Normal gravity field in relativistic geodesy
Kopeikin, Sergei; Vlasov, Igor; Han, Wen-Biao
2018-02-01
Modern geodesy is subject to a dramatic change from the Newtonian paradigm to Einstein's theory of general relativity. This is motivated by the ongoing advance in development of quantum sensors for applications in geodesy including quantum gravimeters and gradientometers, atomic clocks and fiber optics for making ultra-precise measurements of the geoid and multipolar structure of the Earth's gravitational field. At the same time, very long baseline interferometry, satellite laser ranging, and global navigation satellite systems have achieved an unprecedented level of accuracy in measuring 3-d coordinates of the reference points of the International Terrestrial Reference Frame and the world height system. The main geodetic reference standard to which gravimetric measurements of the of Earth's gravitational field are referred is a normal gravity field represented in the Newtonian gravity by the field of a uniformly rotating, homogeneous Maclaurin ellipsoid of which mass and quadrupole momentum are equal to the total mass and (tide-free) quadrupole moment of Earth's gravitational field. The present paper extends the concept of the normal gravity field from the Newtonian theory to the realm of general relativity. We focus our attention on the calculation of the post-Newtonian approximation of the normal field that is sufficient for current and near-future practical applications. We show that in general relativity the level surface of homogeneous and uniformly rotating fluid is no longer described by the Maclaurin ellipsoid in the most general case but represents an axisymmetric spheroid of the fourth order with respect to the geodetic Cartesian coordinates. At the same time, admitting a post-Newtonian inhomogeneity of the mass density in the form of concentric elliptical shells allows one to preserve the level surface of the fluid as an exact ellipsoid of rotation. We parametrize the mass density distribution and the level surface with two parameters which are
Gravity, Time, and Lagrangians
Huggins, Elisha
2010-01-01
Feynman mentioned to us that he understood a topic in physics if he could explain it to a college freshman, a high school student, or a dinner guest. Here we will discuss two topics that took us a while to get to that level. One is the relationship between gravity and time. The other is the minus sign that appears in the Lagrangian. (Why would one…
Premixed Flames Under Microgravity and Normal Gravity Conditions
Krikunova, Anastasia I.; Son, Eduard E.
2018-03-01
Premixed conical CH4-air flames were studied experimentally and numerically under normal straight, reversed gravity conditions and microgravity. Low-gravity experiments were performed in Drop tower. Classical Bunsen-type burner was used to find out features of gravity influence on the combustion processes. Mixture equivalence ratio was varied from 0.8 to 1.3. Wide range of flow velocity allows to study both laminar and weakly turbulized flames. High-speed flame chemoluminescence video-recording was used as diagnostic. The investigations were performed at atmospheric pressure. As results normalized flame height, laminar flame speed were measured, also features of flame instabilities were shown. Low- and high-frequency flame-instabilities (oscillations) have a various nature as velocity fluctuations, preferential diffusion instability, hydrodynamic and Rayleigh-Taylor ones etc., that was explored and demonstrated.
Klasing, Mariko; Milionis, Petros; Zymek, Robert
2016-01-01
How well can the standard gravity equation account for the evolution of global trade flows over the long run? This paper provides the first systematic attempt to answer this question using a newly-assembled data set of bilateral trade flows, income levels and trade frictions that spans the years
Wu, Ning
2012-01-01
When we discuss problems on gravity, we can not avoid some fundamental physical problems, such as space-time, inertia, and inertial reference frame. The goal of this paper is to discuss the logic system of gravity theory and the problems of space-time, inertia, and inertial reference frame. The goal of this paper is to set up the theory on space-time in gauge theory of gravity. Based on this theory, it is possible for human kind to manipulate physical space-time on earth, and produce a machin...
Does time exist in quantum gravity?
Directory of Open Access Journals (Sweden)
Claus Kiefer
2015-12-01
Full Text Available Time is absolute in standard quantum theory and dynamical in general relativity. The combination of both theories into a theory of quantum gravity leads therefore to a “problem of time”. In my essay, I investigate those consequences for the concept of time that may be drawn without a detailed knowledge of quantum gravity. The only assumptions are the experimentally supported universality of the linear structure of quantum theory and the recovery of general relativity in the classical limit. Among the consequences are the fundamental timelessness of quantum gravity, the approximate nature of a semiclassical time, and the correlation of entropy with the size of the Universe.
Time machines and traversable wormholes in modified theories of gravity
Directory of Open Access Journals (Sweden)
Lobo Francisco S.N.
2013-09-01
Full Text Available We review recent work on wormhole geometries in the context of modified theories of gravity, in particular, in f(R gravity and with a nonminimal curvature-matter coupling, and in the recently proposed hybrid metric-Palatini theory. In principle, the normal matter threading the throat can be shown to satisfy the energy conditions and it is the higher order curvatures terms that sustain these wormhole geometries. We also briefly review the conversion of wormholes into time-machines, explore several of the time travel paradoxes and possible remedies to these intriguing side-effects in wormhole physics.
Application of specific gravity method for normalization of urinary excretion rates of radionuclides
International Nuclear Information System (INIS)
Thakur, Smita S.; Yadav, J.R.; Rao, D.D.
2015-01-01
In vitro bioassay monitoring is based on the determination of activity concentration in biological samples excreted from the body and is most suitable for alpha and beta emitters. For occupational workers handling actinides in reprocessing facilities possibility of internal exposure exists and urine assay is preferred method for monitoring such exposure. Urine samples collected for 24 h duration, is the true representative of bioassay sample and hence in the case of insufficient collection time, specific gravity applied method of normalization of urine sample is used. The present study reports the data of specific gravity generated for controlled group of Indian population by the use of densitometer and its application in urinary sample activity normalization. The average specific gravity value obtained for the controlled group was 1.008±0.005 gm/ml. (author)
Symplectic Structure of Intrinsic Time Gravity
Directory of Open Access Journals (Sweden)
Eyo Eyo Ita
2016-08-01
Full Text Available The Poisson structure of intrinsic time gravity is analysed. With the starting point comprising a unimodular three-metric with traceless momentum, a trace-induced anomaly results upon quantization. This leads to a revision of the choice of momentum variable to the (mixed index traceless momentric. This latter choice unitarily implements the fundamental commutation relations, which now take on the form of an affine algebra with SU(3 Lie algebra amongst the momentric variables. The resulting relations unitarily implement tracelessness upon quantization. The associated Poisson brackets and Hamiltonian dynamics are studied.
International Nuclear Information System (INIS)
Bars, Itzhak
2008-01-01
The field theoretic action for gravitational interactions in d+2 dimensions is constructed in the formalism of two-time (2T) physics. General relativity in d dimensions emerges as a shadow of this theory with one less time and one less space dimensions. The gravitational constant turns out to be a shadow of a dilaton field in d+2 dimensions that appears as a constant to observers stuck in d dimensions. If elementary scalar fields play a role in the fundamental theory (such as Higgs fields in the standard model coupled to gravity), then their shadows in d dimensions must necessarily be conformal scalars. This has the physical consequence that the gravitational constant changes at each phase transition (inflation, grand unification, electroweak, etc.), implying interesting new scenarios in cosmological applications. The fundamental action for pure gravity, which includes the spacetime metric G MN (X), the dilaton Ω(X), and an additional auxiliary scalar field W(X), all in d+2 dimensions with two times, has a mix of gauge symmetries to produce appropriate constraints that remove all ghosts or redundant degrees of freedom. The action produces on-shell classical field equations of motion in d+2 dimensions, with enough constraints for the theory to be in agreement with classical general relativity in d dimensions. Therefore this action describes the correct classical gravitational physics directly in d+2 dimensions. Taken together with previous similar work on the standard model of particles and forces, the present paper shows that 2T physics is a general consistent framework for a physical theory. Furthermore, the 2T-physics approach reveals more physical information for observers stuck in the shadow in d dimensions in the form of hidden symmetries and dualities, that are largely concealed in the usual one-time formulation of physics
Indian Academy of Sciences (India)
We study the cosmological dynamics for R p exp( λ R ) gravity theory in the metric formalism, using dynamical systems approach. Considering higher-dimensional FRW geometries in case of an imperfect fluid which has two different scale factors in the normal and extra dimensions, we find the exact solutions, and study its ...
Gamow, George
2003-01-01
A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw
Gravity effects on a gliding arc in four noble gases: from normal to hypergravity
Potocnakova, L.; Sperka, J.; Zikan, P.; van Loon, J.J.W.A.; Beckers, J.; Kudrle, V.
2015-01-01
A gliding arc in four noble gases (He, Ne, Ar, Kr) has been studied under previously unexplored conditions of varying artificial gravity, from normal 1 g gravity up to 18 g hypergravity. Significant differences, mainly the visual thickness of the plasma channel, its maximum elongation and general
Combustion of Methanol Droplets in Air-Diluent Environments with Reduced and Normal Gravity
Directory of Open Access Journals (Sweden)
Benjamin Shaw
2012-01-01
Full Text Available Reduced and normal gravity combustion experiments were performed with fiber-supported methanol droplets with initial diameters in the 1 mm size range. Experiments were performed with air-diluent mixtures at about 0.101 MPa and 298 K, where carbon dioxide, helium, or xenon was separately used as the diluent gas. Results indicate that ambient gas transport properties play an important role in determining flammability and combustion behaviors including burning rates and radiant heat output histories of the droplets. Droplets would burn with significantly higher mole fractions of xenon than helium or carbon dioxide. In reduced gravity, droplets would burn steadily with a xenon mole fraction of 0.50 but would not burn steadily if helium or carbon dioxide mole fractions were 0.50. Comparison with previous experimental data shows that ignitability and combustion characteristics of droplets are influenced by the fuel type and also the gravitational level. Burning rates were about 40% to 70% higher in normal gravity than in reduced gravity. Methanol droplets also had burning rates that were typically larger than 1-propanol burning rates by about 20% in reduced gravity. In normal gravity, however, burning rate differences between the two fuels were significantly smaller.
Marcum, Jeremy W.; Olson, Sandra L.; Ferkul, Paul V.
2016-01-01
The axisymmetric rod geometry in upward axial stagnation flow provides a simple way to measure normal gravity blowoff limits to compare with microgravity Burning and Suppression of Solids - II (BASS-II) results recently obtained aboard the International Space Station. This testing utilized the same BASS-II concurrent rod geometry, but with the addition of normal gravity buoyant flow. Cast polymethylmethacrylate (PMMA) rods of diameters ranging from 0.635 cm to 3.81 cm were burned at oxygen concentrations ranging from 14 to 18% by volume. The forced flow velocity where blowoff occurred was determined for each rod size and oxygen concentration. These blowoff limits compare favorably with the BASS-II results when the buoyant stretch is included and the flow is corrected by considering the blockage factor of the fuel. From these results, the normal gravity blowoff boundary for this axisymmetric rod geometry is determined to be linear, with oxygen concentration directly proportional to flow speed. We describe a new normal gravity 'upward flame spread test' method which extrapolates the linear blowoff boundary to the zero stretch limit in order to resolve microgravity flammability limits-something current methods cannot do. This new test method can improve spacecraft fire safety for future exploration missions by providing a tractable way to obtain good estimates of material flammability in low gravity.
Radar time delays in the dynamic theory of gravity
Directory of Open Access Journals (Sweden)
Haranas I.I.
2004-01-01
Full Text Available There is a new theory gravity called the dynamic theory, which is derived from thermodynamic principles in a five dimensional space, radar signals traveling times and delays are calculated for the major planets in the solar system, and compared to those of general relativity. This is done by using the usual four dimensional spherically symmetric space-time element of classical general relativistic gravity which has now been slightly modified by a negative inverse radial exponential term due to the dynamic theory of gravity potential.
Universe before Planck time: A quantum gravity model
International Nuclear Information System (INIS)
Padmanabhan, T.
1983-01-01
A model for quantum gravity can be constructed by treating the conformal degree of freedom of spacetime as a quantum variable. An isotropic, homogeneous cosmological solution in this quantum gravity model is presented. The spacetime is nonsingular for all the three possible values of three-space curvature, and agrees with the classical solution for time scales larger than the Planck time scale. A possibility of quantum fluctuations creating the matter in the universe is suggested
Time delays across saddles as a test of modified gravity
International Nuclear Information System (INIS)
Magueijo, João; Mozaffari, Ali
2013-01-01
Modified gravity theories can produce strong signals in the vicinity of the saddles of the total gravitational potential. In a sub-class of these models, this translates into diverging time delays for echoes crossing the saddles. Such models arise from the possibility that gravity might be infrared divergent or confined, and if suitably designed they are very difficult to rule out. We show that Lunar Laser Ranging during an eclipse could probe the time-delay effect within metres of the saddle, thereby proving or excluding these models. Very Large Baseline Interferometry, instead, could target delays across the Jupiter–Sun saddle. Such experiments would shed light on the infrared behaviour of gravity and examine the puzzling possibility that there might be well-hidden regions of strong gravity and even singularities inside the solar system. (fast track communication)
Time and a physical Hamiltonian for quantum gravity.
Husain, Viqar; Pawłowski, Tomasz
2012-04-06
We present a nonperturbative quantization of general relativity coupled to dust and other matter fields. The dust provides a natural time variable, leading to a physical Hamiltonian with spatial diffeomorphism symmetry. The surprising feature is that the Hamiltonian is not a square root. This property, together with the kinematical structure of loop quantum gravity, provides a complete theory of quantum gravity, and puts applications to cosmology, quantum gravitational collapse, and Hawking radiation within technical reach. © 2012 American Physical Society
Calibrating Vadose Zone Models with Time-Lapse Gravity Data
DEFF Research Database (Denmark)
Christiansen, Lars; Hansen, A. B.; Looms, M. C.
2009-01-01
A change in soil water content is a change in mass stored in the subsurface. Given that the mass change is big enough, the change can be measured with a gravity meter. Attempts have been made with varying success over the last decades to use ground-based time-lapse gravity measurements to infer...... hydrogeological parameters. These studies focused on the saturated zone with specific yield as the most prominent target parameter. Any change in storage in the vadose zone has been considered as noise. Our modeling results show a measureable change in gravity from the vadose zone during a forced infiltration...... experiment on 10m by 10m grass land. Simulation studies show a potential for vadose zone model calibration using gravity data in conjunction with other geophysical data, e.g. cross-borehole georadar. We present early field data and calibration results from a forced infiltration experiment conducted over 30...
Ignition and combustion of bulk metals under elevated, normal and reduced gravity conditions
Abbud-Madrid, Angel; Branch, Melvyn C.; Daily, John W.
1995-01-01
This research effort is aimed at providing further insight into this multi-variable dependent phenomena by looking at the effects of gravity on the ignition and combustion behavior of metals. Since spacecraft are subjected to higher-than-1g gravity loads during launch and reentry and to zero-gravity environments while in orbit, the study of ignition and combustion of bulk metals at different gravitational potentials is of great practical concern. From the scientific standpoint, studies conducted under microgravity conditions provide simplified boundary conditions since buoyancy is removed, and make possible the identification of fundamental ignition mechanisms. The effect of microgravity on the combustion of bulk metals has been investigated by Steinberg, et al. on a drop tower simulator. However, no detailed quantitative work has been done on ignition phenomena of bulk metals at lower or higher-than-normal gravitational fields or on the combustion characteristics of metals at elevated gravity. The primary objective of this investigation is the development of an experimental system capable of providing fundamental physical and chemical information on the ignition of bulk metals under different gravity levels. The metals used in the study, iron (Fe), titanium (Ti), zirconium (Zr), magnesium (Mg), zinc (Zn), and copper (Cu) were selected because of their importance as elements of structural metals and their simple chemical composition (pure metals instead of multi-component alloys to avoid complication in morphology and spectroscopic studies). These samples were also chosen to study the two different combustion modes experienced by metals: heterogeneous or surface oxidation, and homogeneous or gas-phase reaction. The experimental approach provides surface temperature profiles, spectroscopic measurements, surface morphology, x-ray spectrometry of metals specimens and their combustion products, and high-speed cinematography of the heating, ignition and combustion
Calibrating vadose zone models with time-lapse gravity data
DEFF Research Database (Denmark)
Christiansen, Lars; Binning, Philip John; Rosbjerg, Dan
2011-01-01
The vadose zone plays an important role in the hydrologic cycle. Various geophysical methods can determine soil water content variations in time and space in volumes ranging from a few cubic centimeters to several cubic meters. In contrast to the established methods, time-lapse gravity measurements...... of changes in soil water content do not rely on a petrophysical relationship between the measured quantity and the water content but give a direct measure of the mass change in the soil. Only recently has the vadose zone been systematically incorporated when ground-based gravity data are used to infer...... hydrologic information. In this study, changes in the soil water content gave rise to a measurable signal in a forced infiltration experiment on a 107-m2 grassland area. Time-lapse gravity data were able to constrain the van Genuchten soil hydraulic parameters in both a synthetic example and a field...
Combined analysis of magnetic and gravity anomalies using normalized source strength (NSS)
Li, L.; Wu, Y.
2017-12-01
Gravity field and magnetic field belong to potential fields which lead inherent multi-solution. Combined analysis of magnetic and gravity anomalies based on Poisson's relation is used to determinate homology gravity and magnetic anomalies and decrease the ambiguity. The traditional combined analysis uses the linear regression of the reduction to pole (RTP) magnetic anomaly to the first order vertical derivative of the gravity anomaly, and provides the quantitative or semi-quantitative interpretation by calculating the correlation coefficient, slope and intercept. In the calculation process, due to the effect of remanent magnetization, the RTP anomaly still contains the effect of oblique magnetization. In this case the homology gravity and magnetic anomalies display irrelevant results in the linear regression calculation. The normalized source strength (NSS) can be transformed from the magnetic tensor matrix, which is insensitive to the remanence. Here we present a new combined analysis using NSS. Based on the Poisson's relation, the gravity tensor matrix can be transformed into the pseudomagnetic tensor matrix of the direction of geomagnetic field magnetization under the homologous condition. The NSS of pseudomagnetic tensor matrix and original magnetic tensor matrix are calculated and linear regression analysis is carried out. The calculated correlation coefficient, slope and intercept indicate the homology level, Poisson's ratio and the distribution of remanent respectively. We test the approach using synthetic model under complex magnetization, the results show that it can still distinguish the same source under the condition of strong remanence, and establish the Poisson's ratio. Finally, this approach is applied in China. The results demonstrated that our approach is feasible.
Cosmological time in (2+1)-gravity
International Nuclear Information System (INIS)
Benedetti, Riccardo; Guadagnini, Enore
2001-01-01
We consider maximal globally hyperbolic flat (2+1)-spacetimes with compact space S of genus g>1. For any spacetime M of this type, the length of time that the events have been in existence is M defines a global time, called the cosmological time CT of M, which reveals deep intrinsic properties of spacetime. In particular, the past/future asymptotic states of the cosmological time recover and decouple the linear and the translational parts of the ISO(2,1)-valued holonomy of the flat spacetime. The initial singularity can be interpreted as an isometric action of the fundamental group of S on a suitable real tree. The initial singularity faithfully manifests itself as a lack of smoothness of the embedding of the CT level surfaces into the spacetime M. The cosmological time determines a real analytic curve in the Teichmueller space of Riemann surfaces of genus g, which connects an interior point (associated to the linear part of the holonomy) with a point on Thurston's natural boundary (associated to the initial singularity)
Cosmological time in /(2+1)-gravity
Benedetti, Riccardo; Guadagnini, Enore
2001-10-01
We consider maximal globally hyperbolic flat (2+1)-spacetimes with compact space S of genus g>1. For any spacetime M of this type, the length of time that the events have been in existence is M defines a global time, called the cosmological time CT of M, which reveals deep intrinsic properties of spacetime. In particular, the past/future asymptotic states of the cosmological time recover and decouple the linear and the translational parts of the ISO(2,1)-valued holonomy of the flat spacetime. The initial singularity can be interpreted as an isometric action of the fundamental group of S on a suitable real tree. The initial singularity faithfully manifests itself as a lack of smoothness of the embedding of the CT level surfaces into the spacetime M. The cosmological time determines a real analytic curve in the Teichmüller space of Riemann surfaces of genus g, which connects an interior point (associated to the linear part of the holonomy) with a point on Thurston's natural boundary (associated to the initial singularity).
Quantum arrival times and operator normalization
International Nuclear Information System (INIS)
Hegerfeldt, Gerhard C.; Seidel, Dirk; Gonzalo Muga, J.
2003-01-01
A recent approach to arrival times used the fluorescence of an atom entering a laser illuminated region, and the resulting arrival-time distribution was close to the axiomatic distribution of Kijowski, but not exactly equal, neither in limiting cases nor after compensation of reflection losses by normalization on the level of expectation values. In this paper we employ a normalization on the level of operators, recently proposed in a slightly different context. We show that in this case the axiomatic arrival-time distribution of Kijowski is recovered as a limiting case. In addition, it is shown that Allcock's complex potential model is also a limit of the physically motivated fluorescence approach and connected to Kijowski's distribution through operator normalization
How many 'times' do we have in quantum gravity?
International Nuclear Information System (INIS)
Hosoya, Akio; Soda, Jiro.
1990-07-01
Apparently, there are infinite number of time-like variables in the Wheeler-DeWitt equation in quantum gravity. This gives rise to an obvious conceptual difficulty and further becomes an obstacle if one wants to canonically third quantize the universe. In this paper, adopting York's gauge in the path-integral approach, we formulate quantum geometrodynamics so that it contains only a single time-like variable corresponding to the total volume of the universe. (author)
Quantum gravity effects in Myers-Perry space-times
International Nuclear Information System (INIS)
Litim, Daniel F.; Nikolakopoulos, Konstantinos
2014-01-01
We study quantum gravity effects for Myers-Perry black holes assuming that the leading contributions arise from the renormalization group evolution of Newton’s coupling. Provided that gravity weakens following the asymptotic safety conjecture, we find that quantum effects lift a degeneracy of higher-dimensional black holes, and dominate over kinematical ones induced by rotation, particularly for small black hole mass, large angular momentum, and higher space-time dimensionality. Quantum-corrected space-times display inner and outer horizons, and show the existence of a black hole of smallest mass in any dimension. Ultra-spinning solutions no longer persist. Thermodynamic properties including temperature, specific heat, the Komar integrals, and aspects of black hole mechanics are studied as well. Observing a softening of the ring singularity, we also discuss the validity of classical energy conditions
Towards loop quantum gravity without the time gauge.
Cianfrani, Francesco; Montani, Giovanni
2009-03-06
The Hamiltonian formulation of the Holst action is reviewed and it provides a solution of second-class constraints corresponding to a generic local Lorentz frame. Within this scheme the form of rotation constraints can be reduced to a Gauss-like one by a proper generalization of Ashtekar-Barbero-Immirzi connections. This result emphasizes that the loop quantum gravity quantization procedure can be applied when the time-gauge condition does not stand.
Quantum Gravity corrections and entropy at the Planck time
International Nuclear Information System (INIS)
Basilakos, Spyros; Vagenas, Elias C.; Das, Saurya
2010-01-01
We investigate the effects of Quantum Gravity on the Planck era of the universe. In particular, using different versions of the Generalized Uncertainty Principle and under specific conditions we find that the main Planck quantities such as the Planck time, length, mass and energy become larger by a factor of order 10−10 4 compared to those quantities which result from the Heisenberg Uncertainty Principle. However, we prove that the dimensionless entropy enclosed in the cosmological horizon at the Planck time remains unchanged. These results, though preliminary, indicate that we should anticipate modifications in the set-up of cosmology since changes in the Planck era will be inherited even to the late universe through the framework of Quantum Gravity (or Quantum Field Theory) which utilizes the Planck scale as a fundamental one. More importantly, these corrections will not affect the entropic content of the universe at the Planck time which is a crucial element for one of the basic principles of Quantum Gravity named Holographic Principle
Test Equal Bending by Gravity for Space and Time
Sweetser, Douglas
2009-05-01
For the simplest problem of gravity - a static, non-rotating, spherically symmetric source - the solution for spacetime bending around the Sun should be evenly split between time and space. That is true to first order in M/R, and confirmed by experiment. At second order, general relativity predicts different amounts of contribution from time and space without a physical justification. I show an exponential metric is consistent with light bending to first order, measurably different at second order. All terms to all orders show equal contributions from space and time. Beautiful minimalism is Nature's way.
Pulsar timing arrays and gravity tests in the radiative regime
Lee, K. J.
2013-11-01
In this paper, we focus on testing gravity theories in the radiative regime using pulsar timing array observations. After reviewing current techniques to measure the dispersion and alternative polarization of gravitational waves, we extend the framework to the most general situations, where the combinations of a massive graviton and alternative polarization modes are considered. The atlas of the Hellings-Downs functions is completed by the new calculations for these dispersive alternative polarization modes. We find that each mode and corresponding graviton mass introduce characteristic features in the Hellings-Downs function. Thus, in principal, we can not only detect each polarization mode, measure the corresponding graviton mass, but also discriminate the different scenarios. In this way, we can test gravity theories in the radiative regime in a generalized fashion, and such method is a direct experiment, where one can address the gauge symmetry of the gravity theories in their linearized limits. Although current pulsar timing still lacks enough stable pulsars and sensitivity for such practices, we expect that future telescopes with larger collecting areas could make such experiments feasible.
Normalizing the causality between time series
Liang, X. San
2015-08-01
Recently, a rigorous yet concise formula was derived to evaluate information flow, and hence the causality in a quantitative sense, between time series. To assess the importance of a resulting causality, it needs to be normalized. The normalization is achieved through distinguishing a Lyapunov exponent-like, one-dimensional phase-space stretching rate and a noise-to-signal ratio from the rate of information flow in the balance of the marginal entropy evolution of the flow recipient. It is verified with autoregressive models and applied to a real financial analysis problem. An unusually strong one-way causality is identified from IBM (International Business Machines Corporation) to GE (General Electric Company) in their early era, revealing to us an old story, which has almost faded into oblivion, about "Seven Dwarfs" competing with a giant for the mainframe computer market.
Edmands, William M B; Ferrari, Pietro; Scalbert, Augustin
2014-11-04
Extraction of meaningful biological information from urinary metabolomic profiles obtained by liquid-chromatography coupled to mass spectrometry (MS) necessitates the control of unwanted sources of variability associated with large differences in urine sample concentrations. Different methods of normalization either before analysis (preacquisition normalization) through dilution of urine samples to the lowest specific gravity measured by refractometry, or after analysis (postacquisition normalization) to urine volume, specific gravity and median fold change are compared for their capacity to recover lead metabolites for a potential future use as dietary biomarkers. Twenty-four urine samples of 19 subjects from the European Prospective Investigation into Cancer and nutrition (EPIC) cohort were selected based on their high and low/nonconsumption of six polyphenol-rich foods as assessed with a 24 h dietary recall. MS features selected on the basis of minimum discriminant selection criteria were related to each dietary item by means of orthogonal partial least-squares discriminant analysis models. Normalization methods ranked in the following decreasing order when comparing the number of total discriminant MS features recovered to that obtained in the absence of normalization: preacquisition normalization to specific gravity (4.2-fold), postacquisition normalization to specific gravity (2.3-fold), postacquisition median fold change normalization (1.8-fold increase), postacquisition normalization to urinary volume (0.79-fold). A preventative preacquisition normalization based on urine specific gravity was found to be superior to all curative postacquisition normalization methods tested for discovery of MS features discriminant of dietary intake in these urinary metabolomic datasets.
Translation invariant time-dependent solutions to massive gravity II
Mourad, J.; Steer, D. A.
2014-06-01
This paper is a sequel to JCAP 12 (2013) 004 and is also devoted to translation-invariant solutions of ghost-free massive gravity in its moving frame formulation. Here we consider a mass term which is linear in the vielbein (corresponding to a β3 term in the 4D metric formulation) in addition to the cosmological constant. We determine explicitly the constraints, and from the initial value formulation show that the time-dependent solutions can have singularities at a finite time. Although the constraints give, as in the β1 case, the correct number of degrees of freedom for a massive spin two field, we show that the lapse function can change sign at a finite time causing a singular time evolution. This is very different to the β1 case where time evolution is always well defined. We conclude that the β3 mass term can be pathological and should be treated with care.
Analysis of time variable gravity data over Africa
International Nuclear Information System (INIS)
Barletta, Valentina R.; Aoudia, Abdelkarim
2010-01-01
Africa, in principle, is a unique laboratory where to address the individual contribution of the different facets of the Earth system as well as their interactions. However, it shows both a rich hydrology that exhibits complex characteristics of rivers and wide basins of different sizes in addition to the hydrology of lakes, and other wetlands and storage reservoirs and groundwater aquifers, and continuous and discontinuous changes in the physical properties of the Earth interior. Stretching and heating processes are accompanied by punctuated episodes of faulting and/or volcanism, and longer-term changes in surface elevation that disrupt river drainage and climate. Space gravity missions GRACE, flying since 2002, was expressly designed to detect the time-dependent gravity field in order to study the hydrological cycle of the Earth, but has also evidenced Solid Earth phenomena such as Post Glacial Rebound (PGR) and the signature of a giant earthquake such as the 2004 Sumatra. Hence the idea to analyze time variable gravity data over Africa in order to retrieve fingerprints of geophysical phenomena. The exploitation of the GRACE data for geophysics, however, is not straightforward. Indeed, the quality of the signal is not uniform worldwide and gravity is always the superposition of contributions from solid Earth as well as climate-related phenomena, that cannot be easily distinguished, at a first glance, both in time and space. In the present study we show that mass changes cannot be classified simply as trends or periodic signals. We follow an alternative way to separate complementary components, periodic and non-periodic signals, without loosing information. We show that the a priori periodic and linear trend fitting function is not everywhere appropriate and in some cases it is even so poor to result in misinterpreting the data. Variations in long term behavior and periodicities higher than the usual annual (and semi-annual) indeed occur, related to geophysical
Giassi, D.; Cao, S.; Stocker, D. P.; Takahashi, F.; Bennett, B. A. V.; Smooke, M. D.; Long, M. B.
2015-01-01
With the conclusion of the SLICE campaign aboard the ISS in 2012, a large amount of data was made available for the analysis of the effect of microgravity on laminar coflow diffusion flames. Previous work focused on the study of sooty flames in microgravity as well as the ability of numerical models to predict its formation in a simplified buoyancy-free environment. The current work shifts the investigation to soot-free flames, putting an emphasis on the chemiluminescence emission from electronically excited CH (CH*). This radical species is of significant interest in combustion studies: it has been shown that the electronically excited CH spatial distribution is indicative of the flame front position and, given the relatively simple diagnostic involved with its measurement, several works have been done trying to understand the ability of electronically excited CH chemiluminescence to predict the total and local flame heat release rate. In this work, a subset of the SLICE nitrogen-diluted methane flames has been considered, and the effect of fuel and coflow velocity on electronically excited CH concentration is discussed and compared with both normal gravity results and numerical simulations. Experimentally, the spectral characterization of the DSLR color camera used to acquire the flame images allowed the signal collected by the blue channel to be considered representative of the electronically excited CH emission centered around 431 nm. Due to the axisymmetric flame structure, an Abel deconvolution of the line-of-sight chemiluminescence was used to obtain the radial intensity profile and, thanks to an absolute light intensity calibration, a quantification of the electronically excited CH concentration was possible. Results show that, in microgravity, the maximum flame electronically excited CH concentration increases with the coflow velocity, but it is weakly dependent on the fuel velocity; normal gravity flames, if not lifted, tend to follow the same trend
Giassi, D.; Cao, S.; Stocker, D. P.; Takahashi, F.; Bennett, B. A.; Smooke, M. D.; Long, M. B.
2015-01-01
With the conclusion of the SLICE campaign aboard the ISS in 2012, a large amount of data was made available for the analysis of the effect of microgravity on laminar coflow diffusion flames. Previous work focused on the study of sooty flames in microgravity as well as the ability of numerical models to predict its formation in a simplified buoyancy-free environment. The current work shifts the investigation to soot-free flames, putting an emphasis on the chemiluminescence emission from electronically excited CH (CH*). This radical species is of significant interest in combustion studies: it has been shown that the CH* spatial distribution is indicative of the flame front position and, given the relatively simple diagnostic involved with its measurement, several works have been done trying to understand the ability of CH* chemiluminescence to predict the total and local flame heat release rate. In this work, a subset of the SLICE nitrogen-diluted methane flames has been considered, and the effect of fuel and coflow velocity on CH* concentration is discussed and compared with both normal gravity results and numerical simulations. Experimentally, the spectral characterization of the DSLR color camera used to acquire the flame images allowed the signal collected by the blue channel to be considered representative of the CH* emission centered around 431 nm. Due to the axisymmetric flame structure, an Abel deconvolution of the line-of-sight chemiluminescence was used to obtain the radial intensity profile and, thanks to an absolute light intensity calibration, a quantification of the CH* concentration was possible. Results show that, in microgravity, the maximum flame CH* concentration increases with the coflow velocity, but it is weakly dependent on the fuel velocity; normal gravity flames, if not lifted, tend to follow the same trend, albeit with different peak concentrations. Comparisons with numerical simulations display reasonably good agreement between measured and
Manoussakis, G.; Delikaraoglou, D.
2011-01-01
In this paper we form relations for the determination of the elements of the E\\"otv\\"os matrix of the Earth's normal gravity field. In addition a relation between the Gauss curvature of the normal equipotential surface and the Gauss curvature of the actual equipotential surface both passing through the point P is presented. For this purpose we use a global Cartesian system (X, Y, Z) and use the variables X, and Y to form a local parameterization a normal equipotential surface to describe its ...
Constraining Alternative Theories of Gravity Using Pulsar Timing Arrays
Cornish, Neil J.; O'Beirne, Logan; Taylor, Stephen R.; Yunes, Nicolás
2018-05-01
The opening of the gravitational wave window by ground-based laser interferometers has made possible many new tests of gravity, including the first constraints on polarization. It is hoped that, within the next decade, pulsar timing will extend the window by making the first detections in the nanohertz frequency regime. Pulsar timing offers several advantages over ground-based interferometers for constraining the polarization of gravitational waves due to the many projections of the polarization pattern provided by the different lines of sight to the pulsars, and the enhanced response to longitudinal polarizations. Here, we show that existing results from pulsar timing arrays can be used to place stringent limits on the energy density of longitudinal stochastic gravitational waves. However, unambiguously distinguishing these modes from noise will be very difficult due to the large variances in the pulsar-pulsar correlation patterns. Existing upper limits on the power spectrum of pulsar timing residuals imply that the amplitude of vector longitudinal (VL) and scalar longitudinal (SL) modes at frequencies of 1/year are constrained, AVL<4 ×10-16 and ASL<4 ×10-17, while the bounds on the energy density for a scale invariant cosmological background are ΩVLh2<4 ×10-11 and ΩSLh2<3 ×10-13.
Hsu, Jong-Ping
2013-01-01
Yang-Mills gravity is a new theory, consistent with experiments, that brings gravity back to the arena of gauge field theory and quantum mechanics in flat space-time. It provides solutions to long-standing difficulties in physics, such as the incompatibility between Einstein's principle of general coordinate invariance and modern schemes for a quantum mechanical description of nature, and Noether's 'Theorem II' which showed that the principle of general coordinate invariance in general relativity leads to the failure of the law of conservation of energy. Yang-Mills gravity in flat space-time a
Idicheria, Cherian Alex
An experimental study was performed with the aim of investigating the structure of transitional and turbulent nonpremixed jet flames under different gravity conditions. In particular, the focus was to determine the effect of buoyancy on the mean and fluctuating characteristics of the jet flames. Experiments were conducted under three gravity levels, viz. 1 g, 20 mg and 100 mug. The milligravity and microgravity conditions were achieved by dropping a jet-flame rig in the UT-Austin 1.25-second and the NASA-Glenn Research Center 2.2-second drop towers, respectively. The principal diagnostics employed were time-resolved, cinematographic imaging of the visible soot luminosity and planar laser Mie scattering (PLMS). For the cinematographic flame luminosity imaging experiments, the flames studied were piloted nonpremixed propane, ethylene and methane jet flames at source Reynolds numbers ranging from 2000 to 10500. From the soot luminosity images, mean and root-mean square (RMS) images were computed, and volume rendering of the image sequences was used to investigate the large-scale structure evolution and flame tip dynamics. The relative importance of buoyancy was quantified with the parameter, xL , as defined by Becker and Yamazaki [1978]. The results show, in contrast to previous microgravity studies, that the high Reynolds number flames have the same flame length irrespective of the gravity level. The RMS fluctuations and volume renderings indicate that the large-scale structure and flame tip dynamics are essentially identical to those of purely momentum driven flames provided xL is approximately less than 2. The volume-renderings show that the luminous structure celerities (normalized by jet exit velocity) are approximately constant for xL 8. The celerity values for xL > 8 are seen to follow a x3/2L scaling, which can be predicted with a simplified momentum equation analysis for the buoyancy-dominated regime. The underlying turbulent structure and mean mixture
The effect of substrate composition and storage time on urine specific gravity in dogs.
Steinberg, E; Drobatz, K; Aronson, L
2009-10-01
The purpose of this study is to evaluate the effects of substrate composition and storage time on urine specific gravity in dogs. A descriptive cohort study of 15 dogs. The urine specific gravity of free catch urine samples was analysed during a 5-hour time period using three separate storage methods; a closed syringe, a diaper pad and non-absorbable cat litter. The urine specific gravity increased over time in all three substrates. The syringe sample had the least change from baseline and the diaper sample had the greatest change from baseline. The urine specific gravity for the litter and diaper samples had a statistically significant increase from the 1-hour to the 5-hour time point. The urine specific gravity from canine urine stored either on a diaper or in a non-absorbable litter increased over time. Although the change was found to be statistically significant over the 5-hour study period it is unlikely to be clinically significant.
Verbal Processing Reaction Times in "Normal" and "Poor" Readers.
Culbertson, Jack; And Others
After it had been determined that reaction time (RT) was a sensitive measure of hemispheric dominance in a verbal task performed by normal adult readers, the reaction times of three groups of subjects (20 normal reading college students, 12 normal reading third graders and 11 poor reading grade school students) were compared. Ss were exposed to…
International Nuclear Information System (INIS)
Das, S.R.; Mukherji, S.
1994-01-01
We study black hole formation in a model of two dimensional dilaton gravity and 24 massless scalar fields with a boundary. We find the most general boundary condition consistent with perfect reflection of matter and the constraints. We show that in the semiclassical approximation and for the generic value of a parameter which characterizes the boundary conditions, the boundary starts receding to infinity at the speed of light whenever the total energy of the incoming matter flux exceeds a certain critical value. This is also the critical energy which marks the onset of black hole formation. We then compute the quantum fluctuations of the boundary and of the rescaled scalar curvature and show that as soon as the incoming energy exceeds this critical value, and asymptotic observer using normal time resolutions will always measure large quantum fluctuations of space-time near the horizon, even though the freely falling observer does not. This is an aspect of black hole complementarity relating directly to quantum gravity effects. (author). 30 refs, 4 figs
Bain, R. L.; Stermole, F. J.; Golden, J. O.
1972-01-01
Experimental and theoretical investigations were undertaken to determine the role of gravity-induced free convection upon the liquefaction dynamics of a cylindrical paraffin slab under normal gravity conditions. The experimental equipment consisted of a test cell, a fluid-loop heating system, and a multipoint recorder. The test chamber was annular in shape with an effective radius of 1.585 cm and a length of 5.08 cm. The heating chamber was a 1.906 cm diameter tube going through the center of the test chamber, and connected to the fluid loop heating system. All experimental runs were made with the longitudinal axis of the test cell in the vertical direction to insure that convection was not a function of the angular axis of the cell. Ten melting runs were made at various hot wall temperatures. Also, two pure conduction solidification runs were made to determine an experimental latent heat of fusion.
Calibrating vadose zone models with time-lapse gravity data: a forced infiltration experiment
DEFF Research Database (Denmark)
Christiansen, Lars; Hansen, Allan Bo; Zibar, Majken Caroline Looms
A change in soil water content is a change in mass stored in the subsurface, and when large enough, can be measured with a gravity meter. Over the last few decades there has been increased use of ground-based time-lapse gravity measurements to infer hydrogeological parameters. These studies have...... focused on the saturated zone, with specific yield as the most prominent target parameter and with few exceptions, changes in storage in the vadose zone have been considered as noise. Here modeling results are presented suggesting that gravity changes will be measureable when soil moisture changes occur...... in the unsaturated zone. These results are confirmed by field measurements of gravity and georadar data at a forced infiltration experiment conducted over 14 days on a grassland area of 10 m by 10 m. An unsaturated zone infiltration model can be calibrated using the gravity data with good agreement to the field data...
Gravity in the Brain as a Reference for Space and Time Perception.
Lacquaniti, Francesco; Bosco, Gianfranco; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka
2015-01-01
Moving and interacting with the environment require a reference for orientation and a scale for calibration in space and time. There is a wide variety of environmental clues and calibrated frames at different locales, but the reference of gravity is ubiquitous on Earth. The pull of gravity on static objects provides a plummet which, together with the horizontal plane, defines a three-dimensional Cartesian frame for visual images. On the other hand, the gravitational acceleration of falling objects can provide a time-stamp on events, because the motion duration of an object accelerated by gravity over a given path is fixed. Indeed, since ancient times, man has been using plumb bobs for spatial surveying, and water clocks or pendulum clocks for time keeping. Here we review behavioral evidence in favor of the hypothesis that the brain is endowed with mechanisms that exploit the presence of gravity to estimate the spatial orientation and the passage of time. Several visual and non-visual (vestibular, haptic, visceral) cues are merged to estimate the orientation of the visual vertical. However, the relative weight of each cue is not fixed, but depends on the specific task. Next, we show that an internal model of the effects of gravity is combined with multisensory signals to time the interception of falling objects, to time the passage through spatial landmarks during virtual navigation, to assess the duration of a gravitational motion, and to judge the naturalness of periodic motion under gravity.
Murthy, G.; Watenpaugh, D. E.; Ballard, R. E.; Hargens, A. R.
1994-01-01
Exercise within a lower body negative pressure (LBNP) chamber in supine posture was compared with similar exercise against Earth's gravity (without LBNP) in upright posture in nine healthy male volunteers. We measured footward force with a force plate, pressure in soleus and tibialis anterior muscles of the leg with transducer-tipped catheters, calf volume by strain gauge plethysmography, heart rate, and systolic and diastolic blood pressures during two conditions: 1) exercise in supine posture within an LBNP chamber during 100-mmHg LBNP (exercise-LBNP) and 2) exercise in upright posture against Earth's gravity without LBNP (exercise-1 G). Subjects exercised their ankle joints (dorsi- and plantarflexions) for 5 min during exercise-LBNP and for 5 min during exercise-1 G. Mean footward force produced during exercise-LBNP (743 +/- 37 N) was similar to that produced during exercise-1 G (701 +/- 24 N). Peak contraction pressure in the antigravity soleus muscle during exercise-LBNP (115 +/- 10 mmHg) was also similar to that during exercise-1 G (103 +/- 13 mmHg). Calf volume increased significantly by 3.3 +/- 0.5% during exercise-LBNP compared with baseline values. Calf volume did not increase significantly during exercise-1 G. Heart rate was significantly higher during exercise-LBNP (99 +/- 5 beats/min) than during exercise-1 G (81 +/- 3 beats/min). These results indicate that exercise in supine posture within an LBNP chamber can produce similar musculoskeletal stress in the legs and greater systemic cardiovascular stress than exercise in the upright posture against Earth's gravity.
Earth System Data Records of Mass Transport from Time-Variable Gravity Data
Zlotnicki, V.; Talpe, M.; Nerem, R. S.; Landerer, F. W.; Watkins, M. M.
2014-12-01
Satellite measurements of time variable gravity have revolutionized the study of Earth, by measuring the ice losses of Greenland, Antarctica and land glaciers, changes in groundwater including unsustainable losses due to extraction of groundwater, the mass and currents of the oceans and their redistribution during El Niño events, among other findings. Satellite measurements of gravity have been made primarily by four techniques: satellite tracking from land stations using either lasers or Doppler radio systems, satellite positioning by GNSS/GPS, satellite to satellite tracking over distances of a few hundred km using microwaves, and through a gravity gradiometer (radar altimeters also measure the gravity field, but over the oceans only). We discuss the challenges in the measurement of gravity by different instruments, especially time-variable gravity. A special concern is how to bridge a possible gap in time between the end of life of the current GRACE satellite pair, launched in 2002, and a future GRACE Follow-On pair to be launched in 2017. One challenge in combining data from different measurement systems consists of their different spatial and temporal resolutions and the different ways in which they alias short time scale signals. Typically satellite measurements of gravity are expressed in spherical harmonic coefficients (although expansions in terms of 'mascons', the masses of small spherical caps, has certain advantages). Taking advantage of correlations among spherical harmonic coefficients described by empirical orthogonal functions and derived from GRACE data it is possible to localize the otherwise coarse spatial resolution of the laser and Doppler derived gravity models. This presentation discusses the issues facing a climate data record of time variable mass flux using these different data sources, including its validation.
Farahani, H.H.
2013-01-01
The main focus of the thesis is modelling the static and time-varying parts of the Earth's gravity field at the global scale based on data acquired by the Gravity Recovery And Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Explorer (GOCE). In addition, a new
DEFF Research Database (Denmark)
Christiansen, Lars; Binning, Philip John; Rosbjerg, Dan
2011-01-01
hydrogeophysical inversion to decrease parameter correlation in groundwater models. This is demonstrated for a model of riverbank infiltration where combined inversion successfully constrains hydraulic conductivity and specific yield in both an analytical and a numerical groundwater model. A sensitivity study...... shows that time-lapse gravity data are especially useful to constrain specific yield. Furthermore, we demonstrate that evapotranspiration, and riverbed conductance are better constrained by coupled inversion to gravity and head data than to head data alone. When estimating the four parameters...... simultaneously, the six correlation coefficients were reduced from unity when only head data were employed to significantly lower values when gravity and head data were combined. Our analysis reveals that the estimated parameter values are not very sensitive to the choice of weighting between head and gravity...
Software reliability growth models with normal failure time distributions
International Nuclear Information System (INIS)
Okamura, Hiroyuki; Dohi, Tadashi; Osaki, Shunji
2013-01-01
This paper proposes software reliability growth models (SRGM) where the software failure time follows a normal distribution. The proposed model is mathematically tractable and has sufficient ability of fitting to the software failure data. In particular, we consider the parameter estimation algorithm for the SRGM with normal distribution. The developed algorithm is based on an EM (expectation-maximization) algorithm and is quite simple for implementation as software application. Numerical experiment is devoted to investigating the fitting ability of the SRGMs with normal distribution through 16 types of failure time data collected in real software projects
Normalization methods in time series of platelet function assays
Van Poucke, Sven; Zhang, Zhongheng; Roest, Mark; Vukicevic, Milan; Beran, Maud; Lauwereins, Bart; Zheng, Ming-Hua; Henskens, Yvonne; Lancé, Marcus; Marcus, Abraham
2016-01-01
Abstract Platelet function can be quantitatively assessed by specific assays such as light-transmission aggregometry, multiple-electrode aggregometry measuring the response to adenosine diphosphate (ADP), arachidonic acid, collagen, and thrombin-receptor activating peptide and viscoelastic tests such as rotational thromboelastometry (ROTEM). The task of extracting meaningful statistical and clinical information from high-dimensional data spaces in temporal multivariate clinical data represented in multivariate time series is complex. Building insightful visualizations for multivariate time series demands adequate usage of normalization techniques. In this article, various methods for data normalization (z-transformation, range transformation, proportion transformation, and interquartile range) are presented and visualized discussing the most suited approach for platelet function data series. Normalization was calculated per assay (test) for all time points and per time point for all tests. Interquartile range, range transformation, and z-transformation demonstrated the correlation as calculated by the Spearman correlation test, when normalized per assay (test) for all time points. When normalizing per time point for all tests, no correlation could be abstracted from the charts as was the case when using all data as 1 dataset for normalization. PMID:27428217
Squeezing more information out of time variable gravity data with a temporal decomposition approach
DEFF Research Database (Denmark)
Barletta, Valentina Roberta; Bordoni, A.; Aoudia, A.
2012-01-01
an explorative approach based on a suitable time series decomposition, which does not rely on predefined time signatures. The comparison and validation against the fitting approach commonly used in GRACE literature shows a very good agreement for what concerns trends and periodic signals on one side......A measure of the Earth's gravity contains contributions from solid Earth as well as climate-related phenomena, that cannot be easily distinguished both in time and space. After more than 7years, the GRACE gravity data available now support more elaborate analysis on the time series. We propose...... used to assess the possibility of finding evidence of meaningful geophysical signals different from hydrology over Africa in GRACE data. In this case we conclude that hydrological phenomena are dominant and so time variable gravity data in Africa can be directly used to calibrate hydrological models....
On the impact of topography and building mask on time varying gravity due to local hydrology
Deville, S.; Jacob, T.; Chéry, J.; Champollion, C.
2013-01-01
We use 3 yr of surface absolute gravity measurements at three sites on the Larzac plateau (France) to quantify the changes induced by topography and the building on gravity time-series, with respect to an idealized infinite slab approximation. Indeed, local topography and buildings housing ground-based gravity measurement have an effect on the distribution of water storage changes, therefore affecting the associated gravity signal. We first calculate the effects of surrounding topography and building dimensions on the gravity attraction for a uniform layer of water. We show that a gravimetric interpretation of water storage change using an infinite slab, the so-called Bouguer approximation, is generally not suitable. We propose to split the time varying gravity signal in two parts (1) a surface component including topographic and building effects (2) a deep component associated to underground water transfer. A reservoir modelling scheme is herein presented to remove the local site effects and to invert for the effective hydrological properties of the unsaturated zone. We show that effective time constants associated to water transfer vary greatly from site to site. We propose that our modelling scheme can be used to correct for the local site effects on gravity at any site presenting a departure from a flat topography. Depending on sites, the corrected signal can exceed measured values by 5-15 μGal, corresponding to 120-380 mm of water using the Bouguer slab formula. Our approach only requires the knowledge of daily precipitation corrected for evapotranspiration. Therefore, it can be a useful tool to correct any kind of gravimetric time-series data.
Marchuk, Igor; Lyulin, Yuriy
2017-10-01
Mathematical model of liquid meniscus shape in cylindrical micro-channel of the separator unit of condensing/separating system is presented. Moving liquid meniscus in the 10 μm cylindrical microchannel is used as a liquid lock to recover the liquid obtained by condensation from the separators. The main goal of the liquid locks to prevent penetration of a gas phase in the liquid line at the small flow rate of the condensate and because of pressure fluctuations in the vapor-gas-liquid loop. Calculation of the meniscus shape has been performed for liquid FC-72 at different values of pressure difference gas - liquid and under normal and micro gravity conditions.
Unification of gauge and gravity Chern-Simons theories in 3-D space-time
Energy Technology Data Exchange (ETDEWEB)
Saghir, Chireen A.; Shamseddine, Laurence W. [American University of Beirut, Physics Department, Beirut (Lebanon)
2017-11-15
Chamseddine and Mukhanov showed that gravity and gauge theories could be unified in one geometric construction provided that a metricity condition is imposed on the vielbein. In this paper we are going to show that by enlarging the gauge group we are able to unify Chern-Simons gauge theory and Chern-Simons gravity in 3-D space-time. Such a unification leads to the quantization of the coefficients for both Chern-Simons terms for compact groups but not for non-compact groups. Moreover, it leads to a topological invariant quantity of the 3-dimensional space-time manifold on which they are defined. (orig.)
Mass Redistribution in the Core and Time-varying Gravity at the Earth's Surface
Kuang, Wei-Jia; Chao, Benjamin F.; Fang, Ming
2003-01-01
The Earth's liquid outer core is in convection, as suggested by the existence of the geomagnetic field in much of the Earth's history. One consequence of the convection is the redistribution of mass resulting from relative motion among fluid parcels with slightly different densities. This time dependent mass redistribution inside the core produces a small perturbation on the gravity field of the Earth. With our numerical dynamo solutions, we find that the mass redistribution (and the resultant gravity field) symmetric about the equator is much stronger than that anti-symmetric about the equator. In particular, J(sub 2) component is the strongest. In addition, the gravity field variation increases with the Rayleigh number that measures the driving force for the geodynamo in the core. With reasonable scaling from the current dynamo solutions, we could expect that at the surface of the Earth, the J(sub 2) variation from the core is on the order of l0(exp -16)/year relative to the mean (i.e. spherically symmetric) gravity field of the Earth. The possible shielding effect due to core-mantle boundary pressure variation loading is likely much smaller and is therefore negligible. Our results suggest that time-varying gravity field perturbation due to core mass redistribution may be measured with modem space geodetic observations, which will result a new means of detecting dynamical processes in the Earth's deep interior.
A Box-Cox normal model for response times.
Klein Entink, R H; van der Linden, W J; Fox, J-P
2009-11-01
The log-transform has been a convenient choice in response time modelling on test items. However, motivated by a dataset of the Medical College Admission Test where the lognormal model violated the normality assumption, the possibilities of the broader class of Box-Cox transformations for response time modelling are investigated. After an introduction and an outline of a broader framework for analysing responses and response times simultaneously, the performance of a Box-Cox normal model for describing response times is investigated using simulation studies and a real data example. A transformation-invariant implementation of the deviance information criterium (DIC) is developed that allows for comparing model fit between models with different transformation parameters. Showing an enhanced description of the shape of the response time distributions, its application in an educational measurement context is discussed at length.
Kennedy, Jeffrey R.; Ferre, Ty P.A.
2015-01-01
The relative gravimeter is the primary terrestrial instrument for measuring spatially and temporally varying gravitational fields. The background noise of the instrument—that is, non-linear drift and random tares—typically requires some form of least-squares network adjustment to integrate data collected during a campaign that may take several days to weeks. Here, we present an approach to remove the change in the observed relative-gravity differences caused by hydrologic or other transient processes during a single campaign, so that the adjusted gravity values can be referenced to a single epoch. The conceptual approach is an example of coupled hydrogeophysical inversion, by which a hydrologic model is used to inform and constrain the geophysical forward model. The hydrologic model simulates the spatial variation of the rate of change of gravity as either a linear function of distance from an infiltration source, or using a 3-D numerical groundwater model. The linear function can be included in and solved for as part of the network adjustment. Alternatively, the groundwater model is used to predict the change of gravity at each station through time, from which the accumulated gravity change is calculated and removed from the data prior to the network adjustment. Data from a field experiment conducted at an artificial-recharge facility are used to verify our approach. Maximum gravity change due to hydrology (observed using a superconducting gravimeter) during the relative-gravity field campaigns was up to 2.6 μGal d−1, each campaign was between 4 and 6 d and one month elapsed between campaigns. The maximum absolute difference in the estimated gravity change between two campaigns, two months apart, using the standard network adjustment method and the new approach, was 5.5 μGal. The maximum gravity change between the same two campaigns was 148 μGal, and spatial variation in gravity change revealed zones of preferential infiltration and areas of relatively
International Nuclear Information System (INIS)
Bamba, Kazuharu; Odintsov, Sergei D.; Sebastiani, Lorenzo; Zerbini, Sergio
2010-01-01
We study all four types of finite-time future singularities emerging in the late-time accelerating (effective quintessence/phantom) era from F(R,G)-gravity, where R and G are the Ricci scalar and the Gauss-Bonnet invariant, respectively. As an explicit example of F(R,G)-gravity, we also investigate modified Gauss-Bonnet gravity, so-called F(G)-gravity. In particular, we reconstruct the F(G)-gravity and F(R,G)-gravity models where accelerating cosmologies realizing the finite-time future singularities emerge. Furthermore, we discuss a possible way to cure the finite-time future singularities in F(G)-gravity and F(R,G)-gravity by taking into account higher-order curvature corrections. The example of non-singular realistic modified Gauss-Bonnet gravity is presented. It turns out that adding such non-singular modified gravity to singular Dark Energy makes the combined theory a non-singular one as well. (orig.)
A Box-Cox normal model for response times
Klein Entink, R.H.; Fox, J.P.; Linden, W.J. van der
2009-01-01
The log-transform has been a convenient choice in response time modelling on test items. However, motivated by a dataset of the Medical College Admission Test where the lognormal model violated the normality assumption, the possibilities of the broader class of Box–Cox transformations for response
Quantum time uncertainty in a gravity's rainbow formalism
International Nuclear Information System (INIS)
Galan, Pablo; Marugan, Guillermo A. Mena
2004-01-01
The existence of a minimum time uncertainty is usually argued to be a consequence of the combination of quantum mechanics and general relativity. Most of the studies that point to this result are nonetheless based on perturbative quantization approaches, in which the effect of matter on the geometry is regarded as a correction to a classical background. In this paper, we consider rainbow spacetimes constructed from doubly special relativity by using a modification of the proposals of Magueijo and Smolin. In these models, gravitational effects are incorporated (at least to a certain extent) in the definition of the energy-momentum of particles without adhering to a perturbative treatment of the backreaction. In this context, we derive and compare the expressions of the time uncertainty in quantizations that use as evolution parameter either the background or the rainbow time coordinates. These two possibilities can be regarded as corresponding to perturbative and nonperturbative quantization schemes, respectively. We show that, while a nonvanishing time uncertainty is generically unavoidable in a perturbative framework, an infinite time resolution can in fact be achieved in a nonperturbative quantization for the whole family of doubly special relativity theories with unbounded physical energy
Kennedy, Jeffrey R.; Ferre, Ty P.A.; Creutzfeldt, Benjamin
2016-01-01
Groundwater-level measurements in monitoring wells or piezometers are the most common, and often the only, hydrologic measurements made at artificial recharge facilities. Measurements of gravity change over time provide an additional source of information about changes in groundwater storage, infiltration, and for model calibration. We demonstrate that for an artificial recharge facility with a deep groundwater table, gravity data are more sensitive to movement of water through the unsaturated zone than are groundwater levels. Groundwater levels have a delayed response to infiltration, change in a similar manner at many potential monitoring locations, and are heavily influenced by high-frequency noise induced by pumping; in contrast, gravity changes start immediately at the onset of infiltration and are sensitive to water in the unsaturated zone. Continuous gravity data can determine infiltration rate, and the estimate is only minimally affected by uncertainty in water-content change. Gravity data are also useful for constraining parameters in a coupled groundwater-unsaturated zone model (Modflow-NWT model with the Unsaturated Zone Flow (UZF) package).
On the Inversion for Mass (Re)Distribution from Global (Time-Variable) Gravity Field
Chao, Benjamin F.
2004-01-01
The well-known non-uniqueness of the gravitational inverse problem states the following: The external gravity field, even if completely and exactly known, cannot Uniquely determine the density distribution of the body that produces the gravity field. This is an intrinsic property of a field that obeys the Laplace equation, as already treated in mathematical as well as geophysical literature. In this paper we provide conceptual insight by examining the problem in terms of spherical harmonic expansion of the global gravity field. By comparing the multipoles and the moments of the density function, we show that in 3-S the degree of knowledge deficiency in trying to inversely recover the density distribution from external gravity field is (n+l)(n+2)/2 - (2n+l) = n(n-1)/2 for each harmonic degree n. On the other hand, on a 2-D spherical shell we show via a simple relationship that the inverse solution of the surface density distribution is unique. The latter applies quite readily in the inversion of time-variable gravity signals (such as those observed by the GRACE space mission) where the sources over a wide range of the scales largely come from the Earth's Surface.
Wormholes and time-machines in nonminimally coupled matter-curvature theories of gravity
DEFF Research Database (Denmark)
Bertolami, O.; Ferreira, R. Z.
2013-01-01
In this work we show the existence of traversable wormhole and time-machine solutions in a modified theory of gravity where matter and curvature are nonminimally coupled. Those solutions present a nontrivial redshift function and exist even in the presence of ordinary matter which satisfies...
Wormholes and Time-Machines in Nonminimally Coupled Matter-Curvature Theories of Gravity
Directory of Open Access Journals (Sweden)
Bertolami Orfeu
2013-09-01
Full Text Available In this work we show the existence of traversable wormhole and time-machine solutions in a modified theory of gravity where matter and curvature are nonminimally coupled. Those solutions present a nontrivial redshift function and exist even in the presence of ordinary matter which satisfies the dominant energy condition.
Field-theoretic approach to gravity in the flat space-time
Energy Technology Data Exchange (ETDEWEB)
Cavalleri, G [Centro Informazioni Studi Esperienze, Milan (Italy); Milan Univ. (Italy). Ist. di Fisica); Spinelli, G [Istituto di Matematica del Politecnico di Milano, Milano (Italy)
1980-01-01
In this paper it is discussed how the field-theoretical approach to gravity starting from the flat space-time is wider than the Einstein approach. The flat approach is able to predict the structure of the observable space as a consequence of the behaviour of the particle proper masses. The field equations are formally equal to Einstein's equations without the cosmological term.
Time-variable gravity fields derived from GPS tracking of Swarm
Czech Academy of Sciences Publication Activity Database
Bezděk, Aleš; Sebera, Josef; da Encarnacao, J.T.; Klokočník, Jaroslav
2016-01-01
Roč. 205, č. 3 (2016), s. 1665-1669 ISSN 0956-540X R&D Projects: GA MŠk LG14026; GA ČR GA13-36843S Institutional support: RVO:67985815 Keywords : satellite geodesy * time variable gravity * global change from geodesy Subject RIV: DD - Geochemistry Impact factor: 2.414, year: 2016
Space, time, and gravity. The theory of the big bang and black holes
Energy Technology Data Exchange (ETDEWEB)
Wald, R.M.
1977-01-01
In Einstein's theory of gravity, gravitation is described in terms of the curved geometry of space--time. The implications of these ideas for the universe: its origin, evolution, and large-scale structure are considered. Also discussed are gravitational collapse and black holes. (JFP)
A non-perturbative definition of 2D quantum gravity by the fifth time action
International Nuclear Information System (INIS)
Ambjoern, J.; Greensite, J.; Varsted, S.
1990-07-01
The general formalism for stabilizing bottomless Euclidean field theories (the 'fifth-time' action) provides a natural non-perturbative definition of matrix models corresponding to 2d quantum gravity. The formalism allows, in principle, the use of lattice Monte Carlo techniques for non-perturbative computation of correlation functions. (orig.)
Black holes in loop quantum gravity: the complete space-time.
Gambini, Rodolfo; Pullin, Jorge
2008-10-17
We consider the quantization of the complete extension of the Schwarzschild space-time using spherically symmetric loop quantum gravity. We find an exact solution corresponding to the semiclassical theory. The singularity is eliminated but the space-time still contains a horizon. Although the solution is known partially numerically and therefore a proper global analysis is not possible, a global structure akin to a singularity-free Reissner-Nordström space-time including a Cauchy horizon is suggested.
Normal modes and time evolution of a holographic superconductor after a quantum quench
International Nuclear Information System (INIS)
Gao, Xin; García-García, Antonio M.; Zeng, Hua Bi; Zhang, Hai-Qing
2014-01-01
We employ holographic techniques to investigate the dynamics of the order parameter of a strongly coupled superconductor after a perturbation that drives the system out of equilibrium. The gravity dual that we employ is the AdS_5 Soliton background at zero temperature. We first analyze the normal modes associated to the superconducting order parameter which are purely real since the background has no horizon. We then study the full time evolution of the order parameter after a quench. For sufficiently a weak and slow perturbation we show that the order parameter undergoes simple undamped oscillations in time with a frequency that agrees with the lowest normal model computed previously. This is expected as the soliton background has no horizon and therefore, at least in the probe and large N limits considered, the system will never return to equilibrium. For stronger and more abrupt perturbations higher normal modes are excited and the pattern of oscillations becomes increasingly intricate. We identify a range of parameters for which the time evolution of the order parameter become quasi chaotic. The details of the chaotic evolution depend on the type of perturbation used. Therefore it is plausible to expect that it is possible to engineer a perturbation that leads to the almost complete destruction of the oscillating pattern and consequently to quasi equilibration induced by superposition of modes with different frequencies
A Gravity-Responsive Time-Keeping Protein of the Plant and Animal Cell Surface
Morre, D. James
2003-01-01
The hypothesis under investigation was that a ubiquinol (NADH) oxidase protein of the cell surface with protein disulfide-thiol interchange activity (= NOX protein) is a plant and animal time-keeping ultradian (period of less than 24 h) driver of both cell enlargement and the biological clock that responds to gravity. Despite considerable work in a large number of laboratories spanning several decades, this is, to my knowledge, our work is the first demonstration of a time-keeping biochemical reaction that is both gravity-responsive and growth-related and that has been shown to determine circadian periodicity. As such, the NOX protein may represent both the long-sought biological gravity receptor and the core oscillator of the cellular biological clock. Completed studies have resulted in 12 publications and two issued NASA-owned patents of the clock activity. The gravity response and autoentrainment were characterized in cultured mammalian cells and in two plant systems together with entrainment by light and small molecules (melatonin). The molecular basis of the oscillatory behavior was investigated using spectroscopic methods (Fourier transform infrared and circular dichroism) and high resolution electron microscopy. We have also applied these findings to an understanding of the response to hypergravity. Statistical methods for analysis of time series phenomena were developed (Foster et al., 2003).
Beyond-one-loop quantum gravity action yielding both inflation and late-time acceleration
Directory of Open Access Journals (Sweden)
E. Elizalde
2017-08-01
Full Text Available A unified description of early-time inflation with the current cosmic acceleration is achieved by means of a new theory that uses a quadratic model of gravity, with the inclusion of an exponential F(R-gravity contribution for dark energy. High-curvature corrections of the theory come from higher-derivative quantum gravity and yield an effective action that goes beyond the one-loop approximation. It is shown that, in this theory, viable inflation emerges in a natural way, leading to a spectral index and tensor-to-scalar ratio that are in perfect agreement with the most reliable Planck results. At low energy, late-time accelerated expansion takes place. As exponential gravity, for dark energy, must be stabilized during the matter and radiation eras, we introduce a curing term in order to avoid nonphysical singularities in the effective equation of state parameter. The results of our analysis are confirmed by accurate numerical simulations, which show that our model does fit the most recent cosmological data for dark energy very precisely.
Late time acceleration of the universe in f(R) gravity model
International Nuclear Information System (INIS)
Mukherjee, Ankan
2014-01-01
In this work, a new way to look at the nature of late time dynamics of the universe for f(R) gravity models using the contracted Bianchi Identity has been proposed. As the Einstein field equations contain derivatives of the curvature scalar R, the contracted Bianchi identity yields a second order nonlinear differential equation in H, the Hubble parameter. This equation is studied for two particular forms of f(R), and the late time behaviour of the model is discussed. (author)
Energy Technology Data Exchange (ETDEWEB)
Prasia, P.; Kuriakose, V.C. [Cochin University of Science and Technology, Department of Physics, Kochi (India)
2017-01-15
In this work we study the Quasi-Normal Modes (QNMs) under massless scalar perturbations and the thermodynamics of linearly charged BTZ black holes in massive gravity in the (Anti)de Sitter ((A)dS) space-time. It is found that the behavior of QNMs changes with the massive parameter of the graviton and also with the charge of the black hole. The thermodynamics of such black holes in the (A)dS space-time is also analyzed in detail. The behavior of specific heat with temperature for such black holes gives an indication of a phase transition that depends on the massive parameter of the graviton and also on the charge of the black hole. (orig.)
Optimization of a Time-Lapse Gravity Network for Carbon Sequestration
Appriou, D.; Strickland, C. E.; Ruprecht Yonkofski, C. M.
2017-12-01
The objective of this study is to evaluate what could be a comprehensive and optimal state of the art gravity monitoring network that would meet the UIC class VI regulation and insure that 90% of the CO2 injected remain underground. Time-lapse gravity surveys have a long history of effective applications of monitoring temporal density changes in the subsurface. For decades, gravity measurements have been used for a wide range of applications. The interest of time-lapse gravity surveys for monitoring carbon sequestration sites started recently. The success of their deployment in such sites depends upon a combination of favorable conditions, such as the reservoir geometry, depth, thickness, density change over time induced by the CO2 injection and the location of the instrument. In most cases, the density changes induced by the CO2 plume in the subsurface are not detectable from the surface but the use of borehole gravimeters can provide excellent results. In the framework of the National Assessment and Risk Partnership (NRAP) funded by the Department of Energy, the evaluation of the effectiveness of the gravity monitoring of a CO2 storage site has been assessed using multiple synthetic scenarios implemented on a community model developed for the Kimberlina site (e.g., fault leakage scenarios, borehole leakage). The Kimberlina carbon sequestration project was a pilot project located in southern San Joaquin Valley, California, aimed to safely inject 250,000 t CO2/yr for four years. Although the project was cancelled in 2012, the site characterization efforts resulted in the development of a geologic model. In this study, we present the results of the time-lapse gravity monitoring applied on different multiphase flow and reactive transport models developed by Lawrence Berkeley National Laboratory (i.e., no leakage, permeable fault zone, wellbore leakage). Our monitoring approach considers an ideal network, consisting of multiple vertical and horizontal instrumented
Gravity, two times, tractors, Weyl invariance, and six-dimensional quantum mechanics
International Nuclear Information System (INIS)
Bonezzi, R.; Latini, E.; Waldron, A.
2010-01-01
Fefferman and Graham showed some time ago that four-dimensional conformal geometries could be analyzed in terms of six-dimensional, ambient, Riemannian geometries admitting a closed homothety. Recently, it was shown how conformal geometry provides a description of physics manifestly invariant under local choices of unit systems. Strikingly, Einstein's equations are then equivalent to the existence of a parallel scale tractor (a six-component vector subject to a certain first order covariant constancy condition at every point in four-dimensional spacetime). These results suggest a six-dimensional description of four-dimensional physics, a viewpoint promulgated by the 2 times physics program of Bars. The Fefferman-Graham construction relies on a triplet of operators corresponding, respectively, to a curved six-dimensional light cone, the dilation generator and the Laplacian. These form an sp(2) algebra which Bars employs as a first class algebra of constraints in a six-dimensional gauge theory. In this article four-dimensional gravity is recast in terms of six-dimensional quantum mechanics by melding the 2 times and tractor approaches. This parent formulation of gravity is built from an infinite set of six-dimensional fields. Successively integrating out these fields yields various novel descriptions of gravity including a new four-dimensional one built from a scalar doublet, a tractor-vector multiplet and a conformal class of metrics.
International Nuclear Information System (INIS)
Voigt, C.; Denker, H.; Timmen, L.
2016-01-01
The latest generation of optical atomic clocks is approaching the level of one part in 10 18 in terms of frequency stability and uncertainty. For clock comparisons and the definition of international time scales, a relativistic redshift effect of the clock frequencies has to be taken into account at a corresponding uncertainty level of about 0.1 m 2 s -2 and 0.01 m in terms of gravity potential and height, respectively. Besides the predominant static part of the gravity potential, temporal variations must be considered in order to avoid systematic frequency shifts. Time-variable gravity potential components induced by tides and non-tidal mass redistributions are investigated with regard to the level of one part in 10 18 . The magnitudes and dominant time periods of the individual gravity potential contributions are investigated globally and for specific laboratory sites together with the related uncertainty estimates. The basics of the computation methods are presented along with the applied models, data sets and software. Solid Earth tides contribute by far the most dominant signal with a global maximum amplitude of 4.2 m 2 s -2 for the potential and a range (maximum-to-minimum) of up to 1.3 and 10.0 m 2 s -2 in terms of potential differences between specific laboratories over continental and intercontinental scales, respectively. Amplitudes of the ocean tidal loading potential can amount up to 1.25 m 2 s -2 , while the range of the potential between specific laboratories is 0.3 and 1.1 m 2 s -2 over continental and intercontinental scales, respectively. These are the only two contributors being relevant at a 10 -17 level. However, several other time-variable potential effects can particularly affect clock comparisons at the 10 -18 level. Besides solid Earth pole tides, these are non-tidal mass redistributions in the atmosphere, the oceans and the continental water storage. (authors)
Phelps, Geoffrey; Cronkite-Ratcliff, Collin; Blake, Kelly
2018-04-19
We have conducted a gravity survey of the Coso geothermal field to continue the time-lapse gravity study of the area initiated in 1991. In this report, we outline a method of processing the gravity data that minimizes the random errors and instrument bias introduced into the data by the Scintrex CG-5 relative gravimeters that were used. After processing, the standard deviation of the data was estimated to be ±13 microGals. These data reveal that the negative gravity anomaly over the Coso geothermal field, centered on gravity station CER1, is continuing to increase in magnitude over time. Preliminary modeling indicates that water-table drawdown at the location of CER1 is between 65 and 326 meters over the last two decades. We note, however, that several assumptions on which the model results depend, such as constant elevation and free-water level over the study period, still require verification.
The quantum cosmological wavefunction at very early times for a quadratic gravity theory
International Nuclear Information System (INIS)
Davis, Simon
2003-01-01
The quantum cosmological wavefunction for a quadratic gravity theory derived from the heterotic string effective action is obtained near the inflationary epoch and during the initial Planck era. Neglecting derivatives with respect to the scalar field, the wavefunction would satisfy a third-order differential equation near the inflationary epoch which has a solution that is singular in the scale factor limit a(t) → 0. When scalar field derivatives are included, a sixth-order differential equation is obtained for the wavefunction and the solution by Mellin transform is regular in the a → 0 limit. It follows that inclusion of the scalar field in the quadratic gravity action is necessary for consistency of the quantum cosmology of the theory at very early times
When up is down in 0g: how gravity sensing affects the timing of interceptive actions.
Senot, Patrice; Zago, Myrka; Le Séac'h, Anne; Zaoui, Mohammed; Berthoz, Alain; Lacquaniti, Francesco; McIntyre, Joseph
2012-02-08
Humans are known to regulate the timing of interceptive actions by modeling, in a simplified way, Newtonian mechanics. Specifically, when intercepting an approaching ball, humans trigger their movements a bit earlier when the target arrives from above than from below. This bias occurs regardless of the ball's true kinetics, and thus appears to reflect an a priori expectation that a downward moving object will accelerate. We postulate that gravito-inertial information is used to tune visuomotor responses to match the target's most likely acceleration. Here we used the peculiar conditions of parabolic flight--where gravity's effects change every 20 s--to test this hypothesis. We found a striking reversal in the timing of interceptive responses performed in weightlessness compared with trials performed on ground, indicating a role of gravity sensing in the tuning of this response. Parallels between these observations and the properties of otolith receptors suggest that vestibular signals themselves might plausibly provide the critical input. Thus, in addition to its acknowledged importance for postural control, gaze stabilization, and spatial navigation, we propose that detecting the direction of gravity's pull plays a role in coordinating quick reactions intended to intercept a fast-moving visual target.
Late-time cosmological approach in mimetic f(R, T) gravity
Energy Technology Data Exchange (ETDEWEB)
Baffou, E.H. [Institut de Mathematiques et de Sciences Physiques (IMSP), Porto-Novo (Benin); Houndjo, M.J.S. [Institut de Mathematiques et de Sciences Physiques (IMSP), Porto-Novo (Benin); Faculte des Sciences et Techniques de Natitingou, Natitingou (Benin); Hamani-Daouda, M. [Universite de Niamey, Departement de Physique, Niamey (Niger); Alvarenga, F.G. [Universidade Federal do Espirito Santo, Departamento de Engenharia e Ciencias Naturais, CEUNES, Sao Mateus, ES (Brazil)
2017-10-15
In this paper, we investigate the late-time cosmic acceleration in mimetic f(R, T) gravity with the Lagrange multiplier and potential in a Universe containing, besides radiation and dark energy, a self-interacting (collisional) matter. We obtain through the modified Friedmann equations the main equation that can describe the cosmological evolution. Then, with several models from Q(z) and the well-known particular model f(R, T), we perform an analysis of the late-time evolution. We examine the behavior of the Hubble parameter, the dark energy equation of state and the total effective equation of state and in each case we compare the resulting picture with the non-collisional matter (assumed as dust) and also with the collisional matter in mimetic f(R, T) gravity. The results obtained are in good agreement with the observational data and show that in the presence of the collisional matter the dark energy oscillations in mimetic f(R, T) gravity can be damped. (orig.)
Time-variable gravity fields and ocean mass change from 37 months of kinematic Swarm orbits
Lück, Christina; Kusche, Jürgen; Rietbroek, Roelof; Löcher, Anno
2018-03-01
Measuring the spatiotemporal variation of ocean mass allows for partitioning of volumetric sea level change, sampled by radar altimeters, into mass-driven and steric parts. The latter is related to ocean heat change and the current Earth's energy imbalance. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) mission has provided monthly snapshots of the Earth's time-variable gravity field, from which one can derive ocean mass variability. However, GRACE has reached the end of its lifetime with data degradation and several gaps occurred during the last years, and there will be a prolonged gap until the launch of the follow-on mission GRACE-FO. Therefore, efforts focus on generating a long and consistent ocean mass time series by analyzing kinematic orbits from other low-flying satellites, i.e. extending the GRACE time series. Here we utilize data from the European Space Agency's (ESA) Swarm Earth Explorer satellites to derive and investigate ocean mass variations. For this aim, we use the integral equation approach with short arcs (Mayer-Gürr, 2006) to compute more than 500 time-variable gravity fields with different parameterizations from kinematic orbits. We investigate the potential to bridge the gap between the GRACE and the GRACE-FO mission and to substitute missing monthly solutions with Swarm results of significantly lower resolution. Our monthly Swarm solutions have a root mean square error (RMSE) of 4.0 mm with respect to GRACE, whereas directly estimating constant, trend, annual, and semiannual (CTAS) signal terms leads to an RMSE of only 1.7 mm. Concerning monthly gaps, our CTAS Swarm solution appears better than interpolating existing GRACE data in 13.5 % of all cases, when artificially removing one solution. In the case of an 18-month artificial gap, 80.0 % of all CTAS Swarm solutions were found closer to the observed GRACE data compared to interpolated GRACE data. Furthermore, we show that precise modeling of non-gravitational forces
Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam;
2013-01-01
Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and
Time-Variable Gravity from Space: Quarter Century of Observations, Mysteries, and Prospects
Chao, Benjamin F.; Boy, John-Paul
2003-01-01
Any large mass transport in the Earth system produces changes in the gravity field. Via the space geodetic technique of satellite-laser ranging in the last quarter century, the Earth's dynamic oblateness J2 (the lowest-degree harmonic component of the gravity field) has been observed to undergo a slight decrease -- until around 1998, when it switched quite suddenly to an increase trend which has continued to 2001 before sharply turning back to the value which it is "supposed to be"!. The secular decrease in J2 has long been attributed primarily to the post-glacial rebound in the mantle; the present increase signifies an even larger change in global mass distribution whose J2 effect overshadows that of the post-glacial rebound, at least over interannual timescales. Intriguing evidences have been found in the ocean water distribution, especially in the extratropical Pacific basins, that may be responsible for this J2 change. New techniques based on satellite-to-satellite tracking will yield greatly improved observations for time-variable gravity, with much higher precision and spatial resolution (i.e., much higher harmonic degrees). The most important example is the GRACE mission launched in March 2002, following the success of the CHAMP mission. Such observations are becoming a new and powerful tool for remote sensing of geophysical fluid processes that involve larger-scale mass transports.
Evaluation of real time ultrasonography of the normal pancreas
International Nuclear Information System (INIS)
Kim, H. K.; Ko, Y. T.; Kim, S. Y.; Ahn, C. Y.
1981-01-01
91 cases who were free of pancreatic disease and the related conditions, were studied by high resolution and wide field real time ultrasonographic scanner with 3.5 MHz linear array electronically focusing transducers. The pancreatic examination method and the anatomic structures in and around the pancreas were investigated, and the normal pancreatic findings by real time ultrasonography were as follows: 1. Among all 91 cases, 44 cases were male and 47 cases female, and the frequent age groups were the 4th to the sixth decade. 2. The pancreatic images were obtained in 86% and the good images in 65%. 3. The shapes of pancreas were sausage (40%), dumb-bell (34%), tadpole (9%), and club (17%). 4. Pancreatic size was 1.56 ± 0.37, 2.4, 0.8 cm (Mean ± SD, Max., Min.) in head, 1.32 ± 0.29, 2.0, 0.8 cm in isthmus, and 1.62 ± 0.31, 2.4, 1.0 cm in tail. 5. The successful rate of pancreatic duct visualization was 46%. The shapes of pancreatic duct were linear (22%), tramline (16%), and tubular (8%). 6. The pancreatic echogenecity is greater than that of the liver in 68%, and equivalent to that of the liver in 32%, and no normal pancreas displayed less echogenecity than the liver. 7. Pancreatic echogenecity is lesser than that of adjacent soft tissue in 79% and equivalent to that of adjacent soft tissue in 21%. 8. The pancreatic echogenecity is homogenous in 79%. 9. The pancreatic margin is smooth in 62%, undulated in 11%, and ill defined in 27%
Cosmological wheel of time: A classical perspective of f(R) gravity
Yadav, Bal Krishna; Verma, Murli Manohar
It is shown that the structures in the universe can be interpreted to show a closed wheel of time, rather than a straight arrow. An analysis in f(R) gravity model has been carried out to show that due to local observations, a small arc at any given spacetime point would invariably indicate an arrow of time from past to future, though on a quantum scale it is not a linear flow but a closed loop, a fact that can be examined through future observations.
Gravity field recovery in the framework of a Geodesy and Time Reference in Space (GETRIS)
Hauk, Markus; Schlicht, Anja; Pail, Roland; Murböck, Michael
2017-04-01
The study ;Geodesy and Time Reference in Space; (GETRIS), funded by European Space Agency (ESA), evaluates the potential and opportunities coming along with a global space-borne infrastructure for data transfer, clock synchronization and ranging. Gravity field recovery could be one of the first beneficiary applications of such an infrastructure. This paper analyzes and evaluates the two-way high-low satellite-to-satellite-tracking as a novel method and as a long-term perspective for the determination of the Earth's gravitational field, using it as a synergy of one-way high-low combined with low-low satellite-to-satellite-tracking, in order to generate adequate de-aliasing products. First planned as a constellation of geostationary satellites, it turned out, that an integration of European Union Global Navigation Satellite System (Galileo) satellites (equipped with inter-Galileo links) into a Geostationary Earth Orbit (GEO) constellation would extend the capability of such a mission constellation remarkably. We report about simulations of different Galileo and Low Earth Orbiter (LEO) satellite constellations, computed using time variable geophysical background models, to determine temporal changes in the Earth's gravitational field. Our work aims at an error analysis of this new satellite/instrument scenario by investigating the impact of different error sources. Compared to a low-low satellite-to-satellite-tracking mission, results show reduced temporal aliasing errors due to a more isotropic error behavior caused by an improved observation geometry, predominantly in near-radial direction within the inter-satellite-links, as well as the potential of an improved gravity recovery with higher spatial and temporal resolution. The major error contributors of temporal gravity retrieval are aliasing errors due to undersampling of high frequency signals (mainly atmosphere, ocean and ocean tides). In this context, we investigate adequate methods to reduce these errors. We
Anisotropic, time-dependent solutions in maximally Gauss-Bonnet extended gravity
International Nuclear Information System (INIS)
Kitaura, Takayuki; Wheeler, J.T.
1991-01-01
In an arbitrary number of dimensions, we find the full exact anisotropic, time-dependent, diagonal-metric solutions to maximally Gauss-Bonnet extended gravity theory. This class of theories for which the lagrangian is an arbitrary linear combination of dimensionally extnded Euler forms, is the most general gravitational theory in which the field equations contain no more than second derivatives of the metric. We show that the space-time exponentially approaches an asymptotic state of constant, anisotropic curvature and prove three theorems concerning two generic types of singularities. The first theorem gives conditions for the existence of Kasner-like curvature singularities. For these the metric diverges as tsup(p i ) where Σp i = 2 k max -1 and k max is the highest power of the curvature in the lagrangian. Other critical point singularities can arise from the polynomial nature of the theory. The remaining theorems demonstrate that the generic solution is extendible at all of these other critical points and that the generic critical points occur at moments of extremal volume density of space-time. We give an explicit coordinate transformation which produces a smooth extension through the critical point. The space-time may therefore alternately expand and contract for many cycles before expanding forever or contracting to a singularity. Many particular cases are treated in detail including several power series solutions, the generalized Kasner solution to general relativity with or without cosmological constant, the perturbative solution for quadratic string gravity, and five-dimensional extended gravity. (orig.)
Mechanics and Newton-Cartan-like gravity on the Newton-Hooke space-time
International Nuclear Information System (INIS)
Tian Yu; Guo Hanying; Huang Chaoguang; Xu Zhan; Zhou Bin
2005-01-01
We focus on the dynamical aspects on Newton-Hooke space-time NH + mainly from the viewpoint of geometric contraction of the de Sitter spacetime with Beltrami metric. (The term spacetime is used to denote a space with non-degenerate metric, while the term space-time is used to denote a space with degenerate metric.) We first discuss the Newton-Hooke classical mechanics, especially the continuous medium mechanics, in this framework. Then, we establish a consistent theory of gravity on the Newton-Hooke space-time as a kind of Newton-Cartan-like theory, parallel to the Newton's gravity in the Galilei space-time. Finally, we give the Newton-Hooke invariant Schroedinger equation from the geometric contraction, where we can relate the conservative probability in some sense to the mass density in the Newton-Hooke continuous medium mechanics. Similar consideration may apply to the Newton-Hooke space-time NH - contracted from anti-de Sitter spacetime
Pitts, J. Brian
2016-02-01
What if gravity satisfied the Klein-Gordon equation? Both particle physics from the 1920-30s and the 1890s Neumann-Seeliger modification of Newtonian gravity with exponential decay suggest considering a "graviton mass term" for gravity, which is algebraic in the potential. Unlike Nordström's "massless" theory, massive scalar gravity is strictly special relativistic in the sense of being invariant under the Poincaré group but not the 15-parameter Bateman-Cunningham conformal group. It therefore exhibits the whole of Minkowski space-time structure, albeit only indirectly concerning volumes. Massive scalar gravity is plausible in terms of relativistic field theory, while violating most interesting versions of Einstein's principles of general covariance, general relativity, equivalence, and Mach. Geometry is a poor guide to understanding massive scalar gravity(s): matter sees a conformally flat metric due to universal coupling, but gravity also sees the rest of the flat metric (barely or on long distances) in the mass term. What is the 'true' geometry, one might wonder, in line with Poincaré's modal conventionality argument? Infinitely many theories exhibit this bimetric 'geometry,' all with the total stress-energy's trace as source; thus geometry does not explain the field equations. The irrelevance of the Ehlers-Pirani-Schild construction to a critique of conventionalism becomes evident when multi-geometry theories are contemplated. Much as Seeliger envisaged, the smooth massless limit indicates underdetermination of theories by data between massless and massive scalar gravities-indeed an unconceived alternative. At least one version easily could have been developed before General Relativity; it then would have motivated thinking of Einstein's equations along the lines of Einstein's newly re-appreciated "physical strategy" and particle physics and would have suggested a rivalry from massive spin 2 variants of General Relativity (massless spin 2, Pauli and Fierz
Cox, C.; Au, A.; Klosko, S.; Chao, B.; Smith, David E. (Technical Monitor)
2001-01-01
The upcoming GRACE mission promises to open a window on details of the global mass budget that will have remarkable clarity, but it will not directly answer the question of what the state of the Earth's mass budget is over the critical last quarter of the 20th century. To address that problem we must draw upon existing technologies such as SLR, DORIS, and GPS, and climate modeling runs in order to improve our understanding. Analysis of long-period geopotential changes based on SLR and DORIS tracking has shown that addition of post 1996 satellite tracking data has a significant impact on the recovered zonal rates and long-period tides. Interannual effects such as those causing the post 1996 anomalies must be better characterized before refined estimates of the decadal period changes in the geopotential can be derived from the historical database of satellite tracking. A possible cause of this anomaly is variations in ocean mass distribution, perhaps associated with the recent large El Nino/La Nina. In this study, a low-degree spherical harmonic gravity time series derived from satellite tracking is compared with a TOPEX/POSEIDON-derived sea surface height time series. Corrections for atmospheric mass effects, continental hydrology, snowfall accumulation, and ocean steric model predictions will be considered.
Timing system design and tests for the Gravity Probe B relativity mission
International Nuclear Information System (INIS)
Li, J; Keiser, G M; Ohshima, Y; Shestople, P; Lockhart, J M
2015-01-01
In this paper, we discuss the timing system design and tests for the NASA/Stanford Gravity Probe B (GP-B) relativity mission. The primary clock of GP-B, called the 16f o clock, was an oven-controlled crystal oscillator that produced a 16.368 MHz master frequency 3 . The 16f o clock and the 10 Hz data strobe, which was divided down from the 16f o clock, provided clock signals to all GP-B components and synchronized the data collection, transmission, and processing. The sampled data of science signals were stamped with the vehicle time, a counter of the 10 Hz data strobe. The time latency between the time of data sampling and the stamped vehicle time was compensated in the ground data processing. Two redundant global positioning system receivers onboard the GP-B satellite supplied an external reference for time transfer between the vehicle time and coordinated universal time (UTC), and the time conversion was established in the ground preprocessing of the telemetry timing data. The space flight operation showed that the error of time conversion between the vehicle time and UTC was less than 2 μs. Considering that the constant timing offsets were compensated in the ground processing of the GP-B science data, the time latency between the effective sampling time of GP-B science signals and the stamped vehicle time was verified to within 1 ms in the ground tests. (paper)
High resolution time-lapse gravity field from GRACE for hydrological modelling
DEFF Research Database (Denmark)
Krogh, Pernille Engelbredt
Calibration of large scale hydrological models have traditionally been performed using point observations, which are often sparsely distributed. The Gravity Recovery And Climate Experiment (GRACE) mission provides global remote sensing information about mass fluxes with unprecedented accuracy...... than for the mascon only solution, but later than the GLDAS/Noah TWS and the CNES/GRGS SH solutions. The deviations are 10–20 days. From this point of view, the tuning of hydrological models with KBRR data is certainly feasible, though highly time consuming and complicated at the moment. The method...
Coupling gravity, electromagnetism and space-time for space propulsion breakthroughs
Millis, Marc G.
1994-01-01
spaceflight would be revolutionized if it were possible to propel a spacecraft without rockets using the coupling between gravity, electromagnetism, and space-time (hence called 'space coupling propulsion'). New theories and observations about the properties of space are emerging which offer new approaches to consider this breakthrough possibility. To guide the search, evaluation, and application of these emerging possibilities, a variety of hypothetical space coupling propulsion mechanisms are presented to highlight the issues that would have to be satisfied to enable such breakthroughs. A brief introduction of the emerging opportunities is also presented.
Environmental enrichment normalizes hippocampal timing coding in a malformed hippocampus.
Directory of Open Access Journals (Sweden)
Amanda E Hernan
Full Text Available Neurodevelopmental insults leading to malformations of cortical development (MCD are a common cause of psychiatric disorders, learning impairments and epilepsy. In the methylazoxymethanol (MAM model of MCDs, animals have impairments in spatial cognition that, remarkably, are improved by post-weaning environmental enrichment (EE. To establish how EE impacts network-level mechanisms of spatial cognition, hippocampal in vivo single unit recordings were performed in freely moving animals in an open arena. We took a generalized linear modeling approach to extract fine spike timing (FST characteristics and related these to place cell fidelity used as a surrogate of spatial cognition. We find that MAM disrupts FST and place-modulated rate coding in hippocampal CA1 and that EE improves many FST parameters towards normal. Moreover, FST parameters predict spatial coherence of neurons, suggesting that mechanisms determining altered FST are responsible for impaired cognition in MCDs. This suggests that FST parameters could represent a therapeutic target to improve cognition even in the context of a brain that develops with a structural abnormality.
GRACE, time-varying gravity, Earth system dynamics and climate change
Wouters, B.; Bonin, J.A.; Chambers, D.P.; Riva, R.E.M.; Sasgen, I.; Wahr, J.
2014-01-01
Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity
Deville, S.; Champollion, C.; chery, J.; Doerflinger, E.; Le Moigne, N.; Bayer, R.; Vernant, P.
2011-12-01
The assessment of water storage in the unsaturated zone in karstic areas is particularly challenging. Indeed, water flow path and water storage occur in quite heterogeneous ways through small scale porosity, fractures, joints and large voids. Due to this large heterogeneity, it is therefore difficult to estimate the amount of water circulating in the vadose zone by hydrological means. One indirect method consists to measure the gravity variation associated to water storage and withdrawal. Here, we apply a gravimetric method in which the gravity is measured at the surface and at depth on different sites. Then the time variations of the surface to depth (STD) gravity differences are compared for each site. In this study we attempt to evaluate the magnitude of epikarstic water storage variation in various karst settings using a CG5 portable gravimeter. Surface to depth gravity measurements are performed two times a year since 2009 at the surface an inside caves at different depths on three karst aquifers in southern France : 1. A limestone site on the Larzac plateau with a vadose zone thickness of 300m On this site measurements are done on five locations at different depths going from 0 to 50 m; 2. A dolomitic site on the Larzac plateau (Durzon karst aquifer) with a vadose zone thickness of 200m; Measurements are taken at the surface and at 60m depth 3. A limestone site on the Hortus karst aquifer and "Larzac Septentrional karst aquifer") with a vadose zone thickness of only 35m. Measurements are taken at the surface and at 30m depth Therefore, our measurements are used in two ways : First, the STD differences between dry and wet seasons are used to estimate the capacity of differential storage of each aquifer. Surprisingly, the differential storage capacity of all the sites is relatively invariant despite their variable geological of hydrological contexts. Moreover, the STD gravity variations on site 1 show that no water storage variation occurs beneath 10m depth
Excitation of Earth Rotation Variations "Observed" by Time-Variable Gravity
Chao, Ben F.; Cox, C. M.
2005-01-01
Time variable gravity measurements have been made over the past two decades using the space geodetic technique of satellite laser ranging, and more recently by the GRACE satellite mission with improved spatial resolutions. The degree-2 harmonic components of the time-variable gravity contain important information about the Earth s length-of-day and polar motion excitation functions, in a way independent to the traditional "direct" Earth rotation measurements made by, for example, the very-long-baseline interferometry and GPS. In particular, the (degree=2, order= 1) components give the mass term of the polar motion excitation; the (2,O) component, under certain mass conservation conditions, gives the mass term of the length-of-day excitation. Combining these with yet another independent source of angular momentum estimation calculated from global geophysical fluid models (for example the atmospheric angular momentum, in both mass and motion terms), in principle can lead to new insights into the dynamics, particularly the role or the lack thereof of the cores, in the excitation processes of the Earth rotation variations.
Time varying G and \\varLambda cosmology in f(R,T) gravity theory
Tiwari, R. K.; Beesham, A.; Singh, Rameshwar; Tiwari, L. K.
2017-08-01
We have studied the time dependence of the gravitational constant G and cosmological constant Λ by taking into account an anisotropic and homogeneous Bianchi type-I space-time in the framework of the modified f(R,T) theory of gravity proposed by Harko et al. (Phys. Rev. D 84:024020, 2011). For a specific choice of f(R,T)=R+2f(T) where f(T)=-λ T, two solutions of the modified gravity field equations have been generated with the help of a variation law between the expansion anisotropy ({σ}/{θ}) and the scale factor (S), together with a general non-linear equation of state. The solution for m≠3 corresponds to singular model of the universe whereas the solution for m=3 represents a non-singular model. We infer that the models entail a constant value of the deceleration parameter. A careful analysis of all the physical parameters of the models has also been carried out.
Market size structure and small business lending : Are crisis times different from normal times?
Berger, Allen N.; Cerqueiro, G.M.; Penas, Maria
2015-01-01
Conventional wisdom holds that small banks have comparative advantages vis-à-vis large banks in serving small firms, while recent literature suggests this may not be the case. Using a panel of recent US start-ups, we investigate how small bank presence affects these firms in normal times (2004–06)
Lujan, Richard E.
2001-01-01
A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.
Abuter, Roberto; Dembet, Roderick; Lacour, Sylvestre; di Lieto, Nicola; Woillez, Julien; Eisenhauer, Frank; Fedou, Pierre; Phan Duc, Than
2016-08-01
The new VLTI (Very Large Telescope Interferometer) 1 instrument GRAVITY5, 22, 23 is equipped with a fringe tracker16 able to stabilize the K-band fringes on six baselines at the same time. It has been designed to achieve a performance for average seeing conditions of a residual OPD (Optical Path Difference) lower than 300 nm with objects brighter than K = 10. The control loop implementing the tracking is composed of a four stage real time computer system compromising: a sensor where the detector pixels are read in and the OPD and GD (Group Delay) are calculated; a controller receiving the computed sensor quantities and producing commands for the piezo actuators; a concentrator which combines both the OPD commands with the real time tip/tilt corrections offloading them to the piezo actuator; and finally a Kalman15 parameter estimator. This last stage is used to monitor current measurements over a window of few seconds and estimate new values for the main Kalman15 control loop parameters. The hardware and software implementation of this design runs asynchronously and communicates the four computers for data transfer via the Reflective Memory Network3. With the purpose of improving the performance of the GRAVITY5, 23 fringe tracking16, 22 control loop, a deviation from the standard asynchronous communication mechanism has been proposed and implemented. This new scheme operates the four independent real time computers involved in the tracking loop synchronously using the Reflective Memory Interrupts2 as the coordination signal. This synchronous mechanism had the effect of reducing the total pure delay of the loop from 3.5 [ms] to 2.0 [ms] which then translates on a better stabilization of the fringes as the bandwidth of the system is substantially improved. This paper will explain in detail the real time architecture of the fringe tracker in both is synchronous and synchronous implementation. The achieved improvements on reducing the delay via this mechanism will be
Mashhoon, Bahram
2017-01-01
Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...
Effects of temperature on bleeding time and clotting time in normal male and female volunteers.
Valeri, C R; MacGregor, H; Cassidy, G; Tinney, R; Pompei, F
1995-04-01
This study was done to assess the effects of temperature on bleeding time and clotting time in normal male and female volunteers. Open study utilizing normal volunteers. University research laboratory. Fifty-four healthy male and female volunteers, ranging in age from 19 to 35 yrs, who were not receiving medications. The study was done and the samples of venous blood and shed blood collected at the template bleeding time site were obtained at a convenient time for each volunteer. Skin temperature was changed from +20 degrees to +38 degrees C and blood samples were obtained from the antecubital vein of each volunteer. The effect of local skin temperature ranging from +20 degrees to +38 degrees C on bleeding time was evaluated in 38 normal volunteers (19 male and 19 female). Skin temperature was maintained at +20 degrees to +38 degrees C by cooling or warming the forearm. At each temperature, measurements were made of complete blood count, bleeding time, and thromboxane B2 concentrations in shed blood collected at the template bleeding time site and in serum and plasma isolated from blood collected from the antecubital vein. Clotting time studies were measured in 16 normal volunteers (eight male and eight female) at temperatures ranging from +22 degrees to +37 degrees C. At +32 degrees C, the bleeding time was longer and hematocrit was lower in female than in male volunteers. However, at local skin temperatures of < +32 degrees C, both the males and females exhibited significantly increased bleeding times, which were associated with a reduction in shed blood thromboxane B2. Each 1 degree C decrease in temperature was associated with a 15% decrease in the shed blood thromboxane B2 concentration. Clotting times were three times longer at +22 degrees C than at +37 degrees C. Each 1 degree C reduction in the temperature of the clotted blood was associated with a 15% reduction in the serum thromboxane B2 concentration. Our data indicate that during surgical procedures, it
Frequency variations of gravity waves interacting with a time-varying tide
Energy Technology Data Exchange (ETDEWEB)
Huang, C.M.; Zhang, S.D.; Yi, F.; Huang, K.M.; Gan, Q.; Gong, Y. [Wuhan Univ., Hubei (China). School of Electronic Information; Ministry of Education, Wuhan, Hubei (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan, Hubei (China); Zhang, Y.H. [Nanjing Univ. of Information Science and Technology (China). College of Hydrometeorolgy
2013-11-01
Using a nonlinear, 2-D time-dependent numerical model, we simulate the propagation of gravity waves (GWs) in a time-varying tide. Our simulations show that when aGW packet propagates in a time-varying tidal-wind environment, not only its intrinsic frequency but also its ground-based frequency would change significantly. The tidal horizontal-wind acceleration dominates the GW frequency variation. Positive (negative) accelerations induce frequency increases (decreases) with time. More interestingly, tidal-wind acceleration near the critical layers always causes the GW frequency to increase, which may partially explain the observations that high-frequency GW components are more dominant in the middle and upper atmosphere than in the lower atmosphere. The combination of the increased ground-based frequency of propagating GWs in a time-varying tidal-wind field and the transient nature of the critical layer induced by a time-varying tidal zonal wind creates favorable conditions for GWs to penetrate their originally expected critical layers. Consequently, GWs have an impact on the background atmosphere at much higher altitudes than expected, which indicates that the dynamical effects of tidal-GW interactions are more complicated than usually taken into account by GW parameterizations in global models.
THE RISE TIME OF NORMAL AND SUBLUMINOUS TYPE Ia SUPERNOVAE
Energy Technology Data Exchange (ETDEWEB)
Gonzalez-Gaitan, S.; Perrett, K.; Carlberg, R. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. george Street, Toronto, ON M5S 3H4 (Canada); Conley, A. [Center for Astrophysics and Space Astronomy, University of Colorado, 593 UCB, Boulder, CO 80309-0593 (United States); Bianco, F. B.; Howell, D. A.; Graham, M. L. [Department of Physics, University of California, Santa Barbara, Broida Hall, Mail Code 9530, Santa Barbara, CA 93106-9530 (United States); Sullivan, M.; Hook, I. M. [Department of Physics (Astrophysics), University of Oxford, DWB, Keble Road, Oxford, OX1 3RH (United Kingdom); Astier, P.; Balland, C.; Fourmanoit, N.; Guy, J.; Hardin, D.; Pain, R. [LPNHE, Universite Pierre et Marie Curie Paris 6, Universite Paris Diderot Paris 7, CNRS-IN2P3, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Balam, D. [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Basa, S. [Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, 38, rue Frederic Joliot-Curie, 13388 Marseille cedex 13 (France); Fouchez, D. [CPPM, CNRS-IN2P3 and University Aix Marseille II, Case 907, 13288 Marseille cedex 9 (France); Lidman, C. [Australian Astronomical Observatory, P.O. Box 296, Epping, NSW 1710 (Australia); Palanque-Delabrouille, N., E-mail: gonzalez@astro.utoronto.ca [DSM/IRFU/SPP, CEA-Saclay, F-91191 Gif-sur-Yvette (France); and others
2012-01-20
We calculate the average stretch-corrected rise time of Type Ia supernovae (SNe Ia) in the Supernova Legacy Survey. We use the aggregate light curves of spectroscopic and photometrically identified SNe Ia to fit the rising part of the light curve with a simple quadratic model. We obtain a light curve shape corrected, i.e., stretch-corrected, fiducial rise time of 17.02{sup +0.18}{sub -0.28} (stat) days. The measured rise time differs from an earlier finding by the SNLS (Conley et al.) due to the use of different SN Ia templates. We compare it to nearby samples using the same methods and find no evolution in the early part of the light curve of SNe Ia up to z = 1. We search for variations among different populations, particularly subluminous objects, by dividing the sample in stretch. Bright and slow decliners (s > 1.0) have consistent stretch-corrected rise times compared to fainter and faster decliners (0.8 < s {<=} 1.0); they are shorter by 0.57{sup +0.47}{sub -0.50} (stat) days. Subluminous SNe Ia (here defined as objects with s {<=} 0.8), although less constrained, are also consistent, with a rise time of 18.03{sup +0.81}{sub -1.37} (stat) days. We study several systematic biases and find that the use of different fiducial templates may affect the average rise time but not the intrinsic differences between populations. Based on our results, we estimate that subluminous SNe Ia are powered by 0.05-0.35 M{sub Sun} of {sup 56}Ni synthesized in the explosion. Our conclusions are the same for the single-stretch and two-stretch parameterizations of the light curve.
Ockels, W.J.
2007-01-01
From his personal experience during a space flight (Challenger 1985) onward, the author has been struck repeatedly by the remarkable influence of Earth's environment on life, in particular by its most inevitable elements: time and gravity. Our life might be peculiar to the local Earth conditions,
Time-dependent mixed convection heat transfer from a sphere in a micro-gravity environment
International Nuclear Information System (INIS)
Hommel, M.J.
1987-01-01
A fundamental problem of interest for crystal growth in micro-gravity applications involves the mixed convection heat transfer from a sphere in a uniform flow of fluid at a differing temperature. Under the combined influence of the imposed free stream as well as an induced buoyancy force due to thermal expansion of the fluid, the heat transfer from the sphere will be different from that of either the pure forced convection flow or the pure free convection flow. For the present study, the method of matched asymptotic expansions is applied to the laminar flow problem of an impulsively heated, impulsively started sphere in an originally quiescent fluid. Time series expansions are developed for the dependent variables by acknowledging the existence of two district regions: one, an inner region, near the sphere, in which viscous effects are significant; and two, an outer region in which the fluid may be treated as inviscid. The time series expansions are developed in terms of the Reynolds number and Richardson number (Buoyancy Parameter), and the relevant heat transfer and drag coefficients are calculated and plotted
Chao, Benjamin F.; Boy, J. P.
2003-01-01
With the advances of measurements, modern space geodesy has become a new type of remote sensing for the Earth dynamics, especially for mass transports in the geophysical fluids on large spatial scales. A case in point is the space gravity mission GRACE (Gravity Recovery And Climate Experiment) which has been in orbit collecting gravity data since early 2002. The data promise to be able to detect changes of water mass equivalent to sub-cm thickness on spatial scale of several hundred km every month or so. China s Three-Gorge Reservoir has already started the process of water impoundment in phases. By 2009,40 km3 of water will be stored behind one of the world s highest dams and spanning a section of middle Yangtze River about 600 km in length. For the GRACE observations, the Three-Gorge Reservoir would represent a geophysical controlled experiment , one that offers a unique opportunity to do detailed geophysical studies. -- Assuming a complete documentation of the water level and history of the water impoundment process and aided with a continual monitoring of the lithospheric loading response (such as in area gravity and deformation), one has at hand basically a classical forwardinverse modeling problem of surface loading, where the input and certain output are known. The invisible portion of the impounded water, i.e. underground storage, poses either added values as an observable or a complication as an unknown to be modeled. Wang (2000) has studied the possible loading effects on a local scale; we here aim for larger spatial scales upwards from several hundred km, with emphasis on the time-variable gravity signals that can be detected by GRACE and follow-on missions. Results using the Green s function approach on the PREM elastic Earth model indicate the geoid height variations reaching several millimeters on wavelengths of about a thousand kilometers. The corresponding vertical deformations have amplitude of a few centimeters. In terms of long
Sainz-Maza Aparicio, S.; Arnoso Sampedro, J.; Gonzalez Montesinos, F.; Martí Molist, J.
2014-06-01
Gravity changes occurring during the initial stage of the 2011-2012 El Hierro submarine eruption are interpreted in terms of the preeruptive signatures during the episode of unrest. Continuous gravity measurements were made at two sites on the island using the relative spring gravimeter LaCoste and Romberg gPhone-054. On 15 September 2011, an observed gravity decrease of 45 μGal, associated with the southward migration of seismic epicenters, is consistent with a lateral magma migration that occurred beneath the volcanic edifice, an apparently clear precursor of the eruption that took place 25 days later on 10 October 2011. High-frequency gravity signals also appeared on 6-11 October 2011, pointing to an occurring interaction between a magmatic intrusion and the ocean floor. These important gravity changes, with amplitudes varying from 10 to -90 μGal, during the first 3 days following the onset of the eruption are consistent with the northward migration of the eruptive focus along an active eruptive fissure. An apparent correlation of gravity variations with body tide vertical strain was also noted, which could indicate that concurrent tidal triggering occurred during the initial stage of the eruption.
Time-lapse gravity and levelling in the sinkhole-endangered urban area of Bad Frankenhausen, Germany
Kobe, Martin; Gabriel, Gerald; Weise, Adelheid; Krawczyk, Charlotte; Vogel, Detlef
2017-04-01
Sinkholes, resulting from subrosion in the subsurface, can reach diameters of several hundred meters and thus pose a severe hazard for infrastructure and inhabitants in urban areas. Subrosion is the leaching of readily-soluble rocks, such as rock salt, gypsum, anhydrite and limestone by ground or meteoric water and leads to mass transport and relocation. Two scenarios of sinkhole evolution are conceivable: First, the surface subsides continuously in order to compensate for the mass loss. Second, the mass relocation leads to development of subsurface cavities. If they reach a critical size and the cover layers are not supported anymore, the surface collapses abruptly. To improve the understanding of subrosion processes and the related surface deformation a case study is conducted in Bad Frankenhausen, Germany, where subrosion leaches the Zechstein evaporates of the Permian. One part of the study is to analyse the spatiotemporal development of sinkholes by applying time-lapse observations. Therefore, we established a monitoring network consisting of 15 gravity and additional levelling points covering the main sinkhole areas in the city centre. In March 2014, the baseline survey was carried out. Since then, quarterly measurement campaigns are performed. In each campaign four different gravity meters are used to collect a statistical significant amount of data and to control the plausibility of our data. The gravity measurements are complemented by levelling surveys. The rectification of the time-lapse gravity data comprises the correction for jumps and systematic errors, as well as for well calculable influences, such as earth tides and air pressure changes. Furthermore, special interest was applied to seasonal changes of hydrological parameters such as soil moisture or groundwater level. We found the hydrological influence to be in the single digit up to the lower two-digit µGal range, depending on the season and the station. The standard deviations of the adjusted
International Nuclear Information System (INIS)
Brown, R.E.; Camp, J.B.; Darling, T.W.
1990-01-01
An experiment is being developed to measure the acceleration of the antiproton in the gravitational field of the earth. Antiprotons of a few MeV from the LEAR facility at CERN will be slowed, captured, cooled to a temperature of about 10 K, and subsequently launched a few at a time into a drift tube where the effect of gravity on their motion will be determined by a time-of-flight method. Development of the experiment is proceeding at Los Alamos using normal matter. The fabrication of a drift tube that will produce a region of space in which gravity is the dominant force on moving ions is of major difficulty. This involves a study of methods of minimizing the electric fields produced by spatially varying work functions on conducting surfaces. Progress in a number of areas is described, with stress on the drift-tube development
Strong normalization by type-directed partial evaluation and run-time code generation
DEFF Research Database (Denmark)
Balat, Vincent; Danvy, Olivier
1998-01-01
We investigate the synergy between type-directed partial evaluation and run-time code generation for the Caml dialect of ML. Type-directed partial evaluation maps simply typed, closed Caml values to a representation of their long βη-normal form. Caml uses a virtual machine and has the capability...... to load byte code at run time. Representing the long βη-normal forms as byte code gives us the ability to strongly normalize higher-order values (i.e., weak head normal forms in ML), to compile the resulting strong normal forms into byte code, and to load this byte code all in one go, at run time. We...... conclude this note with a preview of our current work on scaling up strong normalization by run-time code generation to the Caml module language....
Strong Normalization by Type-Directed Partial Evaluation and Run-Time Code Generation
DEFF Research Database (Denmark)
Balat, Vincent; Danvy, Olivier
1997-01-01
We investigate the synergy between type-directed partial evaluation and run-time code generation for the Caml dialect of ML. Type-directed partial evaluation maps simply typed, closed Caml values to a representation of their long βη-normal form. Caml uses a virtual machine and has the capability...... to load byte code at run time. Representing the long βη-normal forms as byte code gives us the ability to strongly normalize higher-order values (i.e., weak head normal forms in ML), to compile the resulting strong normal forms into byte code, and to load this byte code all in one go, at run time. We...... conclude this note with a preview of our current work on scaling up strong normalization by run-time code generation to the Caml module language....
International Nuclear Information System (INIS)
Giribet, G E
2005-01-01
Claus Kiefer presents his book, Quantum Gravity, with his hope that '[the] book will convince readers of [the] outstanding problem [of unification and quantum gravity] and encourage them to work on its solution'. With this aim, the author presents a clear exposition of the fundamental concepts of gravity and the steps towards the understanding of its quantum aspects. The main part of the text is dedicated to the analysis of standard topics in the formulation of general relativity. An analysis of the Hamiltonian formulation of general relativity and the canonical quantization of gravity is performed in detail. Chapters four, five and eight provide a pedagogical introduction to the basic concepts of gravitational physics. In particular, aspects such as the quantization of constrained systems, the role played by the quadratic constraint, the ADM decomposition, the Wheeler-de Witt equation and the problem of time are treated in an expert and concise way. Moreover, other specific topics, such as the minisuperspace approach and the feasibility of defining extrinsic times for certain models, are discussed as well. The ninth chapter of the book is dedicated to the quantum gravitational aspects of string theory. Here, a minimalistic but clear introduction to string theory is presented, and this is actually done with emphasis on gravity. It is worth mentioning that no hard (nor explicit) computations are presented, even though the exposition covers the main features of the topic. For instance, black hole statistical physics (within the framework of string theory) is developed in a pedagogical and concise way by means of heuristical arguments. As the author asserts in the epilogue, the hope of the book is to give 'some impressions from progress' made in the study of quantum gravity since its beginning, i.e., since the end of 1920s. In my opinion, Kiefer's book does actually achieve this goal and gives an extensive review of the subject. (book review)
MacKeown, P. K.
1984-01-01
Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)
International Nuclear Information System (INIS)
Chen Qiang; Ren Ji-Rong
2013-01-01
In this paper, we use the modified Hod's treatment and the Kunstatter's method to study the horizon area spectrum and entropy spectrum in Gauss—Bonnet de-Sitter space-time, which is regarded as the natural generalization of Einstein gravity by including higher derivative correction terms to the original Einstein—Hilbert action. The horizon areas have some properties that are very different from the vacuum solutions obtained from the frame of Einstein gravity. With the new physical interpretation of quasinormal modes, the area/entropy spectrum for the event horizon for near-extremal Gauss—Bonnet de Sitter black holes are obtained. Meanwhile, we also extend the discussion of area/entropy quantization to the non-extremal black holes solutions. (general)
A New Modified Histogram Matching Normalization for Time Series Microarray Analysis.
Astola, Laura; Molenaar, Jaap
2014-07-01
Microarray data is often utilized in inferring regulatory networks. Quantile normalization (QN) is a popular method to reduce array-to-array variation. We show that in the context of time series measurements QN may not be the best choice for this task, especially not if the inference is based on continuous time ODE model. We propose an alternative normalization method that is better suited for network inference from time series data.
A New Modified Histogram Matching Normalization for Time Series Microarray Analysis
Directory of Open Access Journals (Sweden)
Laura Astola
2014-07-01
Full Text Available Microarray data is often utilized in inferring regulatory networks. Quantile normalization (QN is a popular method to reduce array-to-array variation. We show that in the context of time series measurements QN may not be the best choice for this task, especially not if the inference is based on continuous time ODE model. We propose an alternative normalization method that is better suited for network inference from time series data.
Hu, Longhua
2016-10-02
Materials, such as electrical wire, used in spacecraft must pass stringent fire safety standards. Tests for such standards are typically performed under normal gravity conditions and then extended to applications under microgravity conditions. The experiments reported here used polyethylene (PE)-insulated (thickness of 0.15 mm) Nichrome (NiCr)-core (diameter of 0.5 mm) electrical wires. Limiting oxygen concentrations (LOC) at extinction were measured for upward spreading flame at various forced opposed-flow (downward) speeds (0−25 cm/s) at several inclination angles (0−75°) under normal gravity conditions. The differences from those previously obtained under microgravity conditions were quantified and correlated to provide a reference for the development of fire safety test standards for electrical wires to be used in space exploration. It was found that as the opposed-flow speed increased for a specified inclination angle (except the horizontal case), LOC first increased, then decreased and finally increased again. The first local maximum of this LOC variation corresponded to a critical forced flow speed resulted from the change in flame spread pattern from concurrent to counter-current type. This critical forced flow speed correlated well with the buoyancy-induced flow speed component in the wire\\'s direction when the flame base width along the wire was used as a characteristic length scale. LOC was generally higher under the normal gravity than under the microgravity and the difference between the two decreased as the opposed-flow speed increases, following a reasonably linear trend at relatively higher flow speeds (over 10 cm/s). The decrease in the difference in LOC under normal- and microgravity conditions as the opposed-flow speed increases correlated well with the gravity acceleration component in the wire\\'s direction, providing a measure to extend LOC determined by the tests under normal gravity conditions (at various inclination angles and opposed
Time-variable gravity fields and ocean mass change from 37 months of kinematic Swarm orbits
Directory of Open Access Journals (Sweden)
C. Lück
2018-03-01
Full Text Available Measuring the spatiotemporal variation of ocean mass allows for partitioning of volumetric sea level change, sampled by radar altimeters, into mass-driven and steric parts. The latter is related to ocean heat change and the current Earth's energy imbalance. Since 2002, the Gravity Recovery and Climate Experiment (GRACE mission has provided monthly snapshots of the Earth's time-variable gravity field, from which one can derive ocean mass variability. However, GRACE has reached the end of its lifetime with data degradation and several gaps occurred during the last years, and there will be a prolonged gap until the launch of the follow-on mission GRACE-FO. Therefore, efforts focus on generating a long and consistent ocean mass time series by analyzing kinematic orbits from other low-flying satellites, i.e. extending the GRACE time series. Here we utilize data from the European Space Agency's (ESA Swarm Earth Explorer satellites to derive and investigate ocean mass variations. For this aim, we use the integral equation approach with short arcs (Mayer-Gürr, 2006 to compute more than 500 time-variable gravity fields with different parameterizations from kinematic orbits. We investigate the potential to bridge the gap between the GRACE and the GRACE-FO mission and to substitute missing monthly solutions with Swarm results of significantly lower resolution. Our monthly Swarm solutions have a root mean square error (RMSE of 4.0 mm with respect to GRACE, whereas directly estimating constant, trend, annual, and semiannual (CTAS signal terms leads to an RMSE of only 1.7 mm. Concerning monthly gaps, our CTAS Swarm solution appears better than interpolating existing GRACE data in 13.5 % of all cases, when artificially removing one solution. In the case of an 18-month artificial gap, 80.0 % of all CTAS Swarm solutions were found closer to the observed GRACE data compared to interpolated GRACE data. Furthermore, we show that precise modeling of non
GRACE, time-varying gravity, Earth system dynamics and climate change
Wouters, B.; Bonin, J. A.; Chambers, D. P.; Riva, R. E. M.; Sasgen, I.; Wahr, J.
2014-11-01
Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity Recovery And Climate Experiment (GRACE)—can be used to study the exchange of mass both within the Earth and at its surface. Since the launch of the mission in 2002, GRACE data has evolved from being an experimental measurement needing validation from ground truth, to a respected tool for Earth scientists representing a fixed bound on the total change and is now an important tool to help unravel the complex dynamics of the Earth system and climate change. In this review, we present the mission concept and its theoretical background, discuss the data and give an overview of the major advances GRACE has provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology and oceanography.
GRACE, time-varying gravity, Earth system dynamics and climate change
International Nuclear Information System (INIS)
Wouters, B; Bonin, J A; Chambers, D P; Riva, R E M; Sasgen, I; Wahr, J
2014-01-01
Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity Recovery And Climate Experiment (GRACE)—can be used to study the exchange of mass both within the Earth and at its surface. Since the launch of the mission in 2002, GRACE data has evolved from being an experimental measurement needing validation from ground truth, to a respected tool for Earth scientists representing a fixed bound on the total change and is now an important tool to help unravel the complex dynamics of the Earth system and climate change. In this review, we present the mission concept and its theoretical background, discuss the data and give an overview of the major advances GRACE has provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology and oceanography. (review article)
Hughes, Kyle M.; Knittel, Jeremy M.; Englander, Jacob A.
2017-01-01
This work presents an automated method of calculating mass (or time) optimal gravity-assist trajectories without a priori knowledge of the flyby-body combination. Since gravity assists are particularly crucial for reaching the outer Solar System, we use the Ice Giants, Uranus and Neptune, as example destinations for this work. Catalogs are also provided that list the most attractive trajectories found over launch dates ranging from 2024 to 2038. The tool developed to implement this method, called the Python EMTG Automated Trade Study Application (PEATSA), iteratively runs the Evolutionary Mission Trajectory Generator (EMTG), a NASA Goddard Space Flight Center in-house trajectory optimization tool. EMTG finds gravity-assist trajectories with impulsive maneuvers using a multiple-shooting structure along with stochastic methods (such as monotonic basin hopping) and may be run with or without an initial guess provided. PEATSA runs instances of EMTG in parallel over a grid of launch dates. After each set of runs completes, the best results within a neighborhood of launch dates are used to seed all other cases in that neighborhood---allowing the solutions across the range of launch dates to improve over each iteration. The results here are compared against trajectories found using a grid-search technique, and PEATSA is found to outperform the grid-search results for most launch years considered.
Cucker-Smale model with normalized communication weights and time delay
Choi, Young-Pil; Haskovec, Jan
2017-01-01
We study a Cucker-Smale-type system with time delay in which agents interact with each other through normalized communication weights. We construct a Lyapunov functional for the system and provide sufficient conditions for asymptotic flocking, i
On some hypersurfaces with time like normal bundle in pseudo Riemannian space forms
International Nuclear Information System (INIS)
Kashani, S.M.B.
1995-12-01
In this work we classify immersed hypersurfaces with constant sectional curvature in pseudo Riemannian space forms if the normal bundle is time like and the mean curvature is constant. (author). 9 refs
Terrestrial gravity data analysis for interim gravity model improvement
1987-01-01
This is the first status report for the Interim Gravity Model research effort that was started on June 30, 1986. The basic theme of this study is to develop appropriate models and adjustment procedures for estimating potential coefficients from terrestrial gravity data. The plan is to use the latest gravity data sets to produce coefficient estimates as well as to provide normal equations to NASA for use in the TOPEX/POSEIDON gravity field modeling program.
Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean
Directory of Open Access Journals (Sweden)
D. P. Chambers
2012-10-01
Full Text Available The latest release of GRACE (Gravity Recovery and Climate Experiment gravity field coefficients (Release-05, or RL05 are evaluated for ocean applications. Data have been processed using the current methodology for Release-04 (RL04 coefficients, and have been compared to output from two different ocean models. Results indicate that RL05 data from the three Science Data Centers – the Center for Space Research (CSR, GeoForschungsZentrum (GFZ, and Jet Propulsion Laboratory (JPL – are more consistent among themselves than the previous RL04 data. Moreover, the variance of residuals with the output of an ocean model is 50–60% lower for RL05 data than for RL04 data. A more optimized destriping algorithm is also tested, which improves the results slightly. By comparing the GRACE maps with two different ocean models, we can better estimate the uncertainty in the RL05 maps. We find the standard error to be about 1 cm (equivalent water thickness in the low- and mid-latitudes, and between 1.5 and 2 cm in the polar and subpolar oceans, which is comparable to estimated uncertainty for the output from the ocean models.
Dynamic divisive normalization predicts time-varying value coding in decision-related circuits.
Louie, Kenway; LoFaro, Thomas; Webb, Ryan; Glimcher, Paul W
2014-11-26
Normalization is a widespread neural computation, mediating divisive gain control in sensory processing and implementing a context-dependent value code in decision-related frontal and parietal cortices. Although decision-making is a dynamic process with complex temporal characteristics, most models of normalization are time-independent and little is known about the dynamic interaction of normalization and choice. Here, we show that a simple differential equation model of normalization explains the characteristic phasic-sustained pattern of cortical decision activity and predicts specific normalization dynamics: value coding during initial transients, time-varying value modulation, and delayed onset of contextual information. Empirically, we observe these predicted dynamics in saccade-related neurons in monkey lateral intraparietal cortex. Furthermore, such models naturally incorporate a time-weighted average of past activity, implementing an intrinsic reference-dependence in value coding. These results suggest that a single network mechanism can explain both transient and sustained decision activity, emphasizing the importance of a dynamic view of normalization in neural coding. Copyright © 2014 the authors 0270-6474/14/3416046-12$15.00/0.
Time-invariant component-based normalization for a simultaneous PET-MR scanner.
Belzunce, M A; Reader, A J
2016-05-07
Component-based normalization is a method used to compensate for the sensitivity of each of the lines of response acquired in positron emission tomography. This method consists of modelling the sensitivity of each line of response as a product of multiple factors, which can be classified as time-invariant, time-variant and acquisition-dependent components. Typical time-variant factors are the intrinsic crystal efficiencies, which are needed to be updated by a regular normalization scan. Failure to do so would in principle generate artifacts in the reconstructed images due to the use of out of date time-variant factors. For this reason, an assessment of the variability and the impact of the crystal efficiencies in the reconstructed images is important to determine the frequency needed for the normalization scans, as well as to estimate the error obtained when an inappropriate normalization is used. Furthermore, if the fluctuations of these components are low enough, they could be neglected and nearly artifact-free reconstructions become achievable without performing a regular normalization scan. In this work, we analyse the impact of the time-variant factors in the component-based normalization used in the Biograph mMR scanner, but the work is applicable to other PET scanners. These factors are the intrinsic crystal efficiencies and the axial factors. For the latter, we propose a new method to obtain fixed axial factors that was validated with simulated data. Regarding the crystal efficiencies, we assessed their fluctuations during a period of 230 d and we found that they had good stability and low dispersion. We studied the impact of not including the intrinsic crystal efficiencies in the normalization when reconstructing simulated and real data. Based on this assessment and using the fixed axial factors, we propose the use of a time-invariant normalization that is able to achieve comparable results to the standard, daily updated, normalization factors used in this
Zhou, Xiao; Yang, Gongliu; Wang, Jing; Wen, Zeyang
2018-05-14
In recent decades, gravity compensation has become an important way to reduce the position error of an inertial navigation system (INS), especially for a high-precision INS, because of the extensive application of high precision inertial sensors (accelerometers and gyros). This paper first deducts the INS's solution error considering gravity disturbance and simulates the results. Meanwhile, this paper proposes a combined gravity compensation method using a simplified gravity model and gravity database. This new combined method consists of two steps all together. Step 1 subtracts the normal gravity using a simplified gravity model. Step 2 first obtains the gravity disturbance on the trajectory of the carrier with the help of ELM training based on the measured gravity data (provided by Institute of Geodesy and Geophysics; Chinese Academy of sciences), and then compensates it into the error equations of the INS, considering the gravity disturbance, to further improve the navigation accuracy. The effectiveness and feasibility of this new gravity compensation method for the INS are verified through vehicle tests in two different regions; one is in flat terrain with mild gravity variation and the other is in complex terrain with fierce gravity variation. During 2 h vehicle tests, the positioning accuracy of two tests can improve by 20% and 38% respectively, after the gravity is compensated by the proposed method.
Blink patterns and lid-contact times in dry-eye and normal subjects
Directory of Open Access Journals (Sweden)
Ousler GW 3rd
2014-05-01
Full Text Available George W Ousler 3rd,1 Mark B Abelson,1,2 Patrick R Johnston,1 John Rodriguez,1 Keith Lane,1 Lisa M Smith11Ora, Andover, MA, USA; 2Department of Ophthalmology, Harvard Medical School, Boston, MA, USAPurpose: To classify blinks in dry eye and normal subjects into six subtypes, and to define the blink rate and duration within each type of blink, as well as the total lid-contact time/minute.Materials and methods: This was a single-centered, prospective, double-blind study of eleven dry-eye and ten normal subjects. Predefined subjects watched a video while blinks were recorded for 10 minutes. Partial blinks were classified by percentage closure of maximal palpebral fissure opening: 25%, 50%, 75%. Complete blinks were characterized as full (>0 seconds, extended (>0.1 seconds, or superextended (>0.5 seconds. The mean duration of each type of blink was determined and standardized per minute as total lid-contact time.Results: Total blinks observed were 4,990 (1,414 normal, 3,756 dry eye: 1,809 (50.59% partial and 1,767 (49.41% complete blinks among dry-eye subjects versus 741 (52.90% partial and 673 (47.60% complete blinks among normal subjects. Only superextended blinks of ≥0.5-second duration were significantly more frequent in dry-eye subjects than normals (2.3% versus 0.2%, respectively; P=0.023. Total contact time was seven times higher in dry-eye subjects than normals (0.565 versus 0.080 seconds, respectively; P<0.001. Isolating only extended blinks (>0.1 second, the average contact time (seconds was four times longer in dry-eye versus normal subjects (2.459 in dry eye, 0.575 in normals; P=0.003. Isolating only superextended blinks (>0.5 seconds, average contact time was also significantly different (7.134 in dry eye, 1.589 in normals; P<0.001. The contact rate for all full closures was 6.4 times longer in dry-eye (0.045 versus 0.007, P<0.001 than normal subjects.Conclusion: Dry-eye subjects spent 4.5% of a
A new modified histogram matching normalization for time series microarray analysis
Astola, L.J.; Molenaar, J.
2014-01-01
Microarray data is often utilized in inferring regulatory networks. Quantile normalization (QN) is a popular method to reduce array-to-array variation. We show that in the context of time series measurements QN may not be the best choice for this task, especially not if the inference is based on
Relative Radiometric Normalization and Atmospheric Correction of a SPOT 5 Time Series
Directory of Open Access Journals (Sweden)
Matthieu Rumeau
2008-04-01
Full Text Available Multi-temporal images acquired at high spatial and temporal resolution are an important tool for detecting change and analyzing trends, especially in agricultural applications. However, to insure a reliable use of this kind of data, a rigorous radiometric normalization step is required. Normalization can be addressed by performing an atmospheric correction of each image in the time series. The main problem is the difficulty of obtaining an atmospheric characterization at a given acquisition date. In this paper, we investigate whether relative radiometric normalization can substitute for atmospheric correction. We develop an automatic method for relative radiometric normalization based on calculating linear regressions between unnormalized and reference images. Regressions are obtained using the reflectances of automatically selected invariant targets. We compare this method with an atmospheric correction method that uses the 6S model. The performances of both methods are compared using 18 images from of a SPOT 5 time series acquired over Reunion Island. Results obtained for a set of manually selected invariant targets show excellent agreement between the two methods in all spectral bands: values of the coefficient of determination (rÃ‚Â² exceed 0.960, and bias magnitude values are less than 2.65. There is also a strong correlation between normalized NDVI values of sugarcane fields (rÃ‚Â² = 0.959. Despite a relative error of 12.66% between values, very comparable NDVI patterns are observed.
Hinderer, J.; Lemoine, Frank G.; Crossley, D.; Boy, J.-P.
2004-01-01
We investigate the time-variable gravity changes in Europe retrieved from the initial GRACE monthly solutions spanning a 18 month duration from April 2002 to October 2003. Gravity anomaly maps are retrieved in Central Europe from the monthly satellite solutions we compare the fields according to various truncation levels (typically between degree 10 and 20) of the initial fields (expressed in spherical harmonics to degree 120). For these different degrees, an empirical orthogonal function (EOF) decomposition of the time-variable gravity field leads us to its main spatial and temporal characteristics. We show that the dominant signal is found to be annual with an amplitude and a phase both in agreement with predictions in Europe modeled using snow and soil-moisture variations from recent hydrology models. We compare these GRACE gravity field changes to surface gravity observations from 6 superconducting gravimeters of the GGP (Global Geodynamics Project) European sub-network, with a special attention to loading corrections. Initial results suggest that all 3 data sets (GRACE, hydrology and GGP) are responding to annual changes in near-surface water in Europe of a few microGal (at length scales of approx.1000 km) that show a high value in winter and a summer minimum. We also point out that the GRACE gravity field evolution seems to indicate that there is a trend in gravity between summer 2002 and summer 2003 which can be related to the 2003 heatwave in Europe and its hydrological consequences (drought). Despite the limited time span of our analysis and the uncertainties in retrieving a regional solution from the network of gravimeters, the calibration and validation aspects of the GRACE data processing based on the annual hydrology cycle in Europe are in progress.
Dziekan, Thomas; Weissbach, Carmen; Voigt, Jan; Ebert, Bernd; MacDonald, Rainer; Bahner, Malte L.; Mahler, Marianne; Schirner, Michael; Berliner, Michael; Berliner, Birgitt; Osel, Jens; Osel, Ilka
2011-07-01
Fluorescence imaging using the dye indocyanine green as a contrast agent was investigated in a prospective clinical study for the detection of rheumatoid arthritis. Normalized variances of correlated time series of fluorescence intensities describing the bolus kinetics of the contrast agent in certain regions of interest were analyzed to differentiate healthy from inflamed finger joints. These values are determined using a robust, parameter-free algorithm. We found that the normalized variance of correlation functions improves the differentiation between healthy joints of volunteers and joints with rheumatoid arthritis of patients by about 10% compared to, e.g., ratios of areas under the curves of raw data.
Search for scalar-tensor gravity theories with a non-monotonic time evolution of the speed-up factor
Energy Technology Data Exchange (ETDEWEB)
Navarro, A [Dept Fisica, Universidad de Murcia, E30071-Murcia (Spain); Serna, A [Dept Fisica, Computacion y Comunicaciones, Universidad Miguel Hernandez, E03202-Elche (Spain); Alimi, J-M [Lab. de l' Univers et de ses Theories (LUTH, CNRS FRE2462), Observatoire de Paris-Meudon, F92195-Meudon (France)
2002-08-21
We present a method to detect, in the framework of scalar-tensor gravity theories, the existence of stationary points in the time evolution of the speed-up factor. An attractive aspect of this method is that, once the particular scalar-tensor theory has been specified, the stationary points are found through a simple algebraic equation which does not contain any integration. By applying this method to the three classes of scalar-tensor theories defined by Barrow and Parsons, we have found several new cosmological models with a non-monotonic evolution of the speed-up factor. The physical interest of these models is that, as previously shown by Serna and Alimi, they predict the observed primordial abundance of light elements for a very wide range of baryon density. These models are then consistent with recent CMB and Lyman-{alpha} estimates of the baryon content of the universe.
Gastric emptying time in normal subjects using /sup 51/Cr and a gamma camera
Energy Technology Data Exchange (ETDEWEB)
Claure, H [Hospital del Salvador, Santiago de Chile; Calderon, C; Braunschweig, T; Diaz, G
1974-12-01
Gastric emptying time of a meal consisting of 2 eggs, 50 g of white bread, and 300 ml of milk, was measured in 10 normal subjects, 5 males and 5 females, with an average age of 34.7 years. 200 uCi of Cr-51 were added to the meal and external counting was performed using a ..gamma.. camera. The rate of gastric emptying was estimated by the decrease in radiation counts over the gastric area. In 68.6 percent of the subjects the mean gastric emptying time was 60 min. The average curve showed a complex exponential slope with 2 distinct phases: a fast one between 0 and 35 min and a slow one between 40 and 60 min. These results suggest that a normal gastric emptying time consists of 2 different rate phases when a meal of mixed consistency (liquid and solid) is ingested.
Identification of genes for normalization of real-time RT-PCR data in breast carcinomas
DEFF Research Database (Denmark)
Lyng, Maria B; Laenkholm, Anne-Vibeke; Pallisgaard, Niels
2008-01-01
BACKGROUND: Quantitative real-time RT-PCR (RT-qPCR) has become a valuable molecular technique in basic and translational biomedical research, and is emerging as an equally valuable clinical tool. Correlation of inter-sample values requires data normalization, which can be accomplished by various...... means, the most common of which is normalization to internal, stably expressed, reference genes. Recently, such traditionally utilized reference genes as GAPDH and B2M have been found to be regulated in various circumstances in different tissues, emphasizing the need to identify genes independent...... of factors influencing the tissue, and that are stably expressed within the experimental milieu. In this study, we identified genes for normalization of RT-qPCR data for invasive breast cancer (IBC), with special emphasis on estrogen receptor positive (ER+) IBC, but also examined their applicability to ER...
Indovina, Iole; Maffei, Vincenzo; Lacquaniti, Francesco
2013-09-01
By simulating self-motion on a virtual rollercoaster, we investigated whether acceleration cued by the optic flow affected the estimate of time-to-passage (TTP) to a target. In particular, we studied the role of a visual acceleration (1 g = 9.8 m/s(2)) simulating the effects of gravity in the scene, by manipulating motion law (accelerated or decelerated at 1 g, constant speed) and motion orientation (vertical, horizontal). Thus, 1-g-accelerated motion in the downward direction or decelerated motion in the upward direction was congruent with the effects of visual gravity. We found that acceleration (positive or negative) is taken into account but is overestimated in module in the calculation of TTP, independently of orientation. In addition, participants signaled TTP earlier when the rollercoaster accelerated downward at 1 g (as during free fall), with respect to when the same acceleration occurred along the horizontal orientation. This time shift indicates an influence of the orientation relative to visual gravity on response timing that could be attributed to the anticipation of the effects of visual gravity on self-motion along the vertical, but not the horizontal orientation. Finally, precision in TTP estimates was higher during vertical fall than when traveling at constant speed along the vertical orientation, consistent with a higher noise in TTP estimates when the motion violates gravity constraints.
Directory of Open Access Journals (Sweden)
Zondag Michelle
2008-10-01
Full Text Available Abstract Background Anticoagulation with warfarin should be stopped 4–6 days before invasive procedures to avoid bleeding complications. Despite this routine, some patients still have high International Normalized Ratio (INR values on the day of surgery and the procedure may be cancelled. We sought to identify easily available clinical characteristics that may influence the rate of normalization of prothrombin time when warfarin is stopped before surgery or invasive procedures. Methods Clinical data were collected retrospectively from consecutive cases from two cohorts, who stopped warfarin 6 days before surgery. An INR value of 1.6 or higher on the day of surgery or requirement for reversal with vitamin K the day before surgery were criteria for slow return (S to normal INR. Results Of 202 patients, 14 (7% were classified as S. Eight of the S-patients required reversal with vitamin K one day before surgery and in another case surgery was cancelled due to high INR. Baseline INR was the only variable significantly associated with classification as S in stepwise logistic regression analysis (p = 0.003. The odds ratio for being in the normal group was 0.27 (95% confidence interval 0.12–0.62 for each unit baseline INR increased. The positive predictive value of baseline INR with a cut off at > 3.0 was only 15% and for INR > 3.5 it was 33%. Conclusion Baseline INR, but not the size of the maintenance dose, is associated with the rate of normalization of prothrombin time after stopping warfarin, but it has limited utility as predictor in clinical practice. Whenever normal hemostasis is considered crucial for the safety, the INR should be checked again before the invasive procedure.
Identification of Reference Genes for Normalizing Quantitative Real-Time PCR in Urechis unicinctus
Bai, Yajiao; Zhou, Di; Wei, Maokai; Xie, Yueyang; Gao, Beibei; Qin, Zhenkui; Zhang, Zhifeng
2018-06-01
The reverse transcription quantitative real-time PCR (RT-qPCR) has become one of the most important techniques of studying gene expression. A set of valid reference genes are essential for the accurate normalization of data. In this study, five candidate genes were analyzed with geNorm, NormFinder, BestKeeper and ΔCt methods to identify the genes stably expressed in echiuran Urechis unicinctus, an important commercial marine benthic worm, under abiotic (sulfide stress) and normal (adult tissues, embryos and larvae at different development stages) conditions. The comprehensive results indicated that the expression of TBP was the most stable at sulfide stress and in developmental process, while the expression of EF- 1- α was the most stable at sulfide stress and in various tissues. TBP and EF- 1- α were recommended as a suitable reference gene combination to accurately normalize the expression of target genes at sulfide stress; and EF- 1- α, TBP and TUB were considered as a potential reference gene combination for normalizing the expression of target genes in different tissues. No suitable gene combination was obtained among these five candidate genes for normalizing the expression of target genes for developmental process of U. unicinctus. Our results provided a valuable support for quantifying gene expression using RT-qPCR in U. unicinctus.
International Nuclear Information System (INIS)
Anderson, Edward
2007-01-01
I apply the preceding paper's emergent semiclassical time approach to geometrodynamics. The analogy between the two papers is useful at the level of the quadratic constraints, while I document the differences between the two due to the underlying differences in their linear constraints. I find that the emergent time-dependent wave equation for the universe in general not a time-dependent Schroedinger equation but rather a more general equation containing second time derivatives, and estimate in which regime this becomes significant. I provide a specific minisuperspace example for my emergent semiclassical time scheme and compare it with the hidden York time scheme. Overall, interesting connections are shown between Newtonian, Leibniz-Mach-Barbour, Wentzel-Kramers-Brillouin (WKB) and cosmic times, while the Euler and York hidden dilational times are argued to be somewhat different from these
Hydrodynamic Cucker-Smale model with normalized communication weights and time delay
Choi, Young-Pil
2017-07-17
We study a hydrodynamic Cucker-Smale-type model with time delay in communication and information processing, in which agents interact with each other through normalized communication weights. The model consists of a pressureless Euler system with time delayed non-local alignment forces. We resort to its Lagrangian formulation and prove the existence of its global in time classical solutions. Moreover, we derive a sufficient condition for the asymptotic flocking behavior of the solutions. Finally, we show the presence of a critical phenomenon for the Eulerian system posed in the spatially one-dimensional setting.
de Rham, Claudia
2014-01-01
We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...
Small intestinal emptying time in normal Beagle dogs: a contrast radiographic study
International Nuclear Information System (INIS)
Miyabayashi, T.; Morgan, J.P.; Atilola, M.A.O.; Muhumuza, L.
1986-01-01
Gastric emptying time and small intestinal transit time in dogs are frequently discussed. However, it is often of interest to the radiologist to know what normal small intestinal emptying times should be. A total of 15 upper gastrointestinal studies was performed on five internal parasite-free, normal, standard Beagle dogs with three studies on each dog, 6 days apart. The ages and weights of the dogs ranged from 2–8 years and from 12.4–13.7 kg, respectively. Following 24-hour fasting, a dose of 10 ml/kg bw of 60% wt/vol barium sulfate suspension was administered through a stomach tube. Then, sequential radiographs were made at 30-minute intervals until the entire contrast medium column was in the colon and cecum. The mean, standard deviation, and range of gastric emptying time, small intestinal transit time, and small intestinal emptying time were 76 ± 16.7 (30–120), 73 ± 16.4 (30–120), and 214 ± 25.1 (180–300) minutes, respectively. This study offers the possibility that small intestinal emptying time may be used to further evaluate patients with suspected small intestinal partial obstruction, pseudo-obstruction, ischemia, or lymphangiectasia
Dufréchou, G.; Tiberi, C.; Martin, R.; Bonvalot, S.; Chevrot, S.; Seoane, L.
2018-04-01
We present a new model of the lithosphere and asthenosphere structure down to 300 km depth beneath the Pyrenees from the joint inversion of recent gravity and teleseismic data. Unlike previous studies, crustal correction were not applied on teleseismic data in order (i) to preserve the consistency between gravity data, which are mainly sensitive to the density structure of the crust.lithosphere, and travel time data, and (ii) to avoid the introduction of biases resulting from crustal reductions. The density model down to 100 km depth is preferentially used here to discuss the lithospheric structure of the Pyrenees, whereas the asthenospheric structure from 100 km to 300 km depth is discussed from our velocity model. The absence of a high density anomaly in our model between 30-100 km depth (except the Labourd density anomaly) in the northern part of the Pyrenees seems to preclude eclogitization of the subducted Iberian crust at the scale of the entire Pyrenean range. Local eclogitization of the deep Pyrenean crust beneath the western part of the Axial Zone (West of Andorra) associated with the positive Central density anomaly is proposed. The Pyrenean lithosphere in density and velocity models appears segmented from East to West. No clear relation between the along-strike segmentation and mapped major faults is visible in our models. The Pyrenees' lithosphere segments are associated to different seismicity pattern in the Pyrenees suggesting a possible relation between the deep structure of the Pyrenees and its seismicity in the upper crust. The concentration of earthquakes localized just straight up the Central density anomaly can result of the subsidence and/or delamination of an eclogitized Pyrenean deep root. The velocity model in the asthenosphere is similar to previous studies. The absence of a high-velocity anomaly in the upper mantle and transition zone (i.e. 125 to 225 km depth) seems to preclude the presence of a detached oceanic lithosphere beneath the
Relaxation time of normal breast tissues. Changes with age and variations during the menstrual cycle
International Nuclear Information System (INIS)
Dean, K.I.; Majurin, M.L.; Komu, M.
1994-01-01
The influence of age on the relaxation times of normal breast parenchyma and its surrounding fatty tissue were evaluated, and the variations during a normal menstrual cycle were analyzed using an ultra low field 0.02 T imager. Thirty-nine healthy volunteers aged 21 to 59 years were examined to determine T1 and T2 relaxation times, and 8 of these volunteers were studied once weekly during one menstrual cycle. The only significant trend was an increase in the T2 of breast parenchyma with increasing age. During the menstrual cycle there was a slight but insignificant (p=0.10) increase in T1 of the breast parenchyma values during the latter half of the menstrual cycle, and a corresponding increase in T2 values between the 2nd and 3rd weeks of the menstrual cycle, which was significant. (orig.)
Relaxation time of normal breast tissues. Changes with age and variations during the menstrual cycle
Energy Technology Data Exchange (ETDEWEB)
Dean, K.I. (University Central Hospital, Turku (Finland). Dept. of Diagnostic Radiology); Majurin, M.L. (University Central Hospital, Turku (Finland). Dept. of Diagnostic Radiology); Komu, M. (University Central Hospital, Turku (Finland). Dept. of Diagnostic Radiology)
1994-05-01
The influence of age on the relaxation times of normal breast parenchyma and its surrounding fatty tissue were evaluated, and the variations during a normal menstrual cycle were analyzed using an ultra low field 0.02 T imager. Thirty-nine healthy volunteers aged 21 to 59 years were examined to determine T1 and T2 relaxation times, and 8 of these volunteers were studied once weekly during one menstrual cycle. The only significant trend was an increase in the T2 of breast parenchyma with increasing age. During the menstrual cycle there was a slight but insignificant (p=0.10) increase in T1 of the breast parenchyma values during the latter half of the menstrual cycle, and a corresponding increase in T2 values between the 2nd and 3rd weeks of the menstrual cycle, which was significant. (orig.).
Time course of dichoptic masking in normals and suppression in amblyopes.
Zhou, Jiawei; McNeal, Suzanne; Babu, Raiju J; Baker, Daniel H; Bobier, William R; Hess, Robert F
2014-04-17
To better understand the relationship between dichoptic masking in normal vision and suppression in amblyopia we address three questions: First, what is the time course of dichoptic masking in normals and amblyopes? Second, is interocular suppression low-pass or band-pass in its spatial dependence? And third, in the above two regards, is dichoptic masking in normals different from amblyopic suppression? We measured the dependence of dichoptic masking in normal controls and amblyopes on the temporal duration of presentation under three conditions; monocular (the nontested eye-i.e., dominant eye of normals or nonamblyopic eye of amblyopes, being patched), dichoptic-luminance (the nontested eye seeing a mean luminance-i.e., a DC component) and dichoptic-contrast (the nontested eye seeing high-contrast visual noise). The subject had to detect a letter in the other eye, the contrast of which was varied. We found that threshold elevation relative to the patched condition occurred in both normals and amblyopes when the nontested eye saw either 1/f or band-pass filtered noise, but not just mean luminance (i.e., there was no masking from the DC component that corresponds to a channel responsive to a spatial frequency of 0 cyc/deg); longer presentation of the target (corresponding to lower temporal frequencies) produced greater threshold elevation. Dichoptic masking exhibits similar properties in both subject groups, being low-pass temporally and band-pass spatially, so that masking was greatest at the longest presentation durations and was not greatly affected by mean luminance in the nontested eye. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Classical Weyl transverse gravity
Energy Technology Data Exchange (ETDEWEB)
Oda, Ichiro [University of the Ryukyus, Department of Physics, Faculty of Science, Nishihara, Okinawa (Japan)
2017-05-15
We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge-fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally invariant scalar tensor gravity and the WTDiff gravity is a ''fake'' symmetry. We find it possible to extend this proof to all matter fields, i.e. the Weyl-invariant scalar, vector and spinor fields. Fourthly, it is explicitly shown that in the WTDiff gravity the Schwarzschild black hole metric and a charged black hole one are classical solutions to the equations of motion only when they are expressed in the Cartesian coordinate system. Finally, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology and provide some exact solutions. (orig.)
Quantum astrometric observables I: time delay in classical and quantum gravity
Khavkine, I.
2012-01-01
A class of diffeomorphism invariant, physical observables, so-called astrometric observables, is introduced. A particularly simple example, the time delay, which expresses the difference between two initially synchronized proper time clocks in relative inertial motion, is analyzed in detail. It is
Directory of Open Access Journals (Sweden)
Wei Jin
2014-02-01
Full Text Available An M5.1 earthquake occurred in Badong County, only 66 km from the Three Gorges Dam, on December 16, 2013. The continuous gravity observation data obtained at Yichang seismostation nearest to the epicenter (96 km were analyzed, and it was found that the continuous gravity observation data obtained in this rainy season did not exhibit a characteristic of seasonal change in gravity identical to that in the past years, and thereafter the M5.1 Badong earthquake occurred. Numerical simulation revealed that the water storage and discharge of the Three Gorges reservoir generated seasonal change in gravity, and the changes in atmospheric pressure and gravity load were not the main sources of the seasonal change of continuous gravity observation data whether in respect of magnitude or phase and did not have obvious breaking change on annual variation before the earthquake. Through analysis of the seasonal change data observed on the same site including cavern temperature, rainfall data and global terrestrial water model (CPC simulated water load, it was thought that, in the observation room with cavern temperature change of only −0.11 °C/a at Yichang seismostation, the seasonal change of continuous gravity observation result mainly originated from the seasonal change in rainfall. In the case that the changes in rainfall and its water load did not have evident breaking change on annual variation law before the earthquake, if the M5.1 Badong earthquake was the cause of the breaking change on annual variation law in Yichang this time, then it was believed through analysis of crust expansion ratio that similar anomaly should occur at a crust expansion and compression intersection, no more than 100 km away from the epicenter.
Minimal theory of massive gravity
International Nuclear Information System (INIS)
De Felice, Antonio; Mukohyama, Shinji
2016-01-01
We propose a new theory of massive gravity with only two propagating degrees of freedom. While the homogeneous and isotropic background cosmology and the tensor linear perturbations around it are described by exactly the same equations as those in the de Rham–Gabadadze–Tolley (dRGT) massive gravity, the scalar and vector gravitational degrees of freedom are absent in the new theory at the fully nonlinear level. Hence the new theory provides a stable nonlinear completion of the self-accelerating cosmological solution that was originally found in the dRGT theory. The cosmological solution in the other branch, often called the normal branch, is also rendered stable in the new theory and, for the first time, makes it possible to realize an effective equation-of-state parameter different from (either larger or smaller than) −1 without introducing any extra degrees of freedom.
Minimal theory of massive gravity
Directory of Open Access Journals (Sweden)
Antonio De Felice
2016-01-01
Full Text Available We propose a new theory of massive gravity with only two propagating degrees of freedom. While the homogeneous and isotropic background cosmology and the tensor linear perturbations around it are described by exactly the same equations as those in the de Rham–Gabadadze–Tolley (dRGT massive gravity, the scalar and vector gravitational degrees of freedom are absent in the new theory at the fully nonlinear level. Hence the new theory provides a stable nonlinear completion of the self-accelerating cosmological solution that was originally found in the dRGT theory. The cosmological solution in the other branch, often called the normal branch, is also rendered stable in the new theory and, for the first time, makes it possible to realize an effective equation-of-state parameter different from (either larger or smaller than −1 without introducing any extra degrees of freedom.
Ellison, Donald H.; Englander, Jacob A.; Conway, Bruce A.
2017-01-01
The multiple gravity assist low-thrust (MGALT) trajectory model combines the medium-fidelity Sims-Flanagan bounded-impulse transcription with a patched-conics flyby model and is an important tool for preliminary trajectory design. While this model features fast state propagation via Keplers equation and provides a pleasingly accurate estimation of the total mass budget for the eventual flight suitable integrated trajectory it does suffer from one major drawback, namely its temporal spacing of the control nodes. We introduce a variant of the MGALT transcription that utilizes the generalized anomaly from the universal formulation of Keplers equation as a decision variable in addition to the trajectory phase propagation time. This results in two improvements over the traditional model. The first is that the maneuver locations are equally spaced in generalized anomaly about the orbit rather than time. The second is that the Kepler propagator now has the generalized anomaly as its independent variable instead of time and thus becomes an iteration-free propagation method. The new algorithm is outlined, including the impact that this has on the computation of Jacobian entries for numerical optimization, and a motivating application problem is presented that illustrates the improvements that this model has over the traditional MGALT transcription.
Directory of Open Access Journals (Sweden)
Linsong Wang
2015-01-01
Full Text Available Time-varying gravity signals, with their nonlinear, non-stationary and multi-scale characteristics, record the physical responses of various geodynamic processes and consist of a blend of signals with various periods and amplitudes, corresponding to numerous phenomena. Superconducting gravimeter (SG records are processed in this study using a multi-scale analytical method and corrected for known effects to reduce noise, to study geodynamic phenomena using their gravimetric signatures. Continuous SG (GWR-C032 gravity and barometric data are decomposed into a series of intrinsic mode functions (IMFs using the ensemble empirical mode decomposition (EEMD method, which is proposed to alleviate some unresolved issues (the mode mixing problem and the end effect of the empirical mode decomposition (EMD. Further analysis of the variously scaled signals is based on a dyadic filter bank of the IMFs. The results indicate that removing the high-frequency IMFs can reduce the natural and man-made noise in the data, which are caused by electronic device noise, Earth background noise and the residual effects of pre-processing. The atmospheric admittances based on frequency changes are estimated from the gravity and the atmospheric pressure IMFs in various frequency bands. These time- and frequency-dependent admittance values can be used effectively to improve the atmospheric correction. Using the EEMD method as a filter, the long-period IMFs are extracted from the SG time-varying gravity signals spanning 7 years. The resulting gravity residuals are well correlated with the gravity effect caused by the _ polar motion after correcting for atmospheric effects.
Directory of Open Access Journals (Sweden)
Valeria Musella
Full Text Available BACKGROUND: Genome-wide gene expression analyses of tumors are a powerful tool to identify gene signatures associated with biologically and clinically relevant characteristics and for several tumor types are under clinical validation by prospective trials. However, handling and processing of clinical specimens may significantly affect the molecular data obtained from their analysis. We studied the effects of tissue handling time on gene expression in human normal and tumor colon tissues undergoing routine surgical procedures. METHODS: RNA extracted from specimens of 15 patients at four time points (for a total of 180 samples after surgery was analyzed for gene expression on high-density oligonucleotide microarrays. A mixed-effects model was used to identify probes with different expression means across the four different time points. The p-values of the model were adjusted with the Bonferroni method. RESULTS: Thirty-two probe sets associated with tissue handling time in the tumor specimens, and thirty-one in the normal tissues, were identified. Most genes exhibited moderate changes in expression over the time points analyzed; however four of them were oncogenes, and two confirmed the effect of tissue handling by independent validation. CONCLUSIONS: Our results suggest that a critical time point for tissue handling in colon seems to be 60 minutes at room temperature. Although the number of time-dependent genes we identified was low, the three genes that already showed changes at this time point in tumor samples were all oncogenes, hence recommending standardization of tissue-handling protocols and effort to reduce the time from specimen removal to snap freezing accounting for warm ischemia in this tumor type.
Towards the entropy of gravity time-dependent models via the Cardy-Verlinde formula
International Nuclear Information System (INIS)
Obregon, Octavio; Patino, Leonardo; Quevedo, Hernando
2003-01-01
For models with several time-dependent components, generalized entropies can be defined. This is shown for the Bianchi type IX model. We first derive the Cardy-Verlinde formula under the assumption that the first law of thermodynamics is valid. This leads to an explicit expression of the total entropy associated with this type of universe. Assuming the validity of the Cardy entropy formula, we obtain expressions for the corresponding Bekenstein, Bekenstein-Hawking and Hubble entropies. We discuss the validity of the Cardy-Verlinde formula and possible extensions of the outlined procedure to other time-dependent models
Cucker-Smale model with normalized communication weights and time delay
Choi, Young-Pil
2017-03-06
We study a Cucker-Smale-type system with time delay in which agents interact with each other through normalized communication weights. We construct a Lyapunov functional for the system and provide sufficient conditions for asymptotic flocking, i.e., convergence to a common velocity vector. We also carry out a rigorous limit passage to the mean-field limit of the particle system as the number of particles tends to infinity. For the resulting Vlasov-type equation we prove the existence, stability and large-time behavior of measure-valued solutions. This is, to our best knowledge, the first such result for a Vlasov-type equation with time delay. We also present numerical simulations of the discrete system with few particles that provide further insights into the flocking and oscillatory behaviors of the particle velocities depending on the size of the time delay.
Operator-normalized quantum arrival times in the presence of interactions
International Nuclear Information System (INIS)
Hegerfeldt, G.C.; Seidel, D.; Muga, J.G.; Navarro, B.
2004-01-01
We model ideal arrival-time measurements for free quantum particles and for particles subject to an external interaction by means of a narrow and weak absorbing potential. This approach is related to the operational approach of measuring the first photon emitted from a two-level atom illuminated by a laser. By operator normalizing the resulting time-of-arrival distribution, a distribution is obtained which for freely moving particles not only recovers the axiomatically derived distribution of Kijowski for states with purely positive momenta but is also applicable to general momentum components. For particles interacting with a square barrier the mean arrival time and corresponding 'tunneling time' obtained at the transmission side of the barrier become independent of the barrier width (Hartman effect) for arbitrarily wide barriers, i.e., without the transition to the ultraopaque, classical-like regime dominated by wave packet components above the barrier
Calvo, M.; Hinderer, J.; Rosat, S.; Legros, H.; Boy, J.-P.; Ducarme, B.; Zürn, W.
2017-05-01
In the paper ;Time stability of spring and superconducting gravimeters through the analysis of very long gravity record; by M. Calvo et al. (J. Geodyn. Vol. 80, pp. 20-33, doi:10.1016/j.jog.2014.04.009), Figs. 13 and 16 are incorrect.
Gastón, Martín; Fernández-Peruchena, Carlos; Körnich, Heiner; Landelius, Tomas
2017-06-01
The present work describes the first approach of a new procedure to forecast Direct Normal Irradiance (DNI): the #hashtdim that treats to combine ground information and Numerical Weather Predictions. The system is centered in generate predictions for the very short time. It combines the outputs from the Numerical Weather Prediction Model HARMONIE with an adaptive methodology based on Machine Learning. The DNI predictions are generated with 15-minute and hourly temporal resolutions and presents 3-hourly updates. Each update offers forecasts to the next 12 hours, the first nine hours are generated with 15-minute temporal resolution meanwhile the last three hours present hourly temporal resolution. The system is proved over a Spanish emplacement with BSRN operative station in south of Spain (PSA station). The #hashtdim has been implemented in the framework of the Direct Normal Irradiance Nowcasting methods for optimized operation of concentrating solar technologies (DNICast) project, under the European Union's Seventh Programme for research, technological development and demonstration framework.
On the Physiology of Normal Swallowing as Revealed by Magnetic Resonance Imaging in Real Time
Directory of Open Access Journals (Sweden)
Arno Olthoff
2014-01-01
Full Text Available The aim of this study was to assess the physiology of normal swallowing using recent advances in real-time magnetic resonance imaging (MRI. Therefore ten young healthy subjects underwent real-time MRI and flexible endoscopic evaluations of swallowing (FEES with thickened pineapple juice as oral contrast bolus. MRI movies were recorded in sagittal, coronal, and axial orientations during successive swallows at about 25 frames per second. Intermeasurement variation was analyzed and comparisons between real-time MRI and FEES were performed. Twelve distinct swallowing events could be quantified by real-time MRI (start time, end time, and duration. These included five valve functions: oro-velar opening, velo-pharyngeal closure, glottal closure, epiglottic retroflexion, and esophageal opening; three bolus transports: oro-velar transit, pharyngeal delay, pharyngeal transit; and four additional events: laryngeal ascent, laryngeal descent, vallecular, and piriform sinus filling and pharyngeal constriction. Repetitive measurements confirmed the general reliability of the MRI method with only two significant differences for the start times of the velo-pharyngeal closure (t(8=-2.4, P≤0.046 and laryngeal ascent (t(8=-2.6, P≤0.031. The duration of the velo-pharyngeal closure was significantly longer in real-time MRI compared to FEES (t(8=-3.3, P≤0.011. Real-time MRI emerges as a simple, robust, and reliable tool for obtaining comprehensive functional and anatomical information about the swallowing process.
Time course of auditory streaming: Do CI users differ from normal-hearing listeners?
Directory of Open Access Journals (Sweden)
Martin eBöckmann-Barthel
2014-07-01
Full Text Available In a complex acoustical environment with multiple sound sources the auditory system uses streaming as a tool to organize the incoming sounds in one or more streams depending on the stimulus parameters. Streaming is commonly studied by alternating sequences of signals. These are often tones with different frequencies. The present study investigates stream segregation in cochlear implant (CI users, where hearing is restored by electrical stimulation of the auditory nerve. CI users listened to 30-s long sequences of alternating A and B harmonic complexes at four different fundamental frequency separations, ranging from 2 to 14 semitones. They had to indicate as promptly as possible after sequence onset, if they perceived one stream or two streams and, in addition, any changes of the percept throughout the rest of the sequence. The conventional view is that the initial percept is always that of a single stream which may after some time change to a percept of two streams. This general build-up hypothesis has recently been challenged on the basis of a new analysis of data of normal-hearing listeners which showed a build-up response only for an intermediate frequency separation. Using the same experimental paradigm and analysis, the present study found that the results of CI users agree with those of the normal-hearing listeners: (i the probability of the first decision to be a one-stream percept decreased and that of a two-stream percept increased as Δf increased, and (ii a build-up was only found for 6 semitones. Only the time elapsed before the listeners made their first decision of the percept was prolonged as compared to normal-hearing listeners. The similarity in the data of the CI user and the normal-hearing listeners indicates that the quality of stream formation is similar in these groups of listeners.
Human Performance in Simulated Reduced Gravity Environments
Cowley, Matthew; Harvill, Lauren; Rajulu, Sudhakar
2014-01-01
NASA is currently designing a new space suit capable of working in deep space and on Mars. Designing a suit is very difficult and often requires trade-offs between performance, cost, mass, and system complexity. Our current understanding of human performance in reduced gravity in a planetary environment (the moon or Mars) is limited to lunar observations, studies from the Apollo program, and recent suit tests conducted at JSC using reduced gravity simulators. This study will look at our most recent reduced gravity simulations performed on the new Active Response Gravity Offload System (ARGOS) compared to the C-9 reduced gravity plane. Methods: Subjects ambulated in reduced gravity analogs to obtain a baseline for human performance. Subjects were tested in lunar gravity (1.6 m/sq s) and Earth gravity (9.8 m/sq s) in shirt-sleeves. Subjects ambulated over ground at prescribed speeds on the ARGOS, but ambulated at a self-selected speed on the C-9 due to time limitations. Subjects on the ARGOS were given over 3 minutes to acclimate to the different conditions before data was collected. Nine healthy subjects were tested in the ARGOS (6 males, 3 females, 79.5 +/- 15.7 kg), while six subjects were tested on the C-9 (6 males, 78.8 +/- 11.2 kg). Data was collected with an optical motion capture system (Vicon, Oxford, UK) and was analyzed using customized analysis scripts in BodyBuilder (Vicon, Oxford, UK) and MATLAB (MathWorks, Natick, MA, USA). Results: In all offloaded conditions, variation between subjects increased compared to 1-g. Kinematics in the ARGOS at lunar gravity resembled earth gravity ambulation more closely than the C-9 ambulation. Toe-off occurred 10% earlier in both reduced gravity environments compared to earth gravity, shortening the stance phase. Likewise, ankle, knee, and hip angles remained consistently flexed and had reduced peaks compared to earth gravity. Ground reaction forces in lunar gravity (normalized to Earth body weight) were 0.4 +/- 0.2 on
Stringy models of modified gravity: space-time defects and structure formation
International Nuclear Information System (INIS)
Mavromatos, Nick E.; Sakellariadou, Mairi; Yusaf, Muhammad Furqaan
2013-01-01
Starting from microscopic models of space-time foam, based on brane universes propagating in bulk space-times populated by D0-brane defects (''D-particles''), we arrive at effective actions used by a low-energy observer on the brane world to describe his/her observations of the Universe. These actions include, apart from the metric tensor field, also scalar (dilaton) and vector fields, the latter describing the interactions of low-energy matter on the brane world with the recoiling point-like space-time defect (D-particle). The vector field is proportional to the recoil velocity of the D-particle and as such it satisfies a certain constraint. The vector breaks locally Lorentz invariance, which however is assumed to be conserved on average in a space-time foam situation, involving the interaction of matter with populations of D-particle defects. In this paper we clarify the role of fluctuations of the vector field on structure formation and galactic growth. In particular we demonstrate that, already at the end of the radiation era, the (constrained) vector field associated with the recoil of the defects provides the seeds for a growing mode in the evolution of the Universe. Such a growing mode survives during the matter dominated era, provided the variance of the D-particle recoil velocities on the brane is larger than a critical value. We note that in this model, as a result of specific properties of D-brane dynamics in the bulk, there is no issue of overclosing the brane Universe for large defect densities. Thus, in these models, the presence of defects may be associated with large-structure formation. Although our string inspired models do have (conventional, from a particle physics point of view) dark matter components, nevertheless it is interesting that the role of ''extra'' dark matter is also provided by the population of massive defects. This is consistent with the weakly interacting character of the D-particle defects, which predominantly interact only
International Nuclear Information System (INIS)
Carneiro, T.; Cescon, T.
1982-01-01
The influence of normalizing time and temperature, as well as the plate thickness, on the impact properties of ASTM A-516 grade 70 steel, is studied. Results show that different normalizing conditions may lead to equivalent microstructure with different impact properties. Normalizing conditions that cause low cooling rate in the critical zone exhibit banded microstructure with inferior impact properties. (Author) [pt
Time-dependent local-to-normal mode transition in triatomic molecules
Cruz, Hans; Bermúdez-Montaña, Marisol; Lemus, Renato
2018-01-01
Time-evolution of the vibrational states of two interacting harmonic oscillators in the local mode scheme is presented. A local-to-normal mode transition (LNT) is identified and studied from temporal perspective through time-dependent frequencies of the oscillators. The LNT is established as a polyad-breaking phenomenon from the local standpoint for the stretching degrees of freedom in a triatomic molecule. This study is carried out in the algebraic representation of bosonic operators. The dynamics of the states are determined via the solutions of the corresponding nonlinear Ermakov equation and a local time-dependent polyad is obtained as a tool to identify the LNT. Applications of this formalism to H2O, CO2, O3 and NO2 molecules in the adiabatic, sudden and linear regime are considered.
Response to gravity by Zea mays seedlings. I. Time course of the response
Bandurski, R. S.; Schulze, A.; Dayanandan, P.; Kaufman, P. B.
1984-01-01
Gravistimulation induces an asymmetric distribution of free indole-3-acetic acid (IAA) in the cortex-epidermis of the Zea mays L. cv 'Stowells Evergreen' mesocotyl within 15 minutes, the shortest time tested. IAA was measured by an isotope dilution method as the pentaflurobenzyl ester. The per cent IAA in the lower half of the mescotyl cortex was 56 to 57% at 15, 30, and 90 minutes after stimulus initiation. Curvature is detectable in the mescotyl within 3 minutes after beginning gravitropic stimulation. The rate of curvature of the mesocotyl increases during the first 60 minutes to maximum of about 30 degrees per hour. Thus, the growth asymmetry continues to increase for 45 minutes after hormone asymmetry is established. Free IAA occurs predominantly in the stele of the mesocotyl whereas esterified IAA is mainly in the mesocotyl cortex-epidermis. This compartmentation may permit determining in which tissue the hormone asymmetry arises. Current data suggest the asymmetry originated in the stele.
Coherent states for FLRW space-times in loop quantum gravity
International Nuclear Information System (INIS)
Magliaro, Elena; Perini, Claudio; Marciano, Antonino
2011-01-01
We construct a class of coherent spin-network states that capture properties of curved space-times of the Friedmann-Lamaitre-Robertson-Walker type on which they are peaked. The data coded by a coherent state are associated to a cellular decomposition of a spatial (t=const) section with a dual graph given by the complete five-vertex graph, though the construction can be easily generalized to other graphs. The labels of coherent states are complex SL(2,C) variables, one for each link of the graph, and are computed through a smearing process starting from a continuum extrinsic and intrinsic geometry of the canonical surface. The construction covers both Euclidean and Lorentzian signatures; in the Euclidean case and in the limit of flat space we reproduce the simplicial 4-simplex semiclassical states used in spin foams.
Massive bosons interacting with gravity: No standard solutions in Robertson-Walker space-time
International Nuclear Information System (INIS)
Zecca, A.
2009-01-01
The problem of the interaction of boson and gravitational field is formulated in the Robertson-Walker space-time. It consist the simultaneous solution of the boson and of the Einstein field equation whose source is the energy momentum tensor of the boson field. By direct verification it is shown that the problem does not admit solutions in the class of massive standard solutions, previously determined, of the boson field equation. Also there cannot be solutions, in case of massive interacting boson, that are superpositions of standard solutions. The case of massless boson field is left open. The result is essentially due to the very special form of the Einstein tensor in Robertson-Walker metric.
Real-time monitoring of high-gravity corn mash fermentation using in situ raman spectroscopy.
Gray, Steven R; Peretti, Steven W; Lamb, H Henry
2013-06-01
In situ Raman spectroscopy was employed for real-time monitoring of simultaneous saccharification and fermentation (SSF) of corn mash by an industrial strain of Saccharomyces cerevisiae. An accurate univariate calibration model for ethanol was developed based on the very strong 883 cm(-1) C-C stretching band. Multivariate partial least squares (PLS) calibration models for total starch, dextrins, maltotriose, maltose, glucose, and ethanol were developed using data from eight batch fermentations and validated using predictions for a separate batch. The starch, ethanol, and dextrins models showed significant prediction improvement when the calibration data were divided into separate high- and low-concentration sets. Collinearity between the ethanol and starch models was avoided by excluding regions containing strong ethanol peaks from the starch model and, conversely, excluding regions containing strong saccharide peaks from the ethanol model. The two-set calibration models for starch (R(2) = 0.998, percent error = 2.5%) and ethanol (R(2) = 0.999, percent error = 2.1%) provide more accurate predictions than any previously published spectroscopic models. Glucose, maltose, and maltotriose are modeled to accuracy comparable to previous work on less complex fermentation processes. Our results demonstrate that Raman spectroscopy is capable of real time in situ monitoring of a complex industrial biomass fermentation. To our knowledge, this is the first PLS-based chemometric modeling of corn mash fermentation under typical industrial conditions, and the first Raman-based monitoring of a fermentation process with glucose, oligosaccharides and polysaccharides present. Copyright © 2013 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Akarsu, Özgür; Dereli, Tekin
2013-01-01
We present cosmological solutions for (1+3+n)-dimensional steady state universe in dilaton gravity with an arbitrary dilaton coupling constant w and exponential dilaton self-interaction potentials in the string frame. We focus particularly on the class in which the 3-space expands with a time varying deceleration parameter. We discuss the number of the internal dimensions and the value of the dilaton coupling constant to determine the cases that are consistent with the observed universe and the primordial nucleosynthesis. The 3-space starts with a decelerated expansion rate and evolves into accelerated expansion phase subject to the values of w and n, but ends with a Big Rip in all cases. We discuss the cosmological evolution in further detail for the cases w = 1 and w = ½ that permit exact solutions. We also comment on how the universe would be conceived by an observer in four dimensions who is unaware of the internal dimensions and thinks that the conventional general relativity is valid at cosmological scales
Akarsu, Özgür; Dereli, Tekin
2013-02-01
We present cosmological solutions for (1+3+n)-dimensional steady state universe in dilaton gravity with an arbitrary dilaton coupling constant w and exponential dilaton self-interaction potentials in the string frame. We focus particularly on the class in which the 3-space expands with a time varying deceleration parameter. We discuss the number of the internal dimensions and the value of the dilaton coupling constant to determine the cases that are consistent with the observed universe and the primordial nucleosynthesis. The 3-space starts with a decelerated expansion rate and evolves into accelerated expansion phase subject to the values of w and n, but ends with a Big Rip in all cases. We discuss the cosmological evolution in further detail for the cases w = 1 and w = ½ that permit exact solutions. We also comment on how the universe would be conceived by an observer in four dimensions who is unaware of the internal dimensions and thinks that the conventional general relativity is valid at cosmological scales.
Sahoo, P. K.; Sahoo, Parbati; Bishi, Binaya K.; Aygün, Sezgin
2018-04-01
In this paper, we have studied homogeneous and anisotropic locally rotationally symmetric (LRS) Bianchi type-I model with magnetized strange quark matter (MSQM) distribution and cosmological constant Λ in f(R, T) gravity where R is the Ricci scalar and T the trace of matter source. The exact solutions of the field equations are obtained under bilinear and special form of time varying deceleration parameter (DP). Firstly, we have considered two specific forms of bilinear DP with a single parameter of the form: q = α(1-t)/1+t and q = -αt/1+t, which leads to the constant or linear nature of the function based on the constant α. Second one is the special form of the DP as q = - 1 + β/1+aβ. From the results obtained here, one can observe that in the early universe magnetic flux has more effects and it reduces gradually in the later stage. For t → ∞, we get p → -Bc and ρ → Bc. The behaviour of strange quark matter along with magnetic epoch gives an idea of accelerated expansion of the universe as per the observations of the type Ia Supernovae.
T2 relaxation time in MR imaging of normal and abnormal lung parenchyma
International Nuclear Information System (INIS)
Mayo, J.R.; McKay, A.; Mueller, N.L.
1990-01-01
To measure the T2 relaxation times of normal and abnormal lung parenchyma and to evaluate the influence of field strength and lung inflation on T2. Five healthy volunteers and five patients with diffuse lung disease were imaged at 0.15 and 1.5 T. Excised normal pig lung was imaged at 0.15 and 1.5 T and analyzed in a spectrometer at 2.0 T. Single-echo (Hahn) pulse sequences (TR, 2,000 msec; TE, 20, 40, 60, 80, and 100 msec) were compared with multiecho trains (Carr-Purcell-Meiboom-Gill [CPMG] at 0.15 T (TR, 2,000 msec; TE, 20-40-60... 240 msec) and 2.0 T (TR, 2,000 msec; TE, 1, 2, 3,..., 10msec). T2 relaxation times calculated from single-echo sequences showed considerable variation between 0.15 and 2.0 T. T2 also changed with lung inflation. However, the T2 measurements on CPMG sequences did not change significantly (P > .05) with field strength and were only minimally affected by lung inflation. The mean ± SD T2 values for normal lung were 99 ± 8 and for abnormal lung were 84 ± 17. Lung parenchyma T2 measurements obtained with the use of conventional single-echo pulse sequences are variable and inaccurate because of inflation and field strength dependent magnetic susceptibility effects that lead to rapid nonrecoverable dephasing. The results indicate that multiecho sequences with appropriately short echo spacings yield more reproducible determinations of T2, which are independent of field strength and less dependent on lung inflation
Poland, Michael P.; Carbone, Daniele
2016-01-01
Continuous gravity data collected near the summit eruptive vent at Kīlauea Volcano, Hawaiʻi, during 2011–2015 show a strong correlation with summit-area surface deformation and the level of the lava lake within the vent over periods of days to weeks, suggesting that changes in gravity reflect variations in volcanic activity. Joint analysis of gravity and lava level time series data indicates that over the entire time period studied, the average density of the lava within the upper tens to hundreds of meters of the summit eruptive vent remained low—approximately 1000–1500 kg/m3. The ratio of gravity change (adjusted for Earth tides and instrumental drift) to lava level change measured over 15 day windows rose gradually over the course of 2011–2015, probably reflecting either (1) a small increase in the density of lava within the eruptive vent or (2) an increase in the volume of lava within the vent due to gradual vent enlargement. Superimposed on the overall time series were transient spikes of mass change associated with inflation and deflation of Kīlauea's summit and coincident changes in lava level. The unexpectedly strong mass variations during these episodes suggest magma flux to and from the shallow magmatic system without commensurate deformation, perhaps indicating magma accumulation within, and withdrawal from, void space—a process that might not otherwise be apparent from lava level and deformation data alone. Continuous gravity data thus provide unique insights into magmatic processes, arguing for continued application of the method at other frequently active volcanoes.
Directory of Open Access Journals (Sweden)
J. Ambjørn
1995-07-01
Full Text Available The 2-point function is the natural object in quantum gravity for extracting critical behavior: The exponential falloff of the 2-point function with geodesic distance determines the fractal dimension dH of space-time. The integral of the 2-point function determines the entropy exponent γ, i.e. the fractal structure related to baby universes, while the short distance behavior of the 2-point function connects γ and dH by a quantum gravity version of Fisher's scaling relation. We verify this behavior in the case of 2d gravity by explicit calculation.
International Nuclear Information System (INIS)
Yomogida, Yoshiki; Sato, Yuki; Nozaki, Ryusuke; Mishina, Tomobumi; Nakahara, Jun'ichiro
2010-01-01
Using terahertz (THz) time-domain spectroscopy, we measured the complex permittivity of some normal (1-propanol, 1-butanol, and 1-pentanol) and secondary alcohols (2-propanol, 2-butanol, and 2-pentanol) in the frequency ranges from 0.2 to 2.5 THz at temperatures from 253 to 323 K. For all the samples, the complex permittivity in the THz region includes the following three components: (i) a high frequency side of dielectric relaxation processes, (ii) a broad mode around 1 THz, and (iii) a low frequency side of an intermolecular vibration mode located above 2.5 THz. The mode around 1 THz is recognized as a boson peak which is related to the local structure of disordered materials. The intensity of the boson peak in secondary alcohols is higher than that in normal alcohols. On the other hand, the number of carbon atoms slightly affects the appearance of the boson peak. These observations indicate that the position of an OH group in a molecule has a profound effect on the local structures in monohydric alcohols.
Assessment of retinal sensitivity using a time-saving strategy in normal individuals
Directory of Open Access Journals (Sweden)
Suzumura H
2012-11-01
Full Text Available Hirotaka Suzumura,1 Keiji Yoshikawa,2 Shiro Mizoue,3 Ryoko Hyodo,4 Tairo Kimura5 1Eye Department, Nakano General Hospital, Tokyo, 2Yoshikawa Eye Clinic, Tokyo, 3Department of Ophthalmology, Ehime University, Ehime, 4Eye Department, Minami Matsuyama Hospital, Ehime, 5Ueno Eye Clinic, Tokyo, JapanBackground: The purpose of this study was to compare retinal sensitivities in normal individuals obtained using the Swedish Interactive Threshold Algorithm Standard (SITA-S on the Humphrey field analyzer with those obtained using the Dynamic strategy on the Octopus.Methods: Prior to visual field examinations, the background luminance, stimulus size, and exposure time with the Octopus 101 were conformed to the Humphrey field analyzer II settings. Volunteers over 20 years of age without apparent ophthalmic abnormalities were examined with the SITA-S central 30-2 program followed by the Dynamic 32 program. Eye with corrected visual acuity ≥0.8, refraction ≥ −6.0 diopters, and fields with satisfactory levels of reliability in SITA-S and Dynamic were selected.Results: Sixty-seven eyes from 67 normal individuals of mean age 51.3 ± 16.3 (range 22–76 years satisfied the selection criteria and were analyzed. Mean retinal sensitivity was significantly (P < 0.0001 higher with SITA-S (29.0 ± 2.4 dB than with Dynamic (26.8 ± 2.1 dB. Changes in retinal sensitivity with increasing age were significantly (P = 0.0003 greater with Dynamic (−0.09 ± 0.04 dB/year; 95% confidence interval [CI] −0.10 to −0.08 dB/year than with SITA-S (−0.07 ± 0.04 dB/year, 95% CI −0.08 to −0.06 dB/year. When classifying the visual field into three areas (central, mid-peripheral, and peripheral, retinal sensitivities with SITA-S were significantly higher in all areas than with Dynamic (P < 0.0001 for all three areas.Conclusion: Differences in Dynamic and SITA-S strategies may contribute to the differences in retinal sensitivities observed in normal individuals
[Estimation of the atrioventricular time interval by pulse Doppler in the normal fetal heart].
Hamela-Olkowska, Anita; Dangel, Joanna
2009-08-01
To assess normative values of the fetal atrioventricular (AV) time interval by pulse-wave Doppler methods on 5-chamber view. Fetal echocardiography exams were performed using Acuson Sequoia 512 in 140 singleton fetuses at 18 to 40 weeks of gestation with sinus rhythm and normal cardiac and extracardiac anatomy. Pulsed Doppler derived AV intervals were measured from left ventricular inflow/outflow view using transabdominal convex 3.5-6 MHz probe. The values of AV time interval ranged from 100 to 150 ms (mean 123 +/- 11.2). The AV interval was negatively correlated with the heart rhythm (page of gestation (p=0.007). However, in the same subgroup of the fetal heart rate there was no relation between AV intervals and gestational age. Therefore, the AV intervals showed only the heart rate dependence. The 95th percentiles of AV intervals according to FHR ranged from 135 to 148 ms. 1. The AV interval duration was negatively correlated with the heart rhythm. 2. Measurement of AV time interval is easy to perform and has a good reproducibility. It may be used for the fetal heart block screening in anti-Ro and anti-La positive pregnancies. 3. Normative values established in the study may help obstetricians in assessing fetal abnormalities of the AV conduction.
Massive gravity from bimetric gravity
International Nuclear Information System (INIS)
Baccetti, Valentina; Martín-Moruno, Prado; Visser, Matt
2013-01-01
We discuss the subtle relationship between massive gravity and bimetric gravity, focusing particularly on the manner in which massive gravity may be viewed as a suitable limit of bimetric gravity. The limiting procedure is more delicate than currently appreciated. Specifically, this limiting procedure should not unnecessarily constrain the background metric, which must be externally specified by the theory of massive gravity itself. The fact that in bimetric theories one always has two sets of metric equations of motion continues to have an effect even in the massive gravity limit, leading to additional constraints besides the one set of equations of motion naively expected. Thus, since solutions of bimetric gravity in the limit of vanishing kinetic term are also solutions of massive gravity, but the contrary statement is not necessarily true, there is no complete continuity in the parameter space of the theory. In particular, we study the massive cosmological solutions which are continuous in the parameter space, showing that many interesting cosmologies belong to this class. (paper)
Ordinary matter, dark matter, and dark energy on normal Zeeman space-times
Imre Szabó, Zoltán
2017-01-01
Zeeman space-times are new, relativistic, and operator based Hamiltonian models representing multi-particle systems. They are established on Lorentzian pseudo Riemannian manifolds whose Laplacian immediately appears in the form of original quantum physical wave operators. In classical quantum theory they emerge, differently, from the Hamilton formalism and the correspondence principle. Nonetheless, this new model does not just reiterate the well known conceptions but holds the key to solving open problems of quantum theory. Most remarkably, it represents the dark matter, dark energy, and ordinary matter by the same ratios how they show up in experiments. Another remarkable agreement with reality is that the ordinary matter appears to be non-expanding and is described in consent with observations. The theory also explains gravitation, moreover, the Hamilton operators of all energy and matter formations, together with their physical properties, are solely derived from the Laplacian of the Zeeman space-time. By this reason, it is called Monistic Wave Laplacian which symbolizes an all-comprehensive unification of all matter and energy formations. This paper only outlines the normal case where the particles do not have proper spin but just angular momentum. The complete anomalous theory is detailed in [Sz2, Sz3, Sz4, Sz5, Sz6, Sz7].
Timing of left heart base descent in dogs with dilated cardiomyopathy and normal dogs.
Simpson, Kerry E; Devine, Bryan C; Woolley, Richard; Corcoran, Brendan M; French, Anne T
2008-01-01
The identification and assessment of myocardial failure in canine idiopathic dilated cardiomyopathy (DCM) is achieved using a variety of two-dimensional and Doppler echocardiographic techniques. More recently, the availability of tissue Doppler imaging (TDI) has raised the potential for development of new ways of more accurately identifying a disease phenotype. Nevertheless, TDI has not been universally adapted to veterinary clinical cardiology primarily because of the lack of information on its utility in diagnosis. We assessed the application of timing of left heart base descent using TDI in the identification of differences between DCM and normal dogs. The times from the onset of the QRS complex on a simultaneously recorded electrocardiograph to the onset (Q--S'), peak (Q--peak S'), and end (Q--end S') of the systolic velocity peak were measured in the interventricular septum (IVS) and the left ventricular free wall. The duration of S' was also calculated. The Q--S' (FW), Q--end S' (FW), and duration S' (FW) were correlated with ejection fraction in the diseased group (P canine DCM and identifies new TDI parameters that can be added to the range of Doppler and echocardiographic parameters used for detecting myocardial failure in the dog.
Gravity Field Parameter Estimation Using QR Factorization
Klokocnik, J.; Wagner, C. A.; McAdoo, D.; Kostelecky, J.; Bezdek, A.; Novak, P.; Gruber, C.; Marty, J.; Bruinsma, S. L.; Gratton, S.; Balmino, G.; Baboulin, M.
2007-12-01
This study compares the accuracy of the estimated geopotential coefficients when QR factorization is used instead of the classical method applied at our institute, namely the generation of normal equations that are solved by means of Cholesky decomposition. The objective is to evaluate the gain in numerical precision, which is obtained at considerable extra cost in terms of computer resources. Therefore, a significant increase in precision must be realized in order to justify the additional cost. Numerical simulations were done in order to examine the performance of both solution methods. Reference gravity gradients were simulated, using the EIGEN-GL04C gravity field model to degree and order 300, every 3 seconds along a near-circular, polar orbit at 250 km altitude. The simulation spanned a total of 60 days. A polar orbit was selected in this simulation in order to avoid the 'polar gap' problem, which causes inaccurate estimation of the low-order spherical harmonic coefficients. Regularization is required in that case (e.g., the GOCE mission), which is not the subject of the present study. The simulated gravity gradients, to which white noise was added, were then processed with the GINS software package, applying EIGEN-CG03 as the background gravity field model, followed either by the usual normal equation computation or using the QR approach for incremental linear least squares. The accuracy assessment of the gravity field recovery consists in computing the median error degree-variance spectra, accumulated geoid errors, geoid errors due to individual coefficients, and geoid errors calculated on a global grid. The performance, in terms of memory usage, required disk space, and CPU time, of the QR versus the normal equation approach is also evaluated.
Directory of Open Access Journals (Sweden)
Barceló Carlos
2005-12-01
Full Text Available Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.
Alvarez, Enrique
2004-01-01
Gravitons should have momentum just as photons do; and since graviton momentum would cause compression rather than elongation of spacetime outside of matter; it does not appear that gravitons are compatible with Swartzchild's spacetime curvature. Also, since energy is proportional to mass, and mass is proportional to gravity; the energy of matter is proportional to gravity. The energy of matter could thus contract space within matter; and because of the inter-connectedness of space, cause the...
Zero cosmological constant from normalized general relativity
International Nuclear Information System (INIS)
Davidson, Aharon; Rubin, Shimon
2009-01-01
Normalizing the Einstein-Hilbert action by the volume functional makes the theory invariant under constant shifts in the Lagrangian. The associated field equations then resemble unimodular gravity whose otherwise arbitrary cosmological constant is now determined as a Machian universal average. We prove that an empty space-time is necessarily Ricci tensor flat, and demonstrate the vanishing of the cosmological constant within the scalar field paradigm. The cosmological analysis, carried out at the mini-superspace level, reveals a vanishing cosmological constant for a universe which cannot be closed as long as gravity is attractive. Finally, we give an example of a normalized theory of gravity which does give rise to a non-zero cosmological constant.
14 CFR 27.27 - Center of gravity limits.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Center of gravity limits. 27.27 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight General § 27.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity must be...
Exact, time-independent estimation of clone size distributions in normal and mutated cells.
Roshan, A; Jones, P H; Greenman, C D
2014-10-06
Biological tools such as genetic lineage tracing, three-dimensional confocal microscopy and next-generation DNA sequencing are providing new ways to quantify the distribution of clones of normal and mutated cells. Understanding population-wide clone size distributions in vivo is complicated by multiple cell types within observed tissues, and overlapping birth and death processes. This has led to the increased need for mathematically informed models to understand their biological significance. Standard approaches usually require knowledge of clonal age. We show that modelling on clone size independent of time is an alternative method that offers certain analytical advantages; it can help parametrize these models, and obtain distributions for counts of mutated or proliferating cells, for example. When applied to a general birth-death process common in epithelial progenitors, this takes the form of a gambler's ruin problem, the solution of which relates to counting Motzkin lattice paths. Applying this approach to mutational processes, alternative, exact, formulations of classic Luria-Delbrück-type problems emerge. This approach can be extended beyond neutral models of mutant clonal evolution. Applications of these approaches are twofold. First, we resolve the probability of progenitor cells generating proliferating or differentiating progeny in clonal lineage tracing experiments in vivo or cell culture assays where clone age is not known. Second, we model mutation frequency distributions that deep sequencing of subclonal samples produce.
Transforming Education for a Transition into Human-centered Economy and Post-normal Times
Directory of Open Access Journals (Sweden)
Elif Çepni
2017-10-01
Full Text Available Solutions to the major problems of our time require a radical shift in our perceptions, thinking and values. Post-normal times (characterized by complexity, chaos and contradictions, post-normal science (characterized by uncertainties, systems view of thinking, alternative perspectives, unknown unknowns, values and human-centered economy are conceptions that we need to take into consideration to define a new role for science. Managing the transition from the knowledge economy (mainly dominated by the use of analytical skills to human-centered economy (mainly dominated by the use of creativity, character, passion requires visionary leadership and a wide range of partnerships, and developing new and more comprehensive, flexible, innovative models of learning. Education today should prepare current generations for the continuously changing world of the future. The critique on modern education ranges across the political spectrum (from ‘the Right’ to ‘the Left’; across countries (both ‘western’ and ‘non-western’; across genders (within men’s, queer and feminist movements; and across worldviews (e.g. post-modernism, critical theory, neo-Marxism, critical traditionalism. These critiques all imply that ‘modern’ education has now become ‘outdated’ (Milojevic, 2005. Technology and globalization are significantly transforming work. However, education and training systems, having remained mostly static and under-invested in for decades, are largely inadequate to meet the needs of the new labour markets. How the disconnect between education systems and labour markets can be eliminated is a much disputed topic and it may require a paradigm shift in current thinking. Citizens and consumers today are experiencing a growing sense of alienation, loss of values and flexibility (Zajda, 2009. There is no form of education which would meet different needs worldwide. Education is a basic human right and it cannot be purely demand
Molenaar, Dylan; Bolsinova, Maria
2017-05-01
In generalized linear modelling of responses and response times, the observed response time variables are commonly transformed to make their distribution approximately normal. A normal distribution for the transformed response times is desirable as it justifies the linearity and homoscedasticity assumptions in the underlying linear model. Past research has, however, shown that the transformed response times are not always normal. Models have been developed to accommodate this violation. In the present study, we propose a modelling approach for responses and response times to test and model non-normality in the transformed response times. Most importantly, we distinguish between non-normality due to heteroscedastic residual variances, and non-normality due to a skewed speed factor. In a simulation study, we establish parameter recovery and the power to separate both effects. In addition, we apply the model to a real data set. © 2017 The Authors. British Journal of Mathematical and Statistical Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
Spherical collapse and cluster counts in modified gravity models
International Nuclear Information System (INIS)
Martino, Matthew C.; Stabenau, Hans F.; Sheth, Ravi K.
2009-01-01
Modifications to the gravitational potential affect the nonlinear gravitational evolution of large scale structures in the Universe. To illustrate some generic features of such changes, we study the evolution of spherically symmetric perturbations when the modification is of Yukawa type; this is nontrivial, because we should not and do not assume that Birkhoff's theorem applies. We then show how to estimate the abundance of virialized objects in such models. Comparison with numerical simulations shows reasonable agreement: When normalized to have the same fluctuations at early times, weaker large scale gravity produces fewer massive halos. However, the opposite can be true for models that are normalized to have the same linear theory power spectrum today, so the abundance of rich clusters potentially places interesting constraints on such models. Our analysis also indicates that the formation histories and abundances of sufficiently low mass objects are unchanged from standard gravity. This explains why simulations have found that the nonlinear power spectrum at large k is unaffected by such modifications to the gravitational potential. In addition, the most massive objects in models with normalized cosmic microwave background and weaker gravity are expected to be similar to the high-redshift progenitors of the most massive objects in models with stronger gravity. Thus, the difference between the cluster and field galaxy populations is expected to be larger in models with stronger large scale gravity.
Torigoe, Akira; Sato, Emiko; Mori, Takefumi; Ieiri, Norio; Takahashi, Chika; Ishida, Yoko; Hotta, Osamu; Ito, Sadayoshi
2016-10-01
Introduction Oxidative stress is one of the main mediators of progression of chronic kidney diseases (CKD). Nuclear factor E2-related factor 2 (Nrf2) is the transcription factor of antioxidant and detoxifying enzymes and related proteins which play an important role in cellular defense. Long-time hemodialysis (HD) therapy (8 hours) has been considered to be more beneficial compared to normal HD therapy (4 hours). We investigated oxidative response related to Nrf2 in peripheral blood mononuclear cells (PBMCs) of long-time HD and normal HD patients. Methods Eight adult long-time HD therapy patients (44.5 ± 3.0 years) and 10 normal HD therapy patients (68.1 ± 2.7 years) were enrolled. PBMCs were isolated and processed for expression of Nrf2 and its related genes by qRT-PCR. Plasma indoxyl sulfate, amino acids, and body constituents were measured. Findings Plasma indoxyl sulfate was significantly low after long-time HD therapy compare to that of normal HD therapy. Although, skeletal muscle mass, lean body mass, mineral and protein were significantly decreased 2 months in normal HD patients, those in long-time HD patients were significantly increased after 2 months. Almost of amino acids were significantly decreased after HD therapy in both HD therapies. Plasma amino acids were significantly low in long-time HD patients compared to normal HD patients. In PBMCs, the expression of Nrf2 was significantly decreased and hemooxygenase-1 expression was significantly increased in long-time HD compared to normal HD. Conclusion These observations indicate the beneficial effects of in long-time HD in improving oxidative stress in patients. © 2016 International Society for Hemodialysis.
Directory of Open Access Journals (Sweden)
Carlos Barceló
2011-05-01
Full Text Available Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.
Lorentzian wormholes in Lovelock gravity
International Nuclear Information System (INIS)
Dehghani, M. H.; Dayyani, Z.
2009-01-01
In this paper, we introduce the n-dimensional Lorentzian wormhole solutions of third order Lovelock gravity. In contrast to Einstein gravity and as in the case of Gauss-Bonnet gravity, we find that the wormhole throat radius r 0 has a lower limit that depends on the Lovelock coefficients, the dimensionality of the spacetime, and the shape function. We study the conditions of having normal matter near the throat, and find that the matter near the throat can be normal for the region r 0 ≤r≤r max , where r max depends on the Lovelock coefficients and the shape function. We also find that the third order Lovelock term with negative coupling constant enlarges the radius of the region of normal matter, and conclude that the higher order Lovelock terms with negative coupling constants enlarge the region of normal matter near the throat.
Coherence of structural visual cues and pictorial gravity paves the way for interceptive actions.
Zago, Myrka; La Scaleia, Barbara; Miller, William L; Lacquaniti, Francesco
2011-09-20
Dealing with upside-down objects is difficult and takes time. Among the cues that are critical for defining object orientation, the visible influence of gravity on the object's motion has received limited attention. Here, we manipulated the alignment of visible gravity and structural visual cues between each other and relative to the orientation of the observer and physical gravity. Participants pressed a button triggering a hitter to intercept a target accelerated by a virtual gravity. A factorial design assessed the effects of scene orientation (normal or inverted) and target gravity (normal or inverted). We found that interception was significantly more successful when scene direction was concordant with target gravity direction, irrespective of whether both were upright or inverted. This was so independent of the hitter type and when performance feedback to the participants was either available (Experiment 1) or unavailable (Experiment 2). These results show that the combined influence of visible gravity and structural visual cues can outweigh both physical gravity and viewer-centered cues, leading to rely instead on the congruence of the apparent physical forces acting on people and objects in the scene.
Teleparallel equivalent of Lovelock gravity
González, P. A.; Vásquez, Yerko
2015-12-01
There is a growing interest in modified gravity theories based on torsion, as these theories exhibit interesting cosmological implications. In this work inspired by the teleparallel formulation of general relativity, we present its extension to Lovelock gravity known as the most natural extension of general relativity in higher-dimensional space-times. First, we review the teleparallel equivalent of general relativity and Gauss-Bonnet gravity, and then we construct the teleparallel equivalent of Lovelock gravity. In order to achieve this goal, we use the vielbein and the connection without imposing the Weitzenböck connection. Then, we extract the teleparallel formulation of the theory by setting the curvature to null.
International Nuclear Information System (INIS)
Ruppert, J.; Rahmede, C.; Bleicher, M.
2005-01-01
Within the ADD-model, we elaborate an idea by Vacavant and Hinchliffe [J. Phys. G 27 (2001) 1839] and show quantitatively how to determine the fundamental scale of TeV-gravity and the number of compactified extra dimensions from data at LHC. We demonstrate that the ADD-model leads to strong correlations between the missing E T in gravitons at different center of mass energies. This correlation puts strong constraints on this model for extra dimensions, if probed at s=5.5 TeV and s=14 TeV at LHC
Singularity resolution in quantum gravity
International Nuclear Information System (INIS)
Husain, Viqar; Winkler, Oliver
2004-01-01
We examine the singularity resolution issue in quantum gravity by studying a new quantization of standard Friedmann-Robertson-Walker geometrodynamics. The quantization procedure is inspired by the loop quantum gravity program, and is based on an alternative to the Schroedinger representation normally used in metric variable quantum cosmology. We show that in this representation for quantum geometrodynamics there exists a densely defined inverse scale factor operator, and that the Hamiltonian constraint acts as a difference operator on the basis states. We find that the cosmological singularity is avoided in the quantum dynamics. We discuss these results with a view to identifying the criteria that constitute 'singularity resolution' in quantum gravity
Valencio, Arthur; Grebogi, Celso; Baptista, Murilo S.
2017-10-01
The presence of undesirable dominating signals in geophysical experimental data is a challenge in many subfields. One remarkable example is surface gravimetry, where frequencies from Earth tides correspond to time-series fluctuations up to a thousand times larger than the phenomena of major interest, such as hydrological gravity effects or co-seismic gravity changes. This work discusses general methods for the removal of unwanted dominating signals by applying them to 8 long-period gravity time-series of the International Geodynamics and Earth Tides Service, equivalent to the acquisition from 8 instruments in 5 locations representative of the network. We compare three different conceptual approaches for tide removal: frequency filtering, physical modelling, and data-based modelling. Each approach reveals a different limitation to be considered depending on the intended application. Vestiges of tides remain in the residues for the modelling procedures, whereas the signal was distorted in different ways by the filtering and data-based procedures. The linear techniques employed were power spectral density, spectrogram, cross-correlation, and classical harmonics decomposition, while the system dynamics was analysed by state-space reconstruction and estimation of the largest Lyapunov exponent. Although the tides could not be completely eliminated, they were sufficiently reduced to allow observation of geophysical events of interest above the 10 nm s-2 level, exemplified by a hydrology-related event of 60 nm s-2. The implementations adopted for each conceptual approach are general, so that their principles could be applied to other kinds of data affected by undesired signals composed mainly by periodic or quasi-periodic components.
Albasan, Hasan; Lulich, Jody P; Osborne, Carl A; Lekcharoensuk, Chalermpol; Ulrich, Lisa K; Carpenter, Kathleen A
2003-01-15
To determine effects of storage temperature and time on pH and specific gravity of and number and size of crystals in urine samples from dogs and cats. Randomized complete block design. 31 dogs and 8 cats. Aliquots of each urine sample were analyzed within 60 minutes of collection or after storage at room or refrigeration temperatures (20 vs 6 degrees C [68 vs 43 degrees F]) for 6 or 24 hours. Crystals formed in samples from 11 of 39 (28%) animals. Calcium oxalate (CaOx) crystals formed in vitro in samples from 1 cat and 8 dogs. Magnesium ammonium phosphate (MAP) crystals formed in vitro in samples from 2 dogs. Compared with aliquots stored at room temperature, refrigeration increased the number and size of crystals that formed in vitro; however, the increase in number and size of MAP crystals in stored urine samples was not significant. Increased storage time and decreased storage temperature were associated with a significant increase in number of CaOx crystals formed. Greater numbers of crystals formed in urine aliquots stored for 24 hours than in aliquots stored for 6 hours. Storage time and temperature did not have a significant effect on pH or specific gravity. Urine samples should be analyzed within 60 minutes of collection to minimize temperature- and time-dependent effects on in vitro crystal formation. Presence of crystals observed in stored samples should be validated by reevaluation of fresh urine.
Neutron Stars : Magnetism vs Gravity
Indian Academy of Sciences (India)
however, in the magnetosphere, electromagnetic forces dominate over gravity : Fgr = mg ~ 10-18 Newton ; Fem = e V B ~ 10-5 Newton; (for a single electron of mass m and charge e ) ; Hence, the electromagnetic force is 1013 times stronger than gravity !!
Pipinos, Savas
2010-01-01
This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…
F.C. Gruau; J.T. Tromp (John)
1999-01-01
textabstractWe consider the problem of establishing gravity in cellular automata. In particular, when cellular automata states can be partitioned into empty, particle, and wall types, with the latter enclosing rectangular areas, we desire rules that will make the particles fall down and pile up on
Cosmological tests of modified gravity.
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.
Improvements in GRACE Gravity Fields Using Regularization
Save, H.; Bettadpur, S.; Tapley, B. D.
2008-12-01
The unconstrained global gravity field models derived from GRACE are susceptible to systematic errors that show up as broad "stripes" aligned in a North-South direction on the global maps of mass flux. These errors are believed to be a consequence of both systematic and random errors in the data that are amplified by the nature of the gravity field inverse problem. These errors impede scientific exploitation of the GRACE data products, and limit the realizable spatial resolution of the GRACE global gravity fields in certain regions. We use regularization techniques to reduce these "stripe" errors in the gravity field products. The regularization criteria are designed such that there is no attenuation of the signal and that the solutions fit the observations as well as an unconstrained solution. We have used a computationally inexpensive method, normally referred to as "L-ribbon", to find the regularization parameter. This paper discusses the characteristics and statistics of a 5-year time-series of regularized gravity field solutions. The solutions show markedly reduced stripes, are of uniformly good quality over time, and leave little or no systematic observation residuals, which is a frequent consequence of signal suppression from regularization. Up to degree 14, the signal in regularized solution shows correlation greater than 0.8 with the un-regularized CSR Release-04 solutions. Signals from large-amplitude and small-spatial extent events - such as the Great Sumatra Andaman Earthquake of 2004 - are visible in the global solutions without using special post-facto error reduction techniques employed previously in the literature. Hydrological signals as small as 5 cm water-layer equivalent in the small river basins, like Indus and Nile for example, are clearly evident, in contrast to noisy estimates from RL04. The residual variability over the oceans relative to a seasonal fit is small except at higher latitudes, and is evident without the need for de-striping or
Bianchi Type-V Bulk Viscous Cosmic String in f(R,T Gravity with Time Varying Deceleration Parameter
Directory of Open Access Journals (Sweden)
Bïnaya K. Bishi
2015-01-01
Full Text Available We study the Bianchi type-V string cosmological model with bulk viscosity in f(R,T theory of gravity by considering a special form and linearly varying deceleration parameter. This is an extension of the earlier work of Naidu et al., 2013, where they have constructed the model by considering a constant deceleration parameter. Here we find that the cosmic strings do not survive in both models. In addition we study some physical and kinematical properties of both models. We observe that in one of our models these properties are identical to the model obtained by Naidu et al., 2013, and in the other model the behavior of these parameters is different.
International Nuclear Information System (INIS)
Romney, B.; Barrau, A.; Vidotto, F.; Le Meur, H.; Noui, K.
2011-01-01
The loop quantum gravity is the only theory that proposes a quantum description of space-time and therefore of gravitation. This theory predicts that space is not infinitely divisible but that is has a granular structure at the Planck scale (10 -35 m). Another feature of loop quantum gravity is that it gets rid of the Big-Bang singularity: our expanding universe may come from the bouncing of a previous contracting universe, in this theory the Big-Bang is replaced with a big bounce. The loop quantum theory predicts also the huge number of quantum states that accounts for the entropy of large black holes. (A.C.)
Energy Technology Data Exchange (ETDEWEB)
Akpinar, Berkcan [University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (United States); Mousavi, Seyed H., E-mail: mousavish@upmc.edu [Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); McDowell, Michael M.; Niranjan, Ajay; Faraji, Amir H. [Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Flickinger, John C. [Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Lunsford, L. Dade [Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States)
2016-06-01
Purpose: Vestibular schwannomas (VS) are increasingly diagnosed in patients with normal hearing because of advances in magnetic resonance imaging. We sought to evaluate whether stereotactic radiosurgery (SRS) performed earlier after diagnosis improved long-term hearing preservation in this population. Methods and Materials: We queried our quality assessment registry and found the records of 1134 acoustic neuroma patients who underwent SRS during a 15-year period (1997-2011). We identified 88 patients who had VS but normal hearing with no subjective hearing loss at the time of diagnosis. All patients were Gardner-Robertson (GR) class I at the time of SRS. Fifty-seven patients underwent early (≤2 years from diagnosis) SRS and 31 patients underwent late (>2 years after diagnosis) SRS. At a median follow-up time of 75 months, we evaluated patient outcomes. Results: Tumor control rates (decreased or stable in size) were similar in the early (95%) and late (90%) treatment groups (P=.73). Patients in the early treatment group retained serviceable (GR class I/II) hearing and normal (GR class I) hearing longer than did patients in the late treatment group (serviceable hearing, P=.006; normal hearing, P<.0001, respectively). At 5 years after SRS, an estimated 88% of the early treatment group retained serviceable hearing and 77% retained normal hearing, compared with 55% with serviceable hearing and 33% with normal hearing in the late treatment group. Conclusions: SRS within 2 years after diagnosis of VS in normal hearing patients resulted in improved retention of all hearing measures compared with later SRS.
International Nuclear Information System (INIS)
Akpinar, Berkcan; Mousavi, Seyed H.; McDowell, Michael M.; Niranjan, Ajay; Faraji, Amir H.; Flickinger, John C.; Lunsford, L. Dade
2016-01-01
Purpose: Vestibular schwannomas (VS) are increasingly diagnosed in patients with normal hearing because of advances in magnetic resonance imaging. We sought to evaluate whether stereotactic radiosurgery (SRS) performed earlier after diagnosis improved long-term hearing preservation in this population. Methods and Materials: We queried our quality assessment registry and found the records of 1134 acoustic neuroma patients who underwent SRS during a 15-year period (1997-2011). We identified 88 patients who had VS but normal hearing with no subjective hearing loss at the time of diagnosis. All patients were Gardner-Robertson (GR) class I at the time of SRS. Fifty-seven patients underwent early (≤2 years from diagnosis) SRS and 31 patients underwent late (>2 years after diagnosis) SRS. At a median follow-up time of 75 months, we evaluated patient outcomes. Results: Tumor control rates (decreased or stable in size) were similar in the early (95%) and late (90%) treatment groups (P=.73). Patients in the early treatment group retained serviceable (GR class I/II) hearing and normal (GR class I) hearing longer than did patients in the late treatment group (serviceable hearing, P=.006; normal hearing, P<.0001, respectively). At 5 years after SRS, an estimated 88% of the early treatment group retained serviceable hearing and 77% retained normal hearing, compared with 55% with serviceable hearing and 33% with normal hearing in the late treatment group. Conclusions: SRS within 2 years after diagnosis of VS in normal hearing patients resulted in improved retention of all hearing measures compared with later SRS.
Time-dependent London approach: Dissipation due to out-of-core normal excitations by moving vortices
Kogan, V. G.
2018-03-01
The dissipative currents due to normal excitations are included in the London description. The resulting time-dependent London equations are solved for a moving vortex and a moving vortex lattice. It is shown that the field distribution of a moving vortex loses its cylindrical symmetry. It experiences contraction that is stronger in the direction of the motion than in the direction normal to the velocity v . The London contribution of normal currents to dissipation is small relative to the Bardeen-Stephen core dissipation at small velocities, but it approaches the latter at high velocities, where this contribution is no longer proportional to v2. To minimize the London contribution to dissipation, the vortex lattice is oriented so as to have one of the unit cell vectors along the velocity. This effect is seen in experiments and predicted within the time-dependent Ginzburg-Landau theory.
Hydrodynamic Cucker-Smale model with normalized communication weights and time delay
Choi, Young-Pil; Haskovec, Jan
2017-01-01
with time delayed non-local alignment forces. We resort to its Lagrangian formulation and prove the existence of its global in time classical solutions. Moreover, we derive a sufficient condition for the asymptotic flocking behavior of the solutions. Finally
Directory of Open Access Journals (Sweden)
Lijing Shao
2017-10-01
Full Text Available Pulsar timing and laser-interferometer gravitational-wave (GW detectors are superb laboratories to study gravity theories in the strong-field regime. Here, we combine these tools to test the mono-scalar-tensor theory of Damour and Esposito-Farèse (DEF, which predicts nonperturbative scalarization phenomena for neutron stars (NSs. First, applying Markov-chain Monte Carlo techniques, we use the absence of dipolar radiation in the pulsar-timing observations of five binary systems composed of a NS and a white dwarf, and eleven equations of state (EOSs for NSs, to derive the most stringent constraints on the two free parameters of the DEF scalar-tensor theory. Since the binary-pulsar bounds depend on the NS mass and the EOS, we find that current pulsar-timing observations leave scalarization windows, i.e., regions of parameter space where scalarization can still be prominent. Then, we investigate if these scalarization windows could be closed and if pulsar-timing constraints could be improved by laser-interferometer GW detectors, when spontaneous (or dynamical scalarization sets in during the early (or late stages of a binary NS (BNS evolution. For the early inspiral of a BNS carrying constant scalar charge, we employ a Fisher-matrix analysis to show that Advanced LIGO can improve pulsar-timing constraints for some EOSs, and next-generation detectors, such as the Cosmic Explorer and Einstein Telescope, will be able to improve those bounds for all eleven EOSs. Using the late inspiral of a BNS, we estimate that for some of the EOSs under consideration, the onset of dynamical scalarization can happen early enough to improve the constraints on the DEF parameters obtained by combining the five binary pulsars. Thus, in the near future, the complementarity of pulsar timing and direct observations of GWs on the ground will be extremely valuable in probing gravity theories in the strong-field regime.
International Nuclear Information System (INIS)
Isham, C.
1989-01-01
Gravitational effects are seen as arising from a curvature in spacetime. This must be reconciled with gravity's apparently passive role in quantum theory to achieve a satisfactory quantum theory of gravity. The development of grand unified theories has spurred the search, with forces being of equal strength at a unification energy of 10 15 - 10 18 GeV, with the ''Plank length'', Lp ≅ 10 -35 m. Fundamental principles of general relativity and quantum mechanics are outlined. Gravitons are shown to have spin-0, as mediators of gravitation force in the classical sense or spin-2 which are related to the quantisation of general relativity. Applying the ideas of supersymmetry to gravitation implies partners for the graviton, especially the massless spin 3/2 fermion called a gravitino. The concept of supersymmetric strings is introduced and discussed. (U.K.)
International Nuclear Information System (INIS)
Markov, M.A.; West, P.C.
1984-01-01
This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981
A normalized PID controller in networked control systems with varying time delays.
Tran, Hoang-Dung; Guan, Zhi-Hong; Dang, Xuan-Kien; Cheng, Xin-Ming; Yuan, Fu-Shun
2013-09-01
It requires not only simplicity and flexibility but also high specified stability and robustness of system to design a PI/PID controller in such complicated networked control systems (NCSs) with delays. By gain and phase margins approach, this paper proposes a novel normalized PI/PID controller for NCSs based on analyzing the stability and robustness of system under the effect of network-induced delays. Specifically, We take into account the total measured network delays to formulate the gain and phase margins of the closed-loop system in the form of a set of equations. With pre-specified values of gain and phase margins, this set of equations is then solved for calculating the closed forms of control parameters which enable us to propose the normalized PI/PID controller simultaneously satisfying the following two requirements: (1) simplicity without re-solving the optimization problem for a new process, (2) high flexibility to cope with large scale of random delays and deal with many different processes in different conditions of network. Furthermore, in our method, the upper bound of random delay can be estimated to indicate the operating domain of proposed PI/PID controller. Finally, simulation results are shown to demonstrate the advantages of our proposed controller in many situations of network-induced delays. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Towards a reinterpretation of Normal Science: Kuhn and the Physics of his time (1940-1951
Directory of Open Access Journals (Sweden)
Mayoral de Lucas, Juan Vicente
2011-06-01
Full Text Available This paper deals with Thomas Kuhn’s experience as a physicist — his training in the field, his brief period as a physicist during World War II, and his doctoral research — from 1940 to 1951. Its aim is to offer a basis to assess statements as Mara Beller’s (1999 that Kuhn’s account of normal science is partially founded on personal circumstances and experience, and not only on the historical record or available evidence from the sociology of science — a thesis here considered highly credible.
Este artículo habla de la experiencia de Thomas Kuhn como físico: su educación en la disciplina, su servicio como experto durante la Segunda Guerra Mundial, y su investigación doctoral. Estudiamos un lapso de tiempo que va de 1940 a 1951. El objetivo en última instancia es ofrecer base empírica para valorar una afirmación como la de Mara Beller (1999, que dice que la descripción kuhniana de la ciencia normal está parcialmente basada en circunstancias y experiencias personales, no sólo en los datos históricos o en la evidencia disponible de la sociología de la ciencia. En este artículo se establece que dicha tesis es plausible.
Local normalization: Uncovering correlations in non-stationary financial time series
Schäfer, Rudi; Guhr, Thomas
2010-09-01
The measurement of correlations between financial time series is of vital importance for risk management. In this paper we address an estimation error that stems from the non-stationarity of the time series. We put forward a method to rid the time series of local trends and variable volatility, while preserving cross-correlations. We test this method in a Monte Carlo simulation, and apply it to empirical data for the S&P 500 stocks.
Energy Technology Data Exchange (ETDEWEB)
Shabani, Hamid [University of Sistan and Baluchestan, Physics Department, Faculty of Sciences, Zahedan (Iran, Islamic Republic of); Ziaie, Amir Hadi [Islamic Azad University, Department of Physics, Kahnooj Branch, Kerman (Iran, Islamic Republic of)
2017-05-15
Very recently, Josset and Perez (Phys. Rev. Lett. 118:021102, 2017) have shown that a violation of the energy-momentum tensor (EMT) could result in an accelerated expansion state via the appearance of an effective cosmological constant, in the context of unimodular gravity. Inspired by this outcome, in this paper we investigate cosmological consequences of a violation of the EMT conservation in a particular class of f(R,T) gravity when only the pressure-less fluid is present. In this respect, we focus on the late time solutions of models of the type f(R,T) = R + βΛ(-T). As the first task, we study the solutions when the conservation of EMT is respected, and then we proceed with those in which violation occurs. We have found, provided that the EMT conservation is violated, that there generally exist two accelerated expansion solutions of which the stability properties depend on the underlying model. More exactly, we obtain a dark energy solution for which the effective equation of state depends on the model parameters and a de Sitter solution. We present a method to parametrize the Λ(-T) function, which is useful in a dynamical system approach and has been employed in the model. Also, we discuss the cosmological solutions for models with Λ(-T) = 8πG(-T){sup α} in the presence of ultra-relativistic matter. (orig.)
Is it time to change the definition of normal urinary albumin excretion?
DEFF Research Database (Denmark)
Wachtell, K.; Olsen, M.H.
2008-01-01
at baseline and had normoalbuminuria by conventional definitions. The study showed that quartiles of albuminuria beyond the lowest quartile were increasingly predictive of subsequent hypertensive disease, even at levels well below what is conventionally considered to be the normal range. This commentary......This Practice Point commentary discusses a recent study by Forman et al. that examined the association between baseline urinary albumin:creatinine ratio and the risk of developing hypertension among 2,179 women in the first and second Nurses' Health Studies who did not have hypertension or diabetes...... highlights the importance of evaluating albuminuria as an indicator of target organ damage and a risk factor for cardiovascular disease. Patients without hypertension, diabetes or other cardiovascular diseases who have albuminuria should be considered at risk of cardiovascular disease and should undergo...
Is nonrelativistic gravity possible?
International Nuclear Information System (INIS)
Kocharyan, A. A.
2009-01-01
We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.
Second order corrections for the limits of normalized ruin times in the presence of heavy tails
DEFF Research Database (Denmark)
Asmussen, Søren; Kortschak, Dominik
In this paper we consider a compound Poisson risk model with regularly varying claim sizes. For this model in [4] an asymptotic formula for the finite time ruin probability is provided when the time is scaled by the mean excess function. In this paper we derive the rate of convergence for this fi...
International Nuclear Information System (INIS)
Droppelmann, G.; Buenermann, O.; Stienkemeier, F.; Schulz, C.P.
2004-01-01
Nanodroplets of either superfluid He 4 or normal fluid He 3 are doped with Rb atoms that are bound to the surface of the droplets. The formation of RbHe exciplexes upon 5P 3/2 excitation is monitored in real time by femtosecond pump-probe techniques. We find formation times of 8.5 and 11.6 ps for Rb He 4 and Rb He 3 , respectively. A comparison to calculations based on a tunneling model introduced for these systems by Reho et al. [J. Chem. Phys. 113, 9694 (2000)] shows that the proposed mechanism cannot account for our findings. Apparently, a different relaxation dynamics of the superfluid opposed to the normal fluid surface is responsible for the observed formation times
Gravity Before Einstein and Schwinger Before Gravity
Trimble, Virginia L.
2012-05-01
Julian Schwinger was a child prodigy, and Albert Einstein distinctly not; Schwinger had something like 73 graduate students, and Einstein very few. But both thought gravity was important. They were not, of course, the first, nor is the disagreement on how one should think about gravity that is being highlighted here the first such dispute. The talk will explore, first, several of the earlier dichotomies: was gravity capable of action at a distance (Newton), or was a transmitting ether required (many others). Did it act on everything or only on solids (an odd idea of the Herschels that fed into their ideas of solar structure and sunspots)? Did gravitational information require time for its transmission? Is the exponent of r precisely 2, or 2 plus a smidgeon (a suggestion by Simon Newcomb among others)? And so forth. Second, I will try to say something about Scwinger's lesser known early work and how it might have prefigured his "source theory," beginning with "On the Interaction of Several Electrons (the unpublished, 1934 "zeroth paper," whose title somewhat reminds one of "On the Dynamics of an Asteroid," through his days at Berkeley with Oppenheimer, Gerjuoy, and others, to his application of ideas from nuclear physics to radar and of radar engineering techniques to problems in nuclear physics. And folks who think good jobs are difficult to come by now might want to contemplate the couple of years Schwinger spent teaching elementary physics at Purdue before moving on to the MIT Rad Lab for war work.
Effect of Colour of Object on Simple Visual Reaction Time in Normal Subjects
Directory of Open Access Journals (Sweden)
Sunita B. Kalyanshetti
2014-01-01
Full Text Available The measure of simple reaction time has been used to evaluate the processing speed of CNS and the co-ordination between the sensory and motor systems. As the reaction time is influenced by different factors; the impact of colour of objects in modulating the reaction time has been investigated in this study. 200 healthy volunteers (female gender 100 and male gender100 of age group 18-25 yrs were included as subjects. The subjects were presented with two visual stimuli viz; red and green light by using an electronic response analyzer. Paired‘t’ test for comparison of visual reaction time for red and green colour in male gender shows p value<0.05 whereas in female gender shows p<0.001. It was observed that response latency for red colour was lesser than that of green colour which can be explained on the basis of trichromatic theory.
International Nuclear Information System (INIS)
Mead, W.C.; Jones, R.D.; Barnes, C.W.; Lee, L.A.; O'Rourke, M.K.; Lee, Y.C.; Flake, G.W.
1991-01-01
We use the Connectionist Normalized Local Spline (CNLS) network to learn the dynamics of the Mackey-Glass time-delay differential equation, for the case τ = 30. We show the optimum network operating mode and determine the accuracy and robustness of predictions. We obtain pedictions of varying accuracy using some 2--120 minutes of execution time on a Sun SPARC-1 workstation. CNLS-net is capable of very good performance in predicting the Mackey-Glass time series. 11 refs., 4 figs
Larrañeta, M.; Moreno-Tejera, S.; Lillo-Bravo, I.; Silva-Pérez, M. A.
2018-02-01
Many of the available solar radiation databases only provide global horizontal irradiance (GHI) while there is a growing need of extensive databases of direct normal radiation (DNI) mainly for the development of concentrated solar power and concentrated photovoltaic technologies. In the present work, we propose a methodology for the generation of synthetic DNI hourly data from the hourly average GHI values by dividing the irradiance into a deterministic and stochastic component intending to emulate the dynamics of the solar radiation. The deterministic component is modeled through a simple classical model. The stochastic component is fitted to measured data in order to maintain the consistency of the synthetic data with the state of the sky, generating statistically significant DNI data with a cumulative frequency distribution very similar to the measured data. The adaptation and application of the model to the location of Seville shows significant improvements in terms of frequency distribution over the classical models. The proposed methodology applied to other locations with different climatological characteristics better results than the classical models in terms of frequency distribution reaching a reduction of the 50% in the Finkelstein-Schafer (FS) and Kolmogorov-Smirnov test integral (KSI) statistics.
Gonneaud, Julie; Kalpouzos, Grégoria; Bon, Laetitia; Viader, Fausto; Eustache, Francis; Desgranges, Béatrice
2011-01-01
Prospective memory (PM) is the ability to remember to perform an action at a specific point in the future. Regarded as multidimensional, PM involves several cognitive functions that are known to be impaired in normal aging. In the present study, we set out to investigate the cognitive correlates of PM impairment in normal aging. Manipulating cognitive load, we assessed event- and time-based PM, as well as several cognitive functions, including executive functions, working memory and retrospective episodic memory, in healthy subjects covering the entire adulthood. We found that normal aging was characterized by PM decline in all conditions and that event-based PM was more sensitive to the effects of aging than time-based PM. Whatever the conditions, PM was linked to inhibition and processing speed. However, while event-based PM was mainly mediated by binding and retrospective memory processes, time-based PM was mainly related to inhibition. The only distinction between high- and low-load PM cognitive correlates lays in an additional, but marginal, correlation between updating and the high-load PM condition. The association of distinct cognitive functions, as well as shared mechanisms with event- and time-based PM confirms that each type of PM relies on a different set of processes. PMID:21678154
International Nuclear Information System (INIS)
Schupp, P.
2007-01-01
Heuristic arguments suggest that the classical picture of smooth commutative spacetime should be replaced by some kind of quantum / noncommutative geometry at length scales and energies where quantum as well as gravitational effects are important. Motivated by this idea much research has been devoted to the study of quantum field theory on noncommutative spacetimes. More recently the focus has started to shift back to gravity in this context. We give an introductory overview to the formulation of general relativity in a noncommutative spacetime background and discuss the possibility of exact solutions. (author)
The timing of normal puberty and the age limits of sexual precocity
DEFF Research Database (Denmark)
Parent, Anne-Simone; Teilmann, Grete; Juul, Anders
2003-01-01
During the past decade, possible advancement in timing of puberty has been reported in the United States. In addition, early pubertal development and an increased incidence of sexual precocity have been noticed in children, primarily girls, migrating for foreign adoption in several Western European...
Extracting surface waves, hum and normal modes: time-scale phase-weighted stack and beyond
Ventosa, Sergi; Schimmel, Martin; Stutzmann, Eleonore
2017-10-01
Stacks of ambient noise correlations are routinely used to extract empirical Green's functions (EGFs) between station pairs. The time-frequency phase-weighted stack (tf-PWS) is a physically intuitive nonlinear denoising method that uses the phase coherence to improve EGF convergence when the performance of conventional linear averaging methods is not sufficient. The high computational cost of a continuous approach to the time-frequency transformation is currently a main limitation in ambient noise studies. We introduce the time-scale phase-weighted stack (ts-PWS) as an alternative extension of the phase-weighted stack that uses complex frames of wavelets to build a time-frequency representation that is much more efficient and fast to compute and that preserve the performance and flexibility of the tf-PWS. In addition, we propose two strategies: the unbiased phase coherence and the two-stage ts-PWS methods to further improve noise attenuation, quality of the extracted signals and convergence speed. We demonstrate that these approaches enable to extract minor- and major-arc Rayleigh waves (up to the sixth Rayleigh wave train) from many years of data from the GEOSCOPE global network. Finally we also show that fundamental spheroidal modes can be extracted from these EGF.
Vaiphasa, C.; Piamduaytham, S.; Vaiphasa, T.; Skidmore, A.K.
2011-01-01
In this paper, the NDVI time-series collected from the study area between year 2003 and 2005 of all land cover types are plotted and compared. The study area is the agricultural zones in Banphai District, Khonkean, Thailand. The LANDSAT satellite images of different dates were first transformed into
The timing of normal puberty and the age limits of sexual precocity
DEFF Research Database (Denmark)
Parent, Anne-Simone; Teilmann, Grete; Juul, Anders
2003-01-01
During the past decade, possible advancement in timing of puberty has been reported in the United States. In addition, early pubertal development and an increased incidence of sexual precocity have been noticed in children, primarily girls, migrating for foreign adoption in several Western Europe...
The timing of normal puberty and the age limits of sexual precocity
DEFF Research Database (Denmark)
Parent, Anne-Simone; Teilmann, Grete; Juul, Anders
2003-01-01
During the past decade, possible advancement in timing of puberty has been reported in the United States. In addition, early pubertal development and an increased incidence of sexual precocity have been noticed in children, primarily girls, migrating for foreign adoption in several Western European...... countries. These observations are raising the issues of current differences and secular trends in timing of puberty in relation to ethnic, geographical, and socioeconomic background. None of these factors provide an unequivocal explanation for the earlier onset of puberty seen in the United States....... In the formerly deprived migrating children, refeeding and catch-up growth may prime maturation. However, precocious puberty is seen also in some nondeprived migrating children. Attention has been paid to the changing milieu after migration, and recently, the possible role of endocrine- disrupting chemicals from...
The timing of normal puberty and the age limits of sexual precocity
DEFF Research Database (Denmark)
Parent, Anne-Simone; Teilmann, Grete; Juul, Anders
2003-01-01
During the past decade, possible advancement in timing of puberty has been reported in the United States. In addition, early pubertal development and an increased incidence of sexual precocity have been noticed in children, primarily girls, migrating for foreign adoption in several Western European...... the environment has been considered. These observations urge further study of the onset of puberty as a possible sensitive and early marker of the interactions between environmental conditions and genetic susceptibility that can influence physiological and pathological processes....
Granular Superconductors and Gravity
Noever, David; Koczor, Ron
1999-01-01
As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.
International Nuclear Information System (INIS)
Hooft, G.
2012-01-01
The dynamical degree of freedom for the gravitational force is the metric tensor, having 10 locally independent degrees of freedom (of which 4 can be used to fix the coordinate choice). In conformal gravity, we split this field into an overall scalar factor and a nine-component remainder. All unrenormalizable infinities are in this remainder, while the scalar component can be handled like any other scalar field such as the Higgs field. In this formalism, conformal symmetry is spontaneously broken. An imperative demand on any healthy quantum gravity theory is that black holes should be described as quantum systems with micro-states as dictated by the Hawking-Bekenstein theory. This requires conformal symmetry that may be broken spontaneously but not explicitly, and this means that all conformal anomalies must cancel out. Cancellation of conformal anomalies yields constraints on the matter sector as described by some universal field theory. Thus black hole physics may eventually be of help in the construction of unified field theories. (author)
Vaidya spacetime in massive gravity's rainbow
Directory of Open Access Journals (Sweden)
Yaghoub Heydarzade
2017-11-01
Full Text Available In this paper, we will analyze the energy dependent deformation of massive gravity using the formalism of massive gravity's rainbow. So, we will use the Vainshtein mechanism and the dRGT mechanism for the energy dependent massive gravity, and thus analyze a ghost free theory of massive gravity's rainbow. We study the energy dependence of a time-dependent geometry, by analyzing the radiating Vaidya solution in this theory of massive gravity's rainbow. The energy dependent deformation of this Vaidya metric will be performed using suitable rainbow functions.
Chowdhury, Rajdeep; Amin, Md Asif; Bhattacharyya, Kankan
2015-08-27
Intermittent structural oscillation in the lipid droplets of live lung cells is monitored using time-resolved confocal microscopy. Significant differences are observed between the lung cancer cell (A549) and normal (nonmalignant) lung cell (WI38). For this study, the lipid droplets are covalently labeled with a fluorescent dye, coumarin maleimide (7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin, CPM). The number of lipid droplets in the cancer cell is found to be ∼20-fold higher than that in the normal (nonmalignant) cell. The fluctuation in the fluorescence intensity of the dye (CPM) is attributed to the red-ox processes and periodic formation/rupture of the S-CPM bond. The amount of reactive oxygen species (ROS) is much higher in a cancer cell. This is manifested in faster oscillations (0.9 ± 0.3 s) in cancer cells compared to that in the normal cells (2.8 ± 0.7 s). Solvation dynamics in the lipid droplets of cancer cells is slower compared to that in the normal cell.
National Oceanic and Atmospheric Administration, Department of Commerce — This data base (14,559 records) was received in January 1986. Principal gravity parameters include elevation and observed gravity. The observed gravity values are...
National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...
Layton, Clive; Avenell, Leon
2002-08-01
10 experienced Shotokan karateka were tested on performance time and distance from a marker on the five Heian kata under normal sighted and blind-folded conditions. Whilst each kata's line of movement is different, it is the intention to start and finish at the same location. Analysis showed that despite an average of 16.8 yr. of training, whilst timing was not significantly affected on four of the kata by subjects being deprived of the visual sense, the group's mean change in distance from an original marker was significant for performances on three of the kata.
Directory of Open Access Journals (Sweden)
A. V. Vikulin
2014-01-01
Full Text Available Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature are related. The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928]. The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. Based on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time ‘vortex’ properties.
GOCE gravity field simulation based on actual mission scenario
Pail, R.; Goiginger, H.; Mayrhofer, R.; Höck, E.; Schuh, W.-D.; Brockmann, J. M.; Krasbutter, I.; Fecher, T.; Gruber, T.
2009-04-01
In the framework of the ESA-funded project "GOCE High-level Processing Facility", an operational hardware and software system for the scientific processing (Level 1B to Level 2) of GOCE data has been set up by the European GOCE Gravity Consortium EGG-C. One key component of this software system is the processing of a spherical harmonic Earth's gravity field model and the corresponding full variance-covariance matrix from the precise GOCE orbit and calibrated and corrected satellite gravity gradiometry (SGG) data. In the framework of the time-wise approach a combination of several processing strategies for the optimum exploitation of the information content of the GOCE data has been set up: The Quick-Look Gravity Field Analysis is applied to derive a fast diagnosis of the GOCE system performance and to monitor the quality of the input data. In the Core Solver processing a rigorous high-precision solution of the very large normal equation systems is derived by applying parallel processing techniques on a PC cluster. Before the availability of real GOCE data, by means of a realistic numerical case study, which is based on the actual GOCE orbit and mission scenario and simulation data stemming from the most recent ESA end-to-end simulation, the expected GOCE gravity field performance is evaluated. Results from this simulation as well as recently developed features of the software system are presented. Additionally some aspects on data combination with complementary data sources are addressed.
The relativistic gravity train
Seel, Max
2018-05-01
The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.
International Nuclear Information System (INIS)
Vrbanic, I.; Simic, Z.; Sljivac, D.
2008-01-01
The prediction of the time-dependent failure rate has been studied, taking into account the operational history of a component used in applications such as system modeling in a probabilistic safety analysis in order to evaluate the impact of equipment aging and maintenance strategies on the risk measures considered. We have selected a time-dependent model for the failure rate which is based on the Weibull distribution and the principles of proportional age reduction by equipment overhauls. Estimation of the parameters that determine the failure rate is considered, including the definition of the operational history model and likelihood function for the Bayesian analysis of parameters for normally operating repairable components. The operational history is provided as a time axis with defined times of overhauls and failures. An example for demonstration is described with prediction of the future behavior for seven different operational histories. (orig.)
Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer
International Nuclear Information System (INIS)
Sorrentino, F.; Lien, Y.-H.; Rosi, G.; Tino, G. M.; Bertoldi, A.; Bodart, Q.; Cacciapuoti, L.; Angelis, M. de; Prevedelli, M.
2012-01-01
We demonstrate a method to measure the gravitational acceleration with a dual cloud atom interferometer; the use of simultaneous atom interferometers reduces the effect of seismic noise on the gravity measurement. At the same time, the apparatus is capable of accurate measurements of the vertical gravity gradient. The ability to determine the gravity acceleration and gravity gradient simultaneously and with the same instrument opens interesting perspectives in geophysical applications.
Pituitary response to a dopamine antagonist at different times of the day in normal women.
Pérez-López, F R; González-Moreno, C M; Abós, M D; Andonegui, J A; Corvo, R H
1982-08-01
In order to determine whether or not pituitary responsiveness to the dopaminergic antagonist clebopride changes during the nyctohemeral cycle, 10 healthy women with regular cycles were given 1 mg of clebopride orally at 09.00 h and 24.00 h with at least a 5 day interval between each test. In addition, 5 of the women were given a placebo instead of clebopride at midnight to evaluate the spontaneous hormonal changes. During the 24.00 h test the women had significantly higher (P less than 0.05) mean TSH basal levels. Serum prolactin (Prl) increased significantly (P less than 0.001) after clebopride administration while these changes did not occur when placebo was used instead of clebopride at midnight. The Prl response to clebopride was qualitatively similar at 09.00 h and at 24.00 h. Clebopride given at midnight induced a significant increase (P less than 0.05) in serum TSH while this change did not occur when the drug was given at 09.00 h or when placebo was given at midnight. The administration of clebopride resulted in no discernible alternations in serum LH, FSH or GH in either the 09.00 h or the 24.00 h tests. Thus, Prl responses to clebopride were similar in the morning and at midnight, TSH significantly increased after clebopride at midnight whereas this did not occur when the drug was given in the morning, and no significant changes were induced in LH, FSH or GH at the times studied.
Khalil, Nagi
2018-04-01
The homogeneous cooling state (HCS) of a granular gas described by the inelastic Boltzmann equation is reconsidered. As usual, particles are taken as inelastic hard disks or spheres, but now the coefficient of normal restitution α is allowed to take negative values , which is a simple way of modeling more complicated inelastic interactions. The distribution function of the HCS is studied at the long-time limit, as well as intermediate times. At the long-time limit, the relevant information of the HCS is given by a scaling distribution function , where the time dependence occurs through a dimensionless velocity c. For , remains close to the Gaussian distribution in the thermal region, its cumulants and exponential tails being well described by the first Sonine approximation. In contrast, for , the distribution function becomes multimodal, its maxima located at , and its observable tails algebraic. The latter is a consequence of an unbalanced relaxation–dissipation competition, and is analytically demonstrated for , thanks to a reduction of the Boltzmann equation to a Fokker–Plank-like equation. Finally, a generalized scaling solution to the Boltzmann equation is also found . Apart from the time dependence occurring through the dimensionless velocity, depends on time through a new parameter β measuring the departure of the HCS from its long-time limit. It is shown that describes the time evolution of the HCS for almost all times. The relevance of the new scaling is also discussed.
Piecuch, Christopher G.; Landerer, Felix W.; Ponte, Rui M.
2018-05-01
Monthly ocean bottom pressure solutions from the Gravity Recovery and Climate Experiment (GRACE), derived using surface spherical cap mass concentration (MC) blocks and spherical harmonics (SH) basis functions, are compared to tide gauge (TG) monthly averaged sea level data over 2003-2015 to evaluate improved gravimetric data processing methods near the coast. MC solutions can explain ≳ 42% of the monthly variance in TG time series over broad shelf regions and in semi-enclosed marginal seas. MC solutions also generally explain ˜5-32 % more TG data variance than SH estimates. Applying a coastline resolution improvement algorithm in the GRACE data processing leads to ˜ 31% more variance in TG records explained by the MC solution on average compared to not using this algorithm. Synthetic observations sampled from an ocean general circulation model exhibit similar patterns of correspondence between modeled TG and MC time series and differences between MC and SH time series in terms of their relationship with TG time series, suggesting that observational results here are generally consistent with expectations from ocean dynamics. This work demonstrates the improved quality of recent MC solutions compared to earlier SH estimates over the coastal ocean, and suggests that the MC solutions could be a useful tool for understanding contemporary coastal sea level variability and change.
Newtonian gravity in loop quantum gravity
Smolin, Lee
2010-01-01
We apply a recent argument of Verlinde to loop quantum gravity, to conclude that Newton's law of gravity emerges in an appropriate limit and setting. This is possible because the relationship between area and entropy is realized in loop quantum gravity when boundaries are imposed on a quantum spacetime.
Curved backgrounds in emergent gravity
Chaurasia, Shikha; Erlich, Joshua; Zhou, Yiyu
2018-06-01
Field theories that are generally covariant but nongravitational at tree level typically give rise to an emergent gravitational interaction whose strength depends on a physical regulator. We consider emergent gravity models in which scalar fields assume the role of clock and rulers, addressing the problem of time in quantum gravity. We discuss the possibility of nontrivial dynamics for clock and ruler fields, and describe some of the consequences of those dynamics for the emergent gravitational theory.
Absolute gravity measurements in California
Zumberge, M. A.; Sasagawa, G.; Kappus, M.
1986-08-01
An absolute gravity meter that determines the local gravitational acceleration by timing a freely falling mass with a laser interferometer has been constructed. The instrument has made measurements at 11 sites in California, four in Nevada, and one in France. The uncertainty in the results is typically 10 microgal. Repeated measurements have been made at several of the sites; only one shows a substantial change in gravity.
International Nuclear Information System (INIS)
Au, G.
1995-03-01
One of the greatest challenges facing theoretical physics lies in reconciling Einstein's classical theory of gravity - general relativity -with quantum field theory. Although both theories have been experimentally supported in their respective regimes, they are as compatible as a square peg and a round hole. This article summarises the current status of the superstring approach to the problem, the status of the Ashtekar program, and problem of time in quantum gravity
Gravity as Quantum Entanglement Force
Lee, Jae-Weon; Kim, Hyeong-Chan; Lee, Jungjai
2010-01-01
We conjecture that the total quantum entanglement of matter and vacuum in the universe tends to increase with time, like entropy, and that an effective force is associated with this tendency. We also suggest that gravity and dark energy are types of quantum entanglement forces, similar to Verlinde's entropic force, and give holographic dark energy with an equation of state comparable to current observational data. This connection between quantum entanglement and gravity could give some new in...
Energy Technology Data Exchange (ETDEWEB)
Au, G
1995-03-01
One of the greatest challenges facing theoretical physics lies in reconciling Einstein`s classical theory of gravity - general relativity -with quantum field theory. Although both theories have been experimentally supported in their respective regimes, they are as compatible as a square peg and a round hole. This article summarises the current status of the superstring approach to the problem, the status of the Ashtekar program, and problem of time in quantum gravity.
Lauridsen, Mette Munk; Frøjk, Jesper; de Muckadell, Ove B Schaffalitzky; Vilstrup, Hendrik
2014-09-01
The continuous reaction times (CRT) method describes arousal functions. Reaction time instability in a patient with liver disease indicates covert hepatic encephalopathy (cHE). The effects of sleep deprivation are unknown although cirrhosis patients frequently suffer from sleep disorders. The aim of this study was to determine if sleep deprivation influences the CRT test. Eighteen cirrhosis patients and 27 healthy persons were tested when rested and after one night's sleep deprivation. The patients filled out validated sleep quality questionnaires. Seven patients (38%) had unstable reaction times (a CRTindex sleep that was not related to their CRT tests before or after the sleep deprivation. In the healthy participants, the sleep deprivation slowed their reaction times by 11% (p sleep deprivation normalized or improved the reaction time stability of the patients with a CRTindex below 1.9 and had no effect in the patients with a CRTindex above 1.9. There was no relation between reported sleep quality and reaction time results. Thus, in cirrhosis patients, sleep disturbances do not lead to 'falsely' slowed and unstable reaction times. In contrast, the acute sleep deprivation slowed and destabilized the reaction times of the healthy participants. This may have negative consequences for decision-making.
Stochastic Gravity: Theory and Applications
Directory of Open Access Journals (Sweden)
Hu Bei Lok
2008-05-01
Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein–Langevin equation, which has, in addition, sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bitensor, which describes the fluctuations of quantum-matter fields in curved spacetimes. A new improved criterion for the validity of semiclassical gravity may also be formulated from the viewpoint of this theory. In the first part of this review we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to the correlation functions. The functional approach uses the Feynman–Vernon influence functional and the Schwinger–Keldysh closed-time-path effective action methods. In the second part, we describe three applications of stochastic gravity. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic-gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, using the Einstein–Langevin equation, we discuss the backreaction of Hawking radiation and the behavior of metric fluctuations for both the quasi-equilibrium condition of a black-hole in a box and the fully nonequilibrium condition of an evaporating black hole spacetime. Finally, we briefly discuss the theoretical structure of stochastic gravity in relation to quantum gravity and point out
DEFF Research Database (Denmark)
Lauridsen, Mette Munk; Frøjk, Jesper; de Muckadell, Ove B Schaffalitzky
2014-01-01
of this study was to determine if sleep deprivation influences the CRT test. Eighteen cirrhosis patients and 27 healthy persons were tested when rested and after one night's sleep deprivation. The patients filled out validated sleep quality questionnaires. Seven patients (38 %) had unstable reaction times (a...... CRTindex change in the other patients' reaction speed or stability. Seven patients (38 %) reported poor sleep that was not related to their CRT tests before...... or after the sleep deprivation. In the healthy participants, the sleep deprivation slowed their reaction times by 11 % (p persons (25 %) destabilized them. The acute sleep deprivation normalized or improved the reaction time stability of the patients with a CRTindex below 1.9 and had...
Hou, Limin; Xu, Li
2018-02-01
Short-time processing was employed to manipulate the amplitude, bandwidth, and temporal fine structure (TFS) in sentences. Fifty-two native-English-speaking, normal-hearing listeners participated in four sentence-recognition experiments. Results showed that recovered envelope (E) played an important role in speech recognition when the bandwidth was > 1 equivalent rectangular bandwidth. Removing TFS drastically reduced sentence recognition. Preserving TFS greatly improved sentence recognition when amplitude information was available at a rate ≥ 10 Hz (i.e., time segment ≤ 100 ms). Therefore, the short-time TFS facilitates speech perception together with the recovered E and works with the coarse amplitude cues to provide useful information for speech recognition.
International Nuclear Information System (INIS)
Lopez, G.
1991-01-01
The quench simulations of a superconducting (s.c.) magnet requires some assumptions about the evolution of the normal zone and its temperature profile. The axial evolution of the normal zone is considered through the longitudinal quench velocity. However, the transversal quench propagation may be considered through the transversal quench velocity or with the turn-to-turn time delay quench propagation. The temperature distribution has been assumed adiabatic-like or cosine-like in two different computer programs. Although both profiles are different, they bring about more or less the same qualitative quench results differing only in about 8%. Unfortunately, there are not experimental data for the temperature profile along the conductor in a quench event to have a realistic comparison. Little attention has received the temperature profile, mainly because it is not so critical parameter in the quench analysis. Nonetheless, a confident quench analysis requires that the temperature distribution along the normal zone be taken into account with good approximation. In this paper, an analytical study is made about the temperature profile
Lindahl, Tomas L; Egberg, Nils; Hillarp, Andreas; Ødegaard, Ole R; Edlund, Bror; Svensson, Jan; Sandset, Per M; Rånby, Mats
2004-06-01
Prothrombin time (PT) is clinically important and is used to monitor oral anticoagulant therapy. To obtain PT results in international normalized ratio (INR), the current standardization procedure is complex and involves reference reagents. The PT of diluted plasma samples can be determined with a combined thromboplastin (the Owren-type procedure), but not necessarily with a plain thromboplastin (the Quick-type procedure). Owren-type PT procedures can therefore, as an alternative to the INR calibration, be calibrated with diluted normal plasma to give PT results in percent of normal PT activity (PT%). The present study explored if a plasma-based calibration of an Owren-type PT procedure can be used to obtain results in INR. The approach was to establish a relationship between PT% and INR by multi-center analysis of 365 samples from healthy individuals and patients on warfarin treatment. INR values were obtained by manual Quick-type reference procedure and PT% values by various automated Owren-type procedures. A relationship INR = (1/PT% + 0.018)/0.028 was found. A calibration procedure, based on the relationship, was investigated. Calibrators were the median PT of 21 normal plasma at dilutions representing 100%, 50%, 25%, 12.5% and 6.25% of normal PT activity. These were assigned INR values of 1.00, 1.36, 2.07, 3.05 and 6.36. Calibration of various Owren-type assays was repeatedly performed by 5 expert laboratories during 3 consecutive years. The INR values of certain lyophilised or frozen control plasmas were determined. The frozen control plasmas had externally assigned INR values according to WHO guide-lines. Within the laboratory, CV was typically below 3%. No appreciable difference among the results of the different laboratories or the three assay occasions was found. Externally assigned and INR values were essentially identical to those found. These and other results indicated that the calibration procedure was reproducible, precise and accurate. Thus, an
Cho, Soojin; Yu, Jyaehyoung; Chun, Hyungi; Seo, Hyekyung; Han, Woojae
2014-04-01
Deficits of the aging auditory system negatively affect older listeners in terms of speech communication, resulting in limitations to their social lives. To improve their perceptual skills, the goal of this study was to investigate the effects of time alteration, selective word stress, and varying sentence lengths on the speech perception of older listeners. Seventeen older people with normal hearing were tested for seven conditions of different time-altered sentences (i.e., ±60%, ±40%, ±20%, 0%), two conditions of selective word stress (i.e., no-stress and stress), and three different lengths of sentences (i.e., short, medium, and long) at the most comfortable level for individuals in quiet circumstances. As time compression increased, sentence perception scores decreased statistically. Compared to a natural (or no stress) condition, the selectively stressed words significantly improved the perceptual scores of these older listeners. Long sentences yielded the worst scores under all time-altered conditions. Interestingly, there was a noticeable positive effect for the selective word stress at the 20% time compression. This pattern of results suggests that a combination of time compression and selective word stress is more effective for understanding speech in older listeners than using the time-expanded condition only.
Directory of Open Access Journals (Sweden)
Ruby Chandna
Full Text Available The real time quantitative reverse transcription PCR (qRT-PCR is becoming increasingly important to gain insight into function of genes. Given the increased sensitivity, ease and reproducibility of qRT-PCR, the requirement of suitable reference genes for normalization has become important and stringent. It is now known that the expression of internal control genes in living organism vary considerably during developmental stages and under different experimental conditions. For economically important Brassica crops, only a couple of reference genes are reported till date. In this study, expression stability of 12 candidate reference genes including ACT2, ELFA, GAPDH, TUA, UBQ9 (traditional housekeeping genes, ACP, CAC, SNF, TIPS-41, TMD, TSB and ZNF (new candidate reference genes, in a diverse set of 49 tissue samples representing different developmental stages, stress and hormone treated conditions and cultivars of Brassica juncea has been validated. For the normalization of vegetative stages the ELFA, ACT2, CAC and TIPS-41 combination would be appropriate whereas TIPS-41 along with CAC would be suitable for normalization of reproductive stages. A combination of GAPDH, TUA, TIPS-41 and CAC were identified as the most suitable reference genes for total developmental stages. In various stress and hormone treated samples, UBQ9 and TIPS-41 had the most stable expression. Across five cultivars of B. juncea, the expression of CAC and TIPS-41 did not vary significantly and were identified as the most stably expressed reference genes. This study provides comprehensive information that the new reference genes selected herein performed better than the traditional housekeeping genes. The selection of most suitable reference genes depends on the experimental conditions, and is tissue and cultivar-specific. Further, to attain accuracy in the results more than one reference genes are necessary for normalization.
Quantum gravity and quantum cosmology
Papantonopoulos, Lefteris; Siopsis, George; Tsamis, Nikos
2013-01-01
Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe. While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models. ...
International Nuclear Information System (INIS)
Gambini, Rodolfo; Porto, Rafael A; Pullin, Jorge
2004-01-01
The use of a relational time in quantum mechanics is a framework in which one promotes to quantum operators all variables in a system, and later chooses one of the variables to operate like a 'clock'. Conditional probabilities are computed for variables of the system to take certain values when the 'clock' specifies a certain time. This framework is attractive in contexts where the assumption of usual quantum mechanics of the existence of an external, perfectly classical clock, appears unnatural, as in quantum cosmology. Until recently, there were problems with such constructions in ordinary quantum mechanics with additional difficulties in the context of constrained theories like general relativity. A scheme we recently introduced to consistently discretize general relativity removed such obstacles. Since the clock is now an object subject to quantum fluctuations, the resulting evolution in time is not exactly unitary and pure states decohere into mixed states. Here we work out in detail the type of decoherence generated, and we find it to be of Lindblad type. This is attractive since it implies that one can have loss of coherence without violating the conservation of energy. We apply the framework to a simple cosmological model to illustrate how a quantitative estimate of the effect could be computed. For most quantum systems it appears to be too small to be observed, although certain macroscopic quantum systems could in the future provide a testing ground for experimental observation
Energy Technology Data Exchange (ETDEWEB)
Azab, Hassan A.; Anwar, Zeinab M. [Chemistry Department, Faculty of Science, Suez Canal University, 41522 Ismailia (Egypt); Kamel, Rasha M., E-mail: rashamoka@yahoo.com [Chemistry Department, Faculty of Science, Suez University, 43518 Suez (Egypt); Rashwan, Mai S. [Chemistry Department, Faculty of Science, Suez Canal University, 41522 Ismailia (Egypt)
2016-01-15
The interaction of Eu-1,4,7,10-tetraazacyclododecane (Cyclen) complex by using 4,4,4 trifluoro-1-(2-naphthyl)1,3-butanedione (TNB) as antenna with some nucleosides (guanosine, adenosine, cytidine and inosine), nucleotides (AMP, GMP, CMP, ATP and IMP) and DNA is studied using fluorescence technique. Two detection modes are employed one is the time-resolved mode, and the other is the normal luminescence mode. The time-resolved mode is more sensing than the normal luminescence mode in the present study. By using Benesi–Hildebrand equation binding constants were determined at various temperatures. Thermodynamic parameters showed that the reaction is spontaneous through the obtained negative values of free energy change ΔG. The enthalpy ΔH and the entropy ΔS of reactions were all determined. - Highlights: • This is an application for the detection of biologically important ligands. • The detection limits, binding constants and thermodynamic parameters were evaluated. • Effect of some interferents on the detection of DNA has been investigated.
International Nuclear Information System (INIS)
Azab, Hassan A.; Anwar, Zeinab M.; Kamel, Rasha M.; Rashwan, Mai S.
2016-01-01
The interaction of Eu-1,4,7,10-tetraazacyclododecane (Cyclen) complex by using 4,4,4 trifluoro-1-(2-naphthyl)1,3-butanedione (TNB) as antenna with some nucleosides (guanosine, adenosine, cytidine and inosine), nucleotides (AMP, GMP, CMP, ATP and IMP) and DNA is studied using fluorescence technique. Two detection modes are employed one is the time-resolved mode, and the other is the normal luminescence mode. The time-resolved mode is more sensing than the normal luminescence mode in the present study. By using Benesi–Hildebrand equation binding constants were determined at various temperatures. Thermodynamic parameters showed that the reaction is spontaneous through the obtained negative values of free energy change ΔG. The enthalpy ΔH and the entropy ΔS of reactions were all determined. - Highlights: • This is an application for the detection of biologically important ligands. • The detection limits, binding constants and thermodynamic parameters were evaluated. • Effect of some interferents on the detection of DNA has been investigated.
McCreery, Ryan W; Stelmachowicz, Patricia G
2013-09-01
Understanding speech in acoustically degraded environments can place significant cognitive demands on school-age children who are developing the cognitive and linguistic skills needed to support this process. Previous studies suggest the speech understanding, word learning, and academic performance can be negatively impacted by background noise, but the effect of limited audibility on cognitive processes in children has not been directly studied. The aim of the present study was to evaluate the impact of limited audibility on speech understanding and working memory tasks in school-age children with normal hearing. Seventeen children with normal hearing between 6 and 12 years of age participated in the present study. Repetition of nonword consonant-vowel-consonant stimuli was measured under conditions with combinations of two different signal to noise ratios (SNRs; 3 and 9 dB) and two low-pass filter settings (3.2 and 5.6 kHz). Verbal processing time was calculated based on the time from the onset of the stimulus to the onset of the child's response. Monosyllabic word repetition and recall were also measured in conditions with a full bandwidth and 5.6 kHz low-pass cutoff. Nonword repetition scores decreased as audibility decreased. Verbal processing time increased as audibility decreased, consistent with predictions based on increased listening effort. Although monosyllabic word repetition did not vary between the full bandwidth and 5.6 kHz low-pass filter condition, recall was significantly poorer in the condition with limited bandwidth (low pass at 5.6 kHz). Age and expressive language scores predicted performance on word recall tasks, but did not predict nonword repetition accuracy or verbal processing time. Decreased audibility was associated with reduced accuracy for nonword repetition and increased verbal processing time in children with normal hearing. Deficits in free recall were observed even under conditions where word repetition was not affected
Miniaturised Gravity Sensors for Remote Gravity Surveys.
Middlemiss, R. P.; Bramsiepe, S. G.; Hough, J.; Paul, D. J.; Rowan, S.; Samarelli, A.; Hammond, G.
2016-12-01
Gravimetry lets us see the world from a completely different perspective. The ability to measure tiny variations in gravitational acceleration (g), allows one to see not just the Earth's gravitational pull, but the influence of smaller objects. The more accurate the gravimeter, the smaller the objects one can see. Gravimetry has applications in many different fields: from tracking magma moving under volcanoes before eruptions; to locating hidden tunnels. The top commercial gravimeters weigh tens of kg and cost at least $100,000, limiting the situations in which they can be used. By contrast, smart phones use a MEMS (microelectromechanical system) accelerometer that can measure the orientation of the device. These are not nearly sensitive or stable enough to be used for the gravimetry but they are cheap, light-weight and mass-producible. At Glasgow University we have developed a MEMS device with both the stability and sensitivity for useful gravimetric measurements. This was demonstrated by a measurement of the Earth tides - the first time this has been achieved with a MEMS sensor. A gravimeter of this size opens up the possiblility for new gravity imaging modalities. Thousands of gravimeters could be networked over a survey site, storing data on an SD card or communicating wirelessly to a remote location. These devices could also be small enough to be carried by a UAVs: airborne gravity surveys could be carried out at low altitude by mulitple UAVs, or UAVs could be used to deliver ground based gravimeters to remote or inaccessible locations.
Byrne, Michael
1999-01-01
Einstein said that gravity is an acceleration like any other acceleration. But gravity causes relativistic effects at non-relativistic speeds; so gravity could have relativistic origins. And since the strong force is thought to cause most of mass, and mass is proportional to gravity; the strong force is therefore also proportional to gravity. The strong force could thus cause relativistic increases of mass through the creation of virtual gluons; along with a comparable contraction of space ar...
Left and right reaction time differences to the sound intensity in normal and AD/HD children.
Baghdadi, Golnaz; Towhidkhah, Farzad; Rostami, Reza
2017-06-01
Right hemisphere, which is attributed to the sound intensity discrimination, has abnormality in people with attention deficit/hyperactivity disorder (AD/HD). However, it is not studied whether the defect in the right hemisphere has influenced on the intensity sensation of AD/HD subjects or not. In this study, the sensitivity of normal and AD/HD children to the sound intensity was investigated. Nineteen normal and fourteen AD/HD children participated in the study and performed a simple auditory reaction time task. Using the regression analysis, the sensitivity of right and left ears to various sound intensity levels was examined. The statistical results showed that the sensitivity of AD/HD subjects to the intensity was lower than the normal group (p Left and right pathways of the auditory system had the same pattern of response in AD/HD subjects (p > 0.05). However, in control group the left pathway was more sensitive to the sound intensity level than the right one (p = 0.0156). It can be probable that the deficit of the right hemisphere has influenced on the auditory sensitivity of AD/HD children. The possible existent deficits of other auditory system components such as middle ear, inner ear, or involved brain stem nucleuses may also lead to the observed results. The development of new biomarkers based on the sensitivity of the brain hemispheres to the sound intensity has been suggested to estimate the risk of AD/HD. Designing new technique to correct the auditory feedback has been also proposed in behavioral treatment sessions. Copyright © 2017. Published by Elsevier B.V.
Gravity a very short introduction
Clifton, Timothy
2017-01-01
Gravity is one of the four fundamental interactions that exist in nature. It also has the distinction of being the oldest, weakest, and most difficult force to quantize. Understanding gravity is not only essential for understanding the motion of objects on Earth, but also the motion of all celestial objects, and even the expansion of the Universe itself. It was the study of gravity that led Einstein to his profound realizations about the nature of space and time. Gravity is not only universal, it is also essential for understanding the behavior of the Universe, and all astrophysical bodies within it. In this Very Short Introduction Timothy Clifton looks at the development of our understanding of gravity since the early observations of Kepler and Newtonian theory. He discusses Einstein's theory of gravity, which now supplants Newton's, showing how it allows us to understand why the frequency of light changes as it passes through a gravitational field, why GPS satellites need their clocks corrected as they orbi...
Cosmic censorship in quantum Einstein gravity
Bonanno, A.; Koch, B.; Platania, A.
2017-05-01
We study the quantum gravity modification of the Kuroda-Papapetrou model induced by the running of the Newton’s constant at high energy in quantum Einstein gravity. We argue that although the antiscreening character of the gravitational interaction favours the formation of a naked singularity, quantum gravity effects turn the classical singularity into a ‘whimper’ singularity which remains naked for a finite amount of advanced time.
Wahr, John; Smeed, David; Leuliette, Eric; Swenson, Sean
2014-05-01
Seasonal variability of sea surface height and mass within the Red Sea, occurs mostly through the exchange of heat with the atmosphere and wind-driven inflow and outflow of water through the strait of Bab el Mandab that opens into the Gulf of Aden to the south. The seasonal effects of precipitation and evaporation, of water exchange through the Suez Canal to the north, and of runoff from the adjacent land, are all small. The flow through the Bab el Mandab involves a net mass transfer into the Red Sea during the winter and a net transfer out during the summer. But that flow has a multi-layer pattern, so that in the summer there is actually an influx of cool water at intermediate (~100 m) depths. Thus, summer water in the southern Red Sea is warmer near the surface due to higher air temperatures, but cooler at intermediate depths (especially in the far south). Summer water in the northern Red Sea experiences warming by air-sea exchange only. The temperature profile affects the water density, which impacts the sea surface height but has no effect on vertically integrated mass. Here, we study this seasonal cycle by combining GRACE time-variable mass estimates, altimeter (Jason-1, Jason-2, and Envisat) measurements of sea surface height, and steric sea surface height contributions derived from depth-dependent, climatological values of temperature and salinity obtained from the World Ocean Atlas. We find good consistency, particularly in the northern Red Sea, between these three data types. Among the general characteristics of our results are: (1) the mass contributions to seasonal SSHT variations are much larger than the steric contributions; (2) the mass signal is largest in winter, consistent with winds pushing water into the Red Sea through the Strait of Bab el Mandab in winter, and out during the summer; and (3) the steric signal is largest in summer, consistent with summer sea surface warming.
Johnston, Stephen; Gallaher, Zachary; Czaja, Krzysztof
2012-05-15
Quantitative real-time reverse transcription-polymerase chain reaction (qPCR) is widely used to investigate transcriptional changes following experimental manipulations to the nervous system. Despite the widespread utilization of qPCR, the interpretation of results is marred by the lack of a suitable reference gene due to the dynamic nature of endogenous transcription. To address this inherent deficiency, we investigated the use of an exogenous spike-in mRNA, luciferase, as an internal reference gene for the 2(-∆∆Ct) normalization method. To induce dynamic transcription, we systemically administered capsaicin, a neurotoxin selective for C-type sensory neurons expressing the TRPV-1 receptor, to adult male Sprague-Dawley rats. We later isolated nodose ganglia for qPCR analysis with the reference being either exogenous luciferase mRNA or the commonly used endogenous reference β-III tubulin. The exogenous luciferase mRNA reference clearly demonstrated the dynamic expression of the endogenous reference. Furthermore, variability of the endogenous reference would lead to misinterpretation of other genes of interest. In conclusion, traditional reference genes are often unstable under physiologically normal situations, and certainly unstable following the damage to the nervous system. The use of exogenous spike-in reference provides a consistent and easily implemented alternative for the analysis of qPCR data.
Energy Technology Data Exchange (ETDEWEB)
Lamon, Raphael
2010-06-29
. Furthermore, we succeed in solving the quantum Gauss constraint. In the second part of the thesis we introduce some aspects of phenomenological quantum gravity and their possible detectable signatures. The goal of phenomenological quantum gravity is to derive conclusions and make predictions from expected characteristics of a full theory of quantum gravity. One possibility is an energy-dependent speed of light arising from a quantized space such that the propagation time of two photons differs. However, the amount of these corrections is very small such that only cosmological distances can be considered. Gamma-ray bursts (GRB) are ideal candidates as they are short but very luminous bursts of gamma-rays taking place at distances billions of light-years away. We study GRBs detected by the European satellite INTEGRAL and develop a new method to analyze unbinned data. A {chi}{sup 2}-test will provide a lower bound for quantum gravity corrections, which will be nevertheless well below the Planck mass. Then we shall study the sensibility of NASA's new satellite Fermi Gamma-ray Space Telescope and conclude that it is well suited to detect corrections. This prediction has just been confirmed when Fermi detected a very energetic photon emanating from GRB 090510 which highly constrains models with linear corrections to the speed of light. However, as it is shown at the end of this thesis, more bursts are needed in order to definitely falsify such models. (orig.)
International Nuclear Information System (INIS)
Lamon, Raphael
2010-01-01
succeed in solving the quantum Gauss constraint. In the second part of the thesis we introduce some aspects of phenomenological quantum gravity and their possible detectable signatures. The goal of phenomenological quantum gravity is to derive conclusions and make predictions from expected characteristics of a full theory of quantum gravity. One possibility is an energy-dependent speed of light arising from a quantized space such that the propagation time of two photons differs. However, the amount of these corrections is very small such that only cosmological distances can be considered. Gamma-ray bursts (GRB) are ideal candidates as they are short but very luminous bursts of gamma-rays taking place at distances billions of light-years away. We study GRBs detected by the European satellite INTEGRAL and develop a new method to analyze unbinned data. A χ 2 -test will provide a lower bound for quantum gravity corrections, which will be nevertheless well below the Planck mass. Then we shall study the sensibility of NASA's new satellite Fermi Gamma-ray Space Telescope and conclude that it is well suited to detect corrections. This prediction has just been confirmed when Fermi detected a very energetic photon emanating from GRB 090510 which highly constrains models with linear corrections to the speed of light. However, as it is shown at the end of this thesis, more bursts are needed in order to definitely falsify such models. (orig.)
Allowance for influence of gravity field nonuniformity
Tsysar, A. P.
1987-03-01
The constants of a quartz-metal pendulum used in higher-order gravimetric networks have been determined and a formula has been derived for the total correction for gravity field nonuniformity measurements made with the pendulum. Nomograms were constructed on the basis of these formulas and are used in introducing corrections into pendulum measurements. A table was prepared giving the components of the correction for some values of the derivatives of gravity potential from surrounding masses. Errors can be caused by building walls, the pedestal on which the instrument sits and other factors, and these must be taken into account since they increase the normal gravity gradient. After introducing these correction components for the nonuniform gravity field, the gravity field at the measurement point is related to the instrument point coinciding with the middle of the pendulum knife blade.
Badrick, Tony; Graham, Peter
2018-03-28
Internal Quality Control and External Quality Assurance are separate but related processes that have developed independently in laboratory medicine over many years. They have different sample frequencies, statistical interpretations and immediacy. Both processes have evolved absorbing new understandings of the concept of laboratory error, sample material matrix and assay capability. However, we do not believe at the coalface that either process has led to much improvement in patient outcomes recently. It is the increasing reliability and automation of analytical platforms along with improved stability of reagents that has reduced systematic and random error, which in turn has minimised the risk of running less frequent IQC. We suggest that it is time to rethink the role of both these processes and unite them into a single approach using an Average of Normals model supported by more frequent External Quality Assurance samples. This new paradigm may lead to less confusion for laboratory staff and quicker responses to and identification of out of control situations.
Chiral gravity, log gravity, and extremal CFT
International Nuclear Information System (INIS)
Maloney, Alexander; Song Wei; Strominger, Andrew
2010-01-01
We show that the linearization of all exact solutions of classical chiral gravity around the AdS 3 vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.
GRAVITY VARIATIONS AND RECENT GEODYNAMICS OF THE SOUTH-WESTERN PART OF THE BAIKAL REGION
Directory of Open Access Journals (Sweden)
V. Yu. Timofeev
2013-01-01
Full Text Available Modern methods for determination of gravity values make it possible to obtain measurements with the accuracy up to 10–9 from g0 of the normal value (up to 1 microgal = 10 m/sec2. While all the systematic and periodic effects are excluded, a question is raised about stability of the gravity field of the Earth over time. Changes of the altitude (the Earth’s radius with time can be estimated with an accuracy of 0.1 mm by modern space geodetic techniques, such as VLBI method. Our experiments for evaluation of stability of the gravity values over the past decades are based on the data obtained by Russian and foreign observatories using absolute ballistic laser gravimeters. The results put a limit of 10–10 per year to changes of the Earth’s radius. These estimations can be useful for testing hypotheses in tectonics.Measurements of non-tidal variations of gravity (Δg, which were obtained from 1992 to 2012 at the Talaya seismic station (located in the south-western part of the Baikal region, are interpreted together with GPS observation data. At the Talaya seismic station, the linear component of gravity variations corresponds to changes in the elevation of this site. The correlation coefficient is close to the normal value of the vertical gradient of gravity. At this site, coseismic gravity variations at the time of the Kultuk earthquake (27 August 2008, Mw=6.3 were caused by a combined effect of the change of the site’s elevation and deformation of the crust. Our estimations of the coseismic effects are consistent with results obtained by modeling based on the available seismic data.
The Superheavy Elements and Anti-Gravity
Anastasovski, Petar K.
2004-02-01
The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z Hawking, in honour of Stephen W. Hawking.
Chakraborty, S.; Banerjee, A.; Gupta, S. K. S.; Christensen, P. R.; Papandreou-Suppappola, A.
2017-12-01
Multitemporal observations acquired frequently by satellites with short revisit periods such as the Moderate Resolution Imaging Spectroradiometer (MODIS), is an important source for modeling land cover. Due to the inherent seasonality of the land cover, harmonic modeling reveals hidden state parameters characteristic to it, which is used in classifying different land cover types and in detecting changes due to natural or anthropogenic factors. In this work, we use an eight day MODIS composite to create a Normalized Difference Vegetation Index (NDVI) time-series of ten years. Improved hidden parameter estimates of the nonlinear harmonic NDVI model are obtained using the Particle Filter (PF), a sequential Monte Carlo estimator. The nonlinear estimation based on PF is shown to improve parameter estimation for different land cover types compared to existing techniques that use the Extended Kalman Filter (EKF), due to linearization of the harmonic model. As these parameters are representative of a given land cover, its applicability in near real-time detection of land cover change is also studied by formulating a metric that captures parameter deviation due to change. The detection methodology is evaluated by considering change as a rare class problem. This approach is shown to detect change with minimum delay. Additionally, the degree of change within the change perimeter is non-uniform. By clustering the deviation in parameters due to change, this spatial variation in change severity is effectively mapped and validated with high spatial resolution change maps of the given regions.
Gravity separation of fat, somatic cells, and bacteria in raw and pasteurized milks.
Caplan, Z; Melilli, C; Barbano, D M
2013-04-01
The objective of experiment 1 was to determine if the extent of gravity separation of milk fat, bacteria, and somatic cells is influenced by the time and temperature of gravity separation or the level of contaminating bacteria present in the raw milk. The objective of experiment 2 was to determine if different temperatures of milk heat treatment affected the gravity separation of milk fat, bacteria, and somatic cells. In raw milk, fat, bacteria, and somatic cells rose to the top of columns during gravity separation. About 50 to 80% of the fat and bacteria were present in the top 8% of the milk after gravity separation of raw milk. Gravity separation for 7h at 12°C or for 22h at 4°C produced equivalent separation of fat, bacteria, and somatic cells. The completeness of gravity separation of fat was influenced by the level of bacteria in the milk before separation. Milk with a high bacterial count had less (about 50 to 55%) gravity separation of fat than milk with low bacteria count (about 80%) in 22h at 4°C. Gravity separation caused fat, bacteria, and somatic cells to rise to the top of columns for raw whole milk and high temperature, short-time pasteurized (72.6°C, 25s) whole milk. Pasteurization at ≥76.9°C for 25s prevented all 3 components from rising, possibly due to denaturation of native bovine immunoglobulins that normally associate with fat, bacteria, and somatic cells during gravity separation. Gravity separation can be used to produce reduced-fat milk with decreased bacterial and somatic cell counts, and may be a critical factor in the history of safe and unique traditional Italian hard cheeses produced from gravity-separated raw milk. A better understanding of the mechanism of this natural process could lead to the development of new nonthermal thermal technology (that does not involve heating the milk to high temperatures) to remove bacteria and spores from milk or other liquids. Copyright © 2013 American Dairy Science Association. Published by
International Nuclear Information System (INIS)
Schoutens, K.; van Nieuwenhuizen, P.; State Univ. of New York, Stony Brook, NY
1991-11-01
We briefly review some results in the theory of quantum W 3 gravity in the chiral gauge. We compare them with similar results in the analogous but simpler cases of d = 2 induced gauge theories and d = 2 induced gravity
... medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...
Cadiz, California Gravity Data
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (32 records) were gathered by Mr. Seth I. Gutman for AridTech Inc., Denver, Colorado using a Worden Prospector gravity meter. This data base...
National Oceanic and Atmospheric Administration, Department of Commerce — The Central Andes gravity data (6,151 records) were compiled by Professor Gotze and the MIGRA Group. This data base was received in April, 1997. Principal gravity...
National Oceanic and Atmospheric Administration, Department of Commerce — The Decade of North American Geology (DNAG) gravity grid values, spaced at 6 km, were used to produce the Gravity Anomaly Map of North America (1987; scale...
International Nuclear Information System (INIS)
Pinheiro, R.
1979-01-01
The properties and production of gravitational radiation are described. The prospects for their detection are considered including the Weber apparatus and gravity-wave telescopes. Possibilities of gravity-wave astronomy are noted
Northern Oklahoma Gravity Data
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (710 records) were compiled by Professor Ahern. This data base was received in June 1992. Principal gravity parameters include latitude,...
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (24,284 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity...
Characteristic precipitation patterns of El Niño/La Niña in time-variable gravity fields by GRACE
Morishita, Yu; Heki, Kosuke
2008-01-01
El Niño and La Niña are known to bring about characteristic patterns of anomalous precipitation in various regions of the world. We extracted temporary and regional gravity changes from monthly gravity fields recovered by the GRACE satellites, and converted them to the changes in surface mass, possibly ground or subsurface water in land area. Such mass changes in the 2006-2007 El Niño and 2005-2006 La Niña episodes agreed well with precipitation anomaly patterns inferred from meteorological r...
How much gravity is needed to establish the perceptual upright?
Harris, Laurence R; Herpers, Rainer; Hofhammer, Thomas; Jenkin, Michael
2014-01-01
Might the gravity levels found on other planets and on the moon be sufficient to provide an adequate perception of upright for astronauts? Can the amount of gravity required be predicted from the physiological threshold for linear acceleration? The perception of upright is determined not only by gravity but also visual information when available and assumptions about the orientation of the body. Here, we used a human centrifuge to simulate gravity levels from zero to earth gravity along the long-axis of the body and measured observers' perception of upright using the Oriented Character Recognition Test (OCHART) with and without visual cues arranged to indicate a direction of gravity that differed from the body's long axis. This procedure allowed us to assess the relative contribution of the added gravity in determining the perceptual upright. Control experiments off the centrifuge allowed us to measure the relative contributions of normal gravity, vision, and body orientation for each participant. We found that the influence of 1 g in determining the perceptual upright did not depend on whether the acceleration was created by lying on the centrifuge or by normal gravity. The 50% threshold for centrifuge-simulated gravity's ability to influence the perceptual upright was at around 0.15 g, close to the level of moon gravity but much higher than the threshold for detecting linear acceleration along the long axis of the body. This observation may partially explain the instability of moonwalkers but is good news for future missions to Mars.
International Nuclear Information System (INIS)
Vega, H.J. de
1990-01-01
One of the main challenges in theoretical physics today is the unification of all interactions including gravity. At present, string theories appear as the most promising candidates to achieve such a unification. However, gravity has not completely been incorporated in string theory, many technical and conceptual problems remain and a full quantum theory of gravity is still non-existent. Our aim is to properly understand strings in the context of quantum gravity. Attempts towards this are reviewed. (author)
International Nuclear Information System (INIS)
Noyes, H.P.
1990-07-01
This paper discusses the following: constructing a bit-string universe; quantized space-time; combinatorial hierarchy labels; gravitational stabilization of the proton; quantum geons; cosmological consequences; the proton-electron mass ratio, weak- electromagnetic unification; and sewgut
International Nuclear Information System (INIS)
La, H.
1992-01-01
A new geometric formulation of Liouville gravity based on the area preserving diffeo-morphism is given and a possible alternative to reinterpret Liouville gravity is suggested, namely, a scalar field coupled to two-dimensional gravity with a curvature constraint
Bergshoeff, E.; Pope, C.N.; Stelle, K.S.
1990-01-01
We discuss the notion of higher-spin covariance in w∞ gravity. We show how a recently proposed covariant w∞ gravity action can be obtained from non-chiral w∞ gravity by making field redefinitions that introduce new gauge-field components with corresponding new gauge transformations.
Induced quantum conformal gravity
International Nuclear Information System (INIS)
Novozhilov, Y.V.; Vassilevich, D.V.
1988-11-01
Quantum gravity is considered as induced by matter degrees of freedom and related to the symmetry breakdown in the low energy region of a non-Abelian gauge theory of fundamental fields. An effective action for quantum conformal gravity is derived where both the gravitational constant and conformal kinetic term are positive. Relation with induced classical gravity is established. (author). 15 refs
Amelino-Camelia, Giovanni
2003-01-01
Comment: 9 pages, LaTex. These notes were prepared while working on an invited contribution to the November 2003 issue of Physics World, which focused on quantum gravity. They intend to give a non-technical introduction (accessible to readers from outside quantum gravity) to "Quantum Gravity Phenomenology"
International Nuclear Information System (INIS)
Rønjom, Marianne Feen; Brink, Carsten; Bentzen, Søren M.; Hegedüs, Laszlo; Overgaard, Jens; Johansen, Jørgen
2013-01-01
Background and purpose: To develop a normal tissue complication probability (NTCP) model of radiation-induced biochemical hypothyroidism (HT) after primary radiotherapy for head and neck squamous cell carcinoma (HNSCC) with adjustment for latency and clinical risk factors. Patients and methods: Patients with HNSCC receiving definitive radiotherapy with 66–68 Gy without surgery were followed up with serial post-treatment thyrotropin (TSH) assessment. HT was defined as TSH >4.0 mU/l. Data were analyzed with both a logistic and a mixture model (correcting for latency) to determine risk factors for HT and develop an NTCP model based on mean thyroid dose (MTD) and thyroid volume. Results: 203 patients were included. Median follow-up: 25.1 months. Five-year estimated risk of HT was 25.6%. In the mixture model, the only independent risk factors for HT were thyroid volume (cm 3 ) (OR = 0.75 [95% CI: 0.64–0.85], p 3 , respectively. Conclusions: Comparing the logistic and mixture models demonstrates the importance of latent-time correction in NTCP-modeling. Thyroid dose constraints in treatment planning should be individualized based on thyroid volume
Quantum gravity as Escher's dragon
International Nuclear Information System (INIS)
Smilga, A.V.
2003-01-01
The main obstacle in attempts to construct a consistent quantum gravity is the absence of independent flat time. This can in principle be cured by going out to higher dimensions. The modern paradigm assumes that the fundamental theory of everything is some form of string theory living in space of more than four dimensions. We advocate another possibility that the fundamental theory is a form of D = 4 higher derivative gravity. This class of theories has a nice feature of renormalizability, so that perturbative calculations are feasible. There are also finite N = 4 supersymmetric conformal supergravity theories. This possibility is particularly attractive. Einstein's gravity is obtained in a natural way as an effective low-energy theory. The N= 1 supersymmetric version of the theory has a natural higher dimensional interpretation due to V.I. Ogievetsky and E.S. Sokatchev, which involves embedding our curved Minkowski spacetime manifold into flat eight-dimensional space. Assuming that a variant of the finite N = 4 theory also admits a similar interpretation, this may eventually allow one to construct consistent quantum theory of gravity. We argue, however, that, even though future gravity theory will probably use higher dimensions as construction scaffolds, its physical content and meaning should refer to four dimensions, where an observer lives
International Nuclear Information System (INIS)
Ku, Myong Seo; Kim, Seung Kwon; Hong, Hyun Pyo; Kwag, Hyon Joo
2007-01-01
To compare the lesion conspicuity of radiofrequency ablation (RFA) zones among MR sequences according to time in the normal rabbit liver. RFA zones were created in 12 rabbit livers with a 17-gauge internally cooled electrode (1-cm active tip, 30 Watts, 3 minutes). Three rabbits were sacrificed immediately, three days, two weeks, and six weeks after the RFA procedure, respectively. Before sacrifice, T1-, T2-weighted images (WI), and gadolinium-enhanced (GE)-T1WI images were obtained. The lesion conspicuity of the RAF zone and the contrast-to-noise ratio (CNR) of the RFA zone to the liver parenchyma were analyzed and compared among the MR sequences according to time. On T1WI, the RFA zones were only clearly seen on acute phase. On T2WI, the RFA zones were clearly seen on all phases except the hyperacute phase. On GE T1WI, the RFA zones were clearly seen on all phases. The CNRs of the RFA zone to the liver parenchyma of GE-T1WI (8.1-12.4) were significantly higher than the CNRs of TIWI (1.6-2.7) and T2WI (1.7-6.3) on all phases (ρ < 0.05), but the visual lesion conspicuity between GE T1WI and T2WI were similar. On hyperacute phase, GE T1WI showed better lesion conspicuity of the RFA zone than T1WI and T2WI. On other phases, GE T1WI and T2WI showed similar lesion conspicuity
Darsareh, Fatemeh; Aghamolaei, Teamur; Rajaei, Minoo; Madani, Abdoulhossain; Zare, Shahram
2018-06-18
The steep increase and inappropriateness of caesarean birth represent a healthcare problem in Iran. The purpose of study was to evaluate the effect of a campaign based on social marketing to promote normal childbirth. The study was designed as a prospective case control study. The social marketing campaign was implemented from March 2016 to January 2017. A demographic data questionnaire, obstetrical history questionnaire, maternal knowledge assessment questionnaire, and maternal health belief questionnaire comprised the instruments for this study. Only women planning a caesarean birth without any medical indications for the caesarean were enrolled in the study as a case. Those who met the same inclusion criteria and did not want to participate in the campaign were assigned to the control group. In total, 350 first-time pregnant women who composed the campaign group (n=194) and control group (n=156) completed the study. The mean baseline level of knowledge and Health Belief Model component score did not differ between the two groups at baseline. However, after the campaign, knowledge scores, perceived severity, perceived susceptibility, self-efficacy, and cues to action scores differed significantly between the campaign and control groups. The follow-up of all participants in both groups showed that 35.6% (n=69) of participants in the campaign group chose natural birth as their birth method, whereas only 13.5% (n=21) in the control group delivered their newborn vaginally. The B Butterfly social marketing campaign successfully targeted first-time pregnant women who chose to have unnecessary elective cesarean births. Copyright © 2018 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.
A 'general boundary' formulation for quantum mechanics and quantum gravity
International Nuclear Information System (INIS)
Oeckl, Robert
2003-01-01
I propose to formalize quantum theories as topological quantum field theories in a generalized sense, associating state spaces with boundaries of arbitrary (and possibly finite) regions of space-time. I further propose to obtain such 'general boundary' quantum theories through a generalized path integral quantization. I show how both, non-relativistic quantum mechanics and quantum field theory can be given a 'general boundary' formulation. Surprisingly, even in the non-relativistic case, features normally associated with quantum field theory emerge from consistency conditions. This includes states with arbitrary particle number and pair creation. I also note how three-dimensional quantum gravity is an example for a realization of both proposals and suggest to apply them to four-dimensional quantum gravity
Ghost quintessence in fractal gravity
Indian Academy of Sciences (India)
In this study, using the time-like fractal theory of gravity, we mainly focus on the ghost ... Here a(t) is the cosmic scale factor and it measures the expansion of the Universe. ..... effectively appear as self-conserved dark energy, with a non-trivial ...
Ghost quintessence in fractal gravity
Indian Academy of Sciences (India)
In this study, using the time-like fractal theory of gravity, we mainly focus on the ghost dark energy model which was recently suggested to explain the present acceleration of the cosmic expansion. Next, we establish a connection between the quintessence scalar field and fractal ghost dark energy density.
International Nuclear Information System (INIS)
Dvali, Gia; Kolanovic, Marko; Nitti, Francesco; Gabadadze, Gregory
2002-01-01
We propose a framework in which the quantum gravity scale can be as low as 10 -3 eV. The key assumption is that the standard model ultraviolet cutoff is much higher than the quantum gravity scale. This ensures that we observe conventional weak gravity. We construct an explicit brane-world model in which the brane-localized standard model is coupled to strong 5D gravity of infinite-volume flat extra space. Because of the high ultraviolet scale, the standard model fields generate a large graviton kinetic term on the brane. This kinetic term 'shields' the standard model from the strong bulk gravity. As a result, an observer on the brane sees weak 4D gravity up to astronomically large distances beyond which gravity becomes five dimensional. Modeling quantum gravity above its scale by the closed string spectrum we show that the shielding phenomenon protects the standard model from an apparent phenomenological catastrophe due to the exponentially large number of light string states. The collider experiments, astrophysics, cosmology and gravity measurements independently point to the same lower bound on the quantum gravity scale, 10 -3 eV. For this value the model has experimental signatures both for colliders and for submillimeter gravity measurements. Black holes reveal certain interesting properties in this framework
A Transportable Gravity Gradiometer Based on Atom Interferometry
Yu, Nan; Thompson, Robert J.; Kellogg, James R.; Aveline, David C.; Maleki, Lute; Kohel, James M.
2010-01-01
rest frame for the trapped atoms. While still in this moving-frame molasses, the laser frequencies are further detuned from the atomic resonance (while maintaining this relative frequency shift) to cool the atom cloud's temperature to 2 K or below, corresponding to an rms velocity of less than 2 cm/s. After launch, the cold atoms undergo further state and velocity selection to prepare for atom interferometry. The atom interferometers are then realized using laser-induced stimulated Raman transitions to perform the necessary manipulations of each atom, and the resulting interferometer phase is measured using laser-induced fluorescence for state-normalized detection. More than 20 laser beams with independent controls of frequency, phase, and intensity are required for this measurement sequence. This instrument can facilitate the study of Earth's gravitational field from surface and air vehicles, as well as from space by allowing gravity mapping from a low-cost, single spacecraft mission. In addition, the operation of atom interferometer-based instruments in space offers greater sensitivity than is possible in terrestrial instruments due to the much longer interrogation times available in the microgravity environment. A space-based quantum gravity gradiometer has the potential to achieve sensitivities similar to the GRACE mission at long spatial wavelengths, and will also have resolution similar to GOCE for measurement at shorter length scales.
Benedetti, L. C.; Tesson, J.; Perouse, E.; Puliti, I.; Fleury, J.; Rizza, M.; Billant, J.; Pace, B.
2017-12-01
The use of 36Cl cosmogenic nuclide as a paleoseismological tool for normal faults in the Mediterranean has revolutionized our understanding of their seismic cycle (Gran Mitchell et al. 2001, Benedetti et al. 2002). Here we synthetized results obtained on 13 faults in Central Italy. Those records cover a period of 8 to 45 ka. The mean recurrence time of retrieved seismic events is 5.5 ±6 ka, with a mean slip per event of 2.5 ± 1.8 m and a mean slip-rate from 0.1 to 2.4 mm/yr. Most retrieved events correspond to single events according to scaling relationships. This is also supported by the 2 m-high co-seismic slip observed on the Mt Vettore fault after the October 30, 2016 M6.5 earthquake in Central Italy (EMERGEO working group). Our results suggest that all faults have experienced one or several periods of slip acceleration with bursts of seismic activity, associated with very high slip-rate of 1.7-9 mm/yr, corresponding to 2-20 times their long-term slip-rate. The duration of those bursts is variable from a fault to another (from recurrence time. This might suggest that the seismic activity of those faults could be controlled by their intrinsic properties (e.g. long-term slip-rate, fault-length, state of structural maturity). Our results also show events clustering with several faults rupturing in less than 500 yrs on adjacent or distant faults within the studied area. The Norcia-Amatrice seismic sequence, ≈ 50 km north of our study area, also evidenced this clustering behaviour, with over the last 20 yrs several successive events of Mw 5 to 6.5 (from north to south: Colfiorito 1997 Mw6.0, Norcia 2016 Mw6.5, L'Aquila 2009 Mw6.3), rupturing various fault systems, over a total length of ≈100 km. This sequence will allow to better understand earthquake kinematics and spatiotemporal slip distribution during those seismic bursts.
OPG nuclear - deaerator gravity flow test
International Nuclear Information System (INIS)
Davidge, E.; Sanchez, R.; Misra, A.; Vecchiarelli, J.
2013-01-01
Following a total loss of all AC power, preexisting SG and SGECS are consumed to maintain fuel cooling. These inventories last ~3.5 hours. Additional time is needed to establish offsite Emergency Mitigating Equipment (EME). EME are portable generators/pumps which pump screened lake water directly to boilers, moderator, HTS, vault, etc., as required. Deaerator storage tank inventory can provide water to SGs by gravity draining (additional ~5.5 hours). Deaerator and deaerator storage tank are the highest points in the feedwater system and are normally used to remove air and impurities from the secondary side and store demineralized water. Calculations were done to determine minimum flow requirements to steam generators in a Beyond Design Basis Accident (BDBA). Additional calculations were performed to determine how long deaerator water can achieve this minimum flow rate. A validation test was required to demonstrate that the required flow rates could be achieved, and interim heat sink could be established. Tests were performed on shut-down units during planned outages. Tests successfully demonstrated capability of the interim deaerator gravity drain heat sink. Tests results were very close to analytical predictions. As expected, actual flow rate was slightly higher than predicted since conservative assumptions were used.
The Superheavy Elements and Anti-Gravity
International Nuclear Information System (INIS)
Anastasovski, Petar K.
2004-01-01
The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z < 64 and 63 < Z <145) exist that demonstrate these capabilities. The nuclei of the first group of elements have the masses with only the property of gravity. The nuclei of the elements of the second group have the masses with both properties: gravity and anti-gravity in two different ranges of curved space-time around the nuclei.. The hypothetical element with Z = 145 is the unique among all elements whose nucleus has only anti-gravity property. It is proposed that this element be named Hawking, in honour of Stephen W. Hawking
International Nuclear Information System (INIS)
Jones, K.R.W.
1995-01-01
We develop a nonlinear quantum theory of Newtonian gravity consistent with an objective interpretation of the wavefunction. Inspired by the ideas of Schroedinger, and Bell, we seek a dimensional reduction procedure to map complex wavefunctions in configuration space onto a family of observable fields in space-time. Consideration of quasi-classical conservation laws selects the reduced one-body quantities as the basis for an explicit quasi-classical coarse-graining. These we interpret as describing the objective reality of the laboratory. Thereafter, we examine what may stand in the role of the usual Copenhagen observer to localise this quantity against macroscopic dispersion. Only a tiny change is needed, via a generically attractive self-potential. A nonlinear treatment of gravitational self-energy is thus advanced. This term sets a scale for all wavepackets. The Newtonian cosmology is thus closed, without need of an external observer. Finally, the concept of quantisation is re-interpreted as a nonlinear eigenvalue problem. To illustrate, we exhibit an elementary family of gravitationally self-bound solitary waves. Contrasting this theory with its canonically quantised analogue, we find that the given interpretation is empirically distinguishable, in principle. This result encourages deeper study of nonlinear field theories as a testable alternative to canonically quantised gravity. (author). 46 refs., 5 figs
Sharanjeet-Kaur; Ho, Chien Yee; Mutalib, Haliza Abdul; Ghazali, Ahmad Rohi
2016-01-01
To investigate the relationship between tear ferning patterns (TFP) and non-invasive tear break-up time (NIBUT) in normal Asian subjects. One hundred and forty-five adults with no ocular surface disorders were recruited. TFP and NIBUT were determined. Tears were collected using a capillary tube and allowed to air dry at room temperature for 10min. TFP was later observed using a light microscope and classified according to Rolando's classification. Measurement for NIBUT was obtained using a Tearscope with the slit lamp magnification. It was found that there is no significant difference between gender in TFP (Z=-1.77, P>.05) and NIBUT (Z=-1.475, P>.05). There is also no significant difference between Malay, Chinese, Indian, and other races in TFP, (H(3)=4.85, P>.05) and NIBUT (H(3)=2.18, P>.05). However, there is a significant difference between age groups of 20-29, 30-39, 40-49,and 50-60 years old in both TFP (H(3)=28.25, P<.01) and NIBUT (H(3)=36.50, P<.001). Spearman's correlation showed there was a significant relationship between TFP and NIBUT (r=-0.55, P<.001), age and NIBUT (r=-0.50, P<.001), age and TFP (r=0.41, P<.001), McMonnies score and NIBUT (r=-0.40, P<.001), McMonnies score and TFP (r=0.31, P<.001), as well as age and McMonnies score (r=0.52, P<.001). TFP and NIBUT was age dependent but not gender and race dependent. Older subjects had higher grade of TFP and McMonnies questionnaire score but lower NIBUT value. TFP and NIBUT can be used to assess the tear film quality. Copyright © 2015 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.
Boll, I T
2001-08-01
The high-resolution phase-contrast, time-lapse cinematography using oil immersion lenses and 16-mm film demonstrates the kinetic cell events as maturation, locomotion, mitosis, and apoptosis of cells cultivated at 37 degrees C for up to 10 days. 0.5 v/v frozen-thawed sera with presumably high cytokine concentrations were added to the plasma or agar clot. Vital progenitor cells from human bone marrow and blood have a large, bright, unstructured nucleus with a large nucleolus and a narrow rim of cytoplasm (nuclear/cytoplasmic volume ratio = 0.7). Their nuclei are 6-14 micrometer in diameter and double their volume within 8 h. Many (70%) move at a mean speed of 2 micrometer/min, and many (30%) multiply with alpha-2alpha mitoses, generating progenitor cell families. Various disturbances during the course of mitosis lead to the formation of polyploid cells, thereby yielding the megakaryocytic cell line. Some of the progenitor cells undergo asymmetric alpha-alphan mitoses: One of the two initially identical daughter cells remains a progenitor cell in the morphological sense, whereas the other daughter cell - depending on the size of its mother cell - matures in the same culture medium to form a granulocytopoietic, monocytopoietic or erythrocytopoietic cell line. - In acute myeloid leukemias (AML), the blasts and their nuclei are slightly larger than the corresponding progenitor cells and move faster (5 micrometer/min). Symmetric alpha-2alpha mitoses permit unlimited multiplication of the leukemic blasts if contact with cytotoxic lymphocytes does not render them apoptotic. This results in more stromal cells than normal. Granulocytopenia, monocytopenia, and anemia occur due to the genetic impairment of signaling control for asymmetric alpha-alphan mitoses, and thrombocytopenia occurs due to the reduction in polyploidization. Copyright 2001 S. Karger GmbH, Freiburg
Towards conformal loop quantum gravity
International Nuclear Information System (INIS)
Wang, Charles H-T
2006-01-01
A discussion is given of recent developments in canonical gravity that assimilates the conformal analysis of gravitational degrees of freedom. The work is motivated by the problem of time in quantum gravity and is carried out at the metric and the triad levels. At the metric level, it is shown that by extending the Arnowitt-Deser-Misner (ADM) phase space of general relativity (GR), a conformal form of geometrodynamics can be constructed. In addition to the Hamiltonian and Diffeomorphism constraints, an extra first class constraint is introduced to generate conformal transformations. This phase space consists of York's mean extrinsic curvature time, conformal three-metric and their momenta. At the triad level, the phase space of GR is further enlarged by incorporating spin-gauge as well as conformal symmetries. This leads to a canonical formulation of GR using a new set of real spin connection variables. The resulting gravitational constraints are first class, consisting of the Hamiltonian constraint and the canonical generators for spin-gauge and conformorphism transformations. The formulation has a remarkable feature of being parameter-free. Indeed, it is shown that a conformal parameter of the Barbero-Immirzi type can be absorbed by the conformal symmetry of the extended phase space. This gives rise to an alternative approach to loop quantum gravity that addresses both the conceptual problem of time and the technical problem of functional calculus in quantum gravity
Is quantum gravity unpredictable
International Nuclear Information System (INIS)
Gross, D.J.
1984-01-01
An investigation of Hawking's proposal that the inclusion of topologically non-trivial manifolds in the functional integral of quantum gravity leads to the loss of quantum coherence is carried out. We discuss some of the problems associated with Hawking's Dollar-matrix theory, including the breakdown of the connection between symmetry principles and conservation laws. It is proposed to use Kaluza-Klein theories to study this issue, since these theories contain well-defined euclidean instantons. These can be used to perform explicit semiclassical calculations of the effects of space-time foam. A general method is presented for constructing Kaluza-Klein instantons based on solutions of ordinary Yang-Mills theory. It is argued that none of these will lead to a breakdown of quantum mechanics. The physical effects of space-time foam are discussed in some detail using explicit instantons of a four-dimensional Kaluza-Klein theory. (orig.)
DEFF Research Database (Denmark)
Rønjom, Marianne Feen; Brink, Carsten; Bentzen, Søren
2013-01-01
To develop a normal tissue complication probability (NTCP) model of radiation-induced biochemical hypothyroidism (HT) after primary radiotherapy for head and neck squamous cell carcinoma (HNSCC) with adjustment for latency and clinical risk factors.......To develop a normal tissue complication probability (NTCP) model of radiation-induced biochemical hypothyroidism (HT) after primary radiotherapy for head and neck squamous cell carcinoma (HNSCC) with adjustment for latency and clinical risk factors....
Einstein gravity emerging from quantum weyl gravity
International Nuclear Information System (INIS)
Zee, A.
1983-01-01
We advocate a conformal invariant world described by the sum of the Weyl, Dirac, and Yang-Mills action. Quantum fluctuations bring back Einstein gravity so that the long-distance phenomenology is as observed. Formulas for the induced Newton's constant and Eddington's constant are derived in quantized Weyl gravity. We show that the analogue of the trace anomaly for the Weyl action is structurally similar to that for the Yang-Mills action
Busch, Melanie M. D.
2011-01-01
An array of north-striking, left-stepping, active normal faults is situated along the southwestern margin of the Gulf of California. This normal fault system is the marginal fault system of the oblique-divergent plate boundary within the Gulf of California. To better understand the role of upper-crustal processes during development of an obliquely…
The generalized second law of thermodynamics in generalized gravity theories
International Nuclear Information System (INIS)
Wu Shaofeng; Yang Guohong; Wang Bin; Zhang Pengming
2008-01-01
We investigate the generalized second law of thermodynamics (GSL) in generalized theories of gravity. We examine the total entropy evolution with time including the horizon entropy, the non-equilibrium entropy production, and the entropy of all matter, field and energy components. We derive a universal condition to protect the generalized second law and study its validity in different gravity theories. In Einstein gravity (even in the phantom-dominated universe with a Schwarzschild black hole), Lovelock gravity and braneworld gravity, we show that the condition to keep the GSL can always be satisfied. In f(R) gravity and scalar-tensor gravity, the condition to protect the GSL can also hold because the temperature should be positive, gravity is always attractive and the effective Newton constant should be an approximate constant satisfying the experimental bounds
2000-01-01
The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)
International Nuclear Information System (INIS)
Gregory, Ruth
2007-01-01
only for starting researchers in this area, but also any researcher interested in the details of computing more general brane propagators. However, the book must be used with some caution as a guide to Randall-Sundrum theory, as it has a rather unusual perspective on the subject, and does not set it in a broader context. For example, it is well known in brane cosmology that the most general bulk solution contains a black hole, which is not discussed, the book preferring to immediately focus on the case of a pure AdS bulk. There is also no real discussion of how Randall-Sundrum links into string theory or phenomenology. One other problem with the book is that it does not reference the literature appropriately, I woould have expected a more comprehensive and accurate set of references accompanying a book which appears to be aimed at starting researchers in a subject. The later stages of the book, in which the author deals in detail with the normalization of the graviton propagator, are rather involved and technical. A student would find this material rather heavy-going; however, the fine points of the discussion of Green's functions will be of use to those dealing with perturbations around more general branes. In summary, the book is a tightly focused discussion of gravity in maximally symmetric Randall-Sundrum braneworlds. It will be useful as a companion text to starting researchers in the area, and other researchers should also find the more technical discussions of some use. However, one should note that the perspective of the book is somewhat narrow. (book review)
Directory of Open Access Journals (Sweden)
Qiusheng Kong
Full Text Available Melon (Cucumis melo. L is not only an economically important cucurbitaceous crop but also an attractive model for studying many biological characteristics. Screening appropriate reference genes is essential to reverse transcription quantitative real-time PCR (RT-qPCR, which is key to many studies involving gene expression analysis. In this study, 14 candidate reference genes were selected, and the variations in their expression in roots and leaves of plants subjected to biotic stress, abiotic stress, and plant growth regulator treatment were assessed by RT-qPCR. The stability of the expression of the selected genes was determined and ranked using geNorm and NormFinder. geNorm identified the two most stable genes for each set of conditions: CmADP and CmUBIep across all samples, CmUBIep and CmRPL in roots, CmRAN and CmACT in leaves, CmADP and CmRPL under abiotic stress conditions, CmTUA and CmACT under biotic stress conditions, and CmRAN and CmACT under plant growth regulator treatments. NormFinder determined CmRPL to be the best reference gene in roots and under biotic stress conditions and CmADP under the other experimental conditions. CmUBC2 and CmPP2A were not found to be suitable under many experimental conditions. The catalase family genes CmCAT1, CmCAT2, and CmCAT3 were identified in melon genome and used as target genes to validate the reliability of identified reference genes. The catalase family genes showed the most upregulation 3 days after inoculation with Fusarium wilt in roots, after which they were downregulated. Their levels of expression were significantly overestimated when the unsuitable reference gene was used for normalization. These results not only provide guidelines for the selection of reference genes for gene expression analyses in melons but may also provide valuable information for studying the functions of catalase family genes in stress responses.
Spin foam models for quantum gravity
Perez, Alejandro
The definition of a quantum theory of gravity is explored following Feynman's path-integral approach. The aim is to construct a well defined version of the Wheeler-Misner- Hawking ``sum over four geometries'' formulation of quantum general relativity (GR). This is done by means of exploiting the similarities between the formulation of GR in terms of tetrad-connection variables (Palatini formulation) and a simpler theory called BF theory. One can go from BF theory to GR by imposing certain constraints on the BF-theory configurations. BF theory contains only global degrees of freedom (topological theory) and it can be exactly quantized á la Feynman introducing a discretization of the manifold. Using the path integral for BF theory we define a path integration for GR imposing the BF-to-GR constraints on the BF measure. The infinite degrees of freedom of gravity are restored in the process, and the restriction to a single discretization introduces a cut- off in the summed-over configurations. In order to capture all the degrees of freedom a sum over discretization is implemented. Both the implementation of the BF-to-GR constraints and the sum over discretizations are obtained by means of the introduction of an auxiliary field theory (AFT). 4-geometries in the path integral for GR are given by the Feynman diagrams of the AFT which is in this sense dual to GR. Feynman diagrams correspond to 2-complexes labeled by unitary irreducible representations of the internal gauge group (corresponding to tetrad rotation in the connection to GR). A model for 4-dimensional Euclidean quantum gravity (QG) is defined which corresponds to a different normalization of the Barrett-Crane model. The model is perturbatively finite; divergences appearing in the Barrett-Crane model are cured by the new normalization. We extend our techniques to the Lorentzian sector, where we define two models for four-dimensional QG. The first one contains only time-like representations and is shown to be
International Nuclear Information System (INIS)
Brown, J.D.
1988-01-01
This book addresses the subject of gravity theories in two and three spacetime dimensions. The prevailing philosophy is that lower dimensional models of gravity provide a useful arena for developing new ideas and insights, which are applicable to four dimensional gravity. The first chapter consists of a comprehensive introduction to both two and three dimensional gravity, including a discussion of their basic structures. In the second chapter, the asymptotic structure of three dimensional Einstein gravity with a negative cosmological constant is analyzed. The third chapter contains a treatment of the effects of matter sources in classical two dimensional gravity. The fourth chapter gives a complete analysis of particle pair creation by electric and gravitational fields in two dimensions, and the resulting effect on the cosmological constant
Gravity interpretation via EULDPH
International Nuclear Information System (INIS)
Ebrahimzadeh Ardestani, V.
2003-01-01
Euler's homogeneity equation for determining the coordinates of the source body especially to estimate the depth (EULDPH) is discussed at this paper. This method is applied to synthetic and high-resolution real data such as gradiometric or microgravity data. Low-quality gravity data especially in the areas with a complex geology structure has rarely been used. The Bouguer gravity anomalies are computed from absolute gravity data after the required corrections. Bouguer anomaly is transferred to residual gravity anomaly. The gravity gradients are estimated from residual anomaly values. Bouguer anomaly is the gravity gradients, using EULDPH. The coordinates of the perturbing body will be determined. Two field examples one in the east of Tehran (Mard Abad) where we would like to determine the location of the anomaly (hydrocarbon) and another in the south-east of Iran close to the border with Afghanistan (Nosrat Abad) where we are exploring chromite are presented
International Nuclear Information System (INIS)
Mielke, Eckehard W.
2006-01-01
Anomalies in Yang-Mills type gauge theories of gravity are reviewed. Particular attention is paid to the relation between the Dirac spin, the axial current j5 and the non-covariant gauge spin C. Using diagrammatic techniques, we show that only generalizations of the U(1)- Pontrjagin four-form F and F = dC arise in the chiral anomaly, even when coupled to gravity. Implications for Ashtekar's canonical approach to quantum gravity are discussed
Energy Technology Data Exchange (ETDEWEB)
Maxfield, Travis; Sethi, Savdeep [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States)
2017-02-22
We study the dynamics of gravitational lumps. By a lump, we mean a metric configuration that asymptotes to a flat space-time. Such lumps emerge in string theory as strong coupling descriptions of D-branes. We provide a physical argument that the broken global symmetries of such a background, generated by certain large diffeomorphisms, constrain the dynamics of localized modes. These modes include the translation zero modes and any localized tensor modes. The constraints we find are gravitational analogues of those found in brane physics. For the example of a Taub-NUT metric in eleven-dimensional supergravity, we argue that a critical value for the electric field arises from standard gravity without higher derivative interactions.
International Nuclear Information System (INIS)
Francaviglia, M.
1990-01-01
Although general relativity is a well-established discipline the theory deserves efforts aimed at producing alternative or more general frameworks for investigating the classical properties of gravity. These are either devoted to producing alternative viewpoints or interpretations of standard general relativity, or at constructing, discussing and proposing experimental tests for alternative descriptions of the dynamics of the gravitational field and its interaction (or unification) with external matter fields. Classical alternative theories of gravitation can roughly classified as follows; theories based on a still 4-dimensional picture, under the assumption that the dynamics of the gravitational field is more complicated than Einstein's and theories based on higher-dimensional pictures. This leads to supergravity and strings which are not included here. Theories based on higher-dimensional pictures on the assumption that space-time is replaced by a higher-dimensional manifold. Papers on these classifications are reviewed. (author)
Stochastic quantization and gravity
International Nuclear Information System (INIS)
Rumpf, H.
1984-01-01
We give a preliminary account of the application of stochastic quantization to the gravitational field. We start in Section I from Nelson's formulation of quantum mechanics as Newtonian stochastic mechanics and only then introduce the Parisi-Wu stochastic quantization scheme on which all the later discussion will be based. In Section II we present a generalization of the scheme that is applicable to fields in physical (i.e. Lorentzian) space-time and treat the free linearized gravitational field in this manner. The most remarkable result of this is the noncausal propagation of conformal gravitons. Moreover the concept of stochastic gauge-fixing is introduced and a complete discussion of all the covariant gauges is given. A special symmetry relating two classes of covariant gauges is exhibited. Finally Section III contains some preliminary remarks on full nonlinear gravity. In particular we argue that in contrast to gauge fields the stochastic gravitational field cannot be transformed to a Gaussian process. (Author)
Mannheim, Philip D
2005-01-01
This timely and valuable book provides a detailed pedagogical introduction and treatment of the brane-localized gravity program of Randall and Sundrum, in which gravitational signals are able to localize around our four-dimensional world in the event that it is a brane embedded in an infinitely-sized, higher dimensional anti-de Sitter bulk space. A completely self-contained development of the material needed for brane-world studies is provided for both students and workers in the field, with a significant amount of the material being previously unpublished. Particular attention is given to issues not ordinarily treated in the brane-world literature, such as the completeness of tensor gravitational fluctuation modes, the causality of brane-world propagators, and the status of the massless graviton fluctuation mode in brane worlds in which it is not normalizable.
Directory of Open Access Journals (Sweden)
Animesh Mukherjee
1991-01-01
Full Text Available Based upon Biot's [1965] theory of initial stresses of hydrostatic nature produced by the effect of gravity, a study is made of surface waves in higher order visco-elastic media under the influence of gravity. The equation for the wave velocity of Stonely waves in the presence of viscous and gravitational effects is obtained. This is followed by particular cases of surface waves including Rayleigh waves and Love waves in the presence of viscous and gravity effects. In all cases the wave-velocity equations are found to be in perfect agreement with the corresponding classical results when the effects of gravity and viscosity are neglected.
International Nuclear Information System (INIS)
Burkhard, N.R.
1979-01-01
The gravity inversion code applies stabilized linear inverse theory to determine the topography of a subsurface density anomaly from Bouguer gravity data. The gravity inversion program consists of four source codes: SEARCH, TREND, INVERT, and AVERAGE. TREND and INVERT are used iteratively to converge on a solution. SEARCH forms the input gravity data files for Nevada Test Site data. AVERAGE performs a covariance analysis on the solution. This document describes the necessary input files and the proper operation of the code. 2 figures, 2 tables
Scholten, Ingrid
This paper describes the effect of supplementary multimedia instruction on the pattern of growth of student learning of normal swallowing. On four occasions, up to 190 speech pathology students from four Australian universities completed a free-response task designed to assess students' learning of core information. Scripts were scored using a…
Quantum gravity phenomenology. Achievements and challenges
Energy Technology Data Exchange (ETDEWEB)
Liberati, S. [International School for Advanced Study (SISSA), Trieste (Italy); INFN, Sezione di Trieste (Italy); Maccione, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2011-05-15
Motivated by scenarios of quantum gravity, Planck-suppressed deviations from Lorentz invariance are expected at observable energies. Ultra-High-Energy Cosmic Rays, the most energetic particles ever observed in nature, yielded in the last two years strong constraints on deviations suppressed by O(E{sup 2}/M{sup 2}{sub Pl}) and also, for the first time, on space-time foam, stringy inspired models of quantum gravity. We review the most important achievements and discuss future outlooks. (orig.)
Quantum Gravity phenomenology: achievements and challenges
International Nuclear Information System (INIS)
Liberati, S; Maccione, L
2011-01-01
Motivated by scenarios of quantum gravity, Planck-suppressed deviations from Lorentz invariance are expected at observable energies. Ultra-High-Energy Cosmic Rays, the most energetic particles ever observed in nature, yielded in the last two years strong constraints on deviations suppressed by O(E 2 /M 2 Pl ) and also, for the first time, on space-time foam, stringy inspired models of quantum gravity. We review the most important achievements and discuss future outlooks.
Ultraviolet divergences of Einstein gravity
International Nuclear Information System (INIS)
Goroff, M.H.
1986-01-01
The author discuss a two-loop calculation showing that the S matrix of Einstein's theory of gravity contains nonrenormalizable ultraviolet divergences in four dimension. The author discusses the calculation in both background field and normal field theory. The author describes a new method for dealing with ghost fields in gauge theories by combining them with suitable extensions of the gauge fields in higher dimensions. The author shows how using subtracted integrals in the calculation of higher loop graphs simplifies the calculation in the background field method by eliminating the need for mixed counterterms. Finally, the author makes some remarks about the implications of the result for supergravity theories
Quantum Gravity (Cambridge Monographs on Mathematical Physics)
International Nuclear Information System (INIS)
Kiefer, C
2005-01-01
The most difficult unsolved problem in fundamental theoretical physics is the consistent implementation of the gravitational interaction into a quantum framework, which would lead to a theory of quantum gravity. Although a final answer is still pending, several promising attempts do exist. Despite the general title, this book is about one of them - loop quantum gravity. This approach proceeds from the idea that a direct quantization of Einstein's theory of general relativity is possible. In contrast to string theory, it presupposes that the unification of all interactions is not needed as a prerequisite for quantum gravity. Usually one divides theories of quantum general relativity into covariant and canonical approaches. Covariant theories employ four-dimensional concepts in its formulation, one example being the path integral approach. Canonical theories start from a classical Hamiltonian version of the theory in which spacetime is foliated into spacelike hypersurfaces. Loop quantum gravity is a variant of the canonical approach, the oldest being quantum geometrodynamics where the fundamental configuration variable is the three-metric. Loop quantum gravity has developed from a new choice of canonical variables introduced by Abhay Ashtekar in 1986, the new configuration variable being a connection defined on a three-manifold. Instead of the connection itself, the loop approach employs a non-local version in which the connection is integrated over closed loops. This is similar to the Wilson loops used in gauge theories. Carlo Rovelli is one of the pioneers of loop quantum gravity which he started to develop with Lee Smolin in two papers written in 1988 and 1990. In his book, he presents a comprehensive and competent overview of this approach and provides at the same time the necessary technical background in order to make the treatment self-contained. In fact, half of the book is devoted to 'preparations' giving a detailed account of Hamiltonian mechanics, quantum
DEFF Research Database (Denmark)
Locsei, Gusztav; Santurette, Sébastien; Dau, Torsten
2017-01-01
and two-talker babble in terms of SRTs, HI listeners could utilize ITDs to a similar degree as NH listeners to facilitate the binaural unmasking of speech. A slight difference was observed between the group means when target and maskers were separated from each other by large ITDs, but not when separated...... SRMs are elicited by small ITDs. Speech reception thresholds (SRTs) and SRM due to ITDs were measured over headphones for 10 young NH and 10 older HI listeners, who had normal or close-to-normal hearing below 1.5 kHz. Diotic target sentences were presented in diotic or dichotic speech-shaped noise...... or two-talker babble maskers. In the dichotic conditions, maskers were lateralized by delaying the masker waveforms in the left headphone channel. Multiple magnitudes of masker ITDs were tested in both noise conditions. Although deficits were observed in speech perception abilities in speechshaped noise...
Martínez-García, Roberto; Ubeda-Sansano, Maria Isabel; Díez-Domingo, Javier; Pérez-Hoyos, Santiago; Gil-Salom, Manuel
2014-09-01
There is an agreement to use simple formulae (expected bladder capacity and other age based linear formulae) as bladder capacity benchmark. But real normal child's bladder capacity is unknown. To offer a systematic review of children's normal bladder capacity, to measure children's normal maximum voided volumes (MVVs), to construct models of MVVs and to compare them with the usual formulae. Computerized, manual and grey literature were reviewed until February 2013. Epidemiological, observational, transversal, multicenter study. A consecutive sample of healthy children aged 5-14 years, attending Primary Care centres with no urologic abnormality were selected. Participants filled-in a 3-day frequency-volume chart. Variables were MVVs: maximum of 24 hr, nocturnal, and daytime maximum voided volumes. diuresis and its daytime and nighttime fractions; body-measure data; and gender. The consecutive steps method was used in a multivariate regression model. Twelve articles accomplished systematic review's criteria. Five hundred and fourteen cases were analysed. Three models, one for each of the MVVs, were built. All of them were better adjusted to exponential equations. Diuresis (not age) was the most significant factor. There was poor agreement between MVVs and usual formulae. Nocturnal and daytime maximum voided volumes depend on several factors and are different. Nocturnal and daytime maximum voided volumes should be used with different meanings in clinical setting. Diuresis is the main factor for bladder capacity. This is the first model for benchmarking normal MVVs with diuresis as its main factor. Current formulae are not suitable for clinical use. © 2013 Wiley Periodicals, Inc.
f(R) gravity cosmology in scalar degree of freedom
International Nuclear Information System (INIS)
Goswami, Umananda Dev; Deka, Kabita
2014-01-01
The models of f(R) gravity belong to an important class of modified gravity models where the late time cosmic accelerated expansion is considered as the manifestation of the large scale modification of the force of gravity. f(R) gravity models can be expressed in terms of a scalar degree of freedom by explicit redefinition of model's variable. Here we report about the study of the features of cosmological parameters and hence the cosmological evolution using the scalar degree of freedom of the f(R) = ξR n gravity model in the Friedmann-Lemaître-Robertson-Walker (FLRW) background
Huang, Hui; Zhu, Zheng-Qiu; Zhou, Zheng-Guo; Chen, Ling-Shan; Zhao, Ming; Zhang, Yang; Li, Hong-Bo; Yin, Li-Ping
2016-12-08
To assess the role of time-intensity curves (TICs) of the normal peripheral zone (PZ) in the identification of biopsy-proven prostate nodules using contrast-enhanced transrectal ultrasound (CETRUS). This study included 132 patients with 134 prostate PZ nodules. Arrival time (AT), peak intensity (PI), mean transit time (MTT), area under the curve (AUC), time from peak to one half (TPH), wash in slope (WIS) and time to peak (TTP) were analyzed using multivariate linear logistic regression and receiver operating characteristic (ROC) curves to assess whether combining nodule TICs with normal PZ TICs improved the prediction of prostate cancer (PCa) aggressiveness. The PI, AUC (p < 0.001 for both), MTT and TPH (p = 0.011 and 0.040 respectively) values of the malignant nodules were significantly higher than those of the benign nodules. Incorporating the PI and AUC values (both, p < 0.001) of the normal PZ TIC, but not the MTT and TPH values (p = 0.076 and 0.159 respectively), significantly improved the AUC for prediction of malignancy (PI: 0.784-0.923; AUC: 0.758-0.891) and assessment of cancer aggressiveness (p < 0.001). Thus, all these findings indicate that incorporating normal PZ TICs with nodule TICs in CETRUS readings can improve the diagnostic accuracy for PCa and cancer aggressiveness assessment.
Interior Alaska Bouguer Gravity Anomaly
National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. Only those grid cells within 10 kilometers of a gravity data point have gravity values....
Anomaly freedom in perturbative loop quantum gravity
International Nuclear Information System (INIS)
Bojowald, Martin; Hossain, Golam Mortuza; Kagan, Mikhail; Shankaranarayanan, S.
2008-01-01
A fully consistent linear perturbation theory for cosmology is derived in the presence of quantum corrections as they are suggested by properties of inverse volume operators in loop quantum gravity. The underlying constraints present a consistent deformation of the classical system, which shows that the discreteness in loop quantum gravity can be implemented in effective equations without spoiling space-time covariance. Nevertheless, nontrivial quantum corrections do arise in the constraint algebra. Since correction terms must appear in tightly controlled forms to avoid anomalies, detailed insights for the correct implementation of constraint operators can be gained. The procedures of this article thus provide a clear link between fundamental quantum gravity and phenomenology.
CDT meets Horava-Lifshitz gravity
International Nuclear Information System (INIS)
Ambjorn, J.; Goerlich, A.; Jordan, S.; Jurkiewicz, J.; Loll, R.
2010-01-01
The theory of causal dynamical triangulations (CDT) attempts to define a nonperturbative theory of quantum gravity as a sum over spacetime geometries. One of the ingredients of the CDT framework is a global time foliation, which also plays a central role in the quantum gravity theory recently formulated by Horava. We show that the phase diagram of CDT bears a striking resemblance with the generic Lifshitz phase diagram appealed to by Horava. We argue that CDT might provide a unifying nonperturbative framework for anisotropic as well as isotropic theories of quantum gravity.
Instability of a two-step Rankine vortex in a reduced gravity QG model
Energy Technology Data Exchange (ETDEWEB)
Perrot, Xavier [Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure, 24 rue Lhomond, F-75005 Paris (France); Carton, Xavier, E-mail: xperrot@lmd.ens.fr, E-mail: xcarton@univ-brest.fr [Laboratoire de Physique des Océans, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, F-29200 Brest (France)
2014-06-01
We investigate the stability of a steplike Rankine vortex in a one-active-layer, reduced gravity, quasi-geostrophic model. After calculating the linear stability with a normal mode analysis, the singular modes are determined as a function of the vortex shape to investigate short-time stability. Finally we determine the position of the critical layer and show its influence when it lies inside the vortex. (papers)
Consistency of orthodox gravity
Energy Technology Data Exchange (ETDEWEB)
Bellucci, S. [INFN, Frascati (Italy). Laboratori Nazionali di Frascati; Shiekh, A. [International Centre for Theoretical Physics, Trieste (Italy)
1997-01-01
A recent proposal for quantizing gravity is investigated for self consistency. The existence of a fixed-point all-order solution is found, corresponding to a consistent quantum gravity. A criterion to unify couplings is suggested, by invoking an application of their argument to more complex systems.
Generalized pure Lovelock gravity
Concha, Patrick; Rodríguez, Evelyn
2017-11-01
We present a generalization of the n-dimensional (pure) Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.
Generalized pure Lovelock gravity
Directory of Open Access Journals (Sweden)
Patrick Concha
2017-11-01
Full Text Available We present a generalization of the n-dimensional (pure Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.
Statistical Tests for Frequency Distribution of Mean Gravity Anomalies
African Journals Online (AJOL)
The hypothesis that a very large number of lOx 10mean gravity anomalies are normally distributed has been rejected at 5% Significance level based on the X2 and the unit normal deviate tests. However, the 50 equal area mean anomalies derived from the lOx 10data, have been found to be normally distributed at the same ...
International Nuclear Information System (INIS)
Hofschen, S.; Wolff, I.
1996-01-01
Time-domain simulation results of two-dimensional (2-D) planar waveguide finite-difference time-domain (FDTD) analysis are normally analyzed using Fourier transform. The introduced method of time series analysis to extract propagation and attenuation constants reduces the desired computation time drastically. Additionally, a nonequidistant discretization together with an adequate excitation technique is used to reduce the number of spatial grid points. Therefore, it is possible to reduce the number of spatial grid points. Therefore, it is possible to simulate normal- and superconducting planar waveguide structures with very thin conductors and small dimensions, as they are used in MMIC technology. The simulation results are compared with measurements and show good agreement
Energy Technology Data Exchange (ETDEWEB)
Hofschen, S.; Wolff, I. [Gerhard Mercator Univ. of Duisburg (Germany). Dept. of Electrical Engineering
1996-08-01
Time-domain simulation results of two-dimensional (2-D) planar waveguide finite-difference time-domain (FDTD) analysis are normally analyzed using Fourier transform. The introduced method of time series analysis to extract propagation and attenuation constants reduces the desired computation time drastically. Additionally, a nonequidistant discretization together with an adequate excitation technique is used to reduce the number of spatial grid points. Therefore, it is possible to reduce the number of spatial grid points. Therefore, it is possible to simulate normal- and superconducting planar waveguide structures with very thin conductors and small dimensions, as they are used in MMIC technology. The simulation results are compared with measurements and show good agreement.
Distinguishing modified gravity models
International Nuclear Information System (INIS)
Brax, Philippe; Davis, Anne-Christine
2015-01-01
Modified gravity models with screening in local environments appear in three different guises: chameleon, K-mouflage and Vainshtein mechanisms. We propose to look for differences between these classes of models by considering cosmological observations at low redshift. In particular, we analyse the redshift dependence of the fine structure constant and the proton to electron mass ratio in each of these scenarios. When the absorption lines belong to unscreened regions of space such as dwarf galaxies, a time variation would be present for chameleons. For both K-mouflage and Vainshtein mechanisms, the cosmological time variation of the scalar field is not suppressed in both unscreened and screened environments, therefore enhancing the variation of constants and their detection prospect. We also consider the time variation of the redshift of distant objects using their spectrocopic velocities. We find that models of the K-mouflage and Vainshtein types have very different spectroscopic velocities as a function of redshift and that their differences with the Λ-CDM template should be within reach of the future ELT-HIRES observations
2004-01-01
In this photo, the Gravity Probe B (GP-B) space vehicle is being encapsulated atop the Delta II launch vehicle. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).
Distinguishing modified gravity models
Energy Technology Data Exchange (ETDEWEB)
Brax, Philippe [Institut de Physique Théorique, Université Paris-Saclay, CEA, CNRS, F-91191 Gif/Yvette Cedex (France); Davis, Anne-Christine, E-mail: philippe.brax@cea.fr, E-mail: A.C.Davis@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA (United Kingdom)
2015-10-01
Modified gravity models with screening in local environments appear in three different guises: chameleon, K-mouflage and Vainshtein mechanisms. We propose to look for differences between these classes of models by considering cosmological observations at low redshift. In particular, we analyse the redshift dependence of the fine structure constant and the proton to electron mass ratio in each of these scenarios. When the absorption lines belong to unscreened regions of space such as dwarf galaxies, a time variation would be present for chameleons. For both K-mouflage and Vainshtein mechanisms, the cosmological time variation of the scalar field is not suppressed in both unscreened and screened environments, therefore enhancing the variation of constants and their detection prospect. We also consider the time variation of the redshift of distant objects using their spectrocopic velocities. We find that models of the K-mouflage and Vainshtein types have very different spectroscopic velocities as a function of redshift and that their differences with the Λ-CDM template should be within reach of the future ELT-HIRES observations.
International Nuclear Information System (INIS)
Horvath, J.
1993-01-01
The relationship between gravity sag of a precision cathode strip chamber and its sandwich panel structural design is explored parametrically. An algorithm for estimating the dominant component of gravity sag is defined. Graphs of normalized gravity sag as a function of gap frame width and material, sandwich core edge filler width and material, panel skin thickness, gap height, and support location are calculated using the gravity sag algorithm. The structural importance of the sandwich-to-sandwich ''gap frame'' connection is explained
A gravity loading countermeasure skinsuit
Waldie, James M.; Newman, Dava J.
2011-04-01
Despite the use of several countermeasures, significant physiological deconditioning still occurs during long duration spaceflight. Bone loss - primarily due to the absence of loading in microgravity - is perhaps the greatest challenge to resolve. This paper describes a conceptual Gravity Loading Countermeasure Skinsuit (GLCS) that induces loading on the body to mimic standing and - when integrated with other countermeasures - exercising on Earth. Comfort, mobility and other operational issues were explored during a pilot study carried out in parabolic flight for prototype suits worn by three subjects. Compared to the 1- or 2-stage Russian Pingvin Suits, the elastic mesh of the GLCS can create a loading regime that gradually increases in hundreds of stages from the shoulders to the feet, thereby reproducing the weight-bearing regime normally imparted by gravity with much higher resolution. Modelling shows that the skinsuit requires less than 10 mmHg (1.3 kPa) of compression for three subjects of varied gender, height and mass. Negligible mobility restriction and excellent comfort properties were found during the parabolic flights, which suggests that crewmembers should be able to work normally, exercise or sleep while wearing the suit. The suit may also serve as a practical 1 g harness for exercise countermeasures and vibration applications to improve dynamic loading.
DEFF Research Database (Denmark)
Zornhagen, K. W.; Kristensen, A. T.; Hansen, Anders Elias
2015-01-01
Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) is a sensitive technique for quantifying gene expression. Stably expressed reference genes are necessary for normalization of RT-qPCR data. Only a few articles have been published on reference genes in canine tumours....... The objective of this study was to demonstrate how to identify suitable reference genes for normalization of genes of interest in canine soft tissue sarcomas using RT-qPCR. Primer pairs for 17 potential reference genes were designed and tested in archival tumour biopsies from six dogs. The geNorm algorithm...
Van Hoek, Mattijn; Jia, Li; Zhou, J.; Zheng, Chaolei; Menenti, M.
2016-01-01
The time lag between anomalies in precipitation and vegetation activity plays a critical role in early drought detection as agricultural droughts are caused by precipitation shortages. The aim of this study is to explore a new approach to estimate the time lag between a forcing (precipitation)
Focus on quantum Einstein gravity Focus on quantum Einstein gravity
Ambjorn, Jan; Reuter, Martin; Saueressig, Frank
2012-09-01
time cosmology and the big bang, as well as TeV-scale gravity models testable at the Large Hadron Collider. On different grounds, Monte-Carlo studies of the gravitational partition function based on the discrete causal dynamical triangulations approach provide an a priori independent avenue towards unveiling the non-perturbative features of gravity. As a highlight, detailed simulations established that the phase diagram underlying causal dynamical triangulations contains a phase where the triangulations naturally give rise to four-dimensional, macroscopic universes. Moreover, there are indications for a second-order phase transition that naturally forms the discrete analog of the non-Gaussian fixed point seen in the continuum computations. Thus there is a good chance that the discrete and continuum computations will converge to the same fundamental physics. This focus issue collects a series of papers that outline the current frontiers of the gravitational asymptotic safety program. We hope that readers get an impression of the depth and variety of this research area as well as our excitement about the new and ongoing developments. References [1] Weinberg S 1979 General Relativity, an Einstein Centenary Survey ed S W Hawking and W Israel (Cambridge: Cambridge University Press)
International Nuclear Information System (INIS)
Jevicki, A.; Ninomiya, M.
1985-01-01
We are concerned with applications of the simplicial discretization method (Regge calculus) to two-dimensional quantum gravity with emphasis on the physically relevant string model. Beginning with the discretization of gravity and matter we exhibit a discrete version of the conformal trace anomaly. Proceeding to the string problem we show how the direct approach of (finite difference) discretization based on Nambu action corresponds to unsatisfactory treatment of gravitational degrees. Based on the Regge approach we then propose a discretization corresponding to the Polyakov string. In this context we are led to a natural geometric version of the associated Liouville model and two-dimensional gravity. (orig.)
CERN. Geneva
2007-01-01
Of the four fundamental forces, gravity has been studied the longest, yet gravitational physics is one of the most rapidly developing areas of science today. This talk will give a broad brush survey of the past achievements and future prospects of general relativistic gravitational physics. Gravity is a two frontier science being important on both the very largest and smallest length scales considered in contemporary physics. Recent advances and future prospects will be surveyed in precision tests of general relativity, gravitational waves, black holes, cosmology and quantum gravity. The aim will be an overview of a subject that is becoming increasingly integrated with experiment and other branches of physics.
Altered orientation and flight paths of pigeons reared on gravity anomalies: a GPS tracking study.
Directory of Open Access Journals (Sweden)
Nicole Blaser
Full Text Available The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The "gravity vector" theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates.
Firestone, P; Douglas, V
1975-01-01
The performance of hyperactive and control children was compared on a delayed reaction time task under three reinforcement conditions: reward, punishment, and reward plus punishment. Hyperactives had slower and more variable reaction times, suggesting an attentional deficit. Although each of the three reinforcement conditons was successful in improving reaction times for both subject groups, reward led to a significant increase in impulsive responses in the hyperactive children. Autonomic data revealed that reward also increased arousal to a greater extent than punishment or reward plus punishment. Although resting skin conductance was not different in the two groups of subjects, hyperactives produced fewer specific autonomic responses to signal stimuli.
BOOK REVIEW: Quantum Gravity: third edition Quantum Gravity: third edition
Rovelli, Carlo
2012-09-01
to the wide-angle attention of Claus Kiefer to the recent evolution of the field. It is also because of this attention that the neglect of a thriving research direction on which a large number of research groups are currently engaged jumps to the eye. The book provides a nice introduction to loop quantum gravity. The main kinematical results of the loop approach are carefully explained. At the point of discussing dynamics, however, it focuses only on the canonical formulation, mentioning the covariant loop theory only en passant. Given Kiefer's open-mindness, I imagine that the shortfall is due to the novelty of the major results of the covariant theory (or spinfoam formalism). The theorem proving the finiteness of the transition amplitudes to all orders, due to Han, Fairbairn and Meusburger, for instance, dates only from 2010. But the various theorems on the asymptotic of the vertex amplitude, by Barrett-Pereira-Dowdall-Fairbairn-Hellmann, Friedel-Conrady and others, which have sparked interest in the spinfoam approach by indicating that the theory may have the correct classical limit, are from 2009. The fact that they are not even mentioned in Kiefer's book is strident for me. The covariant loop amplitudes may not be the final solution to the problem of quantum gravity, but the existence of a family of Lorentz covariant amplitudes with indications of the correct classical limit, which are finite at each order of the expansion, is a result that cannot be ignored in a broad book that aims at being comprehensive in quantum gravity. There are other pages of the book where I was not very happy. For instance, the discussion of the so-called 'problem of time'. But surely a broad book in a recalcitrant field like quantum gravity will never make everybody entirely happy: at least as long as the problem is not solved. Which, we all hope, might not be too far into the future. Few fundamental problems have resisted the investigation of theoretical physics for so long, and
International Nuclear Information System (INIS)
Gerbert, P.S.
1989-01-01
A review of 2+1-dimensional gravity, and recent results concerning the quantum scattering of Klein-Gordon and Dirac test particles in background of point sources with and without spin are presented. The classical theory and general remarks of 2+1 dimensional gravity are reviewed. The space-time in presence of point sources is described. The classical scattering and applications to (Spinning) cosmic strings are discussed. The quantum theory is considered analysing the two body scattering problem. The scattering of spinless particles is discussed including spin-effects. Some classifying remarks about three-dimensional analogue of hte Weyl tensor and Chern-Simons theories of gravitation are also presented. (M.C.K.)
Consistency of canonical formulation of Horava gravity
International Nuclear Information System (INIS)
Soo, Chopin
2011-01-01
Both the non-projectable and projectable version of Horava gravity face serious challenges. In the non-projectable version, the constraint algebra is seemingly inconsistent. The projectable version lacks a local Hamiltonian constraint, thus allowing for an extra graviton mode which can be problematic. A new formulation (based on arXiv:1007.1563) of Horava gravity which is naturally realized as a representation of the master constraint algebra (instead of the Dirac algebra) studied by loop quantum gravity researchers is presented. This formulation yields a consistent canonical theory with first class constraints; and captures the essence of Horava gravity in retaining only spatial diffeomorphisms as the physically relevant non-trivial gauge symmetry. At the same time the local Hamiltonian constraint is equivalently enforced by the master constraint.
A new vacuum for loop quantum gravity
International Nuclear Information System (INIS)
Dittrich, Bianca; Geiller, Marc
2015-01-01
We construct a new vacuum and representation for loop quantum gravity. Because the new vacuum is based on BF theory, it is physical for (2+1)-dimensional gravity, and much closer to the spirit of spin foam quantization in general. To construct this new vacuum and the associated representation of quantum observables, we introduce a modified holonomy–flux algebra that is cylindrically consistent with respect to the notion of refinement by time evolution suggested in Dittrich and Steinhaus (2013 arXiv:1311.7565). This supports the proposal for a construction of the physical vacuum made in Dittrich and Steinhaus (2013 arXiv:1311.7565) and Dittrich (2012 New J. Phys. 14 123004), and for (3+1)-dimensional gravity. We expect that the vacuum introduced here will facilitate the extraction of large scale physics and cosmological predictions from loop quantum gravity. (fast track communication)
BRS invariant stochastic quantization of Einstein gravity
International Nuclear Information System (INIS)
Nakazawa, Naohito.
1989-11-01
We study stochastic quantization of gravity in terms of a BRS invariant canonical operator formalism. By introducing artificially canonical momentum variables for the original field variables, a canonical formulation of stochastic quantization is proposed in the sense that the Fokker-Planck hamiltonian is the generator of the fictitious time translation. Then we show that there exists a nilpotent BRS symmetry in an enlarged phase space of the first-class constrained systems. The phase space is spanned by the dynamical variables, their canonical conjugate momentum variables, Faddeev-Popov ghost and anti-ghost. We apply the general BRS invariant formulation to stochastic quantization of gravity which is described as a second-class constrained system in terms of a pair of Langevin equations coupled with white noises. It is shown that the stochastic action of gravity includes explicitly the De Witt's type superspace metric which leads to a geometrical interpretation of quantum gravity analogous to nonlinear σ-models. (author)
Consistency of canonical formulation of Horava gravity
Energy Technology Data Exchange (ETDEWEB)
Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan, Taiwan (China)
2011-09-22
Both the non-projectable and projectable version of Horava gravity face serious challenges. In the non-projectable version, the constraint algebra is seemingly inconsistent. The projectable version lacks a local Hamiltonian constraint, thus allowing for an extra graviton mode which can be problematic. A new formulation (based on arXiv:1007.1563) of Horava gravity which is naturally realized as a representation of the master constraint algebra (instead of the Dirac algebra) studied by loop quantum gravity researchers is presented. This formulation yields a consistent canonical theory with first class constraints; and captures the essence of Horava gravity in retaining only spatial diffeomorphisms as the physically relevant non-trivial gauge symmetry. At the same time the local Hamiltonian constraint is equivalently enforced by the master constraint.
Majdzadeh, Ali; Lee, Anthony M D; Wang, Hequn; Lui, Harvey; McLean, David I; Crawford, Richard I; Zloty, David; Zeng, Haishan
2015-05-01
Recent advances in biomedical optics have enabled dermal and epidermal components to be visualized at subcellular resolution and assessed noninvasively. Multiphoton microscopy (MPM) and reflectance confocal microscopy (RCM) are noninvasive imaging modalities that have demonstrated promising results in imaging skin micromorphology, and which provide complementary information regarding skin components. This study assesses whether combined MPM/RCM can visualize intracellular and extracellular melanin granules in the epidermis and dermis of normal human skin. We perform MPM and RCM imaging of in vivo and ex vivo skin in the infrared domain. The inherent three-dimensional optical sectioning capability of MPM/RCM is used to image high-contrast granular features across skin depths ranging from 50 to 90 μm. The optical images thus obtained were correlated with conventional histologic examination including melanin-specific staining of ex vivo specimens. MPM revealed highly fluorescent granular structures below the dermal-epidermal junction (DEJ) region. Histochemical staining also demonstrated melanin-containing granules that correlate well in size and location with the granular fluorescent structures observed in MPM. Furthermore, the MPM fluorescence excitation wavelength and RCM reflectance of cell culture-derived melanin were equivalent to those of the granules. This study suggests that MPM can noninvasively visualize and quantify subepidermal melanin in situ. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Two-phase alkali-metal experiments in reduced gravity
International Nuclear Information System (INIS)
Antoniak, Z.I.
1986-06-01
Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity
Energy Technology Data Exchange (ETDEWEB)
Jacobs, R.M.; Boyce, J.T.; Kociba, G.J.
1986-01-01
This study demonstrates the potential usefulness of a flow cytometric technique to measure platelet survival time in cats utilizing autologous platelets labeled in vitro with fluorescein isothiocyanate (FITC). When compared with a 51Cr method, no significant differences in estimated survival times were found. Both the 51Cr and FITC-labeling procedures induced similar changes in platelet shape and collagen-induced aggregation. Platelets labeled with FITC had significantly greater volumes compared with those of glutaraldehyde-fixed platelets. These changes were primarily related to the platelet centrifugation and washing procedures rather than the labels themselves. This novel technique potentially has wide applicability to cell circulation time studies as flow cytometry equipment becomes more readily available. Problems with the technique are discussed. In a preliminary study of the platelet survival time in feline leukemia virus (FeLV)-infected cats, two of three cats had significantly reduced survival times using both flow cytometric and radioisotopic methods. These data suggest increased platelet turnover in FeLV-infected cats.
International Nuclear Information System (INIS)
Jacobs, R.M.; Boyce, J.T.; Kociba, G.J.
1986-01-01
This study demonstrates the potential usefulness of a flow cytometric technique to measure platelet survival time in cats utilizing autologous platelets labeled in vitro with fluorescein isothiocyanate (FITC). When compared with a 51Cr method, no significant differences in estimated survival times were found. Both the 51Cr and FITC-labeling procedures induced similar changes in platelet shape and collagen-induced aggregation. Platelets labeled with FITC had significantly greater volumes compared with those of glutaraldehyde-fixed platelets. These changes were primarily related to the platelet centrifugation and washing procedures rather than the labels themselves. This novel technique potentially has wide applicability to cell circulation time studies as flow cytometry equipment becomes more readily available. Problems with the technique are discussed. In a preliminary study of the platelet survival time in feline leukemia virus (FeLV)-infected cats, two of three cats had significantly reduced survival times using both flow cytometric and radioisotopic methods. These data suggest increased platelet turnover in FeLV-infected cats
Han, Shin-Chan; Riva, Ricccardo; Sauber, Jeanne; Okal, Emile
2013-01-01
We quantify gravity changes after great earthquakes present within the 10 year long time series of monthly Gravity Recovery and Climate Experiment (GRACE) gravity fields. Using spherical harmonic normal-mode formulation, the respective source parameters of moment tensor and double-couple were estimated. For the 2004 Sumatra-Andaman earthquake, the gravity data indicate a composite moment of 1.2x10(exp 23)Nm with a dip of 10deg, in agreement with the estimate obtained at ultralong seismic periods. For the 2010 Maule earthquake, the GRACE solutions range from 2.0 to 2.7x10(exp 22)Nm for dips of 12deg-24deg and centroid depths within the lower crust. For the 2011 Tohoku-Oki earthquake, the estimated scalar moments range from 4.1 to 6.1x10(exp 22)Nm, with dips of 9deg-19deg and centroid depths within the lower crust. For the 2012 Indian Ocean strike-slip earthquakes, the gravity data delineate a composite moment of 1.9x10(exp 22)Nm regardless of the centroid depth, comparing favorably with the total moment of the main ruptures and aftershocks. The smallest event we successfully analyzed with GRACE was the 2007 Bengkulu earthquake with M(sub 0) approx. 5.0x10(exp 21)Nm. We found that the gravity data constrain the focal mechanism with the centroid only within the upper and lower crustal layers for thrust events. Deeper sources (i.e., in the upper mantle) could not reproduce the gravity observation as the larger rigidity and bulk modulus at mantle depths inhibit the interior from changing its volume, thus reducing the negative gravity component. Focal mechanisms and seismic moments obtained in this study represent the behavior of the sources on temporal and spatial scales exceeding the seismic and geodetic spectrum.
Zhao, Yongguang; Li, Chuanrong; Ma, Lingling; Tang, Lingli; Wang, Ning; Zhou, Chuncheng; Qian, Yonggang
2017-10-01
Time series of satellite reflectance data have been widely used to characterize environmental phenomena, describe trends in vegetation dynamics and study climate change. However, several sensors with wide spatial coverage and high observation frequency are usually designed to have large field of view (FOV), which cause variations in the sun-targetsensor geometry in time-series reflectance data. In this study, on the basis of semiempirical kernel-driven BRDF model, a new semi-empirical model was proposed to normalize the sun-target-sensor geometry of remote sensing image. To evaluate the proposed model, bidirectional reflectance under different canopy growth conditions simulated by Discrete Anisotropic Radiative Transfer (DART) model were used. The semi-empirical model was first fitted by using all simulated bidirectional reflectance. Experimental result showed a good fit between the bidirectional reflectance estimated by the proposed model and the simulated value. Then, MODIS time-series reflectance data was normalized to a common sun-target-sensor geometry by the proposed model. The experimental results showed the proposed model yielded good fits between the observed and estimated values. The noise-like fluctuations in time-series reflectance data was also reduced after the sun-target-sensor normalization process.
van Mierlo, Pieter; Lie, Octavian; Staljanssens, Willeke; Coito, Ana; Vulliémoz, Serge
2018-04-26
We investigated the influence of processing steps in the estimation of multivariate directed functional connectivity during seizures recorded with intracranial EEG (iEEG) on seizure-onset zone (SOZ) localization. We studied the effect of (i) the number of nodes, (ii) time-series normalization, (iii) the choice of multivariate time-varying connectivity measure: Adaptive Directed Transfer Function (ADTF) or Adaptive Partial Directed Coherence (APDC) and (iv) graph theory measure: outdegree or shortest path length. First, simulations were performed to quantify the influence of the various processing steps on the accuracy to localize the SOZ. Afterwards, the SOZ was estimated from a 113-electrodes iEEG seizure recording and compared with the resection that rendered the patient seizure-free. The simulations revealed that ADTF is preferred over APDC to localize the SOZ from ictal iEEG recordings. Normalizing the time series before analysis resulted in an increase of 25-35% of correctly localized SOZ, while adding more nodes to the connectivity analysis led to a moderate decrease of 10%, when comparing 128 with 32 input nodes. The real-seizure connectivity estimates localized the SOZ inside the resection area using the ADTF coupled to outdegree or shortest path length. Our study showed that normalizing the time-series is an important pre-processing step, while adding nodes to the analysis did only marginally affect the SOZ localization. The study shows that directed multivariate Granger-based connectivity analysis is feasible with many input nodes (> 100) and that normalization of the time-series before connectivity analysis is preferred.
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (71 records) were gathered by various governmental organizations (and academia) using a variety of methods. This data base was received in...
Bergshoeff, Eric A.; Hohm, Olaf; Townsend, Paul K.
2012-01-01
We present a brief review of New Massive Gravity, which is a unitary theory of massive gravitons in three dimensions obtained by considering a particular combination of the Einstein-Hilbert and curvature squared terms.
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (65,164 records) were gathered by various governmental organizations (and academia) using a variety of methods. The data base was received...
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (55,907 records) were gathered by various governmental organizations (and academia) using a variety of methods. This data base was received...
International Nuclear Information System (INIS)
Hertog, Thomas; Hollands, Stefan
2005-01-01
We study the stability of designer gravity theories, in which one considers gravity coupled to a tachyonic scalar with anti-de Sitter (AdS) boundary conditions defined by a smooth function W. We construct Hamiltonian generators of the asymptotic symmetries using the covariant phase space method of Wald et al and find that they differ from the spinor charges except when W = 0. The positivity of the spinor charge is used to establish a lower bound on the conserved energy of any solution that satisfies boundary conditions for which W has a global minimum. A large class of designer gravity theories therefore have a stable ground state, which the AdS/CFT correspondence indicates should be the lowest energy soliton. We make progress towards proving this by showing that minimum energy solutions are static. The generalization of our results to designer gravity theories in higher dimensions involving several tachyonic scalars is discussed
Carroll versus Galilei gravity
Energy Technology Data Exchange (ETDEWEB)
Bergshoeff, Eric [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Gomis, Joaquim [Departament de Física Cuàntica i Astrofísica and Institut de Ciències del Cosmos,Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain); Rollier, Blaise [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Rosseel, Jan [Faculty of Physics, University of Vienna,Boltzmanngasse 5, A-1090 Vienna (Austria); Veldhuis, Tonnis ter [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)
2017-03-30
We consider two distinct limits of General Relativity that in contrast to the standard non-relativistic limit can be taken at the level of the Einstein-Hilbert action instead of the equations of motion. One is a non-relativistic limit and leads to a so-called Galilei gravity theory, the other is an ultra-relativistic limit yielding a so-called Carroll gravity theory. We present both gravity theories in a first-order formalism and show that in both cases the equations of motion (i) lead to constraints on the geometry and (ii) are not sufficient to solve for all of the components of the connection fields in terms of the other fields. Using a second-order formalism we show that these independent components serve as Lagrange multipliers for the geometric constraints we found earlier. We point out a few noteworthy differences between Carroll and Galilei gravity and give some examples of matter couplings.
International Nuclear Information System (INIS)
Williams, Ruth M
2006-01-01
A review is given of a number of approaches to discrete quantum gravity, with a restriction to those likely to be relevant in four dimensions. This paper is dedicated to Rafael Sorkin on the occasion of his sixtieth birthday
Garland, G D; Wilson, J T
2013-01-01
The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp
Shuler, Robert
2018-04-01
The goal of this paper is to take a completely fresh approach to metric gravity, in which the metric principle is strictly adhered to but its properties in local space-time are derived from conservation principles, not inferred from a global field equation. The global field strength variation then gains some flexibility, but only in the regime of very strong fields (2nd-order terms) whose measurement is now being contemplated. So doing provides a family of similar gravities, differing only in strong fields, which could be developed into meaningful verification targets for strong fields after the manner in which far-field variations were used in the 20th century. General Relativity (GR) is shown to be a member of the family and this is demonstrated by deriving the Schwarzschild metric exactly from a suitable field strength assumption. The method of doing so is interesting in itself because it involves only one differential equation rather than the usual four. Exact static symmetric field solutions are also given for one pedagogical alternative based on potential, and one theoretical alternative based on inertia, and the prospects of experimentally differentiating these are analyzed. Whether the method overturns the conventional wisdom that GR is the only metric theory of gravity and that alternatives must introduce additional interactions and fields is somewhat semantical, depending on whether one views the field strength assumption as a field and whether the assumption that produces GR is considered unique in some way. It is of course possible to have other fields, and the local space-time principle can be applied to field gravities which usually are weak-field approximations having only time dilation, giving them the spatial factor and promoting them to full metric theories. Though usually pedagogical, some of them are interesting from a quantum gravity perspective. Cases are noted where mass measurement errors, or distributions of dark matter, can cause one
Streaming gravity mode instability
International Nuclear Information System (INIS)
Wang Shui.
1989-05-01
In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs
International Nuclear Information System (INIS)
Accioly, A.J.
1987-01-01
A possible classical route conducting towards a general relativity theory with higher-derivatives starting, in a sense, from first principles, is analysed. A completely causal vacuum solution with the symmetries of the Goedel universe is obtained in the framework of this higher-derivative gravity. This very peculiar and rare result is the first known vcuum solution of the fourth-order gravity theory that is not a solution of the corresponding Einstein's equations.(Author) [pt
Nelson, George
2004-01-01
Gravity is the name given to the phenomenon that any two masses, like you and the Earth, attract each other. One pulls on the Earth and the Earth pulls on one the same amount. And one does not have to be touching. Gravity acts over vast distances, like the 150 million kilometers (93 million miles) between the Earth and the Sun or the billions of…
Automated borehole gravity meter system
International Nuclear Information System (INIS)
Lautzenhiser, Th.V.; Wirtz, J.D.
1984-01-01
An automated borehole gravity meter system for measuring gravity within a wellbore. The gravity meter includes leveling devices for leveling the borehole gravity meter, displacement devices for applying forces to a gravity sensing device within the gravity meter to bring the gravity sensing device to a predetermined or null position. Electronic sensing and control devices are provided for (i) activating the displacement devices, (ii) sensing the forces applied to the gravity sensing device, (iii) electronically converting the values of the forces into a representation of the gravity at the location in the wellbore, and (iv) outputting such representation. The system further includes electronic control devices with the capability of correcting the representation of gravity for tidal effects, as well as, calculating and outputting the formation bulk density and/or porosity
The measurement of surface gravity.
Crossley, David; Hinderer, Jacques; Riccardi, Umberto
2013-04-01
This review covers basic theory and techniques behind the use of ground-based gravimetry at the Earth's surface. The orientation is toward modern instrumentation, data processing and interpretation for observing surface, land-based, time-variable changes to the geopotential. The instrumentation side is covered in some detail, with specifications and performance of the most widely used models of the three main types: the absolute gravimeters (FG5, A10 from Micro-g LaCoste), superconducting gravimeters (OSG, iGrav from GWR instruments), and the new generation of spring instruments (Micro-g LaCoste gPhone, Scintrex CG5 and Burris ZLS). A wide range of applications is covered, with selected examples from tides and ocean loading, atmospheric effects on gravity, local and global hydrology, seismology and normal modes, long period and tectonics, volcanology, exploration gravimetry, and some examples of gravimetry connected to fundamental physics. We show that there are only a modest number of very large signals, i.e. hundreds of µGal (10(-8) m s(-2)), that are easy to see with all gravimeters (e.g. tides, volcanic eruptions, large earthquakes, seasonal hydrology). The majority of signals of interest are in the range 0.1-5.0 µGal and occur at a wide range of time scales (minutes to years) and spatial extent (a few meters to global). Here the competing effects require a careful combination of different gravimeter types and measurement strategies to efficiently characterize and distinguish the signals. Gravimeters are sophisticated instruments, with substantial up-front costs, and they place demands on the operators to maximize the results. Nevertheless their performance characteristics such as drift and precision have improved dramatically in recent years, and their data recording ability and ruggedness have seen similar advances. Many subtle signals are now routinely connected with known geophysical effects such as coseismic earthquake displacements, post
True, Cadence; Nasrin Alam, Sayeda; Cox, Kimberly; Chan, Yee-Ming; Seminara, Stephanie B
2015-04-01
Humans carrying mutations in neurokinin B (NKB) or the NKB receptor fail to undergo puberty due to decreased secretion of GnRH. Despite this pubertal delay, many of these patients go on to achieve activation of their hypothalamic-pituitary-gonadal axis in adulthood, a phenomenon termed reversal, indicating that NKB signaling may play a more critical role for the timing of pubertal development than adult reproductive function. NKB receptor-deficient mice are hypogonadotropic but have no defects in the timing of sexual maturation. The current study has performed the first phenotypic evaluation of mice bearing mutations in Tac2, the gene encoding the NKB ligand, to determine whether they have impaired sexual development similar to their human counterparts. Male Tac2-/- mice showed no difference in the timing of sexual maturation or fertility compared with wild-type littermates and were fertile. In contrast, Tac2-/- females had profound delays in sexual maturation, with time to vaginal opening and first estrus occurring significantly later than controls, and initial abnormalities in estrous cycles. However, cycling recovered in adulthood and Tac2-/- females were fertile, although they produced fewer pups per litter. Thus, female Tac2-/- mice parallel humans harboring NKB pathway mutations, with delayed sexual maturation and activation of the reproductive cascade later in life. Moreover, direct comparison of NKB ligand and receptor-deficient females confirmed that only NKB ligand-deficient animals have delayed sexual maturation, suggesting that in the absence of the NKB receptor, NKB may regulate the timing of sexual maturation through other tachykinin receptors.
International Nuclear Information System (INIS)
Capozziello, Salvatore; De Laurentis, Mariafelicia
2011-01-01
Extended Theories of Gravity can be considered as a new paradigm to cure shortcomings of General Relativity at infrared and ultraviolet scales. They are an approach that, by preserving the undoubtedly positive results of Einstein’s theory, is aimed to address conceptual and experimental problems recently emerged in astrophysics, cosmology and High Energy Physics. In particular, the goal is to encompass, in a self-consistent scheme, problems like inflation, dark energy, dark matter, large scale structure and, first of all, to give at least an effective description of Quantum Gravity. We review the basic principles that any gravitational theory has to follow. The geometrical interpretation is discussed in a broad perspective in order to highlight the basic assumptions of General Relativity and its possible extensions in the general framework of gauge theories. Principles of such modifications are presented, focusing on specific classes of theories like f(R)-gravity and scalar–tensor gravity in the metric and Palatini approaches. The special role of torsion is also discussed. The conceptual features of these theories are fully explored and attention is paid to the issues of dynamical and conformal equivalence between them considering also the initial value problem. A number of viability criteria are presented considering the post-Newtonian and the post-Minkowskian limits. In particular, we discuss the problems of neutrino oscillations and gravitational waves in extended gravity. Finally, future perspectives of extended gravity are considered with possibility to go beyond a trial and error approach.
Processing Marine Gravity Data Around Korea
Lee, Y.; Choi, K.; Kim, Y.; Ahn, Y.; Chang, M.
2008-12-01
In Korea currently 4 research ships are under operating in Korea, after the first research vessel equipped shipborne gravity meter was introduced in 1990s. These are Onnuri(launch 1991) of KORDI(Korea Ocean Research & Development Institute), Haeyang2000(launch 1996), Badaro1(launch 2002) of NORI(National Oceanographic Research Institute) and Tamhae2(launch 1997) of KIGAM(Korea Institute of Geoscience and Mineral Resources). Those of research vessel, Haeyang2000 have observed marine gravity data over 150,000 points each year from year 1996 to year 2003. Haeyang2000, about 2,500 tons, is unable to operate onshore so NORI has constructed another 600 tons research ship Badaro1 that has observed marine gravity data onshore since year 2002. Haeyang2000 finished observing marine gravity data offshore within Korean territorial waters until year 2003. Currently Badaro1 is observing marine gravity data onshore. These shipborne gravity data will be very useful and important on geodesy and geophysics research also those data can make a contribution to developing these studies. In this study NORI's shipbrne gravity data from 1996 to 2007 has been processed for fundamental data to compute Korean precise geoid. Marine gravity processing steps as followed. 1. Check the time sequence, latitude and longitude position, etc. of shipborne gravity data 2. Arrangement of the tide level below the pier and meter drift correction of each cruise. 3. Elimination of turning points. 4. The time lag correction. 5. Computation of RV's velocities, Heading angles and the Eötvös correction. 6. Kalman filtering of GPS navigation data using cross-over points. 7. Cross-over correction using least square adjustment. About 2,058,000 points have been processed with NORI's marine gravity data from 1996 to 2007 in this study. The distribution of free-air anomalies was -41.0 mgal to 136.0 mgal(mean 8.90mgal) within Korean territorial waters. The free-air anomalies processed with the marine gravity data are
International Nuclear Information System (INIS)
Gruber, S.; Pinker, K.; Riederer, F.; Chmelik, M.; Stadlbauer, A.; Bittsansky, M.; Mlynarik, V.; Frey, R.; Serles, W.; Bodamer, O.; Moser, E.
2008-01-01
Objectives: Sixty three healthy subjects were measured to assess dependence of brain metabolites on age using short- and long echo time spectroscopy in different brain regions. Material and methods: Younger and elderly humans were measured with long echo time (TE = 135 ms) 3D-MR-spectroscopic imaging (MRSI) (10 subjects) and with ultra-short echo (TE = 11 ms) time 2D-MRSI (7 subjects). In addition, results from single voxel 1 H-spectroscopy (TE = 20 ms) of two cohorts of 46 healthy subjects were retrospectively correlated with age. Results: 3D-MR SI revealed reduced NAA/Cr in the older group in the frontal lobe (-22%; p < 0.01), parietal lobe (-28%; p < 0.01) and semiovale (-9%; p < 0.01) compared to the younger group. Cho/Cr was elevated in the semiovale (+35%; p < 0.01) and in the n. lentiformis (+42%; p < 0.01) in the older group. NAA/Cho was reduced in all regions measured, except the thalamus, in the older group compared to the younger group (from -21 to -49%; p < 0.01). 2D-MRSI revealed decreased total NAA (-3.1% per decade; p < 0.01) and NAA/Cr (-3.8% per decade; p < 0.01), increased total Cho (+3.6% per decade; p < 0.01) and Cho/Cr (+4.6% per decade; p < 0.01) and increased total myo-Inositol (mI, +4.7% per decade; p < 0.01) and mI/Cr (+5.4% per decade; p < 0.01) and decreased NAA/Cho (-8% per decade; p < 0.01) in semiovale WM. Results from single voxel spectroscopy revealed a significantly negative correlation of NAA/Cho in frontal (-13% per decade; p < 0.01) and in temporal lobe (-7.4% per decade; p < 0.01) as well as increased total Cr (10% per decade; p < 0.01) in frontal lobe. Other results from single voxel measurements were not significant, but trends were comparable to that from multivoxel spectroscopy. Conclusion: Age-related changes measured with long echo time and short echo time 1H-MRS were comparable and cannot, therefore, be caused by different T2 relaxation times in young and old subjects, as suggested previously
Global gravity field from recent satellites (DTU15) - Arctic improvements
DEFF Research Database (Denmark)
Andersen, O. B.; Knudsen, P.; Kenyon, S.
2017-01-01
Global marine gravity field modelling using satellite altimetry is currently undergoing huge improvement with the completion of the Jason-1 end-of-life geodetic mission, but particularly with the continuing Cryosat-2 mission. These new satellites provide three times as many geodetic mission...... altimetric sea surface height observations as ever before. The impact of these new geodetic mission data is a dramatic improvement of particularly the shorter wavelength of the gravity field (10-20 km) which is now being mapped at significantly higher accuracy. The quality of the altimetric gravity field...... is in many places surpassing the quality of gravity fields derived using non-commercial marine gravity observations. Cryosat-2 provides for the first time altimetry throughout the Arctic Ocean up to 88°N. Here, the huge improvement in marine gravity mapping is shown through comparison with high quality...
Cosmological dynamics of mimetic gravity
Dutta, Jibitesh; Khyllep, Wompherdeiki; Saridakis, Emmanuel N.; Tamanini, Nicola; Vagnozzi, Sunny
2018-02-01
We present a detailed investigation of the dynamical behavior of mimetic gravity with a general potential for the mimetic scalar field. Performing a phase-space and stability analysis, we show that the scenario at hand can successfully describe the thermal history of the universe, namely the successive sequence of radiation, matter, and dark-energy eras. Additionally, at late times the universe can either approach a de Sitter solution, or a scaling accelerated attractor where the dark-matter and dark-energy density parameters are of the same order, thus offering an alleviation of the cosmic coincidence problem. Applying our general analysis to various specific potential choices, including the power-law and the exponential ones, we show that mimetic gravity can be brought into good agreement with the observed behavior of the universe. Moreover, with an inverse square potential we find that mimetic gravity offers an appealing unified cosmological scenario where both dark energy and dark matter are characterized by a single scalar field, and where the cosmic coincidence problem is alleviated.
Extended DBI massive gravity with generalized fiducial metric
Chullaphan, Tossaporn; Tannukij, Lunchakorn; Wongjun, Pitayuth
2015-06-01
We consider an extended model of DBI massive gravity by generalizing the fiducial metric to be an induced metric on the brane corresponding to a domain wall moving in five-dimensional Schwarzschild-Anti-de Sitter spacetime. The model admits all solutions of FLRW metric including flat, closed and open geometries while the original one does not. The background solutions can be divided into two branches namely self-accelerating branch and normal branch. For the self-accelerating branch, the graviton mass plays the role of cosmological constant to drive the late-time acceleration of the universe. It is found that the number degrees of freedom of gravitational sector is not correct similar to the original DBI massive gravity. There are only two propagating degrees of freedom from tensor modes. For normal branch, we restrict our attention to a particular class of the solutions which provides an accelerated expansion of the universe. It is found that the number of degrees of freedom in the model is correct. However, at least one of them is ghost degree of freedom which always present at small scale implying that the theory is not stable.
Extended DBI massive gravity with generalized fiducial metric
International Nuclear Information System (INIS)
Chullaphan, Tossaporn; Tannukij, Lunchakorn; Wongjun, Pitayuth
2015-01-01
We consider an extended model of DBI massive gravity by generalizing the fiducial metric to be an induced metric on the brane corresponding to a domain wall moving in five-dimensional Schwarzschild-Anti-de Sitter spacetime. The model admits all solutions of FLRW metric including flat, closed and open geometries while the original one does not. The background solutions can be divided into two branches namely self-accelerating branch and normal branch. For the self-accelerating branch, the graviton mass plays the role of cosmological constant to drive the late-time acceleration of the universe. It is found that the number degrees of freedom of gravitational sector is not correct similar to the original DBI massive gravity. There are only two propagating degrees of freedom from tensor modes. For normal branch, we restrict our attention to a particular class of the solutions which provides an accelerated expansion of the universe. It is found that the number of degrees of freedom in the model is correct. However, at least one of them is ghost degree of freedom which always present at small scale implying that the theory is not stable.
Tomsin, K; Mesens, T; Molenberghs, G; Peeters, L; Gyselaers, W
2012-12-01
To evaluate the time interval between maternal electrocardiogram (ECG) and venous Doppler waves at different stages of uncomplicated pregnancy (UP) and in preeclampsia (PE). Cross-sectional pilot study in 40 uncomplicated singleton pregnancies, categorized in four groups of ten according to gestational age: 10 - 14 weeks (UP1), 18 - 23 weeks (UP2), 28 - 33 weeks (UP3) and ≥ 37 weeks (UP4) of gestation. A fifth group of ten women with PE was also included. A Doppler flow examination at the level of renal interlobar veins (RIV) and hepatic veins (HV) was performed according to a standard protocol, in association with a maternal ECG. The time interval between the ECG P-wave and the corresponding A-deflection of the venous Doppler waves was measured (PA), and expressed relative to the duration of the cardiac cycle (RR), and labeled PA/RR. In hepatic veins, the PA/RR is longer in UP 4 than in UP 1 (0.48 ± 0.15 versus 0.29 ± 0.09, p ≤ 0.001). When all UP groups were compared, the PA/RR increased gradually with gestational age. In PE, the HV PA/RR is shorter than in UP 3 (0.25 ± 0.09 versus 0.42 ± 0.14, p advanced gestational stages are consistent with known features of maternal cardiovascular adaptation. Shorter values in preeclampsia are consistent with maternal cardiovascular maladaptation mechanisms. Our pilot study invites more research of the relevance of the time interval between maternal ECG and venous Doppler waves as a new parameter for studying the gestational cardiovascular (patho)physiology of the maternal venous compartment by duplex sonography. © Georg Thieme Verlag KG Stuttgart · New York.
2000-01-01
In this photo, the Gravity Probe B (GP-B) space vehicle is being assembled at the Sunnyvale, California location of the Lockheed Martin Corporation. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).
Carpenter, Donald A.
2008-01-01
Confusion exists among database textbooks as to the goal of normalization as well as to which normal form a designer should aspire. This article discusses such discrepancies with the intention of simplifying normalization for both teacher and student. This author's industry and classroom experiences indicate such simplification yields quicker…
S. Sivasankar; Dr.V.Vallimurugan
2017-01-01
Yoga is a process of gaining control over the mind, as defined by Patanjali. Stress has been implicated as one of the major causes of essential obesity. Yoga works on every cell of the body. Yoga influences body as well as controls the stress in the individual. An index of the processing ability of central nervous system and a simple means of determining sensory-motor performance is referred to as reaction time (RT). It has been proclaimed that human performance including central neural proce...
Chen, X.; Vierling, L. A.; Deering, D. W.
2004-12-01
landscape change. Compared with some previous relative normalization methods, this new method can avoid subjective selection of a normalization regression line. It does not require high level programming and statistical analyses, yet remains sensitive to landscape changes occurring over seasonal and inter-annual time scales. In addition, the TIC method maintains sensitivity to subtle changes in vegetation phenology and enables normalization even when invariant features are rare.
Infinite derivative gravity : non-singular cosmology & blackhole solutions
Mazumdar, Anupam
2017-01-01
Both Einstein's theory of General Relativity and Newton's theory of gravity possess a short dis- tance and small time scale catastrophe. The blackhole singularity and cosmological Big Bang singularity problems highlight that current theories of gravity are incomplete description at early times and
Nagel, Thomas; Kelly, Daniel J
2013-04-01
The biomechanical functionality of articular cartilage is derived from both its biochemical composition and the architecture of the collagen network. Failure to replicate this normal Benninghoff architecture in regenerating articular cartilage may in turn predispose the tissue to failure. In this article, the influence of the maturity (or functionality) of a tissue-engineered construct at the time of implantation into a tibial chondral defect on the likelihood of recapitulating a normal Benninghoff architecture was investigated using a computational model featuring a collagen remodeling algorithm. Such a normal tissue architecture was predicted to form in the intact tibial plateau due to the interplay between the depth-dependent extracellular matrix properties, foremost swelling pressures, and external mechanical loading. In the presence of even small empty defects in the articular surface, the collagen architecture in the surrounding cartilage was predicted to deviate significantly from the native state, indicating a possible predisposition for osteoarthritic changes. These negative alterations were alleviated by the implantation of tissue-engineered cartilage, where a mature implant was predicted to result in the formation of a more native-like collagen architecture than immature implants. The results of this study highlight the importance of cartilage graft functionality to maintain and/or re-establish joint function and suggest that engineering a tissue with a native depth-dependent composition may facilitate the establishment of a normal Benninghoff collagen architecture after implantation into load-bearing defects.
Quantum gravity and the renormalisation group
International Nuclear Information System (INIS)
Litim, D.
2011-01-01
The Standard Model of particle physics is remarkably successful in describing three out of the four known fundamental forces of Nature. But what is up with gravity? Attempts to understand quantum gravity on the same footing as the other forces still face problems. Some time ago, it has been pointed out that gravity may very well exist as a fundamental quantum field theory provided its high-energy behaviour is governed by a fixed point under the renormalisation group. In recent years, this 'asymptotic safety' scenario has found significant support thanks to numerous renormalisation group studies, lattice simulations, and new ideas within perturbation theory. The lectures will give an introduction into the renormalisation group approach for quantum gravity, aimed at those who haven't met the topic before. After an introduction and overview, the key ideas and concepts of asymptotic safety for gravity are fleshed out. Results for gravitational high-energy fixed points and scaling exponents are discussed as well as key features of the gravitational phase diagram. The survey concludes with some phenomenological implications of fixed point gravity including the physics of black holes and particle physics beyond the Standard Model. (author)
Directory of Open Access Journals (Sweden)
Memduh Alper Demir
2017-12-01
Full Text Available The purpose of this study is to examine the bilateral machinery and transport equipment trade efficiency of selected fourteen Asian countries by applying stochastic frontier gravity model. These selected countries have the top machinery and transport equipment trade (both export and import volumes in Asia. The model we use includes variables such as income, market size of trading partners, distance, common culture, common border, common language and global economic crisis similar to earlier studies using the stochastic frontier gravity models. Our work, however, includes an extra variable called normalized revealed comparative advantage (NRCA index additionally. The NRCA index is comparable across commodity, country and time. Thus, the NRCA index is calculated and then included in our stochastic frontier gravity model to see the impact of competitiveness (here measured by the NRCA index on the efficiency of trade.
Stochastic quantum gravity-(2+1)-dimensional case
International Nuclear Information System (INIS)
Hosoya, Akio
1991-01-01
At first the amazing coincidences are pointed out in quantum field theory in curved space-time and quantum gravity, when they exhibit stochasticity. To explore the origin of them, the (2+1)-dimensional quantum gravity is considered as a toy model. It is shown that the torus universe in the (2+1)-dimensional quantum gravity is a quantum chaos in a rigorous sense. (author). 15 refs
March, L; Cienfuegos, A; Goldbloom, L; Ritter, W; Cowan, N; Javitt, D C
1999-02-01
Prior studies have demonstrated impaired precision of processing within the auditory sensory memory (ASM) system in schizophrenia. This study used auditory backward masking to evaluate the degree to which such deficits resulted from impaired overall precision versus premature decay of information within the short-term auditory store. ASM performance was evaluated in 14 schizophrenic participants and 16 controls. Schizophrenic participants were severely impaired in their ability to match tones following delay. However, when no-mask performance was equated across participants, schizophrenic participants were no more susceptible to the effects of backward maskers than were controls. Thus, despite impaired precision of ASM performance, schizophrenic participants showed no deficits in the time course over which short-term representations could be used within the ASM system.
Massie, U. W.
When Planck introduced the 1/2 hv term to his 1911 black body equation he showed that there is a residual energy remaining at zero degree K after all thermal energy ceased. Other investigators, including Lamb, Casimir, and Dirac added to this information. Today zero point energy (ZPE) is accepted as an established condition. The purpose of this paper is to demonstrate that the density of the ZPE is given by the gravity constant (G) and the characteristics of its particles are revealed by the cosmic microwave background (CMB). Eddies of ZPE particles created by flow around mass bodies reduce the pressure normal to the eddy flow and are responsible for the force of gravity. Helium atoms resonate with ZPE particles at low temperature to produce superfluid helium. High velocity micro vortices of ZPE particles about a basic particle or particles are responsible for electromagnetic forces. The speed of light is the speed of the wave front in the ZPE and its value is a function of the temperature and density of the ZPE.
Reducing gravity takes the bounce out of running.
Polet, Delyle T; Schroeder, Ryan T; Bertram, John E A
2018-02-13
In gravity below Earth-normal, a person should be able to take higher leaps in running. We asked 10 subjects to run on a treadmill in five levels of simulated reduced gravity and optically tracked centre-of-mass kinematics. Subjects consistently reduced ballistic height compared with running in normal gravity. We explain this trend by considering the vertical take-off velocity (defined as maximum vertical velocity). Energetically optimal gaits should balance the energetic costs of ground-contact collisions (favouring lower take-off velocity), and step frequency penalties such as leg swing work (favouring higher take-off velocity, but less so in reduced gravity). Measured vertical take-off velocity scaled with the square root of gravitational acceleration, following energetic optimality predictions and explaining why ballistic height decreases in lower gravity. The success of work-based costs in predicting this behaviour challenges the notion that gait adaptation in reduced gravity results from an unloading of the stance phase. Only the relationship between take-off velocity and swing cost changes in reduced gravity; the energetic cost of the down-to-up transition for a given vertical take-off velocity does not change with gravity. Because lower gravity allows an elongated swing phase for a given take-off velocity, the motor control system can relax the vertical momentum change in the stance phase, thus reducing ballistic height, without great energetic penalty to leg swing work. Although it may seem counterintuitive, using less 'bouncy' gaits in reduced gravity is a strategy to reduce energetic costs, to which humans seem extremely sensitive. © 2018. Published by The Company of Biologists Ltd.
Hou, Lei; Kagami, Shingo; Hashimoto, Koichi
2010-01-01
To acquire images of dynamic scenes from multiple points of view simultaneously, the acquisition time of vision sensors should be synchronized. In this paper, an illumination-based synchronization derived from the phase-locked loop (PLL) mechanism based on the signal normalization method is proposed and evaluated. To eliminate the system dependency due to the amplitude fluctuation of the reference illumination, which may be caused by the moving objects or relative positional distance change between the light source and the observed objects, the fluctuant amplitude of the reference signal is normalized framely by the estimated maximum amplitude between the reference signal and its quadrature counterpart to generate a stable synchronization in highly dynamic scenes. Both simulated results and real world experimental results demonstrated successful synchronization result that 1,000-Hz frame rate vision sensors can be successfully synchronized to a LED illumination or its reflected light with satisfactory stability and only 28-μs jitters.
Directory of Open Access Journals (Sweden)
Koichi Hashimoto
2010-09-01
Full Text Available To acquire images of dynamic scenes from multiple points of view simultaneously, the acquisition time of vision sensors should be synchronized. In this paper, an illumination-based synchronization derived from the phase-locked loop (PLL mechanism based on the signal normalization method is proposed and evaluated. To eliminate the system dependency due to the amplitude fluctuation of the reference illumination, which may be caused by the moving objects or relative positional distance change between the light source and the observed objects, the fluctuant amplitude of the reference signal is normalized framely by the estimated maximum amplitude between the reference signal and its quadrature counterpart to generate a stable synchronization in highly dynamic scenes. Both simulated results and real world experimental results demonstrated successful synchronization result that 1,000-Hz frame rate vision sensors can be successfully synchronized to a LED illumination or its reflected light with satisfactory stability and only 28-μs jitters.
Directory of Open Access Journals (Sweden)
Shuai Peng
2018-05-01
Full Text Available The powerful Quantitative real-time PCR (RT-qPCR was widely used to assess gene expression levels, which requires the optimal reference genes used for normalization. Oenococcus oeni (O. oeni, as the one of most important microorganisms in wine industry and the most resistant lactic acid bacteria (LAB species to ethanol, has not been investigated regarding the selection of stable reference genes for RT-qPCR normalization under ethanol stress conditions. In this study, nine candidate reference genes (proC, dnaG, rpoA, ldhD, ddlA, rrs, gyrA, gyrB, and dpoIII were analyzed to determine the most stable reference genes for RT-qPCR in O. oeni SD-2a under different ethanol stress conditions (8, 12, and 16% (v/v ethanol. The transcript stabilities of these genes were evaluated using the algorithms geNorm, NormFinder, and BestKeeper. The results showed that dnaG and dpoIII were selected as the best reference genes across all experimental ethanol conditions. Considering single stress experimental modes, dpoIII and dnaG would be suitable to normalize expression level for 8% ethanol shock treatment, while the combination of gyrA, gyrB, and rrs would be suitable for 12% ethanol shock treatment. proC and gyrB revealed the most stable expression in 16% ethanol shock treatment. This study selected and validated for the first time the reference genes for RT-qPCR normalization in O. oeni SD-2a under ethanol stress conditions.
Energy Technology Data Exchange (ETDEWEB)
Ringe, Kristina I., E-mail: ringe.kristina@mh-hannover.de [Duke University Medical Center, Department of Radiology, Box 3808, Durham, NC 27710 (United States); Hannover Medical School, Department of Radiology, Carl-Neuberg Str. 1, 30625 Hannover (Germany); Husarik, Daniela B., E-mail: danielahusarik@yahoo.com [Duke University Medical Center, Department of Radiology, Box 3808, Durham, NC 27710 (United States); Gupta, Rajan T., E-mail: rajan.gupta@duke.edu [Duke University Medical Center, Department of Radiology, Box 3808, Durham, NC 27710 (United States); Boll, Daniel T., E-mail: daniel.boll@duke.edu [Duke University Medical Center, Department of Radiology, Box 3808, Durham, NC 27710 (United States); Merkle, Elmar M., E-mail: elmar.merkle@duke.edu [Duke University Medical Center, Department of Radiology, Box 3808, Durham, NC 27710 (United States)
2011-08-15
Objective: The purpose of this study was to determine transit times for excretion of Gd-EOB-DTPA into different segments of the hepatobiliary system in patients with normal liver function. Methods: This retrospective study was IRB approved with a waiver of consent granted. 61 patients (39 female, 22 male, mean age 52.5 years) with normal liver and renal function who underwent contrast enhanced hepatic MRI after injection of 10 mLGd-EOB-DTPA at 1.5 T and 3 T were included. Two readers evaluated all delayed images (3-20 min post contrast) for the presence of contrast agent in the intrahepatic bile ducts (IBD), the common bile duct (CBD), the gallbladder and the duodenum. A two-tailed, unpaired Student's t-test with p < 0.05 deemed significant was used to determine whether transit times were affected by patient gender, age or body mass index. Results: 20 min after contrast initiation, Gd-EOB-DTPA could be detected in the IBD and the CBD in all patients (100%); gallbladder reflux was visible in 53 (86.9%), duodenal excretion in 40 patients (65.5%), respectively. Mean transit times for contrast appearance in the various segments were as follows: IBD 12 min 13 s; CBD 12 min 27 s; gallbladder 13 min 32 s. Transit times were not significantly affected by patient gender, age or BMI. Conclusion: Within 20 min post contrast initiation, Gd-EOB-DTPA can be expected in the IBD and the CBD in patients with normal liver function. However, functional information about the sphincter Oddi complex can be ascertained only in about two thirds of these patients within this timeframe.
Shear waves in inhomogeneous, compressible fluids in a gravity field.
Godin, Oleg A
2014-03-01
While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.
Seeding and layering of equatorial spread F by gravity waves
International Nuclear Information System (INIS)
Hysell, D.L.; Kelley, M.C.; Swartz, W.E.; Woodman, R.F.
1990-01-01
Studies dating back more than 15 years have presented evidence that atmospheric gravity waves play a role in initiating nighttime equatorial F region instabilities. This paper analyzes a spectabular spread F event that for the first time demonstrates a layering which, the authors argue, is controlled by a gravity wave effect. The 50-km vertical wavelength of a gravity wave which they have found is related theoretically to a plasma layering irregularity that originated at low altitudes and then was convected, intact, to higher altitudes. Gravity waves also seem to have determined bottomside intermediate scale undulations, although this fact is not as clear in the data. The neutral wind dynamo effect yields wave number conditions on the gravity wave's ability to modulate the Rayleigh-Taylor instaiblity process. Finally, after evaluating the gravity wave dispersion relation and spatial resonance conditions, we estimate the properties of the seeding wave
Accuracy evaluation of pendulum gravity measurements of Robert von Sterneck
Directory of Open Access Journals (Sweden)
Alena Pešková
2015-06-01
Full Text Available The accuracy of first pendulum gravity measurements in the Czech territory was determined using both original surveying notebooks of Robert Daublebsky von Sterneck and modern technologies. Since more accurate methods are used for gravity measurements nowadays, our work is mostly important from the historical point of view. In previous works, the accuracy of Sterneck’s gravity measurements was determined using only a small dataset. Here we process all Sterneck’s measurements from the Czech territory (a dataset ten times larger than in the previous works, and we complexly assess the accuracy of these measurements. Locations of the measurements were found with the help of original notebooks. Gravity in the site was interpolated using actual gravity models. Finally, the accuracy of Sterneck’s measurements was evaluated as the difference between the measured and interpolated gravity.
Fermions in noncommutative emergent gravity
International Nuclear Information System (INIS)
Klammer, D.
2010-01-01
Noncommutative emergent gravity is a novel framework disclosing how gravity is contained naturally in noncommutative gauge theory formulated as a matrix model. It describes a dynamical space-time which itself is a four-dimensional brane embedded in a higher-dimensional space. In noncommutative emergent gravity, the metric is not a fundamental object of the model; rather it is determined by the Poisson structure and by the induced metric of the embedding. In this work the coupling of fermions to these matrix models is studied from the point of view of noncommutative emergent gravity. The matrix Dirac operator as given by the IKKT matrix model defines an appropriate coupling for fermions to an effective gravitational metric of noncommutative four-dimensional spaces that are embedded into a ten-dimensional ambient space. As it turns out this coupling is non-standard due to a spin connection that vanishes in the preferred but unobservable coordinates defined by the model. The purpose of this work is to study the one-loop effective action of this approach. Standard results of the literature cannot be applied due to this special coupling of the fermions. However, integrating out these fields in a nontrivial geometrical background induces indeed the Einstein-Hilbert action of the effective metric, as well as additional terms which couple the noncommutative structure to the Riemann tensor, and a dilaton-like term. It remains to be understood what the effects of these terms are and whether they can be avoided. In a second step, the existence of a duality between noncommutative gauge theory and gravity which explains the phenomenon of UV/IR mixing as a gravitational effect is discussed. We show how the gravitational coupling of fermions can be interpreted as a coupling of fermions to gauge fields, which suffers then from UV/IR mixing. This explanation does not render the model finite but it reveals why some UV/IR mixing remains even in supersymmetric models, except in the N
Stochastic Gravity: Theory and Applications
Directory of Open Access Journals (Sweden)
Hu Bei Lok
2004-01-01
Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bi-tensor which describes the fluctuations of quantum matter fields in curved spacetimes. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to their correlation functions. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh closed-time-path effective action methods which are convenient for computations. It also brings out the open systems concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise, and decoherence. We then focus on the properties of the stress-energy bi-tensor. We obtain a general expression for the noise kernel of a quantum field defined at two distinct points in an arbitrary curved spacetime as products of covariant derivatives of the quantum field's Green function. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime. We offer an analytical solution of the Einstein-Langevin equation and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, we discuss the backreaction
f(T) teleparallel gravity and cosmology.
Cai, Yi-Fu; Capozziello, Salvatore; De Laurentis, Mariafelicia; Saridakis, Emmanuel N
2016-10-01
Over recent decades, the role of torsion in gravity has been extensively investigated along the main direction of bringing gravity closer to its gauge formulation and incorporating spin in a geometric description. Here we review various torsional constructions, from teleparallel, to Einstein-Cartan, and metric-affine gauge theories, resulting in extending torsional gravity in the paradigm of f (T) gravity, where f (T) is an arbitrary function of the torsion scalar. Based on this theory, we further review the corresponding cosmological and astrophysical applications. In particular, we study cosmological solutions arising from f (T) gravity, both at the background and perturbation levels, in different eras along the cosmic expansion. The f (T) gravity construction can provide a theoretical interpretation of the late-time universe acceleration, alternative to a cosmological constant, and it can easily accommodate with the regular thermal expanding history including the radiation and cold dark matter dominated phases. Furthermore, if one traces back to very early times, for a certain class of f (T) models, a sufficiently long period of inflation can be achieved and hence can be investigated by cosmic microwave background observations-or, alternatively, the Big Bang singularity can be avoided at even earlier moments due to the appearance of non-singular bounces. Various observational constraints, especially the bounds coming from the large-scale structure data in the case of f (T) cosmology, as well as the behavior of gravitational waves, are described in detail. Moreover, the spherically symmetric and black hole solutions of the theory are reviewed. Additionally, we discuss various extensions of the f (T) paradigm. Finally, we consider the relation with other modified gravitational theories, such as those based on curvature, like f (R) gravity, trying to illuminate the subject of which formulation, or combination of formulations, might be more suitable
Directory of Open Access Journals (Sweden)
Cahill R. T.
2015-10-01
Full Text Available A new quantum gravity experiment is reported with the data confirming the generali- sation of the Schrödinger equation to include the interaction of the wave function with dynamical space. Dynamical space turbulence, via this interaction process, raises and lowers the energy of the electron wave function, which is detected by observing conse- quent variations in the electron quantum barrier tunnelling rate in reverse-biased Zener diodes. This process has previously been reported and enabled the measurement of the speed of the dynamical space flow, which is consistent with numerous other detection experiments. The interaction process is dependent on the angle between the dynamical space flow velocity and the direction of the electron flow in the diode, and this depen- dence is experimentally demonstrated. This interaction process explains gravity as an emergent quantum process, so unifying quantum phenomena and gravity. Gravitational waves are easily detected.
Ortín, Tomás
2015-01-01
Self-contained and comprehensive, this definitive new edition of Gravity and Strings is a unique resource for graduate students and researchers in theoretical physics. From basic differential geometry through to the construction and study of black-hole and black-brane solutions in quantum gravity - via all the intermediate stages - this book provides a complete overview of the intersection of gravity, supergravity, and superstrings. Now fully revised, this second edition covers an extensive array of topics, including new material on non-linear electric-magnetic duality, the electric-tensor formalism, matter-coupled supergravity, supersymmetric solutions, the geometries of scalar manifolds appearing in 4- and 5-dimensional supergravities, and much more. Covering reviews of important solutions and numerous solution-generating techniques, and accompanied by an exhaustive index and bibliography, this is an exceptional reference work.
International Nuclear Information System (INIS)
Goetz, G.
1988-01-01
It is shown that the plane-wave solutions for the equations governing the motion of a self-gravitating isothermal fluid in Newtonian hydrodynamics are generated by a sine-Gordon equation which is solvable by an 'inverse scattering' transformation. A transformation procedure is outlined by means of which one can construct solutions of the gravity system out of a pair of solutions of the sine-Gordon equation, which are interrelated via an auto-Baecklund transformation. In general the solutions to the gravity system are obtained in a parametric representation in terms of characteristic coordinates. All solutions of the gravity system generated by the one-and two-soliton solutions of the sine-Gordon equation can be constructed explicitly. These might provide models for the evolution of flat structures as they are predicted to arise in the process of galaxy formation. (author)
International Nuclear Information System (INIS)
Rumpf, H.
1987-01-01
We begin with a naive application of the Parisi-Wu scheme to linearized gravity. This will lead into trouble as one peculiarity of the full theory, the indefiniteness of the Euclidean action, shows up already at this level. After discussing some proposals to overcome this problem, Minkowski space stochastic quantization will be introduced. This will still not result in an acceptable quantum theory of linearized gravity, as the Feynman propagator turns out to be non-causal. This defect will be remedied only after a careful analysis of general covariance in stochastic quantization has been performed. The analysis requires the notion of a metric on the manifold of metrics, and a natural candidate for this is singled out. With this a consistent stochastic quantization of Einstein gravity becomes possible. It is even possible, at least perturbatively, to return to the Euclidean regime. 25 refs. (Author)
Linder, Eric V.
2018-03-01
A subclass of the Horndeski modified gravity theory we call No Slip Gravity has particularly interesting properties: 1) a speed of gravitational wave propagation equal to the speed of light, 2) equality between the effective gravitational coupling strengths to matter and light, Gmatter and Glight, hence no slip between the metric potentials, yet difference from Newton's constant, and 3) suppressed growth to give better agreement with galaxy clustering observations. We explore the characteristics and implications of this theory, and project observational constraints. We also give a simple expression for the ratio of the gravitational wave standard siren distance to the photon standard candle distance, in this theory and others, and enable a direct comparison of modified gravity in structure growth and in gravitational waves, an important crosscheck.
Gerhardt, Claus
2018-01-01
A unified quantum theory incorporating the four fundamental forces of nature is one of the major open problems in physics. The Standard Model combines electro-magnetism, the strong force and the weak force, but ignores gravity. The quantization of gravity is therefore a necessary first step to achieve a unified quantum theory. In this monograph a canonical quantization of gravity has been achieved by quantizing a geometric evolution equation resulting in a gravitational wave equation in a globally hyperbolic spacetime. Applying the technique of separation of variables we obtain eigenvalue problems for temporal and spatial self-adjoint operators where the temporal operator has a pure point spectrum with eigenvalues $\\lambda_i$ and related eigenfunctions, while, for the spatial operator, it is possible to find corresponding eigendistributions for each of the eigenvalues $\\lambda_i$, if the Cauchy hypersurface is asymptotically Euclidean or if the quantized spacetime is a black hole with a negative cosmological ...
Ehrenfest's principle in quantum gravity
International Nuclear Information System (INIS)
Greensite, J.
1991-01-01
The Ehrenfest principle d t = is proposed as (part of) a definition of the time variable in canonical quantum gravity. This principle selects a time direction in superspace, and provides a conserved, positive definite probability measure. An exact solution of the Ehrenfest condition is obtained, which leads to constant-time surfaces in superspace generated by the operator d/dτ=ΛθxΛ, where Λ is the gradient operator in superspace, and θ is the phase of the Wheeler-DeWitt wavefunction Φ; the constant-time surfaces are determined by this solution up to a choice of initial t=0 surface. This result holds throughout superspace, including classically forbidden regions and in the neighborhood of caustics; it also leads to ordinary quantum field theory and classical gravity in regions of superspace where the phase satisfies vertical stroked t θvertical stroke>>vertical stroked t ln(Φ * Φ)vertical stroke and (d t θ) 2 >>vertical stroked t 2 θvertical stroke. (orig.)
New directions in quantum gravity
International Nuclear Information System (INIS)
Penrose, Roger
1988-01-01
There has been much work over the past thirty years or so, concerned with trying to discover how Nature is able to achieve unity and harmony in combining two seemingly incompatible collections of phenomena: those of the sub-microscopic world, described by quantum mechanics, and those of the large-scale world, described by general relativity. The essential need for such a quantum gravity theory arose. Numerous heroic attempts to quantize the Einstein theory followed but these eventually foundered on the harsh rocks of non-renormalizability. This impasse led most workers in the field to explore possible modifications of Einstein's theory such as supergravity, increasing the number of space-time dimensions, replacing the standard (Hilbert) action of general relativity theory by something more complicated and superstring theory. Time-asymmetry in space-time singularity structure is discussed. In searching for a time-asymmetric quantum gravity theory the theories of general relativity and quantum mechanics both need to be modified. Then an objective wave-function collapse can occur at a level at which gravitation begins to be involved in a quantum process. (author)
Launch Opportunities for Jupiter Missions Using the Gravity Assist
Directory of Open Access Journals (Sweden)
Young-Joo Song
2004-06-01
Full Text Available Interplanetary trajectories using the gravity assists are studied for future Korean interplanetary missions. Verifications of the developed softwares and results were performed by comparing data from ESA's Mars Express mission and previous results. Among the Jupiter exploration mission scenarios, multi-planet gravity assist mission to Jupiter (Earth-Mars-Earth-Jupiter Gravity Assist, EMEJGA trajectory requires minimum launch energy (C3 of 29.231 km2/s2 with 4.6 years flight times. Others, such as direct mission and single-planet(Mars gravity assist mission, requires launch energy (C3 of 75.656 km^2/s^2 with 2.98 years flight times and 63.590 km2/s2 with 2.33 years flight times, respectively. These results show that the planetary gravity assists can reduce launch energy, while EMEJGA trajectory requires the longer flight time than the other missions.
Airborne Gravity: NGS' Gravity Data for EN08 (2013)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Vermont, New Hampshire, Massachusettes, Maine, and Canada collected in 2013 over 1 survey. This data set is part of the Gravity...
Airborne Gravity: NGS' Gravity Data for TS01 (2014)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Puerto Rico and the Virgin Islands collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the...
Airborne Gravity: NGS' Gravity Data for AN08 (2016)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2016 over one survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...
Airborne Gravity: NGS' Gravity Data for CN02 (2013 & 2014)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Nebraska collected in 2013 & 2014 over 3 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...
Airborne Gravity: NGS' Gravity Data for EN01 (2011)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Canada, and Lake Ontario collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the...
Airborne Gravity: NGS' Gravity Data for AN03 (2010)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 and 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...
Airborne Gravity: NGS' Gravity Data for EN06 (2016)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maine, Canada, and the Atlantic Ocean collected in 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the...
Airborne Gravity: NGS' Gravity Data for ES01 (2013)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida, the Bahamas, and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the Gravity for the Re-definition of...
Group theory approach to unification of gravity with internal symmetry gauge interactions. Part 1
International Nuclear Information System (INIS)
Samokhvalov, S.E.; Vanyashin, V.S.
1990-12-01
The infinite group of deformed diffeomorphisms of space-time continuum is put into the basis of the Gauge Theory of Gravity. This gives rise to some new ways for unification of gravity with other gauge interactions. (author). 7 refs
Eddington's theory of gravity and its progeny.
Bañados, Máximo; Ferreira, Pedro G
2010-07-02
We resurrect Eddington's proposal for the gravitational action in the presence of a cosmological constant and extend it to include matter fields. We show that the Newton-Poisson equation is modified in the presence of sources and that charged black holes show great similarities with those arising in Born-Infeld electrodynamics coupled to gravity. When we consider homogeneous and isotropic space-times, we find that there is a minimum length (and maximum density) at early times, clearly pointing to an alternative theory of the big bang. We thus argue that the modern formulation of Eddington's theory, Born-Infeld gravity, presents us with a novel, nonsingular description of the Universe.
International Nuclear Information System (INIS)
Gribbin, John.
1990-01-01
This paper looks at Einstein's Theory of General Relativity and lists its accomplishments in explaining many problems in gravitation and astrophysics. It was Einstin's genius that led to our present comprehensive theory of gravity. Various ideas central to the theory are explained, such as the bending of space and time by massive objects, geodesics, the origin of the universe. In astrophysics, recent discoveries such as black holes, quasars, gravitational lenses, gravitational radiation, such as that coming from pulsars, can all be explained and understood using Einstein's ideas. (UK)
Gravity and Extreme Magnetism SMEX
2012-01-01
The Gravity and Extreme Magnetism SMEX mission will be the first mission to catalogue the X-ray polarisation of many astrophysical objects including black-holes and pulsars. This first of its kind mission is enabled by the novel use of a time projection chamber as an X-ray polarimeter. The detector has been developed over the last 5 years, with the current effort charged toward a demonstration of it's technical readiness to be at level 6 prior to the preliminary design review. This talk will describe the design GEMS polarimeter and the results to date from the engineering test unit.
Pizzo, Nick
2017-11-01
A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.
Relativistic theory of gravity
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1985-01-01
This work presents an unambiguous construction of the relativistic theory of gravity (RTG) in the framework of relativity and the geometrization principle. The gauge principle has been formulated, and the Lagrangian density of the gravitational field has thus been constructed. This theory explains the totality of the available experimental data on the solar system and predicts the existence of gravitational waves of the Faraday-Maxwell type. According to the RTG, the Universe is infinite and ''flat'', hence it follows that its matter density should be equal to its critical density. Therefore, an appreciable ''hidden mass'' exceeding the presently observed mass of the matter almost 40-fold should exist in the Universe in some form of the matter or other. In accordance with the RTG, a massive body having a finite density ceases to contract under gravitational forces within a finite interval of proper time. From the viewpoint of an external reference frame, the brightness of the body decreases exponentially (it is getting darker), but nothing extraordinary happens in this case because its density always remains finite and, for example, for a body with the mass of about 10 8 M 0 it is equal to 2 g/cm 3 . That is why it follows from the RTG that there could be no object whatsoever (black holes) in which gravitational collapse of matter develops to an infinite density. As has been shown, the presence of a cosmological term necessarily requires the introduction of a term with an explicit dependence on the Minkowski metrics. For the long-range gravitational forces the cosmological constant vanishes
Li, M; Ishiguro, Y; Kageyama, K; Zhu, Z
2015-08-01
Most of the current research into the quantification of soil-borne pathogenic oomycetes lacks determination of DNA extraction efficiency, probably leading to an incorrect estimation of DNA quantity. In this study, we developed a convenient method by using a 100 bp artificially synthesized DNA sequence derived from the mitochondrion NADH dehydrogenase subunit 2 gene of Thunnus thynnus as a control to determine the DNA extraction efficiency. The control DNA was added to soils and then co-extracted along with soil genomic DNA. DNA extraction efficiency was determined by the control DNA. Two different DNA extraction methods were compared and evaluated using different types of soils, and the commercial kit was proved to give more consistent results. We used the control DNA combined with real-time PCR to quantify the oomycete DNAs from 12 naturally infested soils. Detectable target DNA concentrations were three to five times higher after normalization. Our tests also showed that the extraction efficiencies varied on a sample-to-sample basis and were simple and useful for the accurate quantification of soil-borne pathogenic oomycetes. Oomycetes include many important plant pathogens. Accurate quantification of these pathogens is essential in the management of diseases. This study reports an easy method utilizing an external DNA control for the normalization of DNA extraction by real-time PCR. By combining two different efficient soil DNA extraction methods, the developed quantification method dramatically improved the results. This study also proves that the developed normalization method is necessary and useful for the accurate quantification of soil-borne plant pathogenic oomycetes. © 2015 The Society for Applied Microbiology.
Directory of Open Access Journals (Sweden)
Andreas Garcia-Bardon
Full Text Available Real-time reverse transcription polymerase chain reaction (PCR is the gold standard for expression analysis. Designed to improve reproducibility and sensitivity, commercial kits are commonly used for the critical step of cDNA synthesis. The present study was designed to determine the impact of these kits. mRNA from mouse brains were pooled to create serial dilutions ranging from 0.0625 μg to 2 μg, which were transcribed into cDNA using four different commercial reverse-transcription kits. Next, we transcribed mRNA from brain tissue after acute brain injury and naïve mice into cDNA for qPCR. Depending on tested genes, some kits failed to show linear results in dilution series and revealed strong variations in cDNA yield. Absolute expression data in naïve and trauma settings varied substantially between these kits. Normalization with a housekeeping gene failed to reduce kit-dependent variations, whereas normalization eliminated differences when naïve samples from the same region were used. The study shows strong evidence that choice of commercial cDNA synthesis kit has a major impact on PCR results and, consequently, on comparability between studies. Additionally, it provides a solution to overcome this limitation by normalization with data from naïve samples. This simple step helps to compare mRNA expression data between different studies and groups.
Directory of Open Access Journals (Sweden)
Prasenjit Saha
Full Text Available Pearl millet [Pennisetum glaucum (L. R.Br.], a close relative of Panicoideae food crops and bioenergy grasses, offers an ideal system to perform functional genomics studies related to C4 photosynthesis and abiotic stress tolerance. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR provides a sensitive platform to conduct such gene expression analyses. However, the lack of suitable internal control reference genes for accurate transcript normalization during qRT-PCR analysis in pearl millet is the major limitation. Here, we conducted a comprehensive assessment of 18 reference genes on 234 samples which included an array of different developmental tissues, hormone treatments and abiotic stress conditions from three genotypes to determine appropriate reference genes for accurate normalization of qRT-PCR data. Analyses of Ct values using Stability Index, BestKeeper, ΔCt, Normfinder, geNorm and RefFinder programs ranked PP2A, TIP41, UBC2, UBQ5 and ACT as the most reliable reference genes for accurate transcript normalization under different experimental conditions. Furthermore, we validated the specificity of these genes for precise quantification of relative gene expression and provided evidence that a combination of the best reference genes are required to obtain optimal expression patterns for both endogeneous genes as well as transgenes in pearl millet.
Semiclassical analysis of loop quantum gravity
International Nuclear Information System (INIS)
Conrady, F.
2005-01-01
In this Ph.D. thesis, we explore and develop new methods that should help in determining an effective semiclassical description of canonical loop quantum gravity and spin foam gravity. A brief introduction to loop quantum gravity is followed by three research papers that present the results of the Ph.D. project. In the first article, we deal with the problem of time and a new proposal for implementing proper time as boundary conditions in a sum over histories: we investigate a concrete realization of this formalism for free scalar field theory. In the second article, we translate semiclassical states of linearized gravity into states of loop quantum gravity. The properties of the latter indicate how semiclassicality manifests itself in the loop framework, and how this may be exploited for doing semiclassical expansions. In the third part, we propose a new formulation of spin foam models that is fully triangulation- and background-independent: by means of a symmetry condition, we identify spin foam models whose triangulation-dependence can be naturally removed. (orig.)
Semiclassical analysis of loop quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Conrady, F.
2005-10-17
In this Ph.D. thesis, we explore and develop new methods that should help in determining an effective semiclassical description of canonical loop quantum gravity and spin foam gravity. A brief introduction to loop quantum gravity is followed by three research papers that present the results of the Ph.D. project. In the first article, we deal with the problem of time and a new proposal for implementing proper time as boundary conditions in a sum over histories: we investigate a concrete realization of this formalism for free scalar field theory. In the second article, we translate semiclassical states of linearized gravity into states of loop quantum gravity. The properties of the latter indicate how semiclassicality manifests itself in the loop framework, and how this may be exploited for doing semiclassical expansions. In the third part, we propose a new formulation of spin foam models that is fully triangulation- and background-independent: by means of a symmetry condition, we identify spin foam models whose triangulation-dependence can be naturally removed. (orig.)
Terrestrial Sagnac delay constraining modified gravity models
Karimov, R. Kh.; Izmailov, R. N.; Potapov, A. A.; Nandi, K. K.
2018-04-01
Modified gravity theories include f(R)-gravity models that are usually constrained by the cosmological evolutionary scenario. However, it has been recently shown that they can also be constrained by the signatures of accretion disk around constant Ricci curvature Kerr-f(R0) stellar sized black holes. Our aim here is to use another experimental fact, viz., the terrestrial Sagnac delay to constrain the parameters of specific f(R)-gravity prescriptions. We shall assume that a Kerr-f(R0) solution asymptotically describes Earth's weak gravity near its surface. In this spacetime, we shall study oppositely directed light beams from source/observer moving on non-geodesic and geodesic circular trajectories and calculate the time gap, when the beams re-unite. We obtain the exact time gap called Sagnac delay in both cases and expand it to show how the flat space value is corrected by the Ricci curvature, the mass and the spin of the gravitating source. Under the assumption that the magnitude of corrections are of the order of residual uncertainties in the delay measurement, we derive the allowed intervals for Ricci curvature. We conclude that the terrestrial Sagnac delay can be used to constrain the parameters of specific f(R) prescriptions. Despite using the weak field gravity near Earth's surface, it turns out that the model parameter ranges still remain the same as those obtained from the strong field accretion disk phenomenon.
Gravity effects on endogenous movements
Johnsson, Anders; Antonsen, Frank
Gravity effects on endogenous movements A. Johnsson * and F. Antonsen *+ * Department of Physics, Norwegian University of Science and Technology,NO-7491, Trond-heim, Norway, E-mail: anders.johnsson@ntnu.no + Present address: Statoil Research Center Trondheim, NO-7005, Trondheim, Norway Circumnutations in stems/shoots exist in many plants and often consists of more or less regular helical movements around the plumb line under Earth conditions. Recent results on circumnu-tations of Arabidopsis in space (Johnsson et al. 2009) showed that minute amplitude oscilla-tions exist in weightlessness, but that centripetal acceleration (mimicking the gravity) amplified and/or created large amplitude oscillations. Fundamental mechanisms underlying these results will be discussed by modeling the plant tissue as a cylinder of cells coupled together. As a starting point we have modeled (Antonsen 1998) standing waves on a ring of biological cells, as first discussed in a classical paper (Turing 1952). If the coupled cells can change their water content, an `extension' wave could move around the ring. We have studied several, stacked rings of cells coupled into a cylinder that together represent a cylindrical plant tissue. Waves of extensions travelling around the cylinder could then represent the observable circumnutations. The coupling between cells can be due to cell-to-cell diffusion, or to transport via channels, and the coupling can be modeled to vary in both longitudinal and transversal direction of the cylinder. The results from ISS experiments indicate that this cylindrical model of coupled cells should be able to 1) show self-sustained oscillations without the impact of gravity (being en-dogenous) and 2) show how an environmental factor like gravity can amplify or generate the oscillatory movements. Gravity has been introduced in the model by a negative, time-delayed feed-back transport across the cylinder. This represents the physiological reactions to acceler
Broer, H.; Hoveijn, I.; Lunter, G.; Vegter, G.
2003-01-01
The Birkhoff normal form procedure is a widely used tool for approximating a Hamiltonian systems by a simpler one. This chapter starts out with an introduction to Hamiltonian mechanics, followed by an explanation of the Birkhoff normal form procedure. Finally we discuss several algorithms for
Directory of Open Access Journals (Sweden)
Jing Cai
Full Text Available Quantitative real-time PCR (qPCR is a powerful and reproducible method of gene expression analysis in which expression levels are quantified by normalization against reference genes. Therefore, to investigate the potential biomarkers and therapeutic targets for epithelial ovarian cancer by qPCR, it is critical to identify stable reference genes. In this study, twelve housekeeping genes (ACTB, GAPDH, 18S rRNA, GUSB, PPIA, PBGD, PUM1, TBP, HRPT1, RPLP0, RPL13A, and B2M were analyzed in 50 ovarian samples from normal, benign, borderline, and malignant tissues. For reliable results, laser microdissection (LMD, an effective technique used to prepare homogeneous starting material, was utilized to precisely excise target tissues or cells. One-way analysis of variance (ANOVA and nonparametric (Kruskal-Wallis tests were used to compare the expression differences. NormFinder and geNorm software were employed to further validate the suitability and stability of the candidate genes. Results showed that epithelial cells occupied a small percentage of the normal ovary indeed. The expression of ACTB, PPIA, RPL13A, RPLP0, and TBP were stable independent of the disease progression. In addition, NormFinder and geNorm identified the most stable combination (ACTB, PPIA, RPLP0, and TBP and the relatively unstable reference gene GAPDH from the twelve commonly used housekeeping genes. Our results highlight the use of homogeneous ovarian tissues and multiple-reference normalization strategy, e.g. the combination of ACTB, PPIA, RPLP0, and TBP, for qPCR in epithelial ovarian tissues, whereas GAPDH, the most commonly used reference gene, is not recommended, especially as a single reference gene.
Cai, Jing; Li, Tao; Huang, Bangxing; Cheng, Henghui; Ding, Hui; Dong, Weihong; Xiao, Man; Liu, Ling; Wang, Zehua
2014-01-01
Quantitative real-time PCR (qPCR) is a powerful and reproducible method of gene expression analysis in which expression levels are quantified by normalization against reference genes. Therefore, to investigate the potential biomarkers and therapeutic targets for epithelial ovarian cancer by qPCR, it is critical to identify stable reference genes. In this study, twelve housekeeping genes (ACTB, GAPDH, 18S rRNA, GUSB, PPIA, PBGD, PUM1, TBP, HRPT1, RPLP0, RPL13A, and B2M) were analyzed in 50 ovarian samples from normal, benign, borderline, and malignant tissues. For reliable results, laser microdissection (LMD), an effective technique used to prepare homogeneous starting material, was utilized to precisely excise target tissues or cells. One-way analysis of variance (ANOVA) and nonparametric (Kruskal-Wallis) tests were used to compare the expression differences. NormFinder and geNorm software were employed to further validate the suitability and stability of the candidate genes. Results showed that epithelial cells occupied a small percentage of the normal ovary indeed. The expression of ACTB, PPIA, RPL13A, RPLP0, and TBP were stable independent of the disease progression. In addition, NormFinder and geNorm identified the most stable combination (ACTB, PPIA, RPLP0, and TBP) and the relatively unstable reference gene GAPDH from the twelve commonly used housekeeping genes. Our results highlight the use of homogeneous ovarian tissues and multiple-reference normalization strategy, e.g. the combination of ACTB, PPIA, RPLP0, and TBP, for qPCR in epithelial ovarian tissues, whereas GAPDH, the most commonly used reference gene, is not recommended, especially as a single reference gene.
Seasonal gravity change at Yellowstone caldera
Poland, M. P.; de Zeeuw-van Dalfsen, E.
2017-12-01
The driving forces behind Yellowstone's dynamic deformation, vigorous hydrothermal system, and abundant seismicity are usually ascribed to "magmatic fluids," which could refer to magma, water, volatiles, or some combination. Deformation data alone cannot distinguish the relative importance of these fluids. Gravity measurements, however, provide an indication of mass change over time and, when combined with surface displacements, can constrain the density of subsurface fluids. Unfortunately, several decades of gravity surveys at Yellowstone have yielded ambiguous results. We suspect that the difficulty in interpreting Yellowstone gravity data is due to seasonal variations in environmental conditions—especially surface and ground water. Yellowstone gravity surveys are usually carried out at the same time of year (generally late summer) to minimize the impact of seasonality. Nevertheless, surface and subsurface water levels are not likely to be constant from year to year, given annual differences in precipitation. To assess the overall magnitude of seasonal gravity changes, we conducted gravity surveys of benchmarks in and around Yellowstone caldera in May, July, August, and October 2017. Our goal was to characterize seasonal variations due to snow melt/accumulation, changes in river and lake levels, changes in groundwater levels, and changes in hydrothermal activity. We also hope to identify sites that show little variation in gravity over the course of the 2017 surveys, as these locations may be less prone to seasonal changes and more likely to detect small variations due to magmatic processes. Preliminary examination of data collected in May and July 2017 emphasizes the importance of site location relative to sources of water. For example, a site on the banks of the Yellowstone River showed a gravity increase of several hundred microgals associated with a 50 cm increase in the river level. A high-altitude site far from rivers and lakes, in contrast, showed a
Gravity Data for South America
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (152,624 records) were compiled by the University of Texas at Dallas. This data base was received in June 1992. Principal gravity parameters...
Interior Alaska Gravity Station Data
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 9416 records. This data base was received in March 1997. Principal gravity parameters include Free-air Anomalies which have been...
Gravity Station Data for Spain
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 28493 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...
Gravity Station Data for Portugal
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 3064 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...
Gravity Probe B orbit determination
International Nuclear Information System (INIS)
Shestople, P; Ndili, A; Parkinson, B W; Small, H; Hanuschak, G
2015-01-01
The Gravity Probe B (GP-B) satellite was equipped with a pair of redundant Global Positioning System (GPS) receivers used to provide navigation solutions for real-time and post-processed orbit determination (OD), as well as to establish the relation between vehicle time and coordinated universal time. The receivers performed better than the real-time position requirement of 100 m rms per axis. Post-processed solutions indicated an rms position error of 2.5 m and an rms velocity error of 2.2 mm s −1 . Satellite laser ranging measurements provided independent verification of the GPS-derived GP-B orbit. We discuss the modifications and performance of the Trimble Advance Navigation System Vector III GPS receivers. We describe the GP-B precision orbit and detail the OD methodology, including ephemeris errors and the laser ranging measurements. (paper)
The relation between Euclidean and Lorentzian 2D quantum gravity
Ambjørn, J.; Correia, J.; Kristjansen, C.; Loll, R.
1999-01-01
Starting from 2D Euclidean quantum gravity, we show that one recovers 2D Lorentzian quantum gravity by removing all baby universes. Using a peeling procedure to decompose the discrete, triangulated geometries along a one-dimensional path, we explicitly associate with each Euclidean space-time a
Vortical motion in the head of an axisymmetric gravity current
Patterson, M.D.; Simpson, J.E.; Dalziel, S.B.; Heijst, van G.J.F.
2006-01-01
A series of experiments that examine the initial development of an axisymmetric gravity current have been carried out. The experiments highlight the growth of a ring vortex that dominates the dynamics of the gravity current's early time propagation. In particular, the experiments show three distinct
The regular cosmic string in Born-Infeld gravity
Energy Technology Data Exchange (ETDEWEB)
Ferraro, Rafael; Fiorini, Franco, E-mail: ferraro@iafe.uba.ar, E-mail: franco@iafe.uba.ar [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina)
2011-09-22
It is shown that Born-Infeld gravity -a high energy deformation of Einstein gravity-removes the singularities of a cosmic string. The respective vacuum solution results to be free of conical singularity and closed timelike curves. The space ends at a minimal circle where the curvature invariants vanish; but this circle cannot be reached in a finite proper time.
Tidal and gravity waves study from the airglow measurements at ...
Indian Academy of Sciences (India)
The other waves may be the upward propagating gravity waves or waves resulting from the interaction of inter-mode tidal oscillations, interaction of tidal waves with planetary waves and gravity waves. Some times, the second harmonic wave has higher vertical velocity than the corresponding fundamental wave. Application ...
Gravity: The Glue of the Universe. History and Activities.
Gilbert, Harry; Smith, Diana Gilbert
This book presents a story of the history of gravity, the glue of the universe, and is based on two premises: (1) an understanding of mathematics is not required to grasp the concepts and implications of relativity; and (2) relativity has altered forever the perceptions of gravity, space, time, and how the universe works. A narrative text section…
International Nuclear Information System (INIS)
Faria, F. F.
2014-01-01
We construct a massive theory of gravity that is invariant under conformal transformations. The massive action of the theory depends on the metric tensor and a scalar field, which are considered the only field variables. We find the vacuum field equations of the theory and analyze its weak-field approximation and Newtonian limit.
DEFF Research Database (Denmark)
Skielboe, Andreas
Gravity governs the evolution of the universe on the largest scales, and powers some of the most extreme objects at the centers of galaxies. Determining the masses and kinematics of galaxy clusters provides essential constraints on the large-scale structure of the universe, and act as direct probes...
Newburgh, Ronald
2010-01-01
It's both surprising and rewarding when an old, standard problem reveals a subtlety that expands its pedagogic value. I realized recently that the role of gravity in the range equation for a projectile is not so simple as first appears. This realization may be completely obvious to others but was quite new to me.
Discrete Lorentzian quantum gravity
Loll, R.
2000-01-01
Just as for non-abelian gauge theories at strong coupling, discrete lattice methods are a natural tool in the study of non-perturbative quantum gravity. They have to reflect the fact that the geometric degrees of freedom are dynamical, and that therefore also the lattice theory must be formulated
International Nuclear Information System (INIS)
Pullin, J.
2015-01-01
Loop quantum gravity is one of the approaches that are being studied to apply the rules of quantum mechanics to the gravitational field described by the theory of General Relativity . We present an introductory summary of the main ideas and recent results. (Author)
International Nuclear Information System (INIS)
Meszaros, A.
1984-05-01
In case the graviton has a very small non-zero mass, the existence of six additional massive gravitons with very big masses leads to a finite quantum gravity. There is an acausal behaviour on the scales that is determined by the masses of additional gravitons. (author)
Venus - Ishtar gravity anomaly
Sjogren, W. L.; Bills, B. G.; Mottinger, N. A.
1984-01-01
The gravity anomaly associated with Ishtar Terra on Venus is characterized, comparing line-of-sight acceleration profiles derived by differentiating Pioneer Venus Orbiter Doppler residual profiles with an Airy-compensated topographic model. The results are presented in graphs and maps, confirming the preliminary findings of Phillips et al. (1979). The isostatic compensation depth is found to be 150 + or - 30 km.
International Nuclear Information System (INIS)
Aros, Rodrigo; Contreras, Mauricio
2006-01-01
In this work the Poincare-Chern-Simons and anti-de Sitter-Chern-Simons gravities are studied. For both, a solution that can be cast as a black hole with manifest torsion is found. Those solutions resemble Schwarzschild and Schwarzschild-AdS solutions, respectively
International Nuclear Information System (INIS)
Williams, J.W.
1992-01-01
After a brief introduction to Regge calculus, some examples of its application is quantum gravity are described in this paper. In particular, the earliest such application, by Ponzano and Regge, is discussed in some detail and it is shown how this leads naturally to current work on invariants of three-manifolds
Directory of Open Access Journals (Sweden)
Rovelli Carlo
1998-01-01
Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
Directory of Open Access Journals (Sweden)
Bhargava Teja Nukala
2016-11-01
Full Text Available Gait analysis using wearable wireless sensors can be an economical, convenient and effective way to provide diagnostic and clinical information for various health-related issues. In this work, our custom designed low-cost wireless gait analysis sensor that contains a basic inertial measurement unit (IMU was used to collect the gait data for four patients diagnosed with balance disorders and additionally three normal subjects, each performing the Dynamic Gait Index (DGI tests while wearing the custom wireless gait analysis sensor (WGAS. The small WGAS includes a tri-axial accelerometer integrated circuit (IC, two gyroscopes ICs and a Texas Instruments (TI MSP430 microcontroller and is worn by each subject at the T4 position during the DGI tests. The raw gait data are wirelessly transmitted from the WGAS to a near-by PC for real-time gait data collection and analysis. In order to perform successful classification of patients vs. normal subjects, we used several different classification algorithms, such as the back propagation artificial neural network (BP-ANN, support vector machine (SVM, k-nearest neighbors (KNN and binary decision trees (BDT, based on features extracted from the raw gait data of the gyroscopes and accelerometers. When the range was used as the input feature, the overall classification accuracy obtained is 100% with BP-ANN, 98% with SVM, 96% with KNN and 94% using BDT. Similar high classification accuracy results were also achieved when the standard deviation or other values were used as input features to these classifiers. These results show that gait data collected from our very low-cost wearable wireless gait sensor can effectively differentiate patients with balance disorders from normal subjects in real time using various classifiers, the success of which may eventually lead to accurate and objective diagnosis of abnormal human gaits and their underlying etiologies in the future, as more patient data are being collected.
International Nuclear Information System (INIS)
Chen, Bang-Bin; Lu, Yen-Shen; Lin, Ching-Hung; Chen, Wei-Wu; Wu, Pei-Fang; Hsu, Chao-Yu; Yu, Chih-Wei; Wei, Shwu-Yuan; Cheng, Ann-Lii; Shih, Tiffany Ting-Fang
2016-01-01
To determine the appropriate time of concomitant chemotherapy administration after antiangiogenic treatment, we investigated the timing and effect of bevacizumab administration on vascular normalization of metastatic brain tumors in breast cancer patients. Eight patients who participated in a phase II trial for breast cancer-induced refractory brain metastases were enrolled and subjected to 4 dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) examinations that evaluated Peak, Slope, iAUC 60 , and Ktrans before and after treatment. The treatment comprised bevacizumab on Day 1, etoposide on Days 2–4, and cisplatin on Day 2 in a 21-day cycle for a maximum of 6 cycles. DCE-MRI was performed before treatment and at 1 h, 24 h, and 21 days after bevacizumab administration. Values of the 4 DCE-MRI parameters reduced after bevacizumab administration. Compared with baseline values, the mean reductions at 1 and 24 h were −12.8 and −24.7 % for Peak, −46.6 and −65.8 % for Slope, −27.9 and −55.5 % for iAUC 60 , and −46.6 and −63.9 % for Ktrans, respectively (all P < .05). The differences in the 1 and 24 h mean reductions were significant (all P < .05) for all the parameters. The generalized estimating equation linear regression analyses of the 4 DCE-MRI parameters revealed that vascular normalization peaked 24 h after bevacizumab administration. Bevacizumab induced vascular normalization of brain metastases in humans at 1 and 24 h after administration, and the effect was significantly higher at 24 h than at 1 h. ClinicalTrials.gov, identifier NCT01281696, registered prospectively on December 24, 2010
Lasaponara, Rosa; Lanorte, Antonio; Lovallo, Michele; Telesca, Luciano
2015-04-01
Time series can fruitfully support fire monitoring and management from statistical analysis of fire occurrence (Tuia et al. 2008) to danger estimation (lasaponara 2005), damage evaluation (Lanorte et al 2014) and post fire recovery (Lanorte et al. 2014). In this paper, the time dynamics of SPOT-VEGETATION Normalized Difference Vegetation Index (NDVI) time series are analyzed by using the statistical approach of the Fisher-Shannon (FS) information plane to assess and monitor vegetation recovery after fire disturbance. Fisher-Shannon information plane analysis allows us to gain insight into the complex structure of a time series to quantify its degree of organization and order. The analysis was carried out using 10-day Maximum Value Composites of NDVI (MVC-NDVI) with a 1 km × 1 km spatial resolution. The investigation was performed on two test sites located in Galizia (North Spain) and Peloponnese (South Greece), selected for the vast fires which occurred during the summer of 2006 and 2007 and for their different vegetation covers made up mainly of low shrubland in Galizia test site and evergreen forest in Peloponnese. Time series of MVC-NDVI have been analyzed before and after the occurrence of the fire events. Results obtained for both the investigated areas clearly pointed out that the dynamics of the pixel time series before the occurrence of the fire is characterized by a larger degree of disorder and uncertainty; while the pixel time series after the occurrence of the fire are featured by a higher degree of organization and order. In particular, regarding the Peloponneso fire, such discrimination is more evident than in the Galizia fire. This suggests a clear possibility to discriminate the different post-fire behaviors and dynamics exhibited by the different vegetation covers. Reference Lanorte A, R Lasaponara, M Lovallo, L Telesca 2014 Fisher-Shannon information plane analysis of SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series to
Quantum Gravity Effects in Cosmology
Directory of Open Access Journals (Sweden)
Gu Je-An
2018-01-01
Full Text Available Within the geometrodynamic approach to quantum cosmology, we studied the quantum gravity effects in cosmology. The Gibbons-Hawking temperature is corrected by quantum gravity due to spacetime fluctuations and the power spectrum as well as any probe field will experience the effective temperature, a quantum gravity effect.
Even-dimensional topological gravity from Chern-Simons gravity
International Nuclear Information System (INIS)
Merino, N.; Perez, A.; Salgado, P.
2009-01-01
It is shown that the topological action for gravity in 2n-dimensions can be obtained from the (2n+1)-dimensional Chern-Simons gravity genuinely invariant under the Poincare group. The 2n-dimensional topological gravity is described by the dynamics of the boundary of a (2n+1)-dimensional Chern-Simons gravity theory with suitable boundary conditions. The field φ a , which is necessary to construct this type of topological gravity in even dimensions, is identified with the coset field associated with the non-linear realizations of the Poincare group ISO(d-1,1).
Siah, A; Dohoo, C; McKenna, P; Delaporte, M; Berthe, F C J
2008-09-01
The transcripts involved in the molecular mechanisms of haemic neoplasia in relation to the haemocyte ploidy status of the soft-shell clam, Mya arenaria, have yet to be identified. For this purpose, real-time quantitative RT-PCR constitutes a sensitive and efficient technique, which can help determine the gene expression involved in haemocyte tetraploid status in clams affected by haemic neoplasia. One of the critical steps in comparing transcription profiles is the stability of selected housekeeping genes, as well as an accurate normalization. In this study, we selected five reference genes, S18, L37, EF1, EF2 and actin, generally used as single control genes. Their expression was analyzed by real-time quantitative RT-PCR at different levels of haemocyte ploidy status in order to select the most stable genes. Using the geNorm software, our results showed that L37, EF1 and S18 represent the most stable gene expressions related to various ploidy status ranging from 0 to 78% of tetraploid haemocytes in clams sampled in North River (Prince Edward Island, Canada). However, actin gene expression appeared to be highly regulated. Hence, using it as a housekeeping gene in tetraploid haemocytes can result in inaccurate data. To compare gene expression levels related to haemocyte ploidy status in Mya arenaria, using L37, EF1 and S18 as housekeeping genes for accurate normalization is therefore recommended.
Internal model of gravity influences configural body processing.
Barra, Julien; Senot, Patrice; Auclair, Laurent
2017-01-01
Human bodies are processed by a configural processing mechanism. Evidence supporting this claim is the body inversion effect, in which inversion impairs recognition of bodies more than other objects. Biomechanical configuration, as well as both visual and embodied expertise, has been demonstrated to play an important role in this effect. Nevertheless, the important factor of body inversion effect may also be linked to gravity orientation since gravity is one of the most fundamental constraints of our biology, behavior, and perception on Earth. The visual presentation of an inverted body in a typical body inversion paradigm turns the observed body upside down but also inverts the implicit direction of visual gravity in the scene. The orientation of visual gravity is then in conflict with the direction of actual gravity and may influence configural processing. To test this hypothesis, we dissociated the orientations of the body and of visual gravity by manipulating body posture. In a pretest we showed that it was possible to turn an avatar upside down (inversion relative to retinal coordinates) without inverting the orientation of visual gravity when the avatar stands on his/her hands. We compared the inversion effect in typical conditions (with gravity conflict when the avatar is upside down) to the inversion effect in conditions with no conflict between visual and physical gravity. The results of our experiment revealed that the inversion effect, as measured by both error rate and reaction time, was strongly reduced when there was no gravity conflict. Our results suggest that when an observed body is upside down (inversion relative to participants' retinal coordinates) but the orientation of visual gravity is not, configural processing of bodies might still be possible. In this paper, we discuss the implications of an internal model of gravity in the configural processing of observed bodies. Copyright © 2016 Elsevier B.V. All rights reserved.
Kusche, J.; Schrama, E.J.O.
2005-01-01
Monitoring hydrological redistributions through their integrated gravitational effect is the primary aim of the Gravity Recovery and Climate Experiment (GRACE) mission. Time?variable gravity data from GRACE can be uniquely inverted to hydrology, since mass transfers located at or near the Earth's
Mars geodesy, rotation and gravity
International Nuclear Information System (INIS)
Rosenblatt, Pascal; Dehant, Veronique
2010-01-01
This review provides explanations of how geodesy, rotation and gravity can be addressed using radioscience data of an orbiter around a planet or of the lander on its surface. The planet Mars is the center of the discussion. The information one can get from orbitography and radioscience in general concerns the global static gravitational field, the time variation of the gravitational field induced by mass exchange between the atmosphere and the ice caps, the time variation of the gravitational field induced by the tides, the secular changes in the spacecraft's orbit induced by the little moons of Mars named Phobos and Deimos, the gravity induced by particular targets, the Martian ephemerides, and Mars' rotation and orientation. The paper addresses as well the determination of the geophysical parameters of Mars and, in particular, the state of Mars' core and its size, which is important for understanding the planet's evolution. Indeed, the state and dimension of the core determined from the moment of inertia and nutation depend in turn on the percentage of light elements in the core as well as on the core temperature, which is related to heat transport in the mantle. For example, the radius of the core has implications for possible mantle convection scenarios and, in particular, for the presence of a perovskite phase transition at the bottom of the mantle. This is also important for our understanding of the large volcanic province Tharsis on the surface of Mars. (invited reviews)
Emergent universe with wormholes in massive gravity
Paul, B. C.; Majumdar, A. S.
2018-03-01
An emergent universe (EU) scenario is proposed to obtain a universe free from big-bang singularity. In this framework the present universe emerged from a static Einstein universe phase in the infinite past. A flat EU scenario is found to exist in Einstein’s gravity with a non-linear equation of state (EoS). It has been shown subsequently that a physically realistic EU model can be obtained considering cosmic fluid composed of interacting fluids with a non-linear equation of state. It results a viable cosmological model accommodating both early inflation and present accelerating phases. In the present paper, the origin of an initial static Einstein universe needed in the EU model is explored in a massive gravity theory which subsequently emerged to be a dynamically evolving universe. A new gravitational instanton solution in a flat universe is obtained in the massive gravity theory which is a dynamical wormhole that might play an important role in realizing the origin of the initial state of the emergent universe. The emergence of a Lorentzian universe from a Euclidean gravity is understood by a Wick rotation τ = i t . A universe with radiation at the beginning finally transits into the present observed universe with a non-linear EoS as the interactions among the fluids set in. Thus a viable flat EU scenario where the universe stretches back into time infinitely, with no big bang is permitted in a massive gravity.
International Nuclear Information System (INIS)
Breuckmann, F.; Buhr, C.; Maderwald, S.; Bruder, O.; Schlosser, T.; Nassenstein, K.; Erbel, R.; Barkhausen, J.
2011-01-01
An increased normalized gadolinium accumulation (NGA) in the myocardium during early washout has been used for the diagnosis of acute myocarditis (AM). Due to the fact that the pharmacokinetics of contrast agents are complex, time-related changes in NGA after contrast injection are likely. Because knowledge about time-related changes of NGA may improve the diagnostic accuracy of MR, our study aimed to estimate the time course of NGA after contrast injection in patients as well as in healthy volunteers. An ECG-triggered inversion recovery SSFP sequence with incrementally increasing inversion times was repetitively acquired over the 15 minutes after injection of 0.2 Gd-DTPA per kg body weight in a 4-chamber view in 15 patients with AM and 20 volunteers. The T 1relaxation times and the longitudinal relaxation rates (R1) of the myocardium and skeletal musculature were calculated for each point in time after contrast injection. The time course of NGA was estimated based on the linear relationship between R 1 and tissue Gd concentration. NGA decreased over time in the form of a negative power function in patients with AM and in healthy controls. NGA in AM tended to be higher than in controls (p > 0.05). NGA rapidly changes after contrast injection, which must be considered when measuring NGA. Although we observed a trend towards higher NGA values in patients with AM with a maximum difference one minute after contrast injection, NGA did not allow us to differentiate patients with AM from healthy volunteers, because the observed differences did not reach a level of significance. (orig.)
Effect of the Earth's inner structure on the gravity in definitions of height systems
Tenzer, Robert; Foroughi, Ismael; Pitoňák, Martin; Šprlák, Michal
2017-04-01
In context of the vertical datum unification, the geoid-to-quasi-geoid separation has been of significant interest in recent years, because most of existing local vertical datums are realized in the system of either normal or orthometric heights. Nevertheless, the normal-orthometric heights are still used in many other countries where the normal gravity values along leveling lines were adopted instead of the observed gravity. Whereas the conversion between the orthometric and normal heights is defined by means of the mean gravity disturbances (i.e. differences between the mean values of the actual and normal gravity) along the plumbline within the topography, differences between the normal and normal-orthometric heights can be described by means of the surface gravity disturbances. Since the normal gravity field does not reflect the topographic masses and actual mass density distribution inside the Earth, the definition of gravity represents a principal aspect for a realization of particular vertical datum. To address this issue in this study, we investigate effects of the Earth's inner density structure on the surface and mean gravity disturbances, and discuss their impact on the vertical datum realization. These two gravity field quantities are computed globally with a spectral resolution complete to a spherical harmonic degree 2160 using the global gravity, terrain, ice-thickness, inland bathymetry and crustal structure models. Our results reveal that both, the surface and mean gravity disturbances mostly comprise the gravitational signal of topography and masses distributed below the geoid surface. Moreover, in polar areas, a significant contribution comes from large glaciers. In contrast, the contributions of anomalous density distribution within the topography attributed to major lakes, sediments and bedrock density variations are much less pronounced. We also demonstrate that the mean gravity disturbances within the topography are significantly modified
Prima facie questions in quantum gravity
Isham, C. J.
The long history of the study of quantum gravity has thrown up a complex web of ideas and approaches. The aim of this article is to unravel this web a little by analysing some of the {\\em prima facie\\/} questions that can be asked of almost any approach to quantum gravity and whose answers assist in classifying the different schemes. Particular emphasis is placed on (i) the role of background conceptual and technical structure; (ii) the role of spacetime diffeomorphisms; and (iii) the problem of time.
a Perturbation Approach to Translational Gravity
Julve, J.; Tiemblo, A.
2013-05-01
Within a gauge formulation of 3+1 gravity relying on a nonlinear realization of the group of isometries of space-time, a natural expansion of the metric tensor arises and a simple choice of the gravity dynamical variables is possible. We show that the expansion parameter can be identified with the gravitational constant and that the first-order depends only on a diagonal matrix in the ensuing perturbation approach. The explicit first-order solution is calculated in the static isotropic case, and its general structure is worked out in the harmonic gauge.
Feynman propagator for spin foam quantum gravity.
Oriti, Daniele
2005-03-25
We link the notion causality with the orientation of the spin foam 2-complex. We show that all current spin foam models are orientation independent. Using the technology of evolution kernels for quantum fields on Lie groups, we construct a generalized version of spin foam models, introducing an extra proper time variable. We prove that different ranges of integration for this variable lead to different classes of spin foam models: the usual ones, interpreted as the quantum gravity analogue of the Hadamard function of quantum field theory (QFT) or as inner products between quantum gravity states; and a new class of causal models, the quantum gravity analogue of the Feynman propagator in QFT, nontrivial function of the orientation data, and implying a notion of "timeless ordering".
Newton-Cartan gravity and torsion
Bergshoeff, Eric; Chatzistavrakidis, Athanasios; Romano, Luca; Rosseel, Jan
2017-10-01
We compare the gauging of the Bargmann algebra, for the case of arbitrary torsion, with the result that one obtains from a null-reduction of General Relativity. Whereas the two procedures lead to the same result for Newton-Cartan geometry with arbitrary torsion, the null-reduction of the Einstein equations necessarily leads to Newton-Cartan gravity with zero torsion. We show, for three space-time dimensions, how Newton-Cartan gravity with arbitrary torsion can be obtained by starting from a Schrödinger field theory with dynamical exponent z = 2 for a complex compensating scalar and next coupling this field theory to a z = 2 Schrödinger geometry with arbitrary torsion. The latter theory can be obtained from either a gauging of the Schrödinger algebra, for arbitrary torsion, or from a null-reduction of conformal gravity.