of endobenthic species, as suggested by rising δ13Cendobenthic, supports this interpretation. These low-oxygen conditions might have been caused by a transgression, flooding lowlands. Benthic foraminiferal assemblages dominated by Epistominella minuta at ~52-50 Ma (top NP12-NP13; Aktulagay B2 unit) suggest an oligotrophic environment, with transient pulses of phytodetritus. Dinoflagellate blooms and Acarinina isotope values at ~50.5 Ma indicate lower salinity (lower δ18O) and higher productivity (higher δ13C), possibly due to riverine input. Large river plumes, episodically reaching the area, in a monsoonal climate context, might explain this

  9. Classification of time series patterns from complex dynamic systems

    Energy Technology Data Exchange (ETDEWEB)

    Schryver, J.C.; Rao, N.

    1998-07-01

    An increasing availability of high-performance computing and data storage media at decreasing cost is making possible the proliferation of large-scale numerical databases and data warehouses. Numeric warehousing enterprises on the order of hundreds of gigabytes to terabytes are a reality in many fields such as finance, retail sales, process systems monitoring, biomedical monitoring, surveillance and transportation. Large-scale databases are becoming more accessible to larger user communities through the internet, web-based applications and database connectivity. Consequently, most researchers now have access to a variety of massive datasets. This trend will probably only continue to grow over the next several years. Unfortunately, the availability of integrated tools to explore, analyze and understand the data warehoused in these archives is lagging far behind the ability to gain access to the same data. In particular, locating and identifying patterns of interest in numerical time series data is an increasingly important problem for which there are few available techniques. Temporal pattern recognition poses many interesting problems in classification, segmentation, prediction, diagnosis and anomaly detection. This research focuses on the problem of classification or characterization of numerical time series data. Highway vehicles and their drivers are examples of complex dynamic systems (CDS) which are being used by transportation agencies for field testing to generate large-scale time series datasets. Tools for effective analysis of numerical time series in databases generated by highway vehicle systems are not yet available, or have not been adapted to the target problem domain. However, analysis tools from similar domains may be adapted to the problem of classification of numerical time series data.

  10. Spatial patterns in timing of the diurnal temperature cycle

    Directory of Open Access Journals (Sweden)

    T. R. H. Holmes

    2013-10-01

    Full Text Available This paper investigates the structural difference in timing of the diurnal temperature cycle (DTC over land resulting from choice of measuring device or model framework. It is shown that the timing can be reliably estimated from temporally sparse observations acquired from a constellation of low Earth-orbiting satellites given record lengths of at least three months. Based on a year of data, the spatial patterns of mean DTC timing are compared between temperature estimates from microwave Ka-band, geostationary thermal infrared (TIR, and numerical weather prediction model output from the Global Modeling and Assimilation Office (GMAO. It is found that the spatial patterns can be explained by vegetation effects, sensing depth differences and more speculatively the orientation of orographic relief features. In absolute terms, the GMAO model puts the peak of the DTC on average at 12:50 local solar time, 23 min before TIR with a peak temperature at 13:13 (both averaged over Africa and Europe. Since TIR is the shallowest observation of the land surface, this small difference represents a structural error that possibly affects the model's ability to assimilate observations that are closely tied to the DTC. The equivalent average timing for Ka-band is 13:44, which is influenced by the effect of increased sensing depth in desert areas. For non-desert areas, the Ka-band observations lag the TIR observations by only 15 min, which is in agreement with their respective theoretical sensing depth. The results of this comparison provide insights into the structural differences between temperature measurements and models, and can be used as a first step to account for these differences in a coherent way.

  11. Formulating and testing a method for perturbing precipitation time series to reflect anticipated climatic changes

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Georgiadis, Stylianos; Gregersen, Ida Bülow

    2017-01-01

    Urban water infrastructure has very long planning horizons, and planning is thus very dependent on reliable estimates of the impacts of climate change. Many urban water systems are designed using time series with a high temporal resolution. To assess the impact of climate change on these systems......, similarly high-resolution precipitation time series for future climate are necessary. Climate models cannot at their current resolutions provide these time series at the relevant scales. Known methods for stochastic downscaling of climate change to urban hydrological scales have known shortcomings...... in constructing realistic climate-changed precipitation time series at the sub-hourly scale. In the present study we present a deterministic methodology to perturb historical precipitation time series at the minute scale to reflect non-linear expectations to climate change. The methodology shows good skill...

  12. Land processes lead to surprising patterns in atmospheric residence time

    Science.gov (United States)

    van der Ent, R.; Tuinenburg, O.

    2017-12-01

    Our research using atmospheric moisture tracking methods shows that the global average atmospheric residence time of evaporation is 8-10 days. This residence time appears to be Gamma distributed with a higher probability of shorter than average residence times and a long tail. As a consequence the median of this residence time is around 5 days. In some places in the world the first few hours/days after evaporation there seems to be a little chance for a moisture particle to precipitate again, which is reflected by a Gamma distribution having a shape parameter below 1. In this study we present global maps of this parameter using different datasets (GLDAS and ERA-Interim). The shape parameter is as such also a measure for the land-atmospheric coupling strength along the path of the atmospheric water particle. We also find that different evaporation components: canopy interception, soil evaporation and transpiration appear to have different residence time distributions. We find a daily cycle in the residence time distribution over land, which is not present over the oceans. In this paper we will show which of the evaporation components is mainly responsible for this daily pattern and thus exhibits the largest daily cycle of land-atmosphere coupling strength.

  13. Spatial allocation of future landscape patterns for biomass and alleviation of hydrologic impacts of climate change

    Science.gov (United States)

    Ssegane, H.; Negri, M. C.

    2015-12-01

    Current and future demand for food, feed, fiber, and energy require novel approaches to land management, which demands that multifunctional landscapes are created to integrate various ecosystem functions into a sustainable land use. Concurrently, the Intergovernmental Panel on Climate Change (IPCC) predicts an increase of 2 to 4°C over the next 100 years above the preindustrial baseline, beginning as early as 2016 to 2035 over all seasons in the North America. This climate change is projected to further strain water resources currently stressed by anthropogenic activities. Therefore, placement of bioenergy crops on strategically selected sub-field areas in an agricultural landscape has the potential to increase the environmental and economic sustainability if location and choice of the crops result in minimal disruption of current food production systems and therefore cause minimal indirect land use change. This study identified sub-field marginal areas in an agricultural watershed using soil-based environmental sustainability criteria and a crop productivity index. Future landscape patterns (FLPs) were developed by allocating bioenergy crops (switchgrass: Panicum virgatum or shrub willows: Salix spp.) to these marginal areas (20% of the watershed). SWAT hydrologic model and dynamically downscaled climatic projection were used to asses impact of climate change on extreme flow conditions, total annual production of commodity and bioenergy crops, and water quality under current and future landscape patterns for the mid-21st century (2045-2055) and late 21st century (2085-2095) climatic projections. The frequency of flood and drought conditions was projected to increase while the corresponding durations to decrease. Sediment yields were projected to increase by 85% to 170% while FLPs would mitigate this increase by 26% to 32%.

  14. The spatial pattern of leaf phenology and its response to climate change in China.

    Science.gov (United States)

    Dai, Junhu; Wang, Huanjiong; Ge, Quansheng

    2014-05-01

    Leaf phenology has been shown to be one of the most important indicators of the effects of climate change on biological systems. Few such studies have, however, been published detailing the relationship between phenology and climate change in Asian contexts. With the aim of quantifying species' phenological responsiveness to temperature and deepening understandings of spatial patterns of phenological and climate change in China, this study analyzes the first leaf date (FLD) and the leaf coloring date (LCD) from datasets of four woody plant species, Robinia pseudoacacia, Ulmus pumila, Salix babylonica, and Melia azedarach, collected from 1963 to 2009 at 47 Chinese Phenological Observation Network (CPON) stations spread across China (from 21° to 50° N). The results of this study show that changes in temperatures in the range of 39-43 days preceding the date of FLD of these plants affected annual variations in FLD, while annual variations in temperature in the range of 71-85 days preceding LCD of these plants affected the date of LCD. Average temperature sensitivity of FLD and LCD for these plants was -3.93 to 3.30 days °C(-1) and 2.11 to 4.43 days °C⁻¹, respectively. Temperature sensitivity of FLD was found to be stronger at lower latitudes or altitude as well as in more continental climates, while the response of LCD showed no consistent pattern. Within the context of significant warming across China during the study period, FLD was found to have advanced by 5.44 days from 1960 to 2009; over the same period, LCD was found to have been delayed by 4.56 days. These findings indicate that the length of the growing season of the four plant species studied was extended by a total of 10.00 days from 1960 to 2009. They also indicate that phenological response to climate is highly heterogeneous spatially.

  15. Modelling regional cropping patterns under scenarios of climate and socio-economic change in Hungary.

    Science.gov (United States)

    Li, Sen; Juhász-Horváth, Linda; Pintér, László; Rounsevell, Mark D A; Harrison, Paula A

    2018-05-01

    Impacts of socio-economic, political and climatic change on agricultural land systems are inherently uncertain. The role of regional and local-level actors is critical in developing effective policy responses that accommodate such uncertainty in a flexible and informed way across governance levels. This study identified potential regional challenges in arable land use systems, which may arise from climate and socio-economic change for two counties in western Hungary: Veszprém and Tolna. An empirically-grounded, agent-based model was developed from an extensive farmer household survey about local land use practices. The model was used to project future patterns of arable land use under four localised, stakeholder-driven scenarios of plausible future socio-economic and climate change. The results show strong differences in farmers' behaviour and current agricultural land use patterns between the two regions, highlighting the need to implement focused policy at the regional level. For instance, policy that encourages local food security may need to support improvements in the capacity of farmers to adapt to physical constraints in Veszprém and farmer access to social capital and environmental awareness in Tolna. It is further suggested that the two regions will experience different challenges to adaptation under possible future conditions (up to 2100). For example, Veszprém was projected to have increased fallow land under a scenario with high inequality, ineffective institutions and higher-end climate change, implying risks of land abandonment. By contrast, Tolna was projected to have a considerable decline in major cereals under a scenario assuming a de-globalising future with moderate climate change, inferring challenges to local food self-sufficiency. The study provides insight into how socio-economic and physical factors influence the selection of crop rotation plans by farmers in western Hungary and how farmer behaviour may affect future risks to agricultural

  16. A polynomial time biclustering algorithm for finding approximate expression patterns in gene expression time series

    Directory of Open Access Journals (Sweden)

    Madeira Sara C

    2009-06-01

    Full Text Available Abstract Background The ability to monitor the change in expression patterns over time, and to observe the emergence of coherent temporal responses using gene expression time series, obtained from microarray experiments, is critical to advance our understanding of complex biological processes. In this context, biclustering algorithms have been recognized as an important tool for the discovery of local expression patterns, which are crucial to unravel potential regulatory mechanisms. Although most formulations of the biclustering problem are NP-hard, when working with time series expression data the interesting biclusters can be restricted to those with contiguous columns. This restriction leads to a tractable problem and enables the design of efficient biclustering algorithms able to identify all maximal contiguous column coherent biclusters. Methods In this work, we propose e-CCC-Biclustering, a biclustering algorithm that finds and reports all maximal contiguous column coherent biclusters with approximate expression patterns in time polynomial in the size of the time series gene expression matrix. This polynomial time complexity is achieved by manipulating a discretized version of the original matrix using efficient string processing techniques. We also propose extensions to deal with missing values, discover anticorrelated and scaled expression patterns, and different ways to compute the errors allowed in the expression patterns. We propose a scoring criterion combining the statistical significance of expression patterns with a similarity measure between overlapping biclusters. Results We present results in real data showing the effectiveness of e-CCC-Biclustering and its relevance in the discovery of regulatory modules describing the transcriptomic expression patterns occurring in Saccharomyces cerevisiae in response to heat stress. In particular, the results show the advantage of considering approximate patterns when compared to state of

  17. Transmission of linear regression patterns between time series: from relationship in time series to complex networks.

    Science.gov (United States)

    Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui

    2014-07-01

    The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.

  18. It's about time: a comparison of Canadian and American time-activity patterns.

    Science.gov (United States)

    Leech, Judith A; Nelson, William C; Burnett, Richard T; Aaron, Shawn; Raizenne, Mark E

    2002-11-01

    This study compares two North American time-activity data bases: the National Human Activity Pattern Survey (NHAPS) of 9386 interviewees in 1992-1994 in the continental USA with the Canadian Human Activity Pattern Survey (CHAPS) of 2381 interviewees in 1996-1997 in four major Canadian cities. Identical surveys and methodology were used to collect this data: random sample telephone selection within the identified telephone exchanges, computer-assisted telephone interviews, overselection of children and weekends in the 24-h recall diary and the same interviewers. Very similar response rates were obtained: 63% (NHAPS) and 64.5% (CHAPS). Results of comparisons by age within major activity and location groups suggest activity and location patterns are very similar (most differences being less than 1% or 14 min in a 24-h day) with the exception of seasonal differences. Canadians spend less time outdoors in winter and less time indoors in summer than their U.S. counterparts. When exposure assessments use time of year or outdoor/indoor exposure gradients, these differences may result in significant differences in exposure assessments. Otherwise, the 24-h time activity patterns of North Americans are remarkably similar and use of the combined data set for some exposure assessments may be feasible.

  19. Aerosol Climate Time Series Evaluation In ESA Aerosol_cci

    Science.gov (United States)

    Popp, T.; de Leeuw, G.; Pinnock, S.

    2015-12-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. By the end of 2015 full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which are also validated. The paper will summarize and discuss the results of major reprocessing and validation conducted in 2015. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products

  20. On the relationship between large-scale climate modes and regional synoptic patterns that drive Victorian rainfall

    OpenAIRE

    D. C. Verdon-Kidd; A. S. Kiem

    2009-01-01

    In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a cl...

  1. The Construction of a Sustainable Development in Times of Climate Change

    OpenAIRE

    Brandstedt, Eric

    2013-01-01

    This dissertation is a contribution to the debate about ‘climate justice’, i.e. a call for a just and feasible distribution of responsibility for addressing climate change. The main argument is a proposal for a cautious, practicable, and necessary step in the right direction: given the set of theoretical and practical obstacles to climate justice, we must begin by making contemporary development practices sustainable. In times of climate change, this is done by recognising and responding to t...

  2. Impact of climate change on the timing of strawberry phenological processes in the Baltic States

    Directory of Open Access Journals (Sweden)

    Līga Bethere

    2016-02-01

    Full Text Available Climate change has been shown to impact aspects of agriculture and phenology. This study aims to quantify changes in the timing of garden strawberry blooms and harvests in the Baltic States using Regional Climate Models (RCMs. First, parameters for a strawberry phenology model based on the growing degree day (GDD methodology were determined. Growing degree days were calculated using a modified sine wave method that estimates the diurnal temperature cycle from the daily maximum and minimum temperature. Model parameters include the base temperature and the required cumulative GDD sum, estimated from phenological and meteorological observations in Latvia for the years 2010–2013 via iterative calibration. Then an ensemble of bias-corrected RCM results (ENSEMBLES project was used as input to the phenological model to estimate the timing of strawberry phenological processes for the years 1951–2099. The results clearly show that strawberry phenological processes can be expected to occur earlier in the future, with a significant change in regional patterns. Differences between coastal and inland regions are expected to decrease over time. The uncertainty of the results was estimated using the RCM ensemble spread, with northern coastal locations showing the largest spread.

  3. Plant-climate interactions over historical and geological time

    International Nuclear Information System (INIS)

    Cowling, Sharon A.

    2000-04-01

    Data-model comparisons are a useful approach to elucidating the relative influence of past climate change on vegetation dynamics over various spatial (global, regional, stand) and temporal (historical, geological) scales. Comparisons between changes in tree species abundance reconstructed from pollen and simulated from a forest gap model, for example, indicate that based solely on climate change over the past 1500 years, southern Scandinavian forests should be co-dominated by Tilia and Fagus. Picea has begun to more closely track changes in climate since 1000 years ago, however in the last few centuries the realised range limit of Picea has overshot the potential limit because of planting and establishment during favourable years. Not only can palaeodata-model comparisons provide practical information for forest managers, but they can help further our appreciation of the climatic catalysts underlying evolution of terrestrial ecosystems. Past changes in atmospheric CO 2 , independently or in combination with changes in climate, may have altered vegetation form and function such that palaeoplant assemblages were much different than today, speciation may have been promoted via biological vicariance, and some species may have been pushed to extinction. A thorough understanding of modern plant-climate interactions requires consideration of how past climate and atmospheric CO 2 events could have shaped physiological, biochemical and biophysical functioning of existing vegetation

  4. Plant-climate interactions over historical and geological time

    Energy Technology Data Exchange (ETDEWEB)

    Cowling, Sharon A.

    2000-04-01

    Data-model comparisons are a useful approach to elucidating the relative influence of past climate change on vegetation dynamics over various spatial (global, regional, stand) and temporal (historical, geological) scales. Comparisons between changes in tree species abundance reconstructed from pollen and simulated from a forest gap model, for example, indicate that based solely on climate change over the past 1500 years, southern Scandinavian forests should be co-dominated by Tilia and Fagus. Picea has begun to more closely track changes in climate since 1000 years ago, however in the last few centuries the realised range limit of Picea has overshot the potential limit because of planting and establishment during favourable years. Not only can palaeodata-model comparisons provide practical information for forest managers, but they can help further our appreciation of the climatic catalysts underlying evolution of terrestrial ecosystems. Past changes in atmospheric CO{sub 2}, independently or in combination with changes in climate, may have altered vegetation form and function such that palaeoplant assemblages were much different than today, speciation may have been promoted via biological vicariance, and some species may have been pushed to extinction. A thorough understanding of modern plant-climate interactions requires consideration of how past climate and atmospheric CO{sub 2} events could have shaped physiological, biochemical and biophysical functioning of existing vegetation.

  5. Establishing the common patterns of future tropospheric ozone under diverse climate change scenarios

    Science.gov (United States)

    Jimenez-Guerrero, Pedro; Gómez-Navarro, Juan J.; Jerez, Sonia; Lorente-Plazas, Raquel; Baro, Rocio; Montávez, Juan P.

    2013-04-01

    The impacts of climate change on air quality may affect long-term air quality planning. However, the policies aimed at improving air quality in the EU directives have not accounted for the variations in the climate. Climate change alone influences future air quality through modifications of gas-phase chemistry, transport, removal, and natural emissions. As such, the aim of this work is to check whether the projected changes in gas-phase air pollution over Europe depends on the scenario driving the regional simulation. For this purpose, two full-transient regional climate change-air quality projections for the first half of the XXI century (1991-2050) have been carried out with MM5+CHIMERE system, including A2 and B2 SRES scenarios. Experiments span the periods 1971-2000, as a reference, and 2071-2100, as future enhanced greenhouse gas and aerosol scenarios (SRES A2 and B2). The atmospheric simulations have a horizontal resolution of 25 km and 23 vertical layers up to 100 mb, and were driven by ECHO-G global climate model outputs. The analysis focuses on the connection between meteorological and air quality variables. Our simulations suggest that the modes of variability for tropospheric ozone and their main precursors hardly change under different SRES scenarios. The effect of changing scenarios has to be sought in the intensity of the changing signal, rather than in the spatial structure of the variation patterns, since the correlation between the spatial patterns of variability in A2 and B2 simulation is r > 0.75 for all gas-phase pollutants included in this study. In both cases, full-transient simulations indicate an enhanced enhanced chemical activity under future scenarios. The causes for tropospheric ozone variations have to be sought in a multiplicity of climate factors, such as increased temperature, different distribution of precipitation patterns across Europe, increased photolysis of primary and secondary pollutants due to lower cloudiness, etc

  6. Time rescaling and pattern formation in biological evolution.

    Science.gov (United States)

    Igamberdiev, Abir U

    2014-09-01

    Biological evolution is analyzed as a process of continuous measurement in which biosystems interpret themselves in the environment resulting in changes of both. This leads to rescaling of internal time (heterochrony) followed by spatial reconstructions of morphology (heterotopy). The logical precondition of evolution is the incompleteness of biosystem's internal description, while the physical precondition is the uncertainty of quantum measurement. The process of evolution is based on perpetual changes in interpretation of information in the changing world. In this interpretation the external biospheric gradients are used for establishment of new features of organization. It is concluded that biological evolution involves the anticipatory epigenetic changes in the interpretation of genetic symbolism which cannot generally be forecasted but can provide canalization of structural transformations defined by the existing organization and leading to predictable patterns of form generation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Searching for Contracting Patterns over Time: Do Prime Contractor and Subcontractor Relations Follow Similar Patterns for Professional Services Provision?

    Science.gov (United States)

    Ponomariov, Branco; Kingsley, Gordon; Boardman, Craig

    2011-01-01

    This paper compares over a 12-year period (1) patterns of contracting between a state transportation agency and its prime contractors providing engineering design services with (2) patterns between these prime contractors and their subcontractors. We find evidence of different contracting patterns at each level that emerge over time and coexist in…

  8. Circulation pattern-based assessment of projected climate change for a catchment in Spain

    Science.gov (United States)

    Gupta, Hoshin V.; Sapriza-Azuri, Gonzalo; Jódar, Jorge; Carrera, Jesús

    2018-01-01

    We present an approach for evaluating catchment-scale hydro-meteorological impacts of projected climate change based on the atmospheric circulation patterns (ACPs) of a region. Our approach is motivated by the conjecture that GCMs are especially good at simulating the atmospheric circulation patterns that control moisture transport, and which can be expected to change in response to global warming. In support of this, we show (for the late 20th century) that GCMs provide much better simulations of ACPs than those of precipitation amount for the Upper Guadiana Basin in central Spain. For the same period, four of the twenty GCMs participating in the most recent (5th) IPCC Assessment provide quite accurate representations of the spatial patterns of mean sea level pressure, the frequency distribution of ACP type, the 'number of rainy days per month', and the daily 'probability of rain' (they also reproduce the trend of 'wet day amount', though not the actual magnitudes). A consequent analysis of projected trends and changes in hydro-climatic ACPology between the late 20th and 21st Centuries indicates that (1) actual changes appear to be occurring faster than predicted by the models, and (2) for two greenhouse gas emission scenarios (RCP 4.5 and RCP 8.5) the expected decline in precipitation volume is associated mainly with a few specific ACPs (primarily directional flows from the Atlantic Ocean and Cantabric Sea), and with decreasing probability of rain (linked to increasing temperatures) rather than wet day amount. Our approach is a potentially more insightful alternative for catchment-scale climate impacts assessments than the common approach of statistical downscaling and bias correction.

  9. The sociological imagination in a time of climate change

    Science.gov (United States)

    Norgaard, Kari Marie

    2018-04-01

    Despite rising calls for social science knowledge in the face of climate change, too few sociologists have been engaged in the conversations about how we have arrived at such perilous climatic circumstances, or how society can change course. With its attention to the interactive dimensions of social order between individuals, social norms, cultural systems and political economy, the discipline of sociology is uniquely positioned to be an important leader in this conversation. In this paper I suggest that in order to understand and respond to climate change we need two kinds of imagination: 1) to see the relationships between human actions and their impacts on earth's biophysical system (ecological imagination) and 2) to see the relationships within society that make up this environmentally damaging social structure (sociological imagination). The scientific community has made good progress in developing our ecological imagination but still need to develop a sociological imagination. The application of a sociological imagination allows for a powerfully reframing of four key problems in the current interdisciplinary conversation on climate change: why climate change is happening, how we are being impacted, why we have failed to successfully respond so far, and how we might be able to effectively do so. I visit each of these four questions describing the current understanding and show the importance of the sociological imagination and other insights from the field of sociology. I close with reflections on current limitations in sociology's potential to engage climate change and the Anthropocene.

  10. Climate change and the global pattern of moraine-dammed glacial lake outburst floods

    Directory of Open Access Journals (Sweden)

    S. Harrison

    2018-04-01

    Full Text Available Despite recent research identifying a clear anthropogenic impact on glacier recession, the effect of recent climate change on glacier-related hazards is at present unclear. Here we present the first global spatio-temporal assessment of glacial lake outburst floods (GLOFs focusing explicitly on lake drainage following moraine dam failure. These floods occur as mountain glaciers recede and downwaste. GLOFs can have an enormous impact on downstream communities and infrastructure. Our assessment of GLOFs associated with the rapid drainage of moraine-dammed lakes provides insights into the historical trends of GLOFs and their distributions under current and future global climate change. We observe a clear global increase in GLOF frequency and their regularity around 1930, which likely represents a lagged response to post-Little Ice Age warming. Notably, we also show that GLOF frequency and regularity – rather unexpectedly – have declined in recent decades even during a time of rapid glacier recession. Although previous studies have suggested that GLOFs will increase in response to climate warming and glacier recession, our global results demonstrate that this has not yet clearly happened. From an assessment of the timing of climate forcing, lag times in glacier recession, lake formation and moraine-dam failure, we predict increased GLOF frequencies during the next decades and into the 22nd century.

  11. Climate change and the global pattern of moraine-dammed glacial lake outburst floods

    Science.gov (United States)

    Harrison, Stephan; Kargel, Jeffrey S.; Huggel, Christian; Reynolds, John; Shugar, Dan H.; Betts, Richard A.; Emmer, Adam; Glasser, Neil; Haritashya, Umesh K.; Klimeš, Jan; Reinhardt, Liam; Schaub, Yvonne; Wiltshire, Andy; Regmi, Dhananjay; Vilímek, Vít

    2018-04-01

    Despite recent research identifying a clear anthropogenic impact on glacier recession, the effect of recent climate change on glacier-related hazards is at present unclear. Here we present the first global spatio-temporal assessment of glacial lake outburst floods (GLOFs) focusing explicitly on lake drainage following moraine dam failure. These floods occur as mountain glaciers recede and downwaste. GLOFs can have an enormous impact on downstream communities and infrastructure. Our assessment of GLOFs associated with the rapid drainage of moraine-dammed lakes provides insights into the historical trends of GLOFs and their distributions under current and future global climate change. We observe a clear global increase in GLOF frequency and their regularity around 1930, which likely represents a lagged response to post-Little Ice Age warming. Notably, we also show that GLOF frequency and regularity - rather unexpectedly - have declined in recent decades even during a time of rapid glacier recession. Although previous studies have suggested that GLOFs will increase in response to climate warming and glacier recession, our global results demonstrate that this has not yet clearly happened. From an assessment of the timing of climate forcing, lag times in glacier recession, lake formation and moraine-dam failure, we predict increased GLOF frequencies during the next decades and into the 22nd century.

  12. Dynamic data analysis of climate and recharge conditions over time in the Edwards Aquifer, Texas

    Science.gov (United States)

    Pierce, S. A.; Collins, J.; Banner, J.

    2017-12-01

    Understanding the temporal patterns in datasets related to climate, recharge, and water resource conditions is important for informing water management and policy decisions. Data analysis and pipelines for evaluating these disparate sources of information are challenging to set up and rely on emerging informatics tools to complete. This project gathers data from both historical and recent sources for the Edwards Aquifer of central Texas. The Edwards faces a unique array of challenges, as it is composed of karst limestone, is susceptible to contaminants and climate change, and is expected to supply water for a rapidly growing population. Given these challenges, new approaches to integrating data will be particularly important. Case study data from the Edwards is used to evaluate aquifer and hydrologic system conditions over time as well as to discover patterns and possible relationships across the information sources. Prior research that evaluated trends in discharge and recharge of the aquifer is revisited by considering new data from 1992-2015, and the sustainability of the Edwards as a water resource within the more recent time period is addressed. Reusable and shareable analytical data pipelines are constructed using Jupyter Notebooks and Python libraries, and an interactive visualization is implemented with the information. In addition to the data sources that are utilized for the water balance analyses, the Global Surface Water Monitoring System from the University of Minnesota, a tool that integrates a wide number of satellite datasets with known surface water dynamics and machine learning, is used to evaluate water body persistence and change over time at regional scales. Preliminary results indicate that surface water body over the Edwards with differing aerial extents are declining, excepting some dam-controlled lakes in the region. Other existing tools and machine learning applications are also considered. Results are useful to the Texas Water Research

  13. Extracting Leading Nonlinear Modes of Changing Climate From Global SST Time Series

    Science.gov (United States)

    Mukhin, D.; Gavrilov, A.; Loskutov, E. M.; Feigin, A. M.; Kurths, J.

    2017-12-01

    Data-driven modeling of climate requires adequate principal variables extracted from observed high-dimensional data. For constructing such variables it is needed to find spatial-temporal patterns explaining a substantial part of the variability and comprising all dynamically related time series from the data. The difficulties of this task rise from the nonlinearity and non-stationarity of the climate dynamical system. The nonlinearity leads to insufficiency of linear methods of data decomposition for separating different processes entangled in the observed time series. On the other hand, various forcings, both anthropogenic and natural, make the dynamics non-stationary, and we should be able to describe the response of the system to such forcings in order to separate the modes explaining the internal variability. The method we present is aimed to overcome both these problems. The method is based on the Nonlinear Dynamical Mode (NDM) decomposition [1,2], but takes into account external forcing signals. An each mode depends on hidden, unknown a priori, time series which, together with external forcing time series, are mapped onto data space. Finding both the hidden signals and the mapping allows us to study the evolution of the modes' structure in changing external conditions and to compare the roles of the internal variability and forcing in the observed behavior. The method is used for extracting of the principal modes of SST variability on inter-annual and multidecadal time scales accounting the external forcings such as CO2, variations of the solar activity and volcanic activity. The structure of the revealed teleconnection patterns as well as their forecast under different CO2 emission scenarios are discussed.[1] Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical modes of climate variability. Scientific Reports, 5, 15510. [2] Gavrilov, A., Mukhin, D., Loskutov, E., Volodin, E., Feigin, A., & Kurths, J. (2016

  14. Aerosol Climate Time Series in ESA Aerosol_cci

    Science.gov (United States)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2016-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension

  15. Impacts of Autonomous Vehicles on Consumers Time-Use Patterns

    Directory of Open Access Journals (Sweden)

    Saptarshi Das

    2017-12-01

    Full Text Available We use the American Time Use Survey (ATUS to characterize how different consumers in the US might use Autonomous Vehicles (AVs. Our approach is to identify sub-groups of the population likely to benefit from AVs and compare their activity patterns with an otherwise similar group. The first subgroup is working individuals who drive to work with long total travel times. Auto-travelers in the top 20% of travel time number 19 million and travel 1.6 h more on a workday than those in the bottom 80%. For car-commuting professionals, the additional travel time of the long-traveling group comes from 30 min less work, 29 min less sleep, and 30 min less television watching per day. The second subgroup is working individuals with a long travel time and who take public transport. Long public transit riders show very similar differences in activity times as the driving subgroup. Work, sleep, and video functionalities of AVs are presumably in high demand by both groups. The third sub-group identified is elderly retired people. AVs enable mobility-restricted groups to travel more like those without restrictions. We compare two age groups, 60–75 years and >75 years old, the latter, on average, experiencing more mobility restrictions than their younger counterparts. The retired population older than 75 years numbers 16 million and travels 14 min less per day than retirees aged 60–75 years. The main activity change corresponding to this reduced travel is 7 min per day less shopping and 8 min per day less socializing. If older retired people use AVs to match the lifestyle of the 60–75 years old group, this would induce additional personal travel and retail sector demand. The economic, environmental and social implications of AV are very difficult to predict but expected to be transformative. The contribution of this work is that it utilizes time-use surveys to suggest how AV adoption could induce lifestyle changes inside and outside the vehicle.

  16. Patterns and timing of loess-paleosol transitions in Eurasia: Constraints for paleoclimate studies

    Science.gov (United States)

    Zeeden, Christian; Hambach, Ulrich; Obreht, Igor; Hao, Qingzhen; Abels, Hemmo A.; Veres, Daniel; Lehmkuhl, Frank; Gavrilov, Milivoj B.; Marković, Slobodan B.

    2018-03-01

    Loess-paleosol sequences are the most extensive terrestrial paleoclimate records in Europe and Asia documenting atmospheric circulation patterns, vegetation, and sedimentary dynamics in response to glacial-interglacial cyclicity. Between the two sides of the Eurasian continent, differences may exist in response and response times to glacial changes and finding these is essential to understand the climate systems of the northern hemisphere. Therefore, assessment of common patterns and regional differences in loess-paleosol sequences (LPS) is vital, but remains, however, uncertain. Another key to interpret these records is to constrain the mechanisms responsible for the formation and preservation of paleosols and loess layers in these paleoclimate archives. This study therefore compares LPS magnetic susceptibility records as proxies for paleosol formation intensity for selected sites from the central Chinese Loess Plateau and the Carpathian Basin in Europe over the last 440 kyr. Inconsistencies and crucial issues concerning the timing, correlation and paleoclimate potential of selected Eurasian LPS are outlined. Our comparison of Eurasian LPS shows generally similar patterns of paleosol formation, while highlighting several crucial differences. Especially for paleosols developed around 200 and 300 ka, the reported timing of soil formation differs by up to 30 ka. In addition, a drying and cooling trend over the last 300 ka has been documented in Europe, with no such evidence in the Asian records. The comparison shows that there is still uncertainty in defining the chronostratigraphic framework for these records on glacial-interglacial time scales in the order of 5-30 kyr for the last 440 ka. We argue that the baseline of the magnetic susceptibility proxy in loess from the Carpathian Basin is the most striking difference between European LPS and the Chinese Loess Plateau. In our opinion, many of the current timing/age differences may be overcome once a comparable

  17. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability

    Science.gov (United States)

    Joseph M. Craine; Andrew J. Elmore; Marcos P. M. Aidar; Mercedes Bustamante; Todd E. Dawson; Erik A. Hobbie; Ansgar Kahmen; Michelle C. Mack; Kendra K. McLauchlan; Anders Michelsen; Gabriela Nardoto; Linda H. Pardo; Josep Penuelas; Peter B. Reich; Edward A.G. Schuur; William D. Stock; Pamela H. Templer; Ross A. Virginia; Jeffrey M. Welker; Ian J. Wright

    2009-01-01

    Ratios of nitrogen (N) isotopes in leaves could elucidate underlying patterns of N cycling across ecological gradients. To better understand global-scale patterns of N cycling, we compiled data on foliar N isotope ratios, foliar N concentrations, mycorrhizal type and climate for over 11 000 plants worldwide. Global-scale comparisons of other components of the N cycle...

  18. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability

    DEFF Research Database (Denmark)

    Craine, J M; Elmore, A J; Aidar, M P M

    2009-01-01

    Ratios of nitrogen (N) isotopes in leaves could elucidate underlying patterns of N cycling across ecological gradients. To better understand global-scale patterns of N cycling, we compiled data on foliar N isotope ratios (d15N), foliar N concentrations, mycorrhizal type and climate for over 11 00...

  19. Temporal Patterns in Diversity Change on Earth Over Time

    Science.gov (United States)

    Bambach, Richard

    2007-05-01

    Multi-celled animals and plants did not originate until about 600 million years ago. Since then the diversity of life has expanded greatly, but this has not been a monotonic increase. Diversity, as taxonomic variety or richness, is produced by the interaction of origination and extinction. Origination and extinction are almost equally balanced; it has taken 600 million years to accumulate 10 to 30 million living species. With most species life spans in the range of one to fifteen million years most species that have ever originated are extinct and global diversity has “turned over” many times. Paleontologists recognize about 18 short-term events of elevated extinction intensity and diversity loss of sufficient magnitude to warrant the term “mass extinction.” Interestingly, in only one instance, the end-Cretaceous extinction, is there a consensus for the triggering event, but the kill mechanism or mechanisms that caused the widespread death of lineages is not established. We know less about the cause-effect relationships for other events. Recently a 62 million-year periodicity in the fluctuation of diversity has been documented, expressed primarily in the variation of diversity of marine genera that survived 45 million years or less. Analysis of the pattern of diversity change at the finest temporal scale possible suggests that the short-term mass extinctions are superimposed on this regular pattern of diversity fluctuations, rather than causal of them. However, most mass extinctions (14 of 18) occurred during the intervals of general diversity loss. It remains to be seen how origination and extinction interact to produce the periodic fluctuation in diversity.

  20. Time for Climate Change: Leadership, IT Climate, and their Impact on Organizational Performance

    DEFF Research Database (Denmark)

    Wunderlich, Nico; Beck, Roman

    2017-01-01

    IT climate in organizations where the need for deep IT and business knowledge is constantly increasing. We shed light on how organizational leaders, both from business and IT, influence a positive organizational IT climate by IT leadership and subsequently, how an organizational IT climate affects strategic......Information systems (IS) have become essential for operating firms successfully. How to align business and information technology (IT) executives to increase organizational output has been widely discussed in literature. This research focusses on pre-requisites and consequences of a positive...... groups, and can confirm organization wide firm IS knowledge as a strategically important resource to achieve organizational performance....

  1. Forestry in times of climatic change. From adaptation to climate protection; Forstwirtschaft in Zeiten des Klimawandels. Von Anpassung bis Klimaschutz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The notification 30/2010 of the Thuringian State Institute for Forest, Hunting and Fishing (Gotha, Federal Republic of Germany) reports on the forest management in times of the climatic changes. This notification consists of the following contributions: (1) Perception of the climatic change by private forest owners - A social-scientific investigation (Stefanie Rimkus); (2) Fundamentals for the designation of the inventory destination types adapted to climatic change for Thuringia (Nico Frischbier); (3) Recommendations of tree species adapted to climatic change for the forestry practice in Thuringia (Wolfgang Arenhoevel); (4) Development of carbon storage in the state-owned forest Thuringia (Thomas Wutzler); (5) The carbon inventories in copper beech forests (Fagus Sylvatica L.) under the influence of different silvicultural treatment (Martina Mund); (6) Wood products for the climate protection - The state of the art in Thuringia (Ingolf Profft); (7) HABIT-CHANGE - 'Adaptive management of climate-induced changes of habitat diversity in protected areas' (Nico Frischbier); (8) Cultivation experiences of non-indigenous tree species (Wolfgang Ahrenhoevel); (9) Registration of damages of the storm 'Xynthia' in the forestry office Bad Salzungen by means of ANDROMEDA {sup registered} data (Herbert Sagischewski); (10) www.waldundklima.net - The open internet portal on forest, wood and climate (Ingolf Profft).

  2. Sphagnum peatland development at their southern climatic range in West Siberia: trends and peat accumulation patterns

    International Nuclear Information System (INIS)

    Peregon, Anna; Uchida, Masao; Shibata, Yasuyuki

    2007-01-01

    A region of western Siberia is vulnerable to the predicted climatic change which may induce an important modification to the carbon balance in wetland ecosystems. This study focuses on the evaluation of both the long-term and contemporary trends of peat (carbon) accumulation and its patterns at the southern climatic range of Sphagnum peatlands in western Siberia. Visible and physical features of peat and detailed reconstructions of successional change (or sediment stratigraphies) were analysed at two types of forest-peatland ecotones, which are situated close to each other but differ by topography and composition of their plant communities. Our results suggest that Siberian peatlands exhibit a general trend towards being a carbon sink rather than a source even at or near the southern limit of their distribution. Furthermore, two types of peat accumulation were detected in the study area, namely persistent and intermittent. As opposed to persistent peat accumulation, the intermittent one is characterized by the recurrent degradation of the upper peat layers at the marginal parts of raised bogs. Persistent peat accumulation is the case for the majority of Sphagnum peatlands under current climatic conditions. It might be assumed that more peat will accumulate under the 'increased precipitation' scenarios of global warming, although intermittent peat accumulation could result in the eventual drying that may change peatlands from carbon sinks to carbon sources

  3. Warming patterns in regional climate change projections over the Iberian Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Navarro, J.J.; Montavez, J.P.; Jimenez-Guerrero, P.; Jerez, S. [Murcia Univ. (Spain). Dept. de Fisica; Garcia-Valero, J.A. [Murcia Univ. (Spain). Dept. de Fisica; Delegacion Territorial en Murcia (ES). Agencia Estatal de Meteorologia (AEMET); Gonzalez-Rouco, J.F. [Univ. Complutense, Madrid (Spain). Dept. de Astrofisica y CC. de la Atmosfera

    2010-06-15

    A set of four regional climate change projections over the Iberian Peninsula has been performed. Simulations were driven by two General Circulation Models (consisting of two versions of the same atmospheric model coupled to two different ocean models) under two different SRES scenario. The XXI century has been simulated following a full-transient approach with a climate version of the mesoscale model MM5. An Empirical Orthogonal Function analysis (EOF) is applied to the monthly mean series of daily maximum and minimum 2-metre temperature to extract the warming signal. The first EOF is able to capture the spatial structure of the warming. The obtained warming patterns are fairly dependent on the month, but hardly change with the tested scenarios and GCM versions. Their shapes are related to geographical parameters, such as distance to the sea and orography. The main differences among simulations mostly concern the temporal evolution of the warming. The temperature trend is stronger for maximum temperatures and depends on the scenario and the driving GCM. This asymmetry, as well as the different warming rates in summer and winter, leads to a continentalization of the climate over the IP. (orig.)

  4. DTW4Omics: comparing patterns in biological time series.

    Directory of Open Access Journals (Sweden)

    Rachel Cavill

    Full Text Available When studying time courses of biological measurements and comparing these to other measurements eg. gene expression and phenotypic endpoints, the analysis is complicated by the fact that although the associated elements may show the same patterns of behaviour, the changes do not occur simultaneously. In these cases standard correlation-based measures of similarity will fail to find significant associations. Dynamic time warping (DTW is a technique which can be used in these situations to find the optimal match between two time courses, which may then be assessed for its significance. We implement DTW4Omics, a tool for performing DTW in R. This tool extends existing R scripts for DTW making them applicable for "omics" datasets where thousands entities may need to be compared with a range of markers and endpoints. It includes facilities to estimate the significance of the matches between the supplied data, and provides a set of plots to enable the user to easily visualise the output. We illustrate the utility of this approach using a dataset linking the exposure of the colon carcinoma Caco-2 cell line to oxidative stress by hydrogen peroxide (H2O2 and menadione across 9 timepoints and show that on average 85% of the genes found are not obtained from a standard correlation analysis between the genes and the measured phenotypic endpoints. We then show that when we analyse the genes identified by DTW4Omics as significantly associated with a marker for oxidative DNA damage (8-oxodG, through over-representation, an Oxidative Stress pathway is identified as the most over-represented pathway demonstrating that the genes found by DTW4Omics are biologically relevant. In contrast, when the positively correlated genes were similarly analysed, no pathways were found. The tool is implemented as an R Package and is available, along with a user guide from http://web.tgx.unimaas.nl/svn/public/dtw/.

  5. Satellite observations for describing fire patterns and climate-related fire drivers in the Brazilian savannas

    Science.gov (United States)

    Verola Mataveli, Guilherme Augusto; Siqueira Silva, Maria Elisa; Pereira, Gabriel; da Silva Cardozo, Francielle; Shinji Kawakubo, Fernando; Bertani, Gabriel; Cezar Costa, Julio; de Cássia Ramos, Raquel; Valéria da Silva, Viviane

    2018-01-01

    In the Brazilian savannas (Cerrado biome) fires are natural and a tool for shifting land use; therefore, temporal and spatial patterns result from the interaction of climate, vegetation condition and human activities. Moreover, orbital sensors are the most effective approach to establish patterns in the biome. We aimed to characterize fire, precipitation and vegetation condition regimes and to establish spatial patterns of fire occurrence and their correlation with precipitation and vegetation condition in the Cerrado. The Cerrado was first and second biome for the occurrence of burned areas (BA) and hotspots, respectively. Occurrences are higher during the dry season and in the savanna land use. Hotspots and BA tend to decrease, and concentrate in the north, but more intense hotspots are not necessarily located where concentration is higher. Spatial analysis showed that averaged and summed values can hide patterns, such as for precipitation, which has the lowest average in August, but minimum precipitation in August was found in 7 % of the Cerrado. Usually, there is a 2-3-month lag between minimum precipitation and maximum hotspots and BA, while minimum VCI and maximum hotspots and BA occur in the same month. Hotspots and BA are better correlated with VCI than precipitation, qualifying VCI as an indicator of the susceptibility of vegetation to ignition.

  6. Global pattern of trends in streamflow and water availability in a changing climate

    Science.gov (United States)

    Milly, P.C.D.; Dunne, K.A.; Vecchia, A.V.

    2005-01-01

    Water availability on the continents is important for human health, economic activity, ecosystem function and geophysical processes. Because the saturation vapour pressure of water in air is highly sensitive to temperature, perturbations in the global water cycle are expected to accompany climate warming. Regional patterns of warming-induced changes in surface hydroclimate are complex and less certain than those in temperature, however, with both regional increases and decreases expected in precipitation and runoff. Here we show that an ensemble of 12 climate models exhibits qualitative and statistically significant skill in simulating observed regional patterns of twentieth-century multidecadal changes in streamflow. These models project 10–40% increases in runoff in eastern equatorial Africa, the La Plata basin and high-latitude North America and Eurasia, and 10–30% decreases in runoff in southern Africa, southern Europe, the Middle East and mid-latitude western North America by the year 2050. Such changes in sustainable water availability would have considerable regional-scale consequences for economies as well as ecosystems.

  7. Global pattern of trends in streamflow and water availability in a changing climate.

    Science.gov (United States)

    Milly, P C D; Dunne, K A; Vecchia, A V

    2005-11-17

    Water availability on the continents is important for human health, economic activity, ecosystem function and geophysical processes. Because the saturation vapour pressure of water in air is highly sensitive to temperature, perturbations in the global water cycle are expected to accompany climate warming. Regional patterns of warming-induced changes in surface hydroclimate are complex and less certain than those in temperature, however, with both regional increases and decreases expected in precipitation and runoff. Here we show that an ensemble of 12 climate models exhibits qualitative and statistically significant skill in simulating observed regional patterns of twentieth-century multidecadal changes in streamflow. These models project 10-40% increases in runoff in eastern equatorial Africa, the La Plata basin and high-latitude North America and Eurasia, and 10-30% decreases in runoff in southern Africa, southern Europe, the Middle East and mid-latitude western North America by the year 2050. Such changes in sustainable water availability would have considerable regional-scale consequences for economies as well as ecosystems.

  8. Deep time evidence for climate sensitivity increase with warming

    DEFF Research Database (Denmark)

    Shaffer, Gary; Huber, Matthew; Rondanelli, Roberto

    2016-01-01

    warming analogue. We obtain constrained estimates of CO2 and climate sensitivity before and during the PETM and of the PETM carbon input amount and nature. Sensitivity increased from 3.3-5.6 to 3.7-6.5K (Kelvin) into the PETM. When taken together with Last Glacial Maximum and modern estimates, this result...... world, but past warming events may provide insight. Here we employ paleoreconstructions and new climate-carbon model simulations in a novel framework to explore a wide scenario range for the Paleocene-Eocene Thermal Maximum (PETM) carbon release and global warming event 55.8Ma ago, a possible future...

  9. Shorebird Migration Patterns in Response to Climate Change: A Modeling Approach

    Science.gov (United States)

    Smith, James A.

    2010-01-01

    The availability of satellite remote sensing observations at multiple spatial and temporal scales, coupled with advances in climate modeling and information technologies offer new opportunities for the application of mechanistic models to predict how continental scale bird migration patterns may change in response to environmental change. In earlier studies, we explored the phenotypic plasticity of a migratory population of Pectoral sandpipers by simulating the movement patterns of an ensemble of 10,000 individual birds in response to changes in stopover locations as an indicator of the impacts of wetland loss and inter-annual variability on the fitness of migratory shorebirds. We used an individual based, biophysical migration model, driven by remotely sensed land surface data, climate data, and biological field data. Mean stop-over durations and stop-over frequency with latitude predicted from our model for nominal cases were consistent with results reported in the literature and available field data. In this study, we take advantage of new computing capabilities enabled by recent GP-GPU computing paradigms and commodity hardware (general purchase computing on graphics processing units). Several aspects of our individual based (agent modeling) approach lend themselves well to GP-GPU computing. We have been able to allocate compute-intensive tasks to the graphics processing units, and now simulate ensembles of 400,000 birds at varying spatial resolutions along the central North American flyway. We are incorporating additional, species specific, mechanistic processes to better reflect the processes underlying bird phenotypic plasticity responses to different climate change scenarios in the central U.S.

  10. Assessing the Impact of Climate Variability on Cropland Productivity in the Canadian Prairies Using Time Series MODIS FAPAR

    Directory of Open Access Journals (Sweden)

    Taifeng Dong

    2016-03-01

    Full Text Available Cropland productivity is impacted by climate. Knowledge on spatial-temporal patterns of the impacts at the regional scale is extremely important for improving crop management under limiting climatic factors. The aim of this study was to investigate the effects of climate variability on cropland productivity in the Canadian Prairies between 2000 and 2013 based on time series of MODIS (Moderate Resolution Imaging Spectroradiometer FAPAR (Fraction of Absorbed Photosynthetically Active Radiation product. Key phenological metrics, including the start (SOS and end of growing season (EOS, and the cumulative FAPAR (CFAPAR during the growing season (between SOS and EOS, were extracted and calculated from the FAPAR time series with the Parametric Double Hyperbolic Tangent (PDHT method. The Mann-Kendall test was employed to assess the trends of cropland productivity and climatic variables, and partial correlation analysis was conducted to explore the potential links between climate variability and cropland productivity. An assessment using crop yield statistical data showed that CFAPAR can be taken as a surrogate of cropland productivity in the Canadian Prairies. Cropland productivity showed an increasing trend in most areas of Canadian Prairies, in general, during the period from 2000 to 2013. Interannual variability in cropland productivity on the Canadian Prairies was influenced positively by rainfall variation and negatively by mean air temperature.

  11. Interaction of ice sheets and climate on geological time scales

    NARCIS (Netherlands)

    Stap, L.B.

    2017-01-01

    Since the inception of the Antarctic ice sheet at the Eocene-Oligocene Transition (~34 Myr ago), land ice plays a crucial role in Earth’s climate. Through the ice-albedo and surface-height-temperature feedbacks, land ice variability strengthens atmospheric temperature changes induced by orbital and

  12. A linear projection for the timing of unprecedented climate in Korea

    Science.gov (United States)

    Shin, Ho-Jeong; Jang, Chan Joo; Chung, Il-Ung

    2017-11-01

    Recently we have had abnormal weather events worldwide that are attributed by climate scientists to the global warming induced by human activities. If the global warming continues in the future and such events occur more frequently and someday become normal, we will have an unprecedented climate. This study intends to answer when we will have an unprecedented warm climate, focusing more on the regional characteristics of the timing of unprecedented climate. Using an in-situ observational data from weather stations of annual-mean surface air temperature in Korea from 1973 to 2015, we estimate a timing of unprecedented climate with a linear regression method. Based on the in-situ data with statistically significant warming trends at 95% confidence level, an unprecedented climate in Korea is projected to occur first in Cheongju by 2043 and last in Haenam by 2168. This 125-year gap in the timing indicates that a regional difference in timing of unprecedented climate is considerably large in Korea. Despite the high sensitivity of linear estimation to the data period and resolution, our findings on the large regional difference in timing of unprecedented climate can give an insight into making policies for climate change mitigation and adaptation, not only for the central government but for provincial governments.

  13. Influence of urbanization pattern on stream flow of a peri-urban catchment under Mediterranean climate

    Science.gov (United States)

    Ferreira, Carla S. S.; Walsh, Rory P. D.; Ferreira, António J. D.; Steenhuis, Tammo S.; Coelho, Celeste A. O.

    2015-04-01

    The demand for better life quality and lower living costs created a great pressure on peri-urban areas, leading to significant land-use changes. The complexity of mixed land-use patterns, however, presents a challenge to understand the hydrological pathways and streamflow response involved in such changes. This study assesses the impact of a actively changing Portuguese peri-urban area on catchment hydrology. It focuses on quantifying streamflow delivery from contributing areas, of different land-use arrangement and the seasonal influence of the Mediterranean climate on stream discharge. The study focuses on Ribeira dos Covões a small (6 km2) peri-urban catchment on the outskirts of Coimbra, one of the main cities in central Portugal. Between 1958 and 2012 the urban area of the catchment expanded from 8% to 40%, mostly at the expense of agriculture (down from 48% to 4%), with woodland now accounting for the remaining 56% of the catchment area. The urban area comprises contrasting urban settings, associated with older discontinuous arrangement of buildings and urban structures and low population density (urban cores dominated by apartment blocks and high population density (9900 inhabitants/km). The hydrological response of the catchment has been monitored since 2007 by a flume installed at the outlet. In 2009, five rainfall gauges and eight additional water level recorders were installed upstream, to assess the hydrological response of different sub-catchments, characterized by distinct urban patterns and either limestone or sandstone lithologies. Annual runoff coefficients range between 14% and 22%. Changes in annual baseflow index (36-39% of annual rainfall) have been small with urbanization (from 34% to 40%) during the monitoring period itself. Annual runoff coefficients were lowest (14-7%) on catchments >80% woodland and highest (29% on sandstone; 18% on limestone) in the most urbanized (49-53% urban) sub-catchments. Percentage impermeable surface seems to

  14. 'Fish' (Actinopterygii and Elasmobranchii) diversification patterns through deep time.

    Science.gov (United States)

    Guinot, Guillaume; Cavin, Lionel

    2016-11-01

    Actinopterygii (ray-finned fishes) and Elasmobranchii (sharks, skates and rays) represent more than half of today's vertebrate taxic diversity (approximately 33000 species) and form the largest component of vertebrate diversity in extant aquatic ecosystems. Yet, patterns of 'fish' evolutionary history remain insufficiently understood and previous studies generally treated each group independently mainly because of their contrasting fossil record composition and corresponding sampling strategies. Because direct reading of palaeodiversity curves is affected by several biases affecting the fossil record, analytical approaches are needed to correct for these biases. In this review, we propose a comprehensive analysis based on comparison of large data sets related to competing phylogenies (including all Recent and fossil taxa) and the fossil record for both groups during the Mesozoic-Cainozoic interval. This approach provides information on the 'fish' fossil record quality and on the corrected 'fish' deep-time phylogenetic palaeodiversity signals, with special emphasis on diversification events. Because taxonomic information is preserved after analytical treatment, identified palaeodiversity events are considered both quantitatively and qualitatively and put within corresponding palaeoenvironmental and biological settings. Results indicate a better fossil record quality for elasmobranchs due to their microfossil-like fossil distribution and their very low diversity in freshwater systems, whereas freshwater actinopterygians are diverse in this realm with lower preservation potential. Several important diversification events are identified at familial and generic levels for elasmobranchs, and marine and freshwater actinopterygians, namely in the Early-Middle Jurassic (elasmobranchs), Late Jurassic (actinopterygians), Early Cretaceous (elasmobranchs, freshwater actinopterygians), Cenomanian (all groups) and the Paleocene-Eocene interval (all groups), the latter two

  15. Recurrence quantification analysis of extremes of maximum and minimum temperature patterns for different climate scenarios in the Mesochora catchment in Central-Western Greece

    Science.gov (United States)

    Panagoulia, Dionysia; Vlahogianni, Eleni I.

    2018-06-01

    A methodological framework based on nonlinear recurrence analysis is proposed to examine the historical data evolution of extremes of maximum and minimum daily mean areal temperature patterns over time under different climate scenarios. The methodology is based on both historical data and atmospheric General Circulation Model (GCM) produced climate scenarios for the periods 1961-2000 and 2061-2100 which correspond to 1 × CO2 and 2 × CO2 scenarios. Historical data were derived from the actual daily observations coupled with atmospheric circulation patterns (CPs). The dynamics of the temperature was reconstructed in the phase-space from the time series of temperatures. The statistically comparing different temperature patterns were based on some discriminating statistics obtained by the Recurrence Quantification Analysis (RQA). Moreover, the bootstrap method of Schinkel et al. (2009) was adopted to calculate the confidence bounds of RQA parameters based on a structural preserving resampling. The overall methodology was implemented to the mountainous Mesochora catchment in Central-Western Greece. The results reveal substantial similarities between the historical maximum and minimum daily mean areal temperature statistical patterns and their confidence bounds, as well as the maximum and minimum temperature patterns in evolution under the 2 × CO2 scenario. A significant variability and non-stationary behaviour characterizes all climate series analyzed. Fundamental differences are produced from the historical and maximum 1 × CO2 scenarios, the maximum 1 × CO2 and minimum 1 × CO2 scenarios, as well as the confidence bounds for the two CO2 scenarios. The 2 × CO2 scenario reflects the strongest shifts in intensity, duration and frequency in temperature patterns. Such transitions can help the scientists and policy makers to understand the effects of extreme temperature changes on water resources, economic development, and health of ecosystems and hence to proceed to

  16. Coupling mammalian demography to climate through satellite time series of plant phenology

    Science.gov (United States)

    Stoner, D.; Sexton, J. O.; Nagol, J. R.; Ironside, K.; Choate, D.; Longshore, K.; Edwards, T., Jr.

    2016-12-01

    The seasonality of plant productivity governs the demography of primary and secondary consumers, and in arid ecosystems primary production is constrained by water availability. We relate the behavior, demography, and spatial distribution of large mammalian herbivores and their principal predator to remotely sensed indices of climate and vegetation across the western United States from 2000-2014. Terrain and plant community composition moderate the effects of climatological drought on primary productivity, resulting in spatial variation in ecosystem susceptibility to water stress. Herbivores track these patterns through habitat selection during key periods such as birthing and migration. Across a broad climatological gradient, timing of the start of growing season explains 75% of the variation in herbivore birth timing and 56% of the variation in neonatal survival rates. Initiation of autumn migration corresponds with the end of the growing season. Although indirectly coupled to primary production, carnivore home range size and population density are strongly correlated with plant productivity and growing-season length. Satellite measures of green reflectance during the peak of the growing season explain over 84% of the variation in carnivore home range size and 59% of the variation in density. Climate projections for the western United States predict warming temperatures and shifts in the timing and form of precipitation. Our analyses suggest that increased climatological variability will contribute to fluctuations in the composition and phenology of plant communities. These changes will propagate through consumer trophic levels, manifesting as increased home range area, shifts in the timing of migration, and greater volatility in large mammal populations. Combined with expansion and amplification of human land uses, these changes will likely have economic implications stemming from increased human-wildlife conflict and loss of ecosystem services.

  17. Climate conditions in Sweden in a 100,000-year time perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, Erik; Strandberg, Gustav (Rossby Centre, SMHI, Norrkoeping (Sweden)); Brandefelt, Jenny (Dept. of Mechanics, Royal Inst. of Technology, Stockholm (Sweden)); Naeslund, Jens-Ove (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Smith, Ben (Dept of Physical Geography and Ecosystems Analysis, Lund Univ., Lund (Sweden)); Wohlfarth, Barbara (Dept. of Geology and Geochemistry, Stockholm Univ., Stockholm (Sweden))

    2009-04-15

    This report presents results from a project devoted to describing the climatic extremes within which the climate in Fennoscandia may vary over a 100,000 year time span. Based on forcing conditions which have yielded extreme conditions during the last glacial-interglacial cycle, as well as possible future conditions following continued anthropogenic emissions, projections of climate conditions have been made with climate models. Three different periods have been studied; i) a stadial within Marine Isotope Stage 3 (MIS 3) during the last glacial cycle, representing a cold period with a relatively small ice sheet covering parts of Fennoscandia, ii) the Last Glacial Maximum (LGM), with an extensive ice sheet covering large parts of northern Europe and iii) a possible future period in a climate warmer than today. The future case is characterised by high greenhouse gas concentrations in the atmosphere and a complete loss of the Greenland ice sheet. The climate modelling involved the use of a global climate model (GCM) for producing boundary conditions that were used by a regional climate model (RCM). The regional model produced detailed information on climate variables like near-surface air temperature and precipitation over Europe. These climate variables were subsequently used to force a vegetation model that produced a vegetation cover over Europe, consistent with the simulated regional climate. In a final step, the new vegetation cover from the vegetation model was used in the regional climate model to produce the final regional climate. For the studied periods, data on relevant climate parameters have been extracted from the regional model for the Forsmark and Oskarshamn areas on the Swedish east coast and the Olkiluoto region on the west coast of Finland. Due to computational constraints, the modelling efforts include only one forcing scenario per time period. As there is a large degree of uncertainty in the choice of an appropriate forcing scenario, we perform

  18. Climate conditions in Sweden in a 100,000-year time perspective

    International Nuclear Information System (INIS)

    Kjellstroem, Erik; Strandberg, Gustav; Brandefelt, Jenny; Naeslund, Jens-Ove; Smith, Ben; Wohlfarth, Barbara

    2009-04-01

    This report presents results from a project devoted to describing the climatic extremes within which the climate in Fennoscandia may vary over a 100,000 year time span. Based on forcing conditions which have yielded extreme conditions during the last glacial-interglacial cycle, as well as possible future conditions following continued anthropogenic emissions, projections of climate conditions have been made with climate models. Three different periods have been studied; i) a stadial within Marine Isotope Stage 3 (MIS 3) during the last glacial cycle, representing a cold period with a relatively small ice sheet covering parts of Fennoscandia, ii) the Last Glacial Maximum (LGM), with an extensive ice sheet covering large parts of northern Europe and iii) a possible future period in a climate warmer than today. The future case is characterised by high greenhouse gas concentrations in the atmosphere and a complete loss of the Greenland ice sheet. The climate modelling involved the use of a global climate model (GCM) for producing boundary conditions that were used by a regional climate model (RCM). The regional model produced detailed information on climate variables like near-surface air temperature and precipitation over Europe. These climate variables were subsequently used to force a vegetation model that produced a vegetation cover over Europe, consistent with the simulated regional climate. In a final step, the new vegetation cover from the vegetation model was used in the regional climate model to produce the final regional climate. For the studied periods, data on relevant climate parameters have been extracted from the regional model for the Forsmark and Oskarshamn areas on the Swedish east coast and the Olkiluoto region on the west coast of Finland. Due to computational constraints, the modelling efforts include only one forcing scenario per time period. As there is a large degree of uncertainty in the choice of an appropriate forcing scenario, we perform

  19. Variability modes of precipitation along a Central Mediterranean area and their relations with ENSO, NAO, and other climatic patterns

    Science.gov (United States)

    Kalimeris, Anastasios; Ranieri, Ezio; Founda, Dimitra; Norrant, Caroline

    2017-12-01

    This study analyses a century-long set of precipitation time series in the Central Mediterranean (encompassing the Greek Ionian and the Italian Puglia regions) and investigates the statistically significant modes of the interannual precipitation variability using efficient methods of spectral decomposition. The statistical relations and the possible physical couplings between the detected modes and the global or hemispheric patterns of climatic variability (the El Niño Southern Oscillation or ENSO, the North Atlantic Oscillation or NAO, the East Atlantic or EA, the Scandinavian or SCAND, and others) were examined in the time-frequency domain and low-order synchronization events were sought. Significant modes of precipitation variability were detected in the Taranto Gulf and the southern part of the Greek Ionian region at the sub-decadal scales (mostly driven by the SCAND pattern) and particularly at the decadal and quasi-decadal scales, where strong relations found with the ENSO activity (under complex implications of EA and NAO) prior to the 1930s or after the early-1970s. The precipitation variations in the Adriatic stations of Puglia are dominated by significant bi-decadal modes which found to be coherent with the ENSO activity and also weakly related with the Atlantic Ocean sea surface temperature intrinsic variability. Additionally, important discontinuities characterize the evolution of precipitation in certain stations of the Taranto Gulf and the Greek Ionian region during the early-1960s and particularly during the early-1970s, followed by significant reductions in the mean annual precipitation. These discontinuities seem to be associated with regional effects of NAO and SCAND, probably combined with the impact of the 1970s climatic shift in the Pacific and the ENSO variability.

  20. Metabolic Rate and Climatic Fluctuations Shape Continental Wide Pattern of Genetic Divergence and Biodiversity in Fishes

    Science.gov (United States)

    April, Julien; Hanner, Robert H.; Mayden, Richard L.; Bernatchez, Louis

    2013-01-01

    Taxonomically exhaustive and continent wide patterns of genetic divergence within and between species have rarely been described and the underlying evolutionary causes shaping biodiversity distribution remain contentious. Here, we show that geographic patterns of intraspecific and interspecific genetic divergence among nearly all of the North American freshwater fish species (>750 species) support a dual role involving both the late Pliocene-Pleistocene climatic fluctuations and metabolic rate in determining latitudinal gradients of genetic divergence and very likely influencing speciation rates. Results indicate that the recurrent glacial cycles caused global reduction in intraspecific diversity, interspecific genetic divergence, and species richness at higher latitudes. At the opposite, longer geographic isolation, higher metabolic rate increasing substitution rate and possibly the rapid accumulation of genetic incompatibilities, led to an increasing biodiversity towards lower latitudes. This indicates that both intrinsic and extrinsic factors similarly affect micro and macro evolutionary processes shaping global patterns of biodiversity distribution. These results also indicate that factors favouring allopatric speciation are the main drivers underlying the diversification of North American freshwater fishes. PMID:23922969

  1. Gaia Through Time: The Coevolution of Life and Climate

    Science.gov (United States)

    Kasting, J. F.; Haqq-Misra, J.

    2009-12-01

    Earth has the peculiar property of remaining continuously habitable in spite of severe climate change throughout its 4.6 billion year (Ga) history. Life on this planet also has a resilient history, originating soon after Earth cooled and surviving many threats to its existence. In the anoxic Archean (2.8 Ga), the biological activity of methanogens resulted in greenhouse warming by methane and other hydrocarbons to counteract the 20% luminosity reduction from the faint young Sun, leading to the photochemical production of a shielding stratospheric organic haze. A negative feedback loop between methanogen activity and haze thickness maintained warm surface temperatures in the late Archean. The rise of atmospheric oxygen (2.4 Ga) following growth in photosynthesis by cyanobacteria triggered a global glaciation and may have been the most devastating climate change in Earth's history, yet the biosphere recovered to a richly oxic environment in which breathable life became possible. The adaptation of life to a range of ecological niche space, including extreme environments, has contributed to the persistence of life through mass extinctions, most significantly the Permian-Triassic extinction ~250 million years ago (Ma) when up to 96% of marine species and 70% of terrestrial vertebrates vanished. Abrupt climate change has also challenged the survival of life, including the Neoproterozoic Snowball Earth episode (~650 Ma) where evidence from glacial deposits suggests the tropical oceans froze over. During this period life may have thrived in a manner analogous to the Antarctic dry valleys, where sufficient sunlight penetrates the ice to allow photosynthesis. Present day climate change is marked by human influence on atmospheric composition and widespread loss of biodiversity, but even the most severe projected scenarios fall short of the global ecological catastrophes experienced in Earth's past--events from which life has always recovered. The challenge of global warming

  2. Increase in flood risk resulting from climate change in a developed urban watershed - the role of storm temporal patterns

    Science.gov (United States)

    Hettiarachchi, Suresh; Wasko, Conrad; Sharma, Ashish

    2018-03-01

    The effects of climate change are causing more frequent extreme rainfall events and an increased risk of flooding in developed areas. Quantifying this increased risk is of critical importance for the protection of life and property as well as for infrastructure planning and design. The updated National Oceanic and Atmospheric Administration (NOAA) Atlas 14 intensity-duration-frequency (IDF) relationships and temporal patterns are widely used in hydrologic and hydraulic modeling for design and planning in the United States. Current literature shows that rising temperatures as a result of climate change will result in an intensification of rainfall. These impacts are not explicitly included in the NOAA temporal patterns, which can have consequences on the design and planning of adaptation and flood mitigation measures. In addition there is a lack of detailed hydraulic modeling when assessing climate change impacts on flooding. The study presented in this paper uses a comprehensive hydrologic and hydraulic model of a fully developed urban/suburban catchment to explore two primary questions related to climate change impacts on flood risk. (1) How do climate change effects on storm temporal patterns and rainfall volumes impact flooding in a developed complex watershed? (2) Is the storm temporal pattern as critical as the total volume of rainfall when evaluating urban flood risk? We use the NOAA Atlas 14 temporal patterns, along with the expected increase in temperature for the RCP8.5 scenario for 2081-2100, to project temporal patterns and rainfall volumes to reflect future climatic change. The model results show that different rainfall patterns cause variability in flood depths during a storm event. The changes in the projected temporal patterns alone increase the risk of flood magnitude up to 35 %, with the cumulative impacts of temperature rise on temporal patterns and the storm volume increasing flood risk from 10 to 170 %. The results also show that regional

  3. Increase in flood risk resulting from climate change in a developed urban watershed – the role of storm temporal patterns

    Directory of Open Access Journals (Sweden)

    S. Hettiarachchi

    2018-03-01

    Full Text Available The effects of climate change are causing more frequent extreme rainfall events and an increased risk of flooding in developed areas. Quantifying this increased risk is of critical importance for the protection of life and property as well as for infrastructure planning and design. The updated National Oceanic and Atmospheric Administration (NOAA Atlas 14 intensity–duration–frequency (IDF relationships and temporal patterns are widely used in hydrologic and hydraulic modeling for design and planning in the United States. Current literature shows that rising temperatures as a result of climate change will result in an intensification of rainfall. These impacts are not explicitly included in the NOAA temporal patterns, which can have consequences on the design and planning of adaptation and flood mitigation measures. In addition there is a lack of detailed hydraulic modeling when assessing climate change impacts on flooding. The study presented in this paper uses a comprehensive hydrologic and hydraulic model of a fully developed urban/suburban catchment to explore two primary questions related to climate change impacts on flood risk. (1 How do climate change effects on storm temporal patterns and rainfall volumes impact flooding in a developed complex watershed? (2 Is the storm temporal pattern as critical as the total volume of rainfall when evaluating urban flood risk? We use the NOAA Atlas 14 temporal patterns, along with the expected increase in temperature for the RCP8.5 scenario for 2081–2100, to project temporal patterns and rainfall volumes to reflect future climatic change. The model results show that different rainfall patterns cause variability in flood depths during a storm event. The changes in the projected temporal patterns alone increase the risk of flood magnitude up to 35 %, with the cumulative impacts of temperature rise on temporal patterns and the storm volume increasing flood risk from 10 to 170 %. The results

  4. Time-series analysis of climatologic measurements: a method to distinguish future climatic changes

    International Nuclear Information System (INIS)

    Duband, D.

    1992-01-01

    Time-series analysis of climatic parameters as air temperature, rivers flow rate, lakes or seas level is an indispensable basis to detect a possible significant climatic change. These observations, when they are carefully analyzed and criticized, constitute the necessary reference for testing and validation numerical climatic models which try to simulate the physical and dynamical process of the ocean-atmosphere couple, taking continents into account. 32 refs., 13 figs

  5. Climate vs. topography – spatial patterns of plant species diversity and endemism on a high-elevation island

    DEFF Research Database (Denmark)

    Irl, Severin David Howard; Harter, David E. V.; Steinbauer, Manuel

    2015-01-01

    the independent contribution of climatic and topographic variables to spatial diversity patterns. We constructed a presence/absence matrix of perennial endemic and native vascular plant species (including subspecies) in 890 plots on the environmentally very heterogeneous island of La Palma, Canary Islands......Climate and topography are among the most fundamental drivers of plant diversity. Here, we assessed the importance of climate and topography in explaining diversity patterns of species richness, endemic richness and endemicity on the landscape scale of an oceanic island and evaluated...... to ecological speciation and specialization to local conditions. We highlight the importance of incorporating climatic variability into future studies of plant species diversity and endemism. The spatial incongruence in hot spots of species richness, endemic richness and endemicity emphasizes the need...

  6. Aerosol climate time series from ESA Aerosol_cci (Invited)

    Science.gov (United States)

    Holzer-Popp, T.

    2013-12-01

    Within the ESA Climate Change Initiative (CCI) the Aerosol_cci project (mid 2010 - mid 2013, phase 2 proposed 2014-2016) has conducted intensive work to improve algorithms for the retrieval of aerosol information from European sensors AATSR (3 algorithms), PARASOL, MERIS (3 algorithms), synergetic AATSR/SCIAMACHY, OMI and GOMOS. Whereas OMI and GOMOS were used to derive absorbing aerosol index and stratospheric extinction profiles, respectively, Aerosol Optical Depth (AOD) and Angstrom coefficient were retrieved from the other sensors. Global datasets for 2008 were produced and validated versus independent ground-based data and other satellite data sets (MODIS, MISR). An additional 17-year dataset is currently generated using ATSR-2/AATSR data. During the three years of the project, intensive collaborative efforts were made to improve the retrieval algorithms focusing on the most critical modules. The team agreed on the use of a common definition for the aerosol optical properties. Cloud masking was evaluated, but a rigorous analysis with a pre-scribed cloud mask did not lead to improvement for all algorithms. Better results were obtained using a post-processing step in which sudden transitions, indicative of possible occurrence of cloud contamination, were removed. Surface parameterization, which is most critical for the nadir only algorithms (MERIS and synergetic AATSR / SCIAMACHY) was studied to a limited extent. The retrieval results for AOD, Ångström exponent (AE) and uncertainties were evaluated by comparison with data from AERONET (and a limited amount of MAN) sun photometer and with satellite data available from MODIS and MISR. Both level2 and level3 (gridded daily) datasets were validated. Several validation metrics were used (standard statistical quantities such as bias, rmse, Pearson correlation, linear regression, as well as scoring approaches to quantitatively evaluate the spatial and temporal correlations against AERONET), and in some cases

  7. Long-term patterns in fish phenology in the western Dutch Wadden Sea in relation to climate change

    Science.gov (United States)

    van Walraven, Lodewijk; Dapper, Rob; Nauw, Janine J.; Tulp, Ingrid; Witte, Johannes IJ.; van der Veer, Henk W.

    2017-09-01

    Long-term patterns in fish phenology in the western Dutch Wadden Sea were studied using a 53 year (1960-2013) high resolution time series of daily kom-fyke catches in spring and autumn. Trends in first appearance, last occurrence and peak abundance were analysed for the most common species in relation to mode of life (pelagic, demersal, benthopelagic) and biogeographic guild (northern or southern distribution). Climate change in the western Wadden Sea involved an increase in water temperature from 1980 onwards. The main pattern in first day of occurrence, peak occurrence and last day of occurrence was similar: a positive trend over time and a correlation with spring and summer water temperature. This is counterintuitive; with increasing temperature, an advanced immigration of fish species would be expected. An explanation might be that water temperatures have increased offshore as well and hence fish remain longer there, delaying their immigration to the Wadden Sea. The main trend towards later date of peak occurrence and last day of occurrence was in line with our expectations: a forward shift in immigration into the Wadden Sea implies also that peak abundance is delayed. As a consequence of the increased water temperature, autumn water temperature remains favourable longer than before. For most of the species present, the Wadden Sea is not near the edge of their distributional range. The most striking phenological shifts occurred in those individual species for which the Wadden Sea is near the southern or northern edge of their distribution.

  8. Northern tropical Atlantic climate since late Medieval times from Northern Caribbean coral geochemistry

    Science.gov (United States)

    Kilbourne, K. H.; Xu, Y.

    2015-12-01

    Paleoclimate reconstructions of different global climate modes over the last 1000 years provide the basis for testing the relative roles of forced and unforced variability climate system, which can help us improve projections of future climate change. The Medieval Climate Anomaly (MCA) has been characterized by a combination of persistent La Niña-like conditions, a positive North Atlantic Oscillation (+NAO), and increased Atlantic Meridional Overturning Circulation (AMOC). The northern tropical Atlantic is sensitive to each of these climate patterns, but not all of them have the same regional fingerprint in the modern northern tropical Atlantic. The relative influence of different processes related to these climate patterns can help us better understand regional responses to climate change. The regional response of the northern tropical Atlantic is important because the tropical Atlantic Ocean is a large source of heat and moisture to the global climate system that can feedback onto global climate patterns. This study presents new coral Sr/Ca and δ18O data from the northern tropical Atlantic (Anegada, British Virgin Islands). Comparison of the sub-fossil corals that grew during the 13th and 14th Centuries with modern coral geochemical data from this site indicates relatively cooler mean conditions with a decrease in the oxygen isotopic composition of the water consistent with lower salinities. Similar average annual cycles between modern and sub-fossil Sr/Ca indicate no change in seasonal temperature range, but a difference in the relative phasing of the δ18O seasonal cycles indicates that the fresher mean conditions may be due to a more northerly position of the regional salinity front. This localized response is consistent with some, but not all of the expected regional responses to a La Niña-like state, a +NAO state, and increased AMOC. Understanding these differences can provide insight into the relative importance of advection versus surface fluxes for

  9. Evaluating the accuracy of climate change pattern emulation for low warming targets

    Science.gov (United States)

    Tebaldi, Claudia; Knutti, Reto

    2018-05-01

    Global climate policy is increasingly debating the value of very low warming targets, yet not many experiments conducted with global climate models in their fully coupled versions are currently available to help inform studies of the corresponding impacts. This raises the question whether a map of warming or precipitation change in a world 1.5 °C warmer than preindustrial can be emulated from existing simulations that reach higher warming targets, or whether entirely new simulations are required. Here we show that also for this type of low warming in strong mitigation scenarios, climate change signals are quite linear as a function of global temperature. Therefore, emulation techniques amounting to linear rescaling on the basis of global temperature change ratios (like simple pattern scaling) provide a viable way forward. The errors introduced are small relative to the spread in the forced response to a given scenario that we can assess from a multi-model ensemble. They are also small relative to the noise introduced into the estimates of the forced response by internal variability within a single model, which we can assess from either control simulations or initial condition ensembles. Challenges arise when scaling inadvertently reduces the inter-model spread or suppresses the internal variability, both important sources of uncertainty for impact assessment, or when the scenarios have very different characteristics in the composition of the forcings. Taking advantage of an available suite of coupled model simulations under low-warming and intermediate scenarios, we evaluate the accuracy of these emulation techniques and show that they are unlikely to represent a substantial contribution to the total uncertainty.

  10. Dynamic temperature dependence patterns in future energy demand models in the context of climate change

    International Nuclear Information System (INIS)

    Hekkenberg, M.; Moll, H.C.; Uiterkamp, A.J.M. Schoot

    2009-01-01

    Energy demand depends on outdoor temperature in a 'u' shaped fashion. Various studies have used this temperature dependence to investigate the effects of climate change on energy demand. Such studies contain implicit or explicit assumptions to describe expected socio-economic changes that may affect future energy demand. This paper critically analyzes these implicit or explicit assumptions and their possible effect on the studies' outcomes. First we analyze the interaction between the socio-economic structure and the temperature dependence pattern (TDP) of energy demand. We find that socio-economic changes may alter the TDP in various ways. Next we investigate how current studies manage these dynamics in socio-economic structure. We find that many studies systematically misrepresent the possible effect of socio-economic changes on the TDP of energy demand. Finally, we assess the consequences of these misrepresentations in an energy demand model based on temperature dependence and climate scenarios. Our model results indicate that expected socio-economic dynamics generally lead to an underestimation of future energy demand in models that misrepresent such dynamics. We conclude that future energy demand models should improve the incorporation of socio-economic dynamics. We propose dynamically modeling several key parameters and using direct meteorological data instead of degree days. (author)

  11. Climate Change in the News: Allusions to the Catastrophe in Times of Calm

    Directory of Open Access Journals (Sweden)

    Carlos Horacio Lozano Ascencio

    2013-05-01

    Full Text Available Climate change has become a symbol of global risk society. It is one of the most discussed and agreed by the scientific community, however, between citizens, climate change does not achieve the same degree of consensus. The objects of study are the references to climate change in the news on Spanish television in "quiet times". The objective is to record information when there is no disaster or an international summit on climate change related. We analyze more than 200 pieces television in 2011 in national chains, regional and local perspectives emphasizing scientific, social, political and techniques from which addresses the issue. We conclude that treatment key information on climate change in "quiet times" are maintained as if at that time there were a catastrophe or an international summit.

  12. Regularized principal covariates regression and its application to finding coupled patterns in climate fields

    Science.gov (United States)

    Fischer, M. J.

    2014-02-01

    There are many different methods for investigating the coupling between two climate fields, which are all based on the multivariate regression model. Each different method of solving the multivariate model has its own attractive characteristics, but often the suitability of a particular method for a particular problem is not clear. Continuum regression methods search the solution space between the conventional methods and thus can find regression model subspaces that mix the attractive characteristics of the end-member subspaces. Principal covariates regression is a continuum regression method that is easily applied to climate fields and makes use of two end-members: principal components regression and redundancy analysis. In this study, principal covariates regression is extended to additionally span a third end-member (partial least squares or maximum covariance analysis). The new method, regularized principal covariates regression, has several attractive features including the following: it easily applies to problems in which the response field has missing values or is temporally sparse, it explores a wide range of model spaces, and it seeks a model subspace that will, for a set number of components, have a predictive skill that is the same or better than conventional regression methods. The new method is illustrated by applying it to the problem of predicting the southern Australian winter rainfall anomaly field using the regional atmospheric pressure anomaly field. Regularized principal covariates regression identifies four major coupled patterns in these two fields. The two leading patterns, which explain over half the variance in the rainfall field, are related to the subtropical ridge and features of the zonally asymmetric circulation.

  13. Climate and landscape influence on indicators of lake carbon cycling through spatial patterns in dissolved organic carbon.

    Science.gov (United States)

    Lapierre, Jean-Francois; Seekell, David A; Del Giorgio, Paul A

    2015-12-01

    Freshwater ecosystems are strongly influenced by both climate and the surrounding landscape, yet the specific pathways connecting climatic and landscape drivers to the functioning of lake ecosystems are poorly understood. Here, we hypothesize that the links that exist between spatial patterns in climate and landscape properties and the spatial variation in lake carbon (C) cycling at regional scales are at least partly mediated by the movement of terrestrial dissolved organic carbon (DOC) in the aquatic component of the landscape. We assembled a set of indicators of lake C cycling (bacterial respiration and production, chlorophyll a, production to respiration ratio, and partial pressure of CO2 ), DOC concentration and composition, and landscape and climate characteristics for 239 temperate and boreal lakes spanning large environmental and geographic gradients across seven regions. There were various degrees of spatial structure in climate and landscape features that were coherent with the regionally structured patterns observed in lake DOC and indicators of C cycling. These different regions aligned well, albeit nonlinearly along a mean annual temperature gradient; whereas there was a considerable statistical effect of climate and landscape properties on lake C cycling, the direct effect was small and the overall effect was almost entirely overlapping with that of DOC concentration and composition. Our results suggest that key climatic and landscape signals are conveyed to lakes in part via the movement of terrestrial DOC to lakes and that DOC acts both as a driver of lake C cycling and as a proxy for other external signals. © 2015 John Wiley & Sons Ltd.

  14. Predicting plant diversity patterns in Madagascar: understanding the effects of climate and land cover change in a biodiversity hotspot.

    Directory of Open Access Journals (Sweden)

    Kerry A Brown

    Full Text Available Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar's plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future.

  15. Canadian boreal forest greening and browning trends: an analysis of biogeographic patterns and the relative roles of disturbance versus climate drivers

    Science.gov (United States)

    Sulla-Menashe, Damien; Woodcock, Curtis E.; Friedl, Mark A.

    2018-01-01

    Recent studies have used satellite-derived normalized difference vegetation index (NDVI) time series to explore geographic patterns in boreal forest greening and browning. A number of these studies indicate that boreal forests are experiencing widespread browning, and have suggested that these patterns reflect decreases in forest productivity induced by climate change. Here we use NDVI time series from Landsat, which has much higher quality and spatial resolution than imagery used in most previous studies, to characterize biogeographic patterns in greening and browning across Canada’s boreal forest and to explore the drivers behind observed trends. Our results show that the majority of NDVI changes in Canada’s boreal forest reflect disturbance-recovery dynamics not climate change impacts, that greening and browning trends outside of disturbed forests are consistent with expected ecological responses to regional changes in climate, and that observed NDVI changes are geographically limited and relatively small in magnitude. By examining covariance between changes in NDVI and temperature and precipitation in locations not affected by disturbance, our results isolate and characterize the nature and magnitude of greening and browning directly associated with climate change. Consistent with biogeographic theory, greening and browning unrelated to disturbance tended to be located in ecotones near boundaries of the boreal forest bioclimatic envelope. We observed greening to be most prevalent in Eastern Canada, which is more humid, and browning to be most prevalent in Western Canada, where forests are more prone to moisture stress. We conclude that continued long-term climate change has the potential to significantly alter the character and function of Canada’s boreal forest, but recent changes have been modest and near-term impacts are likely to be focused in or near ecotones.

  16. The relative importance of climate and vegetation properties on patterns of North American breeding bird species richness

    International Nuclear Information System (INIS)

    Goetz, Scott J; Sun, Mindy; Zolkos, Scott; Hansen, Andy; Dubayah, Ralph

    2014-01-01

    Recent advances in remote sensing and ecological modeling warrant a timely and robust investigation of the ecological variables that underlie large-scale patterns of breeding bird species richness, particularly in the context of intensifying land use and climate change. Our objective was to address this need using an array of bioclimatic and remotely sensed data sets representing vegetation properties and structure, and other aspects of the physical environment. We first build models of bird species richness across breeding bird survey (BBS) routes, and then spatially predict richness across the coterminous US at moderately high spatial resolution (1 km). Predictor variables were derived from various sources and maps of species richness were generated for four groups (guilds) of birds with different breeding habitat affiliation (forest, grassland, open woodland, scrub/shrub), as well as all guilds combined. Predictions of forest bird distributions were strong (R 2 = 0.85), followed by grassland (0.76), scrub/shrub (0.63) and open woodland (0.60) species. Vegetation properties were generally the strongest determinants of species richness, whereas bioclimatic and lidar-derived vertical structure metrics were of variable importance and dependent upon the guild type. Environmental variables (climate and the physical environment) were also frequently selected predictors, but canopy structure variables were not as important as expected based on more local to regional scale studies. Relatively sparse sampling of canopy structure metrics from the satellite lidar sensor may have reduced their importance relative to other predictor variables across the study domain. We discuss these results in the context of the ecological drivers of species richness patterns, the spatial scale of bird diversity analyses, and the potential of next generation space-borne lidar systems relevant to vegetation and ecosystem studies. This study strengthens current understanding of bird species

  17. Phase Two European Energy Policy Project. European energy and climate policy - Time for something new

    International Nuclear Information System (INIS)

    Helm, Dieter

    2014-01-01

    During 2014, European energy and climate change policy has moved centre stage. The annexation of Crimea and the destabilization of Eastern Ukraine have raised tensions with Russia to levels not seen since the Cold War. The EU has responded with an energy security plan, and sanctions. Developments elsewhere have further complicated matters. In the Middle East, the rapid advances of ISIS (now called the Islamic State), the internal conflicts in Libya, the war in Gaza, and the continuing negotiations with Iran on nuclear matters suggest that early optimism about the 'Arab Spring' was at best misplaced, and chronic instability has returned. In the US, the energy revolution continues to change the geopolitics of oil and gas, with the early skepticism about the scale of the changes and the shift towards North American energy independence giving way to recognition that the changes are permanent and profound - for both global energy markets and Europe. The full implications of the end of the commodity super-cycle are both profound for European energy policy and very poorly understood. Commodity prices have tumbled, with oil prices falling below $80 a barrel. On climate change, there is almost certainly not going to be a continuation of the Kyoto style international framework after the Paris conference in December 2015. Chinese emissions per head have now exceeded those of the Europeans, and it is at last being recognized that the climate change problem is one in which China, not the EU, is centre stage. China has announced that it does not intend to cap its carbon emissions until after 2030, by which time they may peak anyway - from a very much higher base after another decade and a half of increases. The Paris conference will see a series of 'pledges' and 'commitments' very much on the pattern of the Copenhagen Accord, not the credible, enforceable legally binding measures that had been proposed at the Durban Conference of the Parties in 2011

  18. An abrupt centennial-scale drought event and mid-holocene climate change patterns in monsoon marginal zones of East Asia.

    Directory of Open Access Journals (Sweden)

    Yu Li

    Full Text Available The mid-latitudes of East Asia are characterized by the interaction between the Asian summer monsoon and the westerly winds. Understanding long-term climate change in the marginal regions of the Asian monsoon is critical for understanding the millennial-scale interactions between the Asian monsoon and the westerly winds. Abrupt climate events are always associated with changes in large-scale circulation patterns; therefore, investigations into abrupt climate changes provide clues for responses of circulation patterns to extreme climate events. In this paper, we examined the time scale and mid-Holocene climatic background of an abrupt dry mid-Holocene event in the Shiyang River drainage basin in the northwest margin of the Asian monsoon. Mid-Holocene lacustrine records were collected from the middle reaches and the terminal lake of the basin. Using radiocarbon and OSL ages, a centennial-scale drought event, which is characterized by a sand layer in lacustrine sediments both from the middle and lower reaches of the basin, was absolutely dated between 8.0-7.0 cal kyr BP. Grain size data suggest an abrupt decline in lake level and a dry environment in the middle reaches of the basin during the dry interval. Previous studies have shown mid-Holocene drought events in other places of monsoon marginal zones; however, their chronologies are not strong enough to study the mechanism. According to the absolutely dated records, we proposed a new hypothesis that the mid-Holocene dry interval can be related to the weakening Asian summer monsoon and the relatively arid environment in arid Central Asia. Furthermore, abrupt dry climatic events are directly linked to the basin-wide effective moisture change in semi-arid and arid regions. Effective moisture is affected by basin-wide precipitation, evapotranspiration, lake surface evaporation and other geographical settings. As a result, the time scales of the dry interval could vary according to locations due to

  19. Climate scenarios for Olkiluoto on a time-scale of 120,000 years

    International Nuclear Information System (INIS)

    Pimenoff, N.; Venaelaeinen, A.; Jaervinen, H.

    2011-12-01

    Posiva Oy is planning to dispose of spent nuclear fuel in a repository, to be constructed at a depth of 400 m in the crystalline bedrock at Olkiluoto, Finland. Planning the storage requires careful consideration of many aspects, including an assessment of long-term repository safety. For estimating possible climate states at Olkiluoto on a time-scale of 120,000 years, we analyze climate simulations of an Earth System Model of Intermediate Complexity (CLIMBER-2) coupled with an ice sheet model (SICOPOLIS). The simulations into the future clearly show that the onset of the next glaciation is strongly dependent on the Earth's orbital variations and the atmospheric CO 2 concentration. It is evident that due to global warming, the climate of the next centuries will be warmer and wetter than at present. Most likely, due to global warming and low variations in the Earth's orbit around the sun, the present interglacial will last for at least the next 30,000 years. Further, the future simulations showed that the insolation minima on the Northern Hemisphere 50,000-60,000 and 90,000-100,000 years after the present hold a potential for the onset of the next glaciation. Hence, on a time-scale of 120,000 years, one must take into account climate periods lasting several thousand years having the following features: an interglacial climate, a periglacial climate, a climate with an ice sheet margin near Olkiluoto, a glacial climate with an ice sheet covering Olkiluoto, and a climate with Olkiluoto being depressed below sea level after glaciation due to isostatic depression. Due to the uncertainties related to the evolution of the future climate, it is recommended the simulations into the far future to be used only qualitatively. Quantitative information about glacial climate is achieved from the reconstructions and simulations of the past climate. (orig.)

  20. Climate scenarios for Olkiluoto on a time-scale of 100,000 years

    International Nuclear Information System (INIS)

    Pimenoff, N.; Venaelaeinen, A.; Jaervinen, H.

    2011-01-01

    Posiva Oy is planning to dispose of spent nuclear fuel in a repository, to be constructed at a depth of 400 m in the crystalline bedrock at Olkiluoto, Finland. Planning the storage requires careful consideration of many aspects, including an assessment of long-term repository safety. For estimating possible climate states at Olkiluoto on a time-scale of 100,000 years, we analyze climate simulations of an Earth System Model of Intermediate Complexity (CLIMBER-2) coupled with an ice sheet model (SICOPOLIS). The simulations into the future clearly show that the onset of the next glaciation is strongly dependent on the Earth's orbital variations and the atmospheric CO 2 concentration. It is evident that due to global warming, the climate of the next centuries will be warmer and wetter than at present. Most likely, due to global warming and low variations in the Earth's orbit around the sun, the present interglacial will last for at least the next 30,000 years. Further, the future simulations showed that the insolation minima on the Northern Hemisphere 50,000-60,000 and 90,000-100,000 years after the present hold a potential for the onset of the next glaciation. Hence, on a time-scale of 100,000 years, one must take into account climate periods lasting several thousand years having the following features: an interglacial climate, a periglacial climate, a climate with an ice sheet margin near Olkiluoto, a glacial climate with an ice sheet covering Olkiluoto, and a climate with Olkiluoto being depressed below sea level after glaciation due to isostatic depression. Due to the uncertainties related to the evolution of the future climate, it is recommended the simulations into the far future to be used only qualitatively. Quantitative information about glacial climate is achieved from the reconstructions and simulations of the past climate. (orig.)

  1. Climate scenarios for Olkiluoto on a time-scale of 120,000 years

    Energy Technology Data Exchange (ETDEWEB)

    Pimenoff, N.; Venaelaeinen, A.; Jaervinen, H. [Finnish Meteorological Institute, Helsinki (Finland)

    2011-12-15

    Posiva Oy is planning to dispose of spent nuclear fuel in a repository, to be constructed at a depth of 400 m in the crystalline bedrock at Olkiluoto, Finland. Planning the storage requires careful consideration of many aspects, including an assessment of long-term repository safety. For estimating possible climate states at Olkiluoto on a time-scale of 120,000 years, we analyze climate simulations of an Earth System Model of Intermediate Complexity (CLIMBER-2) coupled with an ice sheet model (SICOPOLIS). The simulations into the future clearly show that the onset of the next glaciation is strongly dependent on the Earth's orbital variations and the atmospheric CO{sub 2} concentration. It is evident that due to global warming, the climate of the next centuries will be warmer and wetter than at present. Most likely, due to global warming and low variations in the Earth's orbit around the sun, the present interglacial will last for at least the next 30,000 years. Further, the future simulations showed that the insolation minima on the Northern Hemisphere 50,000-60,000 and 90,000-100,000 years after the present hold a potential for the onset of the next glaciation. Hence, on a time-scale of 120,000 years, one must take into account climate periods lasting several thousand years having the following features: an interglacial climate, a periglacial climate, a climate with an ice sheet margin near Olkiluoto, a glacial climate with an ice sheet covering Olkiluoto, and a climate with Olkiluoto being depressed below sea level after glaciation due to isostatic depression. Due to the uncertainties related to the evolution of the future climate, it is recommended the simulations into the far future to be used only qualitatively. Quantitative information about glacial climate is achieved from the reconstructions and simulations of the past climate. (orig.)

  2. Time budgets and activity patterns of sub-Antarctic fur seals at ...

    African Journals Online (AJOL)

    1993-04-15

    Apr 15, 1993 ... tially influence the activity patterns of fur seals when they are ashore, and their relatively ... modified by cloud cover and shade (which advanced pro- gressively across the ..... Influence of climate on the distri- bution of walruses ...

  3. Interactions of landscape disturbances and climate change dictate ecological pattern and process: spatial modeling of wildfire, insect, and disease dynamics under future climates

    Science.gov (United States)

    Loehman, Rachel A.; Keane, Robert E.; Holsinger, Lisa M.; Wu, Zhiwei

    2016-01-01

    ContextInteractions among disturbances, climate, and vegetation influence landscape patterns and ecosystem processes. Climate changes, exotic invasions, beetle outbreaks, altered fire regimes, and human activities may interact to produce landscapes that appear and function beyond historical analogs.ObjectivesWe used the mechanistic ecosystem-fire process model FireBGCv2 to model interactions of wildland fire, mountain pine beetle (Dendroctonus ponderosae), and white pine blister rust (Cronartium ribicola) under current and future climates, across three diverse study areas.MethodsWe assessed changes in tree basal area as a measure of landscape response over a 300-year simulation period for the Crown of the Continent in north-central Montana, East Fork of the Bitterroot River in western Montana, and Yellowstone Central Plateau in western Wyoming, USA.ResultsInteracting disturbances reduced overall basal area via increased tree mortality of host species. Wildfire decreased basal area more than beetles or rust, and disturbance interactions modeled under future climate significantly altered landscape basal area as compared with no-disturbance and current climate scenarios. Responses varied among landscapes depending on species composition, sensitivity to fire, and pathogen and beetle suitability and susceptibility.ConclusionsUnderstanding disturbance interactions is critical for managing landscapes because forest responses to wildfires, pathogens, and beetle attacks may offset or exacerbate climate influences, with consequences for wildlife, carbon, and biodiversity.

  4. Future Arctic climate changes: Adaptation and mitigation time scales

    Science.gov (United States)

    Overland, James E.; Wang, Muyin; Walsh, John E.; Stroeve, Julienne C.

    2014-02-01

    The climate in the Arctic is changing faster than in midlatitudes. This is shown by increased temperatures, loss of summer sea ice, earlier snow melt, impacts on ecosystems, and increased economic access. Arctic sea ice volume has decreased by 75% since the 1980s. Long-lasting global anthropogenic forcing from carbon dioxide has increased over the previous decades and is anticipated to increase over the next decades. Temperature increases in response to greenhouse gases are amplified in the Arctic through feedback processes associated with shifts in albedo, ocean and land heat storage, and near-surface longwave radiation fluxes. Thus, for the next few decades out to 2040, continuing environmental changes in the Arctic are very likely, and the appropriate response is to plan for adaptation to these changes. For example, it is very likely that the Arctic Ocean will become seasonally nearly sea ice free before 2050 and possibly within a decade or two, which in turn will further increase Arctic temperatures, economic access, and ecological shifts. Mitigation becomes an important option to reduce potential Arctic impacts in the second half of the 21st century. Using the most recent set of climate model projections (CMIP5), multimodel mean temperature projections show an Arctic-wide end of century increase of +13°C in late fall and +5°C in late spring for a business-as-usual emission scenario (RCP8.5) in contrast to +7°C in late fall and +3°C in late spring if civilization follows a mitigation scenario (RCP4.5). Such temperature increases demonstrate the heightened sensitivity of the Arctic to greenhouse gas forcing.

  5. Holocene Climate Variability on the Centennial and Millennial Time Scale

    Directory of Open Access Journals (Sweden)

    Eun Hee Lee

    2014-12-01

    Full Text Available There have been many suggestions and much debate about climate variability during the Holocene. However, their complex forcing factors and mechanisms have not yet been clearly identified. In this paper, we have examined the Holocene climate cycles and features based on the wavelet analyses of 14C, 10Be, and 18O records. The wavelet results of the 14C and 10Be data show that the cycles of ~2180-2310, ~970, ~500-520, ~350-360, and ~210-220 years are dominant, and the ~1720 and ~1500 year cycles are relatively weak and subdominant. In particular, the ~2180-2310 year periodicity corresponding to the Hallstatt cycle is constantly significant throughout the Holocene, while the ~970 year cycle corresponding to the Eddy cycle is mainly prominent in the early half of the Holocene. In addition, distinctive signals of the ~210-220 year period corresponding to the de Vries cycle appear recurrently in the wavelet distribution of 14C and 10Be, which coincide with the grand solar minima periods. These de Vries cycle events occurred every ~2270 years on average, implying a connection with the Hallstatt cycle. In contrast, the wavelet results of 18O data show that the cycles of ~1900-2000, ~900-1000, and ~550-560 years are dominant, while the ~2750 and ~2500 year cycles are subdominant. The periods of ~2750, ~2500, and ~1900 years being derived from the 18O records of NGRIP, GRIP and GISP2 ice cores, respectively, are rather longer or shorter than the Hallstatt cycle derived from the 14C and 10Be records. The records of these three sites all show the ~900-1000 year periodicity corresponding to the Eddy cycle in the early half of the Holocene.

  6. Climate Prediction Center (CPC) Global Temperature Time Series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global temperature time series provides time series charts using station based observations of daily temperature. These charts provide information about the...

  7. Climate Prediction Center (CPC) Global Precipitation Time Series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global precipitation time series provides time series charts showing observations of daily precipitation as well as accumulated precipitation compared to normal...

  8. Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns

    Science.gov (United States)

    Sarah C. Elmendorf; Gregory H.R. Henry; Robert D. Hollisterd; Anna Maria Fosaa; William A. Gould; Luise Hermanutz; Annika Hofgaard; Ingibjorg I. Jonsdottir; Janet C. Jorgenson; Esther Levesque; Borgbor Magnusson; Ulf Molau; Isla H. Myers-Smith; Steven F. Oberbauer; Christian Rixen; Craig E. Tweedie; Marilyn Walkers

    2015-01-01

    Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along...

  9. Influences of spawning timing, water temperature, and climatic warming on early life history phenology in western Alaska sockeye salmon

    Science.gov (United States)

    Sparks, Morgan M.; Falke, Jeffrey A.; Quinn, Thomas P.; Adkison, Milo D.; Schindler, Daniel E.; Bartz, Krista K.; Young, Daniel B.; Westley, Peter A. H.

    2018-01-01

    We applied an empirical model to predict hatching and emergence timing for 25 western Alaska sockeye salmon (Oncorhynchus nerka) populations in four lake-nursery systems to explore current patterns and potential responses of early life history phenology to warming water temperatures. Given experienced temperature regimes during development, we predicted hatching to occur in as few as 58 d to as many as 260 d depending on spawning timing and temperature. For a focal lake spawning population, our climate-lake temperature model predicted a water temperature increase of 0.7 to 1.4 °C from 2015 to 2099 during the incubation period, which translated to a 16 d to 30 d earlier hatching timing. The most extreme scenarios of warming advanced development by approximately a week earlier than historical minima and thus climatic warming may lead to only modest shifts in phenology during the early life history stage of this population. The marked variation in the predicted timing of hatching and emergence among populations in close proximity on the landscape may serve to buffer this metapopulation from climate change.

  10. Time trend of malaria in relation to climate variability in Papua New Guinea.

    Science.gov (United States)

    Park, Jae-Won; Cheong, Hae-Kwan; Honda, Yasushi; Ha, Mina; Kim, Ho; Kolam, Joel; Inape, Kasis; Mueller, Ivo

    2016-01-01

    This study was conducted to describe the regional malaria incidence in relation to the geographic and climatic conditions and describe the effect of altitude on the expansion of malaria over the last decade in Papua New Guinea. Malaria incidence was estimated in five provinces from 1996 to 2008 using national health surveillance data. Time trend of malaria incidence was compared with rainfall and minimum/maximum temperature. In the Eastern Highland Province, time trend of malaria incidence over the study period was stratified by altitude. Spatio-temporal pattern of malaria was analyzed. Nationwide, malaria incidence was stationary. Regionally, the incidence increased markedly in the highland region (292.0/100000/yr, p =0.021), and remained stationary in the other regions. Seasonality of the malaria incidence was related with rainfall. Decreasing incidence of malaria was associated with decreasing rainfall in the southern coastal region, whereas it was not evident in the northern coastal region. In the Eastern Highland Province, malaria incidence increased in areas below 1700 m, with the rate of increase being steeper at higher altitudes. Increasing trend of malaria incidence was prominent in the highland region of Papua New Guinea, while long-term trend was dependent upon baseline level of rainfall in coastal regions.

  11. Time trend of malaria in relation to climate variability in Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Jae-Won Park

    2016-02-01

    Full Text Available Objectives This study was conducted to describe the regional malaria incidence in relation to the geographic and climatic conditions and describe the effect of altitude on the expansion of malaria over the last decade in Papua New Guinea. Methods Malaria incidence was estimated in five provinces from 1996 to 2008 using national health surveillance data. Time trend of malaria incidence was compared with rainfall and minimum/maximum temperature. In the Eastern Highland Province, time trend of malaria incidence over the study period was stratified by altitude. Spatio-temporal pattern of malaria was analyzed. Results Nationwide, malaria incidence was stationary. Regionally, the incidence increased markedly in the highland region (292.0/100000/yr, p =0.021, and remained stationary in the other regions. Seasonality of the malaria incidence was related with rainfall. Decreasing incidence of malaria was associated with decreasing rainfall in the southern coastal region, whereas it was not evident in the northern coastal region. In the Eastern Highland Province, malaria incidence increased in areas below 1700 m, with the rate of increase being steeper at higher altitudes. Conclusions Increasing trend of malaria incidence was prominent in the highland region of Papua New Guinea, while long-term trend was dependent upon baseline level of rainfall in coastal regions.

  12. Time trend of malaria in relation to climate variability in Papua New Guinea

    Science.gov (United States)

    Kolam, Joel; Inape, Kasis

    2016-01-01

    Objectives This study was conducted to describe the regional malaria incidence in relation to the geographic and climatic conditions and describe the effect of altitude on the expansion of malaria over the last decade in Papua New Guinea. Methods Malaria incidence was estimated in five provinces from 1996 to 2008 using national health surveillance data. Time trend of malaria incidence was compared with rainfall and minimum/maximum temperature. In the Eastern Highland Province, time trend of malaria incidence over the study period was stratified by altitude. Spatio-temporal pattern of malaria was analyzed. Results Nationwide, malaria incidence was stationary. Regionally, the incidence increased markedly in the highland region (292.0/100000/yr, p =0.021), and remained stationary in the other regions. Seasonality of the malaria incidence was related with rainfall. Decreasing incidence of malaria was associated with decreasing rainfall in the southern coastal region, whereas it was not evident in the northern coastal region. In the Eastern Highland Province, malaria incidence increased in areas below 1700 m, with the rate of increase being steeper at higher altitudes. Conclusions Increasing trend of malaria incidence was prominent in the highland region of Papua New Guinea, while long-term trend was dependent upon baseline level of rainfall in coastal regions. PMID:26987606

  13. Hunter-gatherer postcranial robusticity relative to patterns of mobility, climatic adaptation, and selection for tissue economy.

    Science.gov (United States)

    Stock, J T

    2006-10-01

    Human skeletal robusticity is influenced by a number of factors, including habitual behavior, climate, and physique. Conflicting evidence as to the relative importance of these factors complicates our ability to interpret variation in robusticity in the past. It remains unclear how the pattern of robusticity in the skeleton relates to adaptive constraints on skeletal morphology. This study investigates variation in robusticity in claviculae, humeri, ulnae, femora, and tibiae among human foragers, relative to climate and habitual behavior. Cross-sectional geometric properties of the diaphyses are compared among hunter-gatherers from southern Africa (n = 83), the Andaman Islands (n = 32), Tierra del Fuego (n = 34), and the Great Lakes region (n = 15). The robusticity of both proximal and distal limb segments correlates negatively with climate and positively with patterns of terrestrial and marine mobility among these groups. However, the relative correspondence between robusticity and these factors varies throughout the body. In the lower limb, partial correlations between polar second moment of area (J(0.73)) and climate decrease from proximal to distal section locations, while this relationship increases from proximal to distal in the upper limb. Patterns of correlation between robusticity and mobility, either terrestrial or marine, generally increase from proximal to distal in the lower and upper limbs, respectively. This suggests that there may be a stronger relationship between observed patterns of diaphyseal hypertrophy and behavioral differences between populations in distal elements. Despite this trend, strength circularity indices at the femoral midshaft show the strongest correspondence with terrestrial mobility, particularly among males.

  14. Patterns of divergence across the geographic and genomic landscape of a butterfly hybrid zone associated with a climatic gradient

    Science.gov (United States)

    The process of speciation is impacted by the interaction between the genomic architecture of diverging lineages and the environmental context they occupy. Yet, while climate can have a significant impact on this interaction, its role in determining the patterns of geographic and genomic divergence i...

  15. Scenario Analysis on Climate Change Impacts of Urban Land Expansion under Different Urbanization Patterns: A Case Study of Wuhan Metropolitan

    Directory of Open Access Journals (Sweden)

    Xinli Ke

    2013-01-01

    Full Text Available Urban land expansion plays an important role in climate change. It is significant to select a reasonable urban expansion pattern to mitigate the impact of urban land expansion on the regional climate in the rapid urbanization process. In this paper, taking Wuhan metropolitan as the case study area, and three urbanization patterns scenarios are designed to simulate spatial patterns of urban land expansion in the future using the Partitioned and Asynchronous Cellular Automata Model. Then, simulation results of land use are adjusted and inputted into WRF (Weather Research and Forecast model to simulate regional climate change. The results show that: (1 warming effect is strongest under centralized urbanization while it is on the opposite under decentralized scenario; (2 the warming effect is stronger and wider in centralized urbanization scenario than in decentralized urbanization scenario; (3 the impact trends of urban land use expansion on precipitation are basically the same under different scenarios; (4 and spatial distribution of rainfall was more concentrated under centralized urbanization scenario, and there is a rainfall center of wider scope, greater intensity. Accordingly, it can be concluded that decentralized urbanization is a reasonable urbanization pattern to mitigate climate change in rapid urbanization period.

  16. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions.

    Science.gov (United States)

    Zeebe, Richard E

    2013-08-20

    Climate sensitivity measures the response of Earth's surface temperature to changes in forcing. The response depends on various climate processes that feed back on the initial forcing on different timescales. Understanding climate sensitivity is fundamental to reconstructing Earth's climatic history as well as predicting future climate change. On timescales shorter than centuries, only fast climate feedbacks including water vapor, lapse rate, clouds, and snow/sea ice albedo are usually considered. However, on timescales longer than millennia, the generally higher Earth system sensitivity becomes relevant, including changes in ice sheets, vegetation, ocean circulation, biogeochemical cycling, etc. Here, I introduce the time-dependent climate sensitivity, which unifies fast-feedback and Earth system sensitivity. I show that warming projections, which include a time-dependent climate sensitivity, exhibit an enhanced feedback between surface warming and ocean CO2 solubility, which in turn leads to higher atmospheric CO2 levels and further warming. Compared with earlier studies, my results predict a much longer lifetime of human-induced future warming (23,000-165,000 y), which increases the likelihood of large ice sheet melting and major sea level rise. The main point regarding the legacy of anthropogenic greenhouse gas emissions is that, even if the fast-feedback sensitivity is no more than 3 K per CO2 doubling, there will likely be additional long-term warming from slow climate feedbacks. Time-dependent climate sensitivity also helps explaining intense and prolonged warming in response to massive carbon release as documented for past events such as the Paleocene-Eocene Thermal Maximum.

  17. Real-Time Climate Simulations in the Interactive 3D Game Universe Sandbox ²

    Science.gov (United States)

    Goldenson, N. L.

    2014-12-01

    Exploration in an open-ended computer game is an engaging way to explore climate and climate change. Everyone can explore physical models with real-time visualization in the educational simulator Universe Sandbox ² (universesandbox.com/2), which includes basic climate simulations on planets. I have implemented a time-dependent, one-dimensional meridional heat transport energy balance model to run and be adjustable in real time in the midst of a larger simulated system. Universe Sandbox ² is based on the original game - at its core a gravity simulator - with other new physically-based content for stellar evolution, and handling collisions between bodies. Existing users are mostly science enthusiasts in informal settings. We believe that this is the first climate simulation to be implemented in a professionally developed computer game with modern 3D graphical output in real time. The type of simple climate model we've adopted helps us depict the seasonal cycle and the more drastic changes that come from changing the orbit or other external forcings. Users can alter the climate as the simulation is running by altering the star(s) in the simulation, dragging to change orbits and obliquity, adjusting the climate simulation parameters directly or changing other properties like CO2 concentration that affect the model parameters in representative ways. Ongoing visuals of the expansion and contraction of sea ice and snow-cover respond to the temperature calculations, and make it accessible to explore a variety of scenarios and intuitive to understand the output. Variables like temperature can also be graphed in real time. We balance computational constraints with the ability to capture the physical phenomena we wish to visualize, giving everyone access to a simple open-ended meridional energy balance climate simulation to explore and experiment with. The software lends itself to labs at a variety of levels about climate concepts including seasons, the Greenhouse effect

  18. Timing of seasonal migration in mule deer: effects of climate, plant phenology, and life-history characteristics

    Science.gov (United States)

    Monteith, Kevin L.; Bleich, Vernon C.; Stephenson, Thomas R.; Pierce, Beck M.; Conner, Mary M.; Klaver, Robert W.; Bowyer, R. Terry

    2011-01-01

    Phenological events of plants and animals are sensitive to climatic processes. Migration is a life-history event exhibited by most large herbivores living in seasonal environments, and is thought to occur in response to dynamics of forage and weather. Decisions regarding when to migrate, however, may be affected by differences in life-history characteristics of individuals. Long-term and intensive study of a population of mule deer (Odocoileus hemionus) in the Sierra Nevada, California, USA, allowed us to document patterns of migration during 11 years that encompassed a wide array of environmental conditions. We used two new techniques to properly account for interval-censored data and disentangle effects of broad-scale climate, local weather patterns, and plant phenology on seasonal patterns of migration, while incorporating effects of individual life-history characteristics. Timing of autumn migration varied substantially among individual deer, but was associated with the severity of winter weather, and in particular, snow depth and cold temperatures. Migratory responses to winter weather, however, were affected by age, nutritional condition, and summer residency of individual females. Old females and those in good nutritional condition risked encountering severe weather by delaying autumn migration, and were thus risk-prone with respect to the potential loss of foraging opportunities in deep snow compared with young females and those in poor nutritional condition. Females that summered on the west side of the crest of the Sierra Nevada delayed autumn migration relative to east-side females, which supports the influence of the local environment on timing of migration. In contrast, timing of spring migration was unrelated to individual life-history characteristics, was nearly twice as synchronous as autumn migration, differed among years, was related to the southern oscillation index, and was influenced by absolute snow depth and advancing phenology of plants

  19. Time: The Biggest Pattern in Natural History Research

    Science.gov (United States)

    Gontier, Nathalie

    2016-10-01

    We distinguish between four cosmological transitions in the history of Western intellectual thought, and focus on how these cosmologies differentially define matter, space and time. We demonstrate that how time is conceptualized significantly impacts a cosmology's notion on causality, and hone in on how time is conceptualized differentially in modern physics and evolutionary biology. The former conflates time with space into a single space-time continuum and focuses instead on the movement of matter, while the evolutionary sciences have a tradition to understand time as a given when they cartography how organisms change across generations over or in time, thereby proving the phenomenon of evolution. The gap becomes more fundamental when we take into account that phenomena studied by chrono-biologists demonstrate that numerous organisms, including humans, have evolved a "sense" of time. And micro-evolutionary/genetic, meso-evolutionary/developmental and macro-evolutionary phenomena including speciation and extinction not only occur by different evolutionary modes and at different rates, they are also timely phenomena that follow different periodicities. This article focusses on delineating the problem by finding its historical roots. We conclude that though time might be an obsolete concept for the physical sciences, it is crucial for the evolutionary sciences where evolution is defined as the change that biological individuals undergo in/over or through time.

  20. Storm blueprints patterns for distributed real-time computation

    CERN Document Server

    Goetz, P Taylor

    2014-01-01

    A blueprints book with 10 different projects built in 10 different chapters which demonstrate the various use cases of storm for both beginner and intermediate users, grounded in real-world example applications.Although the book focuses primarily on Java development with Storm, the patterns are more broadly applicable and the tips, techniques, and approaches described in the book apply to architects, developers, and operations.Additionally, the book should provoke and inspire applications of distributed computing to other industries and domains. Hadoop enthusiasts will also find this book a go

  1. Impact of Climate Variability and Landscape Patterns on Water Budget and Nutrient Loads in a Peri-urban Watershed: A Coupled Analysis Using Process-based Hydrological Model and Landscape Indices.

    Science.gov (United States)

    Li, Chongwei; Zhang, Yajuan; Kharel, Gehendra; Zou, Chris B

    2018-06-01

    Nutrient discharge into peri-urban streams and reservoirs constitutes a significant pressure on environmental management, but quantitative assessment of non-point source pollution under climate variability in fast changing peri-urban watersheds is challenging. Soil and Water Assessment Tool (SWAT) was used to simulate water budget and nutrient loads for landscape patterns representing a 30-year progression of urbanization in a peri-urban watershed near Tianjin metropolis, China. A suite of landscape pattern indices was related to nitrogen (N) and phosphorous (P) loads under dry and wet climate using CANOCO redundancy analysis. The calibrated SWAT model was adequate to simulate runoff and nutrient loads for this peri-urban watershed, with Nash-Sutcliffe coefficient (NSE) and coefficient of determination (R 2 ) > 0.70 and percentage bias (PBIAS) between -7 and +18 for calibration and validation periods. With the progression of urbanization, forest remained the main "sink" landscape while cultivated and urban lands remained the main "source" landscapes with the role of orchard and grassland being uncertain and changing with time. Compared to 1984, the landscape use pattern in 2013 increased nutrient discharge by 10%. Nutrient loads modelled under wet climate were 3-4 times higher than that under dry climate for the same landscape pattern. Results indicate that climate change could impose a far greater impact on runoff and nutrient discharge in a peri-urban watershed than landscape pattern change.

  2. Impact of Climate Variability and Landscape Patterns on Water Budget and Nutrient Loads in a Peri-urban Watershed: A Coupled Analysis Using Process-based Hydrological Model and Landscape Indices

    Science.gov (United States)

    Li, Chongwei; Zhang, Yajuan; Kharel, Gehendra; Zou, Chris B.

    2018-06-01

    Nutrient discharge into peri-urban streams and reservoirs constitutes a significant pressure on environmental management, but quantitative assessment of non-point source pollution under climate variability in fast changing peri-urban watersheds is challenging. Soil and Water Assessment Tool (SWAT) was used to simulate water budget and nutrient loads for landscape patterns representing a 30-year progression of urbanization in a peri-urban watershed near Tianjin metropolis, China. A suite of landscape pattern indices was related to nitrogen (N) and phosphorous (P) loads under dry and wet climate using CANOCO redundancy analysis. The calibrated SWAT model was adequate to simulate runoff and nutrient loads for this peri-urban watershed, with Nash-Sutcliffe coefficient (NSE) and coefficient of determination ( R 2) > 0.70 and percentage bias (PBIAS) between -7 and +18 for calibration and validation periods. With the progression of urbanization, forest remained the main "sink" landscape while cultivated and urban lands remained the main "source" landscapes with the role of orchard and grassland being uncertain and changing with time. Compared to 1984, the landscape use pattern in 2013 increased nutrient discharge by 10%. Nutrient loads modelled under wet climate were 3-4 times higher than that under dry climate for the same landscape pattern. Results indicate that climate change could impose a far greater impact on runoff and nutrient discharge in a peri-urban watershed than landscape pattern change.

  3. The non-linear, interactive effects of population density and climate drive the geographical patterns of waterfowl survival

    Science.gov (United States)

    Zhao, Qing; Boomer, G. Scott; Kendall, William L.

    2018-01-01

    On-going climate change has major impacts on ecological processes and patterns. Understanding the impacts of climate on the geographical patterns of survival can provide insights to how population dynamics respond to climate change and provide important information for the development of appropriate conservation strategies at regional scales. It is challenging to understand the impacts of climate on survival, however, due to the fact that the non-linear relationship between survival and climate can be modified by density-dependent processes. In this study we extended the Brownie model to partition hunting and non-hunting mortalities and linked non-hunting survival to covariates. We applied this model to four decades (1972–2014) of waterfowl band-recovery, breeding population survey, and precipitation and temperature data covering multiple ecological regions to examine the non-linear, interactive effects of population density and climate on waterfowl non-hunting survival at a regional scale. Our results showed that the non-linear effect of temperature on waterfowl non-hunting survival was modified by breeding population density. The concave relationship between non-hunting survival and temperature suggested that the effects of warming on waterfowl survival might be multifaceted. Furthermore, the relationship between non-hunting survival and temperature was stronger when population density was higher, suggesting that high-density populations may be less buffered against warming than low-density populations. Our study revealed distinct relationships between waterfowl non-hunting survival and climate across and within ecological regions, highlighting the importance of considering different conservation strategies according to region-specific population and climate conditions. Our findings and associated novel modelling approach have wide implications in conservation practice.

  4. Real-time pose invariant logo and pattern detection

    Science.gov (United States)

    Sidla, Oliver; Kottmann, Michal; Benesova, Wanda

    2011-01-01

    The detection of pose invariant planar patterns has many practical applications in computer vision and surveillance systems. The recognition of company logos is used in market studies to examine the visibility and frequency of logos in advertisement. Danger signs on vehicles could be detected to trigger warning systems in tunnels, or brand detection on transport vehicles can be used to count company-specific traffic. We present the results of a study on planar pattern detection which is based on keypoint detection and matching of distortion invariant 2d feature descriptors. Specifically we look at the keypoint detectors of type: i) Lowe's DoG approximation from the SURF algorithm, ii) the Harris Corner Detector, iii) the FAST Corner Detector and iv) Lepetit's keypoint detector. Our study then compares the feature descriptors SURF and compact signatures based on Random Ferns: we use 3 sets of sample images to detect and match 3 logos of different structure to find out which combinations of keypoint detector/feature descriptors work well. A real-world test tries to detect vehicles with a distinctive logo in an outdoor environment under realistic lighting and weather conditions: a camera was mounted on a suitable location for observing the entrance to a parking area so that incoming vehicles could be monitored. In this 2 hour long recording we can successfully detect a specific company logo without false positives.

  5. Phylogeographic patterns of the desert poplar in Northwest China shaped by both geology and climatic oscillations.

    Science.gov (United States)

    Zeng, Yan-Fei; Zhang, Jian-Guo; Abuduhamiti, Bawerjan; Wang, Wen-Ting; Jia, Zhi-Qing

    2018-05-25

    The effects of historical geology and climatic events on the evolution of plants around the Qinghai-Tibetan Plateau region have been at the center of debate for years. To identify the influence of the uplift of the Tianshan Mountains and/or climatic oscillations on the evolution of plants in arid northwest China, we investigated the phylogeography of the Euphrates poplar (Populus euphratica) using chloroplast DNA (cpDNA) sequences and nuclear microsatellites, and estimated its historical distribution using Ecological Niche Modeling (ENM). We found that the Euphrates poplar differed from another desert poplar, P. pruinosa, in both nuclear and chloroplast DNA. The low clonal diversity in both populations reflected the low regeneration rate by seed/seedlings in many locations. Both cpDNA and nuclear markers demonstrated a clear divergence between the Euphrates poplar populations from northern and southern Xinjiang regions. The divergence time was estimated to be early Pleistocene based on cpDNA, and late Pleistocene using an Approximate Bayesian Computation analysis based on microsatellites. Estimated gene flow was low between these two regions, and the limited gene flow occurred mainly via dispersal from eastern regions. ENM analysis supported a wider distribution of the Euphrates poplar at 3 Ma, but a more constricted distribution during both the glacial period and the interglacial period. These results indicate that the deformation of the Tianshan Mountains has impeded gene flow of the Euphrates poplar populations from northern and southern Xinjiang, and the distribution constriction due to climatic oscillations further accelerated the divergence of populations from these regions. To protect the desert poplars, more effort is needed to encourage seed germination and seedling establishment, and to conserve endemic gene resources in the northern Xinjiang region.

  6. Patterns and biases in climate change research on amphibians and reptiles: a systematic review.

    Science.gov (United States)

    Winter, Maiken; Fiedler, Wolfgang; Hochachka, Wesley M; Koehncke, Arnulf; Meiri, Shai; De la Riva, Ignacio

    2016-09-01

    Climate change probably has severe impacts on animal populations, but demonstrating a causal link can be difficult because of potential influences by additional factors. Assessing global impacts of climate change effects may also be hampered by narrow taxonomic and geographical research foci. We review studies on the effects of climate change on populations of amphibians and reptiles to assess climate change effects and potential biases associated with the body of work that has been conducted within the last decade. We use data from 104 studies regarding the effect of climate on 313 species, from 464 species-study combinations. Climate change effects were reported in 65% of studies. Climate change was identified as causing population declines or range restrictions in half of the cases. The probability of identifying an effect of climate change varied among regions, taxa and research methods. Climatic effects were equally prevalent in studies exclusively investigating climate factors (more than 50% of studies) and in studies including additional factors, thus bolstering confidence in the results of studies exclusively examining effects of climate change. Our analyses reveal biases with respect to geography, taxonomy and research question, making global conclusions impossible. Additional research should focus on under-represented regions, taxa and questions. Conservation and climate policy should consider the documented harm climate change causes reptiles and amphibians.

  7. Personality pattern in first-time-admitted alcoholics

    DEFF Research Database (Denmark)

    Simonsen, Erik; Haslund, J; Larsen, Anna

    1992-01-01

    early dropout from treatment. 17.7% of respondents showed invalid MCMI scores, a finding correlated with comorbid intellectual impairment, concurrent treatment with benzodiazepines, length of time spent in completing the test, and length of time since abstinence. (PsycINFO Database Record (c) 2012 APA...

  8. Future flooding impacts on transportation infrastructure and traffic patterns resulting from climate change.

    Science.gov (United States)

    2011-11-01

    "This study investigated potential impacts of climate change on travel disruption resulting from road closures in two urban watersheds in the : Portland metropolitan area. We used ensemble climate change scenarios, a hydrologic model, stream channel ...

  9. Late Miocene climate and time scale reconciliation: Accurate orbital calibration from a deep-sea perspective

    Science.gov (United States)

    Drury, Anna Joy; Westerhold, Thomas; Frederichs, Thomas; Tian, Jun; Wilkens, Roy; Channell, James E. T.; Evans, Helen; John, Cédric M.; Lyle, Mitch; Röhl, Ursula

    2017-10-01

    Accurate age control of the late Tortonian to early Messinian (8.3-6.0 Ma) is essential to ascertain the origin of benthic foraminiferal δ18O trends and the late Miocene carbon isotope shift (LMCIS), and to examine temporal relationships between the deep-sea, terrasphere and cryosphere. The current Tortonian-Messinian Geological Time Scale (GTS2012) is based on astronomically calibrated Mediterranean sections; however, no comparable non-Mediterranean stratigraphies exist for 8-6 Ma suitable for testing the GTS2012. Here, we present the first high-resolution, astronomically tuned benthic stable isotope stratigraphy (1.5 kyr resolution) and magnetostratigraphy from a single deep-sea location (IODP Site U1337, equatorial Pacific Ocean), which provides unprecedented insight into climate evolution from 8.3-6.0 Ma. The astronomically calibrated magnetostratigraphy provides robust ages, which differ by 2-50 kyr relative to the GTS2012 for polarity Chrons C3An.1n to C4r.1r, and eliminates the exceptionally high South Atlantic spreading rates based on the GTS2012 during Chron C3Bn. We show that the LMCIS was globally synchronous within 2 kyr, and provide astronomically calibrated ages anchored to the GPTS for its onset (7.537 Ma; 50% from base Chron C4n.1n) and termination (6.727 Ma; 11% from base Chron C3An.2n), confirming that the terrestrial C3:C4 shift could not have driven the LMCIS. The benthic records show that the transition into the 41-kyr world, when obliquity strongly influenced climate variability, already occurred at 7.7 Ma and further strengthened at 6.4 Ma. Previously unseen, distinctive, asymmetric saw-tooth patterns in benthic δ18O imply that high-latitude forcing played an important role in late Miocene climate dynamics from 7.7-6.9 Ma. This new integrated deep-sea stratigraphy from Site U1337 can act as a new stable isotope and magnetic polarity reference section for the 8.3-6.0 Ma interval.

  10. Coupled climate model simulations of Mediterranean winter cyclones and large-scale flow patterns

    Directory of Open Access Journals (Sweden)

    B. Ziv

    2013-03-01

    Full Text Available The study aims to evaluate the ability of global, coupled climate models to reproduce the synoptic regime of the Mediterranean Basin. The output of simulations of the 9 models included in the IPCC CMIP3 effort is compared to the NCEP-NCAR reanalyzed data for the period 1961–1990. The study examined the spatial distribution of cyclone occurrence, the mean Mediterranean upper- and lower-level troughs, the inter-annual variation and trend in the occurrence of the Mediterranean cyclones, and the main large-scale circulation patterns, represented by rotated EOFs of 500 hPa and sea level pressure. The models reproduce successfully the two maxima in cyclone density in the Mediterranean and their locations, the location of the average upper- and lower-level troughs, the relative inter-annual variation in cyclone occurrences and the structure of the four leading large scale EOFs. The main discrepancy is the models' underestimation of the cyclone density in the Mediterranean, especially in its western part. The models' skill in reproducing the cyclone distribution is found correlated with their spatial resolution, especially in the vertical. The current improvement in model spatial resolution suggests that their ability to reproduce the Mediterranean cyclones would be improved as well.

  11. Age and area predict patterns of species richness in pumice rafts contingent on oceanic climatic zone encountered.

    Science.gov (United States)

    Velasquez, Eleanor; Bryan, Scott E; Ekins, Merrick; Cook, Alex G; Hurrey, Lucy; Firn, Jennifer

    2018-05-01

    The theory of island biogeography predicts that area and age explain species richness patterns (or alpha diversity) in insular habitats. Using a unique natural phenomenon, pumice rafting, we measured the influence of area, age, and oceanic climate on patterns of species richness. Pumice rafts are formed simultaneously when submarine volcanoes erupt, the pumice clasts breakup irregularly, forming irregularly shaped pumice stones which while floating through the ocean are colonized by marine biota. We analyze two eruption events and more than 5,000 pumice clasts collected from 29 sites and three climatic zones. Overall, the older and larger pumice clasts held more species. Pumice clasts arriving in tropical and subtropical climates showed this same trend, where in temperate locations species richness (alpha diversity) increased with area but decreased with age. Beta diversity analysis of the communities forming on pumice clasts that arrived in different climatic zones showed that tropical and subtropical clasts transported similar communities, while species composition on temperate clasts differed significantly from both tropical and subtropical arrivals. Using these thousands of insular habitats, we find strong evidence that area and age but also climatic conditions predict the fundamental dynamics of species richness colonizing pumice clasts.

  12. Current and historical climate signatures to deconstructed tree species richness pattern in South America - doi: 10.4025/actascibiolsci.v35i2.14202

    Directory of Open Access Journals (Sweden)

    Daniel Paiva Silva

    2013-05-01

    Full Text Available The purpose of this study was to investigate the importance of present and historical climate as determinants of current species richness pattern of forestry trees in South America. The study predicted the distribution of 217 tree species using Maxent models, and calculated the potential species richness pattern, which was further deconstructed based on range sizes and modeled against current and historical climates predictors using Geographically Weighted Regressions (GWR analyses. The current climate explains more of the wide-ranging species richness patterns than that of the narrow-ranging species, while the historical climate explained an equally small amount of variance for both narrow-and-wide ranging tree species richness patterns. The richness deconstruction based on range size revealed that the influences of current and historical climate hypotheses underlying patterns in South American tree species richness differ from those found in the Northern Hemisphere. Notably, the historical climate appears to be an important determinant of richness only in regions with marked climate changes and proved Pleistocenic refuges, while the current climate predicts the species richness across those Neotropical regions, with non-evident refuges in the Last Glacial Maximum. Thus, this study's analyses show that these climate hypotheses are complementary to explain the South American tree species richness. Keywords: climate changes, glacial refuges, water-energy availability, GWR analysis, spatial non-stationarity

  13. Attribution of Large-Scale Climate Patterns to Seasonal Peak-Flow and Prospects for Prediction Globally

    Science.gov (United States)

    Lee, Donghoon; Ward, Philip; Block, Paul

    2018-02-01

    Flood-related fatalities and impacts on society surpass those from all other natural disasters globally. While the inclusion of large-scale climate drivers in streamflow (or high-flow) prediction has been widely studied, an explicit link to global-scale long-lead prediction is lacking, which can lead to an improved understanding of potential flood propensity. Here we attribute seasonal peak-flow to large-scale climate patterns, including the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO), using streamflow station observations and simulations from PCR-GLOBWB, a global-scale hydrologic model. Statistically significantly correlated climate patterns and streamflow autocorrelation are subsequently applied as predictors to build a global-scale season-ahead prediction model, with prediction performance evaluated by the mean squared error skill score (MSESS) and the categorical Gerrity skill score (GSS). Globally, fair-to-good prediction skill (20% ≤ MSESS and 0.2 ≤ GSS) is evident for a number of locations (28% of stations and 29% of land area), most notably in data-poor regions (e.g., West and Central Africa). The persistence of such relevant climate patterns can improve understanding of the propensity for floods at the seasonal scale. The prediction approach developed here lays the groundwork for further improving local-scale seasonal peak-flow prediction by identifying relevant global-scale climate patterns. This is especially attractive for regions with limited observations and or little capacity to develop flood early warning systems.

  14. Paleobiogeography of scleractinian reef corals: Changing patterns during the Oligocene-Miocene climatic transition in the Mediterranean

    Science.gov (United States)

    Perrin, Christine; Bosellini, Francesca R.

    2012-02-01

    geographically-restricted genera with a moderate to short stratigraphical range and a few long-ranging widespread genera. A major consequence of this structure is that the extinction pattern has proceeded through the preferential extinction of rare-occurrence genera through time. The potential rapid long-distance dispersal of most coral larvae compared to the size of the Oligocene-Miocene Mediterranean, explains why no biogeographical subprovinces can be distinguished for the z-coral fauna. On a local scale, ecological processes tend to sort coral taxa by limiting z-coral development to geographically restricted and discontinuous areas. This accounts for the large amount of geographically-restricted taxa forming the Mediterranean coral fauna. The interaction of plate-tectonics, Alpine orogenesis and climate at local to subregional scales exerts strong controls over the spatio-temporal distribution of z-coral assemblages within the circum-Mediterranean realm. In particular, we suggest that the richness and composition of the Eastern Atlantic coral fauna are indirectly related to the opening and closure of the eastern seaway connection with the Indian Ocean, which controlled the E-W circulation of surface waters and hence the westwards dispersal of pelagic larvae. At the scale of the whole region, the gradual regional climatic change produced by the northwards migration of the entire area, superimposed on the global cooling, appears in large part responsible for the extinction pattern of z-corals through time in the Mediterranean biogeographical Province.

  15. Modelling and analysis of real-time coordination patterns

    NARCIS (Netherlands)

    Kemper, Stephanie

    2011-01-01

    Present-day embedded software systems need to support an increasing number of features and formalisms; the two most important ones being handling of real-time, and the possibility to develop the system in a modular, component-based way. To ensure that the behaviour of the final system is correct

  16. Hospitalisation patterns change over time in patients with atrial fibrillation

    DEFF Research Database (Denmark)

    Fristrup Qvist, Janne; Høgh Sørensen, Pernille; Dixen, Ulrik

    2014-01-01

    INTRODUCTION: Atrial fibrillation (AF) is a cardiac epidemic. In this study, we aimed to describe the causes of hospital-isation in an AF population over time and to study how different AF treatment strategies affected hospitalization. MATERIAL AND METHODS: This was an observational study in which...

  17. Food Consumption Patterns in Times of Economic Recession

    NARCIS (Netherlands)

    Theodoridou, Glykeria; Tsakiridou, Efthimia; Kalogeras, Nikos; Mattas, Konstantinos

    2017-01-01

    The aim of this study is to identify the factors influencing consumers' purchasing behaviour for food, in times of crisis. Intercept survey was conducted in a random selected sample consisted of 553 consumers between January and May 2016 in the Prefecture of Thessaloniki. Multivariate data analysis

  18. The timing and spatiotemporal patterning of Neanderthal disappearance.

    Science.gov (United States)

    Higham, Tom; Douka, Katerina; Wood, Rachel; Ramsey, Christopher Bronk; Brock, Fiona; Basell, Laura; Camps, Marta; Arrizabalaga, Alvaro; Baena, Javier; Barroso-Ruíz, Cecillio; Bergman, Christopher; Boitard, Coralie; Boscato, Paolo; Caparrós, Miguel; Conard, Nicholas J; Draily, Christelle; Froment, Alain; Galván, Bertila; Gambassini, Paolo; Garcia-Moreno, Alejandro; Grimaldi, Stefano; Haesaerts, Paul; Holt, Brigitte; Iriarte-Chiapusso, Maria-Jose; Jelinek, Arthur; Jordá Pardo, Jesús F; Maíllo-Fernández, José-Manuel; Marom, Anat; Maroto, Julià; Menéndez, Mario; Metz, Laure; Morin, Eugène; Moroni, Adriana; Negrino, Fabio; Panagopoulou, Eleni; Peresani, Marco; Pirson, Stéphane; de la Rasilla, Marco; Riel-Salvatore, Julien; Ronchitelli, Annamaria; Santamaria, David; Semal, Patrick; Slimak, Ludovic; Soler, Joaquim; Soler, Narcís; Villaluenga, Aritza; Pinhasi, Ron; Jacobi, Roger

    2014-08-21

    The timing of Neanderthal disappearance and the extent to which they overlapped with the earliest incoming anatomically modern humans (AMHs) in Eurasia are key questions in palaeoanthropology. Determining the spatiotemporal relationship between the two populations is crucial if we are to understand the processes, timing and reasons leading to the disappearance of Neanderthals and the likelihood of cultural and genetic exchange. Serious technical challenges, however, have hindered reliable dating of the period, as the radiocarbon method reaches its limit at ∼50,000 years ago. Here we apply improved accelerator mass spectrometry (14)C techniques to construct robust chronologies from 40 key Mousterian and Neanderthal archaeological sites, ranging from Russia to Spain. Bayesian age modelling was used to generate probability distribution functions to determine the latest appearance date. We show that the Mousterian ended by 41,030-39,260 calibrated years bp (at 95.4% probability) across Europe. We also demonstrate that succeeding 'transitional' archaeological industries, one of which has been linked with Neanderthals (Châtelperronian), end at a similar time. Our data indicate that the disappearance of Neanderthals occurred at different times in different regions. Comparing the data with results obtained from the earliest dated AMH sites in Europe, associated with the Uluzzian technocomplex, allows us to quantify the temporal overlap between the two human groups. The results reveal a significant overlap of 2,600-5,400 years (at 95.4% probability). This has important implications for models seeking to explain the cultural, technological and biological elements involved in the replacement of Neanderthals by AMHs. A mosaic of populations in Europe during the Middle to Upper Palaeolithic transition suggests that there was ample time for the transmission of cultural and symbolic behaviours, as well as possible genetic exchanges, between the two groups.

  19. A New Time-varying Concept of Risk in a Changing Climate.

    Science.gov (United States)

    Sarhadi, Ali; Ausín, María Concepción; Wiper, Michael P

    2016-10-20

    In a changing climate arising from anthropogenic global warming, the nature of extreme climatic events is changing over time. Existing analytical stationary-based risk methods, however, assume multi-dimensional extreme climate phenomena will not significantly vary over time. To strengthen the reliability of infrastructure designs and the management of water systems in the changing environment, multidimensional stationary risk studies should be replaced with a new adaptive perspective. The results of a comparison indicate that current multi-dimensional stationary risk frameworks are no longer applicable to projecting the changing behaviour of multi-dimensional extreme climate processes. Using static stationary-based multivariate risk methods may lead to undesirable consequences in designing water system infrastructures. The static stationary concept should be replaced with a flexible multi-dimensional time-varying risk framework. The present study introduces a new multi-dimensional time-varying risk concept to be incorporated in updating infrastructure design strategies under changing environments arising from human-induced climate change. The proposed generalized time-varying risk concept can be applied for all stochastic multi-dimensional systems that are under the influence of changing environments.

  20. A New Time-varying Concept of Risk in a Changing Climate

    Science.gov (United States)

    Sarhadi, Ali; Ausín, María Concepción; Wiper, Michael P.

    2016-10-01

    In a changing climate arising from anthropogenic global warming, the nature of extreme climatic events is changing over time. Existing analytical stationary-based risk methods, however, assume multi-dimensional extreme climate phenomena will not significantly vary over time. To strengthen the reliability of infrastructure designs and the management of water systems in the changing environment, multidimensional stationary risk studies should be replaced with a new adaptive perspective. The results of a comparison indicate that current multi-dimensional stationary risk frameworks are no longer applicable to projecting the changing behaviour of multi-dimensional extreme climate processes. Using static stationary-based multivariate risk methods may lead to undesirable consequences in designing water system infrastructures. The static stationary concept should be replaced with a flexible multi-dimensional time-varying risk framework. The present study introduces a new multi-dimensional time-varying risk concept to be incorporated in updating infrastructure design strategies under changing environments arising from human-induced climate change. The proposed generalized time-varying risk concept can be applied for all stochastic multi-dimensional systems that are under the influence of changing environments.

  1. Sexual disparity in activity patterns and time budgets of angulate ...

    African Journals Online (AJOL)

    Behavioural frequencies and time budgets for male and female Chersina angulata were recorded in spring, September 2004. The daily activity of the population was 10.51 ± 0.42 h (mean ± CI), but individual males and females were in the open for 2.57 ± 1.12 h and 1.58 ± 1.44 h, respectively. Both sexes spent nearly 3.5 h ...

  2. Leisure time physical activity patterns in Odisha, India.

    Science.gov (United States)

    Ganesh, G Shankar; Patel, Rishee; Dwivedi, Vikram; Chhabra, Deepak; Balakishore, P; Dakshinamoorthy, Anandhi; Kaur, Parminder

    2018-05-01

    The World Health Organization has recommended a moderate intensity physical activity of 150min, or 75min vigorous-intensity physical activity per week to achieve optimal health benefits. It is not known if Indian populations who indulge in leisure time physical exercises satisfy these recommendations. This study used a questionnaire to obtain data regarding demographic details, current engagement in leisure time physical activities, and dosages of these exercises from participants between 18 and 64 years of age. Data was collected from a total of 390 participants (231 males and 159 females). 50.76% and 34.35% of the participants reported exercising voluntarily and for health benefits respectively. Most participants (94.61%) indicated exercising without prescription. 55.38% and 12.82% of the participants under and above 38 years of age perform moderate to vigorous intensity exercises respectively. The over-all results of this study indicate that the participants' choices of leisure time physical exercises are based on their personal choices and beliefs. The exercise intensities undertaken do not meet the global recommended intensities, especially in those above 38 years of age. Professionals and facilities to engage the public in the WHO recommended intensities of physical activity needs to be established. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  3. Formal Verification of User-Level Real-Time Property Patterns

    OpenAIRE

    Ge , Ning; Pantel , Marc; Dal Zilio , Silvano

    2017-01-01

    International audience; To ease the expression of real-time requirements, Dwyer, and then Konrad, studied a large collection of existing systems in order to identify a set of real-time property patterns covering most of the useful use cases. The goal was to provide a set of reusable patterns that system designers can instantiate to express requirements instead of using complex temporal logic formulas. A limitation of this approach is that the choice of patterns is more oriented towards expres...

  4. Influence of time and pressure of forming a pattern on mechanical properties

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2011-07-01

    Full Text Available In this paper, the technology of forming patterns on a research station equipped with an autoclave A-600 of Polish company GROM is presented. This study was conducted to determine the influence of pressure and time of forming a pattern on the bending strength. Analysis of the results confirmed that bending strength increases with increasing the pressure. The time of forming a pattern has a similar effect.

  5. A 350 ka record of climate change from Lake El'gygytgyn, Far East Russian Arctic: refining the pattern of climate modes by means of cluster analysis

    Directory of Open Access Journals (Sweden)

    U. Frank

    2013-07-01

    Full Text Available Rock magnetic, biochemical and inorganic records of the sediment cores PG1351 and Lz1024 from Lake El'gygytgyn, Chukotka peninsula, Far East Russian Arctic, were subject to a hierarchical agglomerative cluster analysis in order to refine and extend the pattern of climate modes as defined by Melles et al. (2007. Cluster analysis of the data obtained from both cores yielded similar results, differentiating clearly between the four climate modes warm, peak warm, cold and dry, and cold and moist. In addition, two transitional phases were identified, representing the early stages of a cold phase and slightly colder conditions during a warm phase. The statistical approach can thus be used to resolve gradual changes in the sedimentary units as an indicator of available oxygen in the hypolimnion in greater detail. Based upon cluster analyses on core Lz1024, the published succession of climate modes in core PG1351, covering the last 250 ka, was modified and extended back to 350 ka. Comparison to the marine oxygen isotope (δ18O stack LR04 (Lisiecki and Raymo, 2005 and the summer insolation at 67.5° N, with the extended Lake El'gygytgyn parameter records of magnetic susceptibility (κLF, total organic carbon content (TOC and the chemical index of alteration (CIA; Minyuk et al., 2007, revealed that all stages back to marine isotope stage (MIS 10 and most of the substages are clearly reflected in the pattern derived from the cluster analysis.

  6. Opportunities, constraints and constrained opportunities - A study on mothers' working time patterns in 22 European countries

    Directory of Open Access Journals (Sweden)

    Milla Salin

    2014-11-01

    Full Text Available The aim of this study was to analyze mothers’ working time patters across 22 European countries. The focu was on three questions: how much mothers prefer to work, how much they actually work, and to what degree their preferred and actual working times are (inconsistent with each other. The focus was on cross-national differences in mothers’ working time patterns, comparison of mothers’ working times to that of childless women and fathers, as well as on individual- and country-level factors that explain the variation between them. In the theoretical background, the departure point was an integrative theoretical approach where the assumption is that there are various kinds of explanations for the differences in mothers’ working time patterns – namely structural, cultural and institutional – , and that these factors are laid in two levels: individual- and country-levels. Data were extracted from the European Social Survey (ESS 2010 / 2011. The results showed that mothers’ working time patterns, both preferred and actual working times, varied across European countries. Four clusters were formed to illustrate the differences. In the full-time pattern, full-time work was the most important form of work, leaving all other working time forms marginal. The full-time pattern was perceived in terms of preferred working times in Bulgaria and Portugal. In polarised pattern countries, full-time work was also important, but it was accompanied by a large share of mothers not working at all. In the case of preferred working times, many Eastern and Southern European countries followed it whereas in terms of actual working times it included all Eastern and Southern European countries as well as Finland. The combination pattern was characterised by the importance of long part-time hours and full-time work. It was the preferred working time pattern in the Nordic countries, France, Slovenia, and Spain, but Belgium, Denmark, France, Norway, and Sweden

  7. Characteristics of the transmission of autoregressive sub-patterns in financial time series

    Science.gov (United States)

    Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong

    2014-09-01

    There are many types of autoregressive patterns in financial time series, and they form a transmission process. Here, we define autoregressive patterns quantitatively through an econometrical regression model. We present a computational algorithm that sets the autoregressive patterns as nodes and transmissions between patterns as edges, and then converts the transmission process of autoregressive patterns in a time series into a network. We utilised daily Shanghai (securities) composite index time series to study the transmission characteristics of autoregressive patterns. We found statistically significant evidence that the financial market is not random and that there are similar characteristics between parts and whole time series. A few types of autoregressive sub-patterns and transmission patterns drive the oscillations of the financial market. A clustering effect on fluctuations appears in the transmission process, and certain non-major autoregressive sub-patterns have high media capabilities in the financial time series. Different stock indexes exhibit similar characteristics in the transmission of fluctuation information. This work not only proposes a distinctive perspective for analysing financial time series but also provides important information for investors.

  8. Ethical Climate, Organizational Commitment, and Job Satisfaction of Full-Time Faculty Members

    Science.gov (United States)

    Moore, Heather Louise

    2012-01-01

    The purpose of this quantitative study was to better understand the relationship of perceived ethical climate on the organizational commitment and job satisfaction of full-time faculty members in institutions of higher education. Full-time faculty members are the forefront employees of any educational institution, and they have a direct impact on…

  9. Climate

    International Nuclear Information System (INIS)

    Fellous, J.L.

    2005-02-01

    This book starts with a series of about 20 preconceived ideas about climate and climatic change and analyses each of them in the light of the present day knowledge. Using this approach, it makes a status of the reality of the climatic change, of its causes and of the measures to be implemented to limit its impacts and reduce its most harmful consequences. (J.S.)

  10. Shifting mountain snow patterns in a changing climate from remote sensing retrieval.

    Science.gov (United States)

    Dedieu, J P; Lessard-Fontaine, A; Ravazzani, G; Cremonese, E; Shalpykova, G; Beniston, M

    2014-09-15

    Observed climate change has already led to a wide range of impacts on environmental systems and society. In this context, many mountain regions seem to be particularly sensitive to a changing climate, through increases in temperature coupled with changes in precipitation regimes that are often larger than the global average (EEA, 2012). In mid-latitude mountains, these driving factors strongly influence the variability of the mountain snow-pack, through a decrease in seasonal reserves and earlier melting of the snow pack. These in turn impact on hydrological systems in different watersheds and, ultimately, have consequences for water management. Snow monitoring from remote sensing provides a unique opportunity to address the question of snow cover regime changes at the regional scale. This study outlines the results retrieved from the MODIS satellite images over a time period of 10 hydrological years (2000-2010) and applied to two case studies of the EU FP7 ACQWA project, namely the upper Rhone and Po in Europe and the headwaters of the Syr Darya in Kyrgyzstan (Central Asia). The satellite data were provided by the MODIS Terra MOD-09 reflectance images (NASA) and MOD-10 snow products (NSIDC). Daily snow maps were retrieved over that decade and the results presented here focus on the temporal and spatial changes in snow cover. This paper highlights the statistical bias observed in some specific regions, expressed by the standard deviation values (STD) of annual snow duration. This bias is linked to the response of snow cover to changes in elevation and can be used as a signal of strong instability in regions sensitive to climate change: with alternations of heavy snowfalls and rapid snow melting processes. The interest of the study is to compare the methodology between the medium scales (Europe) and the large scales (Central Asia) in order to overcome the limits of the applied methodologies and to improve their performances. Results show that the yearly snow cover

  11. Spatio-Temporal Patterns and Climate Variables Controlling of Biomass Carbon Stock of Global Grassland Ecosystems from 1982 to 2006

    Directory of Open Access Journals (Sweden)

    Jiangzhou Xia

    2014-02-01

    Full Text Available Grassland ecosystems play an important role in subsistence agriculture and the global carbon cycle. However, the global spatio-temporal patterns and environmental controls of grassland biomass are not well quantified and understood. The goal of this study was to estimate the spatial and temporal patterns of the global grassland biomass and analyze their driving forces using field measurements, Normalized Difference Vegetation Index (NDVI time series from satellite data, climate reanalysis data, and a satellite-based statistical model. Results showed that the NDVI-based biomass carbon model developed from this study explained 60% of the variance across 38 sites globally. The global carbon stock in grassland aboveground live biomass was 1.05 Pg·C, averaged from 1982 to 2006, and increased at a rate of 2.43 Tg·C·y−1 during this period. Temporal change of the global biomass was significantly and positively correlated with temperature and precipitation. The distribution of biomass carbon density followed the precipitation gradient. The dynamics of regional grassland biomass showed various trends largely determined by regional climate variability, disturbances, and management practices (such as grazing for meat production. The methods and results from this study can be used to monitor the dynamics of grassland aboveground biomass and evaluate grassland susceptibility to climate variability and change, disturbances, and management.

  12. Optimal timing for managed relocation of species faced with climate change

    Science.gov (United States)

    McDonald Madden, Eve; Runge, Michael C.; Possingham, Hugh P.; Martin, Tara G.

    2011-01-01

    Managed relocation is a controversial climate-adaptation strategy to combat negative climate change impacts on biodiversity. While the scientific community debates the merits of managed relocation1,2,3,4,5,6,7,8,9,10,11,12, species are already being moved to new areas predicted to be more suitable under climate change13,14. To inform these moves, we construct a quantitative decision framework to evaluate the timing of relocation in the face of climate change. We find that the optimal timing depends on many factors, including the size of the population, the demographic costs of translocation and the expected carrying capacities over time in the source and destination habitats. In some settings, such as when a small population would benefit from time to grow before risking translocation losses, haste is ill advised. We also find that active adaptive management15,16 is valuable when the effect of climate change on source habitat is uncertain, and leads to delayed movement.

  13. Wairarapa Valley groundwater : residence time, flow pattern, and hydrochemistry trends

    International Nuclear Information System (INIS)

    Morgenstern, U.

    2005-01-01

    The Wairarapa groundwater system has a complicated hydrogeological setting as it evolved from sea level changes, tectonic activity, and geomorphic process. Due to increasing groundwater demand a better understanding of the groundwater resources is required to help achieve effective management and sustainable use. In addition to previous 'classical' hydrogeology studies, this report represents the first stage of a comprehensive approach using age dating and chemistry time trends for understanding the Wairarapa groundwater system. The methodology of groundwater age dating and mixing models is described in Appendix 1. Historic tritium data were evaluated, and combined with new tritium and CFC/SF 6 data to allow for robust age dating. (author). 14 refs., 30 figs

  14. How Are Fishing Patterns and Fishing Communities Responding to Climate Change? A Test Case from the Northwest Atlantic

    Science.gov (United States)

    Young, T.; Fuller, E.; Coleman, K.; Provost, M.; Pinsky, M. L.; St Martin, K.

    2016-02-01

    We know climate is changing and fish are moving in response to those changes. But we understand less about how harvesters are responding to these changes in fish distribution and the ramifications of those changes for fishing communities. Ecological and evolutionary theory suggests that organisms must move, adapt, or die in response to environmental changes, and a related frame may be relevant for human harvesters in the face of climate change. Furthermore, research suggests that there may be a portfolio effect: a wider diversity of catch may buffer harvesters from some effects of climate change. To get at these questions, we explored changes in fishing patterns among commercial fishing communities in the northeast US from 1997-2014 using NOAA-collected logbook data. We found that communities using more mobile gear (large trawl vessels) demonstrated a greater range of latitudinal shift than communities using any other gear. Latitudinal shift was also inversely related to species diversity of catch and port latitude in those communities: southern communities that caught few species shifted dramatically northward, and northern communities that caught many species did not demonstrate marked latitudinal shifts. Those communities that demonstrated larger latitudinal shifts also demonstrated smaller changes in catch composition than their more stationary counterparts. We also found that vessels are indeed leaving many, but not all, fisheries in this region. These results suggest that harvesters are moving, adapting, and leaving fisheries, and that there does appear to be a portfolio effect, with catch diversity mediating some of these responses. While these changes in fishing patterns cannot all be directly attributed to climate change per se, marine fishes in this region are shifting north rapidly, as is expected under climate change. This study provides a valuable test case for exploring the potential ramifications of climate change on coastal socio-ecological systems.

  15. The Framing of Climate-Change Discourse by Shell and the Framing of Shell’s Climate Change-Related Activities by The Economist and The Financial Times

    Directory of Open Access Journals (Sweden)

    Oleksandr Kapranov

    2017-09-01

    Full Text Available This article presents a qualitative study of the Royal Dutch/Shell Group’s (further - Shell corporate image building in relation to climate change and how this image is represented in the British financial press. The material of the study involves the official 2014 Shell’s annual report (further - AR and online coverages of Shell’s climate change-related activities by the leading British financial newspapers, The Economist and The Financial Times (further – The FT. Shell’s image of climate change is investigated by means of identification of conceptual metaphors viewed through the lenses of the methodological apparatus of cognitive linguistics. Conceptual metaphors identified in the 2014 AR are subsequently juxtaposed with conceptual metaphors associated with Shell’s climate-change activities in The Economist and in The FT. The results reveal that Shell’s 2014 AR involves the following conceptual metaphors associated with climate change: ‘Climate Change as a Journey’, ‘Climate Change as a Battle’, ‘Shell as a Responsible Citizen’, ‘Shell as a Caring Corporation’, ‘Climate Change as Growth’, and ‘Climate Change as Money’. In contrast with these conceptual metaphors, The Economist represents Shell’s climate change activities in 2014 via ‘Shell as an Immoral Corporation’ and ‘Shell as a Sinner’. The FT frames Shell’s climate change agenda in 2014 by means of conceptual metaphors ‘Climate Change as Growth’, ‘Climate Change as a Journey’, and ‘Climate Change as Money’ respectively. The discrepancies between Shell’s self-image of climate change and its representations by The Economist and The FT are further presented and discussed in the article.

  16. The influence of large-scale climatic patterns on precipitation, temperature, and discharge in Czech river basins

    Czech Academy of Sciences Publication Activity Database

    Šípek, Václav

    2013-01-01

    Roč. 61, č. 4 (2013), s. 278-285 ISSN 0042-790X R&D Projects: GA AV ČR IAA300600901 Institutional support: RVO:67985874 Keywords : macro-scale climatic patterns * cidlina river * Blanice river * hydrometeorology Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.231, year: 2013 http://147.213.145.2/vc/vc1.asp

  17. A Space-Time Study of Hemorrhagic Fever with Renal Syndrome (HFRS and Its Climatic Associations in Heilongjiang Province, China

    Directory of Open Access Journals (Sweden)

    Junyu He

    2017-08-01

    Full Text Available Background: Hemorrhagic fever with renal syndrome (HFRS is highly endemic in China, especially in Heilongjiang province (90% of all reported HFRS cases worldwide occur in China. The dynamic identification of high HFRS incidence spatiotemporal regions and the quantitative assessment of HFRS associations with climate change in Heilongjiang province can provide valuable guidance for HFRS monitoring, preventing and control. Yet, so far there exist very few and of limited scope quantitative studies of the spatiotemporal HFRS spread and its climatic associations in Heilongjiang province. Making up for this lack of quantitative studies is the reason for the development of the present work.Method: To address this need, the well-known Bayesian maximum entropy (BME method of space-time modeling and mapping together with its recently proposed variant, the projected BME (P-BME method, were employed in this work to perform a composite space-time analysis and mapping of HFRS incidence in Heilongjiang province during the years 2005–2013. Also, using multivariate El Niño-Southern Oscillation index as a proxy, we proposed a combination of Hilbert-Huang transform and wavelet analysis to study the “HFRS incidence-climate change” associations.Results: The main results of this work were two-fold: (1 three core areas were identified with high HFRS incidences that were spatially distributed and exhibited distinct biomodal temporal patterns in the eastern, western, and southern parts of Heilongjiang province; and (2 there exists a considerable association between HFRS incidence and climate change, particularly, an ~6 months period coherency was clearly detected.Conclusions: The combination of modern space-time modeling and mapping techniques (P-BME theory, Hilbert-Huang spectrum analysis, and wavelet analysis used in this work led to valuable quantitative findings concerning the spatiotemporal spread of HFRS incidence in Heilongjiang province and its association

  18. Non-stationary analysis of the frequency and intensity of heavy precipitation over Canada and their relations to large-scale climate patterns

    Science.gov (United States)

    Tan, Xuezhi; Gan, Thian Yew

    2017-05-01

    In recent years, because the frequency and severity of floods have increased across Canada, it is important to understand the characteristics of Canadian heavy precipitation. Long-term precipitation data of 463 gauging stations of Canada were analyzed using non-stationary generalized extreme value distribution (GEV), Poisson distribution and generalized Pareto (GP) distribution. Time-varying covariates that represent large-scale climate patterns such as El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Pacific decadal oscillation (PDO) and North Pacific Oscillation (NP) were incorporated to parameters of GEV, Poisson and GP distributions. Results show that GEV distributions tend to under-estimate annual maximum daily precipitation (AMP) of western and eastern coastal regions of Canada, compared to GP distributions. Poisson regressions show that temporal clusters of heavy precipitation events in Canada are related to large-scale climate patterns. By modeling AMP time series with non-stationary GEV and heavy precipitation with non-stationary GP distributions, it is evident that AMP and heavy precipitation of Canada show strong non-stationarities (abrupt and slowly varying changes) likely because of the influence of large-scale climate patterns. AMP in southwestern coastal regions, southern Canadian Prairies and the Great Lakes tend to be higher in El Niño than in La Niña years, while AMP of other regions of Canada tends to be lower in El Niño than in La Niña years. The influence of ENSO on heavy precipitation was spatially consistent but stronger than on AMP. The effect of PDO, NAO and NP on extreme precipitation is also statistically significant at some stations across Canada.

  19. R and D on a New Technology of Micro-pattern Gaseous Detectors Fast Timing Micro-pattern Detector

    CERN Document Server

    Salva Diblen, Sinem

    2016-01-01

    After the upgrades of the Large Hadron Collider (LHC) planned for the second and the third Long Shutdown (LS), the LHC luminosity will approach very high values. Such conditions will affect the performance of the CMS muon system, especially in the very forward region, due to the harsh expected background environment and high pile-up conditions. The CMS collaboration considers upgrading the muon forward region to take advantage of the pixel tracking coverage extension a new detector, ME0 station, possibly behind the new forward calorimeter. New resistive micro-pattern gaseous detectors that are able to handle the very demanding spatial, time resolution and rate capability, are being considered. In this contribution we introduce a new type of MPGD technology the Fast Timing Micro-pattern (FTM) detector, utilizing a fully resistive WELL structure. It consists of a stack of several coupled layers where drift and WELL multiplication stages alternate in the structure, yielding a significant improvement in timing p...

  20. The time aspect of bioenergy. Climate impacts of bioenergy due to differences in carbon uptake rates

    Energy Technology Data Exchange (ETDEWEB)

    Zetterberg, Lars [IVL Swedish Environmental Research Institute, Stockholm (Sweden); Chen, Deliang [Dept. of Earth Sciences, Univ. of Gothenburg, Gothenburg (Sweden)

    2011-07-01

    This paper investigates the climate impacts from bioenergy due to how they influence carbon stocks over time and more specifically how fast combustion related carbon emissions are compensated by uptake of atmospheric carbon. A set of fuel types representing different uptake rates are investigated, namely willow, branches and tops, stumps and coal. Net emissions are defined as emissions from utilizing the fuel minus emissions from a reference case of no utilisation. In the case of forest residues, the compensating 'uptake' is avoided emissions from the reference case of leaving the residues to decompose on the ground. Climate impacts are estimated using the measures radiative forcing and global average surface temperature, which have been calculated by an energy balance climate model. We conclude that there is a climate impact from using bioenergy due to how fast the emission pulse is compensated by uptake of atmospheric carbon (or avoided emissions). Biofuels with slower uptake rates have a stronger climate impact than fuels with a faster uptake rate, assuming all other parameters equal. The time perspective over which the analysis is done is crucial for the climate impact of biofuels. If only biogenic fluxes are considered, our results show that over a 100 year perspective branches and tops are better for climate mitigation than stumps which in turn are better than coal. Over a 20 year time perspective this conclusion holds, but the differences between these fuels are relatively smaller. Establishing willow on earlier crop land may reduce atmospheric carbon, provided new land is available. However, these results are inconclusive since we haven't considered the effects, if needed, of producing the traditional agricultural crops elsewhere. The analysis is not a life cycle assessment of different fuels and does therefore not consider the use of fossil fuels for logging, transportation and refining, other greenhouse gases than carbon or energy

  1. Impact of an observational time window on coupled data assimilation: simulation with a simple climate model

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2017-11-01

    Full Text Available Climate signals are the results of interactions of multiple timescale media such as the atmosphere and ocean in the coupled earth system. Coupled data assimilation (CDA pursues balanced and coherent climate analysis and prediction initialization by incorporating observations from multiple media into a coupled model. In practice, an observational time window (OTW is usually used to collect measured data for an assimilation cycle to increase observational samples that are sequentially assimilated with their original error scales. Given different timescales of characteristic variability in different media, what are the optimal OTWs for the coupled media so that climate signals can be most accurately recovered by CDA? With a simple coupled model that simulates typical scale interactions in the climate system and twin CDA experiments, we address this issue here. Results show that in each coupled medium, an optimal OTW can provide maximal observational information that best fits the characteristic variability of the medium during the data blending process. Maintaining correct scale interactions, the resulting CDA improves the analysis of climate signals greatly. These simple model results provide a guideline for when the real observations are assimilated into a coupled general circulation model for improving climate analysis and prediction initialization by accurately recovering important characteristic variability such as sub-diurnal in the atmosphere and diurnal in the ocean.

  2. The public's belief in climate change and its human cause are increasing over time.

    Science.gov (United States)

    Milfont, Taciano L; Wilson, Marc S; Sibley, Chris G

    2017-01-01

    Polls examining public opinion on the subject of climate change are now commonplace, and one-off public opinion polls provide a snapshot of citizen's opinions that can inform policy and communication strategies. However, cross-sectional polls do not track opinions over time, thus making it impossible to ascertain whether key climate change beliefs held by the same group of individuals are changing or not. Here we examine the extent to which individual's level of agreement with two key beliefs ("climate change is real" and "climate change is caused by humans") remain stable or increase/decrease over a six-year period in New Zealand using latent growth curve modelling (n = 10,436). Data were drawn from the New Zealand Attitudes and Values Study, a probabilistic national panel study, and indicated that levels of agreement to both beliefs have steadily increased over the 2009-2015 period. Given that climate change beliefs and concerns are key predictors of climate change action, our findings suggest that a combination of targeted endeavors, as well as serendipitous events, may successfully convey the emergency of the issue.

  3. Single-Locus versus Multilocus Patterns of Local Adaptation to Climate in Eastern White Pine (Pinus strobus, Pinaceae.

    Directory of Open Access Journals (Sweden)

    Om P Rajora

    Full Text Available Natural plant populations are often adapted to their local climate and environmental conditions, and populations of forest trees offer some of the best examples of this pattern. However, little empirical work has focused on the relative contribution of single-locus versus multilocus effects to the genetic architecture of local adaptation in plants/forest trees. Here, we employ eastern white pine (Pinus strobus to test the hypothesis that it is the inter-genic effects that primarily drive climate-induced local adaptation. The genetic structure of 29 range-wide natural populations of eastern white pine was determined in relation to local climatic factors using both a reference set of SSR markers, and SNPs located in candidate genes putatively involved in adaptive response to climate. Comparisons were made between marker sets using standard single-locus outlier analysis, single-locus and multilocus environment association analyses and a novel implementation of Population Graphs. Magnitudes of population structure were similar between the two marker sets. Outlier loci consistent with diversifying selection were rare for both SNPs and SSRs. However, genetic distances based on the multilocus among population covariances (cGD were significantly more correlated to climate, even after correcting for spatial effects, for SNPs as compared to SSRs. Coalescent simulations confirmed that the differences in mutation rates between SSRs and SNPs did not affect the topologies of the Population Graphs, and hence values of cGD and their correlations with associated climate variables. We conclude that the multilocus covariances among populations primarily reflect adaptation to local climate and environment in eastern white pine. This result highlights the complexity of the genetic architecture of adaptive traits, as well as the need to consider multilocus effects in studies of local adaptation.

  4. Controllable Ag nanostructure patterning in a microfluidic channel for real-time SERS systems.

    Science.gov (United States)

    Leem, Juyoung; Kang, Hyun Wook; Ko, Seung Hwan; Sung, Hyung Jin

    2014-03-07

    We present a microfluidic patterning system for fabricating nanostructured Ag thin films via a polyol method. The fabricated Ag thin films can be used immediately in a real-time SERS sensing system. The Ag thin films are formed on the inner surfaces of a microfluidic channel so that a Ag-patterned Si wafer and a Ag-patterned PDMS channel are produced by the fabrication. The optimum sensing region and fabrication duration for effective SERS detection were determined. As SERS active substrates, the patterned Ag thin films exhibit an enhancement factor (EF) of 4.25 × 10(10). The Ag-patterned polymer channel was attached to a glass substrate and used as a microfluidic sensing system for the real-time monitoring of biomolecule concentrations. This microfluidic patterning system provides a low-cost process for the fabrication of materials that are useful in medical and pharmaceutical detection and can be employed in mass production.

  5. Turing patterns and long-time behavior in a three-species food-chain model

    KAUST Repository

    Parshad, Rana D.

    2014-08-01

    We consider a spatially explicit three-species food chain model, describing generalist top predator-specialist middle predator-prey dynamics. We investigate the long-time dynamics of the model and show the existence of a finite dimensional global attractor in the product space, L2(Ω). We perform linear stability analysis and show that the model exhibits the phenomenon of Turing instability, as well as diffusion induced chaos. Various Turing patterns such as stripe patterns, mesh patterns, spot patterns, labyrinth patterns and weaving patterns are obtained, via numerical simulations in 1d as well as in 2d. The Turing and non-Turing space, in terms of model parameters, is also explored. Finally, we use methods from nonlinear time series analysis to reconstruct a low dimensional chaotic attractor of the model, and estimate its fractal dimension. This provides a lower bound, for the fractal dimension of the attractor, of the spatially explicit model. © 2014 Elsevier Inc.

  6. Pattern and Variation in the Timing of Aksak Meter: Commentary on Goldberg

    OpenAIRE

    Rainer Polak

    2016-01-01

    Daniel Goldberg (2015, this issue) explores relations between timing variations, grouping structure, and musical form in the percussive accompaniment of Balkan folk dance music. A chronometric re-analysis of one of the target article’s two audio samples finds a regular metric timing pattern to consistently underlie the variations Goldberg uncovered. Read together, the target article and this commentary demonstrate the complex interplay of a regular timing pattern with several levels of nuance...

  7. Using forbidden ordinal patterns to detect determinism in irregularly sampled time series.

    Science.gov (United States)

    Kulp, C W; Chobot, J M; Niskala, B J; Needhammer, C J

    2016-02-01

    It is known that when symbolizing a time series into ordinal patterns using the Bandt-Pompe (BP) methodology, there will be ordinal patterns called forbidden patterns that do not occur in a deterministic series. The existence of forbidden patterns can be used to identify deterministic dynamics. In this paper, the ability to use forbidden patterns to detect determinism in irregularly sampled time series is tested on data generated from a continuous model system. The study is done in three parts. First, the effects of sampling time on the number of forbidden patterns are studied on regularly sampled time series. The next two parts focus on two types of irregular-sampling, missing data and timing jitter. It is shown that forbidden patterns can be used to detect determinism in irregularly sampled time series for low degrees of sampling irregularity (as defined in the paper). In addition, comments are made about the appropriateness of using the BP methodology to symbolize irregularly sampled time series.

  8. Association between screen time and dietary patterns and overweight/obesity among adolescents

    Directory of Open Access Journals (Sweden)

    Maria Gabriela Matias de PINHO

    Full Text Available ABSTRACT Objective The association between screen time and dietary patterns and overweight/obesity among adolescents was analysed in this study. Methods In this cross-sectional study, 963 Brazilian adolescents, aged between 11 and 14 years were evaluated. Body mass index was used to assess overweight/obesity. Dietary patterns and screen time were assessed using qualitative questionnaires. Principal component analysis was used to obtain dietary patterns. Confounder variables were: type of school (public or private, sexual maturation, mother’s weight and mother’s education. The Chi-square test was used for the crude analysis; for the adjusted analysis was used Poisson regression with sample weighting. Results Overweight/obesity prevalence was 29.8% and statistically higher among boys (34.7%. Higher screen time prevalence was 39.1%. The dietary patterns obtained were: obesogenic; coffee and dairy products; traditional Brazilian meal; fruit and vegetables; bread and chocolate milk. The dietary pattern that more closely represented student food consumption was the obesogenic pattern. Screen time was not significantly associated with overweight/obesity. The obesogenic pattern (in both sexes, the coffee and dairy products pattern, and the bread and chocolate milk pattern (only in girls, were inversely associated with overweight/obesity. In this study, dietary patterns influenced overweight/obesity, although in some cases, in an inverse way from what expected. Conclusion A high prevalence of overweight/obesity and a high proportion of screen time activities among the adolescents were observed. Our results indicate a high consumption of unhealthy dietary pattern among adolescents.

  9. Long-time integration methods for mesoscopic models of pattern-forming systems

    International Nuclear Information System (INIS)

    Abukhdeir, Nasser Mohieddin; Vlachos, Dionisios G.; Katsoulakis, Markos; Plexousakis, Michael

    2011-01-01

    Spectral methods for simulation of a mesoscopic diffusion model of surface pattern formation are evaluated for long simulation times. Backwards-differencing time-integration, coupled with an underlying Newton-Krylov nonlinear solver (SUNDIALS-CVODE), is found to substantially accelerate simulations, without the typical requirement of preconditioning. Quasi-equilibrium simulations of patterned phases predicted by the model are shown to agree well with linear stability analysis. Simulation results of the effect of repulsive particle-particle interactions on pattern relaxation time and short/long-range order are discussed.

  10. Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications

    Science.gov (United States)

    Peppe, D.J.; Royer, D.L.; Cariglino, B.; Oliver, S.Y.; Newman, S.; Leight, E.; Enikolopov, G.; Fernandez-Burgos, M.; Herrera, F.; Adams, J.M.; Correa, E.; Currano, E.D.; Erickson, J.M.; Hinojosa, L.F.; Hoganson, J.W.; Iglesias, A.; Jaramillo, C.A.; Johnson, K.R.; Jordan, G.J.; Kraft, N.J.B.; Lovelock, E.C.; Lusk, C.H.; Niinemets, U.; Penuelas, J.; Rapson, G.; Wing, S.L.; Wright, I.J.

    2011-01-01

    Paleobotanists have long used models based on leaf size and shape to reconstruct paleoclimate. However, most models incorporate a single variable or use traits that are not physiologically or functionally linked to climate, limiting their predictive power. Further, they often underestimate paleotemperature relative to other proxies. Here we quantify leaf-climate correlations from 92 globally distributed, climatically diverse sites, and explore potential confounding factors. Multiple linear regression models for mean annual temperature (MAT) and mean annual precipitation (MAP) are developed and applied to nine well-studied fossil floras. We find that leaves in cold climates typically have larger, more numerous teeth, and are more highly dissected. Leaf habit (deciduous vs evergreen), local water availability, and phylogenetic history all affect these relationships. Leaves in wet climates are larger and have fewer, smaller teeth. Our multivariate MAT and MAP models offer moderate improvements in precision over univariate approaches (??4.0 vs 4.8??C for MAT) and strong improvements in accuracy. For example, our provisional MAT estimates for most North American fossil floras are considerably warmer and in better agreement with independent paleoclimate evidence. Our study demonstrates that the inclusion of additional leaf traits that are functionally linked to climate improves paleoclimate reconstructions. This work also illustrates the need for better understanding of the impact of phylogeny and leaf habit on leaf-climate relationships. ?? 2011 The Authors. New Phytologist ?? 2011 New Phytologist Trust.

  11. Student and teacher perceptions of school climate: a multilevel exploration of patterns of discrepancy.

    Science.gov (United States)

    Mitchell, Mary M; Bradshaw, Catherine P; Leaf, Philip J

    2010-06-01

    School climate has been linked with improved academic achievement and reduced discipline problems, and thus is often a target of school improvement initiatives. However, few studies have examined the extent to which student and teacher perceptions vary as a function of individual, classroom, and school characteristics, or the level of congruence between teachers' and their students' perceptions of school climate. Using data from 1881 fifth-grade students and their 90 homeroom teachers, we examined parallel models of students' and teachers' perceptions of overall school climate and academic emphasis. Two additional models were fit that assessed the congruence between teacher and student perceptions of school climate and academic emphasis. Multilevel analyses indicated that classroom-level factors were more closely associated with teachers' perceptions of climate, whereas school-level factors were more closely associated with the students' perceptions. Further analyses indicated an inverse association between student and teacher ratings of academic emphasis, and no association between student and teacher ratings of overall climate. Teacher ratings were more sensitive to classroom-level factors, such as poor classroom management and proportion of students with disruptive behaviors, whereas student ratings were more influenced by school-level factors such as student mobility, student-teacher relationship, and principal turnover. The discrepancy in ratings of academic emphasis suggests that while all of the respondents may have shared objectively similar experiences, their perceptions of those experiences varied significantly. These results emphasize the importance of assessing both student and teacher perceptions in future research on school climate.

  12. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change

    DEFF Research Database (Denmark)

    Olesen, Jørgen E; Børgesen, Christen Duus; Elsgaard, Lars

    2012-01-01

    The phenological development of cereal crops from emergence through flowering to maturity is largely controlled by temperature, but also affected by day length and potential physiological stresses. Responses may vary between species and varieties. Climate change will affect the timing of cereal...

  13. Climate change and timing of avian breeding and migration: evolutionary versus plastic changes

    NARCIS (Netherlands)

    Charmantier, A.; Gienapp, P.

    2014-01-01

    There are multiple observations around the globe showing that in many avian species, both the timing of migration and breeding have advanced, due to warmer springs. Here, we review the literature to disentangle the actions of evolutionary changes in response to selection induced by climate change

  14. Local perceptions of climate change impacts and migration patterns in Male, Maldives

    Czech Academy of Sciences Publication Activity Database

    Stojanov, R.; Duží, Barbora; Kelman, I.; Němec, D.; Procházka, D.

    -, 18. April 2016 (2016) ISSN 1475-4959 Institutional support: RVO:68145535 Keywords : Maldives * climate change impacts * migration Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://onlinelibrary.wiley.com/doi/10.1111/geoj.12177/full

  15. Internet Connection Control based on Idle Time Using User Behavior Pattern Analysis

    Directory of Open Access Journals (Sweden)

    Fadilah Fahrul Hardiansyah

    2014-12-01

    Full Text Available The increase of smartphone ability is rapidly increasing the power consumption. Many methods have been proposed to reduce smartphone power consumption. Most of these methods use the internet connection control based on the availability of the battery power level regardless of when and where a waste of energy occurs. This paper proposes a new approach to control the internet connection based on idle time using user behavior pattern analysis. User behavior patterns are used to predict idle time duration. Internet connection control performed during idle time. During idle time internet connection periodically switched on and off by a certain time interval. This method effectively reduces a waste of energy. Control of the internet connection does not interfere the user because it is implemented on idle time. Keywords: Smartphone, User Behavior, Pattern Recognition, Idle Time, Internet Connection Control

  16. Time for Change? Climate Science Reconsidered: Report of the UCL Policy Commission on Communicating Climate Science, 2014

    OpenAIRE

    Rapley, C. G.; De Meyer, K.; Carney, J.; Clarke, R.; Howarth, C.; Smith, N.; Stilgoe, J.; Youngs, S.; Brierley, C.; Haugvaldstad, A.; Lotto, B.; Michie, S.; Shipworth, M.; Tuckett, D.

    2014-01-01

    The UCL Policy Commission on the Communication of Climate Science, chaired by Professor Chris Rapley comprises a cross-disciplinary project group of researchers from psychology, neuroscience, science and technology studies, earth sciences and energy research. The Commission examined the challenges faced in communicating climate science effectively to policy-makers and the public, and the role of climate scientists in communication. / The Commission explored the role of climate scientists in c...

  17. Climatic potential for passive cooling of buildings by night-time ventilation in Europe

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Manz, H.; Heiselberg, Per

    2006-01-01

    Due to an overall trend towards less heating and more cooling demands in buildings in many European countries over the last few decades, passive cooling by night-time ventilation is seen as a promising technique, particularly for commercial buildings in the moderate or cold climates of Central......, without considering any building-specific parameters. An approach for calculating degree-hours based on a variable building temperature - within a standardized range of thermal comfort - is presented and applied to climatic data of 259 stations all over Europe. The results show a high potential for night...

  18. Ice age climate, evolutionary constraints and diversity patterns of European dung beetles

    DEFF Research Database (Denmark)

    Hortal, Joaquín; Diniz-Filho, José Alexandre F.; Bini, Luis Mauricio

    2011-01-01

    spatial stationarity in climate variability since the last glacial maximum (LGM), we find that current scarab richness is related to the location of their limits of thermal tolerance during the LGM. These limits mark a strong change in their current species richness–environment relationships. Furthermore...... that occupied relatively climatically stable areas during the Pleistocene, and by post-glacial dispersal in those that were strongly affected by glaciations....

  19. Vulnerability to climate change of cocoa in West Africa: Patterns, opportunities and limits to adaptation.

    Science.gov (United States)

    Schroth, Götz; Läderach, Peter; Martinez-Valle, Armando Isaac; Bunn, Christian; Jassogne, Laurence

    2016-06-15

    The West African cocoa belt, reaching from Sierra Leone to southern Cameroon, is the origin of about 70% of the world's cocoa (Theobroma cacao), which in turn is the basis of the livelihoods of about two million farmers. We analyze cocoa's vulnerability to climate change in the West African cocoa belt, based on climate projections for the 2050s of 19 Global Circulation Models under the Intergovernmental Panel on Climate Change intermediate emissions scenario RCP 6.0. We use a combination of a statistical model of climatic suitability (Maxent) and the analysis of individual, potentially limiting climate variables. We find that: 1) contrary to expectation, maximum dry season temperatures are projected to become as or more limiting for cocoa as dry season water availability; 2) to reduce the vulnerability of cocoa to excessive dry season temperatures, the systematic use of adaptation strategies like shade trees in cocoa farms will be necessary, in reversal of the current trend of shade reduction; 3) there is a strong differentiation of climate vulnerability within the cocoa belt, with the most vulnerable areas near the forest-savanna transition in Nigeria and eastern Côte d'Ivoire, and the least vulnerable areas in the southern parts of Cameroon, Ghana, Côte d'Ivoire and Liberia; 4) this spatial differentiation of climate vulnerability may lead to future shifts in cocoa production within the region, with the opportunity of partially compensating losses and gains, but also the risk of local production expansion leading to new deforestation. We conclude that adaptation strategies for cocoa in West Africa need to focus at several levels, from the consideration of tolerance to high temperatures in cocoa breeding programs, the promotion of shade trees in cocoa farms, to policies incentivizing the intensification of cocoa production on existing farms where future climate conditions permit and the establishment of new farms in already deforested areas. Copyright © 2016

  20. Climatic and anthropogenic factors changing spawning pattern and production zone of Hilsa fishery in the Bay of Bengal

    Directory of Open Access Journals (Sweden)

    M. Shohidullah Miah

    2015-03-01

    Full Text Available Hilsa (Tenualosa ilisha Hamilton as a single species accounts 12% for more than half of the total marine catches. About 2% of the entire population of the country is directly or indirectly engaged with Hilsa fishing. Hilsa has a wide geographical distribution in Asia from the Persian Gulf to the South China Sea. Particularly large stocks are found in Upper Bay of Bengal (BoB region sustained by the large river systems. The global Hilsa catch is reported 75% from Bangladesh water, 15% from Myanmar, 5% from India and 5% from other countries such as Thailand and Iran. Hilsa is a highly migratory and anadromous fish with the same migratory and same breeding behavior as that of Atlantic Salmon fish (Salmo sp.. Due to various anthropogenic activities, climate change effect, increased siltation and rising of the river basins, the migratory routes as well as spawning grounds of Hilsa are disturbed, displaced or even destroyed. During last two decades hilsa production from inland water declined about 20%, whereas marine water yield increased about 3 times. Major Hilsa to catch has been gradually shifted from inland to marine water. Hilsa fish ascend for spawning migration from sea into estuaries. It has been found that the major spawning areas have been shifted to the lower estuarine regions of Hatia, Sandwip and Bhola. At the spawning ground of Hilsa, the fishing level F=1.36 yr−1, where in the river Meghna the Fmsy=0.6 yr−1 and exploitation rate E=0.70 is (Emsy>0.5. Oceanographic changes viz. high turbidity increased flooding, more tidal action and changes of salinity etc. have accelerated the change of migration patterns of spawning, growth and its production. Hilsa fecundity ranges from 1.5 to 2.0 million eggs for fish ranging in length from 35 to 50 cm. Hilsa fecundity is declining in different areas due to climate change and the declining fecundity impacting greatly on Hilsa production. Due to shifting of the spawning ground at the lower

  1. Climatic and technological ceilings for Chinese rice stagnation based on yield gaps and yield trend pattern analysis.

    Science.gov (United States)

    Zhang, Tianyi; Yang, Xiaoguang; Wang, Hesong; Li, Yong; Ye, Qing

    2014-04-01

    Climatic or technological ceilings could cause yield stagnation. Thus, identifying the principal reasons for yield stagnation within the context of the local climate and socio-economic conditions are essential for informing regional agricultural policies. In this study, we identified the climatic and technological ceilings for seven rice-production regions in China based on yield gaps and on a yield trend pattern analysis for the period 1980-2010. The results indicate that 54.9% of the counties sampled experienced yield stagnation since the 1980. The potential yield ceilings in northern and eastern China decreased to a greater extent than in other regions due to the accompanying climate effects of increases in temperature and decreases in radiation. This may be associated with yield stagnation and halt occurring in approximately 49.8-57.0% of the sampled counties in these areas. South-western China exhibited a promising scope for yield improvement, showing the greatest yield gap (30.6%), whereas the yields were stagnant in 58.4% of the sampled counties. This finding suggests that efforts to overcome the technological ceiling must be given priority so that the available exploitable yield gap can be achieved. North-eastern China, however, represents a noteworthy exception. In the north-central area of this region, climate change has increased the yield potential ceiling, and this increase has been accompanied by the most rapid increase in actual yield: 1.02 ton ha(-1) per decade. Therefore, north-eastern China shows a great potential for rice production, which is favoured by the current climate conditions and available technology level. Additional environmentally friendly economic incentives might be considered in this region. © 2013 John Wiley & Sons Ltd.

  2. Changes in spatial patterns of Caragana stenophylla along a climatic drought gradient on the Inner Mongolian Plateau.

    Science.gov (United States)

    Xie, Li-Na; Guo, Hong-Yu; Gabler, Christopher A; Li, Qing-Fang; Ma, Cheng-Cang

    2015-01-01

    Few studies have investigated the influence of water availability on plant population spatial patterns. We studied changes in the spatial patterns of Caragana stenophylla along a climatic drought gradient within the Inner Mongolian Plateau, China. We examined spatial patterns, seed density, "nurse effects" of shrubs on seedlings, transpiration rates and water use efficiency (WUE) of C. stenophylla across semi-arid, arid, and intensively arid zones. Our results showed that patches of C. stenophylla populations shifted from a random to a clumped spatial pattern towards drier environments. Seed density and seedling survival rate of C. stenophylla decreased from the semi-arid zone to the intensively arid zone. Across the three zones, there were more C. stenophylla seeds and seedlings underneath shrub canopies than outside shrub canopies; and in the intensively arid zone, there were almost no seeds or seedlings outside shrub canopies. Transpiration rates of outer-canopy leaves and WUE of both outer-canopy and inner-canopy leaves increased from the semi-arid zone to the intensively arid zone. In the intensively arid zone, transpiration rates and WUE of inner-canopy leaves were significantly lower and higher, respectively, than those of outer-canopy leaves. We conclude that, as drought stress increased, seed density decreased, seed proportions inside shrubs increased, and "nurse effects" of shrubs on seedlings became more important. These factors, combined with water-saving characteristics associated with clumped spatial patterns, are likely driving the changes in C. stenophylla spatial patterns.

  3. Geographical patterns in climate and agricultural technology drive soybean productivity in Brazil.

    Science.gov (United States)

    Caetano, Jordana Moura; Tessarolo, Geiziane; de Oliveira, Guilherme; Souza, Kelly da Silva E; Diniz-Filho, José Alexandre Felizola; Nabout, João Carlos

    2018-01-01

    The impacts of global climate change have been a worldwide concern for several research areas, including those dealing with resources essential to human well being, such as agriculture, which directly impact economic activities and food security. Here we evaluate the relative effect of climate (as indicated by the Ecological Niche Model-ENM) and agricultural technology on actual soybean productivity in Brazilian municipalities and estimate the future geographic distribution of soybeans using a novel statistical approach allowing the evaluation of partial coefficients in a non-stationary (Geographically Weighted Regression; GWR) model. We found that technology was more important than climate in explaining soybean productivity in Brazil. However, some municipalities are more dependent on environmental suitability (mainly in Southern Brazil). The future environmental suitability for soybean cultivation tends to decrease by up 50% in the central region of Brazil. Meanwhile, southern-most Brazil will have more favourable conditions, with an increase of ca. 25% in environmental suitability. Considering that opening new areas for cultivation can degrade environmental quality, we suggest that, in the face of climate change impacts on soybean cultivation, the Brazilian government and producers must invest in breeding programmes and more general ecosystem-based strategies for adaptation to climate change, including the development of varieties tolerant to climate stress, and strategies to increase productivity and reduce costs (social and environmental).

  4. Plant Species Rather Than Climate Greatly Alters the Temporal Pattern of Litter Chemical Composition During Long-Term Decomposition

    Science.gov (United States)

    Li, Yongfu; Chen, Na; Harmon, Mark E.; Li, Yuan; Cao, Xiaoyan; Chappell, Mark A.; Mao, Jingdong

    2015-10-01

    A feedback between decomposition and litter chemical composition occurs with decomposition altering composition that in turn influences the decomposition rate. Elucidating the temporal pattern of chemical composition is vital to understand this feedback, but the effects of plant species and climate on chemical changes remain poorly understood, especially over multiple years. In a 10-year decomposition experiment with litter of four species (Acer saccharum, Drypetes glauca, Pinus resinosa, and Thuja plicata) from four sites that range from the arctic to tropics, we determined the abundance of 11 litter chemical constituents that were grouped into waxes, carbohydrates, lignin/tannins, and proteins/peptides using advanced 13C solid-state NMR techniques. Decomposition generally led to an enrichment of waxes and a depletion of carbohydrates, whereas the changes of other chemical constituents were inconsistent. Inconsistent convergence in chemical compositions during decomposition was observed among different litter species across a range of site conditions, whereas one litter species converged under different climate conditions. Our data clearly demonstrate that plant species rather than climate greatly alters the temporal pattern of litter chemical composition, suggesting the decomposition-chemistry feedback varies among different plant species.

  5. The Global Precipitation Patterns Associated with Short-Term Extratropical Climate Fluctuations

    Science.gov (United States)

    Huffman, George J.; Adler, Robert F.; Bolvin, David T.

    1999-01-01

    Two globally-complete, observation-only precipitation datasets have recently been developed for the Global Precipitation Climatology Project (GPCP). Both depend heavily on a variety of satellite input, as well as gauge data over land. The first, Version 2x79, provides monthly estimates on a 2.5 deg. x 2.5 deg. lat/long grid for the period 1979 through late 1999 (by the time of the conference). The second, the One-Degree Daily (1DD), provides daily estimates on a 1 deg. x l deg. grid for the period 1997 through late 1999 (by the time of the conference). Both are in beta test preparatory to release as official GPCP products. These datasets provide a unique perspective on the hydrological effects of the various atmospheric flow anomalies that have been identified by meteorologists. In this paper we discuss the regional precipitation effects that result from persistent extratropical flow anomalies. We will focus on the Pacific-North America (PNA) and North Atlantic Oscillation (NAO) patterns. Each characteristically becomes established on synoptic time scales, but then persists for periods that can exceed a month. The onset phase of each appears to have systematic mobile features, while the mature phase tend to be more stationary. Accordingly, composites of monthly data for outstanding positive and negative events (separately) contained in the 20-year record reveal the climatological structure of the precipitation during the mature phase. The climatological anomalies of the positive, negative, and (positive-negative) composites show the expected storm-track-related shifts in precipitation, and provide the advantage of putting the known precipitation effects over land in the context of the total pattern over land and ocean. As well, this global perspective points out some unexpected areas of correlation. Day-by-day composites of daily data anchored to the onset date demonstrate the systematic features during the onset. Although the 1DD has a fairly short record, some

  6. Climatic and ecological drivers of euphausiid community structure vary spatially in the Barents Sea: relationships from a long time series (1952-2009

    Directory of Open Access Journals (Sweden)

    Emma Lvovna Orlova

    2015-01-01

    Full Text Available Euphausiids play an important role in transferring energy from ephemeral primary producers to fish, seabirds, and marine mammals in the Barents Sea ecosystem. Climatic impacts have been suggested to occur at all levels of the Barents Sea food-web, but adequate exploration of these phenomena on ecologically relevant spatial scales has not been integrated sufficiently. We used a time-series of euphausiid abundance data spanning 58 years, one of the longest biological time-series in the Arctic, to explore qualitative and quantitative relationships among climate, euphausiids, and their predators, and how these parameters vary spatially in the Barents Sea. We detected four main hydrographic regions, each with distinct patterns of interannual variability in euphausiid abundance and community structure. Assemblages varied primarily in the relative abundance of Thysanoessa inermis versus T. raschii, or T. inermis versus T. longicaudata and Meganyctiphanes norvegica. Climate proxies and the abundance of capelin or cod explained 30-60% of the variability in euphausiid abundance in each region. Climate also influenced patterns of variability in euphausiid community structure, but correlations were generally weaker. Advection of boreal euphausiid taxa from the Norwegian Sea is clearly more prominent in warmer years than in colder years, and interacts with seasonal fish migrations to help explain spatial differences in primary drivers of euphausiid community structure. Non-linear effects of predators were common, and must be considered more carefully if a mechanistic understanding of the ecosystem is to be achieved. Quantitative relationships among euphausiid abundance, climate proxies, and predator stock-sizes derived from these time series are valuable for ecological models being used to predict impacts of climate change on the Barents Sea ecosystem, and how the system should be managed.

  7. Ichthyoplankton Time Series: A Potential Ocean Observing Network to Provide Indicators of Climate Impacts on Fish Communities along the West Coast of North America

    Science.gov (United States)

    Koslow, J. A.; Brodeur, R.; Duffy-Anderson, J. T.; Perry, I.; jimenez Rosenberg, S.; Aceves, G.

    2016-02-01

    Ichthyoplankton time series available from the Bering Sea, Gulf of Alaska and California Current (Oregon to Baja California) provide a potential ocean observing network to assess climate impacts on fish communities along the west coast of North America. Larval fish abundance reflects spawning stock biomass, so these data sets provide indicators of the status of a broad range of exploited and unexploited fish populations. Analyses to date have focused on individual time series, which generally exhibit significant change in relation to climate. Off California, a suite of 24 midwater fish taxa have declined > 60%, correlated with declining midwater oxygen concentrations, and overall larval fish abundance has declined 72% since 1969, a trend based on the decline of predominantly cool-water affinity taxa in response to warming ocean temperatures. Off Oregon, there were dramatic differences in community structure and abundance of larval fishes between warm and cool ocean conditions. Midwater deoxygenation and warming sea surface temperature trends are predicted to continue as a result of global climate change. US, Canadian, and Mexican fishery scientists are now collaborating in a virtual ocean observing network to synthesize available ichthyoplankton time series and compare patterns of change in relation to climate. This will provide regional indicators of populations and groups of taxa sensitive to warming, deoxygenation and potentially other stressors, establish the relevant scales of coherence among sub-regions and across Large Marine Ecosystems, and provide the basis for predicting future climate change impacts on these ecosystems.

  8. Implementation of a Time Series Analysis for the Assessment of the Role of Climate Variability in a Post-Disturbance Savanna System

    Science.gov (United States)

    Gibbes, C.; Southworth, J.; Waylen, P. R.

    2013-05-01

    How do climate variability and climate change influence vegetation cover and vegetation change in savannas? A landscape scale investigation of the effect of changes in precipitation on vegetation is undertaken through the employment of a time series analysis. The multi-national study region is located within the Kavango-Zambezi region, and is delineated by the Okavango, Kwando, and Zambezi watersheds. A mean-variance time-series analysis quantifies vegetation dynamics and characterizes vegetation response to climate. The spatially explicit approach used to quantify the persistence of vegetation productivity permits the extraction of information regarding long term climate-landscape dynamics. Results show a pattern of reduced mean annual precipitation and increased precipitation variability across key social and ecological areas within the study region. Despite decreased mean annual precipitation since the mid to late 1970's vegetation trends predominantly indicate increasing biomass. The limited areas which have diminished vegetative cover relate to specific vegetation types, and are associated with declines in precipitation variability. Results indicate that in addition to short term changes in vegetation cover, long term trends in productive biomass are apparent, relate to spatial differences in precipitation variability, and potentially represent shifts vegetation composition. This work highlights the importance of time-series analyses for examining climate-vegetation linkages in a spatially explicit manner within a highly vulnerable region of the world.

  9. Developing a complex independent component analysis technique to extract non-stationary patterns from geophysical time-series

    Science.gov (United States)

    Forootan, Ehsan; Kusche, Jürgen

    2016-04-01

    Geodetic/geophysical observations, such as the time series of global terrestrial water storage change or sea level and temperature change, represent samples of physical processes and therefore contain information about complex physical interactionswith many inherent time scales. Extracting relevant information from these samples, for example quantifying the seasonality of a physical process or its variability due to large-scale ocean-atmosphere interactions, is not possible by rendering simple time series approaches. In the last decades, decomposition techniques have found increasing interest for extracting patterns from geophysical observations. Traditionally, principal component analysis (PCA) and more recently independent component analysis (ICA) are common techniques to extract statistical orthogonal (uncorrelated) and independent modes that represent the maximum variance of observations, respectively. PCA and ICA can be classified as stationary signal decomposition techniques since they are based on decomposing the auto-covariance matrix or diagonalizing higher (than two)-order statistical tensors from centered time series. However, the stationary assumption is obviously not justifiable for many geophysical and climate variables even after removing cyclic components e.g., the seasonal cycles. In this paper, we present a new decomposition method, the complex independent component analysis (CICA, Forootan, PhD-2014), which can be applied to extract to non-stationary (changing in space and time) patterns from geophysical time series. Here, CICA is derived as an extension of real-valued ICA (Forootan and Kusche, JoG-2012), where we (i) define a new complex data set using a Hilbert transformation. The complex time series contain the observed values in their real part, and the temporal rate of variability in their imaginary part. (ii) An ICA algorithm based on diagonalization of fourth-order cumulants is then applied to decompose the new complex data set in (i

  10. Understanding the Patterns and Drivers of Air Pollution on Multiple Time Scales: The Case of Northern China

    Science.gov (United States)

    Liu, Yupeng; Wu, Jianguo; Yu, Deyong; Hao, Ruifang

    2018-06-01

    China's rapid economic growth during the past three decades has resulted in a number of environmental problems, including the deterioration of air quality. It is necessary to better understand how the spatial pattern of air pollutants varies with time scales and what drive these changes. To address these questions, this study focused on one of the most heavily air-polluted areas in North China. We first quantified the spatial pattern of air pollution, and then systematically examined the relationships of air pollution to several socioeconomic and climatic factors using the constraint line method, correlation analysis, and stepwise regression on decadal, annual, and seasonal scales. Our results indicate that PM2.5 was the dominant air pollutant in the Beijing-Tianjin-Hebei region, while PM2.5 and PM10 were both important pollutants in the Agro-pastoral Transitional Zone (APTZ) region. Our statistical analyses suggest that energy consumption and gross domestic product (GDP) in the industry were the most important factors for air pollution on the decadal scale, but the impacts of climatic factors could also be significant. On the annual and seasonal scales, high wind speed, low relative humidity, and long sunshine duration constrained PM2.5 accumulation; low wind speed and high relative humidity constrained PM10 accumulation; and short sunshine duration and high wind speed constrained O3 accumulation. Our study showed that analyses on multiple temporal scales are not only necessary to determine key drivers of air pollution, but also insightful for understanding the spatial patterns of air pollution, which was important for urban planning and air pollution control.

  11. Elucidation of time-dependent systems biology cell response patterns with time course network enrichment

    DEFF Research Database (Denmark)

    Wiwie, Christian; Rauch, Alexander; Haakonsson, Anders

    2018-01-01

    , no methods exist to integrate time series data with networks, thus preventing the identification of time-dependent systems biology responses. We close this gap with Time Course Network Enrichment (TiCoNE). It combines a new kind of human-augmented clustering with a novel approach to network enrichment...

  12. Defense pattern of Chinese cork oak across latitudinal gradients: influences of ontogeny, herbivory, climate and soil nutrients

    Science.gov (United States)

    Wang, Xiao-Fei; Liu, Jian-Feng; Gao, Wen-Qiang; Deng, Yun-Peng; Ni, Yan-Yan; Xiao, Yi-Hua; Kang, Feng-Feng; Wang, Qi; Lei, Jing-Pin; Jiang, Ze-Ping

    2016-06-01

    Knowledge of latitudinal patterns in plant defense and herbivory is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. Using a widely distributed species in East Asia, Quercus variabilis, we aim to reveal defense patterns of trees with respect to ontogeny along latitudinal gradients. Six leaf chemical (total phenolics and total condensed tannin concentrations) and physical (cellulose, hemicellulose, lignin and dry mass concentration) defensive traits as well as leaf herbivory (% leaf area loss) were investigated in natural Chinese cork oak (Q. variabilis) forests across two ontogenetic stages (juvenile and mature trees) along a ~14°-latitudinal gradient. Our results showed that juveniles had higher herbivory values and a higher concentration of leaf chemical defense substances compared with mature trees across the latitudinal gradient. In addition, chemical defense and herbivory in both ontogenetic stages decreased with increasing latitude, which supports the latitudinal herbivory-defense hypothesis and optimal defense theory. The identified trade-offs between chemical and physical defense were primarily determined by environmental variation associated with the latitudinal gradient, with the climatic factors (annual precipitation, minimum temperature of the coldest month) largely contributing to the latitudinal defense pattern in both juvenile and mature oak trees.

  13. Patient safety climate profiles across time: Strength and level of safety climate associated with a quality improvement program in Switzerland—A cross-sectional survey study

    Science.gov (United States)

    Mascherek, Anna C.

    2017-01-01

    Safety Climate has been acknowledged as an unspecific factor influencing patient safety. However, studies rarely provide in-depth analysis of climate data. As a helpful approach, the concept of “climate strength” has been proposed. In the present study we tested the hypotheses that even if safety climate remains stable on mean-level across time, differences might be evident in strength or shape. The data of two hospitals participating in a large national quality improvement program were analysed for differences in climate profiles at two measurement occasions. We analysed differences on mean-level, differences in percent problematic response, agreement within groups, and frequency histograms in two large hospitals in Switzerland at two measurement occasions (2013 and 2015) applying the Safety Climate Survey. In total, survey responses of 1193 individuals were included in the analyses. Overall, small but significant differences on mean-level of safety climate emerged for some subgroups. Also, although agreement was strong at both time-points within groups, tendencies of divergence or consensus were present in both hospitals. Depending on subgroup and analyses chosen, differences were more or less pronounced. The present study illustrated that taking several measures into account and describing safety climate from different perspectives is necessary in order to fully understand differences and trends within groups and to develop interventions addressing the needs of different groups more precisely. PMID:28753633

  14. GIS development to monitor climate change and its geohydrological consequences on non-monsoon crop pattern in Himalaya

    Science.gov (United States)

    Rawat, Pradeep K.

    2014-09-01

    The main objective of the study was to assess climate change and its geohydrological impacts on non-monsoon crop pattern at watershed level through GIS development on climate informatics, land use informatics, hydro-informatics and agro-informatics. The Dabka watershed constitutes a part of the Kosi Basin in densely populated Lesser Himalaya, India in district Nainital has been selected for the case illustration. This reconnaissance study analyzed the climatic database for last three decades (1982-2012) and estimates that the average temperature and evaporation loss have been rising with the rate of 0.07 °C/yr and 4.03 mm/yr respectively whereas the average rainfall has been decreasing with the rate of 0.60 mm/yr. These rates of climate change increasing with mounting elevations. Consequently the existing microclimatic zones (sub-tropical, temperate and moist temperate) shifting towards higher altitudes and affecting the favorable conditions of the land use pattern and decreased the eco-friendly forest and vegetation cover. The land use degradation and high rate of deforestation (0.22 km2 or 1.5%/yr) leads to accelerate several hydrological problems during non-monsoon period (i.e. decreasing infiltration capacity of land surface, declining underground water level, drying up natural perennial springs and streams, decreasing irrigation water availability etc.). In order to that the non-monsoon crops yield has been decreasing with the rate of 0.60% each year as the results suggest that the average crop yield is just about 58 q/ha whereas twenty five to thirty year back it was recorded about 66 q/ha which is about 12% higher (8 q/ha) than existing yield. On the other hand the population increasing with the growth rate of 2% each year. Therefore, decreasing crop yield and increasing population raised food deficiency problem and the people adopting other occupations which ultimately affecting rural livelihood of the Himalaya.

  15. Examining the Influence of Campus Climate on Students' Time to Degree: A Multilevel Discrete-Time Survival Analysis

    Science.gov (United States)

    Zhou, Ji; Castellanos, Michelle

    2013-01-01

    Utilizing longitudinal data of 3477 students from 28 institutions, we examine the effects of structural diversity and quality of interracial relation on students' persistence towards graduation within six years. We utilize multilevel discrete-time survival analysis to account for the longitudinal persistence patterns as well as the nested…

  16. The Time Is Up: Compression of Visual Time Interval Estimations of Bimodal Aperiodic Patterns

    Science.gov (United States)

    Duarte, Fabiola; Lemus, Luis

    2017-01-01

    The ability to estimate time intervals subserves many of our behaviors and perceptual experiences. However, it is not clear how aperiodic (AP) stimuli affect our perception of time intervals across sensory modalities. To address this question, we evaluated the human capacity to discriminate between two acoustic (A), visual (V) or audiovisual (AV) time intervals of trains of scattered pulses. We first measured the periodicity of those stimuli and then sought for correlations with the accuracy and reaction times (RTs) of the subjects. We found that, for all time intervals tested in our experiment, the visual system consistently perceived AP stimuli as being shorter than the periodic (P) ones. In contrast, such a compression phenomenon was not apparent during auditory trials. Our conclusions are: first, the subjects exposed to P stimuli are more likely to measure their durations accurately. Second, perceptual time compression occurs for AP visual stimuli. Lastly, AV discriminations are determined by A dominance rather than by AV enhancement. PMID:28848406

  17. Emerging patterns of simulated regional climatic changes for the 21st century due to anthropogenic forcings

    DEFF Research Database (Denmark)

    Giorgi, Filippo; Whetton, Peter H.; Jones, Richard G.

    2001-01-01

    We analyse temperature and precipitation changes for the late decades of the 21st century (with respect to present day conditions) over 23 land regions of the world from 18 recent transient, climate change experiments with coupled atmosphere-ocean General Circulation Models (AOGCMs). The analysis...... involves two different forcing scenarios and nine models, and it focuses on model agreement in the simulated regional changes for the summer and winter seasons. While to date very few conclusions have been presented on regional climatic changes, mostly limited to some broad latitudinal bands, our analysis...

  18. Species interactions and response time to climate change: ice-cover and terrestrial run-off shaping Arctic char and brown trout competitive asymmetries

    Science.gov (United States)

    Finstad, A. G.; Palm Helland, I.; Jonsson, B.; Forseth, T.; Foldvik, A.; Hessen, D. O.; Hendrichsen, D. K.; Berg, O. K.; Ulvan, E.; Ugedal, O.

    2011-12-01

    There has been a growing recognition that single species responses to climate change often mainly are driven by interaction with other organisms and single species studies therefore not are sufficient to recognize and project ecological climate change impacts. Here, we study how performance, relative abundance and the distribution of two common Arctic and sub-Arctic freshwater fishes (brown trout and Arctic char) are driven by competitive interactions. The interactions are modified both by direct climatic effects on temperature and ice-cover, and indirectly through climate forcing of terrestrial vegetation pattern and associated carbon and nutrient run-off. We first use laboratory studies to show that Arctic char, which is the world's most northernmost distributed freshwater fish, outperform trout under low light levels and also have comparable higher growth efficiency. Corresponding to this, a combination of time series and time-for-space analyses show that ice-cover duration and carbon and nutrient load mediated by catchment vegetation properties strongly affected the outcome of the competition and likely drive the species distribution pattern through competitive exclusion. In brief, while shorter ice-cover period and decreased carbon load favored brown trout, increased ice-cover period and increased carbon load favored Arctic char. Length of ice-covered period and export of allochthonous material from catchments are major, but contrasting, climatic drivers of competitive interaction between these two freshwater lake top-predators. While projected climate change lead to decreased ice-cover, corresponding increase in forest and shrub cover amplify carbon and nutrient run-off. Although a likely outcome of future Arctic and sub-arctic climate scenarios are retractions of the Arctic char distribution area caused by competitive exclusion, the main drivers will act on different time scales. While ice-cover will change instantaneously with increasing temperature

  19. Can animal habitat use patterns influence their vulnerability to extreme climate events? An estuarine sportfish case study.

    Science.gov (United States)

    Boucek, Ross E; Heithaus, Michael R; Santos, Rolando; Stevens, Philip; Rehage, Jennifer S

    2017-10-01

    Global climate forecasts predict changes in the frequency and intensity of extreme climate events (ECEs). The capacity for specific habitat patches within a landscape to modulate stressors from extreme climate events, and animal distribution throughout habitat matrices during events, could influence the degree of population level effects following the passage of ECEs. Here, we ask (i) does the intensity of stressors of an ECE vary across a landscape? And (ii) Do habitat use patterns of a mobile species influence their vulnerability to ECEs? Specifically, we measured how extreme cold spells might interact with temporal variability in habitat use to affect populations of a tropical, estuarine-dependent large-bodied fish Common Snook, within Everglades National Park estuaries (FL US). We examined temperature variation across the estuary during cold disturbances with different degrees of severity, including an extreme cold spell. Second, we quantified Snook distribution patterns when the passage of ECEs is most likely to occur from 2012 to 2016 using passive acoustic tracking. Our results revealed spatial heterogeneity in the intensity of temperature declines during cold disturbances, with some habitats being consistently 3-5°C colder than others. Surprisingly, Snook distributions during periods of greatest risk to experience an extreme cold event varied among years. During the winters of 2013-2014 and 2014-2015 a greater proportion of Snook occurred in the colder habitats, while the winters of 2012-2013 and 2015-2016 featured more Snook observed in the warmest habitats. This study shows that Snook habitat use patterns could influence vulnerability to extreme cold events, however, whether Snook habitat use increases or decreases their vulnerability to disturbance depends on the year, creating temporally dynamic vulnerability. Faunal global change research should address the spatially explicit nature of extreme climate events and animal habitat use patterns to identify

  20. Principal Time Management Skills: Explaining Patterns in Principals' Time Use, Job Stress, and Perceived Effectiveness

    Science.gov (United States)

    Grissom, Jason A.; Loeb, Susanna; Mitani, Hajime

    2015-01-01

    Purpose: Time demands faced by school principals make principals' work increasingly difficult. Research outside education suggests that effective time management skills may help principals meet job demands, reduce job stress, and improve their performance. The purpose of this paper is to investigate these hypotheses. Design/methodology/approach:…

  1. Modeling Climate Responses to Spectral Solar Forcing on Centennial and Decadal Time Scales

    Science.gov (United States)

    Wen, G.; Cahalan, R.; Rind, D.; Jonas, J.; Pilewskie, P.; Harder, J.

    2012-01-01

    We report a series of experiments to explore clima responses to two types of solar spectral forcing on decadal and centennial time scales - one based on prior reconstructions, and another implied by recent observations from the SORCE (Solar Radiation and Climate Experiment) SIM (Spectral 1rradiance Monitor). We apply these forcings to the Goddard Institute for Space Studies (GISS) Global/Middle Atmosphere Model (GCMAM). that couples atmosphere with ocean, and has a model top near the mesopause, allowing us to examine the full response to the two solar forcing scenarios. We show different climate responses to the two solar forCing scenarios on decadal time scales and also trends on centennial time scales. Differences between solar maximum and solar minimum conditions are highlighted, including impacts of the time lagged reSponse of the lower atmosphere and ocean. This contrasts with studies that assume separate equilibrium conditions at solar maximum and minimum. We discuss model feedback mechanisms involved in the solar forced climate variations.

  2. Relevance of emissions timing in biofuel greenhouse gases and climate impacts.

    Science.gov (United States)

    Schwietzke, Stefan; Griffin, W Michael; Matthews, H Scott

    2011-10-01

    Employing life cycle greenhouse gas (GHG) emissions as a key performance metric in energy and environmental policy may underestimate actual climate change impacts. Emissions released early in the life cycle cause greater cumulative radiative forcing (CRF) over the next decades than later emissions. Some indicate that ignoring emissions timing in traditional biofuel GHG accounting overestimates the effectiveness of policies supporting corn ethanol by 10-90% due to early land use change (LUC) induced GHGs. We use an IPCC climate model to (1) estimate absolute CRF from U.S. corn ethanol and (2) quantify an emissions timing factor (ETF), which is masked in the traditional GHG accounting. In contrast to earlier analyses, ETF is only 2% (5%) over 100 (50) years of impacts. Emissions uncertainty itself (LUC, fuel production period) is 1-2 orders of magnitude higher, which dwarfs the timing effect. From a GHG accounting perspective, emissions timing adds little to our understanding of the climate impacts of biofuels. However, policy makers should recognize that ETF could significantly decrease corn ethanol's probability of meeting the 20% GHG reduction target in the 2007 Energy Independence and Security Act. The added uncertainty of potentially employing more complex emissions metrics is yet to be quantified.

  3. Climatic drivers of hemispheric asymmetry in global patterns of ant species richness

    Czech Academy of Sciences Publication Activity Database

    Dunn, R. R.; Agosti, D.; Andersen, A. N.; Arnan, X.; Bruhl, C. A.; Cerdá, X.; Ellison, A. M.; Fisher, B. L.; Fitzpatrik, M. C.; Gibb, H.; Gotelli, N. J.; Gove, A. D.; Guenard, B.; Janda, Milan; Kaspari, M.; Laurent, E. J.; Lessard, J.-P.; Longino, J. T.; Majer, J. D.; Menke, S. B.; McGlynn, T. P.; Parr, C. L.; Philpott, S. M.; Pfeiffer, M.; Retana, J.; Suarez, A. V.; Vasconcelos, H.L.; Weiser, M. D.; Sanders, N. J.

    2009-01-01

    Roč. 12, č. 4 (2009), s. 324-333 ISSN 1461-023X Grant - others:U.S. National Science Foundation(US) DEB-0640015 Institutional research plan: CEZ:AV0Z50070508 Keywords : biodiversity * climate change * Eocene Subject RIV: EH - Ecology, Behaviour Impact factor: 10.318, year: 2009

  4. Local perceptions of climate change impacts and migration patterns in Malé, Maldives

    Czech Academy of Sciences Publication Activity Database

    Stojanov, R.; Duží, Barbora; Kelman, I.; Němec, D.; Procházka, D.

    2017-01-01

    Roč. 183, č. 4 (2017), s. 370-385 ISSN 0016-7398 Institutional support: RVO:68145535 Keywords : Maldives * climate change impacts * migration * risk management * quantitative survey Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Cultural and economic geography Impact factor: 3.132, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/geoj.12177/abstract

  5. Climate tolerances and trait choices shape continental patterns of urban tree biodiversity

    Science.gov (United States)

    G. Darrel Jenerette; Lorraine W. Clarke; Meghan L. Avolio; Diane E. Pataki; Thomas W. Gillespie; Stephanie Pincetl; Dave J. Nowak; Lucy R. Hutyra; Melissa McHale; Joseph P. McFadden; Michael Alonzo

    2016-01-01

    Aim. We propose and test a climate tolerance and trait choice hypothesis of urban macroecological variation in which strong filtering associated with low winter temperatures restricts urban biodiversity while weak filtering associated with warmer temperatures and irrigation allows dispersal of species from a global source pool, thereby...

  6. Assessing forest mortality patterns using climate and FIA data at multiple scales

    Science.gov (United States)

    Michael K. Crosby; Zhaofei Fan; Xingang Fan; Theodor D. Leininger; Martin A. Spetich

    2012-01-01

    Forest Inventory and Analysis (FIA) and PRISM climate data from 1991-2000 were obtained for 10 states in the southeastern United States. Mortality was calculated for each plot, and annual values for precipitation and maximum and minimum temperature were extracted from the PRISM data. Data were then stratified by upland/bottomland for red oak species, and classification...

  7. Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry

    NARCIS (Netherlands)

    Soudzilovskaia, N.A.; Douma, J.C.; Akhmetzhanova, A.A.; van Bodegom, P.M.; Cornwell, W.K.; Moens, E.J.; Treseder, K.K.; Tibbett, M.; Wang, Y.P.; Cornelissen, J.H.C.

    2015-01-01

    Aim Most vascular plants on Earth form mycorrhizae, a symbiotic relationship between plants and fungi. Despite the broad recognition of the importance of mycorrhizae for global carbon and nutrient cycling, we do not know how soil and climate variables relate to the intensity of colonization of plant

  8. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change

    Science.gov (United States)

    Patrick Gonzalez; Ronald P. Neilson; James M. Lenihan; Raymond J. Drapek

    2010-01-01

    Climate change threatens to shift vegetation, disrupting ecosystems and damaging human well-being. Field observations in boreal, temperate and tropical ecosystems have detected biome changes in the 20th century, yet a lack of spatial data on vulnerability hinders organizations that manage natural resources from identifying priority areas for adaptation measures. We...

  9. Climatic conditions cause complex patterns of covariation between demographic traits in a long-lived raptor

    NARCIS (Netherlands)

    Herfindal, Ivar; van de Pol, Martijn; Nielsen, Jan Tøttrup; Sæther, Bernt-Erik; Møller, Anders Pape

    2015-01-01

    1.Environmental variation can induce life history changes that can last over a large part of the lifetime of an organism. If multiple demographic traits are affected, expected changes in climate may influence environmental covariances among traits in a complex manner. Thus, examining the

  10. Collembolan trait patterns with climate modifications along a European gradient: the VULCAN case study

    DEFF Research Database (Denmark)

    Bonfanti, Jonathan; Cortet, Jérôme; Hedde, Mickaël

    In a climate change context, soil ecosystem services can be threatened, notably through impacts on soil fauna. Collembola can be therefore used for bioindication of soil mesofauna functionality. Here we aim (i) to link distribution of the collembolan communities with their functional traits...

  11. Influence of climate variability versus change at multi-decadal time scales on hydrological extremes

    Science.gov (United States)

    Willems, Patrick

    2014-05-01

    Recent studies have shown that rainfall and hydrological extremes do not randomly occur in time, but are subject to multidecadal oscillations. In addition to these oscillations, there are temporal trends due to climate change. Design statistics, such as intensity-duration-frequency (IDF) for extreme rainfall or flow-duration-frequency (QDF) relationships, are affected by both types of temporal changes (short term and long term). This presentation discusses these changes, how they influence water engineering design and decision making, and how this influence can be assessed and taken into account in practice. The multidecadal oscillations in rainfall and hydrological extremes were studied based on a technique for the identification and analysis of changes in extreme quantiles. The statistical significance of the oscillations was evaluated by means of a non-parametric bootstrapping method. Oscillations in large scale atmospheric circulation were identified as the main drivers for the temporal oscillations in rainfall and hydrological extremes. They also explain why spatial phase shifts (e.g. north-south variations in Europe) exist between the oscillation highs and lows. Next to the multidecadal climate oscillations, several stations show trends during the most recent decades, which may be attributed to climate change as a result of anthropogenic global warming. Such attribution to anthropogenic global warming is, however, uncertain. It can be done based on simulation results with climate models, but it is shown that the climate model results are too uncertain to enable a clear attribution. Water engineering design statistics, such as extreme rainfall IDF or peak or low flow QDF statistics, obviously are influenced by these temporal variations (oscillations, trends). It is shown in the paper, based on the Brussels 10-minutes rainfall data, that rainfall design values may be about 20% biased or different when based on short rainfall series of 10 to 15 years length, and

  12. Explaining variation in life history timing across a species range: Effects of climate on spawning time in an exploited marine fish

    DEFF Research Database (Denmark)

    Neuheimer, Anna; MacKenzie, Brian

    . Combined, these results shed light on the adaptive capacity of the species in the face of changing climate. We use our results to estimate expected spawning time under future climate regimes, and discuss the implications for codecology and management across the species’ range, and in the greater ecosystem......The capacity of a species to tolerate and/or adapt to environmental conditions will shape its response to future climate change including climate extremes. Of the many life-history processes affected by climate change, timing of reproduction greatly influences offspring success and resulting...... population production. Here we explore temporal and spatial changes in spawning time for Atlantic cod (Gadus morhua) across the species’ range (4 to 80°N). We estimate spawning time using a physiologically relevant metric that includes information on fish thermal history (degree days, DD). First, we estimate...

  13. Determining patterns of variability in ecological communities: time lag analysis revisited

    NARCIS (Netherlands)

    Kampichler, C.; Van der Jeugd, H.P.

    2013-01-01

    All ecological communities experience change over time. One method to quantify temporal variation in the patterns of relative abundance of communities is time lag analysis (TLA). It uses a distance-based approach to study temporal community dynamics by regressing community dissimilarity over

  14. Patterns of digital volume pulse waveform and pulse transit time in ...

    African Journals Online (AJOL)

    In this study the digital volume pulse wave and the pulse transit time of the thumb and big toe were analyzed in young and older subjects some of whom were hypertensive. We aimed to study the components and patterns of the pulse waveform and the pulse transit time and how they might change. Material and Methods: ...

  15. Influences of climate, fire, and topography on contemporary age structure patterns of Douglas-fir at 205 old forest sites in western Oregon

    Science.gov (United States)

    Nathan J. Poage; Peter J. Weisberg; Peter C. Impara; John C. Tappeiner; Thomas S. Sensenig

    2009-01-01

    Knowledge of forest development is basic to understanding the ecology, dynamics, and management of forest ecosystems. We hypothesized that the age structure patterns of Douglas-fir at 205 old forest sites in western Oregon are extremely variable with long and (or) multiple establishment periods common, and that these patterns reflect variation in regional-scale climate...

  16. Segmentation and Time-of-Day Patterns in Foreign Exchange Markets

    OpenAIRE

    Angelo Ranaldo

    2007-01-01

    This paper sheds light on a puzzling pattern in foreign exchange markets: Domestic currencies appreciate (depreciate) systematically during foreign (domestic) working hours. These time-of-day patterns are statistically and economically highly significant. They pervasively persist across many years, even after accounting for calendar effects. This phenomenon is difficult to reconcile with the random walk and market efficiency hypothesis. Microstructural and behavioural explanations suggest tha...

  17. Temporal contrast enhancement and parametric imaging for the visualisation of time patterns in dynamic scintigraphic imaging

    International Nuclear Information System (INIS)

    Deconinck, F.; Bossuyt, A.; Lepoudre, R.

    1982-01-01

    Image contrast, photon noise and sampling frequency limit the visual extraction of relevant temporal information in scintigraphic image series. When the Unitation is mainly due to low temporal contrast, temporal contrast enhancement will strongly improve the perceptibility of time patterns in the series. When the limitation is due to photon noise and limited temporal sampling, parametric imaging by means of the Hadamard transform can visualise temporal patterns. (WU)

  18. Forecasting malaria cases using climatic factors in delhi, India: a time series analysis.

    Science.gov (United States)

    Kumar, Varun; Mangal, Abha; Panesar, Sanjeet; Yadav, Geeta; Talwar, Richa; Raut, Deepak; Singh, Saudan

    2014-01-01

    Background. Malaria still remains a public health problem in developing countries and changing environmental and climatic factors pose the biggest challenge in fighting against the scourge of malaria. Therefore, the study was designed to forecast malaria cases using climatic factors as predictors in Delhi, India. Methods. The total number of monthly cases of malaria slide positives occurring from January 2006 to December 2013 was taken from the register maintained at the malaria clinic at Rural Health Training Centre (RHTC), Najafgarh, Delhi. Climatic data of monthly mean rainfall, relative humidity, and mean maximum temperature were taken from Regional Meteorological Centre, Delhi. Expert modeler of SPSS ver. 21 was used for analyzing the time series data. Results. Autoregressive integrated moving average, ARIMA (0,1,1) (0,1,0)(12), was the best fit model and it could explain 72.5% variability in the time series data. Rainfall (P value = 0.004) and relative humidity (P value = 0.001) were found to be significant predictors for malaria transmission in the study area. Seasonal adjusted factor (SAF) for malaria cases shows peak during the months of August and September. Conclusion. ARIMA models of time series analysis is a simple and reliable tool for producing reliable forecasts for malaria in Delhi, India.

  19. Tourist Perceptions On Supporting Infrastructure Facilities And Climate-Based Visiting Time Of Ngebel Lake, Ponorogo

    Directory of Open Access Journals (Sweden)

    Ardhila Ayu Prasetyowati

    2014-04-01

    Full Text Available This study aims to analyze the tourists’ perception about the importance and satisfaction on the product of fisheries tourism, and to assess the visiting time of tourist based on climate conditions. The research was conducted in May to June 2013 in Ngebel Lake, Ponorogo. We used descriptive quantitative approach, with 45 respondents. Data collected from interview, questionnaire and observation. Analytical methods were used to determine the perception of tourists on the satisfaction and interest in fisheries tourism products, i.e. Importance Performance Analysis (IPA. We also used Tourism Climate Index (TCI to determine the visiting time of tourist. The results show the value of satisfaction and tourist interest is low, therefore the improvement of several aspects become important. It is encompasses: a the existence of parking area; b the condition of Ngebel Lake; c planning and management system, the condition of the local community; and d activities of fish course restaurant and fish farming system of floating net cages. TCI value indicates ideal conditions for tourists traveled in Ngebel Lake is in November (convenience index value of 106, in December (97 and in April (94. This appropriate time to visit Ngebel Lake is expected to create a good impression for the tourists and enjoy the various fisheries activities in Ngebel Lake. Keywords: Importance Performance Analysis, Ngebel Lake, Tourist Climate Index

  20. Detection and attribution of streamflow timing changes to climate change in the Western United States

    Science.gov (United States)

    Hidalgo, H.G.; Das, T.; Dettinger, M.D.; Cayan, D.R.; Pierce, D.W.; Barnett, T.P.; Bala, G.; Mirin, A.; Wood, A.W.; Bonfils, Celine; Santer, B.D.; Nozawa, T.

    2009-01-01

    This article applies formal detection and attribution techniques to investigate the nature of observed shifts in the timing of streamflow in the western United States. Previous studies have shown that the snow hydrology of the western United States has changed in the second half of the twentieth century. Such changes manifest themselves in the form of more rain and less snow, in reductions in the snow water contents, and in earlier snowmelt and associated advances in streamflow "center" timing (the day in the "water-year" on average when half the water-year flow at a point has passed). However, with one exception over a more limited domain, no other study has attempted to formally attribute these changes to anthropogenic increases of greenhouse gases in the atmosphere. Using the observations together with a set of global climate model simulations and a hydrologic model (applied to three major hydrological regions of the western United States_the California region, the upper Colorado River basin, and the Columbia River basin), it is found that the observed trends toward earlier "center" timing of snowmelt-driven streamflows in the western United States since 1950 are detectably different from natural variability (significant at the p analysis, and it is the only basin that showed a detectable signal when the analysis was performed on individual basins. It should be noted that although climate change is an important signal, other climatic processes have also contributed to the hydrologic variability of large basins in the western United States. ?? 2009 American Meteorological Society.

  1. Investigation of Time Series Representations and Similarity Measures for Structural Damage Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Wenjia Liu

    2013-01-01

    Full Text Available This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate.

  2. Investigation of Time Series Representations and Similarity Measures for Structural Damage Pattern Recognition

    Science.gov (United States)

    Swartz, R. Andrew

    2013-01-01

    This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES) Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate. PMID:24191136

  3. Tree-ring growth patterns and climatic signals along a vertical transect of larch sites in the Simplon and Rhône Valleys (Switzerland)

    Science.gov (United States)

    Riechelmann, Dana F. C.; Esper, Jan

    2017-04-01

    State-of-the-art millennial long temperature reconstructions from the European Alps integrate wood samples of Larix decidua Mill. from the Lötschental and Simplon regions in Switzerland (Büntgen et al., 2005; 2006). Some of the oldest samples that enable the extension of the time-series back into the first millennium AD are obtained from old buildings in Simplon Village, through the precise location of these samples and the elevation of sampling sites remain unknown. We here evaluate the growth characteristics of larch tree-ring width data along a vertical transect in the Simplon and Rhône valleys. 330 trees from nine sites in 985, 1100, 1400, 1575, 1710, 1712, 1900, 2020, and 2150 m asl have been sampled and analysed for their climate signals. The results indicate a stronger temperature signal in the tree-ring width with increasing elevation. The lower the sites the more a drought signal is imprinted in the ring width data. The intermediate site at 1400 m asl does not show any pronounced climate signal. A comparison of growth patterns of living-tree sites with samples from the historical buildings in Simplon Village (Riechelmann et al., 2013) indicates the construction timber to origin from intermediate to higher elevations. We therefore do not expect strong temperature signal from these timbers. References: Büntgen, U., Esper, J., Frank, D.C., Nicolussi, K., Schmidhalter, M., 2005. A 1052-year tree-ring proxy for Alpine summer temperatures. Climate Dynamics 25: 141-153. Büntgen, U., Frank, D.C., Nievergelt, D., Esper J., 2006. Summer temperature variations in the European Alps, A.D. 755-2004. Journal of Climate 19: 5606-5623. Riechelmann, D.F.C., Schmidhalter, M., Büntgen, U., Esper, J., 2013. Extending a high-elevation larch ring width chronology from the Simplon region in the Swiss Alps over the past millenium. TRACE 11:103-108.

  4. Climate Prediction Center (CPC) East Atlantic/ Western Russia Teleconnection Pattern Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly tabulated index of the East Atlantic/ Western Russia teleconnection pattern. The data spans the period 1950 to present. The index is derived from a rotated...

  5. Climate Prediction Center (CPC) Monthly Pacific North American Teleconnection Pattern Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly tabulated index of the Pacific/ North American teleconnection pattern. The data spans the period 1950 to present. The index is derived from a rotated...

  6. Climate Prediction Center (CPC) East Pacific/ North Pacific Teleconnection Pattern Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly tabulated index of the East Pacific/ North Pacific teleconnection pattern. The data spans the period 1950 to present. The index is derived from a rotated...

  7. A Crucial Time for Reefs: Climate Change, El Niño, and the 2014-16 Global Bleaching Event

    Science.gov (United States)

    Eakin, C. M.; Liu, G.; Geiger, E.; Heron, S. F.; Skirving, W. J.; De La Cour, J. L.; Strong, A. E.; Tirak, K.; Burgess, T.

    2016-02-01

    Anthropogenic climate change has caused an increase in the frequency and intensity of coral bleaching, mortality, and other impacts detrimental to the health and survival of coral reefs around the world. In 2014, a global-scale bleaching event, anticipated to last two years or more, began in the Pacific Ocean. Severe bleaching was documented in Guam, the Commonwealth of the Northern Mariana Islands, Hawaii, and the Marshall Islands, among other locations. By mid-2015, severe bleaching had reached many south Pacific Islands and islands of the central to eastern equatorial Pacific, especially Kiribati and Howland and Baker Islands. Bleaching followed in the Indian Ocean, and at the time of this writing is again striking Hawaii, and parts of the Caribbean. As the ongoing El Niño continues to strengthen, long-term outlooks suggest the cycle of bleaching will continue into 2016 in at least the Pacific and Indian Oceans. Caribbean bleaching may follow again in 2016 if this event follows historical patterns. Warming of the global ocean, the El Niño, a new Pacific oceanic feature known as "The Blob", and other patterns are imposing thermal stress capable of causing widespread negative impacts on reefs in many countries and archipelagos. If a subsequent La Niña follows, as is often the case, even more reefs will be subjected to stressful high temperatures. This is resulting in widespread bleaching, disease, and mortality at a frequency and intensity predicted in climate models nearly two decades ago. The question now is if we are seeing the onset of annually returning coral bleaching or if this is just a hint of conditions coming in future decades. This presentation will discuss the latest information on the ongoing third global bleaching event and the impacts it may have on the biology, ecology, and potential for conservation and restoration of corals and coral reefs worldwide.

  8. Climate patterns as predictors of amphibians species richness and indicators of potential stress

    Science.gov (United States)

    Battaglin, W.; Hay, L.; McCabe, G.; Nanjappa, P.; Gallant, Alisa L.

    2005-01-01

    Amphibians occupy a range of habitats throughout the world, but species richness is greatest in regions with moist, warm climates. We modeled the statistical relations of anuran and urodele species richness with mean annual climate for the conterminous United States, and compared the strength of these relations at national and regional levels. Model variables were calculated for county and subcounty mapping units, and included 40-year (1960-1999) annual mean and mean annual climate statistics, mapping unit average elevation, mapping unit land area, and estimates of anuran and urodele species richness. Climate data were derived from more than 7,500 first-order and cooperative meteorological stations and were interpolated to the mapping units using multiple linear regression models. Anuran and urodele species richness were calculated from the United States Geological Survey's Amphibian Research and Monitoring Initiative (ARMI) National Atlas for Amphibian Distributions. The national multivariate linear regression (MLR) model of anuran species richness had an adjusted coefficient of determination (R2) value of 0.64 and the national MLR model for urodele species richness had an R2 value of 0.45. Stratifying the United States by coarse-resolution ecological regions provided models for anUrans that ranged in R2 values from 0.15 to 0.78. Regional models for urodeles had R2 values. ranging from 0.27 to 0.74. In general, regional models for anurans were more strongly influenced by temperature variables, whereas precipitation variables had a larger influence on urodele models.

  9. Impacts of climate change on cropping patterns in a tropical, sub-humid watershed

    Science.gov (United States)

    Zwart, Sander J.; Hein, Lars

    2018-01-01

    In recent decades, there have been substantial increases in crop production in sub-Saharan Africa (SSA) as a result of higher yields, increased cropping intensity, expansion of irrigated cropping systems, and rainfed cropland expansion. Yet, to date much of the research focus of the impact of climate change on crop production in the coming decades has been on crop yield responses. In this study, we analyse the impact of climate change on the potential for increasing rainfed cropping intensity through sequential cropping and irrigation expansion in central Benin. Our approach combines hydrological modelling and scenario analysis involving two Representative Concentration Pathways (RCPs), two water-use scenarios for the watershed based on the Shared Socioeconomic Pathways (SSPs), and environmental water requirements leading to sustained streamflow. Our analyses show that in Benin, warmer temperatures will severely limit crop production increases achieved through the expansion of sequential cropping. Depending on the climate change scenario, between 50% and 95% of cultivated areas that can currently support sequential cropping or will need to revert to single cropping. The results also show that the irrigation potential of the watershed will be at least halved by mid-century in all scenario combinations. Given the urgent need to increase crop production to meet the demands of a growing population in SSA, our study outlines challenges and the need for planned development that need to be overcome to improve food security in the coming decades. PMID:29513753

  10. A climate signal in exhumation patterns revealed by porphyry copper deposits

    Science.gov (United States)

    Yanites, Brian J.; Kesler, Stephen E.

    2015-06-01

    The processes that build and shape mountain landscapes expose important mineral resources. Mountain landscapes are widely thought to result from the interaction between tectonic uplift and exhumation by erosion. Both climate and tectonics affect rates of exhumation, but estimates of their relative importance vary. Porphyry copper deposits are emplaced at a depth of about 2 km in convergent tectonic settings; their exposure at the surface therefore can be used to track landscape exhumation. Here we analyse the distribution, ages and spatial density of exposed Cenozoic porphyry copper deposits using a global data set to quantify exhumation. We find that the deposits exhibit young ages and are sparsely distributed--both consistent with rapid exhumation--in regions with high precipitation, and deposits are older and more abundant in dry regions. This suggests that climate is driving erosion and mineral exposure in deposit-bearing mountain landscapes. Our findings show that the emplacement ages of porphyry copper deposits provide a means to estimate long-term exhumation rates in active orogens, and we conclude that climate-driven exhumation influences the age and abundance of exposed porphyry copper deposits around the world.

  11. Patterns and processes influencing helminth parasites of Arctic coastal communities during climate change.

    Science.gov (United States)

    Galaktionov, K V

    2017-07-01

    This review analyses the scarce available data on biodiversity and transmission of helminths in Arctic coastal ecosystems and the potential impact of climate changes on them. The focus is on the helminths of seabirds, dominant parasites in coastal ecosystems. Their fauna in the Arctic is depauperate because of the lack of suitable intermediate hosts and unfavourable conditions for species with free-living larvae. An increasing proportion of crustaceans in the diet of Arctic seabirds would result in a higher infection intensity of cestodes and acanthocephalans, and may also promote the infection of seabirds with non-specific helminths. In this way, the latter may find favourable conditions for colonization of new hosts. Climate changes may alter the composition of the helminth fauna, their infection levels in hosts and ways of transmission in coastal communities. Immigration of boreal invertebrates and fish into Arctic seas may allow the circulation of helminths using them as intermediate hosts. Changing migratory routes of animals would alter the distribution of their parasites, facilitating, in particular, their trans-Arctic transfer. Prolongation of the seasonal 'transmission window' may increase the parasitic load on host populations. Changes in Arctic marine food webs would have an overriding influence on the helminths' circulation. This process may be influenced by the predicted decreased of salinity in Arctic seas, increased storm activity, coastal erosion, ocean acidification, decline of Arctic ice, etc. Greater parasitological research efforts are needed to assess the influence of factors related to Arctic climate change on the transmission of helminths.

  12. Patterns of woody plant species diversity in Lebanon as affected by climatic and soil properties

    International Nuclear Information System (INIS)

    Zahreddine, H.; Barker, D.; Struve, D.; Martin, F.; Quigley, M.; Sleem, K.

    2007-01-01

    Lebanese biodiversity is threatened by tourist and urban development, political instability, over-collection of medicinal and aromatic plants, lack of compliance to the regulations prohibiting over-exploitation from the wild, over-grazing and forest fires. A large number of the native species have unexplored economic potential for either medicinal or ornamental use. One way to preserve these species is by propagation and reintroduction into appropriate habitats. However, this requires an understanding of the species biology and environment. The relationship of nine species to the soil and climatic conditions in eight sites along an altitudinal gradient was studied. Individual species were counted and identified within transects at each site. Climatic data were collected and soil samples were taken and analyzed for soil texture, soil pH, EC, CaCO3, organic matter content and the following nutrients: Ca, Mn, Na, Fe, P, K, Cu, Mg, and Zn. Each ecosystem had a unique environment that could be described using the first two factors (70.3 % of variation) in a Factor Analysis of the six most important variables. Some species densities were affected by soil conditions (the first factor) while climatic conditions (the second factor) explained the densities of other species. Recommendations are made for the in-situ and ex-situ preservations of the nine species and their ecosystems.(author)

  13. Yield and crop cycle time of peaches cultivated in subtropical climates and subjected to different pruning times

    Directory of Open Access Journals (Sweden)

    Rafael Augusto Ferraz

    2015-12-01

    Full Text Available The cultivation of peaches in regions of subtropical and tropical climate is currently achieved through a set of practices such as using less demanding cultivars in cold conditions, applying plant growth regulators to break dormancy, and performing specific pruning, like production and renewal pruning. Research on the climate adaptation of cultivars is of great importance in establishing a crop in a given region. Therefore, the objective of this study was to evaluate the agronomic performance of three cultivars subjected to different production pruning times in Botucatu/SP, where 2-year old peach trees were evaluated, grown at a spacing of 6.0 x 4.0 meters. The experimental design was a split plot design with four blocks, using the cultivars Douradão, BRS Kampai and BRS Rubimel, and the subplots corresponded to pruning times in May, June, July and August. Ten plants were used per plot, with the four central plants considered useful and the remaining considered as margins. Pruning in June and July showed the best results in terms of percentage of fruit set and production. The cultivar BRS Rubimel showed the best percentage of fruit set when pruned in June (44.96%, and best fruit production when pruned in July (18.7 kg plant-1. Pruning in May anticipated the harvest of cultivar BRS Rubimel by 13 days whereas pruning carried out in July and August provided late harvests for cultivars Douradão and BRS Kampai.

  14. Study of Track Irregularity Time Series Calibration and Variation Pattern at Unit Section

    Directory of Open Access Journals (Sweden)

    Chaolong Jia

    2014-01-01

    Full Text Available Focusing on problems existing in track irregularity time series data quality, this paper first presents abnormal data identification, data offset correction algorithm, local outlier data identification, and noise cancellation algorithms. And then proposes track irregularity time series decomposition and reconstruction through the wavelet decomposition and reconstruction approach. Finally, the patterns and features of track irregularity standard deviation data sequence in unit sections are studied, and the changing trend of track irregularity time series is discovered and described.

  15. Detecting oscillatory patterns and time lags from proxy records with non-uniform sampling: Some pitfalls and possible solutions

    Science.gov (United States)

    Donner, Reik

    2013-04-01

    Time series analysis offers a rich toolbox for deciphering information from high-resolution geological and geomorphological archives and linking the thus obtained results to distinct climate and environmental processes. Specifically, on various time-scales from inter-annual to multi-millenial, underlying driving forces exhibit more or less periodic oscillations, the detection of which in proxy records often allows linking them to specific mechanisms by which the corresponding drivers may have affected the archive under study. A persistent problem in geomorphology is that available records do not present a clear signal of the variability of environmental conditions, but exhibit considerable uncertainties of both the measured proxy variables and the associated age model. Particularly, time-scale uncertainty as well as the heterogeneity of sampling in the time domain are source of severe conceptual problems that may lead to false conclusions about the presence or absence of oscillatory patterns and their mutual phasing in different archives. In my presentation, I will discuss how one can cope with non-uniformly sampled proxy records to detect and quantify oscillatory patterns in one or more data sets. For this purpose, correlation analysis is reformulated using kernel estimates which are found superior to classical estimators based on interpolation or Fourier transform techniques. In order to characterize non-stationary or noisy periodicities and their relative phasing between different records, an extension of continuous wavelet transform is utilized. The performance of both methods is illustrated for different case studies. An extension to explicitly considering time-scale uncertainties by means of Bayesian techniques is briefly outlined.

  16. Neural code alterations and abnormal time patterns in Parkinson’s disease

    Science.gov (United States)

    Andres, Daniela Sabrina; Cerquetti, Daniel; Merello, Marcelo

    2015-04-01

    Objective. The neural code used by the basal ganglia is a current question in neuroscience, relevant for the understanding of the pathophysiology of Parkinson’s disease. While a rate code is known to participate in the communication between the basal ganglia and the motor thalamus/cortex, different lines of evidence have also favored the presence of complex time patterns in the discharge of the basal ganglia. To gain insight into the way the basal ganglia code information, we studied the activity of the globus pallidus pars interna (GPi), an output node of the circuit. Approach. We implemented the 6-hydroxydopamine model of Parkinsonism in Sprague-Dawley rats, and recorded the spontaneous discharge of single GPi neurons, in head-restrained conditions at full alertness. Analyzing the temporal structure function, we looked for characteristic scales in the neuronal discharge of the GPi. Main results. At a low-scale, we observed the presence of dynamic processes, which allow the transmission of time patterns. Conversely, at a middle-scale, stochastic processes force the use of a rate code. Regarding the time patterns transmitted, we measured the word length and found that it is increased in Parkinson’s disease. Furthermore, it showed a positive correlation with the frequency of discharge, indicating that an exacerbation of this abnormal time pattern length can be expected, as the dopamine depletion progresses. Significance. We conclude that a rate code and a time pattern code can co-exist in the basal ganglia at different temporal scales. However, their normal balance is progressively altered and replaced by pathological time patterns in Parkinson’s disease.

  17. Deep Learning @15 Petaflops/second: Semi-supervised pattern detection for 15 Terabytes of climate data

    Science.gov (United States)

    Collins, W. D.; Wehner, M. F.; Prabhat, M.; Kurth, T.; Satish, N.; Mitliagkas, I.; Zhang, J.; Racah, E.; Patwary, M.; Sundaram, N.; Dubey, P.

    2017-12-01

    Anthropogenically-forced climate changes in the number and character of extreme storms have the potential to significantly impact human and natural systems. Current high-performance computing enables multidecadal simulations with global climate models at resolutions of 25km or finer. Such high-resolution simulations are demonstrably superior in simulating extreme storms such as tropical cyclones than the coarser simulations available in the Coupled Model Intercomparison Project (CMIP5) and provide the capability to more credibly project future changes in extreme storm statistics and properties. The identification and tracking of storms in the voluminous model output is very challenging as it is impractical to manually identify storms due to the enormous size of the datasets, and therefore automated procedures are used. Traditionally, these procedures are based on a multi-variate set of physical conditions based on known properties of the class of storms in question. In recent years, we have successfully demonstrated that Deep Learning produces state of the art results for pattern detection in climate data. We have developed supervised and semi-supervised convolutional architectures for detecting and localizing tropical cyclones, extra-tropical cyclones and atmospheric rivers in simulation data. One of the primary challenges in the applicability of Deep Learning to climate data is in the expensive training phase. Typical networks may take days to converge on 10GB-sized datasets, while the climate science community has ready access to O(10 TB)-O(PB) sized datasets. In this work, we present the most scalable implementation of Deep Learning to date. We successfully scale a unified, semi-supervised convolutional architecture on all of the Cori Phase II supercomputer at NERSC. We use IntelCaffe, MKL and MLSL libraries. We have optimized single node MKL libraries to obtain 1-4 TF on single KNL nodes. We have developed a novel hybrid parameter update strategy to improve

  18. Mandatory Nap Times and Group Napping Patterns in Child Care: An Observational Study.

    Science.gov (United States)

    Staton, Sally L; Smith, Simon S; Hurst, Cameron; Pattinson, Cassandra L; Thorpe, Karen J

    2017-01-01

    Policy provision for naps is typical in child care settings, but there is variability in the practices employed. One practice that might modify children's early sleep patterns is the allocation of a mandatory nap time in which all children are required to lie on their beds without alternate activity permitted. There is currently limited evidence of the effects of such practices on children's napping patterns. This study examined the association between duration of mandatory nap times and group-level napping patterns in child care settings. Observations were undertaken in a community sample of 113 preschool rooms with a scheduled nap time (N = 2,114 children). Results showed that 83.5% of child care settings implemented a mandatory nap time (range = 15-145 min) while 14.2% provided alternate activities for children throughout the nap time period. Overall, 31% of children napped during nap times. Compared to rooms with ≤ 30 min of mandatory nap time, rooms with 31-60 min and > 60 min of mandatory nap time had a two-and-a-half and fourfold increase, respectively, in the proportion of children napping. Nap onset latency did not significantly differ across groups. Among preschool children, exposure to longer mandatory nap times in child care may increase incidence of napping.

  19. From climate change uncertainties to strategic options. Objectives, instruments, timing issues

    Energy Technology Data Exchange (ETDEWEB)

    Philibert, C [French Agency for Environment and Energy Management, Paris (France)

    1996-12-31

    The question of climate change is characterised by major uncertainties. For some, this means that no action should be undertaken for the time being. For others, forceful action is needed to avoid potentially disastrous consequences: targets and timetables for emission reductions must be agreed. This communication is an attempt to suggest a third alternative, with two main conclusions. The international decision process should focus on instruments and degrees of effort, rather than on `emission trajectories` (the evolution of emission levels over time), rather than on quantitative objectives tied to precise timetables. In this perspective action can start right away. (author)

  20. From climate change uncertainties to strategic options. Objectives, instruments, timing issues

    Energy Technology Data Exchange (ETDEWEB)

    Philibert, C. [French Agency for Environment and Energy Management, Paris (France)

    1995-12-31

    The question of climate change is characterised by major uncertainties. For some, this means that no action should be undertaken for the time being. For others, forceful action is needed to avoid potentially disastrous consequences: targets and timetables for emission reductions must be agreed. This communication is an attempt to suggest a third alternative, with two main conclusions. The international decision process should focus on instruments and degrees of effort, rather than on `emission trajectories` (the evolution of emission levels over time), rather than on quantitative objectives tied to precise timetables. In this perspective action can start right away. (author)

  1. Temporal Patterns in Fine Particulate Matter Time Series in Beijing: A Calendar View

    Science.gov (United States)

    Liu, Jianzheng; Li, Jie; Li, Weifeng

    2016-08-01

    Extremely high fine particulate matter (PM2.5) concentration has become synonymous to Beijing, the capital of China, posing critical challenges to its sustainable development and leading to major public health concerns. In order to formulate mitigation measures and policies, knowledge on PM2.5 variation patterns should be obtained. While previous studies are limited either because of availability of data, or because of problematic a priori assumptions that PM2.5 concentration follows subjective seasonal, monthly, or weekly patterns, our study aims to reveal the data on a daily basis through visualization rather than imposing subjective periodic patterns upon the data. To achieve this, we conduct two time-series cluster analyses on full-year PM2.5 data in Beijing in 2014, and provide an innovative calendar visualization of PM2.5 measurements throughout the year. Insights from the analysis on temporal variation of PM2.5 concentration show that there are three diurnal patterns and no weekly patterns; seasonal patterns exist but they do not follow a strict temporal division. These findings advance current understanding on temporal patterns in PM2.5 data and offer a different perspective which can help with policy formulation on PM2.5 mitigation.

  2. A hierarchical graph neuron scheme for real-time pattern recognition.

    Science.gov (United States)

    Nasution, B B; Khan, A I

    2008-02-01

    The hierarchical graph neuron (HGN) implements a single cycle memorization and recall operation through a novel algorithmic design. The HGN is an improvement on the already published original graph neuron (GN) algorithm. In this improved approach, it recognizes incomplete/noisy patterns. It also resolves the crosstalk problem, which is identified in the previous publications, within closely matched patterns. To accomplish this, the HGN links multiple GN networks for filtering noise and crosstalk out of pattern data inputs. Intrinsically, the HGN is a lightweight in-network processing algorithm which does not require expensive floating point computations; hence, it is very suitable for real-time applications and tiny devices such as the wireless sensor networks. This paper describes that the HGN's pattern matching capability and the small response time remain insensitive to the increases in the number of stored patterns. Moreover, the HGN does not require definition of rules or setting of thresholds by the operator to achieve the desired results nor does it require heuristics entailing iterative operations for memorization and recall of patterns.

  3. Complex Networks Dynamics Based on Events-Phase Synchronization and Intensity Correlation Applied to The Anomaly Patterns and Extremes in The Tropical African Climate System

    Science.gov (United States)

    Oluoch, K.; Marwan, N.; Trauth, M.; Loew, A.; Kurths, J.

    2012-04-01

    The African continent lie almost entirely within the tropics and as such its (tropical) climate systems are predominantly governed by the heterogeneous, spatial and temporal variability of the Hadley and Walker circulations. The variabilities in these meridional and zonal circulations lead to intensification or suppression of the intensities, durations and frequencies of the Inter-tropical Convergence Zone (ICTZ) migration, trade winds and subtropical high-pressure regions and the continental monsoons. The above features play a central role in determining the African rainfall spatial and temporal variability patterns. The current understanding of these climate features and their influence on the rainfall patterns is not sufficiently understood. Like many real-world systems, atmospheric-oceanic processes exhibit non-linear properties that can be better explored using non-linear (NL) methods of time-series analysis. Over the recent years, the complex network approach has evolved as a powerful new player in understanding spatio-temporal dynamics and evolution of complex systems. Together with NL techniques, it is continuing to find new applications in many areas of science and technology including climate research. We would like to use these two powerful methods to understand the spatial structure and dynamics of African rainfall anomaly patterns and extremes. The method of event synchronization (ES) developed by Quiroga et al., 2002 and first applied to climate networks by Malik et al., 2011 looks at correlations with a dynamic time lag and as such, it is a more intuitive way to correlate a complex and heterogeneous system like climate networks than a fixed time delay most commonly used. On the other hand, the short comings of ES is its lack of vigorous test statistics for the significance level of the correlations, and the fact that only the events' time indices are synchronized while all information about how the relative intensities propagate within network

  4. A possible interrelation between Earth rotation and climatic variability at decadal time-scale

    Directory of Open Access Journals (Sweden)

    Leonid Zotov

    2016-05-01

    Full Text Available Using multichannel singular spectrum analysis (MSSA we decomposed climatic time series into principal components, and compared them with Earth rotation parameters. The global warming trends were initially subtracted. Similar quasi 60 and 20 year periodic oscillations have been found in the global mean Earth temperature anomaly (HadCRUT4 and global mean sea level (GMSL. Similar cycles were also found in Earth rotation variation. Over the last 160 years multi-decadal change of Earth's rotation velocity is correlated with the 60-year temperature anomaly, and Chandler wobble envelope reproduces the form of the 60-year oscillation noticed in GMSL. The quasi 20-year oscillation observed in GMSL is correlated with the Chandler wobble excitation. So, we assume that Earth's rotation and climate indexes are connected. Despite of all the clues hinting this connection, no sound conclusion can be done as far as ocean circulation modelling is not able to correctly catch angular momentum of the oscillatory modes.

  5. Earthwatch and the HSBC Climate Partnership: Linking climate change and forests management one citizen scientist at a time

    Science.gov (United States)

    Stover, D. B.; Jones, A.; Kusek, K.; Bebber, D.; Phillips, R.; Campbell, J.

    2010-12-01

    Earthwatch has engaged more than 90,000 citizen scientists in long-term research studies since its founding in 1971. One of its newer research and engagement programs is the HSBC Climate Partnership, a five-year global program on climate change to inspire action by individuals, businesses and governments (2007-2012). In this unique NGO-business partnership, Earthwatch has implemented five forest research-focused climate centers in the US, UK, Brazil, India and China. At each center, a team of scientists—supported by HSBC banking employees and local citizen scientists—is gathering data to determine how temperate and tropical forests are affected by changes in climate and human activity. Results are establishing baseline data to empower forest managers, conservationists and communities with the information they need to better manage forests within a changing climate. A critical component of the program is the engagement of 2,200 corporate HSBC employees who spend two weeks out of the office at one of the regional climate centers. They work alongside leading scientists to perform forest research by day, and participate each evening in an interactive education program on the ecological and socioeconomic impacts of climate change—including how climate change impacts HSBC’s bottom line. Program participants are empowered and have successfully developed sustainability projects they implement back in their office, homes and communities that furthers corporate and public commitment to sustainability and combating the effects of climate change. In addition to the corporate engagement model, Earthwatch has successfully engaged scores of local community stakeholders in the HSBC Climate Partnership, including teachers who report back to their classrooms “live from the field,” reporters and other business/NGO leaders in modified one week versions of the field program. New models of citizen science engagement are currently under development, with best practices and

  6. Assessing the effectiveness of RegCM4 regional climate model in simulating the aerosol optical depth patterns over the region of Eastern Mediterranean

    Science.gov (United States)

    Georgoulias, Aristeidis K.; Tsikerdekis, Athanasios; Ntogras, Christos; Zanis, Prodromos

    2014-05-01

    In this work, the ability of the regional climate model RegCM4 to simulate the aerosol optical depth (AOD) patterns over the region of Eastern Mediterranean is assessed. Three separate runs were implemented within the framework of the QUADIEEMS project for the time period 2000-2010 at a horizontal resolution of 50km covering the region of Europe. ERA-interim data were used as lateral boundary conditions while the model was driven by emissions from CMIP5. In the first case, the total of the aerosol types that RegCM4 accounts for were included (sulfate, black carbon, sea salt, dust), while in the other two cases only anthropogenic and dust particles were taken into account, respectively. The total AOD patterns were compared against level-2 satellite observations from MODIS TERRA and AQUA and ground-based measurements from 12 AERONET sites located in the region. In addition, the RegCM4 anthropogenic and dust AOD patterns were compared against the anthropogenic and dust component of MODIS AOD which was calculated using a combination of various satellite, model and reanalysis products. Our results indicate a significant underestimation of the anthropogenic AOD, while, on the contrary, the dust AOD fields are simulated in a more efficient way. The QUADIEEMS project is co-financed by the European Social Fund (ESF) and national resources under the operational programme Education and Lifelong Learning (EdLL) within the framework of the Action "Supporting Postdoctoral Researchers".

  7. Terrestrial carbon turnover time constraints on future carbon cycle-climate feedback

    Science.gov (United States)

    Fan, N.; Carvalhais, N.; Reichstein, M.

    2017-12-01

    Understanding the terrestrial carbon cycle-climate feedback is essential to reduce the uncertainties resulting from the between model spread in prognostic simulations (Friedlingstein et al., 2006). One perspective is to investigate which factors control the variability of the mean residence times of carbon in the land surface, and how these may change in the future, consequently affecting the response of the terrestrial ecosystems to changes in climate as well as other environmental conditions. Carbon turnover time of the whole ecosystem is a dynamic parameter that represents how fast the carbon cycle circulates. Turnover time τ is an essential property for understanding the carbon exchange between the land and the atmosphere. Although current Earth System Models (ESMs), supported by GVMs for the description of the land surface, show a strong convergence in GPP estimates, but tend to show a wide range of simulated turnover times (Carvalhais, 2014). Thus, there is an emergent need of constraints on the projected response of the balance between terrestrial carbon fluxes and carbon stock which will give us more certainty in response of carbon cycle to climate change. However, the difficulty of obtaining such a constraint is partly due to lack of observational data on temporal change of terrestrial carbon stock. Since more new datasets of carbon stocks such as SoilGrid (Hengl, et al., 2017) and fluxes such as GPP (Jung, et al., 2017) are available, improvement in estimating turnover time can be achieved. In addition, previous study ignored certain aspects such as the relationship between τ and nutrients, fires, etc. We would like to investigate τ and its role in carbon cycle by combining observatinoal derived datasets and state-of-the-art model simulations.

  8. Precipitation isotopes link regional climate patterns to water supply in a tropical mountain forest, eastern Puerto Rico

    Science.gov (United States)

    Scholl, Martha A.; Murphy, Sheila F.

    2014-05-01

    Like many mountainous areas in the tropics, watersheds in the Luquillo Mountains of eastern Puerto Rico have abundant rainfall and stream discharge and provide much of the water supply for the densely populated metropolitan areas nearby. Projected changes in regional temperature and atmospheric dynamics as a result of global warming suggest that water availability will be affected by changes in rainfall patterns. It is essential to understand the relative importance of different weather systems to water supply to determine how changes in rainfall patterns, interacting with geology and vegetation, will affect the water balance. To help determine the links between climate and water availability, stable isotope signatures of precipitation from different weather systems were established to identify those that are most important in maintaining streamflow and groundwater recharge. Precipitation stable isotope values in the Luquillo Mountains had a large range, from fog/cloud water with δ2H, δ18O values as high as +12 ‰, -0.73 ‰ to tropical storm rain with values as low as -127 ‰, -16.8 ‰. Temporal isotope values exhibit a reverse seasonality from those observed in higher latitude continental watersheds, with higher isotopic values in the winter and lower values in the summer. Despite the higher volume of convective and low-pressure system rainfall, stable isotope analyses indicated that under the current rainfall regime, frequent trade -wind orographic showers contribute much of the groundwater recharge and stream base flow. Analysis of rain events using 20 years of 15 -minute resolution data at a mountain station (643 m) showed an increasing trend in rainfall amount, in agreement with increased precipitable water in the atmosphere, but differing from climate model projections of drying in the region. The mean intensity of rain events also showed an increasing trend. The determination of recharge sources from stable isotope tracers indicates that water supply

  9. North American Rocky Mountain Hydroclimate: Holocene patterns and variability at multi-decadal to millennial time scales

    Science.gov (United States)

    Finney, B.; Anderson, L.; Berkelhammer, M. B.; Barron, J. A.; Steinman, B. A.; Abbott, M. B.

    2015-12-01

    A network of western North American lake sediment isotope records (calcium carbonate-δ18O) developed during the past decade provides substantial evidence of Pacific ocean-atmosphere forcing of precipitation variability during the Holocene. We present an overview of the eighteen lake carbonate-δ18O records located in the North American Rocky Mountains with a new compilation of modern lake water isotope measurements to characterize their sensitivity to variations in precipitation-δ18O and fractionation effects by evaporation. Comparative analysis of the carbonate-δ18O records that reflect precipitation isotope (δ18O) values (i.e., precipitation "isometers") indicates a sequence of time-varying in-phase and antiphase patterns between northern and southern regions during the Holocene that provide evidence for a highly non-stationary influence of Pacific ocean-atmosphere processes on the hydroclimate of western North America. We identify a prominent precipitation-δ18O dipole, which was sustained for ~2000 years between ~3.5 and 1.5 ka. The dipole contrasts with divergent earlier Holocene patterns and appears to indicate the onset of linkages between northern and tropical Pacific ocean-atmosphere dynamics as we know them today. These observations are informed by previous research on North Pacific precipitation-δ18O. Further investigation of short (observational) and long (Holocene) time scale patterns are needed to improve our understanding of the processes that 1) drive regional precipitation-δ18O responses to Pacific Ocean-atmosphere variability, and 2) cause varying internal ocean-atmosphere responses to external climate forcing.

  10. Patterns of change in timing of spring migration in North European songbird populations

    DEFF Research Database (Denmark)

    Tøttrup, Anders Peter; Thorup, Kasper; Rahbek, Carsten

    2006-01-01

    From 1976 to 1997 passerines were mist-netted and ringed on the island of Christiansø, in the Baltic Sea. Here we present analyses of phenological changes (i.e. time of arrival) for 25 species based on the entire populations of mist-netted songbirds during spring migration. We used two approaches...... to be important for our understanding of population-dynamic changes in relation to climate change. These differences may also have long-term evolutionary consequences. Migration distance seems to affect the degree of change in arrival time, but we found no difference between species wintering in different regions...... of Africa....

  11. Interpretations of systematic errors in the NCEP Climate Forecast System at lead times of 2, 4, 8, ..., 256 days

    Directory of Open Access Journals (Sweden)

    Siwon Song

    2012-09-01

    Full Text Available The climatology of mean bias errors (relative to 1-day forecasts was examined in a 20-year hindcast set from version 1 of the Climate Forecast System (CFS, for forecast lead times of 2, 4, 8, 16, ... 256 days, verifying in different seasons. Results mostly confirm the simple expectation that atmospheric model biases should be evident at short lead (2–4 days, while soil moisture errors develop over days-weeks and ocean errors emerge over months. A further simplification is also evident: surface temperature bias patterns have nearly fixed geographical structure, growing with different time scales over land and ocean. The geographical pattern has mostly warm and dry biases over land and cool bias over the oceans, with two main exceptions: (1 deficient stratocumulus clouds cause warm biases in eastern subtropical oceans, and (2 high latitude land is too cold in boreal winter. Further study of the east Pacific cold tongue-Intertropical Convergence Zone (ITCZ complex shows a possible interaction between a rapidly-expressed atmospheric model bias (poleward shift of deep convection beginning at day 2 and slow ocean dynamics (erroneously cold upwelling along the equator in leads > 1 month. Further study of the high latitude land cold bias shows that it is a thermal wind balance aspect of the deep polar vortex, not just a near-surface temperature error under the wintertime inversion, suggesting that its development time scale of weeks to months may involve long timescale processes in the atmosphere, not necessarily in the land model. Winter zonal wind errors are small in magnitude, but a refractive index map shows that this can cause modest errors in Rossby wave ducting. Finally, as a counterpoint to our initial expectations about error growth, a case of non-monotonic error growth is shown: velocity potential bias grows with lead on a time scale of weeks, then decays over months. It is hypothesized that compensations between land and ocean errors may

  12. Postoperative enhancement on breast MRI: Time course and pattern of changes.

    Science.gov (United States)

    Mahoney, Mary C; Sharda, Radhika G

    2018-04-23

    Expected postoperative enhancement on breast MRI can appear similar to enhancement seen in recurrent or residual malignancy. Our aim was to assess the time course and patterns of enhancement at the surgical site, thereby helping to distinguish between benign and malignant postoperative enhancement. In 200 MRI scans performed in 153 patients after breast conservation treatment, 43 after surgical excision of atypia, and 4 patients after benign excisional biopsy were categorized by postoperative time interval. We defined 4 patterns of morphologic enhancement on MRI: cavity wall/seroma (Pattern I); thin linear (Pattern II); mass (Pattern III); and fat necrosis (Pattern IV). Of 200 MRI scans, 66 (33%) demonstrated enhancement at the surgical site. Enhancement typically decreased through the postoperative follow-up period. Enhancement was observed in 41% (28/68) of cases beyond the 18-month interval but was uncommon after 5 years. Pattern III enhancement was the morphologic pattern seen most commonly with malignancy (5/19 cases, 26%). When associated with delayed washout kinetics, it was even more strongly predictive of malignancy (4/5 cases, 80%). In patients with a history of excisional biopsy and no prior radiation treatment, the percentage of MRI scans showing enhancement was significantly lower than (21% vs 49% with P-value .0027) in patients who had undergone radiation. Enhancement at the surgical site occurred in one-third of cases up to 5 years after surgery, particularly in patients who underwent both radiation and surgery. Mass enhancement, particularly in conjunction with delayed washout kinetics, is most predictive of malignancy and should prompt biopsy or re-excision. © 2018 Wiley Periodicals, Inc.

  13. Preschoolers´ Physical Activity and Time on Task During a Mastery Motivational Climate and Free Play

    Directory of Open Access Journals (Sweden)

    Danielle D Wadsworth

    2014-08-01

    Full Text Available The purpose of the present study was to determine the effect of a structured, mastery motivation physical education climate and an unstructured physical activity climate on time spent on task in a small sample of preschool children. Children enrolled in a public, federal-subsidized childcare center (N= 12 participated in two 45 minute physical activity programs within the school day. The structured climate consisted of a biweekly program of motor skill instruction that was based upon the key principles of a mastery motivational climate. The unstructured program was a daily 45 minute free play environment. Actigraph accelerometers monitored children’s participation in physical activity and time-on task was observed by a momentary time sampling technique. Results showed that time on-task significantly improved following a mastery motivational climate, and children spent 36% of their time in moderate-to-vigorous activity in this climate.  In contrast, time on-task did not significantly improve following participation in a free play environment and participants spent a majority of their time in sedentary behavior and accumulated no vigorous physical activity. Our results indicate that participation in physical activity impacts a preschooler’s ability to stay on task and the amount of physical activity accumulated during physical activity programming is dependent upon the climate delivered.

  14. Climate and evolution: implications of some extinction patterns in African and European Machairodontine Cats of the Plio-Pleistocene

    Directory of Open Access Journals (Sweden)

    Antón, M.

    1998-12-01

    Full Text Available Estudios recientes sobre las correlaciones entre cambios climáticos globales y la evolución de la biota del Plio-Pleistoceno Africano han revelado aparentes discrepancias entre las fechas y la significación de eventos registrados en distintas fuentes. Las diferencias mas notables se refieren a un importante cambio en la proporción de isótopos de oxígeno marinas hace 2,5 millones de años, y a la posibilidad de una transición biótica relacionada causalmente con dicho cambio. Cambios en la vegetación detectados a través de los valores de isótopos estables en los paleosuelos sugieren que el principal cambio hacia una vegetación mas abierta ocurrió mas tarde, hace ∼1,7 millones de años. Nosotros estudiamos el problema refiriendonos en particular a los eventos de hace 1,7 millones de años, y a la extinción en Africa de los félidos con dientes de sable que se produce poco después, puesto que las extinciones de taxones euritópicos como estos probablemente señala cambios significativos en las condiciones ambientales. Nosotros comparamos el patrón de dichas extinciones con los de taxones semejantes 0 idénticos, en Eurasia y América, y sugerimos que en cada caso hay claros indicios de importantes cambios ambientales. Es probable que los cambios en la vegetación de Africa registrados hace ∼1,7 millones de años representen una respuesta en el medio terrestre alas cambios climáticos globales reflejados en el registro marino hace ∼1,9 millones de años.Recent discussions of correlations between global climatic change and evolution of the African Plio-Pleistocene biota have revealed apparent discrepancies between the timing and significance of events recorded in different data sets. The most notable differences have occurred in relation to a major shift in the ratio of marine oxygen isotopes by 2.5 myr and claims for a causally related transition in the biota. Vegetational changes recorded in palaeosol stable isotope

  15. Time-Location Patterns of a Population Living in an Air Pollution Hotspot

    International Nuclear Information System (INIS)

    Wu, X.M.; Fan, Z.T.; Strickland, P.O.; Wu, X.M.; Fan, Z.T.; Strickland, P.O.

    2010-01-01

    This study characterized the time-location pattern of 107 residents living in air pollution hotspots, the Waterfront South and Cope wood/Davis Streets communities in Camden, NJ. Most residents in the two communities are minority and impoverished individuals. Results showed that employment status played the fundamental role in determining time-location patterns of this study population, and the variations of time-location pattern by season and by day-type were partially attributed to employment status. Compared to the National Human Activity Pattern Survey, the Camden cohort spent significantly more time outdoors (3.8 hours versus 1.8 hours) and less time indoors (19.4 hours versus 20.9 hours) than the general US population, indicating a higher risk of exposure to ambient air pollution for the Camden cohort. The findings of the study are important for understanding exposure routes and sources for the socio economically disadvantaged subgroup and ultimately help develop effective strategies to reduce community exposure to ambient air pollution in hotspots

  16. Order Patterns Networks (orpan – a method toestimate time-evolving functional connectivity frommultivariate time series

    Directory of Open Access Journals (Sweden)

    Stefan eSchinkel

    2012-11-01

    Full Text Available Complex networks provide an excellent framework for studying the functionof the human brain activity. Yet estimating functional networks from mea-sured signals is not trivial, especially if the data is non-stationary and noisyas it is often the case with physiological recordings. In this article we proposea method that uses the local rank structure of the data to define functionallinks in terms of identical rank structures. The method yields temporal se-quences of networks which permits to trace the evolution of the functionalconnectivity during the time course of the observation. We demonstrate thepotentials of this approach with model data as well as with experimentaldata from an electrophysiological study on language processing.

  17. Spatial patterns and recent trends in the climate of tropical rainforest regions.

    Science.gov (United States)

    Malhi, Yadvinder; Wright, James

    2004-03-29

    We present an analysis of the mean climate and climatic trends of tropical rainforest regions over the period 1960-1998, with the aid of explicit maps of forest cover and climatological databases. Until the mid-1970s most regions showed little trend in temperature, and the western Amazon experienced a net cooling probably associated with an interdecadal oscillation. Since the mid-1970s, all tropical rainforest regions have experienced a strong warming at a mean rate of 0.26 +/- 0.05 degrees C per decade, in synchrony with a global rise in temperature that has been attributed to the anthropogenic greenhouse effect. Over the study period, precipitation appears to have declined in tropical rainforest regions at a rate of 1.0 +/- 0.8% per decade (p Africa (at 3-4% per decade), declining marginally in tropical Asia and showing no significant trend in Amazonia. There is no evidence so far of a decline in precipitation in eastern Amazonia, a region thought vulnerable to climate-change-induced drying. The strong drying trend in Africa suggests that this should be a priority study region for understanding the impact of drought on tropical rainforests. We develop and use a dry-season index to study variations in the length and intensity of the dry season. Only African and Indian tropical rainforests appear to have seen a significant increase in dry-season intensity. In terms of interannual variability, the El Niño-Southern Oscillation (ENSO) is the primary driver of temperature variations across the tropics and of precipitation fluctuations for large areas of the Americas and southeast Asia. The relation between ENSO and tropical African precipitation appears less direct.

  18. Land-atmosphere interaction patterns in southeastern South America using satellite products and climate models

    Science.gov (United States)

    Spennemann, P. C.; Salvia, M.; Ruscica, R. C.; Sörensson, A. A.; Grings, F.; Karszenbaum, H.

    2018-02-01

    In regions of strong Land-Atmosphere (L-A) interaction, soil moisture (SM) conditions can impact the atmosphere through modulating the land surface fluxes. The importance of the identification of L-A interaction regions lies in the potential improvement of the weather/seasonal forecast and the better understanding of the physical mechanisms involved. This study aims to compare the terrestrial segment of the L-A interaction from satellite products and climate models, motivated by previous modeling studies pointing out southeastern South America (SESA) as a L-A hotspot during austral summer. In addition, the L-A interaction under dry or wet anomalous conditions over SESA is analyzed. To identify L-A hotspots the AMSRE-LPRM SM and MODIS land surface temperature products; coupled climate models and uncoupled land surface models were used. SESA highlights as a strong L-A interaction hotspot when employing different metrics, temporal scales and independent datasets, showing consistency between models and satellite estimations. Both AMSRE-LPRM bands (X and C) are consistent showing a strong L-A interaction hotspot over the Pampas ecoregion. Intensification and a larger spatial extent of the L-A interaction for dry summers was observed in both satellite products and models compared to wet summers. These results, which were derived from measured physical variables, are encouraging and promising for future studies analyzing L-A interactions. L-A interaction analysis is proposed here as a meeting point between remote sensing and climate modelling communities of Argentina, within a region with the highest agricultural and livestock production of the continent, but with an important lack of in-situ SM observations.

  19. Climate driven range divergence among host species affects range-wide patterns of parasitism

    Directory of Open Access Journals (Sweden)

    Richard E. Feldman

    2017-01-01

    Full Text Available Species interactions like parasitism influence the outcome of climate-driven shifts in species ranges. For some host species, parasitism can only occur in that part of its range that overlaps with a second host species. Thus, predicting future parasitism may depend on how the ranges of the two hosts change in relation to each other. In this study, we tested whether the climate driven species range shift of Odocoileus virginianus (white-tailed deer accounts for predicted changes in parasitism of two other species from the family Cervidae, Alces alces (moose and Rangifer tarandus (caribou, in North America. We used MaxEnt models to predict the recent (2000 and future (2050 ranges (probabilities of occurrence of the cervids and a parasite Parelaphostrongylus tenuis (brainworm taking into account range shifts of the parasite’s intermediate gastropod hosts. Our models predicted that range overlap between A. alces/R. tarandus and P. tenuis will decrease between 2000 and 2050, an outcome that reflects decreased overlap between A. alces/R. tarandus and O. virginianus and not the parasites, themselves. Geographically, our models predicted increasing potential occurrence of P. tenuis where A. alces/R. tarandus are likely to decline, but minimal spatial overlap where A. alces/R. tarandus are likely to increase. Thus, parasitism may exacerbate climate-mediated southern contraction of A. alces and R. tarandus ranges but will have limited influence on northward range expansion. Our results suggest that the spatial dynamics of one host species may be the driving force behind future rates of parasitism for another host species.

  20. Near-surface wind pattern in regional climate projections over the broader Adriatic region

    Science.gov (United States)

    Belušić, Andreina; Telišman Prtenjak, Maja; Güttler, Ivan; Ban, Nikolina; Leutwyler, David; Schär, Christoph

    2017-04-01

    The Adriatic region is characterized by the complex coastline, strong topographic gradients and specific wind regimes. This represents excellent test area for the latest generation of the regional climate models (RCMs) applied over the European domain. The most famous wind along the Adriatic coast is bora, which due to its strength, has a strong impact on all types of human activities in the Adriatic region. The typical bora wind is a severe gusty downslope flow perpendicular to the mountains. Besides bora, in the Adriatic region, typical winds are sirocco (mostly during the wintertime) and sea/land breezes (dominantly in the warm part of the year) as a part of the regional Mediterranean wind system. Thus, it is substantial to determine future changes in the wind filed characteristics (e.g., changes in strength and frequencies). The first step was the evaluation of a suite of ten EURO- and MED-CORDEX models (at 50 km and 12.5 km resolution), and two additional high resolution models from the Swiss Federal Institute of Technology in Zürich (ETHZ, at 12.5 km and 2.2. km resolution) in the present climate. These results provided a basis for the next step where wind field features, in an ensemble of RCMs forced by global climate models (GCMs) in historical and future runs are examined. Our aim is to determine the influence of the particular combination of RCMs and GCMs, horizontal resolution and emission scenario on the future changes in the near-surface wind field. The analysis reveals strong sensitivity of the simulated wind flow and its statistics to both season and location analyzed, to the horizontal resolution of the RCM and on the choice of the particular GCM that provides boundary conditions.

  1. Density and spatial distribution of Parkia biglobosa pattern in Benin under climate change

    Directory of Open Access Journals (Sweden)

    Fafunkè Titilayo Dotchamou

    2016-06-01

    Full Text Available Parkia biglobosa is an indigenous species which, traditionally contributes to the resilience of the agricultural production system in terms of food security, source of income, poverty reduction and ecosystem stability. Therefore, it is important to improve knowledge on its density, current and future spatial distribution. The main objective of this study is to evaluate the tree density, the climate change effects on the spatial distribution of the species in the future for better conservation. The modeling of the current and future geographical distribution of the species is based on the principle of Maximum Entropy (MaxEnt on a total of 286 occurrence points from field work and Global Biodiversity Information Facility GBIF-Data Portal-(www.gbif.org. Two climatic models (HadGEM2_ES and Csiro_mk3_6_0 have been used under two scenarios RCP 2.6 and RCP 8.5 for the projection of the species distribution at the horizon 2050. The correlation analyses and Jackknife test have helped to identify seven variables which are less correlated (r < 0.80 with highest modeling participation. The soil, annual precipitation (BIO12 and temperature (diurnal average Deviation are the variables which have mostly contributed to performance of the models. Currently, 53% of national territory, spread from north to south is very suitable to the cultivation of P. biglobosa. The scenarios have predicted at the horizon 2050, a loss of the habitats which are currently very suitable for the cultivation and conservation of P. biglobosa, to the benefit of moderate and weak habitats. 51% and 57% are the highest proportion of this lost which will be registered with HadGEM2_ES model under two scenarios. These results revealed that the suitable habitat of the species is threatened by climate change in Benin. In order to limit damage such as decreased productivity, extinction of species, some appropriate solutions must be found.

  2. Climate variations and salmonellosis in northwest Russia: a time-series analysis.

    Science.gov (United States)

    Grjibovski, A M; Bushueva, V; Boltenkov, V P; Buzinov, R V; Degteva, G N; Yurasova, E D; Nurse, J

    2013-02-01

    Associations between monthly counts of all laboratory-confirmed cases of salmonellosis in Arkhangelsk, northern Russia, from 1992 to 2008 and climatic variables with lags 0-2 were studied by three different models. We observed a linear association between the number of cases of salmonellosis and mean monthly temperature with a lag of 1 month across the whole range of temperatures. An increase of 1 °C was associated with a 2·04% [95% confidence interval (CI) 0·25-3·84], 1·84% (95% CI 0·06-3·63) and 2·32% (95% CI 0·38-4·27) increase in different models. Only one of the three models suggested an increase in the number of cases, by 0·24% (95% CI 0·02-0·46) with an increase in precipitation by 1 mm in the same month. Higher temperatures were associated with higher monthly counts of salmonellosis while the association with precipitation was less certain. The results may have implications for the future patterns of enteric infections in northern areas related to climate change.

  3. Sensitivity of isoprene emissions estimated using MEGAN to the time resolution of input climate data

    Directory of Open Access Journals (Sweden)

    K. Ashworth

    2010-02-01

    Full Text Available We evaluate the effect of varying the temporal resolution of the input climate data on isoprene emission estimates generated by the community emissions model MEGAN (Model of Emissions of Gases and Aerosols from Nature. The estimated total global annual emissions of isoprene is reduced from 766 Tg y−1 when using hourly input data to 746 Tg y−1 (a reduction of 3% for daily average input data and 711 Tg y−1 (down 7% for monthly average input data. The impact on a local scale can be more significant with reductions of up to 55% at some locations when using monthly average data compared with using hourly data. If the daily and monthly average temperature data are used without the imposition of a diurnal cycle the global emissions estimates fall by 27–32%, and local annual emissions by up to 77%. A similar pattern emerges if hourly isoprene fluxes are considered. In order to better simulate and predict isoprene emission rates using MEGAN, we show it is necessary to use temperature and radiation data resolved to one hour. Given the importance of land-atmosphere interactions in the Earth system and the low computational cost of the MEGAN algorithms, we recommend that chemistry-climate models and the new generation of Earth system models input biogenic emissions at the highest temporal resolution possible.

  4. Climate variation and incidence of Ross river virus in Cairns, Australia: a time-series analysis.

    Science.gov (United States)

    Tong, S; Hu, W

    2001-01-01

    In this study we assessed the impact of climate variability on the Ross River virus (RRv) transmission and validated an epidemic-forecasting model in Cairns, Australia. Data on the RRv cases recorded between 1985 and 1996 were obtained from the Queensland Department of Health. Climate and population data were supplied by the Australian Bureau of Meteorology and the Australian Bureau of Statistics, respectively. The cross-correlation function (CCF) showed that maximum temperature in the current month and rainfall and relative humidity at a lag of 2 months were positively and significantly associated with the monthly incidence of RRv, whereas relative humidity at a lag of 5 months was inversely associated with the RRv transmission. We developed autoregressive integrated moving average (ARIMA) models on the data collected between 1985 to 1994, and then validated the models using the data collected between 1995 and 1996. The results show that the relative humidity at a lag of 5 months (p < 0.001) and the rainfall at a lag of 2 months (p < 0.05) appeared to play significant roles in the transmission of RRv disease in Cairns. Furthermore, the regressive forecast curves were consistent with the pattern of actual values. PMID:11748035

  5. World climate patterns in grassland and savanna and their relation to growing seasons

    Directory of Open Access Journals (Sweden)

    R. Kirk Steinhorst

    1977-11-01

    Full Text Available The climate at eleven IBP savanna or grassland study sites from five continents are described and principal components analysis is used to compare them. A multivariate linear discriminant function based on mean monthly precipitation, mean monthly temperature, latitude and altitude, is used to predict the length of the growing season at each site. At most sites, the actual and predicted start and end of the growing season agreed closely. It is concluded that growing season on a world-wide basis may be predicted fairly reliably from a small number of abiotic variables by means of a multivariate discriminant function.

  6. Do changes in the frequency, magnitude and timing of extreme climatic events threaten the population viability of coastal birds?

    NARCIS (Netherlands)

    van de Pol, Martijn; Ens, Bruno J.; Heg, Dik; Brouwer, Lyanne; Krol, Johan; Maier, Martin; Exo, Klaus-Michael; Oosterbeek, Kees; Lok, Tamar; Eising, Corine M.; Koffijberg, Kees

    P>1. Climate change encompasses changes in both the means and the extremes of climatic variables, but the population consequences of the latter are intrinsically difficult to study. 2. We investigated whether the frequency, magnitude and timing of rare but catastrophic flooding events have changed

  7. Pattern formation in individual-based systems with time-varying parameters

    Science.gov (United States)

    Ashcroft, Peter; Galla, Tobias

    2013-12-01

    We study the patterns generated in finite-time sweeps across symmetry-breaking bifurcations in individual-based models. Similar to the well-known Kibble-Zurek scenario of defect formation, large-scale patterns are generated when model parameters are varied slowly, whereas fast sweeps produce a large number of small domains. The symmetry breaking is triggered by intrinsic noise, originating from the discrete dynamics at the microlevel. Based on a linear-noise approximation, we calculate the characteristic length scale of these patterns. We demonstrate the applicability of this approach in a simple model of opinion dynamics, a model in evolutionary game theory with a time-dependent fitness structure, and a model of cell differentiation. Our theoretical estimates are confirmed in simulations. In further numerical work, we observe a similar phenomenon when the symmetry-breaking bifurcation is triggered by population growth.

  8. Spatiotemporal patterns of drought at various time scales in Shandong Province of Eastern China

    Science.gov (United States)

    Zuo, Depeng; Cai, Siyang; Xu, Zongxue; Li, Fulin; Sun, Wenchao; Yang, Xiaojing; Kan, Guangyuan; Liu, Pin

    2018-01-01

    The temporal variations and spatial patterns of drought in Shandong Province of Eastern China were investigated by calculating the standardized precipitation evapotranspiration index (SPEI) at 1-, 3-, 6-, 12-, and 24-month time scales. Monthly precipitation and air temperature time series during the period 1960-2012 were collected at 23 meteorological stations uniformly distributed over the region. The non-parametric Mann-Kendall test was used to explore the temporal trends of precipitation, air temperature, and the SPEI drought index. S-mode principal component analysis (PCA) was applied to identify the spatial patterns of drought. The results showed that an insignificant decreasing trend in annual total precipitation was detected at most stations, a significant increase of annual average air temperature occurred at all the 23 stations, and a significant decreasing trend in the SPEI was mainly detected at the coastal stations for all the time scales. The frequency of occurrence of extreme and severe drought at different time scales generally increased with decades; higher frequency and larger affected area of extreme and severe droughts occurred as the time scale increased, especially for the northwest of Shandong Province and Jiaodong peninsular. The spatial pattern of drought for SPEI-1 contains three regions: eastern Jiaodong Peninsular and northwestern and southern Shandong. As the time scale increased to 3, 6, and 12 months, the order of the three regions was transformed into another as northwestern Shandong, eastern Jiaodong Peninsular, and southern Shandong. For SPEI-24, the location identified by REOF1 was slightly shifted from northwestern Shandong to western Shandong, and REOF2 and REOF3 identified another two weak patterns in the south edge and north edge of Jiaodong Peninsular, respectively. The potential causes of drought and the impact of drought on agriculture in the study area have also been discussed. The temporal variations and spatial patterns

  9. Regression and regression analysis time series prediction modeling on climate data of quetta, pakistan

    International Nuclear Information System (INIS)

    Jafri, Y.Z.; Kamal, L.

    2007-01-01

    Various statistical techniques was used on five-year data from 1998-2002 of average humidity, rainfall, maximum and minimum temperatures, respectively. The relationships to regression analysis time series (RATS) were developed for determining the overall trend of these climate parameters on the basis of which forecast models can be corrected and modified. We computed the coefficient of determination as a measure of goodness of fit, to our polynomial regression analysis time series (PRATS). The correlation to multiple linear regression (MLR) and multiple linear regression analysis time series (MLRATS) were also developed for deciphering the interdependence of weather parameters. Spearman's rand correlation and Goldfeld-Quandt test were used to check the uniformity or non-uniformity of variances in our fit to polynomial regression (PR). The Breusch-Pagan test was applied to MLR and MLRATS, respectively which yielded homoscedasticity. We also employed Bartlett's test for homogeneity of variances on a five-year data of rainfall and humidity, respectively which showed that the variances in rainfall data were not homogenous while in case of humidity, were homogenous. Our results on regression and regression analysis time series show the best fit to prediction modeling on climatic data of Quetta, Pakistan. (author)

  10. Sharing Time and the Poetic Patterning of Caribbean Independence: The Narrative Architecture of Voice

    Science.gov (United States)

    Van der Aa, Jef

    2013-01-01

    This article discusses the narrative architecture and interactional uptake of a school child's story about independence in Barbados during sharing time. It is found that an institutional focus on standard resources impacts both teachers' and children's sociolinguistic behavior. Ethnopoetic analysis brings out the child's patterned use of narrative…

  11. Time budgets and activity patterns of sub-Antarctic fur seals at ...

    African Journals Online (AJOL)

    ... location and distribution on site, and the prevailing weather conditions influence the pattern of interaction and allocation of time to the various activities in A. tropicalis. The predominance of inactivity is considered to be a behavioural thermoregulatory response to limit endogenous heat production as is energy conservation ...

  12. Gait Patterns in Twins with Cerebral Palsy: Similarities and Development over Time after Multilevel Surgery

    Science.gov (United States)

    van Drongelen, Stefan; Dreher, Thomas; Heitzmann, Daniel W. W.; Wolf, Sebastian I.

    2013-01-01

    To examine gait patterns and gait quality, 7 twins with cerebral palsy were measured preoperatively and after surgical intervention. The aim was to study differences and/or similarities in gait between twins, the influence of personal characteristics and birth conditions, and to describe the development of gait over time after single event…

  13. Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks.

    Science.gov (United States)

    Goudar, Vishwa; Buonomano, Dean V

    2018-03-14

    Much of the information the brain processes and stores is temporal in nature-a spoken word or a handwritten signature, for example, is defined by how it unfolds in time. However, it remains unclear how neural circuits encode complex time-varying patterns. We show that by tuning the weights of a recurrent neural network (RNN), it can recognize and then transcribe spoken digits. The model elucidates how neural dynamics in cortical networks may resolve three fundamental challenges: first, encode multiple time-varying sensory and motor patterns as stable neural trajectories; second, generalize across relevant spatial features; third, identify the same stimuli played at different speeds-we show that this temporal invariance emerges because the recurrent dynamics generate neural trajectories with appropriately modulated angular velocities. Together our results generate testable predictions as to how recurrent networks may use different mechanisms to generalize across the relevant spatial and temporal features of complex time-varying stimuli. © 2018, Goudar et al.

  14. Time delay induced different synchronization patterns in repulsively coupled chaotic oscillators

    Science.gov (United States)

    Yao, Chenggui; Yi, Ming; Shuai, Jianwei

    2013-09-01

    Time delayed coupling plays a crucial role in determining the system's dynamics. We here report that the time delay induces transition from the asynchronous state to the complete synchronization (CS) state in the repulsively coupled chaotic oscillators. In particular, by changing the coupling strength or time delay, various types of synchronous patterns, including CS, antiphase CS, antiphase synchronization (ANS), and phase synchronization, can be generated. In the transition regions between different synchronous patterns, bistable synchronous oscillators can be observed. Furthermore, we show that the time-delay-induced phase flip bifurcation is of key importance for the emergence of CS. All these findings may light on our understanding of neuronal synchronization and information processing in the brain.

  15. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time.

    Science.gov (United States)

    Elmendorf, Sarah C; Henry, Gregory H R; Hollister, Robert D; Björk, Robert G; Bjorkman, Anne D; Callaghan, Terry V; Collier, Laura Siegwart; Cooper, Elisabeth J; Cornelissen, Johannes H C; Day, Thomas A; Fosaa, Anna Maria; Gould, William A; Grétarsdóttir, Járngerður; Harte, John; Hermanutz, Luise; Hik, David S; Hofgaard, Annika; Jarrad, Frith; Jónsdóttir, Ingibjörg Svala; Keuper, Frida; Klanderud, Kari; Klein, Julia A; Koh, Saewan; Kudo, Gaku; Lang, Simone I; Loewen, Val; May, Jeremy L; Mercado, Joel; Michelsen, Anders; Molau, Ulf; Myers-Smith, Isla H; Oberbauer, Steven F; Pieper, Sara; Post, Eric; Rixen, Christian; Robinson, Clare H; Schmidt, Niels Martin; Shaver, Gaius R; Stenström, Anna; Tolvanen, Anne; Totland, Orjan; Troxler, Tiffany; Wahren, Carl-Henrik; Webber, Patrick J; Welker, Jeffery M; Wookey, Philip A

    2012-02-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date. © 2011 Blackwell Publishing Ltd/CNRS.

  16. Amount and timing of permafrost carbon release in response to climate warming

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Kevin; Zhang, Tingjun; Barrett, Andrew P. (National Snow and Ice Data Center, Cooperative Inst. for Research in Environmental Sciences, Univ. of Colorado at Boulder, Boulder (United States)), e-mail: kevin.schaefer@nsidc.org; Bruhwiler, Lori (National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Boulder (United States))

    2011-04-15

    The thaw and release of carbon currently frozen in permafrost will increase atmospheric CO{sub 2} concentrations and amplify surface warming to initiate a positive permafrost carbon feedback (PCF) on climate.We use surface weather from three global climate models based on the moderate warming, A1B Intergovernmental Panel on Climate Change emissions scenario and the SiBCASA land surface model to estimate the strength and timing of the PCF and associated uncertainty. By 2200, we predict a 29-59% decrease in permafrost area and a 53-97 cm increase in active layer thickness. By 2200, the PCF strength in terms of cumulative permafrost carbon flux to the atmosphere is 190 +- 64 Gt C. This estimate may be low because it does not account for amplified surface warming due to the PCF itself and excludes some discontinuous permafrost regions where SiBCASA did not simulate permafrost. We predict that the PCF will change the arctic from a carbon sink to a source after the mid-2020s and is strong enough to cancel 42-88% of the total global land sink. The thaw and decay of permafrost carbon is irreversible and accounting for the PCF will require larger reductions in fossil fuel emissions to reach a target atmospheric CO{sub 2} concentration

  17. Timing and climate forcing of volcanic eruptions for the past 2,500 years.

    Science.gov (United States)

    Sigl, M; Winstrup, M; McConnell, J R; Welten, K C; Plunkett, G; Ludlow, F; Büntgen, U; Caffee, M; Chellman, N; Dahl-Jensen, D; Fischer, H; Kipfstuhl, S; Kostick, C; Maselli, O J; Mekhaldi, F; Mulvaney, R; Muscheler, R; Pasteris, D R; Pilcher, J R; Salzer, M; Schüpbach, S; Steffensen, J P; Vinther, B M; Woodruff, T E

    2015-07-30

    Volcanic eruptions contribute to climate variability, but quantifying these contributions has been limited by inconsistencies in the timing of atmospheric volcanic aerosol loading determined from ice cores and subsequent cooling from climate proxies such as tree rings. Here we resolve these inconsistencies and show that large eruptions in the tropics and high latitudes were primary drivers of interannual-to-decadal temperature variability in the Northern Hemisphere during the past 2,500 years. Our results are based on new records of atmospheric aerosol loading developed from high-resolution, multi-parameter measurements from an array of Greenland and Antarctic ice cores as well as distinctive age markers to constrain chronologies. Overall, cooling was proportional to the magnitude of volcanic forcing and persisted for up to ten years after some of the largest eruptive episodes. Our revised timescale more firmly implicates volcanic eruptions as catalysts in the major sixth-century pandemics, famines, and socioeconomic disruptions in Eurasia and Mesoamerica while allowing multi-millennium quantification of climate response to volcanic forcing.

  18. A Holocene temperature reconstruction from northern New Zealand: a test of North Atlantic Holocene climate patterns as a global template

    Science.gov (United States)

    van den Bos, Valerie; Rees, Andrew; Newnham, Rewi; Augustinus, Paul

    2017-04-01

    Holocene climate variability has been well defined in the North Atlantic (Walker et al., 2012), but the global extent of this climate change stratigraphy is debatable. If the North Atlantic serves as a global template for Holocene climate, then New Zealand (NZ) is ideally positioned to test this assertion, as it is distal from the northern drivers. Additionally, it is one of the few landmasses in the Southern Hemisphere that is influenced by both sub-tropical and extra-tropical climatic regimes, which may be more important controls in the southern mid-latitudes. Although much work has been done to characterise the Holocene in NZ using pollen, most of these records lack the resolution or sensitivity to determine whether abrupt or short-lived events occurred. The NZ-INTIMATE climate event stratigraphy lacks a type section for the Holocene (Alloway et al., 2007). Records from northern NZ typically show little change, other than a possible early Holocene warming. Here, we present a combined pollen and chironomid temperature reconstruction from Lake Pupuke (northern NZ), the first of its kind in NZ that covers the entire Holocene. By comparing mean annual temperatures reconstructed from fossil pollen and mean summer temperatures inferred from chironomid remains, we can assess changes in seasonality. Mean summer temperature was reconstructed from the chironomid record using a weighted averaging partial least squares (WA-PLS) model (n comp = 2, r2booth = 0.77, RMSEP = 1.4°C) developed from an expanded version of Dieffenbacher-Krall et al. (2007)'s chironomid training set. Preliminary results show evidence for cool summers during the early Holocene as well as around the period of the Little Ice Age as defined in the North Atlantic region. These and other climate patterns determined from the Pupuke chironomid and pollen records will be compared with other evidence from northern New Zealand and with the North Atlantic record of Holocene climate variability. References

  19. Idealized flow patterns and transit times in gas/liquid contacting trays with multiple box downcomers

    International Nuclear Information System (INIS)

    D'Arcy, D.

    1977-08-01

    Trays with multiple box downcomers are often used in chemical process plants nowadays. In order to make a theoretical assessment of the mass transfer efficiency of such trays, knowledge is needed of the time spent by the liquid at various parts of the tray. An idealized but reasonable flow pattern has been assumed and the local velocities and transit times along ten equally-spaced stream lines have been computed. Numerical and graphical results are presented. (author)

  20. Space-time dependence between energy sources and climate related energy production

    Science.gov (United States)

    Engeland, Kolbjorn; Borga, Marco; Creutin, Jean-Dominique; Ramos, Maria-Helena; Tøfte, Lena; Warland, Geir

    2014-05-01

    The European Renewable Energy Directive adopted in 2009 focuses on achieving a 20% share of renewable energy in the EU overall energy mix by 2020. A major part of renewable energy production is related to climate, called "climate related energy" (CRE) production. CRE production systems (wind, solar, and hydropower) are characterized by a large degree of intermittency and variability on both short and long time scales due to the natural variability of climate variables. The main strategies to handle the variability of CRE production include energy-storage, -transport, -diversity and -information (smart grids). The three first strategies aim to smooth out the intermittency and variability of CRE production in time and space whereas the last strategy aims to provide a more optimal interaction between energy production and demand, i.e. to smooth out the residual load (the difference between demand and production). In order to increase the CRE share in the electricity system, it is essential to understand the space-time co-variability between the weather variables and CRE production under both current and future climates. This study presents a review of the literature that searches to tackle these problems. It reveals that the majority of studies deals with either a single CRE source or with the combination of two CREs, mostly wind and solar. This may be due to the fact that the most advanced countries in terms of wind equipment have also very little hydropower potential (Denmark, Ireland or UK, for instance). Hydropower is characterized by both a large storage capacity and flexibility in electricity production, and has therefore a large potential for both balancing and storing energy from wind- and solar-power. Several studies look at how to better connect regions with large share of hydropower (e.g., Scandinavia and the Alps) to regions with high shares of wind- and solar-power (e.g., green battery North-Sea net). Considering time scales, various studies consider wind

  1. In a Time of Change: Integrating the Arts and Humanities with Climate Change Science in Alaska

    Science.gov (United States)

    Leigh, M.; Golux, S.; Franzen, K.

    2011-12-01

    The arts and humanities have a powerful capacity to create lines of communication between the public, policy and scientific spheres. A growing network of visual and performing artists, writers and scientists has been actively working together since 2007 to integrate scientific and artistic perspectives on climate change in interior Alaska. These efforts have involved field workshops and collaborative creative processes culminating in public performances and a visual art exhibit. The most recent multimedia event was entitled In a Time of Change: Envisioning the Future, and challenged artists and scientists to consider future scenarios of climate change. This event included a public performance featuring original theatre, modern dance, Alaska Native Dance, poetry and music that was presented concurrently with an art exhibit featuring original works by 24 Alaskan visual artists. A related effort targeted K12 students, through an early college course entitled Climate Change and Creative Expression, which was offered to high school students at a predominantly Alaska Native charter school and integrated climate change science, creative writing, theatre and dance. Our program at Bonanza Creek Long Term Ecological Research (LTER) site is just one of many successful efforts to integrate arts and humanities with science within and beyond the NSF LTER Program. The efforts of various LTER sites to engage the arts and humanities with science, the public and policymakers have successfully generated excitement, facilitated mutual understanding, and promoted meaningful dialogue on issues facing science and society. The future outlook for integration of arts and humanities with science appears promising, with increasing interest from artists, scientists and scientific funding agencies.

  2. Atmospheric and Oceanic Response to Southern Ocean Deep Convection Oscillations on Decadal to Centennial Time Scales in Climate Models

    Science.gov (United States)

    Martin, T.; Reintges, A.; Park, W.; Latif, M.

    2014-12-01

    Many current coupled global climate models simulate open ocean deep convection in the Southern Ocean as a recurring event with time scales ranging from a few years to centennial (de Lavergne et al., 2014, Nat. Clim. Ch.). The only observation of such event, however, was the occurrence of the Weddell Polynya in the mid-1970s, an open water area of 350 000 km2 within the Antarctic sea ice in three consecutive winters. Both the wide range of modeled frequency of occurrence and the absence of deep convection in the Weddell Sea highlights the lack of understanding concerning the phenomenon. Nevertheless, simulations indicate that atmospheric and oceanic responses to the cessation of deep convection in the Southern Ocean include a strengthening of the low-level atmospheric circulation over the Southern Ocean (increasing SAM index) and a reduction in the export of Antarctic Bottom Water (AABW), potentially masking the regional effects of global warming (Latif et al., 2013, J. Clim.; Martin et al., 2014, Deep Sea Res. II). It is thus of great importance to enhance our understanding of Southern Ocean deep convection and clarify the associated time scales. In two multi-millennial simulations with the Kiel Climate Model (KCM, ECHAM5 T31 atmosphere & NEMO-LIM2 ~2˚ ocean) we showed that the deep convection is driven by strong oceanic warming at mid-depth periodically overriding the stabilizing effects of precipitation and ice melt (Martin et al., 2013, Clim. Dyn.). Sea ice thickness also affects location and duration of the deep convection. A new control simulation, in which, amongst others, the atmosphere grid resolution is changed to T42 (~2.8˚), yields a faster deep convection flip-flop with a period of 80-100 years and a weaker but still significant global climate response similar to CMIP5 simulations. While model physics seem to affect the time scale and intensity of the phenomenon, the driving mechanism is a rather robust feature. Finally, we compare the atmospheric and

  3. Climate Prediction Center - Monitoring and Data

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News monthly data, time series, and maps for various climate parameters, such as precipitation, temperature Oscillations (ENSO) and other climate patterns such as the North Atlantic and Pacific Decadal Oscillations, and

  4. The relative roles of local climate adaptation and phylogeny in determining leaf-out timing of temperate tree species

    Directory of Open Access Journals (Sweden)

    Elsa Desnoues

    2017-12-01

    Full Text Available Background Leaf out times of temperate forest trees are a prominent determinant of global carbon dynamics throughout the year. Abiotic cues of leaf emergence are well studied but investigation of the relative roles of shared evolutionary history (phylogeny and local adaptation to climate in determining the species-level responses to these cues is needed to better apprehend the effect of global change on leaf emergence. We explored the relative importance of phylogeny and climate in determining the innate leaf out phenology across the temperate biome. Methods We used an extensive dataset of leaf-out dates of 1126 temperate woody species grown in eight Northern Hemisphere common gardens. For these species, information on the native climate and phylogenetic position was collected. Using linear regression analyses, we examine the relative effect of climate variables and phylogeny on leaf out variation among species. Results Climate variables explained twice as much variation in leaf out timing as phylogenetic information, a process that was driven primarily by the complex interactive effects of multiple climate variables. Although the primary climate factors explaining species-level variation in leaf-out timing varied drastically across different families, our analyses reveal that local adaptation plays a stronger role than common evolutionary history in determining tree phenology across the temperate biome. Conclusions In the long-term, the direct effects of physiological adaptation to abiotic effects of climate change on forest phenology are likely to outweigh the indirect effects mediated through changes in tree species composition.

  5. Global vegetation-fire pattern under different land use and climate conditions

    Science.gov (United States)

    Thonicke, K.; Poulter, B.; Heyder, U.; Gumpenberger, M.; Cramer, W.

    2008-12-01

    Fire is a process of global significance in the Earth System influencing vegetation dynamics, biogeochemical cycling and biophysical feedbacks. Naturally ignited wildfires have long history in the Earth System. Humans have been using fire to shape the landscape for their purposes for many millenia, sometimes influencing the status of the vegetation remarkably as for example in Mediterranean-type ecosystems. Processes and drivers describing fire danger, ignitions, fire spread and effects are relatively well-known for many fire-prone ecosystems. Modeling these has a long tradition in fire-affected regions to predict fire risk and behavior for fire-fighting purposes. On the other hand, the global vegetation community realized the importance of disturbances to be recognized in their global vegetation models with fire being globally most important and so-far best studied. First attempts to simulate fire globally considered a minimal set of drivers, whereas recent developments attempt to consider each fire process separately. The process-based fire model SPITFIRE (SPread and InTensity of FIRE) simulates these processes embedded in the LPJ DGVM. Uncertainties still arise from missing measurements for some parameters in less-studied fire regimes, or from broad PFT classifications which subsume different fire-ecological adaptations and tolerances. Some earth observation data sets as well as fire emission models help to evaluate seasonality and spatial distribution of simulated fire ignitions, area burnt and fire emissions within SPITFIRE. Deforestation fires are a major source of carbon released to the atmosphere in the tropics; in the Amazon basin it is the second-largest contributor to Brazils GHG emissions. How ongoing deforestation affects fire regimes, forest stability and biogeochemical cycling in the Amazon basin under present climate conditions will be presented. Relative importance of fire vs. climate and land use change is analyzed. Emissions resulting from

  6. Farmer response to climatic and agricultural market drivers: characteristic time scales and sensitivities

    Science.gov (United States)

    Wurster, P. M.; Maneta, M. P.; Vicente-Serrano, S. M.; Beguería, S.; Silverman, N. L.; Holden, Z.

    2017-12-01

    Agriculture in the intermountain western United States is dominated by extensive farming and ranching, mostly reliant on rainfed crops and therefore very exposed to precipitation shortfalls. It is also poorly diversified, dominated by five or six major grain crops, which makes it vulnerable to changes in agricultural markets. The economy of the region is very reliant on this type of agriculture, making the entire economy vulnerable to climatic and market fluctuations. Western agriculture is also of significant importance for national food security. Resource managers in the region are increasingly concerned with the impacts that more frequent and severe droughts, or the collapse of crop prices, may have on producers and food production. Effective resource management requires an understanding not only of the regional impact of adverse climatic and market events, but also of which geographic areas are most vulnerable, and why. Unfortunately, few studies exist that look into how farmers in different geographic areas respond to climate and market drivers. In this study we analyze the influence of precipitation and crop price anomalies on crop production, and map the characteristic time scale of these anomalies that correlate best with production anomalies for the 56 counties of Montana, U.S.A. We conduct this analysis using the standardized precipitation index (SPI), and defining a standardized crop value index (SCVI) and a standardized crop production index (SCPI). We use 38 years of data to calculate precipitation anomalies at monthly time scales and annual data to calculate crop price and production anomalies. The standardization of the indices allows for straightforward comparison of the relative influence of climatic and market fluctuations on production anomalies. We apply our methodology to winter wheat, spring durum wheat, barley, alfalfa, and beets which are the most valuable crops produced in the state. Results from this study show that precipitation anomalies

  7. Climatic changes on orbital and sub-orbital time scale recorded by the Guliya ice core in Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    姚檀栋; 徐柏青; 蒲健辰

    2001-01-01

    Based on ice core records in the Tibetan Plateau and Greenland, the features and possible causes of climatic changes on orbital and sub-orbital time scale were discussed. Orbital time scale climatic change recorded in ice core from the Tibetan Plateau is typically ahead of that from polar regions, which indicates that climatic change in the Tibetan Plateau might be earlier than polar regions. The solar radiation change is a major factor that dominates the climatic change on orbital time scale. However, climatic events on sub-orbital time scale occurred later in the Tibetan Plateau than in the Arctic Region, indicating a different mechanism. For example, the Younger Dryas and Heinrich events took place earlier in Greenland ice core record than in Guliya ice core record. It is reasonable to propose the hypothesis that these climatic events were affected possibly by the Laurentide Ice Sheet. Therefore, ice sheet is critically important to climatic change on sub-orbital time scale in some ice ages.

  8. Temporal patterns of vegetation phenology and their responses to climate change in mid-latitude grasslands of the Northern Hemisphere

    Science.gov (United States)

    Ren, S.; Chen, X.; Qin, Q.; Zhang, Y.; Wu, Z.

    2017-12-01

    Grassland ecosystem is greatly sensitive to regional and global climate changes. In this study, the start (SOS) and end (EOS) date of growing season were extracted from NDVI data (1981 2014) across the mid-latitude (30°N 55°N) grasslands of Northern Hemisphere. We first validated their accuracy by ground observed phenological data and phenological metrics derived from gross primary production (GPP) data. And then, main climatic factors influencing the temporal patterns of SOS/EOS were explored by means of gridded meteorological data and partial correlation analysis. Based on the results of above statistical analysis, the similarities and differences of spring and autumn phenological responses to climate change among North American grasslands, Mid-West Asian grasslands, and Mongolian grasslands were analyzed. The main results and conclusions are as follows. First, a significant positive correlation was found between SOS/EOS and observed green-up/brown-off date (PSOS/EOS (PSOS/EOS can reflect temporal dynamics of terrestrial vegetation phenology. Second, SOS in Mid-West Asian grasslands showed a significant advancing trend (0.22 days/year, PSOS in North American grasslands and Mongolian grasslands was not significant. EOS in North American grasslands (0.31 dyas/year, PSOS/EOS inter-annual fluctuations and hydrothermal factors showed that a significant negative correlation was found between SOS and the pre-season temperature in 41.6% of pixels (PSOS and pre-season rainfall/snowfall in 14.6%/19.0% of pixels (PSOS and EOS are mainly affected by pre-season temperature and pre-season rainfall.

  9. Discovering New Global Climate Patterns: Curating a 21-Year High Temporal (Hourly) and Spatial (40km) Resolution Reanalysis Dataset

    Science.gov (United States)

    Hou, C. Y.; Dattore, R.; Peng, G. S.

    2014-12-01

    help with new climate pattern discovery.

  10. Addressing the mischaracterization of extreme rainfall in regional climate model simulations - A synoptic pattern based bias correction approach

    Science.gov (United States)

    Li, Jingwan; Sharma, Ashish; Evans, Jason; Johnson, Fiona

    2018-01-01

    Addressing systematic biases in regional climate model simulations of extreme rainfall is a necessary first step before assessing changes in future rainfall extremes. Commonly used bias correction methods are designed to match statistics of the overall simulated rainfall with observations. This assumes that change in the mix of different types of extreme rainfall events (i.e. convective and non-convective) in a warmer climate is of little relevance in the estimation of overall change, an assumption that is not supported by empirical or physical evidence. This study proposes an alternative approach to account for the potential change of alternate rainfall types, characterized here by synoptic weather patterns (SPs) using self-organizing maps classification. The objective of this study is to evaluate the added influence of SPs on the bias correction, which is achieved by comparing the corrected distribution of future extreme rainfall with that using conventional quantile mapping. A comprehensive synthetic experiment is first defined to investigate the conditions under which the additional information of SPs makes a significant difference to the bias correction. Using over 600,000 synthetic cases, statistically significant differences are found to be present in 46% cases. This is followed by a case study over the Sydney region using a high-resolution run of the Weather Research and Forecasting (WRF) regional climate model, which indicates a small change in the proportions of the SPs and a statistically significant change in the extreme rainfall over the region, although the differences between the changes obtained from the two bias correction methods are not statistically significant.

  11. Measurement of the real time fill-pattern at the Australian Synchrotron

    International Nuclear Information System (INIS)

    Peake, D.J.; Boland, M.J.; LeBlanc, G.S.; Rassool, R.P.

    2008-01-01

    This article describes the development, commissioning and operation of a Fill-Pattern Monitor (FPM) for the Australian Synchrotron that measures the real-time intensity distribution of the electron bunches in the storage ring. Using a combination of an ultra-fast photodiode and a high-speed digitiser, real-time measurement of the fill-pattern at bunch-by-bunch resolution was achieved. The results compare very well with current methods of measuring the fill-pattern, such as a pick-up style detector. In addition, the FPM is fully integrated into the EPICS control system. The data provided by the FPM gives accurate RF bucket position and relative bunch currents over a wide range of stored beam currents, from 0.01 mA in a single bunch to 200 mA total beam current. The FPM monitors the success of an injection attempt into the storage ring and is used in a feedback loop to determine where to target the next injection. Using the FPM a beam top-up mode was successfully tested, resulting in a near constant beam current by periodic targeted injections over an 8 h shift. Results are presented for dynamically topped up real-time injection, where the beam pattern was squared using an intensity-dependent injection algorithm

  12. Angiogenesis interactome and time course microarray data reveal the distinct activation patterns in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Liang-Hui Chu

    Full Text Available Angiogenesis involves stimulation of endothelial cells (EC by various cytokines and growth factors, but the signaling mechanisms are not completely understood. Combining dynamic gene expression time-course data for stimulated EC with protein-protein interactions associated with angiogenesis (the "angiome" could reveal how different stimuli result in different patterns of network activation and could implicate signaling intermediates as points for control or intervention. We constructed the protein-protein interaction networks of positive and negative regulation of angiogenesis comprising 367 and 245 proteins, respectively. We used five published gene expression datasets derived from in vitro assays using different types of blood endothelial cells stimulated by VEGFA (vascular endothelial growth factor A. We used the Short Time-series Expression Miner (STEM to identify significant temporal gene expression profiles. The statistically significant patterns between 2D fibronectin and 3D type I collagen substrates for telomerase-immortalized EC (TIME show that different substrates could influence the temporal gene activation patterns in the same cell line. We investigated the different activation patterns among 18 transmembrane tyrosine kinase receptors, and experimentally measured the protein level of the tyrosine-kinase receptors VEGFR1, VEGFR2 and VEGFR3 in human umbilical vein EC (HUVEC and human microvascular EC (MEC. The results show that VEGFR1-VEGFR2 levels are more closely coupled than VEGFR1-VEGFR3 or VEGFR2-VEGFR3 in HUVEC and MEC. This computational methodology can be extended to investigate other molecules or biological processes such as cell cycle.

  13. Spatiotemporal Patterns of Ice Mass Variations and the Local Climatic Factors in the Riparian Zone of Central Valley, California

    Science.gov (United States)

    Inamdar, P.; Ambinakudige, S.

    2016-12-01

    Californian icefields are natural basins of fresh water. They provide irrigation water to the farms in the central valley. We analyzed the ice mass loss rates, air temperature and land surface temperature (LST) in Sacramento and San Joaquin basins in California. The digital elevation models from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to calculate ice mass loss rate between the years 2002 and 2015. Additionally, Landsat TIR data were used to extract the land surface temperature. Data from local weather stations were analyzed to understand the spatiotemporal trends in air temperature. The results showed an overall mass recession of -0.8 ± 0.7 m w.e.a-1. We also noticed an about 60% loss in areal extent of the glaciers in the study basins between 2000 and 2015. Local climatic factors, along with the global climate patterns might have influenced the negative trends in the ice mass loss. Overall, there was an increase in the air temperature by 0.07± 0.02 °C in the central valley between 2000 and 2015. Furthermore, LST increased by 0.34 ± 0.4 °C and 0.55± 0.1 °C in the Sacramento and San Joaquin basins. Our preliminary results show the decrease in area and mass of ice mass in the basins, and changing agricultural practices in the valley.

  14. Regionally and climatically restricted patterns of distribution of genetic diversity in a migratory bat species, Miniopterus schreibersii (Chiroptera: Vespertilionidae

    Directory of Open Access Journals (Sweden)

    Çoraman Emrah

    2008-07-01

    Full Text Available Abstract Background Various mechanisms such as geographic barriers and glacial episodes have been proposed as determinants of intra-specific and inter-specific differentiation of populations, and the distribution of their genetic diversity. More recently, habitat and climate differences, and corresponding adaptations have been shown to be forces influencing the phylogeographic evolution of some vertebrates. In this study, we examined the contribution of these various factors on the genetic differentiation of the bent-winged bat, Miniopterus schreibersii, in southeastern Europe and Anatolia. Results and conclusion Our results showed differentiation in mitochondrial DNA coupled with weaker nuclear differentiation. We found evidence for restriction of lineages to geographical areas for hundreds of generations. The results showed that the most likely ancestral haplotype was restricted to the same geographic area (the Balkans for at least 6,000 years. We were able to delineate the migration routes during the population expansion process, which followed the coasts and the inland for different nested mitochondrial clades. Hence, we were able to describe a scenario showing how multiple biotic and abiotic events including glacial periods, climate and historical dispersal patterns complemented each other in causing regional and local differentiation within a species.

  15. Lethal body concentrations and accumulation patterns determine time-dependent toxicity of cadmium in soil arthropods

    Energy Technology Data Exchange (ETDEWEB)

    Crommentuijn, T.; Doodeman, C.J.A.M.; Doornekamp, A.; Pol, J.J.C. van der; Bedaux, J.J.M.; Gestel, C.A.M. van (Vrije Univ., Amsterdam (Netherlands))

    1994-11-01

    Time-dependent toxicity in bioassays is usually explained in terms of uptake and elimination kinetics of the toxicant. By comparing different species with essentially different accumulation kinetics, a firm test of this concept may be made. This article compares the sensitivity of six soil arthropods, the collembolans Orchesella cincta and Tomocerus minor, the oribatid mite Platynothrus peltifer, the isopods Porcellio scaber and Oniscus asellus, and the diplopod Cylindroiulus britannicus, when exposed to cadmium in the food. Survival was determined at various time intervals; accumulation of cadmium in the animals was measured at one time interval. Kinetic-based toxicity models were fitted to the data, and estimates were obtained for lethal body concentration, uptake rate constant, elimination rate constant, and ultimate LC50. Two different accumulation patterns could be discerned; these were correlated with time-survival relationships. One, species that have the possibility to eliminate cadmium will reach an equilibrium for the internal concentration and also an ultimate LC50. Two, species that are unable to eliminate cadmium but store it in the body will have an ultimate LC50 equal to zero. For these species the time in which the lethal body concentration is reached is more important. Taxonomically related species appeared to have comparable accumulation patterns, but lethal body concentrations differed. It is concluded that knowledge of the accumulation pattern is indispensable for the evaluation of species' sensitivities to toxicants.

  16. Long-term patterns in fish phenology in the western Dutch Wadden Sea in relation to climate change

    NARCIS (Netherlands)

    van Walraven, L.; Dapper, R.; Nauw, J.J.; Tulp, I.; Witte, J.IJ.; van der Veer, H.W.

    2017-01-01

    Long-term patterns in fish phenology in the western Dutch Wadden Sea were studied using a 53 year (1960–2013) high resolution time series of daily kom-fyke catches in spring and autumn. Trends in first appearance, last occurrence and peak abundance were analysed for the most common species in

  17. Climatic signals and frequencies in the Swedish Time Scale, River Aangermanaelven, Central Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Sander, Mikkel

    2003-03-01

    Any future climate variation forced by human activities will be superimposed on the background of natural climate variation. Therefore, before interpreting the present climate and addressing future climate scenarios some knowledge of past climate is necessary. This thesis offers a rare glimpse into a long record of fluvial activity in Central Sweden and illuminates some of the possible forcing agent behind past (and future) discharge variation. Along the Swedish East Coast varved deposits of sand silt and clay couplets make up a chronology, which extend from the present into the Late Glacial. This chronology is known as the Swedish Time Scale (STS) and the c. 8000 varves were deposited in River Aangermanaelven, Central Sweden. Of these varves, the last c. 2000 years are considered secure in terms of coherent chronology and internal thickness variation. A 2000 year long geometric mean varve thickness series was calculated to account for the internal thickness variation, which is postulated to form a proxy for fluvial sediment transport. Geometric mean varve thickness was compared to observed maximum daily annual discharge Qmax (1909-1971 AD) and the relationship expressed in a power equation. Thus, a reconstruction of past discharge for the last 2000 years could be produced. Extreme reconstructed discharge events were shown to be reasonable, considering the range of the observed discharge. Observed Qmax normally occurs during the snow melt flood. Thus it is reasonable to attribute the variation in reconstructed Qmax to the snow melt flood and, therefore, to melt water generation. Accumulated observed winter precipitation data from eleven meteorological stations from within and in the vicinity of the Aangermanaelven catchment were compared to Qmax. Nine time series shared variation with Qmax and were complied into an average accumulated winter precipitation series. This series shares c. 40% of its variation with Qmax (observed and reconstructed) and it is reasonable

  18. Robust real-time pattern matching using bayesian sequential hypothesis testing.

    Science.gov (United States)

    Pele, Ofir; Werman, Michael

    2008-08-01

    This paper describes a method for robust real time pattern matching. We first introduce a family of image distance measures, the "Image Hamming Distance Family". Members of this family are robust to occlusion, small geometrical transforms, light changes and non-rigid deformations. We then present a novel Bayesian framework for sequential hypothesis testing on finite populations. Based on this framework, we design an optimal rejection/acceptance sampling algorithm. This algorithm quickly determines whether two images are similar with respect to a member of the Image Hamming Distance Family. We also present a fast framework that designs a near-optimal sampling algorithm. Extensive experimental results show that the sequential sampling algorithm performance is excellent. Implemented on a Pentium 4 3 GHz processor, detection of a pattern with 2197 pixels, in 640 x 480 pixel frames, where in each frame the pattern rotated and was highly occluded, proceeds at only 0.022 seconds per frame.

  19. Real-time determination of fringe pattern frequencies: An application to pressure measurement

    Science.gov (United States)

    Sciammarella, Cesar A.; Piroozan, Parham

    2007-05-01

    Retrieving information in real time from fringe patterns is a topic of a great deal of interest in scientific and engineering applications of optical methods. This paper presents a method for fringe frequency determination based on the capability of neural networks to recognize signals that are similar but not identical to signals used to train the neural network. Sampled patterns are generated by calibration and stored in memory. Incoming patterns are analyzed by a back-propagation neural network at the speed of the recording device, a CCD camera. This method of information retrieval is utilized to measure pressures on a boundary layer flow. The sensor combines optics and electronics to analyze dynamic pressure distributions and to feed information to a control system that is capable to preserve the stability of the flow.

  20. Climate Change

    Science.gov (United States)

    Climate is the average weather in a place over a period of time. Climate change is major change in temperature, rainfall, snow, ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. ...

  1. Eating patterns of US adults: Meals, snacks, and time of eating.

    Science.gov (United States)

    Kant, Ashima K

    2018-03-21

    The objective of this paper is to update knowledge of eating patterns of US adults with sex and ethnicity specific estimates and discuss the implications of reported patterns with respect to current resurgence of interest in the topic. The eating patterns data were from the NHANES 2009-2014 (n = 15,341 adults). Overall, American adults reported 4.96 ± 0.03 eating episodes in the recall. Women were more likely to report each of the three main meals and all three meals plus one or more snacks relative to men (P < 0.0001). Relative to other ethnic groups, non-Hispanic blacks were less likely to report each meal or a snack or all three meals, and the foods reported for meals and snacks were higher in energy density (P = 0.0001). Of the three meals, the dinner meal, and among snacks, the after-dinner snack, were reported by the highest percentage of Americans; these two eating episodes provided nearly 45% of the 24-h energy intake. The average dinnertime was 6:24 pm, and the average time of the last eating episode of the 24-h ingestive period was 8:18 pm. Given these findings, adoption of eating patterns that advocate less frequent eating and shift in the time of eating are likely to present a challenge. We know little about the validity of eating patterns determined from 24-h recalls or questionnaire instruments. The extent of within person variability and reporting errors in different eating pattern components also need further research. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Towards a Seamless Framework for Drought Analysis and Prediction from Seasonal to Climate Change Time Scales (Plinius Medal Lecture)

    Science.gov (United States)

    Sheffield, Justin

    2013-04-01

    Droughts arguably cause the most impacts of all natural hazards in terms of the number of people affected and the long-term economic costs and ecosystem stresses. Recent droughts worldwide have caused humanitarian and economic problems such as food insecurity across the Horn of Africa, agricultural economic losses across the central US and loss of livelihoods in rural western India. The prospect of future increases in drought severity and duration driven by projected changes in precipitation patterns and increasing temperatures is worrisome. Some evidence for climate change impacts on drought is already being seen for some regions, such as the Mediterranean and east Africa. Mitigation of the impacts of drought requires advance warning of developing conditions and enactment of drought plans to reduce vulnerability. A key element of this is a drought early warning system that at its heart is the capability to monitor evolving hydrological conditions and water resources storage, and provide reliable and robust predictions out to several months, as well as the capacity to act on this information. At longer time scales, planning and policy-making need to consider the potential impacts of climate change and its impact on drought risk, and do this within the context of natural climate variability, which is likely to dominate any climate change signal over the next few decades. There are several challenges that need to be met to advance our capability to provide both early warning at seasonal time scales and risk assessment under climate change, regionally and globally. Advancing our understanding of drought predictability and risk requires knowledge of drought at all time scales. This includes understanding of past drought occurrence, from the paleoclimate record to the recent past, and understanding of drought mechanisms, from initiation, through persistence to recovery and translation of this understanding to predictive models. Current approaches to monitoring and

  3. Horse-collar aurora: A frequent pattern of the aurora in quiet times

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.; Craven, J.D.; Frank, L.A.; Evans, D.S.; Newell, P.T.

    1989-01-01

    Reported here are DE 1 auroral imager observations of an auroral configuration which is given the name ''horse-collar aurora.'' The horse-collar pattern comprises the total area of auroral emissions from a single hemisphere and derives its name from the shape of the emitting area. The pattern is found in images recorded during quiet geomagnetic conditions and is possibly related to the theta aurora, another quiet time configuration of the auroras. This initial report of the DE 1 observations illustrates the horse-collar aurora with a 2-hour images sequence that displays its basic features and shows an example of its evolution into a theta-like auroral pattern. The interplanetary magnetic field was northward during this image sequence and there is some evidence for IMF B/sub y/ influence of the temporal development of the horse-collar pattern. A preliminary statistical analysis found the horse-collar pattern appearing in one-third or more of image sequences recorded during quiet conditions; it did not appear during disturbed conditions. Further study is required to establish more fully the characteristics of the horse-collar aurora and to determine its implications concerning solar wind-magnetosphere coupling when the IMF B/sub z/ is northward. copyright American Geophysical Union 1989

  4. Towards a More Biologically-meaningful Climate Characterization: Variability in Space and Time at Multiple Scales

    Science.gov (United States)

    Christianson, D. S.; Kaufman, C. G.; Kueppers, L. M.; Harte, J.

    2013-12-01

    fine-spatial scales (sub-meter to 10-meter) shows greater temperature variability with warmer mean temperatures. This is inconsistent with the inherent assumption made in current species distribution models that fine-scale variability is static, implying that current projections of future species ranges may be biased -- the direction and magnitude requiring further study. While we focus our findings on the cross-scaling characteristics of temporal and spatial variability, we also compare the mean-variance relationship between 1) experimental climate manipulations and observed conditions and 2) temporal versus spatial variance, i.e., variability in a time-series at one location vs. variability across a landscape at a single time. The former informs the rich debate concerning the ability to experimentally mimic a warmer future. The latter informs space-for-time study design and analyses, as well as species persistence via a combined spatiotemporal probability of suitable future habitat.

  5. Firing patterns transition and desynchronization induced by time delay in neural networks

    Science.gov (United States)

    Huang, Shoufang; Zhang, Jiqian; Wang, Maosheng; Hu, Chin-Kun

    2018-06-01

    We used the Hindmarsh-Rose (HR) model (Hindmarsh and Rose, 1984) to study the effect of time delay on the transition of firing behaviors and desynchronization in neural networks. As time delay is increased, neural networks exhibit diversity of firing behaviors, including regular spiking or bursting and firing patterns transitions (FPTs). Meanwhile, the desynchronization of firing and unstable bursting with decreasing amplitude in neural system, are also increasingly enhanced with the increase of time delay. Furthermore, we also studied the effect of coupling strength and network randomness on these phenomena. Our results imply that time delays can induce transition and desynchronization of firing behaviors in neural networks. These findings provide new insight into the role of time delay in the firing activities of neural networks, and can help to better understand the firing phenomena in complex systems of neural networks. A possible mechanism in brain that can cause the increase of time delay is discussed.

  6. Time series analyses of breathing patterns of lung cancer patients using nonlinear dynamical system theory.

    Science.gov (United States)

    Tewatia, D K; Tolakanahalli, R P; Paliwal, B R; Tomé, W A

    2011-04-07

    The underlying requirements for successful implementation of any efficient tumour motion management strategy are regularity and reproducibility of a patient's breathing pattern. The physiological act of breathing is controlled by multiple nonlinear feedback and feed-forward couplings. It would therefore be appropriate to analyse the breathing pattern of lung cancer patients in the light of nonlinear dynamical system theory. The purpose of this paper is to analyse the one-dimensional respiratory time series of lung cancer patients based on nonlinear dynamics and delay coordinate state space embedding. It is very important to select a suitable pair of embedding dimension 'm' and time delay 'τ' when performing a state space reconstruction. Appropriate time delay and embedding dimension were obtained using well-established methods, namely mutual information and the false nearest neighbour method, respectively. Establishing stationarity and determinism in a given scalar time series is a prerequisite to demonstrating that the nonlinear dynamical system that gave rise to the scalar time series exhibits a sensitive dependence on initial conditions, i.e. is chaotic. Hence, once an appropriate state space embedding of the dynamical system has been reconstructed, we show that the time series of the nonlinear dynamical systems under study are both stationary and deterministic in nature. Once both criteria are established, we proceed to calculate the largest Lyapunov exponent (LLE), which is an invariant quantity under time delay embedding. The LLE for all 16 patients is positive, which along with stationarity and determinism establishes the fact that the time series of a lung cancer patient's breathing pattern is not random or irregular, but rather it is deterministic in nature albeit chaotic. These results indicate that chaotic characteristics exist in the respiratory waveform and techniques based on state space dynamics should be employed for tumour motion management.

  7. Time series analyses of breathing patterns of lung cancer patients using nonlinear dynamical system theory

    Energy Technology Data Exchange (ETDEWEB)

    Tewatia, D K; Tolakanahalli, R P; Paliwal, B R; Tome, W A, E-mail: tewatia@wisc.edu [Department of Human Oncology, University of Wisconsin, Madison, WI (United States)

    2011-04-07

    The underlying requirements for successful implementation of any efficient tumour motion management strategy are regularity and reproducibility of a patient's breathing pattern. The physiological act of breathing is controlled by multiple nonlinear feedback and feed-forward couplings. It would therefore be appropriate to analyse the breathing pattern of lung cancer patients in the light of nonlinear dynamical system theory. The purpose of this paper is to analyse the one-dimensional respiratory time series of lung cancer patients based on nonlinear dynamics and delay coordinate state space embedding. It is very important to select a suitable pair of embedding dimension 'm' and time delay '{tau}' when performing a state space reconstruction. Appropriate time delay and embedding dimension were obtained using well-established methods, namely mutual information and the false nearest neighbour method, respectively. Establishing stationarity and determinism in a given scalar time series is a prerequisite to demonstrating that the nonlinear dynamical system that gave rise to the scalar time series exhibits a sensitive dependence on initial conditions, i.e. is chaotic. Hence, once an appropriate state space embedding of the dynamical system has been reconstructed, we show that the time series of the nonlinear dynamical systems under study are both stationary and deterministic in nature. Once both criteria are established, we proceed to calculate the largest Lyapunov exponent (LLE), which is an invariant quantity under time delay embedding. The LLE for all 16 patients is positive, which along with stationarity and determinism establishes the fact that the time series of a lung cancer patient's breathing pattern is not random or irregular, but rather it is deterministic in nature albeit chaotic. These results indicate that chaotic characteristics exist in the respiratory waveform and techniques based on state space dynamics should be employed

  8. Time series analyses of breathing patterns of lung cancer patients using nonlinear dynamical system theory

    International Nuclear Information System (INIS)

    Tewatia, D K; Tolakanahalli, R P; Paliwal, B R; Tome, W A

    2011-01-01

    The underlying requirements for successful implementation of any efficient tumour motion management strategy are regularity and reproducibility of a patient's breathing pattern. The physiological act of breathing is controlled by multiple nonlinear feedback and feed-forward couplings. It would therefore be appropriate to analyse the breathing pattern of lung cancer patients in the light of nonlinear dynamical system theory. The purpose of this paper is to analyse the one-dimensional respiratory time series of lung cancer patients based on nonlinear dynamics and delay coordinate state space embedding. It is very important to select a suitable pair of embedding dimension 'm' and time delay 'τ' when performing a state space reconstruction. Appropriate time delay and embedding dimension were obtained using well-established methods, namely mutual information and the false nearest neighbour method, respectively. Establishing stationarity and determinism in a given scalar time series is a prerequisite to demonstrating that the nonlinear dynamical system that gave rise to the scalar time series exhibits a sensitive dependence on initial conditions, i.e. is chaotic. Hence, once an appropriate state space embedding of the dynamical system has been reconstructed, we show that the time series of the nonlinear dynamical systems under study are both stationary and deterministic in nature. Once both criteria are established, we proceed to calculate the largest Lyapunov exponent (LLE), which is an invariant quantity under time delay embedding. The LLE for all 16 patients is positive, which along with stationarity and determinism establishes the fact that the time series of a lung cancer patient's breathing pattern is not random or irregular, but rather it is deterministic in nature albeit chaotic. These results indicate that chaotic characteristics exist in the respiratory waveform and techniques based on state space dynamics should be employed for tumour motion management.

  9. Cross-Sectional Analysis of Levels and Patterns of Objectively Measured Sedentary Time in Adolescent Females

    LENUS (Irish Health Repository)

    Harrington, Deirdre M.

    2011-10-28

    Abstract Background Adolescent females have been highlighted as a particularly sedentary population and the possible negative effects of a sedentary lifestyle are being uncovered. However, much of the past sedentary research is based on self-report or uses indirect methods to quantity sedentary time. Total time spent sedentary and the possible intricate sedentary patterns of adolescent females have not been described using objective and direct measure of body inclination. The objectives of this article are to examine the sedentary levels and patterns of a group of adolescent females using the ActivPAL™ and to highlight possible differences in sedentary levels and patterns across the week and within the school day. A full methodological description of how the data was analyzed is also presented. Methods One hundred and eleven adolescent females, age 15-18 yrs, were recruited from urban and rural areas in the Republic of Ireland. Participants wore an ActivPAL physical activity monitor for a 7.5 day period. The ActivPAL directly reports total time spent sitting\\/lying every 15 seconds and accumulation (frequency and duration) of sedentary activity was examined using a customized MATLAB ® computer software programme. Results While no significant difference was found in the total time spent sitting\\/lying over the full 24 hour day between weekday and weekend day (18.8 vs. 18.9 hours; p = .911), significantly more sedentary bouts of 1 to 5 minutes and 21 to 40 minutes in duration were accumulated on weekdays compared to weekend days (p < .001). The mean length of each sedentary bout was also longer (9.8 vs. 8.8 minutes; p < .001). When school hours (9 am-3 pm) and after school hours (4 pm-10 pm) were compared, there was no difference in total time spent sedentary (3.9 hours; p = .796) but the pattern of accumulation of the sedentary time differed. There were a greater number of bouts of > 20 minutes duration during school hours than after school hours (4.7 vs. 3

  10. Emerging Patterns Of Bangsa Malaysia In Anthony Burgess’ Time For A Tiger

    Directory of Open Access Journals (Sweden)

    Farahanna Abd Razak

    2016-01-01

    Full Text Available Time for a Tiger (1956, a novel by Anthony Burgess, is believed to have been overlooked in the Malaysian literary context. Existing scholarship has maintained that the central themes of Time for a Tiger are colliding cultures, clashes of religion and racial conflicts but, in spite of these themes, this paper attempts to argue that there are in fact emerging patterns of Bangsa Malaysia in Time for a Tiger, which in turn reflect the elements of unity among the rich mixture of multi-ethnic characters. Bangsa Malaysia is not only the first of the nine challenges listed in Vision 2020 as conceptualised by Dr. Mahathir Mohamad (1991, but also marks the first time the Malaysian government is officially putting forward a clear vision in building a nation, launched to create a oneness atmosphere among the ethnic groups, in hopes it will reduce, if not erase, the tension among them. This study reveals that there are indeed emerging patterns of Bangsa Malaysia depicted through a mixture of characters from various ethnicities, namely the Malays, the Chinese and the Indians, through the implementation of government policies, education, a change of mindset and personal judgement, patriotism and the unifying role of the monarchy. Additionally, the patterns do support the earlier stage of the formation of Bangsa Malaysia, namely tolerance.

  11. Changing Precipitation Patterns or Waning Glaciers? Identifying Water Supply Vulnerabilities to Climate Change in the Bolivian Andes

    Science.gov (United States)

    Guido, Z. S.; McIntosh, J. C.; Papuga, S. A.

    2010-12-01

    The Bolivian Andes have become an iconic example for the impacts of climate change. Glaciers are rapidly melting and some have already completely disappeared. More than 75 percent of the water consumed by 2 million people living on the flanks of the Bolivian Andes comes from mountains and it is often cited that the dwindling ice threatens the water supply of the expanding and destitute population living in the twin cities of La Paz and El Alto. However, the wet and the warm seasons and the cold and dry seasons coincide, causing high precipitation and ice melt—and therefore high streamflows—to occur only in the austral summer (October-March); during the austral winter, cold conditions limit glacier melt. This suggests that reductions in the water supply could be influenced more by changing precipitation amounts than continued glacial mass-wasting. We hypothesize that precipitation is the principal component of groundwater recharge for the aquifers at the base of the central Cordillera Real. Oxygen and hydrogen isotopes from rivers partially fed by glaciers, groundwater, and glacial melt water can help determine the relative contribution of precipitation and glacial melt to important water supplies. During the dry season in August 2010, we sampled 23 sites that follow the flow path of water in the Condiriri watershed, beginning in the glacial headwaters and ending several kilometers upriver from Lake Titicaca. We collected five samples at the toe of the Pequeño Alpamayo glacier and four samples from three tributary rivers that drain glaciated headwaters, which include meltwater from the Pequeño Alpamayo glacier. W also collected 14 water samples from shallow and deep wells in rural communities within 40 kilometers of the glaciers. If the isotopic values of groundwater are similar to rain values, as we suspect, precipitation is likely the largest contributor to groundwater resources in the region and will suggest that changing precipitation patterns present the

  12. Real-time intelligent pattern recognition algorithm for surface EMG signals

    Directory of Open Access Journals (Sweden)

    Jahed Mehran

    2007-12-01

    Full Text Available Abstract Background Electromyography (EMG is the study of muscle function through the inquiry of electrical signals that the muscles emanate. EMG signals collected from the surface of the skin (Surface Electromyogram: sEMG can be used in different applications such as recognizing musculoskeletal neural based patterns intercepted for hand prosthesis movements. Current systems designed for controlling the prosthetic hands either have limited functions or can only be used to perform simple movements or use excessive amount of electrodes in order to achieve acceptable results. In an attempt to overcome these problems we have proposed an intelligent system to recognize hand movements and have provided a user assessment routine to evaluate the correctness of executed movements. Methods We propose to use an intelligent approach based on adaptive neuro-fuzzy inference system (ANFIS integrated with a real-time learning scheme to identify hand motion commands. For this purpose and to consider the effect of user evaluation on recognizing hand movements, vision feedback is applied to increase the capability of our system. By using this scheme the user may assess the correctness of the performed hand movement. In this work a hybrid method for training fuzzy system, consisting of back-propagation (BP and least mean square (LMS is utilized. Also in order to optimize the number of fuzzy rules, a subtractive clustering algorithm has been developed. To design an effective system, we consider a conventional scheme of EMG pattern recognition system. To design this system we propose to use two different sets of EMG features, namely time domain (TD and time-frequency representation (TFR. Also in order to decrease the undesirable effects of the dimension of these feature sets, principle component analysis (PCA is utilized. Results In this study, the myoelectric signals considered for classification consists of six unique hand movements. Features chosen for EMG signal

  13. Co-occurrence patterns of trees along macro-climatic gradients and their potential influence on the present and future distribution of Fagus sylvatica L.

    Science.gov (United States)

    Meier, E.S.; Edwards, T.C.; Kienast, Felix; Dobbertin, M.; Zimmermann, N.E.

    2011-01-01

    Aim During recent and future climate change, shifts in large-scale species ranges are expected due to the hypothesized major role of climatic factors in regulating species distributions. The stress-gradient hypothesis suggests that biotic interactions may act as major constraints on species distributions under more favourable growing conditions, while climatic constraints may dominate under unfavourable conditions. We tested this hypothesis for one focal tree species having three major competitors using broad-scale environmental data. We evaluated the variation of species co-occurrence patterns in climate space and estimated the influence of these patterns on the distribution of the focal species for current and projected future climates.Location Europe.Methods We used ICP Forest Level 1 data as well as climatic, topographic and edaphic variables. First, correlations between the relative abundance of European beech (Fagus sylvatica) and three major competitor species (Picea abies, Pinus sylvestris and Quercus robur) were analysed in environmental space, and then projected to geographic space. Second, a sensitivity analysis was performed using generalized additive models (GAM) to evaluate where and how much the predicted F. sylvatica distribution varied under current and future climates if potential competitor species were included or excluded. We evaluated if these areas coincide with current species co-occurrence patterns.Results Correlation analyses supported the stress-gradient hypothesis: towards favourable growing conditions of F. sylvatica, its abundance was strongly linked to the abundance of its competitors, while this link weakened towards unfavourable growing conditions, with stronger correlations in the south and at low elevations than in the north and at high elevations. The sensitivity analysis showed a potential spatial segregation of species with changing climate and a pronounced shift of zones where co-occurrence patterns may play a major role

  14. Extracting biologically significant patterns from short time series gene expression data

    Directory of Open Access Journals (Sweden)

    McGinnis Thomas

    2009-08-01

    Full Text Available Abstract Background Time series gene expression data analysis is used widely to study the dynamics of various cell processes. Most of the time series data available today consist of few time points only, thus making the application of standard clustering techniques difficult. Results We developed two new algorithms that are capable of extracting biological patterns from short time point series gene expression data. The two algorithms, ASTRO and MiMeSR, are inspired by the rank order preserving framework and the minimum mean squared residue approach, respectively. However, ASTRO and MiMeSR differ from previous approaches in that they take advantage of the relatively few number of time points in order to reduce the problem from NP-hard to linear. Tested on well-defined short time expression data, we found that our approaches are robust to noise, as well as to random patterns, and that they can correctly detect the temporal expression profile of relevant functional categories. Evaluation of our methods was performed using Gene Ontology (GO annotations and chromatin immunoprecipitation (ChIP-chip data. Conclusion Our approaches generally outperform both standard clustering algorithms and algorithms designed specifically for clustering of short time series gene expression data. Both algorithms are available at http://www.benoslab.pitt.edu/astro/.

  15. Constructing the reduced dynamical models of interannual climate variability from spatial-distributed time series

    Science.gov (United States)

    Mukhin, Dmitry; Gavrilov, Andrey; Loskutov, Evgeny; Feigin, Alexander

    2016-04-01

    We suggest a method for empirical forecast of climate dynamics basing on the reconstruction of reduced dynamical models in a form of random dynamical systems [1,2] derived from observational time series. The construction of proper embedding - the set of variables determining the phase space the model works in - is no doubt the most important step in such a modeling, but this task is non-trivial due to huge dimension of time series of typical climatic fields. Actually, an appropriate expansion of observational time series is needed yielding the number of principal components considered as phase variables, which are to be efficient for the construction of low-dimensional evolution operator. We emphasize two main features the reduced models should have for capturing the main dynamical properties of the system: (i) taking into account time-lagged teleconnections in the atmosphere-ocean system and (ii) reflecting the nonlinear nature of these teleconnections. In accordance to these principles, in this report we present the methodology which includes the combination of a new way for the construction of an embedding by the spatio-temporal data expansion and nonlinear model construction on the basis of artificial neural networks. The methodology is aplied to NCEP/NCAR reanalysis data including fields of sea level pressure, geopotential height, and wind speed, covering Northern Hemisphere. Its efficiency for the interannual forecast of various climate phenomena including ENSO, PDO, NAO and strong blocking event condition over the mid latitudes, is demonstrated. Also, we investigate the ability of the models to reproduce and predict the evolution of qualitative features of the dynamics, such as spectral peaks, critical transitions and statistics of extremes. This research was supported by the Government of the Russian Federation (Agreement No. 14.Z50.31.0033 with the Institute of Applied Physics RAS) [1] Y. I. Molkov, E. M. Loskutov, D. N. Mukhin, and A. M. Feigin, "Random

  16. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period

    DEFF Research Database (Denmark)

    Blunier, T; Brook, E J

    2001-01-01

    A precise relative chronology for Greenland and West Antarctic paleotemperature is extended to 90,000 years ago, based on correlation of atmospheric methane records from the Greenland Ice Sheet Project 2 and Byrd ice cores. Over this period, the onset of seven major millennial-scale warmings in A....... This pattern provides further evidence for the operation of a "bipolar see-saw" in air temperatures and an oceanic teleconnection between the hemispheres on millennial time scales....

  17. Climate change mitigation opportunities based on carbon footprint estimates of dietary patterns in Peru.

    Directory of Open Access Journals (Sweden)

    Ian Vázquez-Rowe

    Full Text Available Food consumption accounts for an important proportion of the world GHG emissions per capita. Previous studies have delved into the nature of dietary patterns, showing that GHG reductions can be achieved in diets if certain foods are consumed rather than other, more GHG intensive products. For instance, vegetarian and low-meat diets have proved to be less carbon intensive than diets that are based on ruminant meat. These environmental patterns, increasingly analyzed in developed nations, are yet to be assessed in countries liked Peru where food purchase represents a relatively high percentage of the average household expenditure, ranging from 38% to 51% of the same. Therefore, food consumption can be identified as a potential way to reduce GHG emissions in Peru. However, the Peruvian government lacks a specific strategy to mitigate emissions in this sector, despite the recent ratification of the Paris Accord. In view of this, the main objective of this study is to analyze the environmental impacts of a set of 47 Peruvian food diet profiles, including geographical and socioeconomic scenarios. In order to do this, Life Cycle Assessment was used as the methodological framework to obtain the overall impacts of the components in the dietary patterns observed and primary data linked to the composition of diets were collected from the Peruvian National Institute for Statistics (INEI. Life cycle inventories for the different products that are part of the Peruvian diet were obtained from a set of previous scientific articles and reports regarding food production. Results were computed using the IPCC 2013 assessment method to estimate GHG emissions. Despite variations in GHG emissions from a geographical perspective, no significant differences were observed between cities located in the three Peruvian natural regions (i.e., coast, Andes and Amazon basin. In contrast, there appears to be a strong, positive correlation between GHG emissions and social

  18. Climate change mitigation opportunities based on carbon footprint estimates of dietary patterns in Peru.

    Science.gov (United States)

    Vázquez-Rowe, Ian; Larrea-Gallegos, Gustavo; Villanueva-Rey, Pedro; Gilardino, Alessandro

    2017-01-01

    Food consumption accounts for an important proportion of the world GHG emissions per capita. Previous studies have delved into the nature of dietary patterns, showing that GHG reductions can be achieved in diets if certain foods are consumed rather than other, more GHG intensive products. For instance, vegetarian and low-meat diets have proved to be less carbon intensive than diets that are based on ruminant meat. These environmental patterns, increasingly analyzed in developed nations, are yet to be assessed in countries liked Peru where food purchase represents a relatively high percentage of the average household expenditure, ranging from 38% to 51% of the same. Therefore, food consumption can be identified as a potential way to reduce GHG emissions in Peru. However, the Peruvian government lacks a specific strategy to mitigate emissions in this sector, despite the recent ratification of the Paris Accord. In view of this, the main objective of this study is to analyze the environmental impacts of a set of 47 Peruvian food diet profiles, including geographical and socioeconomic scenarios. In order to do this, Life Cycle Assessment was used as the methodological framework to obtain the overall impacts of the components in the dietary patterns observed and primary data linked to the composition of diets were collected from the Peruvian National Institute for Statistics (INEI). Life cycle inventories for the different products that are part of the Peruvian diet were obtained from a set of previous scientific articles and reports regarding food production. Results were computed using the IPCC 2013 assessment method to estimate GHG emissions. Despite variations in GHG emissions from a geographical perspective, no significant differences were observed between cities located in the three Peruvian natural regions (i.e., coast, Andes and Amazon basin). In contrast, there appears to be a strong, positive correlation between GHG emissions and social expenditure or academic

  19. Relating interesting quantitative time series patterns with text events and text features

    Science.gov (United States)

    Wanner, Franz; Schreck, Tobias; Jentner, Wolfgang; Sharalieva, Lyubka; Keim, Daniel A.

    2013-12-01

    In many application areas, the key to successful data analysis is the integrated analysis of heterogeneous data. One example is the financial domain, where time-dependent and highly frequent quantitative data (e.g., trading volume and price information) and textual data (e.g., economic and political news reports) need to be considered jointly. Data analysis tools need to support an integrated analysis, which allows studying the relationships between textual news documents and quantitative properties of the stock market price series. In this paper, we describe a workflow and tool that allows a flexible formation of hypotheses about text features and their combinations, which reflect quantitative phenomena observed in stock data. To support such an analysis, we combine the analysis steps of frequent quantitative and text-oriented data using an existing a-priori method. First, based on heuristics we extract interesting intervals and patterns in large time series data. The visual analysis supports the analyst in exploring parameter combinations and their results. The identified time series patterns are then input for the second analysis step, in which all identified intervals of interest are analyzed for frequent patterns co-occurring with financial news. An a-priori method supports the discovery of such sequential temporal patterns. Then, various text features like the degree of sentence nesting, noun phrase complexity, the vocabulary richness, etc. are extracted from the news to obtain meta patterns. Meta patterns are defined by a specific combination of text features which significantly differ from the text features of the remaining news data. Our approach combines a portfolio of visualization and analysis techniques, including time-, cluster- and sequence visualization and analysis functionality. We provide two case studies, showing the effectiveness of our combined quantitative and textual analysis work flow. The workflow can also be generalized to other

  20. Identification of tidal and climatic influences within domestic radon time-series from Northamptonshire, UK

    International Nuclear Information System (INIS)

    Groves-Kirkby, C.J.; Denman, A.R.; Crockett, R.G.M.; Phillips, P.S.; Gillmore, G.K.

    2006-01-01

    Analysis of data from extended radon concentration time-series obtained from domestic and public-sector premises in the vicinity of Northampton, UK, and elsewhere, confirms that, in addition to the generally recognised climatic influences, 'Earth Tides' and 'Ocean Tidal Loading' drive periodic radon liberation via geophysically driven groundwater level variations. Regression and cross-correlation with environmental parameters showed some degree of association between radon concentration and mean temperature and rainfall. Fourier analysis of radon time-series identified periodicities of the order of 23.9 h (luni-solar diurnal, K 1 ), 24.0 h (solar day, S 1 ), 168 h (1 week) and 661.3 h (lunar month, M m ), while cross-correlation with tidal strength demonstrated periodicity of the order of 14 days (lunar-solar fortnight, M f ). These results suggest that astronomical influences, including tides, play a part in controlling radon release from the soil

  1. Modeling 100,000-year climate fluctuations in pre-Pleistocene time series

    Science.gov (United States)

    Crowley, Thomas J.; Kim, Kwang-Yul; Mengel, John G.; Short, David A.

    1992-01-01

    A number of pre-Pleistocene climate records exhibit significant fluctuations at the 100,000-year (100-ky) eccentricity period, before the time of such fluctuations in global ice volume. The origin of these fluctuations has been obscure. Results reported here from a modeling study suggest that such a response can occur over low-altitude land areas involved in monsoon fluctuations. The twice yearly passage of the sun across the equator and the seasonal timing of perihelion interact to increase both 100-ky and 400-ky power in the modeled temperature field. The magnitude of the temperature response is sufficiently large to leave an imprint on the geologic record, and simulated fluctuations resemble those found in records of Triassic lake levels.