WorldWideScience

Sample records for times higher power

  1. Radio frequency plasma nitriding of aluminium at higher power levels

    International Nuclear Information System (INIS)

    Gredelj, Sabina; Kumar, Sunil; Gerson, Andrea R.; Cavallaro, Giuseppe P.

    2006-01-01

    Nitriding of aluminium 2011 using a radio frequency plasma at higher power levels (500 and 700 W) and lower substrate temperature (500 deg. C) resulted in higher AlN/Al 2 O 3 ratios than obtained at 100 W and 575 deg. C. AlN/Al 2 O 3 ratios derived from X-ray photoelectron spectroscopic analysis (and corroborated by heavy ion elastic recoil time of flight spectrometry) for treatments preformed at 100 (575 deg. C), 500 (500 deg. C) and 700 W (500 deg. C) were 1.0, 1.5 and 3.3, respectively. Scanning electron microscopy revealed that plasma nitrided surfaces obtained at higher power levels exhibited much finer nodular morphology than obtained at 100 W

  2. A general solution strategy of modified power method for higher mode solutions

    International Nuclear Information System (INIS)

    Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung

    2016-01-01

    A general solution strategy of the modified power iteration method for calculating higher eigenmodes has been developed and applied in continuous energy Monte Carlo simulation. The new approach adopts four features: 1) the eigen decomposition of transfer matrix, 2) weight cancellation for higher modes, 3) population control with higher mode weights, and 4) stabilization technique of statistical fluctuations using multi-cycle accumulations. The numerical tests of neutron transport eigenvalue problems successfully demonstrate that the new strategy can significantly accelerate the fission source convergence with stable convergence behavior while obtaining multiple higher eigenmodes at the same time. The advantages of the new strategy can be summarized as 1) the replacement of the cumbersome solution step of high order polynomial equations required by Booth's original method with the simple matrix eigen decomposition, 2) faster fission source convergence in inactive cycles, 3) more stable behaviors in both inactive and active cycles, and 4) smaller variances in active cycles. Advantages 3 and 4 can be attributed to the lower sensitivity of the new strategy to statistical fluctuations due to the multi-cycle accumulations. The application of the modified power method to continuous energy Monte Carlo simulation and the higher eigenmodes up to 4th order are reported for the first time in this paper. -- Graphical abstract: -- Highlights: •Modified power method is applied to continuous energy Monte Carlo simulation. •Transfer matrix is introduced to generalize the modified power method. •All mode based population control is applied to get the higher eigenmodes. •Statistic fluctuation can be greatly reduced using accumulated tally results. •Fission source convergence is accelerated with higher mode solutions.

  3. Short time ahead wind power production forecast

    International Nuclear Information System (INIS)

    Sapronova, Alla; Meissner, Catherine; Mana, Matteo

    2016-01-01

    An accurate prediction of wind power output is crucial for efficient coordination of cooperative energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one hour ahead) is anticipated, an accuracy of a predictive model that utilizes hourly weather data is decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes, the higher frequency variations of wind speed and direction have to be taken into account for an accurate short-term ahead energy production forecast. In this work a new model for wind power production forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and categorization approach and using the historical park production time series and hourly numerical weather forecast. (paper)

  4. Short time ahead wind power production forecast

    Science.gov (United States)

    Sapronova, Alla; Meissner, Catherine; Mana, Matteo

    2016-09-01

    An accurate prediction of wind power output is crucial for efficient coordination of cooperative energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one hour ahead) is anticipated, an accuracy of a predictive model that utilizes hourly weather data is decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes, the higher frequency variations of wind speed and direction have to be taken into account for an accurate short-term ahead energy production forecast. In this work a new model for wind power production forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and categorization approach and using the historical park production time series and hourly numerical weather forecast.

  5. Drug addiction, love, and the higher power.

    Science.gov (United States)

    Sussman, Steve; Reynaud, Michel; Aubin, Henri-Jean; Leventhal, Adam M

    2011-09-01

    This discussion piece suggests that reliance on a Higher Power in drug abuse recovery programs is entertained among some addicts for its psychobiological effects. Prayer, meditation, early romantic love, and drug abuse may have in common activation of mesolimbic dopaminergic pathways of the brain and the generation of intense emotional states. In this sense, reliance on a Higher Power may operate as a substitute addiction, which replaces the psychobiological functions formerly served by drug use. Implications of this perspective are discussed.

  6. TRIGA research reactors with higher power density

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1994-01-01

    The recent trend in new or upgraded research reactors is to higher power densities (hence higher neutron flux levels) but not necessarily to higher power levels. The TRIGA LEU fuel with burnable poison is available in small diameter fuel rods capable of high power per rod (≅48 kW/rod) with acceptable peak fuel temperatures. The performance of a 10-MW research reactor with a compact core of hexagonal TRIGA fuel clusters has been calculated in detail. With its light water coolant, beryllium and D 2 O reflector regions, this reactor can provide in-core experiments with thermal fluxes in excess of 3 x 10 14 n/cm 2 ·s and fast fluxes (>0.1 MeV) of 2 x 10 14 n/cm 2 ·s. The core centerline thermal neutron flux in the D 2 O reflector is about 2 x 10 14 n/cm 2 ·s and the average core power density is about 230 kW/liter. Using other TRIGA fuel developed for 25-MW test reactors but arranged in hexagonal arrays, power densities in excess of 300 kW/liter are readily available. A core with TRIGA fuel operating at 15-MW and generating such a power density is capable of producing thermal neutron fluxes in a D 2 O reflector of 3 x 10 14 n/cm 2 ·s. A beryllium-filled central region of the core can further enhance the core leakage and hence the neutron flux in the reflector. (author)

  7. On probabilistic forecasting of wind power time-series

    DEFF Research Database (Denmark)

    Pinson, Pierre

    power dynamics. In both cases, the model parameters are adaptively and recursively estimated, time-adaptativity being the result of exponential forgetting of past observations. The probabilistic forecasting methodology is applied at the Horns Rev wind farm in Denmark, for 10-minute ahead probabilistic...... forecasting of wind power generation. Probabilistic forecasts generated from the proposed methodology clearly have higher skill than those obtained from a classical Gaussian assumption about wind power predictive densities. Corresponding point forecasts also exhibit significantly lower error criteria....

  8. Higher-order-mode (HOM) power in elliptical superconducting cavities for intense pulsed proton accelerators

    CERN Document Server

    Sang Ho Kim; Dong O Jeon; Sundeli, R

    2002-01-01

    In linacs for intense pulsed proton accelerators, the beam has a multiple time-structure, and each beam time-structure generates resonance. When a higher-order mode (HOM) is near these resonance frequencies, the induced voltage could be large and accordingly the resulting HOM power, too. In order to understand the effects of a complex beam time-structure on the mode excitations and the resulting HOM powers in elliptical superconducting cavities, analytic expressions are developed, with which the beam-induced voltage and corresponding power are explored, taking into account the properties of HOM frequency behavior in elliptical superconducting cavities. The results and understandings from this analysis are presented with the beam parameters of the Spallation Neutron Source (SNS) superconducting linac.

  9. Multi-Time Scale Coordinated Scheduling Strategy with Distributed Power Flow Controllers for Minimizing Wind Power Spillage

    Directory of Open Access Journals (Sweden)

    Yi Tang

    2017-11-01

    Full Text Available The inherent variability and randomness of large-scale wind power integration have brought great challenges to power flow control and dispatch. The distributed power flow controller (DPFC has the higher flexibility and capacity in power flow control in the system with wind generation. This paper proposes a multi-time scale coordinated scheduling model with DPFC to minimize wind power spillage. Configuration of DPFCs is initially determined by stochastic method. Afterward, two sequential procedures containing day-head and real-time scales are applied for determining maximum schedulable wind sources, optimal outputs of generating units and operation setting of DPFCs. The generating plan is obtained initially in day-ahead scheduling stage and modified in real-time scheduling model, while considering the uncertainty of wind power and fast operation of DPFC. Numerical simulation results in IEEE-RTS79 system illustrate that wind power is maximum scheduled with the optimal deployment and operation of DPFC, which confirms the applicability and effectiveness of the proposed method.

  10. Power-law scaling of extreme dynamics near higher-order exceptional points

    Science.gov (United States)

    Zhong, Q.; Christodoulides, D. N.; Khajavikhan, M.; Makris, K. G.; El-Ganainy, R.

    2018-02-01

    We investigate the extreme dynamics of non-Hermitian systems near higher-order exceptional points in photonic networks constructed using the bosonic algebra method. We show that strong power oscillations for certain initial conditions can occur as a result of the peculiar eigenspace geometry and its dimensionality collapse near these singularities. By using complementary numerical and analytical approaches, we show that, in the parity-time (PT ) phase near exceptional points, the logarithm of the maximum optical power amplification scales linearly with the order of the exceptional point. We focus in our discussion on photonic systems, but we note that our results apply to other physical systems as well.

  11. Investigation of Turkish Higher Education as a Means of Influence in Relation to ‘Soft Power'

    Directory of Open Access Journals (Sweden)

    Hilal BÜYÜKGÖZE

    2016-05-01

    Full Text Available With the realization of soft power's potential in time which was emerged by the canalization of international diplomacy conjuncture directing to new quests after the industrial revolution and cold war, states have been led to apply various ways and methods regarding their foreign policies. Turkey also utilizes soft power, defined generally as the ability to shape the preferences of others through appeal rather than coerce, both through financial co-operations, constructive applications in international policy and through national institutions, foundations and Non-Governmental Organizations for its appearance and perception in international system. Higher education, which has an international characteristic, may also be assessed as a soft power element through international students and academics. Accordingly, in the current study, power and soft power terms were investigated, and the role of soft power in Turkey's foreign policy and Turkish higher education was examined. The findings of the study showed that the strategies toward internationalism in higher education are not sufficient, academics and university students have a certain level of awareness on the issue though. The results were interpreted within the scope of the literature, and managerial and functional characteristics of Turkish higher education as well.

  12. Money, Power, Equity and Higher Education

    Directory of Open Access Journals (Sweden)

    Seyed Ali Enjoo

    2018-03-01

    Full Text Available In current issue of the Journal of Medical Education, Afshar in the Editorial “The Role of Private Sector in Higher Education; From Quantity and Quality to Access and Social Justice” proposed the importance of justice and quality. (1 It seems that there are some differences between two typesof private sector in higher education. One type of private financial support in higher education comes purely from private sector without any contribution of public sector. The second type of private finance in the higher education especially the type which has grown recently in Iranianhigher education is a type of combination between public higher education and private sector the so called international branch of the university till recent years, and nowadays called selfgoverning campus of the university. (2 In this type of private contribution to public higher education those who have no or little money must pass very hard national examination to be accepted in the university, and those who can pay the tuition fee could enter to the best schools of that university without the exam (in the firstyear of the project or by loose standards or lower cut off scores. Actually, this is an instance of the double standards.One of the elements of being equitable and avoiding discrimination is to prevent undue achievement by the owners of the power such as owners of political, religious, economic, or military power, and to avoid any distinction according to race, colour, sex, language, and etc. (3 In this type ofprivate money absorption in the higher education, while the others have no extra way to enter to the university that would lead to achievement of scientific power, the owners of the economic powers’ daughters and sons could have a special chance to achieve scientific power by the powerof their parents, and there is a different criterion to enter the university based on non-scientific differences.In such situation growing student movements against

  13. Soft Power and Higher Education: An Examination of China's Confucius Institutes

    Science.gov (United States)

    Yang, Rui

    2010-01-01

    China's global presence has become a significant subject. However, little attention has been directed to the role of higher education in projecting China's soft power, and little academic work has been done directly on it, despite the fact that there has been some work on related topics. Borrowing the theories of soft power and higher education…

  14. Efficient coding schemes with power allocation using space-time-frequency spreading

    Institute of Scientific and Technical Information of China (English)

    Jiang Haining; Luo Hanwen; Tian Jifeng; Song Wentao; Liu Xingzhao

    2006-01-01

    An efficient space-time-frequency (STF) coding strategy for multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) systems is presented for high bit rate data transmission over frequency selective fading channels. The proposed scheme is a new approach to space-time-frequency coded OFDM (COFDM) that combines OFDM with space-time coding, linear precoding and adaptive power allocation to provide higher quality of transmission in terms of the bit error rate performance and power efficiency. In addition to exploiting the maximum diversity gain in frequency, time and space, the proposed scheme enjoys high coding advantages and low-complexity decoding. The significant performance improvement of our design is confirmed by corroborating numerical simulations.

  15. Power in the loop real time simulation platform for renewable energy generation

    Science.gov (United States)

    Li, Yang; Shi, Wenhui; Zhang, Xing; He, Guoqing

    2018-02-01

    Nowadays, a large scale of renewable energy sources has been connecting to power system and the real time simulation platform is widely used to carry out research on integration control algorithm, power system stability etc. Compared to traditional pure digital simulation and hardware in the loop simulation, power in the loop simulation has higher accuracy and degree of reliability. In this paper, a power in the loop analog digital hybrid simulation platform has been built and it can be used not only for the single generation unit connecting to grid, but also for multiple new energy generation units connecting to grid. A wind generator inertia control experiment was carried out on the platform. The structure of the inertia control platform was researched and the results verify that the platform is up to need for renewable power in the loop real time simulation.

  16. The role of short-time intensity and envelope power for speech intelligibility and psychoacoustic masking.

    Science.gov (United States)

    Biberger, Thomas; Ewert, Stephan D

    2017-08-01

    The generalized power spectrum model [GPSM; Biberger and Ewert (2016). J. Acoust. Soc. Am. 140, 1023-1038], combining the "classical" concept of the power-spectrum model (PSM) and the envelope power spectrum-model (EPSM), was demonstrated to account for several psychoacoustic and speech intelligibility (SI) experiments. The PSM path of the model uses long-time power signal-to-noise ratios (SNRs), while the EPSM path uses short-time envelope power SNRs. A systematic comparison of existing SI models for several spectro-temporal manipulations of speech maskers and gender combinations of target and masker speakers [Schubotz et al. (2016). J. Acoust. Soc. Am. 140, 524-540] showed the importance of short-time power features. Conversely, Jørgensen et al. [(2013). J. Acoust. Soc. Am. 134, 436-446] demonstrated a higher predictive power of short-time envelope power SNRs than power SNRs using reverberation and spectral subtraction. Here the GPSM was extended to utilize short-time power SNRs and was shown to account for all psychoacoustic and SI data of the three mentioned studies. The best processing strategy was to exclusively use either power or envelope-power SNRs, depending on the experimental task. By analyzing both domains, the suggested model might provide a useful tool for clarifying the contribution of amplitude modulation masking and energetic masking.

  17. Real-time impact of power balancing on power system operation with large scale integration of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2017-01-01

    Highly wind power integrated power system requires continuous active power regulation to tackle the power imbalances resulting from the wind power forecast errors. The active power balance is maintained in real-time with the automatic generation control and also from the control room, where...... power system model. The power system model takes the hour-ahead regulating power plan from power balancing model and the generation and power exchange capacities for the year 2020 into account. The real-time impact of power balancing in a highly wind power integrated power system is assessed...

  18. On the power propagation time of a graph

    OpenAIRE

    Bozeman, Chassidy

    2016-01-01

    In this paper, we give Nordhaus-Gaddum upper and lower bounds on the sum of the power propagation time of a graph and its complement, and we consider the effects of edge subdivisions and edge contractions on the power propagation time of a graph. We also study a generalization of power propagation time, known as $k-$power propagation time, by characterizing all simple graphs on $n$ vertices whose $k-$power propagation time is $n-1$ or $n-2$ (for $k\\geq 1$) and $n-3$ (for $k\\geq 2$). We determ...

  19. Tokamak power reactor ignition and time dependent fractional power operation

    International Nuclear Information System (INIS)

    Vold, E.L.; Mau, T.K.; Conn, R.W.

    1986-06-01

    A flexible time-dependent and zero-dimensional plasma burn code with radial profiles was developed and employed to study the fractional power operation and the thermal burn control options for an INTOR-sized tokamak reactor. The code includes alpha thermalization and a time-dependent transport loss which can be represented by any one of several currently popular scaling laws for energy confinement time. Ignition parameters were found to vary widely in density-temperature (n-T) space for the range of scaling laws examined. Critical ignition issues were found to include the extent of confinement time degradation by alpha heating, the ratio of ion to electron transport power loss, and effect of auxiliary heating on confinement. Feedback control of the auxiliary power and ion fuel sources are shown to provide thermal stability near the ignition curve

  20. Power-law-lapse time gauges

    International Nuclear Information System (INIS)

    Jantzen, R.T.

    1988-01-01

    The choice of time function for cosmological solutions of gravitational field equations is related to the action of the group of independent scale transformations of the unit of length along orthogonal spatial directions. This is accomplished by the introduction of lapse functions which depend explicitly on the spatial metric in an appropriately defined power-law fashion. The resulting power-law-lapse time gauges are the key to producing nearly all exact solutions of the class of models for which the field equations reduce to ordinary differential equations

  1. Sex, Grades and Power in Higher Education in Ghana and Tanzania

    Science.gov (United States)

    Morley, Louise

    2011-01-01

    Quantitative increases tell a partial story about the quality of women's participation in higher education. Women students' reporting of sexual harassment has been noteworthy in a recent study that I directed on widening participation in higher education in Ghana and Tanzania. The hierarchical and gendered power relations within universities have…

  2. Extension of Tom Booth's Modified Power Method for Higher Eigen Modes

    International Nuclear Information System (INIS)

    Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung

    2015-01-01

    A possible technique to get the even higher modes is suggested, but it is difficult to be applied practically. In this paper, a general solution strategy is proposed, which can extend Tom Booth's modified power method to get the higher Eigenmodes and there is no limitation about the number of Eigenmodes that can be obtained with this method. In this paper, a general solution strategy is proposed, which can extend Tom Booth's modified power method to get the higher Eigenmodes and there is no limitation about the number of Eigenmodes that can be obtained with this method. It is more practical than the original solution strategy that Tom Booth proposed. The implementation of the method in Monte Carlo code shows significant advantages comparing to the original power method

  3. Time-Discrete Higher-Order ALE Formulations: Stability

    KAUST Repository

    Bonito, Andrea; Kyza, Irene; Nochetto, Ricardo H.

    2013-01-01

    on the stability of the PDE but may influence that of a discrete scheme. We examine this critical issue for higher-order time stepping without space discretization. We propose time-discrete discontinuous Galerkin (dG) numerical schemes of any order for a time

  4. The Higher Power of Patron: Profile of Newbery Winner

    Science.gov (United States)

    Oleck, Joan

    2007-01-01

    One lousy starred review. That was all, initially, that Susan Patron had to show for the 10 years she spent writing "The Higher Power of Lucky," her funny, tender story of a little girl struggling to gain control over her life. One star, from "Kirkus Reviews," for the heart and soul Patron poured into her second novel. Positive notices had…

  5. Nuclear and thermal power plant power ramping capability

    International Nuclear Information System (INIS)

    Golovach, E.A.

    1983-01-01

    The possibilities of step power increase by NPP and TPP units under emergency conditions of power grids operation are considered. The data analysis has shown that power units ramping capability with WWER-440, WWER-1000 and RBMK-1000 reactors is higher than that of 300 MW power units on fossil fuel, at the initial time interval (0-30 s). These NPP power units satisfy as to ramping capability the energy system requirements. Higher NPP power units ramping capability is explained by the fact that relative pressure before turbine valves is decreased less than in straight-through boilers while the steam volumes time constant of steam separator-superheaters is less than that of intermediate superheatings. Higher power unit ramping capability with WWER-440 and RBMK-1000 reactors as compared with the WWER-1000 reactor is pointed out as well as the increase of WWER-1000 power unit capability using high-speed turbines

  6. Real time neutral beam power control on MAST

    Energy Technology Data Exchange (ETDEWEB)

    Homfray, David A., E-mail: david.homfray@ccfe.ac.uk [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Benn, A.; Ciric, D.; Day, I.; Dunkley, V.; Keeling, D.; Khilar, S.; King, D.; King, R. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Kurutz, U. [Department of Experimental Plasma Physics, University of Augsburg, Augsburg (Germany); Payne, D.; Simmonds, M.; Stevenson, P.; Tame, C. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom)

    2011-10-15

    Real time power control of neutral beam provides an excellent tool for many different plasma physics studies. Power control at a better resolution than the level of a single injector is usually achieved by modulating individual power supplies. However, the short beam slowing down time on MAST is such that the plasma would be sensitive to modulating the neutral beam using this 100% on-off pulse-width modulation method. A novel alternative method of power control has been demonstrated, where the arc current, and hence beam current, has been controlled in real time allowing variations in neutral beam power. This has been demonstrated in a MAST plasma with almost no loss of transmission as a consequence of the optical properties of the high perveance MAST neutral beam system. This paper will detail the methodology, experiment and results and discuss the full implementation of this method that will allow MAST to control the beam power in real time.

  7. Power generation efficiency of an SOFC-PEFC combined system with time shift utilization of SOFC exhaust heat

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Shin' ya [Power Engineering Lab., Department of Electrical and Electronic Engineering, Kitami Institute of Technology, 165 Kouen-cho, Kitami, Hokkaido 0908507 (Japan)

    2010-01-15

    A microgrid, with little environmental impact, is developed by introducing a combined SOFC (solid oxide fuel cell) and PEFC (proton exchange membrane fuel cell) system. Although the SOFC requires a higher operation temperature compared to the PEFC, the power generation efficiency of the SOFC is higher. However, if high temperature exhaust heat may be used effectively, a system with higher total power generation efficiency can be built. Therefore, this paper investigates the operation of a SOFC-PEFC combined system, with time shift operation of reformed gas, into a microgrid with 30 houses in Sapporo, Japan. The SOFC is designed to correspond to base load operation, and the exhaust heat of the SOFC is used for production of reformed gas. This reformed gas is used for the production of electricity for the PEFC, corresponding to fluctuation load of the next day. Accordingly, the reformed gas is used with a time shift operation. In this paper, the relation between operation method, power generation efficiency, and amount of heat storage of the SOFC-PEFC combined system to the difference in power load pattern was investigated. The average power generation efficiency of the system can be maintained at nearly 48% on a representative day in February (winter season) and August (summer season). (author)

  8. Time-variant power spectral analysis of heart-rate time series by ...

    Indian Academy of Sciences (India)

    Frequency domain representation of a short-term heart-rate time series (HRTS) signal is a popular method for evaluating the cardiovascular control system. The spectral parameters, viz. percentage power in low frequency band (%PLF), percentage power in high frequency band (%PHF), power ratio of low frequency to high ...

  9. TIME-DEPENDENT SUPPRESSION OF OSCILLATORY POWER IN EVOLVING SOLAR MAGNETIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, S. Krishna; Jess, D.B.; Keys, P.H. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom); Jain, R., E-mail: krishna.prasad@qub.ac.uk [School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH (United Kingdom)

    2016-05-20

    Oscillation amplitudes are generally smaller within magnetically active regions like sunspots and plage when compared to their surroundings. Such magnetic features, when viewed in spatially resolved power maps, appear as regions of suppressed power due to reductions in the oscillation amplitudes. Employing high spatial- and temporal-resolution observations from the Dunn Solar Telescope (DST) in New Mexico, we study the power suppression in a region of evolving magnetic fields adjacent to a pore. By utilizing wavelet analysis, we study for the first time how the oscillatory properties in this region change as the magnetic field evolves with time. Image sequences taken in the blue continuum, G-band, Ca ii K, and H α filters were used in this study. It is observed that the suppression found in the chromosphere occupies a relatively larger area, confirming previous findings. Also, the suppression is extended to structures directly connected to the magnetic region, and is found to get enhanced as the magnetic field strength increased with time. The dependence of the suppression on the magnetic field strength is greater at longer periods and higher formation heights. Furthermore, the dominant periodicity in the chromosphere was found to be anti-correlated with increases in the magnetic field strength.

  10. Modeling real-time balancing power demands in wind power systems using stochastic differential equations

    International Nuclear Information System (INIS)

    Olsson, Magnus; Perninge, Magnus; Soeder, Lennart

    2010-01-01

    The inclusion of wind power into power systems has a significant impact on the demand for real-time balancing power due to the stochastic nature of wind power production. The overall aim of this paper is to present probabilistic models of the impact of large-scale integration of wind power on the continuous demand in MW for real-time balancing power. This is important not only for system operators, but also for producers and consumers since they in most systems through various market solutions provide balancing power. Since there can occur situations where the wind power variations cancel out other types of deviations in the system, models on an hourly basis are not sufficient. Therefore the developed model is in continuous time and is based on stochastic differential equations (SDE). The model can be used within an analytical framework or in Monte Carlo simulations. (author)

  11. A probabilistic model for US nuclear power construction times

    International Nuclear Information System (INIS)

    Shash, A.A.H.

    1988-01-01

    Construction time for nuclear power plants is an important element in planning for resources to meet future load demands. Analysis of actual versus estimated construction times for past US nuclear power plants indicates that utilities have continuously underestimated their power plants' construction durations. The analysis also indicates that the actual average construction time has been increasing upward, and the actual durations of power plants permitted to construct in the same year varied substantially. This study presents two probabilistic models for nuclear power construction time for use by the nuclear industry as estimating tool. The study also presents a detailed explanation of the factors that are responsible for increasing and varying nuclear power construction times. Observations on 91 complete nuclear units were involved in three interdependent analyses in the process of explanation and derivation of the probabilistic models. The historical data was first utilized in the data envelopment analysis (DEA) for the purpose of obtaining frontier index measures for project management achievement in building nuclear power plants

  12. Part-Time Higher Education: Employer Engagement under Threat?

    Science.gov (United States)

    Mason, Geoff

    2014-01-01

    Employer support for employees who are studying part-time for higher education qualifications constitutes a form of indirect employer engagement with higher education institutions that has contributed strongly to the development of work-related skills and knowledge over the years. However, this form of employer engagement with higher education…

  13. Capturing power at higher voltages from arrays of microbial fuel cells without voltage reversal

    KAUST Repository

    Kim, Younggy

    2011-01-01

    Voltages produced by microbial fuel cells (MFCs) cannot be sustainably increased by linking them in series due to voltage reversal, which substantially reduces stack voltages. It was shown here that MFC voltages can be increased with continuous power production using an electronic circuit containing two sets of multiple capacitors that were alternately charged and discharged (every one second). Capacitors were charged in parallel by the MFCs, but linked in series while discharging to the circuit load (resistor). The parallel charging of the capacitors avoided voltage reversal, while discharging the capacitors in series produced up to 2.5 V with four capacitors. There were negligible energy losses in the circuit compared to 20-40% losses typically obtained with MFCs using DC-DC converters to increase voltage. Coulombic efficiencies were 67% when power was generated via four capacitors, compared to only 38% when individual MFCs were operated with a fixed resistance of 250 Ω. The maximum power produced using the capacitors was not adversely affected by variable performance of the MFCs, showing that power generation can be maintained even if individual MFCs perform differently. Longer capacitor charging and discharging cycles of up to 4 min maintained the average power but increased peak power by up to 2.6 times. These results show that capacitors can be used to easily obtain higher voltages from MFCs, allowing for more useful capture of energy from arrays of MFCs. © 2011 The Royal Society of Chemistry.

  14. Peer Mentoring in Higher Education: Issues of Power and Control

    Science.gov (United States)

    Christie, Hazel

    2014-01-01

    In response to widespread support for mentoring schemes in higher education this article calls for a more critical investigation of the dynamics of power and control, which are intrinsic to the mentoring process, and questions presumptions that mentoring brings only positive benefits to its participants. It provides this more critical appraisal by…

  15. A higher order space-time Galerkin scheme for time domain integral equations

    KAUST Repository

    Pray, Andrew J.

    2014-12-01

    Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method\\'s efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.

  16. A higher order space-time Galerkin scheme for time domain integral equations

    KAUST Repository

    Pray, Andrew J.; Beghein, Yves; Nair, Naveen V.; Cools, Kristof; Bagci, Hakan; Shanker, Balasubramaniam

    2014-01-01

    Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method's efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.

  17. Resonant power converter comprising adaptive dead-time control

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates in a first aspect to a resonant power converter comprising: a first power supply rail for receipt of a positive DC supply voltage and a second power supply rail for receipt of a negative DC supply voltage. The resonant power converter comprises a resonant network with an input...... terminal for receipt of a resonant input voltage from a driver circuit. The driver circuit is configured for alternatingly pulling the resonant input voltage towards the positive and negative DC supply voltages via first and second semiconductor switches, respectively, separated by intervening dead......-time periods in accordance with one or more driver control signals. A dead-time controller is configured to adaptively adjusting the dead-time periods based on the resonant input voltage....

  18. Higher dimensional time-energy entanglement

    International Nuclear Information System (INIS)

    Richart, Daniel Lampert

    2014-01-01

    Judging by the compelling number of innovations based on taming quantum mechanical effects, such as the development of transistors and lasers, further research in this field promises to tackle further technological challenges in the years to come. This statement gains even more importance in the information processing scenario. Here, the growing data generation and the correspondingly higher need for more efficient computational resources and secure high bandwidth networks are central problems which need to be tackled. In this sense, the required CPU minituarization makes the design of structures at atomic levels inevitable, as foreseen by Moore's law. From these perspectives, it is necessary to concentrate further research efforts into controlling and manipulating quantum mechanical systems. This enables for example to encode quantum superposition states to tackle problems which are computationally NP hard and which therefore cannot be solved efficiently by classical computers. The only limitation affecting these solutions is the low scalability of existing quantum systems. Similarly, quantum communication schemes are devised to certify the secure transmission of quantum information, but are still limited by a low transmission bandwidth. This thesis follows the guideline defined by these research projects and aims to further increase the scalability of the quantum mechanical systems required to perform these tasks. The method used here is to encode quantum states into photons generated by spontaneous parametric down-conversion (SPDC). An intrinsic limitation of photons is that the scalability of quantum information schemes employing them is limited by the low detection efficiency of commercial single photon detectors. This is addressed by encoding higher dimensional quantum states into two photons, increasing the scalability of the scheme in comparison to multi-photon states. Further on, the encoding of quantum information into the emission-time degree of

  19. Higher dimensional time-energy entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Richart, Daniel Lampert

    2014-07-08

    Judging by the compelling number of innovations based on taming quantum mechanical effects, such as the development of transistors and lasers, further research in this field promises to tackle further technological challenges in the years to come. This statement gains even more importance in the information processing scenario. Here, the growing data generation and the correspondingly higher need for more efficient computational resources and secure high bandwidth networks are central problems which need to be tackled. In this sense, the required CPU minituarization makes the design of structures at atomic levels inevitable, as foreseen by Moore's law. From these perspectives, it is necessary to concentrate further research efforts into controlling and manipulating quantum mechanical systems. This enables for example to encode quantum superposition states to tackle problems which are computationally NP hard and which therefore cannot be solved efficiently by classical computers. The only limitation affecting these solutions is the low scalability of existing quantum systems. Similarly, quantum communication schemes are devised to certify the secure transmission of quantum information, but are still limited by a low transmission bandwidth. This thesis follows the guideline defined by these research projects and aims to further increase the scalability of the quantum mechanical systems required to perform these tasks. The method used here is to encode quantum states into photons generated by spontaneous parametric down-conversion (SPDC). An intrinsic limitation of photons is that the scalability of quantum information schemes employing them is limited by the low detection efficiency of commercial single photon detectors. This is addressed by encoding higher dimensional quantum states into two photons, increasing the scalability of the scheme in comparison to multi-photon states. Further on, the encoding of quantum information into the emission-time degree of

  20. Non-linear behaviour of power density and exposure time of argon laser on ocular tissues

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, E M; Talaat, M S; Salem, E F [Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt)

    1997-12-31

    In ophthalmology, the thermal effect of argon laser is the most widely used category of laser- tissue interaction. The rise in tissue temperature has to exceed a threshold value for photo coagulation of retinal blood vessels. This value mainly depends on the laser. The most suitable argon laser power P and exposure time (t) which would be more effective for thermal and electrical behaviour of chicken eye was studied. This was achieved by measuring the variations in ocular temperature in electroretinogram (ERG) records under the effect of argon experiment, while power density (P) and exposure time (t) were varied in four different ways for each dose (pt). Results indicated that for the same laser dose, the temperature distribution of the eye, using low power density and high exposure time was higher than that high power density and low exposure time, indicating non-linearity of the laser dose. This finding was confirmed by ERG records which showed similar variations in b-wave latency, amplitude and duration, for the laser exposure conditions. This indicates variations in retinal function due to laser-dependent temperature variations. 5 figs., 3 tabs.

  1. Attachment to God/Higher Power and Bulimic Symptoms among College Women

    Science.gov (United States)

    Buser, Juleen K.; Gibson, Sandy

    2016-01-01

    The authors examined the relationship between avoidant and anxious attachment to God/Higher Power and bulimia symptoms among 599 female college student participants. After controlling for body mass index, the authors found a positive association between both attachment variables and bulimia. When entered together in a regression, anxious…

  2. Late-time tails of wave propagation in higher dimensional spacetimes

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Yoshida, Shijun; Dias, Oscar J.C.; Lemos, Jose P.S.

    2003-01-01

    We study the late-time tails appearing in the propagation of massless fields (scalar, electromagnetic, and gravitational) in the vicinities of a D-dimensional Schwarzschild black hole. We find that at late times the fields always exhibit a power-law falloff, but the power law is highly sensitive to the dimensionality of the spacetime. Accordingly, for odd D>3 we find that the field behaves as t -(2l+D-2) at late times, where l is the angular index determining the angular dependence of the field. This behavior is entirely due to D being odd; it does not depend on the presence of a black hole in the spacetime. Indeed this tail is already present in the flat space Green's function. On the other hand, for even D>4 the field decays as t -(2l+3D-8) , and this time there is no contribution from the flat background. This power law is entirely due to the presence of the black hole. The D=4 case is special and exhibits, as is well known, t -(2l+3) behavior. In the extra dimensional scenario for our Universe, our results are strictly correct if the extra dimensions are infinite, but also give a good description of the late-time behavior of any field if the large extra dimensions are large enough

  3. Ecuador's higher education system in times of change

    OpenAIRE

    Van Hoof, Hubert B.; Estrella, Mateo; Eljuri, María Isabel; Torres León, Leonardo

    2013-01-01

    Ecuador’s higher education system is undergoing dramatic changes. The National Constitution of 2008 and the Higher Education Law of 2010 have changed the way Ecuador’s universities are funded, administered, and accredited. The importance of research was elevated and drastic changes were made to the academic qualifications and employment conditions of full-time faculty. This article describes the attempt to raise the level of Ecuador’s system of higher education and its impact on faculty and a...

  4. Ecuador's Higher Education System in Times of Change

    OpenAIRE

    Van Hoof, Hubert

    2013-01-01

    Ecuador’s higher education system is undergoing dramatic changes. The National Constitution of 2008 and the Higher Education Law of 2010 have changed the way Ecuador’s universities are funded, administered, and accredited. The importance of research was elevated and drastic changes were made to the academic qualifications and employment conditions of full-time faculty. This article describes the attempt to raise the level of Ecuador’s system of higher education and its impact on faculty and a...

  5. Nuclear power: time to start again

    International Nuclear Information System (INIS)

    Rezak, W.D.

    2004-01-01

    This paper presents data which support the construction and operating successes enjoyed by energy companies that operate nuclear power plants in the US. The result is that the US nuclear industry is alive and well. Perhaps it's time to start anew the building of nuclear power plants. Over 20% of the electricity generated in the United States comes from nuclear power plants. An adequate, reliable supply of reasonably priced electric energy is not a consequence of an expanding economy and gross national product; it is an absolute necessity before such expansion can occur. It is hard to imagine any aspect of our business or personal lives not, in some way, dependent upon electricity. All over the world (in over 30 countries) nuclear power is a low-cost, secure, safe, dependable, and environmentally friendly form of electric power generation. Nuclear plants in these countries are built in six to eight years using technology developed in the US, with good performance and safety records. This treatise addresses the success experienced by the US nuclear industry over the last 40 years, and makes the case that this reliable, cost-competitive source of electric power can help support the economic engine of the country and help prevent experiences like the recent crises in California and the Northeast. Successful operation of nuclear facilities is determined by examining capacity or load factors. Load factor is the percentage of design generating capacity that a power plant actually produces over the course of a year's operation. This paper makes the case that these operating performance indicators warrant renewed consideration of the nuclear option. Usage of electricity in the US now approaches total generating capacity. The Nuclear Regulatory Commission has pre-approved construction and operating licenses for several nuclear plant designs. State public service commissions are beginning to understand that dramatic reform is required. The economy is recovering and inflation

  6. Just in Time Research: Data Breaches in Higher Education

    Science.gov (United States)

    Grama, Joanna

    2014-01-01

    This "Just in Time" research is in response to recent discussions on the EDUCAUSE Higher Education Information Security Council (HEISC) discussion list about data breaches in higher education. Using data from the Privacy Rights Clearinghouse, this research analyzes data breaches attributed to higher education. The results from this…

  7. Time-Discrete Higher-Order ALE Formulations: Stability

    KAUST Repository

    Bonito, Andrea

    2013-01-01

    Arbitrary Lagrangian Eulerian (ALE) formulations deal with PDEs on deformable domains upon extending the domain velocity from the boundary into the bulk with the purpose of keeping mesh regularity. This arbitrary extension has no effect on the stability of the PDE but may influence that of a discrete scheme. We examine this critical issue for higher-order time stepping without space discretization. We propose time-discrete discontinuous Galerkin (dG) numerical schemes of any order for a time-dependent advection-diffusion-model problem in moving domains, and study their stability properties. The analysis hinges on the validity of the Reynold\\'s identity for dG. Exploiting the variational structure and assuming exact integration, we prove that our conservative and nonconservative dG schemes are equivalent and unconditionally stable. The same results remain true for piecewise polynomial ALE maps of any degree and suitable quadrature that guarantees the validity of the Reynold\\'s identity. This approach generalizes the so-called geometric conservation law to higher-order methods. We also prove that simpler Runge-Kutta-Radau methods of any order are conditionally stable, that is, subject to a mild ALE constraint on the time steps. Numerical experiments corroborate and complement our theoretical results. © 2013 Society for Industrial and Applied Mathematics.

  8. Adopting Consumer Time: Potential Issues for Higher Education

    Science.gov (United States)

    Gibbs, Paul

    2009-01-01

    Time and temporality have received little attention in the consumerism, marketing or, until recently, higher education literature. This paper attempts to compare the notions of timing implicit in education as "paideia" (transitional personal growth) with that implicit in consumerism and the marketing practices which foster it. This…

  9. A stable higher order space time Galerkin marching-on-in-time scheme

    KAUST Repository

    Pray, Andrew J.

    2013-07-01

    We present a method for the stable solution of time-domain integral equations. The method uses a technique developed in [1] to accurately evaluate matrix elements. As opposed to existing stabilization schemes, the method presented uses higher order basis functions in time to improve the accuracy of the solver. The method is validated by showing convergence in temporal basis function order, time step size, and geometric discretization order. © 2013 IEEE.

  10. Testing power system controllers by real-time simulation

    DEFF Research Database (Denmark)

    Venne, Philippe; Guillaud, Xavier; Sirois, Frédéric

    2007-01-01

    In this paper, we present a number of state-of-the art methods for testing power system controllers based on the use of a real-time power system simulator. After introducing Hypersim, we list and discuss the different means of connection between the controller under tests and the power system...

  11. Bootstrap Power of Time Series Goodness of fit tests

    Directory of Open Access Journals (Sweden)

    Sohail Chand

    2013-10-01

    Full Text Available In this article, we looked at power of various versions of Box and Pierce statistic and Cramer von Mises test. An extensive simulation study has been conducted to compare the power of these tests. Algorithms have been provided for the power calculations and comparison has also been made between the semi parametric bootstrap methods used for time series. Results show that Box-Pierce statistic and its various versions have good power against linear time series models but poor power against non linear models while situation reverses for Cramer von Mises test. Moreover, we found that dynamic bootstrap method is better than xed design bootstrap method.

  12. Time-optimal control of reactor power

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1987-01-01

    Control laws that permit adjustments in reactor power to be made in minimum time and without overshoot have been formulated and demonstrated. These control laws which are derived from the standard and alternate dynamic period equations, are closed-form expressions of general applicability. These laws were deduced by noting that if a system is subject to one or more operating constraints, then the time-optimal response is to move the system along these constraints. Given that nuclear reactors are subject to limitations on the allowed reactor period, a time-optimal control law would step the period from infinity to the minimum allowed value, hold the period at that value for the duration of the transient, and then step the period back to infinity. The change in reactor would therefore be accomplished in minimum time. The resulting control laws are superior to other forms of time-optimal control because they are general-purpose, closed-form expressions that are both mathematically tractable and readily implanted. Moreover, these laws include provisions for the use of feedback. The results of simulation studies and actual experiments on the 5 MWt MIT Research Reactor in which these time-optimal control laws were used successfully to adjust the reactor power are presented

  13. System-level power optimization for real-time distributed embedded systems

    Science.gov (United States)

    Luo, Jiong

    Power optimization is one of the crucial design considerations for modern electronic systems. In this thesis, we present several system-level power optimization techniques for real-time distributed embedded systems, based on dynamic voltage scaling, dynamic power management, and management of peak power and variance of the power profile. Dynamic voltage scaling has been widely acknowledged as an important and powerful technique to trade off dynamic power consumption and delay. Efficient dynamic voltage scaling requires effective variable-voltage scheduling mechanisms that can adjust voltages and clock frequencies adaptively based on workloads and timing constraints. For this purpose, we propose static variable-voltage scheduling algorithms utilizing criticalpath driven timing analysis for the case when tasks are assumed to have uniform switching activities, as well as energy-gradient driven slack allocation for a more general scenario. The proposed techniques can achieve closeto-optimal power savings with very low computational complexity, without violating any real-time constraints. We also present algorithms for power-efficient joint scheduling of multi-rate periodic task graphs along with soft aperiodic tasks. The power issue is addressed through both dynamic voltage scaling and power management. Periodic task graphs are scheduled statically. Flexibility is introduced into the static schedule to allow the on-line scheduler to make local changes to PE schedules through resource reclaiming and slack stealing, without interfering with the validity of the global schedule. We provide a unified framework in which the response times of aperiodic tasks and power consumption are dynamically optimized simultaneously. Interconnection network fabrics point to a new generation of power-efficient and scalable interconnection architectures for distributed embedded systems. As the system bandwidth continues to increase, interconnection networks become power/energy limited as

  14. Real-Time Tariffs for Electric Vehicles in Wind Power based Power Systems

    DEFF Research Database (Denmark)

    Morais, Hugo; Sousa, Tiago; Silva, Marco

    2013-01-01

    ’ behaviour and also the impact in load diagram. The paper proposes the energy price variation according to the relation between wind generation and power consumption. The proposed strategy was tested in two different days in the Danish power system. January 31st and August 13th 2013 were selected because......The use of Electric Vehicles (EVs) will change significantly the planning and management of power systems in a near future. This paper proposes a real-time tariff strategy for the charge process of the EVs. The main objective is to evaluate the influence of real-time tariffs in the EVs owners...... of the high quantities of wind generation. The main goal is to evaluate the changes in the EVs charging diagram with the energy price preventing wind curtailment....

  15. A virtual power plant model for time-driven power flow calculations

    Directory of Open Access Journals (Sweden)

    Gerardo Guerra

    2017-11-01

    Full Text Available This paper presents the implementation of a custom-made virtual power plant model in OpenDSS. The goal is to develop a model adequate for time-driven power flow calculations in distribution systems. The virtual power plant is modeled as the aggregation of renewable generation and energy storage connected to the distribution system through an inverter. The implemented operation mode allows the virtual power plant to act as a single dispatchable generation unit. The case studies presented in the paper demonstrate that the model behaves according to the specified control algorithm and show how it can be incorporated into the solution scheme of a general parallel genetic algorithm in order to obtain the optimal day-ahead dispatch. Simulation results exhibit a clear benefit from the deployment of a virtual power plant when compared to distributed generation based only on renewable intermittent generation.

  16. Experimental verification of a real-time power curve for downregulated offshore wind power plants

    Science.gov (United States)

    Giebel, Gregor; Göcmen Bozkurt, Tuhfe; Sørensen, Poul; Rajczyk Skjelmose, Mads; Runge Kristoffersen, Jesper

    2015-04-01

    Wind farm scale experiments with wakes under downregulation have been initiated in Horns Rev wind farm in the frame of the PossPOW project (see posspow.dtu.dk). The experiments will be compared with the results of the calibrated GCLarsen wake model for real-time which is used not only to obtain real-time power curve but also to estimate the available power in wind farm level. Available (or Possible) Power is the power that a down-regulated (or curtailed) turbine or a wind power plant would produce if it were to operate in normal operational conditions and it is becoming more of particular interest due to increasing number of curtailment periods. Currently, the Transmission System Operators (TSOs) have no real way to determine exactly the available power of a down-regulated wind farm and the PossPOW project is addressing that need. What makes available power calculation interesting at the wind farm level is the change in the wake characteristics for different operational states. Even though the single turbine level available power is easily estimated, the sum of those signals from all turbines in a wind farm overestimates the power since the wake losses significantly decrease during curtailment. In order to calculate that effect, the turbine wind speed is estimated real-time from the produced power, the pitch angle and the rotor speed using a proximate Cp curve. A real-time wake estimation of normal operation is then performed and advected to the next downstream turbine, and so on until the entire wind farm is calculated. The estimation of the rotor effective wind speed, the parameterization of the GCLarsen wake model for real-time use (i.e., 1-sec data from Horns Rev and Thanet) and the details of the advection are the topic can be found in Göcmen et al. [1] Here we plan to describe the experiments using the Horns Rev wind farm and hopefully present the first validation results. Assuming similarity of the wind speeds between neighbouring rows of turbines, the

  17. Wind power and the conditions at a liberalized power market

    International Nuclear Information System (INIS)

    Morthorst, P.E.

    2003-01-01

    Wind power is undergoing a rapid development nationally as well as globally and in a number of countries covers an increasing part of the power supply. At the same time an ongoing liberalization of power markets is taking place and to an increasing extent the owners of wind power plants will themselves have to be responsible for trading the power at the spot market and financially handling the balancing. In the western part of Denmark (Jutland/Funen area), wind-generated power from time to time covers almost 100% of total power consumption. Therefore some examples are chosen from this area to analyse in more detail how well large amounts of wind power in the short-term are handled at the power spot market. It turns out that there is a tendency that more wind power in the system in the short run leads to relatively lower spot prices, while less wind power implies relatively higher spot prices, although, with the exception of December 2002, in general no strong relationship is found. A stronger relationship is found at the regulating market, where there is a fairly clear tendency that the more wind power produced, the higher is the need for down-regulation, and, correspondingly, the less wind power produced, the higher is the need for up-regulation. In general for the Jutland/Funen area the average cost of down-regulation is calculated as 1 2 c euros/kWh regulated for 2002, while the cost of up-regulation amounts to 0 7 c euros/kWh regulated. (author)

  18. Real-Time Load-Side Control of Electric Power Systems

    Science.gov (United States)

    Zhao, Changhong

    Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems. (1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with

  19. Real-time Pricing in Power Markets

    DEFF Research Database (Denmark)

    Boom, Anette; Schwenen, Sebastian

    We examine welfare e ects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction...... to satisfy demand from retailers acting on behalf of subscribed customers and from consumers with real-time meters. Increasing the number of consumers on real-time pricing does not always increase welfare since risk-averse consumers dislike uncertain and high prices arising through market power...

  20. Real-time Pricing in Power Markets

    DEFF Research Database (Denmark)

    Boom, Anette; Schwenen, Sebastian

    We examine welfare eects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction...... to satisfy demand from retailers acting on behalf of subscribed customers and from consumers with real-time meters. Increasing the number of consumers on real-time pricing does not always increase welfare since risk-averse consumers dislike uncertain and high prices arising through market power...

  1. Power minimisation for real-time dataflow applications.

    NARCIS (Netherlands)

    Nelson, Andrew; Moreira, O.; Molnos, A.M.; Stuijk, S.; Nguyen, B.T.; Goossens, K.G.W.; Kitsos, P.

    2011-01-01

    Energy efficient execution of applications is important for many reasons, e.g. time between battery charges, device temperature. Voltage and Frequency Scaling (VFS) enables applications to be run at lower frequencies on hardware resources thereby consuming less power. Real-time applications have

  2. The power of non-determinism in higher-order implicit complexity

    DEFF Research Database (Denmark)

    Kop, Cynthia Louisa Martina; Simonsen, Jakob Grue

    2017-01-01

    We investigate the power of non-determinism in purely functional programming languages with higher-order types. Specifically, we consider cons-free programs of varying data orders, equipped with explicit non-deterministic choice. Cons-freeness roughly means that data constructors cannot occur...... in function bodies and all manipulation of storage space thus has to happen indirectly using the call stack. While cons-free programs have previously been used by several authors to characterise complexity classes, the work on non-deterministic programs has almost exclusively considered programs of data order...... 0. Previous work has shown that adding explicit non-determinism to consfree programs taking data of order 0 does not increase expressivity; we prove that this—dramatically—is not the case for higher data orders: adding non-determinism to programs with data order at least 1 allows...

  3. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    A general solution of Einstein field equations corresponding to a charged fluid distribution on the background of higher dimensional spheroidal space-time is obtained. The solution generates several known solutions for superdense star having spheroidal space-time geometry.

  4. Short-term wind power forecasting: probabilistic and space-time aspects

    DEFF Research Database (Denmark)

    Tastu, Julija

    work deals with the proposal and evaluation of new mathematical models and forecasting methods for short-term wind power forecasting, accounting for space-time dynamics based on geographically distributed information. Different forms of power predictions are considered, starting from traditional point...... into the corresponding models are analysed. As a final step, emphasis is placed on generating space-time trajectories: this calls for the prediction of joint multivariate predictive densities describing wind power generation at a number of distributed locations and for a number of successive lead times. In addition......Optimal integration of wind energy into power systems calls for high quality wind power predictions. State-of-the-art forecasting systems typically provide forecasts for every location individually, without taking into account information coming from the neighbouring territories. It is however...

  5. A stable higher order space time Galerkin marching-on-in-time scheme

    KAUST Repository

    Pray, Andrew J.; Shanker, Balasubramaniam; Bagci, Hakan

    2013-01-01

    We present a method for the stable solution of time-domain integral equations. The method uses a technique developed in [1] to accurately evaluate matrix elements. As opposed to existing stabilization schemes, the method presented uses higher order

  6. Real Time Monitoring and Wear Out of Power Modules

    DEFF Research Database (Denmark)

    Ghimire, Pramod

    the expected lifetime of converters. Real time monitoring of power modules is very important together with a smart control and a driving technique in a converter. This ensures to operate the device within a safe operating area and also to protect from a catastrophic failure. Furthermore, the inherent physical...... and in a mission-profile oriented advanced power cycling test. The measurement technique is implemented in a full scale converter under field oriented test conditions. Initially, a real time measurement technique and it's implementation in a converter are introduced. A full scale converter is also used......Power electronic devices have a wide range of applications from very low to high power at constantly varying load conditions. Irrespective of the harsh operating loads, including both internal and external, an improvement in a performance such as efficiency, power density, reliability and cost...

  7. Naked singularities in higher dimensional Vaidya space-times

    International Nuclear Information System (INIS)

    Ghosh, S. G.; Dadhich, Naresh

    2001-01-01

    We investigate the end state of the gravitational collapse of a null fluid in higher-dimensional space-times. Both naked singularities and black holes are shown to be developing as the final outcome of the collapse. The naked singularity spectrum in a collapsing Vaidya region (4D) gets covered with the increase in dimensions and hence higher dimensions favor a black hole in comparison to a naked singularity. The cosmic censorship conjecture will be fully respected for a space of infinite dimension

  8. Experimental Demonstration of Higher Precision Weak-Value-Based Metrology Using Power Recycling

    Science.gov (United States)

    Wang, Yi-Tao; Tang, Jian-Shun; Hu, Gang; Wang, Jian; Yu, Shang; Zhou, Zong-Quan; Cheng, Ze-Di; Xu, Jin-Shi; Fang, Sen-Zhi; Wu, Qing-Lin; Li, Chuan-Feng; Guo, Guang-Can

    2016-12-01

    The weak-value-based metrology is very promising and has attracted a lot of attention in recent years because of its remarkable ability in signal amplification. However, it is suggested that the upper limit of the precision of this metrology cannot exceed that of classical metrology because of the low sample size caused by the probe loss during postselection. Nevertheless, a recent proposal shows that this probe loss can be reduced by the power-recycling technique, and thus enhance the precision of weak-value-based metrology. Here we experimentally realize the power-recycled interferometric weak-value-based beam-deflection measurement and obtain the amplitude of the detected signal and white noise by discrete Fourier transform. Our results show that the detected signal can be strengthened by power recycling, and the power-recycled weak-value-based signal-to-noise ratio can surpass the upper limit of the classical scheme, corresponding to the shot-noise limit. This work sheds light on higher precision metrology and explores the real advantage of the weak-value-based metrology over classical metrology.

  9. Radiation Tolerant Low Power Precision Time Source, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The availability of small, low power atomic clocks is now a reality for ground-based and airborne navigation systems. Kernco's Low Power Precision Time Source...

  10. Thermally-aware composite run-time CPU power models

    OpenAIRE

    Walker, Matthew J.; Diestelhorst, Stephan; Hansson, Andreas; Balsamo, Domenico; Merrett, Geoff V.; Al-Hashimi, Bashir M.

    2016-01-01

    Accurate and stable CPU power modelling is fundamental in modern system-on-chips (SoCs) for two main reasons: 1) they enable significant online energy savings by providing a run-time manager with reliable power consumption data for controlling CPU energy-saving techniques; 2) they can be used as accurate and trusted reference models for system design and exploration. We begin by showing the limitations in typical performance monitoring counter (PMC) based power modelling approaches and illust...

  11. Statistical modelling of space-time processes with application to wind power

    DEFF Research Database (Denmark)

    Lenzi, Amanda

    . This thesis aims at contributing to the wind power literature by building and evaluating new statistical techniques for producing forecasts at multiple locations and lead times using spatio-temporal information. By exploring the features of a rich portfolio of wind farms in western Denmark, we investigate...... propose spatial models for predicting wind power generation at two different time scales: for annual average wind power generation and for a high temporal resolution (typically wind power averages over 15-min time steps). In both cases, we use a spatial hierarchical statistical model in which spatial...

  12. Critical Clearing Time and Wind Power in Small Isolated Power Systems Considering Inertia Emulation

    Directory of Open Access Journals (Sweden)

    Elías Jesús Medina-Domínguez

    2015-11-01

    Full Text Available The stability and security of small and isolated power systems can be compromised when large amounts of wind power enter them. Wind power integration depends on such factors as power generation capacity, conventional generation technology or grid topology. Another issue that can be considered is critical clearing time (CCT. In this paper, wind power and CCT are studied in a small isolated power system. Two types of wind turbines are considered: a squirrel cage induction generator (SCIG and a full converter. Moreover, the full converter wind turbine’s inertia emulation capability is considered, and its impact on CCT is discussed. Voltage is taken into account because of its importance in power systems of this kind. The study focuses on the small, isolated Lanzarote-Fuerteventura power system, which is expected to be in operation by 2020.

  13. Real Time In-circuit Condition Monitoring of MOSFET in Power Converters

    Directory of Open Access Journals (Sweden)

    Shakeb A. Khan

    2015-03-01

    Full Text Available Abstract:This paper presents simple and low-cost, real time in-circuit condition monitoring of MOSFET in power electronic converters. Design metrics requirements like low cost, small size, high power factor, low percentage of total harmonic distortion etc. requires the power electronic systems to operate at high frequencies and at high power density. Failures of power converters are attributed largely by aging of power MOSFETs at high switching frequencies. Therefore, real time in-circuit prognostic of MOSFET needs to be done before their selection for power system design. Accelerated aging tests are performed in different circuits to determine the wear out failure of critical components based on their parametric degradation. In this paper, the simple and low-cost test beds are designed for real time in-circuit prognostics of power MOSFETs. The proposed condition monitoring scheme helps in estimating the condition of MOSFETs at their maximum rated operating condition and will aid the system designers to test their reliability and benchmark them before selecting in power converters.

  14. A Real-Time Simulation Platform for Power System Operation

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Østergaard, Jacob; Wu, Qiuwei

    2010-01-01

    This paper describes the real-time digital simulation platform that can be used for power system operation, analysis, and power system modeling. This particular platform gives grid operators, planners and researchers the opportunity to observe how a power system behaves and can be used...... in real time. Various phenomena commonly encountered when dealing with the two-area system is studied. Despite its small size, it mimics very closely the behavior of typical systems in actual operation. The electromagnetic transient type of simulation made in RSCAD enables the study of fast and detailed...... phenomena like single-phase faults in the two-area network and to observe their effects on a larger time scale. Also, the case study of 11 bus system with 5 generators has been also used and the results are presented....

  15. Design of a real time market for regulating power. FlexPower WP1 - Report 3

    Energy Technology Data Exchange (ETDEWEB)

    Bang, C.; Fock, F.; Togeby, M.

    2011-12-15

    The FlexPower project investigates the possibility of using broadcasted dynamic electricity prices as a simple and low cost means to activating a large number of flexible small-scale power units. The aim is to provide regulating power via an aggregated response from the numerous units on a volunteer basis. The power units could for example be electrical heating and cooling units, electrical vehicles, industrial demand and micro generation. Each power unit can have its own local controller and individual business model and objective function. The optimisation of the local controls may require forecasts of the services requested by the customer (such as heat for a house or charging power for an electrical vehicle) - in terms of quantity, timing and flexibility - and forecasts of the electricity prices. Based on international 'real-time' power market experiences, new dynamic FlexPower market mechanisms to perform regulating power are designed and tested via simulations, under laboratory conditions and in the field. A dedicated simulation tool is developed for this purpose. The FlexPower regulation can never be perfect, but is expected to be able to meet some of the present and future growing demand for regulating power. As a starting point, a 5-minute power price signal, based on the actual regulation power prices, is tested. WP1 addresses the following question: 1) How could a system with a one-way price be designed? How can the FlexPower mechanism be integrated into the present electricity market, including the market for regulating power? This report describes the FlexPower concept, and gives one suggestion as to how this new market could work. How this will affect the different stakeholders is discussed, and risks and opportunities in the new market are presented. (LN)

  16. Real-time prediction models for output power and efficiency of grid-connected solar photovoltaic systems

    International Nuclear Information System (INIS)

    Su, Yan; Chan, Lai-Cheong; Shu, Lianjie; Tsui, Kwok-Leung

    2012-01-01

    Highlights: ► We develop online prediction models for solar photovoltaic system performance. ► The proposed prediction models are simple but with reasonable accuracy. ► The maximum monthly average minutely efficiency varies 10.81–12.63%. ► The average efficiency tends to be slightly higher in winter months. - Abstract: This paper develops new real time prediction models for output power and energy efficiency of solar photovoltaic (PV) systems. These models were validated using measured data of a grid-connected solar PV system in Macau. Both time frames based on yearly average and monthly average are considered. It is shown that the prediction model for the yearly/monthly average of the minutely output power fits the measured data very well with high value of R 2 . The online prediction model for system efficiency is based on the ratio of the predicted output power to the predicted solar irradiance. This ratio model is shown to be able to fit the intermediate phase (9 am to 4 pm) very well but not accurate for the growth and decay phases where the system efficiency is near zero. However, it can still serve as a useful purpose for practitioners as most PV systems work in the most efficient manner over this period. It is shown that the maximum monthly average minutely efficiency varies over a small range of 10.81% to 12.63% in different months with slightly higher efficiency in winter months.

  17. Parareal in Time for Dynamic Simulations of Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gurrala, Gurunath [ORNL; Dimitrovski, Aleksandar D [ORNL; Pannala, Sreekanth [ORNL; Simunovic, Srdjan [ORNL; Starke, Michael R [ORNL

    2015-01-01

    In recent years, there have been significant developments in parallel algorithms and high performance parallel computing platforms. Parareal in time algorithm has become popular for long transient simulations (e.g., molecular dynamics, fusion, reacting flows). Parareal is a parallel algorithm which divides the time interval into sub-intervals and solves them concurrently. This paper investigates the applicability of the parareal algorithm to power system dynamic simulations. Preliminary results on the application of parareal for multi-machine power systems are reported in this paper. Two widely used test systems, WECC 3-generator 9-bus system, New England 10-generator 39- bus system, is used to explore the effectiveness of the parareal. Severe 3 phase bus faults are simulated using both the classical and detailed models of multi-machine power systems. Actual Speedup of 5-7 times is observed assuming ideal parallelization. It has been observed that the speedup factors of the order of 20 can be achieved by using fast coarse approximations of power system models. Dependency of parareal convergence on fault duration and location has been observed.

  18. A real time status monitor for transistor bank driver power limit resistor in boost injection kicker power supply

    Energy Technology Data Exchange (ETDEWEB)

    Mi, J.; Tan, Y.; Zhang, W.

    2011-03-28

    For years suffering of Booster Injection Kicker transistor bank driver regulator troubleshooting, a new real time monitor system has been developed. A simple and floating circuit has been designed and tested. This circuit monitor system can monitor the driver regulator power limit resistor status in real time and warn machine operator if the power limit resistor changes values. This paper will mainly introduce the power supply and the new designed monitoring system. This real time resistor monitor circuit shows a useful method to monitor some critical parts in the booster pulse power supply. After two years accelerator operation, it shows that this monitor works well. Previously, we spent a lot of time in booster machine trouble shooting. We will reinstall all 4 PCB into Euro Card Standard Chassis when the power supply system will be updated.

  19. Uncertainty Quantification of the Real-Time Reserves for Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Göçmen, Tuhfe; Giebel, Gregor; Réthoré, Pierre-Elouan

    In order to retain the system stability, the wind power plants are required to provide ancillary services. One of those services is reserve power. Here in this study, we focus on the real-time reserves which can be traded in the balancing markets and are currently used for compensation under...... mandatory downregulation stated by the transmission system operators (TSOs). The PossPOW project (Possible Power of down-regulated Offshore Wind power plants) developed a real-time power curve of available power for offshore wind farms for use during down-regulation. The follow-up Concert project......(control and uncertainties in real-time power curves of offshore wind power plants) aims to quantify and finally reduce the uncertainty in reserve power, bringing the PossPOW algorithm and the state of the art forecasting methods together. The experiments designed to test the available power estimated by the Poss...

  20. Sliding mode load frequency control for multi-area time-delay power system with wind power integration

    DEFF Research Database (Denmark)

    Mi, Yang; Hao, Xuezhi; Liu, Yongjuan

    2017-01-01

    The interconnected time-delay power system has become an important issue for the open communication network. Meanwhile, due to the output power fluctuation of integrated wind energy, load frequency control (LFC) for power system with variable sources and loads has become more complicated. The novel...

  1. Wind power impacts and electricity storage - a time scale perspective

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Meibom, Peter

    2012-01-01

    Integrating large amounts of wind power in energy systems poses balancing challenges due to the variable and only partly predictable nature of wind. The challenges cover different time scales from intra-hour, intra-day/day-ahead to several days and seasonal level. Along with flexible electricity...... demand options, various electricity storage technologies are being discussed as candidates for contributing to large-scale wind power integration and these also differ in terms of the time scales at which they can operate. In this paper, using the case of Western Denmark in 2025 with an expected 57% wind...... power penetration, wind power impacts on different time scales are analysed. Results show consecutive negative and high net load period lengths indicating a significant potential for flexibility measures capable of charging/activating demand and discharging/inactivating demand in periods of 1 h to one...

  2. Finite time thermodynamics of power and refrigeration cycles

    CERN Document Server

    Kaushik, Shubhash C; Kumar, Pramod

    2017-01-01

    This book addresses the concept and applications of Finite Time Thermodynamics to various thermal energy conversion systems including heat engines, heat pumps, and refrigeration and air-conditioning systems. The book is the first of its kind, presenting detailed analytical formulations for the design and optimisation of various power producing and cooling cycles including but not limited to: • Vapour power cycles • Gas power cycles • Vapour compression cycles • Vapour absorption cycles • Rankine cycle coupled refrigeration systems Further, the book addresses the thermoeconomic analysis for the optimisation of thermal cycles, an important field of study in the present age and which is characterised by multi-objective optimization regarding energy, ecology, the environment and economics. Lastly, the book provides the readers with key techniques associated with Finite Time Thermodynamics, allowing them to understand the relevance of irreversibilitie s associated with real processes and the scientific r...

  3. Human learning: Power laws or multiple characteristic time scales?

    Directory of Open Access Journals (Sweden)

    Gottfried Mayer-Kress

    2006-09-01

    Full Text Available The central proposal of A. Newell and Rosenbloom (1981 was that the power law is the ubiquitous law of learning. This proposition is discussed in the context of the key factors that led to the acceptance of the power law as the function of learning. We then outline the principles of an epigenetic landscape framework for considering the role of the characteristic time scales of learning and an approach to system identification of the processes of performance dynamics. In this view, the change of performance over time is the product of a superposition of characteristic exponential time scales that reflect the influence of different processes. This theoretical approach can reproduce the traditional power law of practice – within the experimental resolution of performance data sets - but we hypothesize that this function may prove to be a special and perhaps idealized case of learning.

  4. Power/performance trade-offs in real-time SDRAM command scheduling

    OpenAIRE

    Goossens, S.L.M.; Chandrasekar, K.; Akesson, K.B.; Goossens, K.G.W.

    2016-01-01

    Real-time safety-critical systems should provide hard bounds on an applications’ performance. SDRAM controllers used in this domain should therefore have a bounded worst-case bandwidth, response time, and power consumption. Existing works on real-time SDRAM controllers only consider a narrow range of memory devices, and do not evaluate how their schedulers’ performance varies across memory generations, nor how the scheduling algorithm influences power usage. The extent to which the number of ...

  5. Programming real-time executives in higher order language

    Science.gov (United States)

    Foudriat, E. C.

    1982-01-01

    Methods by which real-time executive programs can be implemented in a higher order language are discussed, using HAL/S and Path Pascal languages as program examples. Techniques are presented by which noncyclic tasks can readily be incorporated into the executive system. Situations are shown where the executive system can fail to meet its task scheduling and yet be able to recover either by rephasing the clock or stacking the information for later processing. The concept of deadline processing is shown to enable more effective mixing of time and information synchronized systems.

  6. Real-Time Reactive Power Distribution in Microgrids by Dynamic Programing

    DEFF Research Database (Denmark)

    Levron, Yoash; Beck, Yuval; Katzir, Liran

    2017-01-01

    In this paper a new real-time optimization method for reactive power distribution in microgrids is proposed. The method enables location of a globally optimal distribution of reactive power under normal operating conditions. The method exploits the typical compact structure of microgrids to obtain...... combination of reactive powers, by means of dynamic programming. Since every single step involves a one-dimensional problem, the complexity of the solution is only linear with the number of clusters, and as a result, a globally optimal solution may be obtained in real time. The paper includes the results...

  7. The Times Higher Education Ranking Product: Visualising Excellence through Media

    Science.gov (United States)

    Stack, Michelle L.

    2013-01-01

    This paper will examine the Times Higher Education's (THE) World University Rankings as a corporate media product. A number of empirical studies have critiqued the methodology of the THE, yet individuals, Higher Education Institutions (HEIs) and governments continue to use them for decision-making. This paper analyses the influence of…

  8. Fuzzy logic based power-efficient real-time multi-core system

    CERN Document Server

    Ahmed, Jameel; Najam, Shaheryar; Najam, Zohaib

    2017-01-01

    This book focuses on identifying the performance challenges involved in computer architectures, optimal configuration settings and analysing their impact on the performance of multi-core architectures. Proposing a power and throughput-aware fuzzy-logic-based reconfiguration for Multi-Processor Systems on Chip (MPSoCs) in both simulation and real-time environments, it is divided into two major parts. The first part deals with the simulation-based power and throughput-aware fuzzy logic reconfiguration for multi-core architectures, presenting the results of a detailed analysis on the factors impacting the power consumption and performance of MPSoCs. In turn, the second part highlights the real-time implementation of fuzzy-logic-based power-efficient reconfigurable multi-core architectures for Intel and Leone3 processors. .

  9. A Dialogue between Partnership and Feminism: Deconstructing Power and Exclusion in Higher Education

    Science.gov (United States)

    Mercer-Mapstone, Lucy; Mercer, Gina

    2018-01-01

    Students as partners (SaP) has seen an increase in focus as an area of active student engagement in higher education. Many complexities and challenges have been shared in this evolving field regarding inclusivity and power. We discuss, in this dialogue, insights that can be uncovered by exploring SaP through a feminist lens--illuminating the fact…

  10. Wind power and market power in competitive markets

    International Nuclear Information System (INIS)

    Twomey, Paul; Neuhoff, Karsten

    2010-01-01

    Average market prices for intermittent generation technologies are lower than for conventional generation. This has a technical reason but can be exaggerated in the presence of market power. When there is much wind smaller amounts of conventional generation technologies are required, and prices are lower, while at times of little wind prices are higher. This effect reflects the value of different generation technologies to the system. But under conditions of market power, conventional generators with market power can further depress the prices if they have to buy back energy at times of large wind output and can increase prices if they have to sell additional power at times of little wind output. This greatly exaggerates the effect. Forward contracting does not reduce the effect. An important consequence is that allowing market power profit margins as a support mechanism for generation capacity investment is not a technologically neutral policy.

  11. Research and higher education background of the Paks Nuclear Power Plant, Hungary. Past and present

    International Nuclear Information System (INIS)

    Csom, Gy.

    2002-01-01

    The connection of the Paks Nuclear Power Plant, Hungary, with research and development as well as with higher education is discussed. The main research areas include reactor physics, thermohydraulics, radiochemistry and radiochemical analysis, electronics and nuclear instruments, computers, materials science. The evolution of relations with higher education in Hungary and the PNPP is presented, before and after the installation of the various units. (R.P.)

  12. Comparison of power pulses from homogeneous and time-average-equivalent models

    International Nuclear Information System (INIS)

    De, T.K.; Rouben, B.

    1995-01-01

    The time-average-equivalent model is an 'instantaneous' core model designed to reproduce the same three dimensional power distribution as that generated by a time-average model. However it has been found that the time-average-equivalent model gives a full-core static void reactivity about 8% smaller than the time-average or homogeneous models. To investigate the consequences of this difference in static void reactivity in time dependent calculations, simulations of the power pulse following a hypothetical large-loss-of-coolant accident were performed with a homogeneous model and compared with the power pulse from the time-average-equivalent model. The results show that there is a much smaller difference in peak dynamic reactivity than in static void reactivity between the two models. This is attributed to the fact that voiding is not complete, but also to the retardation effect of the delayed-neutron precursors on the dynamic flux shape. The difference in peak reactivity between the models is 0.06 milli-k. The power pulses are essentially the same in the two models, because the delayed-neutron fraction in the time-average-equivalent model is lower than in the homogeneous model, which compensates for the lower void reactivity in the time-average-equivalent model. (author). 1 ref., 5 tabs., 9 figs

  13. Eigenstates of the higher power of the annihilation operator of two-parameter deformed harmonic oscillator

    International Nuclear Information System (INIS)

    Wang Jisuo; Sun Changyong; He Jinyu

    1996-01-01

    The eigenstates of the higher power of the annihilation operator a qs k (k≥3) of the two-parameter deformed harmonic oscillator are constructed. Their completeness is demonstrated in terms of the qs-integration

  14. A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation

    Science.gov (United States)

    Diosady, Laslo T.; Murman, Scott M.

    2018-01-01

    A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.

  15. Three-Phase Time-Multiplexed Planar Power Transmission to Distributed Implants.

    Science.gov (United States)

    Lee, Byunghun; Ahn, Dukju; Ghovanloo, Maysam

    2016-03-01

    A platform has been presented for wireless powering of receivers (Rx's) that are arbitrarily distributed over a large area. A potential application could be powering of small Rx implants, distributed over large areas of the brain. The transmitter (Tx) consists of three overlapping layers of hexagonal planar spiral coils (hex-PSC) that are horizontally shifted to provide the strongest and most homogeneous electromagnetic flux coverage. The three-layer hex-PSC array is driven by a three-phase time-division-multiplexed power Tx that takes the advantage of the carrier phase shift, coil geometries, and Rx time constant to homogeneously power the arbitrarily distributed Rx's regardless of their misalignments. The functionality of the proposed three-phase power transmission concept has been verified in a detailed scaled-up high-frequency structure simulator Advanced Design System simulation model and measurement setup, and compared with a conventional Tx. The new Tx delivers 5.4 mW to each Rx and achieves, on average, 5.8% power transfer efficiency to the Rx at the worst case 90° angular misalignment, compared with 1.4% by the conventional Tx.

  16. Four-level time decomposition quasi-static power flow and successive disturbances analysis. [Power system disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, S M [Nikola Tesla Inst., Belgrade (YU)

    1990-01-01

    This paper presents a model and an appropriate numerical procedure for a four-level time decomposition quasi-static power flow and successive disturbances analysis of power systems. The analysis consists of the sequential computation of the zero, primary, secondary and tertiary quasi-static states and of the estimation of successive structural disturbances during the 1200 s dynamics after a structural disturbance. The model is developed by detailed inspection of the time decomposition characteristics of automatic protection and control devices. Adequate speed of the numerical procedure is attained by a specific application of the inversion matrix lemma and the decoupled model constant coefficient matrices. The four-level time decomposition quasi-static method is intended for security and emergency analysis. (author).

  17. Low-Power Amplifier-Discriminators for High Time Resolution Detection

    CERN Document Server

    Despeisse, M; Anghinolfi, F; Tiuraniemi, S; Osmic, F; Riedler, P; Kluge, A; Ceccucci, A

    2009-01-01

    Low-power amplifier-discriminators based on a so-called NINO architecture have been developed with high time resolution for the readout of radiation detectors. Two different circuits were integrated in the NINO13 chip, processed in IBM 130 nm CMOS technology. The LCO version (Low Capacitance and consumption Optimization) was designed for potential use as front-end electronics in the Gigatracker of the NA62 experiment at CERN. It was developed as pixel readout for solid-state pixel detectors to permit minimum ionizing particle detection with less than 180 ps rms resolution per pixel on the output pulse, for power consumption below 300 mu W per pixel. The HCO version (High Capacitance Optimization) was designed with 4 mW power consumption per channel to provide timing resolution below 20 ps rms on the output pulse, for charges above 10 fC. Results presented show the potential of the LCO and HCO circuits for the precise timing readout of solid-state detectors, vacuum tubes or gas detectors, for applications in h...

  18. Time as the Fourth Dimension in the Globalization of Higher Education

    Science.gov (United States)

    Walker, Judith

    2009-01-01

    This paper calls for an analysis of time to be integrated into the theories on the globalization of higher education. Specifically, the author argues that academic capitalism, fuelled by globalization, has led to changes in the university visible in time/space compression, time acceleration, the reification of time and our internalization of the…

  19. Optimal Time Allocation in Backscatter Assisted Wireless Powered Communication Networks

    Science.gov (United States)

    Lyu, Bin; Yang, Zhen; Gui, Guan; Sari, Hikmet

    2017-01-01

    This paper proposes a wireless powered communication network (WPCN) assisted by backscatter communication (BackCom). This model consists of a power station, an information receiver and multiple users that can work in either BackCom mode or harvest-then-transmit (HTT) mode. The time block is mainly divided into two parts corresponding to the data backscattering and transmission periods, respectively. The users first backscatter data to the information receiver in time division multiple access (TDMA) during the data backscattering period. When one user works in the BackCom mode, the other users harvest energy from the power station. During the data transmission period, two schemes, i.e., non-orthogonal multiple access (NOMA) and TDMA, are considered. To maximize the system throughput, the optimal time allocation policies are obtained. Simulation results demonstrate the superiority of the proposed model. PMID:28587171

  20. Part-Time Higher Education in English Colleges: Adult Identities in Diminishing Spaces

    Science.gov (United States)

    Esmond, Bill

    2015-01-01

    Adult participation in higher education has frequently entailed mature students studying part time in lower-ranked institutions. In England, higher education policies have increasingly emphasised higher education provision in vocational further education colleges, settings which have extensive adult traditions but which mainly teach…

  1. Time in powers of ten natural phenomena and their timescales

    CERN Document Server

    't Hooft, Gerard

    2014-01-01

    In this richly illustrated book, Nobel Laureate Gerard 't Hooft and Theoretical Physicist Stefan Vandoren describe the enormous diversity of natural phenomena that take place at different time scales. In the tradition of the bestseller Powers of Ten , the authors zoom in and out in time, each step with a factor of ten. Starting from one second, time scales are enlarged until processes are reached that take much longer than the age of the universe. After the largest possible eternities, the reader is treated to the shortest and fastest phenomena known. Then the authors increase with powers of t

  2. Modernization of turbines in fossil and nuclear power plants

    International Nuclear Information System (INIS)

    Harig, T.; Oeynhausen, H.

    2004-01-01

    Steam turbine power plants have a big share in power generation world-wide. In view of their age structure, they offer the biggest potential for increasing power plant performance, availability and environmental protection. Modernisation and replacement of key components by improved components will reduce fuel consumption and improve power plant performance by higher capacity, higher power, shorter start-up and shutdown times, and reduced standstill times. Modern steam turbine bladings will result in further improvements without additional fuel consumption. (orig.)

  3. Power Distance in Online Learning: Experience of Chinese Learners in U.S. Higher Education

    Science.gov (United States)

    Zhang, Yi (Leaf)

    2013-01-01

    The purpose of this research study was to explore the influence of Confucian-heritage culture on Chinese learners' online learning and engagement in online discussion in U.S. higher education. More specifically, this research studied Chinese learners' perceptions of power distance and its impact on their interactions with instructors and peers in…

  4. Mitigating Space Weather Impacts on the Power Grid in Real-Time: Applying 3-D EarthScope Magnetotelluric Data to Forecasting Reactive Power Loss in Power Transformers

    Science.gov (United States)

    Schultz, A.; Bonner, L. R., IV

    2017-12-01

    Current efforts to assess risk to the power grid from geomagnetic disturbances (GMDs) that result in geomagnetically induced currents (GICs) seek to identify potential "hotspots," based on statistical models of GMD storm scenarios and power distribution grounding models that assume that the electrical conductivity of the Earth's crust and mantle varies only with depth. The NSF-supported EarthScope Magnetotelluric (MT) Program operated by Oregon State University has mapped 3-D ground electrical conductivity structure across more than half of the continental US. MT data, the naturally occurring time variations in the Earth's vector electric and magnetic fields at ground level, are used to determine the MT impedance tensor for each site (the ratio of horizontal vector electric and magnetic fields at ground level expressed as a complex-valued frequency domain quantity). The impedance provides information on the 3-D electrical conductivity structure of the Earth's crust and mantle. We demonstrate that use of 3-D ground conductivity information significantly improves the fidelity of GIC predictions over existing 1-D approaches. We project real-time magnetic field data streams from US Geological Survey magnetic observatories into a set of linear filters that employ the impedance data and that generate estimates of ground level electric fields at the locations of MT stations. The resulting ground electric fields are projected to and integrated along the path of power transmission lines. This serves as inputs to power flow models that represent the power transmission grid, yielding a time-varying set of quasi-real-time estimates of reactive power loss at the power transformers that are critical infrastructure for power distribution. We demonstrate that peak reactive power loss and hence peak risk for transformer damage from GICs does not necessarily occur during peak GMD storm times, but rather depends on the time-evolution of the polarization of the GMD's inducing fields

  5. FPGA-based real-time simulation of power converters of renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Kokenyesi, Tamas; Varjasi, Istvan [Budapest University of Technology and Economics, Department of Automation and Applied Informatics (Hungary)], e-mail: kokenyesi.tamas@gmail.com, email: varjasi@aut.bme.hu

    2011-07-01

    This paper presents a hardware-in-the-loop testing (HIL) approach based on a field programmable gate array (FPGA) real-time simulation with real measured signals designed to reduce the cost and time for testing the main circuit of a power converter significantly. This method allows the control unit to measure its outputs on the same signal level in a completely transparent way, unlike other computer based simulation methods. As an example, a simulator for a three-phase inverter used for DC/AC conversion or frequency control is described and the simulated network illustrated. The calculation procedure and relative equations are also detailed, with simulation parameters and some measurement results being presented. It was found that the main advantage of this method is speed, which was only limited by the actual capabilities of the FPGA used. This method can be applied to a wide variety of analog circuits, reducing time to market. More complex circuits and higher frequencies could be simulated in the future with the evolution of FPGAs.

  6. Calibration of higher eigenmodes of cantilevers

    International Nuclear Information System (INIS)

    Labuda, Aleksander; Kocun, Marta; Walsh, Tim; Meinhold, Jieh; Proksch, Tania; Meinhold, Waiman; Anderson, Caleb; Proksch, Roger; Lysy, Martin

    2016-01-01

    A method is presented for calibrating the higher eigenmodes (resonant modes) of atomic force microscopy cantilevers that can be performed prior to any tip-sample interaction. The method leverages recent efforts in accurately calibrating the first eigenmode by providing the higher-mode stiffness as a ratio to the first mode stiffness. A one-time calibration routine must be performed for every cantilever type to determine a power-law relationship between stiffness and frequency, which is then stored for future use on similar cantilevers. Then, future calibrations only require a measurement of the ratio of resonant frequencies and the stiffness of the first mode. This method is verified through stiffness measurements using three independent approaches: interferometric measurement, AC approach-curve calibration, and finite element analysis simulation. Power-law values for calibrating higher-mode stiffnesses are reported for several cantilever models. Once the higher-mode stiffnesses are known, the amplitude of each mode can also be calibrated from the thermal spectrum by application of the equipartition theorem.

  7. Calibration of higher eigenmodes of cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Labuda, Aleksander; Kocun, Marta; Walsh, Tim; Meinhold, Jieh; Proksch, Tania; Meinhold, Waiman; Anderson, Caleb; Proksch, Roger [Asylum Research, an Oxford Instruments Company, Santa Barbara, California 93117 (United States); Lysy, Martin [Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2016-07-15

    A method is presented for calibrating the higher eigenmodes (resonant modes) of atomic force microscopy cantilevers that can be performed prior to any tip-sample interaction. The method leverages recent efforts in accurately calibrating the first eigenmode by providing the higher-mode stiffness as a ratio to the first mode stiffness. A one-time calibration routine must be performed for every cantilever type to determine a power-law relationship between stiffness and frequency, which is then stored for future use on similar cantilevers. Then, future calibrations only require a measurement of the ratio of resonant frequencies and the stiffness of the first mode. This method is verified through stiffness measurements using three independent approaches: interferometric measurement, AC approach-curve calibration, and finite element analysis simulation. Power-law values for calibrating higher-mode stiffnesses are reported for several cantilever models. Once the higher-mode stiffnesses are known, the amplitude of each mode can also be calibrated from the thermal spectrum by application of the equipartition theorem.

  8. Shorter Perceived Outpatient MRI Wait Times Associated With Higher Patient Satisfaction.

    Science.gov (United States)

    Holbrook, Anna; Glenn, Harold; Mahmood, Rabia; Cai, Qingpo; Kang, Jian; Duszak, Richard

    2016-05-01

    The aim of this study was to assess differences in perceived versus actual wait times among patients undergoing outpatient MRI examinations and to correlate those times with patient satisfaction. Over 15 weeks, 190 patients presenting for outpatient MR in a radiology department in which "patient experience" is one of the stated strategic priorities were asked to (1) estimate their wait times for various stages in the imaging process and (2) state their satisfaction with their imaging experience. Perceived times were compared with actual electronic time stamps. Perceived and actual times were compared and correlated with standardized satisfaction scores using Kendall τ correlation. The mean actual wait time between patient arrival and examination start was 53.4 ± 33.8 min, whereas patients perceived a mean wait time of 27.8 ± 23.1 min, a statistically significant underestimation of 25.6 min (P perceived wait times at all points during patient encounters were correlated with higher satisfaction scores (P perceived and actual wait times were both correlated with higher satisfaction scores. As satisfaction surveys play a larger role in an environment of metric transparency and value-based payments, better understanding of such factors will be increasingly important. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  9. Intersection local times, loop soups and permanental Wick powers

    CERN Document Server

    Jan, Yves Le; Rosen, Jay

    2017-01-01

    Several stochastic processes related to transient Lévy processes with potential densities u(x,y)=u(y-x), that need not be symmetric nor bounded on the diagonal, are defined and studied. They are real valued processes on a space of measures \\mathcal{V} endowed with a metric d. Sufficient conditions are obtained for the continuity of these processes on (\\mathcal{V},d). The processes include n-fold self-intersection local times of transient Lévy processes and permanental chaoses, which are `loop soup n-fold self-intersection local times' constructed from the loop soup of the Lévy process. Loop soups are also used to define permanental Wick powers, which generalizes standard Wick powers, a class of n-th order Gaussian chaoses. Dynkin type isomorphism theorems are obtained that relate the various processes. Poisson chaos processes are defined and permanental Wick powers are shown to have a Poisson chaos decomposition. Additional properties of Poisson chaos processes are studied and a martingale extension is obt...

  10. Detecting and characterising ramp events in wind power time series

    International Nuclear Information System (INIS)

    Gallego, Cristóbal; Cuerva, Álvaro; Costa, Alexandre

    2014-01-01

    In order to implement accurate models for wind power ramp forecasting, ramps need to be previously characterised. This issue has been typically addressed by performing binary ramp/non-ramp classifications based on ad-hoc assessed thresholds. However, recent works question this approach. This paper presents the ramp function, an innovative wavelet- based tool which detects and characterises ramp events in wind power time series. The underlying idea is to assess a continuous index related to the ramp intensity at each time step, which is obtained by considering large power output gradients evaluated under different time scales (up to typical ramp durations). The ramp function overcomes some of the drawbacks shown by the aforementioned binary classification and permits forecasters to easily reveal specific features of the ramp behaviour observed at a wind farm. As an example, the daily profile of the ramp-up and ramp-down intensities are obtained for the case of a wind farm located in Spain

  11. Complex-Vector Time-Delay Control of Power Converters

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Loh, P. C.; Tang, Y.

    2008-01-01

    Precise controlling of current produced by power converters is an important topic that has attracted interests over the last few decades. With the recent proliferation of grid-tied converters where the control of power flow is indirectly governed by the accuracy of current tracking, motivation...... since only a small amount of memory space for storing time-delayed values and simple arithmetic computations are needed for its physical realization. In addition to that, other advantages of the scheme include its abilities to compensate for negative-sequence, load and grid harmonic components using...

  12. Time-zero efficiency of European power derivatives markets

    International Nuclear Information System (INIS)

    Peña, Juan Ignacio; Rodriguez, Rosa

    2016-01-01

    We study time-zero efficiency of electricity derivatives markets. By time-zero efficiency is meant a sequence of prices of derivatives contracts having the same underlying asset but different times to maturity which implies that prices comply with a set of efficiency conditions that prevent profitable time-zero arbitrage opportunities. We investigate whether statistical tests, based on the law of one price, and trading rules, based on price differentials and no-arbitrage violations, are useful for assessing time-zero efficiency. We apply tests and trading rules to daily data of three European power markets: Germany, France and Spain. In the case of the German market, after considering liquidity availability and transaction costs, results are not inconsistent with time-zero efficiency. However, in the case of the French and Spanish markets, limitations in liquidity and representativeness are challenges that prevent definite conclusions. Liquidity in French and Spanish markets should improve by using pricing and marketing incentives. These incentives should attract more participants into the electricity derivatives exchanges and should encourage them to settle OTC trades in clearinghouses. Publication of statistics on prices, volumes and open interest per type of participant should be promoted. - Highlights: •We test time-zero efficiency of derivatives power markets in Germany, France and Spain. •Prices in Germany, considering liquidity and transaction costs, are time-zero efficient. •In France and Spain, limitations in liquidity and representativeness prevent conclusions. •Liquidity in France and Spain should improve by using pricing and marketing incentives. •Incentives attract participants to exchanges and encourage them to settle OTC trades in clearinghouses.

  13. A real time measurement of junction temperature variation in high power IGBT modules for wind power converter application

    DEFF Research Database (Denmark)

    Ghimire, Pramod; Pedersen, Kristian Bonderup; de Vega, Angel Ruiz

    2014-01-01

    This paper presents a real time measurement of on-state forward voltage and estimating the junction temperature for a high power IGBT module during a power converter operation. The power converter is realized as it can be used for a wind turbine system. The peak of the junction temperature is dec...

  14. Power/performance trade-offs in real-time SDRAM command scheduling

    NARCIS (Netherlands)

    Goossens, S.L.M.; Chandrasekar, K.; Akesson, K.B.; Goossens, K.G.W.

    2016-01-01

    Real-time safety-critical systems should provide hard bounds on an applications’ performance. SDRAM controllers used in this domain should therefore have a bounded worst-case bandwidth, response time, and power consumption. Existing works on real-time SDRAM controllers only consider a narrow range

  15. Analysis of Expediency to Apply LCL Model with Source of Higher Harmonics of Current While Investigating Resonance Condition of Power Supply Network

    OpenAIRE

    M. Pavlovsky; A. Shimansky; Z. Fialkovsky

    2004-01-01

    The paper considers a power system model of a plant with one capacitor bank and with one current source of higher harmonics for higher power factor. The laboratory research results of this system and practical application of the proposed model are given in the paper.

  16. Valuing modular nuclear power plants in finite time decision horizon

    International Nuclear Information System (INIS)

    Jain, Shashi; Roelofs, Ferry; Oosterlee, Cornelis W.

    2013-01-01

    Small and medium sized reactors, SMRs, (according to IAEA, ‘small’ refers to reactors with power less than 300 MWe, and ‘medium’ with power less than 700 MWe) are considered as an attractive option for investment in nuclear power plants. SMRs may benefit from flexibility of investment, reduced upfront expenditure, enhanced safety, and easy integration with small sized grids. Large reactors on the other hand have been an attractive option due to the economy of scale. In this paper we focus on the economic impact of flexibility due to modular construction of SMRs. We demonstrate, using real option analysis, the value of sequential modular SMRs. Numerical results under different considerations of decision time, uncertainty in electricity prices, and constraints on the construction of units, are reported for a single large unit and for modular SMRs. - Highlights: ► Real option value of modular construction in finite time decision horizon. ► Stochastic grid method is used to value the real option. ► Decisions in finite time can differ significantly from infinite decision time. ► Decisions depend on length of decision horizon and price volatilities

  17. "The Balancing Act"--Irish Part-Time Undergraduate Students in Higher Education

    Science.gov (United States)

    Darmody, Merike; Fleming, Bairbre

    2009-01-01

    While the numbers of part-time students has increased in higher education in Ireland, little is known about these students or about how they balance their study and other commitments. Drawing on a larger study on Irish students' experiences in higher education, this article attempts to address this gap in research and reports on Irish part-time…

  18. Modelling switching-time effects in high-frequency power conditioning networks

    Science.gov (United States)

    Owen, H. A.; Sloane, T. H.; Rimer, B. H.; Wilson, T. G.

    1979-01-01

    Power transistor networks which switch large currents in highly inductive environments are beginning to find application in the hundred kilohertz switching frequency range. Recent developments in the fabrication of metal-oxide-semiconductor field-effect transistors in the power device category have enhanced the movement toward higher switching frequencies. Models for switching devices and of the circuits in which they are imbedded are required to properly characterize the mechanisms responsible for turning on and turning off effects. Easily interpreted results in the form of oscilloscope-like plots assist in understanding the effects of parametric studies using topology oriented computer-aided analysis methods.

  19. Examining real-time time-dependent density functional theory nonequilibrium simulations for the calculation of electronic stopping power

    Science.gov (United States)

    Yost, Dillon C.; Yao, Yi; Kanai, Yosuke

    2017-09-01

    In ion irradiation processes, electronic stopping power describes the energy transfer rate from the irradiating ion to the target material's electrons. Due to the scarcity and significant uncertainties in experimental electronic stopping power data for materials beyond simple solids, there has been growing interest in the use of first-principles theory for calculating electronic stopping power. In recent years, advances in high-performance computing have opened the door to fully first-principles nonequilibrium simulations based on real-time time-dependent density functional theory (RT-TDDFT). While it has been demonstrated that the RT-TDDFT approach is capable of predicting electronic stopping power for a wide range of condensed matter systems, there has yet to be an exhaustive examination of the physical and numerical approximations involved and their effects on the calculated stopping power. We discuss the results of such a study for crystalline silicon with protons as irradiating ions. We examine the influences of key approximations in RT-TDDFT nonequilibrium simulations on the calculated electronic stopping power, including approximations related to basis sets, finite size effects, exchange-correlation approximation, pseudopotentials, and more. Finally, we propose a simple and efficient correction scheme to account for the contribution from core-electron excitations to the stopping power, as it was found to be significant for large proton velocities.

  20. Timing-based business models for flexibility creation in the electric power sector

    International Nuclear Information System (INIS)

    Helms, Thorsten; Loock, Moritz; Bohnsack, René

    2016-01-01

    Energy policies in many countries push for an increase in the generation of wind and solar power. Along these developments, the balance between supply and demand becomes more challenging as the generation of wind and solar power is volatile, and flexibility of supply and demand becomes valuable. As a consequence, companies in the electric power sector develop new business models that create flexibility through activities of timing supply and demand. Based on an extensive qualitative analysis of interviews and industry research in the energy industry, the paper at hand explores the role of timing-based business models in the power sector and sheds light on the mechanisms of flexibility creation through timing. In particular we distill four ideal-type business models of flexibility creation with timing and reveal how they can be classified along two dimensions, namely costs of multiplicity and intervention costs. We put forward that these business models offer ‘coupled services’, combining resource-centered and service-centered perspectives. This complementary character has important implications for energy policy. - Highlights: •Explores timing-based business models providing flexibility in the energy industry. •Timing-based business models can be classified on two dimensions. •Timing-based business models offer ‘coupled services’. • ‘Coupled services’ couple timing as a service with supply- or demand side valuables. •Policy and managerial implications for energy market design.

  1. Analysis of Expediency to Apply LCL Model with Source of Higher Harmonics of Current While Investigating Resonance Condition of Power Supply Network

    Directory of Open Access Journals (Sweden)

    M. Pavlovsky

    2004-01-01

    Full Text Available The paper considers a power system model of a plant with one capacitor bank and with one current source of higher harmonics for higher power factor. The laboratory research results of this system and practical application of the proposed model are given in the paper.

  2. Safety provision for nuclear power plants during remaining running time

    International Nuclear Information System (INIS)

    Rossnagel, Alexander; Hentschel, Anja

    2012-01-01

    With the phasing-out of the industrial use of nuclear energy for the power generation, the risk of the nuclear power plants has not been eliminated in principle, but only for a limited period of time. Therefore, the remaining nine nuclear power plants must also be used for the remaining ten years according to the state of science and technology. Regulatory authorities must substantiate the safety requirements for each nuclear power plant and enforce these requirements by means of various regulatory measures. The consequences of Fukushima must be included in the assessment of the safety level of nuclear power plants in Germany. In this respect, the regulatory authorities have the important tasks to investigate and assess the security risks as well as to develop instructions and orders.

  3. Real-time modelling and simulation of an active power filter

    Energy Technology Data Exchange (ETDEWEB)

    Beaulieu, S.; Ouhrouche, M. [Quebec Univ., Chicoutimi, PQ (Canada); Dufour, C.; Allaire, P.F. [Opal RT Technologies Inc., Montreal, PQ (Canada)

    2007-07-01

    Power electronics converters generate harmonics and cause electromagnetic compatibility problems. Active power filter (APF) technology has advanced to the point that it can compensate for harmonics in electrical networks and provide reactive power and neutral current in AC networks. This paper presented a contribution in the design of a shunt APF for harmonics compensation in real-time simulation using the RT-LAB software package running on a simple personal computer. Real-time simulations were performed to validate the effectiveness of the proposed model. Several high-tech industries have adopted this tool for rapid control prototyping and for Hardware-in-the-Loop applications. The switching signals of the APF are determined by the hysteresis band current controller. The suitable current reference signals were determined by the algorithm based on synchronous reference frame. Real-time simulation runs showed good performance in harmonics compensation, thus satisfying the requirements of IEEE Standard 519-1992. The rate of total harmonic distortion for the source current decreased from 30 to 5 per cent. 12 refs., 1 tab., 9 figs.

  4. Planning for Higher Oil Prices : Power Sector Impact in Latin America and the Caribbean

    OpenAIRE

    Yépez-García, Rigoberto Ariel; San Vicente Portes, Luis; García, Luis Enrique

    2013-01-01

    A scenario with higher oil prices has important implications for diverting from oil-based technologies to renewables, as well as gas, coal, and nuclear alternatives. By 2030, energy demand in Latin America and the Caribbean (LAC) is expected to double from 2008 levels. A key issue is deciding on the most appropriate mix of fuels for power generation, given the various prices of energy sour...

  5. Time-discrete higher order ALE formulations: a priori error analysis

    KAUST Repository

    Bonito, Andrea

    2013-03-16

    We derive optimal a priori error estimates for discontinuous Galerkin (dG) time discrete schemes of any order applied to an advection-diffusion model defined on moving domains and written in the Arbitrary Lagrangian Eulerian (ALE) framework. Our estimates hold without any restrictions on the time steps for dG with exact integration or Reynolds\\' quadrature. They involve a mild restriction on the time steps for the practical Runge-Kutta-Radau methods of any order. The key ingredients are the stability results shown earlier in Bonito et al. (Time-discrete higher order ALE formulations: stability, 2013) along with a novel ALE projection. Numerical experiments illustrate and complement our theoretical results. © 2013 Springer-Verlag Berlin Heidelberg.

  6. Ignition and time-dependent fractional power operation of tokamak reactors

    International Nuclear Information System (INIS)

    Vold, E.L.; Mau, T.K.; Conn, R.W.

    1986-01-01

    The eventual utilization of a tokamak fusion reactor for commercial power necessitates a thorough understanding of the operational requirements at full and fractional power levels and during transitions from one operating level to another. In this study we examine the role of burn control in maintaining the reactor plasma at equilibrium to avoid thermal runaway during fractional power operation. Because these requirements rely so heavily on the assumptions that govern the plasma transport, this study focuses on time-dependent analyses and a comparison of ignition requirements using a range of energy confinement

  7. Higher order mode analysis of the SNS superconducting linac

    CERN Document Server

    Sang Ho Kim; Dong Jeon; Sundelin, R

    2001-01-01

    Higher order modes (HOM's) of monopoles, dipoles, quadrupoles and sextupoles in beta =0.61 and beta =0.81 6-cell superconducting (SC) cavities for the Spallation Neutron Source (SNS) project, have been found up to about 3 GHz and their properties such as R/Q, trapping possibility, etc have been figured out concerning manufacturing imperfection. The main issues of HOM's are beam instabilities (published separately) and HOM induced power especially from TM monopoles. The time structure of SNS beam has three different time scales of pulses, which are micro-pulse, midi-pulse and macropulse. Each time structure will generate resonances. When a mode is near these resonance frequencies, the induced voltage could be large and accordingly the resulting HOM power. In order to understand the effects from such a complex beam time structure on the mode excitation and resulting HOM power, analytic expressions are developed. With these analytic expressions, the induced HOM voltage and HOM power were calculated by assuming e...

  8. Detrended fluctuation analysis based on higher-order moments of financial time series

    Science.gov (United States)

    Teng, Yue; Shang, Pengjian

    2018-01-01

    In this paper, a generalized method of detrended fluctuation analysis (DFA) is proposed as a new measure to assess the complexity of a complex dynamical system such as stock market. We extend DFA and local scaling DFA to higher moments such as skewness and kurtosis (labeled SMDFA and KMDFA), so as to investigate the volatility scaling property of financial time series. Simulations are conducted over synthetic and financial data for providing the comparative study. We further report the results of volatility behaviors in three American countries, three Chinese and three European stock markets by using DFA and LSDFA method based on higher moments. They demonstrate the dynamics behaviors of time series in different aspects, which can quantify the changes of complexity for stock market data and provide us with more meaningful information than single exponent. And the results reveal some higher moments volatility and higher moments multiscale volatility details that cannot be obtained using the traditional DFA method.

  9. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit

    Science.gov (United States)

    Assawaworrarit, Sid; Yu, Xiaofang; Fan, Shanhui

    2017-06-01

    Considerable progress in wireless power transfer has been made in the realm of non-radiative transfer, which employs magnetic-field coupling in the near field. A combination of circuit resonance and impedance transformation is often used to help to achieve efficient transfer of power over a predetermined distance of about the size of the resonators. The development of non-radiative wireless power transfer has paved the way towards real-world applications such as wireless powering of implantable medical devices and wireless charging of stationary electric vehicles. However, it remains a fundamental challenge to create a wireless power transfer system in which the transfer efficiency is robust against the variation of operating conditions. Here we propose theoretically and demonstrate experimentally that a parity-time-symmetric circuit incorporating a nonlinear gain saturation element provides robust wireless power transfer. Our results show that the transfer efficiency remains near unity over a distance variation of approximately one metre, without the need for any tuning. This is in contrast with conventional methods where high transfer efficiency can only be maintained by constantly tuning the frequency or the internal coupling parameters as the transfer distance or the relative orientation of the source and receiver units is varied. The use of a nonlinear parity-time-symmetric circuit should enable robust wireless power transfer to moving devices or vehicles.

  10. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit.

    Science.gov (United States)

    Assawaworrarit, Sid; Yu, Xiaofang; Fan, Shanhui

    2017-06-14

    Considerable progress in wireless power transfer has been made in the realm of non-radiative transfer, which employs magnetic-field coupling in the near field. A combination of circuit resonance and impedance transformation is often used to help to achieve efficient transfer of power over a predetermined distance of about the size of the resonators. The development of non-radiative wireless power transfer has paved the way towards real-world applications such as wireless powering of implantable medical devices and wireless charging of stationary electric vehicles. However, it remains a fundamental challenge to create a wireless power transfer system in which the transfer efficiency is robust against the variation of operating conditions. Here we propose theoretically and demonstrate experimentally that a parity-time-symmetric circuit incorporating a nonlinear gain saturation element provides robust wireless power transfer. Our results show that the transfer efficiency remains near unity over a distance variation of approximately one metre, without the need for any tuning. This is in contrast with conventional methods where high transfer efficiency can only be maintained by constantly tuning the frequency or the internal coupling parameters as the transfer distance or the relative orientation of the source and receiver units is varied. The use of a nonlinear parity-time-symmetric circuit should enable robust wireless power transfer to moving devices or vehicles.

  11. Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power

    DEFF Research Database (Denmark)

    Liu, Haichun; Xu, Can T.; Dumlupinar, Gökhan

    2013-01-01

    We have accomplished deep tissue optical imaging of upconverting nanoparticles at 800 nm, using millisecond single pulse excitation with high peak power. This is achieved by carefully choosing the pulse parameters, derived from time-resolved rate-equation analysis, which result in higher intrinsic...... quantum yield that is utilized by upconverting nanoparticles for generating this near infrared upconversion emission. The pulsed excitation approach thus promises previously unreachable imaging depths and shorter data acquisition times compared with continuous wave excitation, while simultaneously keeping...... therapy and remote activation of biomolecules in deep tissues....

  12. Power generation statistics

    International Nuclear Information System (INIS)

    Kangas, H.

    2001-01-01

    decrease was the short stoppage in February 2001. The power output of the Finnish nuclear power plants during past 12 months was 21.5 TWh, corresponding to 27% of the power consumption. Power generation by combined power and heat generation in Jan. - Feb. 2001 was 5.8 TWh, which is about 3% higher than a year before. Electric power, generated during past 12 months in Finland by combined power and heat generation plants, was 24.8 TWh, the share of district heating plants being less than 13 TWh and that of industry less than 12 TWh. Condensing power generation in Jan. - Feb. 2001 was 1.6 TWh, being about 25% higher than in Jan. - Feb. 2000. This corresponds to about 10% of the power demand in Finland in Jan. - Feb. 2001. The net import of electric power in Jan. - Feb. 2001 was 1.5 TWh, which is 9% lower than in 2000. In Jan. - Feb. 2001 the export of electric power to Sweden was ten times higher than in 2000, being about 200 GWh. The net import of past 12 months was 11.7 TWh

  13. Space-time wind speed forecasting for improved power system dispatch

    KAUST Repository

    Zhu, Xinxin

    2014-02-27

    To support large-scale integration of wind power into electric energy systems, state-of-the-art wind speed forecasting methods should be able to provide accurate and adequate information to enable efficient, reliable, and cost-effective scheduling of wind power. Here, we incorporate space-time wind forecasts into electric power system scheduling. First, we propose a modified regime-switching, space-time wind speed forecasting model that allows the forecast regimes to vary with the dominant wind direction and with the seasons, hence avoiding a subjective choice of regimes. Then, results from the wind forecasts are incorporated into a power system economic dispatch model, the cost of which is used as a loss measure of the quality of the forecast models. This, in turn, leads to cost-effective scheduling of system-wide wind generation. Potential economic benefits arise from the system-wide generation of cost savings and from the ancillary service cost savings. We illustrate the economic benefits using a test system in the northwest region of the United States. Compared with persistence and autoregressive models, our model suggests that cost savings from integration of wind power could be on the scale of tens of millions of dollars annually in regions with high wind penetration, such as Texas and the Pacific northwest. © 2014 Sociedad de Estadística e Investigación Operativa.

  14. Multi-time scale dynamics in power electronics-dominated power systems

    Science.gov (United States)

    Yuan, Xiaoming; Hu, Jiabing; Cheng, Shijie

    2017-09-01

    Electric power infrastructure has recently undergone a comprehensive transformation from electromagnetics to semiconductors. Such a development is attributed to the rapid growth of power electronic converter applications in the load side to realize energy conservation and on the supply side for renewable generations and power transmissions using high voltage direct current transmission. This transformation has altered the fundamental mechanism of power system dynamics, which demands the establishment of a new theory for power system control and protection. This paper presents thoughts on a theoretical framework for the coming semiconducting power systems.

  15. The power of reachability testing for timed automata

    DEFF Research Database (Denmark)

    Aceto, Luca; Bouyer, Patricia; Burgueno, A.

    2003-01-01

    The computational engine of the verification tool UPPAAL consists of a collection of efficient algorithms for the analysis of reachability properties of systems. Model-checking of properties other than plain reachability ones may currently be carried out in such a tool as follows. Given a propert...... be reached. Finally, the property language characterizing the power of reachability testing is used to provide a definition of characteristic properties with respect to a timed version of the ready simulation preorder, for nodes of tau-free, deterministic timed automata....

  16. A Systematic Multi-Time Scale Solution for Regional Power Grid Operation

    Science.gov (United States)

    Zhu, W. J.; Liu, Z. G.; Cheng, T.; Hu, B. Q.; Liu, X. Z.; Zhou, Y. F.

    2017-10-01

    Many aspects need to be taken into consideration in a regional grid while making schedule plans. In this paper, a systematic multi-time scale solution for regional power grid operation considering large scale renewable energy integration and Ultra High Voltage (UHV) power transmission is proposed. In the time scale aspect, we discuss the problem from month, week, day-ahead, within-day to day-behind, and the system also contains multiple generator types including thermal units, hydro-plants, wind turbines and pumped storage stations. The 9 subsystems of the scheduling system are described, and their functions and relationships are elaborated. The proposed system has been constructed in a provincial power grid in Central China, and the operation results further verified the effectiveness of the system.

  17. Life time of nuclear power plants and new types of reactors

    International Nuclear Information System (INIS)

    2003-05-01

    This report, realized by the Evaluation Parliamentary Office of scientific and technological choices, aims to answer simple but fundamental questions for the french electric power production. What are the phenomena which may limit the exploitation time of nuclear power plants? How can we fight against the aging, at which cost and with which safety? The first chapter presents the management of the nuclear power plants life time, an essential element of the park optimization but not a sufficient element. The second chapter details the EPR and the other reactors for 2015 as a bond between the today and tomorrow parks. The last chapter deals with the necessity of efforts in the research and development to succeed in 2035 and presents other reactors in project. (A.L.B.)

  18. Investigation of the delay time distribution of high power microwave surface flashover

    Science.gov (United States)

    Foster, J.; Krompholz, H.; Neuber, A.

    2011-01-01

    Characterizing and modeling the statistics associated with the initiation of gas breakdown has proven to be difficult due to a variety of rather unexplored phenomena involved. Experimental conditions for high power microwave window breakdown for pressures on the order of 100 to several 100 torr are complex: there are little to no naturally occurring free electrons in the breakdown region. The initial electron generation rate, from an external source, for example, is time dependent and so is the charge carrier amplification in the increasing radio frequency (RF) field amplitude with a rise time of 50 ns, which can be on the same order as the breakdown delay time. The probability of reaching a critical electron density within a given time period is composed of the statistical waiting time for the appearance of initiating electrons in the high-field region and the build-up of an avalanche with an inherent statistical distribution of the electron number. High power microwave breakdown and its delay time is of critical importance, since it limits the transmission through necessary windows, especially for high power, high altitude, low pressure applications. The delay time distribution of pulsed high power microwave surface flashover has been examined for nitrogen and argon as test gases for pressures ranging from 60 to 400 torr, with and without external UV illumination. A model has been developed for predicting the discharge delay time for these conditions. The results provide indications that field induced electron generation, other than standard field emission, plays a dominant role, which might be valid for other gas discharge types as well.

  19. Novel algorithm and MATLAB-based program for automated power law analysis of single particle, time-dependent mean-square displacement

    Science.gov (United States)

    Umansky, Moti; Weihs, Daphne

    2012-08-01

    In many physical and biophysical studies, single-particle tracking is utilized to reveal interactions, diffusion coefficients, active modes of driving motion, dynamic local structure, micromechanics, and microrheology. The basic analysis applied to those data is to determine the time-dependent mean-square displacement (MSD) of particle trajectories and perform time- and ensemble-averaging of similar motions. The motion of particles typically exhibits time-dependent power-law scaling, and only trajectories with qualitatively and quantitatively comparable MSD should be ensembled. Ensemble averaging trajectories that arise from different mechanisms, e.g., actively driven and diffusive, is incorrect and can result inaccurate correlations between structure, mechanics, and activity. We have developed an algorithm to automatically and accurately determine power-law scaling of experimentally measured single-particle MSD. Trajectories can then categorized and grouped according to user defined cutoffs of time, amplitudes, scaling exponent values, or combinations. Power-law fits are then provided for each trajectory alongside categorized groups of trajectories, histograms of power laws, and the ensemble-averaged MSD of each group. The codes are designed to be easily incorporated into existing user codes. We expect that this algorithm and program will be invaluable to anyone performing single-particle tracking, be it in physical or biophysical systems. Catalogue identifier: AEMD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 25 892 No. of bytes in distributed program, including test data, etc.: 5 572 780 Distribution format: tar.gz Programming language: MATLAB (MathWorks Inc.) version 7.11 (2010b) or higher, program

  20. Nuclear power plant monitoring using real-time learning neural network

    International Nuclear Information System (INIS)

    Nabeshima, Kunihiko; Tuerkcan, E.; Ciftcioglu, O.

    1994-01-01

    In the present research, artificial neural network (ANN) with real-time adaptive learning is developed for the plant wide monitoring of Borssele Nuclear Power Plant (NPP). Adaptive ANN learning capability is integrated to the monitoring system so that robust and sensitive on-line monitoring is achieved in real-time environment. The major advantages provided by ANN are that system modelling is formed by means of measurement information obtained from a multi-output process system, explicit modelling is not required and the modelling is not restricted to linear systems. Also ANN can respond very fast to anomalous operational conditions. The real-time ANN learning methodology with adaptive real-time monitoring capability is described below for the wide-range and plant-wide data from an operating nuclear power plant. The layered neural network with error backpropagation algorithm for learning has three layers. The network type is auto-associative, inputs and outputs are exactly the same, using 12 plant signals. (author)

  1. Dynamic optimum dead time in piezoelectric transformer-based switch-mode power supplies

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh; Andersen, Thomas; Andersen, Michael A. E.

    2016-01-01

    to charge and discharge the input capacitance of piezoelectric transformers in order to achieve zero-voltage switching. This paper proposes a method for detecting the optimum dead time in piezoelectric transformer-based switch-mode power supplies. The provision of sufficient dead time in every cycle......Soft switching is required to attain high efficiency in high-frequency power converters. Piezoelectric transformerbased converters can benefit from soft switching in terms of significantly diminished switching losses and stresses. Adequate dead time is needed in order to deliver sufficient energy...

  2. Power Forecasting of Combined Heating and Cooling Systems Based on Chaotic Time Series

    Directory of Open Access Journals (Sweden)

    Liu Hai

    2015-01-01

    Full Text Available Theoretic analysis shows that the output power of the distributed generation system is nonlinear and chaotic. And it is coupled with the microenvironment meteorological data. Chaos is an inherent property of nonlinear dynamic system. A predicator of the output power of the distributed generation system is to establish a nonlinear model of the dynamic system based on real time series in the reconstructed phase space. Firstly, chaos should be detected and quantified for the intensive studies of nonlinear systems. If the largest Lyapunov exponent is positive, the dynamical system must be chaotic. Then, the embedding dimension and the delay time are chosen based on the improved C-C method. The attractor of chaotic power time series can be reconstructed based on the embedding dimension and delay time in the phase space. By now, the neural network can be trained based on the training samples, which are observed from the distributed generation system. The neural network model will approximate the curve of output power adequately. Experimental results show that the maximum power point of the distributed generation system will be predicted based on the meteorological data. The system can be controlled effectively based on the prediction.

  3. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant.

    Science.gov (United States)

    Moreno-Garcia, Isabel M; Palacios-Garcia, Emilio J; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J; Varo-Martinez, Marta; Real-Calvo, Rafael J

    2016-05-26

    There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant's components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid.

  4. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant

    Science.gov (United States)

    Moreno-Garcia, Isabel M.; Palacios-Garcia, Emilio J.; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J.; Varo-Martinez, Marta; Real-Calvo, Rafael J.

    2016-01-01

    There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant’s components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid. PMID:27240365

  5. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant

    Directory of Open Access Journals (Sweden)

    Isabel M. Moreno-Garcia

    2016-05-01

    Full Text Available There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant’s components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid.

  6. Operational reliability evaluation of restructured power systems with wind power penetration utilizing reliability network equivalent and time-sequential simulation approaches

    DEFF Research Database (Denmark)

    Ding, Yi; Cheng, Lin; Zhang, Yonghong

    2014-01-01

    In the last two decades, the wind power generation has been rapidly and widely developed in many regions and countries for tackling the problems of environmental pollution and sustainability of energy supply. However, the high share of intermittent and fluctuating wind power production has also...... and reserve provides, fast reserve providers and transmission network in restructured power systems. A contingency management schema for real time operation considering its coupling with the day-ahead market is proposed. The time-sequential Monte Carlo simulation is used to model the chronological...

  7. Chronic pain and praying to a higher power: useful or useless?

    Science.gov (United States)

    Andersson, Gerhard

    2008-06-01

    In the present study a Swedish sample of 118 persons with chronic pain completed online tests on two occasions in association with treatment trials. A three item subscale measuring praying as a coping strategy was derived from the Coping Strategies Questionnaire (CSQ), but adapted to refer to "a higher power" instead of "God". Measures of pain and anxiety/depression were also included. Results revealed significant associations between praying and pain interference and impairment. Praying was also associated with anxiety and depression scores. Results also showed that prayer predicted depression scores at follow-up, and that follow-up prayer was predicted by pain interference at first measurement occasion. Overall, if prayer had any relation with the other variables it was in the negative direction of more distress being associated with more praying both concurrently and prospectively.

  8. Real-time transient stabilization and voltage regulation of power generators with unknown mechanical power input

    International Nuclear Information System (INIS)

    Kenne, Godpromesse; Goma, Raphael; Nkwawo, Homere; Lamnabhi-Lagarrigue, Francoise; Arzande, Amir; Vannier, Jean Claude

    2010-01-01

    A nonlinear adaptive excitation controller is proposed to enhance the transient stability and voltage regulation of synchronous generators with unknown power angle and mechanical power input. The proposed method is based on a standard third-order model of a synchronous generator which requires only information about the physical available measurements of relative angular speed, active electric power, infinite bus and generator terminal voltages. The operating conditions are computed online using the above physical available measurements, the terminal voltage reference value and the estimate of the mechanical power input. The proposed design is therefore capable of providing satisfactory voltage in the presence of unknown variations of the power system operating conditions. Using the concept of sliding mode equivalent control techniques, a robust decentralized adaptive controller which insures the exponential convergence of the outputs to the desired ones, is obtained. Real-time experimental results are reported, comparing the performance of the proposed adaptive nonlinear control scheme to one of the conventional AVR/PSS controller. The high simplicity of the overall adaptive control scheme and its robustness with respect to line impedance variation including critical unbalanced operating condition and temporary turbine fault, constitute the main positive features of the proposed approach.

  9. Real-time transient stabilization and voltage regulation of power generators with unknown mechanical power input

    Energy Technology Data Exchange (ETDEWEB)

    Kenne, Godpromesse, E-mail: gokenne@yahoo.co [Laboratoire d' Automatique et d' Informatique Appliquee (LAIA), Departement de Genie Electrique, Universite de Dschang, B.P. 134 Bandjoun (Cameroon); Goma, Raphael, E-mail: raphael.goma@lss.supelec.f [Laboratoire des Signaux et Systemes (L2S), CNRS-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Nkwawo, Homere, E-mail: homere.nkwawo@iutv.univ-paris13.f [Departement GEII, Universite Paris XIII, 99 Avenue Jean Baptiste Clement, 93430 Villetaneuse (France); Lamnabhi-Lagarrigue, Francoise, E-mail: lamnabhi@lss.supelec.f [Laboratoire des Signaux et Systemes (L2S), CNRS-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Arzande, Amir, E-mail: Amir.arzande@supelec.f [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Vannier, Jean Claude, E-mail: Jean-claude.vannier@supelec.f [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France)

    2010-01-15

    A nonlinear adaptive excitation controller is proposed to enhance the transient stability and voltage regulation of synchronous generators with unknown power angle and mechanical power input. The proposed method is based on a standard third-order model of a synchronous generator which requires only information about the physical available measurements of relative angular speed, active electric power, infinite bus and generator terminal voltages. The operating conditions are computed online using the above physical available measurements, the terminal voltage reference value and the estimate of the mechanical power input. The proposed design is therefore capable of providing satisfactory voltage in the presence of unknown variations of the power system operating conditions. Using the concept of sliding mode equivalent control techniques, a robust decentralized adaptive controller which insures the exponential convergence of the outputs to the desired ones, is obtained. Real-time experimental results are reported, comparing the performance of the proposed adaptive nonlinear control scheme to one of the conventional AVR/PSS controller. The high simplicity of the overall adaptive control scheme and its robustness with respect to line impedance variation including critical unbalanced operating condition and temporary turbine fault, constitute the main positive features of the proposed approach.

  10. A new hybrid nonlinear congruential number generator based on higher functional power of logistic maps

    International Nuclear Information System (INIS)

    Cecen, Songul; Demirer, R. Murat; Bayrak, Coskun

    2009-01-01

    We propose a nonlinear congruential pseudorandom number generator consisting of summation of higher order composition of random logistic maps under certain congruential mappings. We change both bifurcation parameters of logistic maps in the interval of U=[3.5599,4) and coefficients of the polynomials in each higher order composition of terms up to degree d. This helped us to obtain a perfect random decorrelated generator which is infinite and aperiodic. It is observed from the simulation results that our new PRNG has good uniformity and power spectrum properties with very flat white noise characteristics. The results are interesting, new and may have applications in cryptography and in Monte Carlo simulations.

  11. Higher operational safety of nuclear power plants by evaluating the behaviour of operating personnel

    International Nuclear Information System (INIS)

    Mertins, M.; Glasner, P.

    1990-01-01

    In the GDR power reactors have been operated since 1966. Since that time operational experiences of 73 cumulative reactor years have been collected. The behaviour of operating personnel is an essential factor to guarantee the safety of operation of the nuclear power plant. Therefore a continuous analysis of the behaviour of operating personnel has been introduced at the GDR nuclear power plants. In the paper the overall system of the selection, preparation and control of the behaviour of nuclear power plant operating personnel is presented. The methods concerned are based on recording all errors of operating personnel and on analyzing them in order to find out the reasons. The aim of the analysis of reasons is to reduce the number of errors. By a feedback of experiences the nuclear safety of the nuclear power plant can be increased. All data necessary for the evaluation of errors are recorded and evaluated by a computer program. This method is explained thoroughly in the paper. Selected results of error analysis are presented. It is explained how the activities of the personnel are made safer by means of this analysis. Comparisons with other methods are made. (author). 3 refs, 4 figs

  12. Real time test bed development for power system operation, control and cyber security

    Science.gov (United States)

    Reddi, Ram Mohan

    The operation and control of the power system in an efficient way is important in order to keep the system secure, reliable and economical. With advancements in smart grid, several new algorithms have been developed for improved operation and control. These algorithms need to be extensively tested and validated in real time before applying to the real electric power grid. This work focuses on the development of a real time test bed for testing and validating power system control algorithms, hardware devices and cyber security vulnerability. The test bed developed utilizes several hardware components including relays, phasor measurement units, phasor data concentrator, programmable logic controllers and several software tools. Current work also integrates historian for power system monitoring and data archiving. Finally, two different power system test cases are simulated to demonstrate the applications of developed test bed. The developed test bed can also be used for power system education.

  13. Crunch time for nuclear power

    International Nuclear Information System (INIS)

    Edwards, Rob.

    1994-01-01

    The Federal Republic of Germany, one of the most advanced nations, technically has a thriving nuclear power industry. However there is stiff opposition to nuclear power from political parties and environmental groups. General elections due to be held in mid October hold the future of the nuclear industry in the balance. If the present opposition party comes to power, it is committed to a policy of phasing out nuclear power completely. At the centre of the political uproar is the Gorleben ''interim store'' which is intended to house Germany's spent fuel for at least the next forty years. The nuclear industry must resolve the issue of nuclear waste disposal to the voters' satisfaction if it is to have a viable future. (UK)

  14. Generation of floor spectra compatible time histories for equipment seismic qualification in nuclear power plants

    International Nuclear Information System (INIS)

    Shyu, Y.-S.; Luh, Gary G.; Blum, Arie

    2004-01-01

    This paper proposes a procedure for generating floor response spectra compatible time histories used for equipment seismic qualification in nuclear power plants. From the 84th percentile power spectrum density function of an earthquake ensemble of four randomly generated time history motions, a statistically equivalent time history can be obtained by converting the power spectrum density function from the frequency domain into the time domain. With minor modification, if needed, the converted time history will satisfy both the spectral and the power spectrum density enveloping criteria, as required by the USNRC per Revision 2 of the Standard Review Plan, Section 3.7.1. Step-by-step generating procedures and two numerical examples are presented to illustrate the applications of the methodology. (author)

  15. A real time fuzzy logic power management strategy for a fuel cell vehicle

    International Nuclear Information System (INIS)

    Hemi, Hanane; Ghouili, Jamel; Cheriti, Ahmed

    2014-01-01

    Highlights: • We present a real time fuzzy logic power management strategy. • This strategy is applied to hybrid electric vehicle dynamic model. • Three configurations evaluated during a drive cycle. • The hydrogen consumption is analysed for the three configurations. - Abstract: This paper presents real time fuzzy logic controller (FLC) approach used to design a power management strategy for a hybrid electric vehicle and to protect the battery from overcharging during the repetitive braking energy accumulation. The fuel cell (FC) and battery (B)/supercapacitor (SC) are the primary and secondary power sources, respectively. This paper analyzes and evaluates the performance of the three configurations, FC/B, FC/SC and FC/B/SC during real time driving conditions and unknown driving cycle. The MATLAB/Simulink and SimPowerSystems software packages are used to model the electrical and mechanical elements of hybrid vehicles and implement a fuzzy logic strategy

  16. Body lift, drag and power are relatively higher in large-eared than in small-eared bat species.

    Science.gov (United States)

    Håkansson, Jonas; Jakobsen, Lasse; Hedenström, Anders; Johansson, L Christoffer

    2017-10-01

    Bats navigate the dark using echolocation. Echolocation is enhanced by external ears, but external ears increase the projected frontal area and reduce the streamlining of the animal. External ears are thus expected to compromise flight efficiency, but research suggests that very large ears may mitigate the cost by producing aerodynamic lift. Here we compare quantitative aerodynamic measures of flight efficiency of two bat species, one large-eared ( Plecotus auritus ) and one small-eared ( Glossophaga soricina ), flying freely in a wind tunnel. We find that the body drag of both species is higher than previously assumed and that the large-eared species has a higher body drag coefficient, but also produces relatively more ear/body lift than the small-eared species, in line with prior studies on model bats. The measured aerodynamic power of P. auritus was higher than predicted from the aerodynamic model, while the small-eared species aligned with predictions. The relatively higher power of the large-eared species results in lower optimal flight speeds and our findings support the notion of a trade-off between the acoustic benefits of large external ears and aerodynamic performance. The result of this trade-off would be the eco-morphological correlation in bat flight, with large-eared bats generally adopting slow-flight feeding strategies. © 2017 The Author(s).

  17. The peculiarities' study of higher education applicants' employment in pharmaceutical specialties of full-time training

    Directory of Open Access Journals (Sweden)

    A. A. Kotvitska

    2017-08-01

    Full Text Available Employment of applicants of pharmaceutical higher education has both positive and negative impact on the quality of educational services provided by institutions, especially in terms of knowledge and skills acquired by student. Objective is to study peculiarities of higher education employment, full-time training, and features driving them to conclude labor agreements. Materials and methods. During the study, we used juridical and comparative legal methods of analysis. Results. The study has defined the following features of the employment of applicants of higher education in the health care institutions, pharmaceutical enterprises and organizations. The current legislation provides the applicants of higher education enrolled in HEIs for full-time training with a right to make a free choice of the field of study, profession, type of occupation and work. The relationship developed between an applicant and higher education institutions are not to be regarded as an employment relationship. The working under the items of labor agreement for person who combine it with the full-time education is not a part or combination or sharing, and is considered the main place of job. Thus, it stipulates maintenance of records book of the employed worker according to the general procedure. An applicant of higher education has discretion to choose working hours (full- or part-time working day, full- or part-time working week with taking into consideration the HEIs schedule and only in the free time. When full-time operating in frameworks of collective agreement at enterprise, institution, or organization, having accounted peculiarities of operation, non-standardized working day for some positions can be set. The current legislation stipulates possibility of employment for persons without higher pharmaceutical education to the health care institutions on the clearly defined positions. Conclusions.The country authority has created and is providing favorable

  18. Fock representation of the renormalized higher powers of White noise and the centreless Virasoro (or Witt)-Zamolodchikov-w∞*-Lie algebra

    International Nuclear Information System (INIS)

    Accardi, Luigi; Boukas, Andreas

    2008-01-01

    The identification of the *-Lie algebra of the renormalized higher powers of White noise (RHPWN) and the analytic continuation of the second quantized centreless Virasoro (or Witt)-Zamolodchikov-w ∞ *-Lie algebra of conformal field theory and high-energy physics, was recently established on results obtained. In the present paper, we show how the RHPWN Fock kernels must be truncated in order to be positive semi-definite and we obtain a Fock representation of the two algebras. We show that the truncated renormalized higher powers of White noise (TRHPWN) Fock spaces of order ≥2 host the continuous binomial and beta processes

  19. Fuzzy controller for real time supervision of nuclear power reactor

    International Nuclear Information System (INIS)

    Bala Subramanian, R.

    2012-01-01

    Generally nuclear energy provides about 60% of the whole electricity production. A modulation of the nuclear power plants must be able to respond to the demand on the network. The pressurized water nuclear reactor has to yield correctly a load set point. Fundamentally, two parameters are concerned in leading this task to a successful conclusion: the power axial-offset and the control rods position. The focus of this study is the automation of the control of the power axial-offset by adding soluble boron and by minimizing the volume flows through the water pump. It is also important to take into consideration the liquid waste volume. Water or boron is injected into the reactor primary circuit. At the present time this task is still performed manually by an operator, for all previous attempts to automate it failed. That device, sketchily described in the paper, gave rise to the development of a real-time fuzzy controller for the power axial-offset and the control rods insertion in a pressurized water reactor (PWR). The fuzzy controller, which is the main subject of the paper, expresses more naturally the human expertise, thus avoiding the previous issue of empirical tunings. It was implemented in simulation using Matlab-Simulink on a Sun workstation. Two realistic tests discussed show that the fuzzy controller runs as efficiently as an expert operator does

  20. A Design Methodology for Power-efficient Continuous-time Sigma-Delta A/D Converters

    DEFF Research Database (Denmark)

    Nielsen, Jannik Hammel; Bruun, Erik

    2003-01-01

    In this paper we present a design methodology for optimizing the power consumption of continuous-time (CT) ΣΔ A/D converters. A method for performance prediction for ΣΔ A/D converters is presented. Estimation of analog and digital power consumption is derived and employed to predict the most power...... bits performance. Expected power consumption for the prototype is approx. 170 μW....

  1. Univariate Time Series Prediction of Solar Power Using a Hybrid Wavelet-ARMA-NARX Prediction Method

    Energy Technology Data Exchange (ETDEWEB)

    Nazaripouya, Hamidreza; Wang, Yubo; Chu, Chi-Cheng; Pota, Hemanshu; Gadh, Rajit

    2016-05-02

    This paper proposes a new hybrid method for super short-term solar power prediction. Solar output power usually has a complex, nonstationary, and nonlinear characteristic due to intermittent and time varying behavior of solar radiance. In addition, solar power dynamics is fast and is inertia less. An accurate super short-time prediction is required to compensate for the fluctuations and reduce the impact of solar power penetration on the power system. The objective is to predict one step-ahead solar power generation based only on historical solar power time series data. The proposed method incorporates discrete wavelet transform (DWT), Auto-Regressive Moving Average (ARMA) models, and Recurrent Neural Networks (RNN), while the RNN architecture is based on Nonlinear Auto-Regressive models with eXogenous inputs (NARX). The wavelet transform is utilized to decompose the solar power time series into a set of richer-behaved forming series for prediction. ARMA model is employed as a linear predictor while NARX is used as a nonlinear pattern recognition tool to estimate and compensate the error of wavelet-ARMA prediction. The proposed method is applied to the data captured from UCLA solar PV panels and the results are compared with some of the common and most recent solar power prediction methods. The results validate the effectiveness of the proposed approach and show a considerable improvement in the prediction precision.

  2. Green computing: power optimisation of vfi-based real-time multiprocessor dataflow applications

    NARCIS (Netherlands)

    Ahmad, W.; Holzenspies, P.K.F.; Stoelinga, Mariëlle Ida Antoinette; van de Pol, Jan Cornelis

    2015-01-01

    Execution time is no longer the only performance metric for computer systems. In fact, a trend is emerging to trade raw performance for energy savings. Techniques like Dynamic Power Management (DPM, switching to low power state) and Dynamic Voltage and Frequency Scaling (DVFS, throttling processor

  3. Nuclear Power Prospects

    International Nuclear Information System (INIS)

    Cintra do Prado, L.

    1966-01-01

    The present trend is to construct larger plants: the average power of the plants under construction at present, including prototypes, is 300 MW(e), i.e. three times higher than in the case of plants already in operation. Examples of new large-scale plants ares (a) Wylfa, Anglesey, United Kingdom - scheduled power of 1180 MW(e) (800 MW to be installed by 1967), to be completed in 1968; (b) ''Dungeness B'', United Kingdom - scheduled power of 1200 MW(e); (c) second unit for United States Dresden power plant - scheduled power of 715 MW(e) minimum to almost 800 MW(e). Nuclear plants on the whole serve the same purpose as conventional thermal plants

  4. Short-time action electric generators to power physical devices

    International Nuclear Information System (INIS)

    Glebov, I.A.; Kasharskij, Eh.G.; Rutberg, F.G.; Khutoretskij, G.M.

    1982-01-01

    Requirements to be met by power-supply sources of the native electrophysical facilities have been analyzed and trends in designing foreign electric machine units of short-time action have been considered. Specifications of a generator, manufactured in the form of synchronous bipolar turbogenerator with an all-forged rotor with indirect air cooling of the rotor and stator windings are presented. Front parts of the stator winding are additionally fixed using glass-textolite rings, brackets and gaskets. A flywheel, manufactured in the form of all-forged steel cylinder is joined directly with the generator rotor by means of a half-coupling. An acceleration asynchronous engine with a phase rotor of 4 MW nominal capacity is located on the opposite side of the flywheel. The generator peak power is 242 MVxA; power factor = 0.9; energy transferred to the load 5per 1 pulse =00 MJ; the flywheel weight 81 t

  5. Dynamic ADMM for Real-time Optimal Power Flow: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-23

    This paper considers distribution networks featuring distributed energy resources (DERs), and develops a dynamic optimization method to maximize given operational objectives in real time while adhering to relevant network constraints. The design of the dynamic algorithm is based on suitable linearizations of the AC power flow equations, and it leverages the so-called alternating direction method of multipliers (ADMM). The steps of the ADMM, however, are suitably modified to accommodate appropriate measurements from the distribution network and the DERs. With the aid of these measurements, the resultant algorithm can enforce given operational constraints in spite of inaccuracies in the representation of the AC power flows, and it avoids ubiquitous metering to gather the state of non-controllable resources. Optimality and convergence of the propose algorithm are established in terms of tracking of the solution of a convex surrogate of the AC optimal power flow problem.

  6. Application of power spectrum, cepstrum, higher order spectrum and neural network analyses for induction motor fault diagnosis

    Science.gov (United States)

    Liang, B.; Iwnicki, S. D.; Zhao, Y.

    2013-08-01

    The power spectrum is defined as the square of the magnitude of the Fourier transform (FT) of a signal. The advantage of FT analysis is that it allows the decomposition of a signal into individual periodic frequency components and establishes the relative intensity of each component. It is the most commonly used signal processing technique today. If the same principle is applied for the detection of periodicity components in a Fourier spectrum, the process is called the cepstrum analysis. Cepstrum analysis is a very useful tool for detection families of harmonics with uniform spacing or the families of sidebands commonly found in gearbox, bearing and engine vibration fault spectra. Higher order spectra (HOS) (also known as polyspectra) consist of higher order moment of spectra which are able to detect non-linear interactions between frequency components. For HOS, the most commonly used is the bispectrum. The bispectrum is the third-order frequency domain measure, which contains information that standard power spectral analysis techniques cannot provide. It is well known that neural networks can represent complex non-linear relationships, and therefore they are extremely useful for fault identification and classification. This paper presents an application of power spectrum, cepstrum, bispectrum and neural network for fault pattern extraction of induction motors. The potential for using the power spectrum, cepstrum, bispectrum and neural network as a means for differentiating between healthy and faulty induction motor operation is examined. A series of experiments is done and the advantages and disadvantages between them are discussed. It has been found that a combination of power spectrum, cepstrum and bispectrum plus neural network analyses could be a very useful tool for condition monitoring and fault diagnosis of induction motors.

  7. Time Trials Versus Time-to-Exhaustion Tests: Effects on Critical Power, W', and Oxygen-Uptake Kinetics.

    Science.gov (United States)

    Karsten, Bettina; Baker, Jonathan; Naclerio, Fernando; Klose, Andreas; Bianco, Antonino; Nimmerichter, Alfred

    2018-02-01

    To investigate single-day time-to-exhaustion (TTE) and time-trial (TT) -based laboratory tests values of critical power (CP), W prime (W'), and respective oxygen-uptake-kinetic responses. Twelve cyclists performed a maximal ramp test followed by 3 TTE and 3 TT efforts interspersed by 60 min recovery between efforts. Oxygen uptake ( V ˙ O 2 ) was measured during all trials. The mean response time was calculated as a description of the overall [Formula: see text]-kinetic response from the onset to 2 min of exercise. TTE-determined CP was 279 ± 52 W, and TT-determined CP was 276 ± 50 W (P = .237). Values of W' were 14.3 ± 3.4 kJ (TTE W') and 16.5 ± 4.2 kJ (TT W') (P = .028). While a high level of agreement (-12 to 17 W) and a low prediction error of 2.7% were established for CP, for W' limits of agreements were markedly lower (-8 to 3.7 kJ), with a prediction error of 18.8%. The mean standard error for TTE CP values was significantly higher than that for TT CP values (2.4% ± 1.9% vs 1.2% ± 0.7% W). The standard errors for TTE W' and TT W' were 11.2% ± 8.1% and 5.6% ± 3.6%, respectively. The [Formula: see text] response was significantly faster during TT (~22 s) than TTE (~28 s). The TT protocol with a 60-min recovery period offers a valid, time-saving, and less error-filled alternative to conventional and more recent testing methods. Results, however, cannot be transferred to W'.

  8. Term-time Employment and Student Attainment in Higher Education

    Directory of Open Access Journals (Sweden)

    Cath Dennis

    2018-04-01

    Full Text Available The number of UK full-time university students engaging in term-time employment (TTE is rising. Students engaging in TTE have previously been found to achieve less well academically than those who do not. This study aimed to explore patterns of TTE and academic achievement of undergraduates at a large UK higher education institution. Self-reported TTE hours were matched to attainment data for 1304 undergraduate students in levels 1-4 of study (SQCF levels 7-10. The majority of students in TTE (71%, n=621 reported undertaking TTE to cover essential living expenses. Compared to students not undertaking TTE, attainment was significantly better at low levels of TTE (1-10 hours, and only significantly worse when TTE was >30 hours/week. This pattern was magnified when job type was taken into account – students employed in skilled roles for ≤10 hours/week on average attained grades 7% higher than those not in TTE; students working >10 hours/week in unskilled positions showed a mean 1.6% lower grade. The impact of ‘academic potential’ (measured via incoming UCAS tariff was accounted for in the model. The finding that students engaging in some categories of TTE achieve better academic outcomes than their non-employed peers is worthy of further investigation. This study is unable to provide direct evidence of possible causation, but would tentatively suggest that students may benefit from taking on 10 or fewer hours of TTE per week.

  9. The Supply of Part-Time Higher Education in the UK. Research Report

    Science.gov (United States)

    Callender, Claire; Birkbeck, Anne Jamieson; Mason, Geoff

    2010-01-01

    This report explores the supply of part-time higher education in the UK, with particular consideration to the study of part-time undergraduate provision in England. It is the final publication in the series of reports on individual student markets that were commissioned by Universities UK following the publication of the reports on the Future size…

  10. Comparison of the Force-, Velocity- and Power-Time Curves Between the Concentric-Only and Eccentric-Concentric Bench Press Exercises.

    Science.gov (United States)

    Pérez-Castilla, Alejandro; Comfort, Paul; McMahon, John J; Pestaña-Melero, Francisco Luis; García-Ramos, Amador

    2018-01-17

    The aim of this study was to compare the temporal and mechanical variables between the concentric-only and eccentric-concentric bench press (BP) variants. Twenty-one men (age: 22.0±4.2 years, body mass: 73.4±7.7 kg, height: 177.2±8.0 cm; one-repetition maximum [1RM]: 1.12±0.12 kg⋅kg) were evaluated during the concentric-only and eccentric-concentric BP variants using 80% 1RM. Temporal (concentric phase duration, propulsive phase duration, and time to reach the maximum values of force, velocity, and power) and mechanical variables (force, velocity, and power), determined using a linear velocity transducer, were compared between both BP variants. All temporal variables were significantly lower during the eccentric-concentric BP compared to the concentric-only BP (P velocity and power were significantly higher for the eccentric-concentric BP compared to the concentric-only BP (all P velocity (ES: 0.40) and power (ES: 0.41). The stretch-shortening cycle (i.e., eccentric-concentric BP) mainly enhanced force production at the early portion of the concentric phase, but this potentiation effect gradually reduced over the latter part of the movement. Finally, force was higher for the concentric-only BP during 49% of the concentric phase duration. These results suggest that both BP variants should be included during resistance training programs in order to optimize force output at different points of the concentric phase.

  11. Minimization of the external heating power by long fusion power rise-up time for self-ignition access in the helical reactor FFHR2m

    International Nuclear Information System (INIS)

    Mitarai, O.; Sagara, A.; Chikaraishi, H.; Imagawa, S.; Shishkin, A.A.; Motojima, O.

    2006-10-01

    Minimization of the external heating power to access self-ignition is advantageous to increase the reactor design flexibility and to reduce the capital and operating costs of the plasma heating device in a helical reactor. In this work we have discovered that a larger density limit leads to a smaller value of the required confinement enhancement factor, lower density limit margin reduces the external heating power, and over 300 s of the fusion power rise-up time makes it possible to reach a minimized heating power. While the fusion power rise-up time in a tokamak is limited by the OH transformer flux or the current drive capability, any fusion power rise-up time can be employed in a helical reactor for reducing the thermal stresses of the blanket and shields, because the confinement field is generated by the external helical coils. (author)

  12. Application of time-synchronized measurements in power system transmission networks

    CERN Document Server

    Kezunovic, Mladen; Venkatasubramanian, Vaithianathan; Vittal, Vijay

    2014-01-01

    This book illuminates how synchrophasors achieve the monitoring, protection and control optimizations necessary to expand existing power systems to support increasing amounts of renewable and distributed energy resources. The authors describe synchrophasor techniques that can provide operators with better resolution in capturing dynamic behavior of the power grid. The resulting insights support improved real-time decision making in the face of more generation and load uncertainty, as well as interruptions caused by random acts of nature and malicious attacks. Armed with the information in this

  13. Examining the impact of alternative power measures on individual time use in American and Danish couple households

    DEFF Research Database (Denmark)

    Datta Gupta, Nabanita; Stratton, Leslie S.

    2010-01-01

    We exploit time diary data for couple households in Denmark and the United States to examine the impact alternative measures of intrahousehold bargaining power have upon different measures of individual time use. Power measures have traditionally been based on current earnings, but earnings are d...... and significantly associated with `power' than housework time and that education share performs quite well as a measure of power. These results are particularly strong on non-work days and in the United States....... are determined by past/present time use decisions and hence potentially endogenous. More powerful individuals have been hypothesized to spend less time on housework, however, housework time also depends upon relative preferences for home produced goods and relative productivity in home production. Gendered...

  14. Measurements of higher-order mode damping in the PEP-II low-power test cavity

    International Nuclear Information System (INIS)

    Rimmer, R.A.; Goldberg, D.A.

    1993-05-01

    The paper describes the results of measurements of the Higher-Order Mode (HOM) spectrum of the low-power test model of the PEP-II RF cavity and the reduction in the Q's of the modes achieved by the addition of dedicated damping waveguides. All the longitudinal (monopole) and deflecting (dipole) modes below the beam pipe cut-off are identified by comparing their measured frequencies and field distributions with calculations using the URMEL code. Field configurations were determined using a perturbation method with an automated bead positioning system. The loaded Q's agree well with the calculated values reported previously, and the strongest HOMs are damped by more than three orders of magnitude. This is sufficient to reduce the coupled-bunch growth rates to within the capability of a reasonable feedback system. A high power test cavity will now be built to validate the thermal design at the 150 kW nominal operating level, as described elsewhere at this conference

  15. OVNI: a full-size real-time power system simulator

    Energy Technology Data Exchange (ETDEWEB)

    Marti, J. R.; Linares, L. R.; Rosales, R.; Dommel, H. W. [British Columbia Univ., Vancouver, BC (Canada)

    1997-12-31

    The concept and work-in-progress to develop a computer-based power system simulator that would mimic as closely as possible the behaviour of an actual power system, was described. The simulator, dubbed OVNI for Object Virtual Network Integrator, is capable of running continuously. It produces at each discreet time instant, the correct voltages and currents in a power system. OVNI is being implemented using a network of off-the-shelf Pentium Pro 200 MHz workstations. The Ada 95 language is used to satisfy object-oriented requirements and provide the code with the reliability required for mission-critical applications. An important characteristic of OVNI is its fully graphical and integrated simulation environment. System events can be directly applied to the simulator and outputs probed as the simulator is running. Input events can originate from user action or directly through A/D boards. Output probes can also be directed to the screen as running plots, or forwarded through D/A boards. 6 refs., 6 figs.

  16. OVNI: a full-size real-time power system simulator

    Energy Technology Data Exchange (ETDEWEB)

    Marti, J R; Linares, L R; Rosales, R; Dommel, H W [British Columbia Univ., Vancouver, BC (Canada)

    1998-12-31

    The concept and work-in-progress to develop a computer-based power system simulator that would mimic as closely as possible the behaviour of an actual power system, was described. The simulator, dubbed OVNI for Object Virtual Network Integrator, is capable of running continuously. It produces at each discreet time instant, the correct voltages and currents in a power system. OVNI is being implemented using a network of off-the-shelf Pentium Pro 200 MHz workstations. The Ada 95 language is used to satisfy object-oriented requirements and provide the code with the reliability required for mission-critical applications. An important characteristic of OVNI is its fully graphical and integrated simulation environment. System events can be directly applied to the simulator and outputs probed as the simulator is running. Input events can originate from user action or directly through A/D boards. Output probes can also be directed to the screen as running plots, or forwarded through D/A boards. 6 refs., 6 figs.

  17. LNG plant combined with power plant

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, I; Kikkawa, Y [Chiyoda Chemical Engineering and Construction Co. Ltd., Tokyo (Japan)

    1997-06-01

    The LNG plant consumers a lot of power of natural gas cooling and liquefaction. In some LNG plant location, a rapid growth of electric power demand is expected due to the modernization of area and/or the country. The electric power demand will have a peak in day time and low consumption in night time, while the power demand of the LNG plant is almost constant due to its nature. Combining the LNG plant with power plant will contribute an improvement the thermal efficiency of the power plant by keeping higher average load of the power plant, which will lead to a reduction of electrical power generation cost. The sweet fuel gas to the power plant can be extracted from the LNG plant, which will be favorable from view point of clean air of the area. (Author). 5 figs.

  18. LNG plant combined with power plant

    International Nuclear Information System (INIS)

    Aoki, I.; Kikkawa, Y.

    1997-01-01

    The LNG plant consumers a lot of power of natural gas cooling and liquefaction. In some LNG plant location, a rapid growth of electric power demand is expected due to the modernization of area and/or the country. The electric power demand will have a peak in day time and low consumption in night time, while the power demand of the LNG plant is almost constant due to its nature. Combining the LNG plant with power plant will contribute an improvement the thermal efficiency of the power plant by keeping higher average load of the power plant, which will lead to a reduction of electrical power generation cost. The sweet fuel gas to the power plant can be extracted from the LNG plant, which will be favorable from view point of clean air of the area. (Author). 5 figs

  19. SUPERLUMINOUS SUPERNOVAE POWERED BY MAGNETARS: LATE-TIME LIGHT CURVES AND HARD EMISSION LEAKAGE

    International Nuclear Information System (INIS)

    Wang, S. Q.; Wang, L. J.; Dai, Z. G.; Wu, X. F.

    2015-01-01

    Recently, research performed by two groups has revealed that the magnetar spin-down energy injection model with full energy trapping can explain the early-time light curves of SN 2010gx, SN 2013dg, LSQ12dlf, SSS120810, and CSS121015 but fails to fit the late-time light curves of these superluminous supernovae (SLSNe). These results imply that the original magnetar-powered model is challenged in explaining these SLSNe. Our paper aims to simultaneously explain both the early- and late-time data/upper limits by considering the leakage of hard emissions. We incorporate quantitatively the leakage effect into the original magnetar-powered model and derive a new semianalytical equation. Comparing the light curves reproduced by our revised magnetar-powered model with the observed data and/or upper limits of these five SLSNe, we found that the late-time light curves reproduced by our semianalytical equation are in good agreement with the late-time observed data and/or upper limits of SN 2010gx, CSS121015, SN 2013dg, and LSQ12dlf and the late-time excess of SSS120810, indicating that the magnetar-powered model might be responsible for these SLSNe and that the gamma-ray and X-ray leakages are unavoidable when the hard photons were down-Comptonized to softer photons. To determine the details of the leakage effect and unveil the nature of SLSNe, more high-quality bolometric light curves and spectra of SLSNe are required

  20. Global Discourses and Power/Knowledge: Theoretical Reflections on Futures of Higher Education during the Rise of Asia

    Science.gov (United States)

    Geerlings, L. R. C.; Lundberg, A.

    2018-01-01

    This paper re-reads a selection of critical interdisciplinary theories in an attempt to open a space in higher education for cross-cultural dialogue during the rise of Asia. Theories of globalization, deterritorialization, power/knowledge and postcolonialism indicate that students and academics have the ability to re-imagine and influence…

  1. Improvement of and Parameter Identification for the Bimodal Time-Varying Modified Kanai-Tajimi Power Spectral Model

    Directory of Open Access Journals (Sweden)

    Huiguo Chen

    2017-01-01

    Full Text Available Based on the Kanai-Tajimi power spectrum filtering method proposed by Du Xiuli et al., a genetic algorithm and a quadratic optimization identification technique are employed to improve the bimodal time-varying modified Kanai-Tajimi power spectral model and the parameter identification method proposed by Vlachos et al. Additionally, a method for modeling time-varying power spectrum parameters for ground motion is proposed. The 8244 Orion and Chi-Chi earthquake accelerograms are selected as examples for time-varying power spectral model parameter identification and ground motion simulations to verify the feasibility and effectiveness of the improved bimodal time-varying modified Kanai-Tajimi power spectral model. The results of this study provide important references for designing ground motion inputs for seismic analyses of major engineering structures.

  2. Water Powered Bioassay System

    National Research Council Canada - National Science Library

    Lin, Liwei

    2004-01-01

    ... of 0.2 1/hr without requiring electrical power. A low-leakage, hole-in-the-wall micro valve was demonstrated that provided fluidic resistance 255 times higher in the closed state than in the open state...

  3. Time and Power Optimizations in FPGA-Based Architectures for Polyphase Channelizers

    DEFF Research Database (Denmark)

    Awan, Mehmood-Ur-Rehman; Harris, Fred; Koch, Peter

    2012-01-01

    This paper presents the time and power optimization considerations for Field Programmable Gate Array (FPGA) based architectures for a polyphase filter bank channelizer with an embedded square root shaping filter in its polyphase engine. This configuration performs two different re-sampling tasks......% slice register resources of a Xilinx Virtex-5 FPGA, operating at 400 and 480 MHz, and consuming 1.9 and 2.6 Watts of dynamic power, respectively....

  4. Time dependent analysis of Xenon spatial oscillations in small power reactors

    International Nuclear Information System (INIS)

    Decco, Claudia Cristina Ghirardello

    1997-01-01

    This work presents time dependent analysis of xenon spatial oscillations studying the influence of the power density distribution, type of reactivity perturbation, power level and core size, using the one-dimensional and three-dimensional analysis with the MID2 and citation codes, respectively. It is concluded that small pressurized water reactors with height smaller than 1.5 m are stable and do not have xenon spatial oscillations. (author)

  5. Power System Real-Time Monitoring by Using PMU-Based Robust State Estimation Method

    DEFF Research Database (Denmark)

    Zhao, Junbo; Zhang, Gexiang; Das, Kaushik

    2016-01-01

    Accurate real-time states provided by the state estimator are critical for power system reliable operation and control. This paper proposes a novel phasor measurement unit (PMU)-based robust state estimation method (PRSEM) to real-time monitor a power system under different operation conditions...... the system real-time states with good robustness and can address several kinds of BD.......-based bad data (BD) detection method, which can handle the smearing effect and critical measurement errors, is presented. We evaluate PRSEM by using IEEE benchmark test systems and a realistic utility system. The numerical results indicate that, in short computation time, PRSEM can effectively track...

  6. Implementation of the frequency dependent line model in a real-time power system simulator

    Directory of Open Access Journals (Sweden)

    Reynaldo Iracheta-Cortez

    2017-09-01

    Full Text Available In this paper is described the implementation of the frequency-dependent line model (FD-Line in a real-time digital power system simulator. The main goal with such development is to describe a general procedure to incorporate new realistic models of power system components in modern real-time simulators based on the Electromagnetic Transients Program (EMTP. In this procedure are described, firstly, the steps to obtain the time domain solution of the differential equations that models the electromagnetic behavior in multi-phase transmission lines with frequency dependent parameters. After, the algorithmic solution of the FD-Line model is implemented in Simulink environment, through an S-function programmed in C language, for running off-line simulations of electromagnetic transients. This implementation allows the free assembling of the FD Line model with any element of the Power System Blockset library and also, it can be used to build any network topology. The main advantage of having a power network built in Simulink is that can be executed in real-time by means of the commercial eMEGAsim simulator. Finally, several simulation cases are presented to validate the accuracy and the real-time performance of the FD-Line model.

  7. Applications of power beaming from space-based nuclear power stations

    International Nuclear Information System (INIS)

    Powell, J.R.; Botts, T.E.; Hertzberg, A.

    1981-01-01

    Power beaming from space-based reactor systems is examined using an advanced compact, lightweight Rotating Bed Reactor (RBR). Closed Brayton power conversion efficiencies in the range of 30 to 40% can be achieved with turbines, with reactor exit temperatures on the order of 2000 0 K and a liquid drop radiator to reject heat at temperatures of approx. 500 0 K. Higher RBR coolant temperatures (up to approx. 3000 0 K) are possible, but gains in power conversion efficiency are minimal, due to lower expander efficiency (e.g., a MHD generator). Two power beaming applications are examined - laser beaming to airplanes and microwave beaming to fixed ground receivers. Use of the RBR greatly reduces system weight and cost, as compared to solar power sources. Payback times are a few years at present prices for power and airplane fuel

  8. A Robust Pre-Filter and Power Loading Design for Time Reversal UWB Systems over Time-Correlated MIMO Channels

    Directory of Open Access Journals (Sweden)

    Sajjad Alizadeh

    2014-04-01

    Full Text Available Conventional Time Reversal (TR technique suffers from performance degradation in time varying Multiple-Input Multiple-Output Ultra-Wideband (MIMO-UWB systems due to outdating Channel State Information (CSI over time progressions. That is, the outdated CSI degrades the TR performance significantly in time varying channels. The correlation property of time correlated channels can improve the TR performance against other traditional TR designs. Based on this property, at first, we propose a robust TR-MIMO-UWB system design for a time-varying channel in which the CSI is updated only at the beginning of each block of data where the CSI is assumed to be known. As the channel varies over time, pre-processor blindly pre-equalizes the channel during the next symbol time by using the correlation property. Then, a novel recursive power allocation strategy is derived over time-correlated time-varying TR-MIMO-UWB channels. We show that the proposed power loading technique, considerably improves the BER performance of TR-MIMO-UWB system in imperfect CSI with robust pre-filter. The proposed algorithms lead to a cost-efficient CSI updating procedure for the TR optimization. Simulation results are provided to confirm the new design performance against traditional method.

  9. Higher Education Institution Leaders' Identity Constructions in Times of Changing Structures and Legislation

    Science.gov (United States)

    Tigerstedt, Christa

    2016-01-01

    The focus in this paper is on the leadership of higher education institutions (HEI) in Finland and more specifically on the rector's leadership. The higher education sector is undergoing many changes and has been so for a long time. How, then, do the current changes become visible from a leadership perspective? The leadership discourse is here…

  10. Higher order corrections to asymptotic-de Sitter inflation

    Science.gov (United States)

    Mohsenzadeh, M.; Yusofi, E.

    2017-08-01

    Since trans-Planckian considerations can be associated with the re-definition of the initial vacuum, we investigate further the influence of trans-Planckian physics on the spectra produced by the initial quasi-de Sitter (dS) state during inflation. We use the asymptotic-dS mode to study the trans-Planckian correction of the power spectrum to the quasi-dS inflation. The obtained spectra consist of higher order corrections associated with the type of geometry and harmonic terms sensitive to the fluctuations of space-time (or gravitational waves) during inflation. As an important result, the amplitude of the power spectrum is dependent on the choice of c, i.e. the type of space-time in the period of inflation. Also, the results are always valid for any asymptotic dS space-time and particularly coincide with the conventional results for dS and flat space-time.

  11. Time changes in fishing power in the Danish cod fisheries of the Baltic Sea

    DEFF Research Database (Denmark)

    Marchal, P.; Nielsen, J. Rasmus; Hovgård, Holger

    2001-01-01

    Using nominal fishing effort to control fishing mortality and using cpue data from commercial fisheries as abundance indices require ability to correct fishing power for temporal development. It is often assumed in ICES stock assessments that fishing power Is constant over time. However, experience...... has suggested that this assumption may be false. This study investigates the time dynamics of an Index of Fishing Power (IFP). This index is based on the fleets cpue. relative to the cpue of a subset of vessels from the same fleet. The primary characteristic of the reference vessels...

  12. CEZ utility's coal-fired power plants: towards a higher environmental friendliness

    International Nuclear Information System (INIS)

    Kindl, V.; Spilkova, T.; Vanousek, I.; Stehlik, J.

    1996-01-01

    Environmental efforts of the major Czech utility, CEZ a.s., are aimed at reducing air pollution arising from electricity and heat generating facilities. There are 3 main kinds of activity in this respect: phasing out of coal fired power plants; technological provisions to reduce emissions of particulate matter, sulfur dioxide, and nitrogen oxides from those coal fired units that are to remain in operation after 1998; and completion of the Temelin nuclear power plant. In 1995, emissions of particulate matter, sulfur dioxide, nitrogen oxides, and carbon monoxide from CEZ's coal fired power plants were 19%, 79%, 59%, and 60%, respectively, with respect to the situation in 1992. The break-down of electricity generation by CEZ facilities (in GWh) was as follows in 1995: hydroelectric power plants 1673, nuclear power plants 12230, coal fired power plants without desulfurization equipment 30181, and coal fired power plants with desulfurization equipment 2277. Provisions implemented to improve the environmental friendliness of the individual CEZ's coal fired power plants are described in detail. (P.A.). 5 tabs., 1 fig

  13. Design and implementation of real-time diagnostic expert system in nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Yan; Zhou Zhiwei; Dong Xiuchen

    2006-01-01

    In order to decrease the probability of malfunctions in nuclear power plant, a real-time expert system to be applied to malfunction diagnosis was designed. Based on the expert system theory the system converts the expert knowledge for diagnosing failures into the rules stored in database, and it can display real-time information of the abnormal symptoms, perform real-time diagnosis of malfunctions and suggest the operation actions related to malfunctions, etc. The results indicate that several typical malfunctions in nuclear power plant are diagnosed automatically and the corresponding operation schedules are given out by present expert system. (authors)

  14. Age differences in the understanding of wealth and power: the mediating role of future time perspective.

    Science.gov (United States)

    Li, Tianyuan; Tsang, Vivian Hiu-Ling

    2016-12-01

    Individuals' understanding of wealth and power largely determines their use of resources. Moreover, the age range of wealth and power holders is increasing in modern societies. Thus, the current study examines how people of different ages understand wealth and power. As varying future time perspective is related to changes in prioritised life goals, it was tested as a potential mediator of the age differences. A total of 133 participants aged 18-78 years were asked 8 open-ended questions regarding their understanding of the possible use and desired use of wealth and power, after which they reported their future time perspective. Compared with possible use, the participants mentioned relatively more prosocial elements when they talked about their desired use of the resources, especially power. The older adults expressed more prosocial understanding in regard to the desired use of wealth and the possible use of power compared to their younger counterparts. The age differences were fully mediated by future time perspective. The results suggest that age is a critical factor that influences individuals' conceptualisation of wealth and power. Life-span developmental stage and future time perspective are important factors to consider for explaining individual differences in the exercise of wealth and power and for promoting their prosocial usage.

  15. Comparison between a 13-session and one-time program on Korea elementary, middle and high school students' understanding of nuclear power

    International Nuclear Information System (INIS)

    Han, Eun Ok; Choi, Yoon Seok; Lim, Young Khi

    2017-01-01

    To help future generations make accurate value judgments about nuclear power generation and radiation, this study will provide an effective education plan suitable for South Korea by applying and analyzing programs for the understanding of nuclear power within the diversely operated programs in the current Korean education system. This study analyzed the difference in educational effects by operating a 13-session regular curriculum for one semester and a one-session short-term curriculum from March to July 2016. As a result of operating a 13-session model school and a one-time educational program to analyze behavior changes against the traditional learning model, it was found that all elementary, middle and high school students showed higher acceptability of nuclear power in South Korea. The variation was greater for the model school than the short-term program. To prevent future generations from making biased policy decisions stemming from fear regarding nuclear power, it is necessary to bolster their value judgments in policy decisions by acquiring sufficient information about nuclear power generation and radiation through educational programs

  16. Evaluation issues on real-time operating system in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. M.; Jeong, C. H.; Koh, J. S. [Regulatory Research Div., Korea Inst. of Nuclear Safety (Korea, Republic of)

    2006-07-01

    In the recent few years, using the hard real-time operating system (RTOS) of safety-critical applications has gained increased acceptance in the nuclear safety system. Failure of this software could cause catastrophic consequences for human life. The digital I and C systems of nuclear power plants also have used hard RTOSs which are executing a required mission completely within its deadline. Because the nuclear power plants have to maintain a very high level of safety, the hard RTOS software should be reliable and safe. The RTOS used in safety-critical I and C systems is the base software used for the purpose of satisfying the real-time constraints, So, careful evaluation of its safety and functionality is very important, So far, the nuclear power plants of Korea have adopted commercial off-the-shelf (COTS) RTOS software. But, these days the RTOS embedded in safety grade PLC has been developed by KNICS project controlled by Ministry of Commerce, Industry and Energy of Korea. Whether COTS RTOS or newly developed RTOS, it must be evaluated its safety and reliability. (authors)

  17. Evaluation issues on real-time operating system in nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Y. M.; Jeong, C. H.; Koh, J. S.

    2006-01-01

    In the recent few years, using the hard real-time operating system (RTOS) of safety-critical applications has gained increased acceptance in the nuclear safety system. Failure of this software could cause catastrophic consequences for human life. The digital I and C systems of nuclear power plants also have used hard RTOSs which are executing a required mission completely within its deadline. Because the nuclear power plants have to maintain a very high level of safety, the hard RTOS software should be reliable and safe. The RTOS used in safety-critical I and C systems is the base software used for the purpose of satisfying the real-time constraints, So, careful evaluation of its safety and functionality is very important, So far, the nuclear power plants of Korea have adopted commercial off-the-shelf (COTS) RTOS software. But, these days the RTOS embedded in safety grade PLC has been developed by KNICS project controlled by Ministry of Commerce, Industry and Energy of Korea. Whether COTS RTOS or newly developed RTOS, it must be evaluated its safety and reliability. (authors)

  18. Real-time stability monitoring method for boiling water reactor nuclear power plants

    International Nuclear Information System (INIS)

    Fukunishi, K.; Suzuki, S.

    1987-01-01

    A method for real-time stability monitoring is developed for supervising the steady-state operation of a boiling water reactor core. The decay ratio of the reactor power fluctuation is determined by measuring only the output neutron noise. The concept of an inverse system is introduced to identify the dynamic characteristics of the reactor core. The adoption of an adaptive digital filter is useful in real-time identification. A feasibility test that used measured output noise as an indication of reactor power suggests that this method is useful in a real-time stability monitoring system. Using this method, the tedious and difficult work for modeling reactor core dynamics can be reduced. The method employs a simple algorithm that eliminates the need for stochastic computation, thus making the method suitable for real-time computation with a simple microprocessor. In addition, there is no need to disturb the reactor core during operation. Real-time stability monitoring using the proposed algorithm may allow operation under less stable margins

  19. Stack Memory Implementation and Analysis of Timing Constraint, Power and Memory using FPGA

    DEFF Research Database (Denmark)

    Thind, Vandana; Pandey, Nisha; Pandey, Bishwajeet

    2017-01-01

    real-time output, so that source used to realize the project is not wasted and get an energy efficient design. However, Stack memory is an approach in which information is entered and deleted from the stack memory segment in the pattern of last in first out mechanism. There are several ways...... of implementation of stack memory algorithm but virtex4 and virtex7 low voltage were considered to be the most efficient platforms for its operation. The developed system is energy efficient as the algorim ensures less memory utilization, less power consumption and short time for signal travel.......Abstract— in this work of analysis, stack memory algorithm is implemented on a number of FPGA platforms like virtex4, virtex5, virtex6, virtex6 low power and virtex7 low voltage and very detailed observations/investigations were made about timing constraint, memory and power dissipation. The main...

  20. Time-reversal asymmetry: polarization and analyzing power in nuclear reactions

    International Nuclear Information System (INIS)

    Rioux, C.; Roy, R.; Slobodrian, R.J.; Conzett, H.E.

    1984-01-01

    Measurements of the proton polarization in the reactions 7 Li( 3 He, p vector) 9 Be and 9 Be( 3 He, p vector) 11 B and of the analyzing powers in the inverse reactions, initiated by polarized protons at the same center-of-mass energies, show significant differences. This implies the failure of the polarization-analyzing-power theorem and, prima facie, of time-reversal invariance in these reactions. The reaction 2 H( 3 He, p vector) 4 He and its inverse have also been investigated and show smaller differences. A discussion of instrumental asymmetries is presented

  1. Time asymmetry: Polarization and analyzing power in the nuclear reactions

    International Nuclear Information System (INIS)

    Rioux, C.; Roy, R.; Slobodrian, R.J.; Conzett, H.E.

    1983-01-01

    Measurements of the proton polarization in the reactions 7 Li( 3 He, p vector) 9 Be and 9 Be( 3 He, p vector) 11 B and of the analyzing powers of the inverse reactions, initiated by polarized protons at the same c.m. energies, show significant differences which imply the failure of the polarization-analyzing-power theorem and, prima facie, of time-reversal invariance in these reactions. The reaction 2 H( 3 He, p vector) 4 He and its inverse have also been investigated and show some smaller differences. A discussion of the instrumental asymmetries is presented. (orig.)

  2. Load power device and system for real-time execution of hierarchical load identification algorithms

    Science.gov (United States)

    Yang, Yi; Madane, Mayura Arun; Zambare, Prachi Suresh

    2017-11-14

    A load power device includes a power input; at least one power output for at least one load; and a plurality of sensors structured to sense voltage and current at the at least one power output. A processor is structured to provide real-time execution of: (a) a plurality of load identification algorithms, and (b) event detection and operating mode detection for the at least one load.

  3. Time of use metering : the experience of Princeton Light and Power

    International Nuclear Information System (INIS)

    Hall, J.

    2004-01-01

    Princeton Light and Power (PLP) provides power distribution services to 7,000 customers in the Similkameen Valley in British Columbia. This PowerPoint presentation described how the utility has implemented time-of-use (TOU) rates and metering. The drivers for TOU that are most often overlooked include: the cost of additional power generation, deferral of system upgrades, improving system load factor, system reliability, controlling rate increase, growing sales, and offering choices to the customer. It was noted that unbundled rates are required for a successful TOU program. PLP's rate design and billing formula were presented along with its plan to make it worthwhile for the customers to install load shifting equipment such as delay timers, thermal storage heating units, and powerline carrier signal equipment. A review of peak hour operation and off-peak hour operation was also presented. tabs., figs

  4. Power Allocation Strategies for Distributed Space-Time Codes in Amplify-and-Forward Mode

    Directory of Open Access Journals (Sweden)

    Are Hjørungnes

    2009-01-01

    Full Text Available We consider a wireless relay network with Rayleigh fading channels and apply distributed space-time coding (DSTC in amplify-and-forward (AF mode. It is assumed that the relays have statistical channel state information (CSI of the local source-relay channels, while the destination has full instantaneous CSI of the channels. It turns out that, combined with the minimum SNR based power allocation in the relays, AF DSTC results in a new opportunistic relaying scheme, in which the best relay is selected to retransmit the source's signal. Furthermore, we have derived the optimum power allocation between two cooperative transmission phases by maximizing the average received SNR at the destination. Next, assuming M-PSK and M-QAM modulations, we analyze the performance of cooperative diversity wireless networks using AF opportunistic relaying. We also derive an approximate formula for the symbol error rate (SER of AF DSTC. Assuming the use of full-diversity space-time codes, we derive two power allocation strategies minimizing the approximate SER expressions, for constrained transmit power. Our analytical results have been confirmed by simulation results, using full-rate, full-diversity distributed space-time codes.

  5. Higher-order amplitude squeezing of photons propagating through a semiconductor

    International Nuclear Information System (INIS)

    Nguyen Ba An.

    1996-12-01

    Photon amplitude K th power squeezing is studied when the coherent photon propagates through a semiconductor containing the exciton. If the exciton is prepared initially in a coherent state, the photon may become amplitude K th power squeezed. It is shown that, in the short-time limit, the photon squeezing in the P direction does not appear at all while that in the X direction is possible for all the amplitude power K. In the latter case, the amount of squeezing is larger for higher power K. Dependences on all the system parameters as well as on the output light detection moment are investigated in detail. (author). 14 refs, 8 figs

  6. Estimation of mean time to failure of a near surface radioactive waste repository for PWR power stations

    International Nuclear Information System (INIS)

    Aguiar, Lais A. de; Frutuoso e Melo, P.F.; Alvim, Antonio C.M.

    2007-01-01

    This work aims at estimating the mean time to failure (MTTF) of each barrier of a near surface radioactive waste repository. It is assumed that surface water infiltrates through the barriers, reaching the matrix where radionuclides are contained, releasing them to the environment. Radioactive wastes considered in this work are low and medium level wastes (produced during operation of a PWR nuclear power station) fixed on cement. The repository consists of 6 saturated porous media barriers (top cover, upper layer, packages, basis, repository walls and geosphere). It has been verified that the mean time to failure (MTTF) of each barrier increases for radionuclides having higher retardation factor (Fr) and also that the MTTF for concrete is larger for Nickel , while for the geosphere, Plutonium gives the largest MTTF. (author)

  7. Effect of irradiation power and time on ultrasound assisted co-precipitation of nanostructured CuO–ZnO–Al2O3 over HZSM-5 used for direct conversion of syngas to DME as a green fuel

    International Nuclear Information System (INIS)

    Allahyari, Somaiyeh; Haghighi, Mohammad; Ebadi, Amanollah; Hosseinzadeh, Shahin

    2014-01-01

    Graphical abstract: Nanostructured CuO–ZnO–Al 2 O 3 /HZSM-5 catalyst has been prepared by an ultrasound-assisted co-precipitation hybrid method. Effect of power and irradiation time have been studied by changing the time (30–45–60 min) and power of sonication (50–100–150 W) during the synthesis which lead to different physiochemical properties of the catalyst. The XRD, FESEM, EDX, FTIR and BET analyses exhibited smaller particles with higher surface area and less population of particle aggregates at longer and highly irradiated catalysts. Study on the performance of investigated catalysts in direct synthesis of DME from syngas showed ultrasound-assisted co-precipitated synthesized catalysts have superior reactivity and stability compared with non-sonicated catalyst. Among sonicated catalysts, with increasing power and time of irradiation, the catalyst represents higher activity and DME selectivity. - Highlights: • Synthesis of CuO–ZnO–Al 2 O 3 /HZSM-5 by ultrasound assisted co-precipitation method. • Significant changes in morphology and surface area after ultrasound irradiations. • Smaller dispersed particle aggregates in longer and more intense irradiated catalysts. • Improvement in reactivity and stability of the longer and more intense ultrasound irradiated CZAZ catalyst. - Abstract: Nanostructured CuO–ZnO–Al 2 O 3 /HZSM-5 catalyst has been prepared by an ultrasound-assisted co-precipitation hybrid method. The effect of irradiation power and irradiation time have been studied by changing time (30, 45, 60 min) and power of the sonication (50, 100, 150 W) during the synthesis which led to different physiochemical properties of the nanocatalyst. The XRD, FESEM, EDX, FTIR and BET analyses exhibited smaller particles with higher surface area and less population of particle aggregates at longer and highly irradiated nanocatalysts. The nanocatalyst irradiated at 150 W for 60 min (the longest irradiation time and the most intense power

  8. Concerning tests of time-reversal invariance via the polarization-analyzing power equality

    International Nuclear Information System (INIS)

    Conzett, H.E.

    1982-01-01

    Previous tests of time-reversal invariance via comparisons of polarizations and analyzing powers in nuclear scattering have been examined. It is found that all of these comparisons fail as adequate tests of time-reversal invariance either because of a lack of experimental precision or the lack of sensitivity to any time-reversal symmetry violation

  9. Frictional Heating with Time-Dependent Specific Power of Friction

    Directory of Open Access Journals (Sweden)

    Topczewska Katarzyna

    2017-06-01

    Full Text Available In this paper analytical solutions of the thermal problems of friction were received. The appropriate boundary-value problems of heat conduction were formulated and solved for a homogeneous semi–space (a brake disc heated on its free surface by frictional heat fluxes with different and time-dependent intensities. Solutions were obtained in dimensionless form using Duhamel's theorem. Based on received solutions, evolution and spatial distribution of the dimensionless temperature were analyzed using numerical methods. The numerical results allowed to determine influence of the time distribution of friction power on the spatio-temporal temperature distribution in brake disc.

  10. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    Science.gov (United States)

    Saxena, Samveg

    are proposed for sensing combustion timing. Ion sensing, however, is unreliable under certain HCCI conditions. The dissertation presents two strategies for improving the usefulness of ion sensors in HCCI engines: (1) the use of tiny fractions of metal-acetate fuel additives that expand the useful range of ion sensors, and (2) the use of ion sensors for detecting excessive ringing that must be avoided in HCCI engines. These two innovative research efforts make ion sensors viable for sensing combustion characteristics across the full range of HCCI operation, making them effective for use in engine control systems. In summary, this Ph.D dissertation addresses two important technical challenges facing HCCI engines: power output limits, and difficulty in sensing combustion characteristics for control applications. The strategies proposed in this dissertation research bring HCCI engines closer to widespread commercialization allowing vehicles to operate with significantly higher efficiency and with cleaner emissions.

  11. Research on intelligent power consumption strategy based on time-of-use pricing

    Science.gov (United States)

    Fu, Wei; Gong, Li; Chen, Heli; He, Yu

    2017-06-01

    In this paper, through the analysis of shortcomings of the current domestic and foreign household power consumption strategy: Passive way of power consumption, ignoring the different priority of electric equipment, neglecting the actual load pressure of the grid, ignoring the interaction with the user, to decrease the peak-valley difference and improve load curve in residential area by demand response (DR technology), an intelligent power consumption scheme based on time-of-use(TOU) pricing for household appliances is proposed. The main contribution of this paper is: (1) Three types of household appliance loads are abstracted from different operating laws of various household appliances, and the control models and DR strategies corresponding to these types are established. (2) The fuzzified processing for the information of TOU price, which is based on the time intervals, is performed to get the price priority, in accordance with such DR events as the maximum restricted load of DR, the time of DR and the duration of interruptible load and so on, the DR control rule and pre-scheduling mechanism are led in. (3) The dispatching sequence of household appliances in the control and scheduling queue are switched and controlled to implement the equilibrium of peak and valley loads. The equilibrium effects and economic benefits of power system by pre-scheduling and DR dispatching are compared and analyzed by simulation example, and the results show that using the proposed household appliance control (HAC) scheme the overall cost of consumers can be reduced and the power system load can be alleviated, so the proposed household appliance control (HAC) scheme is feasible and reasonable.

  12. Time delays between core power production and external detector response from Monte Carlo calculations

    International Nuclear Information System (INIS)

    Valentine, T.E.; Mihalczo, J.T.

    1996-01-01

    One primary concern for design of safety systems for reactors is the time response of external detectors to changes in the core. This paper describes a way to estimate the time delay between the core power production and the external detector response using Monte Carlo calculations and suggests a technique to measure the time delay. The Monte Carlo code KENO-NR was used to determine the time delay between the core power production and the external detector response for a conceptual design of the Advanced Neutron Source (ANS) reactor. The Monte Carlo estimated time delay was determined to be about 10 ms for this conceptual design of the ANS reactor

  13. Stochastic Power Control for Time-Varying Long-Term Fading Wireless Networks

    Directory of Open Access Journals (Sweden)

    Charalambous Charalambos D

    2006-01-01

    Full Text Available A new time-varying (TV long-term fading (LTF channel model which captures both the space and time variations of wireless systems is developed. The proposed TV LTF model is based on a stochastic differential equation driven by Brownian motion. This model is more realistic than the static models usually encountered in the literature. It allows viewing the wireless channel as a dynamical system, thus enabling well-developed tools of adaptive and nonadaptive estimation and identification techniques to be applied to this class of problems. In contrast with the traditional models, the statistics of the proposed model are shown to be TV, but converge in steady state to their static counterparts. Moreover, optimal power control algorithms (PCAs based on the new model are proposed. A centralized PCA is shown to reduce to a simple linear programming problem if predictable power control strategies (PPCS are used. In addition, an iterative distributed stochastic PCA is used to solve for the optimization problem using stochastic approximations. The latter solely requires each mobile to know its received signal-to-interference ratio. Generalizations of the power control problem based on convex optimization techniques are provided if PPCS are not assumed. Numerical results show that there are potentially large gains to be achieved by using TV stochastic models, and the distributed stochastic PCA provides better power stability and consumption than the distributed deterministic PCA.

  14. Timing belt in power transmission and conveying system

    Directory of Open Access Journals (Sweden)

    Domek Grzegorz

    2018-01-01

    Full Text Available This paper presents the problem of phenomena occurring at the contact of a timing belt and a pulley. Depending on a belt size range these phenomena differ significantly. There is no indication as to what solutions are optimal for drive belts. The analysis of the coupling process and performance tests have shown that the drive belt should have a cord of very good mechanical properties and its raceway side should be made from the material of a low friction coefficient against the pulley material. A flat belt in power transmission and conveying systems cooperates with several elements consisting of timing pulleys, tensioners or guiding rails. In gear with timing belts they depend strongly on characteristics of the process as well as the type of friction. In recent constructions, producers of timing belts are very much concerned about achieving as much slippery surface as possible. The work describes the problem of friction on different surfaces as well as its influence on gear lifetime. Research results confirm that on many surfaces bigger coefficient of friction is expected.

  15. Wind farm power production in the changing wind: Robustness quantification and layout optimization

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2017-01-01

    Wind farms operate often in the changing wind. The wind condition variations in a wide range of time scales lead to the variability of wind farms’ power production. This imposes a major challenge to the power system operators who are facing a higher and higher penetration level of wind power. Thu...

  16. Time delay control of power converters: Mixed frame and stationary-frame variants

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Loh, P.C.; Tang, Y.

    2008-01-01

    In this paper, a mixed-frame and a stationary-frame time delay current controller are proposed for high precision reference tracking and disturbance rejection of power converters. In particular, the controllers use a proportional-resonant regulator in the stationary frame for regulating...... the positive and negative-sequence fundamental currents, which are known to directly influence the flow of active and reactive power in most energy conversion systems. Moreover, for the tracking or compensation of harmonics, the controllers include a time delay control path in either the synchronous...... or stationary frame, whose inherent feedback and feedforward structure can be proven to resemble a bank of resonant filters in either reference frames. Unlike other existing controllers, the proposed time delay controllers function by introducing multiple resonant peaks at only those harmonic frequencies...

  17. Thermoelectric power generator for variable thermal power source

    Science.gov (United States)

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  18. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power.

    Science.gov (United States)

    Galle, Samuel; Malcolm, Philippe; Collins, Steven Hartley; De Clercq, Dirk

    2017-04-27

    Powered ankle-foot exoskeletons can reduce the metabolic cost of human walking to below normal levels, but optimal assistance properties remain unclear. The purpose of this study was to test the effects of different assistance timing and power characteristics in an experiment with a tethered ankle-foot exoskeleton. Ten healthy female subjects walked on a treadmill with bilateral ankle-foot exoskeletons in 10 different assistance conditions. Artificial pneumatic muscles assisted plantarflexion during ankle push-off using one of four actuation onset timings (36, 42, 48 and 54% of the stride) and three power levels (average positive exoskeleton power over a stride, summed for both legs, of 0.2, 0.4 and 0.5 W∙kg -1 ). We compared metabolic rate, kinematics and electromyography (EMG) between conditions. Optimal assistance was achieved with an onset of 42% stride and average power of 0.4 W∙kg -1 , leading to 21% reduction in metabolic cost compared to walking with the exoskeleton deactivated and 12% reduction compared to normal walking without the exoskeleton. With suboptimal timing or power, the exoskeleton still reduced metabolic cost, but substantially less so. The relationship between timing, power and metabolic rate was well-characterized by a two-dimensional quadratic function. The assistive mechanisms leading to these improvements included reducing muscular activity in the ankle plantarflexors and assisting leg swing initiation. These results emphasize the importance of optimizing exoskeleton actuation properties when assisting or augmenting human locomotion. Our optimal assistance onset timing and average power levels could be used for other exoskeletons to improve assistance and resulting benefits.

  19. Timing A Pulsed Thin Film Pyroelectric Generator For Maximum Power Density

    International Nuclear Information System (INIS)

    Smith, A.N.; Hanrahan, B.M.; Neville, C.J.; Jankowski, N.R

    2016-01-01

    Pyroelectric thermal-to-electric energy conversion is accomplished by a cyclic process of thermally-inducing polarization changes in the material under an applied electric field. The pyroelectric MEMS device investigated consisted of a thin film PZT capacitor with platinum bottom and iridium oxide top electrodes. Electric fields between 1-20 kV/cm with a 30% duty cycle and frequencies from 0.1 - 100 Hz were tested with a modulated continuous wave IR laser with a duty cycle of 20% creating temperature swings from 0.15 - 26 °C on the pyroelectric receiver. The net output power of the device was highly sensitive to the phase delay between the laser power and the applied electric field. A thermal model was developed to predict and explain the power loss associated with finite charge and discharge times. Excellent agreement was achieved between the theoretical model and the experiment results for the measured power density versus phase delay. Limitations on the charging and discharging rates result in reduced power and lower efficiency due to a reduced net work per cycle. (paper)

  20. Low-power operation using self-timed circuits and adaptive scaling of the supply voltage

    DEFF Research Database (Denmark)

    Nielsen, Lars Skovby; Niessen, C.; Sparsø, Jens

    1994-01-01

    Recent research has demonstrated that for certain types of applications like sampled audio systems, self-timed circuits can achieve very low power consumption, because unused circuit parts automatically turn into a stand-by mode. Additional savings may be obtained by combining the self......-timed circuits with a mechanism that adaptively adjusts the supply voltage to the smallest possible, while maintaining the performance requirements. This paper describes such a mechanism, analyzes the possible power savings, and presents a demonstrator chip that has been fabricated and tested. The idea...... of voltage scaling has been used previously in synchronous circuits, and the contributions of the present paper are: 1) the combination of supply scaling and self-timed circuitry which has some unique advantages, and 2) the thorough analysis of the power savings that are possible using this technique.>...

  1. A fully integrated, wide-load-range, high-power-conversion-efficiency switched capacitor DC-DC converter with adaptive bias comparator for ultra-low-power power management integrated circuit

    Science.gov (United States)

    Asano, Hiroki; Hirose, Tetsuya; Kojima, Yuta; Kuroki, Nobutaka; Numa, Masahiro

    2018-04-01

    In this paper, we present a wide-load-range switched-capacitor DC-DC buck converter with an adaptive bias comparator for ultra-low-power power management integrated circuit. The proposed converter is based on a conventional one and modified to operate in a wide load range by developing a load current monitor used in an adaptive bias comparator. Measurement results demonstrated that our proposed converter generates a 1.0 V output voltage from a 3.0 V input voltage at a load of up to 100 µA, which is 20 times higher than that of the conventional one. The power conversion efficiency was higher than 60% in the load range from 0.8 to 100 µA.

  2. Time asymmetry: Polarization and analyzing power in the nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, C.; Roy, R.; Slobodrian, R.J. (Laval Univ., Quebec City (Canada). Lab. de Physique Nucleaire); Conzett, H.E. (California Univ., Berkeley (USA). Lawrence Berkeley Lab.)

    1983-02-28

    Measurements of the proton polarization in the reactions /sup 7/Li(/sup 3/He, p vector)/sup 9/Be and /sup 9/Be(/sup 3/He, p vector)/sup 11/B and of the analyzing powers of the inverse reactions, initiated by polarized protons at the same c.m. energies, show significant differences which imply the failure of the polarization-analyzing-power theorem and, prima facie, of time-reversal invariance in these reactions. The reaction /sup 2/H(/sup 3/He, p vector)/sup 4/ He and its inverse have also been investigated and show some smaller differences. A discussion of the instrumental asymmetries is presented.

  3. Power system analysis of Hanlim superconducting HVDC system using real time digital simulator

    International Nuclear Information System (INIS)

    Won, Y.J.; Kim, J.G.; Kim, A.R.; Kim, G.H.; Park, M.; Yu, I.K.; Sim, K.D.; Cho, J.; Lee, S.; Jeong, K.W.; Watanabe, K.

    2011-01-01

    KEPCO has planned to construct a test site for renewable energy in Jeju power system. One kilometer length of total 8 km was designed as superconducting DC cable. We have developed a simulation model of the 8 km HVDC system using real time digital simulator. The simulation result shows that the HVDC line was not affected by wind power variation. Jeju island is located approximately 100 km south from the mainland of Korea, and had a peak load of about 553 MW in 2008. The demand increases 7.2% a year over the last 5 years. Since the wind profiles of Jeju island are more favorable than mainland of Korea, many companies have shown interest in the wind power business at the Jeju island. Moreover KEPCO has a plan for renewable energy test too whose power will be delivered by HVDC system. One kilometer length of total 8 km was designed as superconducting DC cable. Rest 7 km will be the conventional overhead line. In this paper, the authors have developed a simulation model of the power network around 8 km HVDC system using real time digital simulator (RTDS).

  4. Power in Households: Disentangling Bargaining Power

    OpenAIRE

    Mabsout, Ramzi; Staveren, Irene

    2009-01-01

    textabstractIntroduction Within the household bargaining literature, bargaining power is generally understood in terms of economic resources, such as income or assets. Empirical analyses of women’s bargaining power in households in developed and developing countries find that, in general, higher female incomes lead to higher bargaining power, which in turn tends to increase women’s relative wellbeing (Quisumbing, 2003). For assets, the empirical literature comes up with similar results, indic...

  5. Comparison between a 13-session and one-time program on Korea elementary, middle and high school students' understanding of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Ok; Choi, Yoon Seok [Dept. of Education and Research, Korea Academy of Nuclear Safety, Seoul (Korea, Republic of); Lim, Young Khi [Dept. of Radiological Science, Gachon University, Incheon (Korea, Republic of)

    2017-03-15

    To help future generations make accurate value judgments about nuclear power generation and radiation, this study will provide an effective education plan suitable for South Korea by applying and analyzing programs for the understanding of nuclear power within the diversely operated programs in the current Korean education system. This study analyzed the difference in educational effects by operating a 13-session regular curriculum for one semester and a one-session short-term curriculum from March to July 2016. As a result of operating a 13-session model school and a one-time educational program to analyze behavior changes against the traditional learning model, it was found that all elementary, middle and high school students showed higher acceptability of nuclear power in South Korea. The variation was greater for the model school than the short-term program. To prevent future generations from making biased policy decisions stemming from fear regarding nuclear power, it is necessary to bolster their value judgments in policy decisions by acquiring sufficient information about nuclear power generation and radiation through educational programs.

  6. On a higher order multi-term time-fractional partial differential equation involving Caputo-Fabrizio derivative

    OpenAIRE

    Pirnapasov, Sardor; Karimov, Erkinjon

    2017-01-01

    In the present work we discuss higher order multi-term partial differential equation (PDE) with the Caputo-Fabrizio fractional derivative in time. We investigate a boundary value problem for fractional heat equation involving higher order Caputo-Fabrizio derivatives in time-variable. Using method of separation of variables and integration by parts, we reduce fractional order PDE to the integer order. We represent explicit solution of formulated problem in particular case by Fourier series.

  7. Homogeneous and Heterogeneous MPSoC Architectures with Network-On-Chip Connectivity for Low-Power and Real-Time Multimedia Signal Processing

    Directory of Open Access Journals (Sweden)

    Sergio Saponara

    2012-01-01

    Full Text Available Two multiprocessor system-on-chip (MPSoC architectures are proposed and compared in the paper with reference to audio and video processing applications. One architecture exploits a homogeneous topology; it consists of 8 identical tiles, each made of a 32-bit RISC core enhanced by a 64-bit DSP coprocessor with local memory. The other MPSoC architecture exploits a heterogeneous-tile topology with on-chip distributed memory resources; the tiles act as application specific processors supporting a different class of algorithms. In both architectures, the multiple tiles are interconnected by a network-on-chip (NoC infrastructure, through network interfaces and routers, which allows parallel operations of the multiple tiles. The functional performances and the implementation complexity of the NoC-based MPSoC architectures are assessed by synthesis results in submicron CMOS technology. Among the large set of supported algorithms, two case studies are considered: the real-time implementation of an H.264/MPEG AVC video codec and of a low-distortion digital audio amplifier. The heterogeneous architecture ensures a higher power efficiency and a smaller area occupation and is more suited for low-power multimedia processing, such as in mobile devices. The homogeneous scheme allows for a higher flexibility and easier system scalability and is more suited for general-purpose DSP tasks in power-supplied devices.

  8. Power analysis on the time effect for the longitudinal Rasch model.

    Science.gov (United States)

    Feddag, M L; Blanchin, M; Hardouin, J B; Sebille, V

    2014-01-01

    Statistics literature in the social, behavioral, and biomedical sciences typically stress the importance of power analysis. Patient Reported Outcomes (PRO) such as quality of life and other perceived health measures (pain, fatigue, stress,...) are increasingly used as important health outcomes in clinical trials or in epidemiological studies. They cannot be directly observed nor measured as other clinical or biological data and they are often collected through questionnaires with binary or polytomous items. The Rasch model is the well known model in the item response theory (IRT) for binary data. The article proposes an approach to evaluate the statistical power of the time effect for the longitudinal Rasch model with two time points. The performance of this method is compared to the one obtained by simulation study. Finally, the proposed approach is illustrated on one subscale of the SF-36 questionnaire.

  9. Impact of optimal load response to real-time electricity price on power system constraints in Denmark

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    Since the hourly spot market price is available one day ahead in Denmark, the price could be transferred to the consumers and they may shift their loads from high price periods to the low price periods in order to save their energy costs. The optimal load response to a real-time electricity price...... and may represent the future of electricity markets in some ways, is chosen as the studied power system in this paper. A distribution system where wind power capacity is 126% of maximum loads is chosen as the study case. This paper presents a nonlinear load optimization method to real-time power price...... for demand side management in order to save the energy costs as much as possible. Simulation results show that the optimal load response to a real-time electricity price has some good impacts on power system constraints in a distribution system with high wind power penetrations....

  10. Site selection of active damper for stabilizing power electronics based power distribution system

    DEFF Research Database (Denmark)

    Yoon, Changwoo; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    electronics based power device, which provides an adjustable damping capability to the power system where the voltage harmonic instability is measured. It can stabilize by adjusting the equivalent node impedance with its plug and play feature. This feature gives many degrees of freedom of its installation......Stability in the nowadays distribution power system is endangered by interaction problems that may arise from newly added power-electronics based power devices. Recently, a new concept to deal with this higher frequency instability, the active damper, has been proposed. The active damper is a power...... point when the system has many nodes. Therefore, this paper addresses the proper placement of an active damper in an unstable small-scale power distribution system. A time-domain model of the Cigre benchmark low-vltage network is used as a test field. The result shows the active damper location...

  11. Electricity and combined heat and power from municipal solid waste; theoretically optimal investment decision time and emissions trading implications.

    Science.gov (United States)

    Tolis, Athanasios; Rentizelas, Athanasios; Aravossis, Konstantin; Tatsiopoulos, Ilias

    2010-11-01

    Waste management has become a great social concern for modern societies. Landfill emissions have been identified among the major contributors of global warming and climate changes with significant impact in national economies. The energy industry constitutes an additional greenhouse gas emitter, while at the same time it is characterized by significant costs and uncertain fuel prices. The above implications have triggered different policies and measures worldwide to address the management of municipal solid wastes on the one hand and the impacts from energy production on the other. Emerging methods of energy recovery from waste may address both concerns simultaneously. In this work a comparative study of co-generation investments based on municipal solid waste is presented, focusing on the evolution of their economical performance over time. A real-options algorithm has been adopted investigating different options of energy recovery from waste: incineration, gasification and landfill biogas exploitation. The financial contributors are identified and the impact of greenhouse gas trading is analysed in terms of financial yields, considering landfilling as the baseline scenario. The results indicate an advantage of combined heat and power over solely electricity production. Gasification, has failed in some European installations. Incineration on the other hand, proves to be more attractive than the competing alternatives, mainly due to its higher power production efficiency, lower investment costs and lower emission rates. Although these characteristics may not drastically change over time, either immediate or irreversible investment decisions might be reconsidered under the current selling prices of heat, power and CO(2) allowances.

  12. Just In-Time Maintenance of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    DR. Alexander G. Parlos

    2002-01-22

    The goal of this project has been to develop and demonstrate the feasibility of a new technology for maintenance engineering: a Just-In-Time Maintenance (JITM) system for rotating machines. The JITM system is based on several key developments at Texas A and M over the past ten years in emerging intelligent information technologies, which if integrated into a single system could provide a revolutionary approach in the way maintenance is performed. Rotating machines, such as induction motors, range from a few horse power (hp) to several thousand hp in size, and they are widely used in nuclear power plants and in other industries. Forced outages caused by induction motor failures are the reason for as much as 15% - 40% of production costs to be attributable to maintenance, whereas plant shutdowns caused by induction motor failures result in daily financial losses to the utility and process industries of $1 M or more. The basic components of the JITM system are the available machine sensors, that is electric current sensors and accelerometers, and the computational algorithms used in the analysis and interpretation of the occurring incipient failures. The JITM system can reduce the costs attributable to maintenance by about 40% and it can lower the maintenance budgets of power and process plants by about 35%, while requiring no additional sensor installation. As a result, the JITM system can improve the competitiveness of US nuclear utilities at minimal additional cost.

  13. Just In-Time Maintenance of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Parlos, Alexander G.

    2002-01-01

    The goal of this project has been to develop and demonstrate the feasibility of a new technology for maintenance engineering: a Just-In-Time Maintenance (JITM) system for rotating machines. The JITM system is based on several key developments at Texas A and M over the past ten years in emerging intelligent information technologies, which if integrated into a single system could provide a revolutionary approach in the way maintenance is performed. Rotating machines, such as induction motors, range from a few horse power (hp) to several thousand hp in size, and they are widely used in nuclear power plants and in other industries. Forced outages caused by induction motor failures are the reason for as much as 15% - 40% of production costs to be attributable to maintenance, whereas plant shutdowns caused by induction motor failures result in daily financial losses to the utility and process industries of $1 M or more. The basic components of the JITM system are the available machine sensors, that is electric current sensors and accelerometers, and the computational algorithms used in the analysis and interpretation of the occurring incipient failures. The JITM system can reduce the costs attributable to maintenance by about 40% and it can lower the maintenance budgets of power and process plants by about 35%, while requiring no additional sensor installation. As a result, the JITM system can improve the competitiveness of US nuclear utilities at minimal additional cost

  14. YAOPBM-II: extension to higher degrees and to shorter time series

    Energy Technology Data Exchange (ETDEWEB)

    Korzennik, S G [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)], E-mail: skorzennik@cfa.harvard.edu

    2008-10-15

    In 2005, I presented a new fitting methodology (Yet AnOther Peak Bagging Method -YAOPBM), derived for very-long time series (2088-day-long) and applied it to low degree modes, {iota} {<=} 25. That very-long time series was also sub-divided into shorter segments (728-day-long) that were each fitted over the same range of degrees, to estimate changes with solar activity levels. I present here the extension of this method in several 'directions': a) to substantially higher degrees ({iota} {<=} 125); b) to shorter time series (364- and 182-day-long); and c) to additional 728-day-long segments, covering now some 10 years of observations. I discuss issues with the fitting, namely the leakage matrix, and the f- and p1 mode at very low frequencies, and I present some of the characteristics of the observed temporal changes.

  15. Space-time trajectories of wind power generation: Parameterized precision matrices under a Gaussian copula approach

    DEFF Research Database (Denmark)

    Tastu, Julija; Pinson, Pierre; Madsen, Henrik

    2015-01-01

    -correlations. Estimation is performed in a maximum likelihood framework. Based on a test case application in Denmark, with spatial dependencies over 15 areas and temporal ones for 43 hourly lead times (hence, for a dimension of n = 645), it is shown that accounting for space-time effects is crucial for generating skilful......Emphasis is placed on generating space-time trajectories of wind power generation, consisting of paths sampled from high-dimensional joint predictive densities, describing wind power generation at a number of contiguous locations and successive lead times. A modelling approach taking advantage...

  16. Challenges in higher order mode Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk

    2015-01-01

    A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed......A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...

  17. Robust PID based power system stabiliser: Design and real-time implementation

    Energy Technology Data Exchange (ETDEWEB)

    Bevrani, Hassan [Department of Electrical and Computer Eng., University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Hiyama, Takashi [Department of Electrical and Computer Eng., Kumamoto University, Kumamoto (Japan); Bevrani, Hossein [Department of Statistics, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2011-02-15

    This paper addresses a new robust control strategy to synthesis of robust proportional-integral-derivative (PID) based power system stabilisers (PSS). The PID based PSS design problem is reduced to find an optimal gain vector via an H{infinity} static output feedback control (H{infinity}-SOF) technique, and the solution is easily carried out using a developed iterative linear matrix inequalities algorithm. To illustrate the developed approach, a real-time experiment has been performed for a longitudinal four-machine infinite-bus system using the Analog Power System Simulator at the Research Laboratory of the Kyushu Electric Power Company. The results of the proposed control strategy are compared with full-order H{infinity} and conventional PSS designs. The robust PSS is shown to maintain the robust performance and minimise the effect of disturbances properly. (author)

  18. A low-power timing discriminator for space instrumentation

    International Nuclear Information System (INIS)

    Devoto, P.; Medale, J.-L.; Aoustin, C.; Sauvaud, J.-A.

    2004-01-01

    A front-end electronics for three-dimensional time-of-flight space plasma analyzers has been developed. These mass spectrometers, allowing the determination of the distribution functions of the main ion species, are based on the selection of the ion energy per charge and arrival direction using an electrostatic analyzer, and on the determination of their velocity from the time separating a start and a stop pulse. The start pulse is provided by the collection on a microchannel plate (MCP) of secondary electrons emitted when each ion crosses a thin carbon foil. The stop pulse is provided by the ion hitting a second MCP. The aim of the electronics presented in this article is to process the signals provided by MCPs to generate logic pulses, allowing the measurement of precise time differences. The design consists of an amplifier and a timing discriminator which performs a timing compensation to eliminate the time walk. A first version of the circuit has been developed and achieves a time walk of ∼400 ps for an input amplitude dynamic range of 25 dB. The total power dissipation per channel is ∼14 mW at an event rate of 100 KHz and ∼19 mW at a rate of 1 MHz. The influence of the temperature on the circuit behavior has been investigated. The performances of the circuit in a complete detector were also evaluated. This circuit is designed to be used in various designs for future missions

  19. Optimal Load Response to Time-of-Use Power Price for Demand Side Management in Denmark

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    -of-use power price for demand side management in order to save the energy costs as much as possible. 3 typical different kinds of loads (industrial load, residential load and commercial load) in Denmark are chosen as study cases. The energy costs decrease up to 9.6% with optimal load response to time......-of-use power price for different loads. Simulation results show that the optimal load response to time-of-use power price for demand side management generates different load profiles and reduces the load peaks. This kind of load patterns may also have significant effects on the power system normal operation.......Since the hourly spot market price is available one day ahead in Denmark, the price could be transferred to the consumers and they may shift their loads from high price periods to the low price periods in order to save their energy costs. This paper presents a load optimization method to time...

  20. Higher Education: A Time for Triage?

    Science.gov (United States)

    Lagowski, J. J.

    1995-10-01

    Higher education faces unprecedented challenges. The confluence of changing economic and demographic tends; new patterns of federal and state spending; more explicit expectations by students and their families for affordable, accessible education; and heightened scrutiny by those who claim a legitimate interest in higher education is inescapably altering the environment in which this system operates. Higher education will never again be as it was before. Further, many believe that tinkering around the margins is no longer an adequate response to the new demands. Fundamental change is deemed necessary to meet the challenge of this melange of pressures. A number of commentators have observed that political and corporate America have responded to their challenges by instituting a fundamental restructuring of those institutions. The medical community is also in the midst of a similar basic restructuring of the health care delivery system in this country. Now its education's turn. People are questioning the historically expressed mission of higher education. They make the claim that we cost too much, spend carelessly, teach poorly, plan myopically, and when questioned, act defensively. Educational administrators, from department chairs up, are confronted with the task of simultaneously reforming and cutting back. They have no choice. They must establish politically sophisticated priority settings and effect a hard-nosed reallocation of resources in a social environment where competing public needs have equivalent--or stronger--emotional pulls. Triage in a medical context involves confronting an emergency in which the demand for attention far outstrips available assistance by establishing a sequence of care in which one key individual orchestrates the application of harsh priorities which have been designed to maximize the number of survivors. In recent years, the decisions that have been made in some centers of higher education bear a striking similarity. The literature

  1. Evaluation of 'period-generated' control laws for the time-optimal control of reactor power

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1988-01-01

    Time-Optimal control of neutronic power has recently been achieved by developing control laws that determine the actuator mechanism velocity necessary to produce a specified reactor period. These laws are designated as the 'MIT-SNL Period-Generated Minimum Time Control Laws'. Relative to time-optimal response, they function by altering the rate of change of reactivity so that the instantaneous period is stepped from infinity to its minimum allowed value, held at that value until the desired power level is attained, and then stepped back to infinity. The results of a systematic evaluation of these laws are presented. The behavior of each term in the control laws is shown and the capability of these laws to control properly the reactor power is demonstrated. Factors affecting the implementation of these laws, such as the prompt neutron lifetime and the differential reactivity worth of the actuators, are discussed. Finally, the results of an experimental study in which these laws were used to adjust the power of the 5 MWt MIT Research Reactor are shown. The information presented should be of interest to those designing high performance control systems for test, spacecraft, or, in certain instances, commercial reactors

  2. The analysis of energy-time sequences in the nuclear power plants construction

    International Nuclear Information System (INIS)

    Milivojevic, S.; Jovanovic, V.; Riznic, J.

    1983-01-01

    The current nuclear energy development pose many problems; one of them is nuclear power plant construction. They are evaluated energy and time features of the construction and their relative ratios by the analysis of available data. The results point at the reached efficiency of the construction and, in the same time, they are the basis for real estimation of energy-time sequences of the construction in the future. (author)

  3. Space-time scenarios of wind power generation produced using a Gaussian copula with parametrized precision matrix

    DEFF Research Database (Denmark)

    Tastu, Julija; Pinson, Pierre; Madsen, Henrik

    The emphasis in this work is placed on generating space-time trajectories (also referred to as scenarios) of wind power generation. This calls for prediction of multivariate densities describing wind power generation at a number of distributed locations and for a number of successive lead times. ...

  4. OSCAR API for Real-Time Low-Power Multicores and Its Performance on Multicores and SMP Servers

    Science.gov (United States)

    Kimura, Keiji; Mase, Masayoshi; Mikami, Hiroki; Miyamoto, Takamichi; Shirako, Jun; Kasahara, Hironori

    OSCAR (Optimally Scheduled Advanced Multiprocessor) API has been designed for real-time embedded low-power multicores to generate parallel programs for various multicores from different vendors by using the OSCAR parallelizing compiler. The OSCAR API has been developed by Waseda University in collaboration with Fujitsu Laboratory, Hitachi, NEC, Panasonic, Renesas Technology, and Toshiba in an METI/NEDO project entitled "Multicore Technology for Realtime Consumer Electronics." By using the OSCAR API as an interface between the OSCAR compiler and backend compilers, the OSCAR compiler enables hierarchical multigrain parallel processing with memory optimization under capacity restriction for cache memory, local memory, distributed shared memory, and on-chip/off-chip shared memory; data transfer using a DMA controller; and power reduction control using DVFS (Dynamic Voltage and Frequency Scaling), clock gating, and power gating for various embedded multicores. In addition, a parallelized program automatically generated by the OSCAR compiler with OSCAR API can be compiled by the ordinary OpenMP compilers since the OSCAR API is designed on a subset of the OpenMP. This paper describes the OSCAR API and its compatibility with the OSCAR compiler by showing code examples. Performance evaluations of the OSCAR compiler and the OSCAR API are carried out using an IBM Power5+ workstation, an IBM Power6 high-end SMP server, and a newly developed consumer electronics multicore chip RP2 by Renesas, Hitachi and Waseda. From the results of scalability evaluation, it is found that on an average, the OSCAR compiler with the OSCAR API can exploit 5.8 times speedup over the sequential execution on the Power5+ workstation with eight cores and 2.9 times speedup on RP2 with four cores, respectively. In addition, the OSCAR compiler can accelerate an IBM XL Fortran compiler up to 3.3 times on the Power6 SMP server. Due to low-power optimization on RP2, the OSCAR compiler with the OSCAR API

  5. Air-Flow-Driven Triboelectric Nanogenerators for Self-Powered Real-Time Respiratory Monitoring.

    Science.gov (United States)

    Wang, Meng; Zhang, Jiahao; Tang, Yingjie; Li, Jun; Zhang, Baosen; Liang, Erjun; Mao, Yanchao; Wang, Xudong

    2018-06-04

    Respiration is one of the most important vital signs of humans, and respiratory monitoring plays an important role in physical health management. A low-cost and convenient real-time respiratory monitoring system is extremely desirable. In this work, we demonstrated an air-flow-driven triboelectric nanogenerator (TENG) for self-powered real-time respiratory monitoring by converting mechanical energy of human respiration into electric output signals. The operation of the TENG was based on the air-flow-driven vibration of a flexible nanostructured polytetrafluoroethylene (n-PTFE) thin film in an acrylic tube. This TENG can generate distinct real-time electric signals when exposed to the air flow from different breath behaviors. It was also found that the accumulative charge transferred in breath sensing corresponds well to the total volume of air exchanged during the respiration process. Based on this TENG device, an intelligent wireless respiratory monitoring and alert system was further developed, which used the TENG signal to directly trigger a wireless alarm or dial a cell phone to provide timely alerts in response to breath behavior changes. This research offers a promising solution for developing self-powered real-time respiratory monitoring devices.

  6. Real-time modelling of a ventilation system for a power plant simulator

    International Nuclear Information System (INIS)

    Kocher, P.; Welfonder, E.

    1992-01-01

    This paper describes how to simulate in real-time the ventilation system of a nuclear power plant. The simulation is made under difficult computing time conditions. The ventilation system program is part of a simulator which simulates the whole nuclear power plant process in realtime. Therefore the ventilation system is split up into several smaller units. For each of these process units a real-time module has been developed, being as simple as possible but nevertheless coming close enough to the real dynamic behaviour. After that the simple real-time modules are linked together to form the total dynamic model ''ventilation system''. The continuous dynamic model developed is numerically integrated by the Euler method. The stability of this explicit method is maintained by special modelling measures such as the increasing of too low flow resistances or the limitation of too high gain factors. At the end of the paper some curves, recorded at the simulator, illustrate the behaviour of the ventilation system in the case of an accident. (author)

  7. Green computing: power optimisation of VFI-based real-time multiprocessor dataflow applications (extended version)

    NARCIS (Netherlands)

    Ahmad, W.; Holzenspies, P.K.F.; Stoelinga, Mariëlle Ida Antoinette; van de Pol, Jan Cornelis

    2015-01-01

    Execution time is no longer the only performance metric for computer systems. In fact, a trend is emerging to trade raw performance for energy savings. Techniques like Dynamic Power Management (DPM, switching to low power state) and Dynamic Voltage and Frequency Scaling (DVFS, throttling processor

  8. The Benefits of Part-Time Undergraduate Study and UK Higher Education Policy: A Literature Review

    Science.gov (United States)

    Bennion, Alice; Scesa, Anna; Williams, Ruth

    2011-01-01

    Part-time study in the UK is significant: nearly 40 per cent of higher education students study part-time. This article reports on a literature review that sought to understand the economic and social benefits of part-time study in the UK. It concludes that there are substantial and wide-ranging benefits from studying part-time. The article also…

  9. Higher-order phase transitions on financial markets

    Science.gov (United States)

    Kasprzak, A.; Kutner, R.; Perelló, J.; Masoliver, J.

    2010-08-01

    Statistical and thermodynamic properties of the anomalous multifractal structure of random interevent (or intertransaction) times were thoroughly studied by using the extended continuous-time random walk (CTRW) formalism of Montroll, Weiss, Scher, and Lax. Although this formalism is quite general (and can be applied to any interhuman communication with nontrivial priority), we consider it in the context of a financial market where heterogeneous agent activities can occur within a wide spectrum of time scales. As the main general consequence, we found (by additionally using the Saddle-Point Approximation) the scaling or power-dependent form of the partition function, Z(q'). It diverges for any negative scaling powers q' (which justifies the name anomalous) while for positive ones it shows the scaling with the general exponent τ(q'). This exponent is the nonanalytic (singular) or noninteger power of q', which is one of the pilar of higher-order phase transitions. In definition of the partition function we used the pausing-time distribution (PTD) as the central one, which takes the form of convolution (or superstatistics used, e.g. for describing turbulence as well as the financial market). Its integral kernel is given by the stretched exponential distribution (often used in disordered systems). This kernel extends both the exponential distribution assumed in the original version of the CTRW formalism (for description of the transient photocurrent measured in amorphous glassy material) as well as the Gaussian one sometimes used in this context (e.g. for diffusion of hydrogen in amorphous metals or for aging effects in glasses). Our most important finding is the third- and higher-order phase transitions, which can be roughly interpreted as transitions between the phase where high frequency trading is most visible and the phase defined by low frequency trading. The specific order of the phase transition directly depends upon the shape exponent α defining the stretched

  10. Practical Considerations regarding Implementation of Wind Power Applications into Real-Time Hardware-In-The-Loop Framework

    DEFF Research Database (Denmark)

    Petersen, Lennart; Iov, Florin

    2017-01-01

    , where the focus is laid on the model development in a real-time simulator. It enables to verify the functionality of developed controls, which is one of the research priorities due to the increased complexity of large wind power plants requiring high level of com-munication between plant control......This paper addresses the system implementation of voltage control architecture in wind power plants into a Real-Time Hardware-In-The-Loop framework. The increasing amount of wind power penetration into the power systems has en-gaged the wind power plants to take over the responsibility for adequate...... control of the node voltages, which has previ-ously been accomplished by conventional generation. Voltage support at the point of common coupling is realized by an overall wind power plant controller which requires high-performance and robust control solution. In most cases the system including all...

  11. The generalized correlation method for estimation of time delay in power plants

    International Nuclear Information System (INIS)

    Kostic, Lj.

    1981-01-01

    The generalized correlation estimation is developed for determining time delay between signals received at two spatially separated sensors in the presence of uncorrelated noise in a power plant. This estimator can be realized as a pair of receiver prefilters followed by a cross correlator. The time argument at which the correlator achieves a maximum is the delay estimate. (author)

  12. Measuring Stratigraphic Congruence Across Trees, Higher Taxa, and Time.

    Science.gov (United States)

    O'Connor, Anne; Wills, Matthew A

    2016-09-01

    The congruence between the order of cladistic branching and the first appearance dates of fossil lineages can be quantified using a variety of indices. Good matching is a prerequisite for the accurate time calibration of trees, while the distribution of congruence indices across large samples of cladograms has underpinned claims about temporal and taxonomic patterns of completeness in the fossil record. The most widely used stratigraphic congruence indices are the stratigraphic consistency index (SCI), the modified Manhattan stratigraphic measure (MSM*), and the gap excess ratio (GER) (plus its derivatives; the topological GER and the modified GER). Many factors are believed to variously bias these indices, with several empirical and simulation studies addressing some subset of the putative interactions. This study combines both approaches to quantify the effects (on all five indices) of eight variables reasoned to constrain the distribution of possible values (the number of taxa, tree balance, tree resolution, range of first occurrence (FO) dates, center of gravity of FO dates, the variability of FO dates, percentage of extant taxa, and percentage of taxa with no fossil record). Our empirical data set comprised 647 published animal and plant cladograms spanning the entire Phanerozoic, and for these data we also modeled the effects of mean age of FOs (as a proxy for clade age), the taxonomic rank of the clade, and the higher taxonomic group to which it belonged. The center of gravity of FO dates had not been investigated hitherto, and this was found to correlate most strongly with some measures of stratigraphic congruence in our empirical study (top-heavy clades had better congruence). The modified GER was the index least susceptible to bias. We found significant differences across higher taxa for all indices; arthropods had lower congruence and tetrapods higher congruence. Stratigraphic congruence-however measured-also varied throughout the Phanerozoic, reflecting

  13. Effects on noise properties of GPS time series caused by higher-order ionospheric corrections

    Science.gov (United States)

    Jiang, Weiping; Deng, Liansheng; Li, Zhao; Zhou, Xiaohui; Liu, Hongfei

    2014-04-01

    Higher-order ionospheric (HOI) effects are one of the principal technique-specific error sources in precise global positioning system (GPS) analysis. These effects also influence the non-linear characteristics of GPS coordinate time series. In this paper, we investigate these effects on coordinate time series in terms of seasonal variations and noise amplitudes. Both power spectral techniques and maximum likelihood estimators (MLE) are used to evaluate these effects quantitatively and qualitatively. Our results show an overall improvement for the analysis of global sites if HOI effects are considered. We note that the noise spectral index that is used for the determination of the optimal noise models in our analysis ranged between -1 and 0 both with and without HOI corrections, implying that the coloured noise cannot be removed by these corrections. However, the corrections were found to have improved noise properties for global sites. After the corrections were applied, the noise amplitudes at most sites decreased, among which the white noise amplitudes decreased remarkably. The white noise amplitudes of up to 81.8% of the selected sites decreased in the up component, and the flicker noise of 67.5% of the sites decreased in the north component. Stacked periodogram results show that, no matter whether the HOI effects are considered or not, a common fundamental period of 1.04 cycles per year (cpy), together with the expected annual and semi-annual signals, can explain all peaks of the north and up components well. For the east component, however, reasonable results can be obtained only based on HOI corrections. HOI corrections are useful for better detecting the periodic signals in GPS coordinate time series. Moreover, the corrections contributed partly to the seasonal variations of the selected sites, especially for the up component. Statistically, HOI corrections reduced more than 50% and more than 65% of the annual and semi-annual amplitudes respectively at the

  14. In-situ measurement of response time of RTDs and pressure transmitters in nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Riner, J.L.

    1993-01-01

    Response time measurements are performed once every fuel cycle on most safety-related temperature and pressure sensors in a majority of nuclear power plants in the US. This paper provides a review of the methods that are used for these measurements. The methods are referred to as the Loop Current Step Response (LCSR) test, which is used for response time testing of temperature sensors, and noise analysis and power interrupt (PI) tests, which are used for response time testing of pressure, level, and flow transmitters

  15. Effects of injection timing, before and after top dead center on the propulsion and power in a diesel engine

    Directory of Open Access Journals (Sweden)

    Nader Raeie

    2014-06-01

    Full Text Available It is well known that injection strategies including the injection timing and pressure play the most important role in determining engine performance, especially in pollutant emissions. However, the injection timing and pressure quantitatively affect the performance of diesel engine with a turbo charger are not well understood. In this paper, the fire computational fluid dynamics (CFD code with an improved spray model has been used to simulate the spray and combustion processes of diesel with early and late injection timings and six different injection pressure (from 275 bar to 1000 bar. It has been concluded that the use of early injection provides lower soot and higher NOx emissions than the late injection. In this study, it has been tried using the change of fuel injection time at these two next steps: before top dead center (BTDC and after top dead center (ATDC in order to achieving optimum emission and power in a specific point.

  16. Development of real-time voltage stability monitoring tool for power system transmission network using Synchrophasor data

    Science.gov (United States)

    Pulok, Md Kamrul Hasan

    Intelligent and effective monitoring of power system stability in control centers is one of the key issues in smart grid technology to prevent unwanted power system blackouts. Voltage stability analysis is one of the most important requirements for control center operation in smart grid era. With the advent of Phasor Measurement Unit (PMU) or Synchrophasor technology, real time monitoring of voltage stability of power system is now a reality. This work utilizes real-time PMU data to derive a voltage stability index to monitor the voltage stability related contingency situation in power systems. The developed tool uses PMU data to calculate voltage stability index that indicates relative closeness of the instability by producing numerical indices. The IEEE 39 bus, New England power system was modeled and run on a Real-time Digital Simulator that stream PMU data over the Internet using IEEE C37.118 protocol. A Phasor data concentrator (PDC) is setup that receives streaming PMU data and stores them in Microsoft SQL database server. Then the developed voltage stability monitoring (VSM) tool retrieves phasor measurement data from SQL server, performs real-time state estimation of the whole network, calculate voltage stability index, perform real-time ranking of most vulnerable transmission lines, and finally shows all the results in a graphical user interface. All these actions are done in near real-time. Control centers can easily monitor the systems condition by using this tool and can take precautionary actions if needed.

  17. Probabilistic forecasting of wind power at the minute time-scale with Markov-switching autoregressive models

    DEFF Research Database (Denmark)

    Pinson, Pierre; Madsen, Henrik

    2008-01-01

    Better modelling and forecasting of very short-term power fluctuations at large offshore wind farms may significantly enhance control and management strategies of their power output. The paper introduces a new methodology for modelling and forecasting such very short-term fluctuations. The proposed...... consists in 1-step ahead forecasting exercise on time-series of wind generation with a time resolution of 10 minute. The quality of the introduced forecasting methodology and its interest for better understanding power fluctuations are finally discussed....... methodology is based on a Markov-switching autoregressive model with time-varying coefficients. An advantage of the method is that one can easily derive full predictive densities. The quality of this methodology is demonstrated from the test case of 2 large offshore wind farms in Denmark. The exercise...

  18. Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System.

    Science.gov (United States)

    Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit

    2017-02-01

    Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more lowpower sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting.

  19. Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System

    Directory of Open Access Journals (Sweden)

    Fan Wu

    2017-02-01

    Full Text Available Wireless sensor networks (WSNs play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT, many more lowpower sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting.

  20. A New Real Time Lyapunov Based Controller for Power Quality Improvement in Unified Power Flow Controllers Using Direct Matrix Converters

    Directory of Open Access Journals (Sweden)

    Joaquim Monteiro

    2017-06-01

    Full Text Available This paper proposes a Direct Matrix Converter operating as a Unified Power Flow Controller (DMC-UPFC with an advanced control method for UPFC, based on the Lyapunov direct method, presenting good results in power quality assessment. This control method is used for real-time calculation of the appropriate matrix switching state, determining which switching state should be applied in the following sampling period. The control strategy takes into account active and reactive power flow references to choose the vector converter closest to the optimum. Theoretical principles for this new real-time vector modulation and control applied to the DMC-UPFC with input filter are established. The method needs DMC-UPFC dynamic equations to be solved just once in each control cycle, to find the required optimum vector, in contrast to similar control methods that need 27 vector estimations per control cycle. The designed controller’s performance was evaluated using Matlab/Simulink software. Controllers were also implemented using a digital signal processing (DSP system and matrix hardware. Simulation and experimental results show decoupled transmission line active (P and reactive (Q power control with zero theoretical error tracking and fast response. Output currents and voltages show small ripple and low harmonic content.

  1. Modeling time to recovery and initiating event frequency for loss of off-site power incidents at nuclear power plants

    International Nuclear Information System (INIS)

    Iman, R.L.; Hora, S.C.

    1988-01-01

    Industry data representing the time to recovery of loss of off-site power at nuclear power plants for 63 incidents caused by plant-centered losses, grid losses, or severe weather losses are fit with exponential, lognormal, gamma and Weibull probability models. A Bayesian analysis is used to compare the adequacy of each of these models and to provide uncertainty bounds on each of the fitted models. A composite model that combines the probability models fitted to each of the three sources of data is presented as a method for predicting the time to recovery of loss of off-site power. The composite model is very general and can be made site specific by making adjustments on the models used, such as might occur due to the type of switchyard configuration or type of grid, and by adjusting the weights on the individual models, such as might occur with weather conditions existing at a particular plant. Adjustments in the composite model are shown for different models used for switchyard configuration and for different weights due to weather. Bayesian approaches are also presented for modeling the frequency of initiating events leading to loss of off-site power. One Bayesian model assumes that all plants share a common incidence rate for loss of off-site power, while the other Bayesian approach models the incidence rate for each plant relative to the incidence rates of all other plants. Combining the Bayesian models for the frequency of the initiating events with the composite Bayesian model for recovery provides the necessary vehicle for a complete model that incorporates uncertainty into a probabilistic risk assessment

  2. Real-time variables dictionary (RTVD), and expert system for development of real-time applications in nuclear power plants

    International Nuclear Information System (INIS)

    Senra Martinez, A.; Schirru, R.; Dutra Thome Filho, Z.

    1990-01-01

    It is presented in this paper a computerized methodology based on a data dictionary managed by an expert system called Real-Time Variables Dictionary (RTVD). This system is very usefull for development of real-time applications in nuclear power plants. It is described in details the RTVD functions and its implantation in a VAX 8600 computer. It is also pointed out the concepts of artificial intelligence used in teh RTVD

  3. Ageing and life-time management in nuclear power stations - concept and examples

    International Nuclear Information System (INIS)

    Erve, M.; Tenckhoff, E.

    1999-01-01

    Knowledge, assessment and understanding of phenomena caused by ageing, together with systematic utilization and extension of the technical life-time of components and systems, are of critical importance to the safety and economy of electricity generation in nuclear power stations. Economic use can be optimized by integrated ageing and life-time management; it can also be used to improve performance characteristics. (orig.) [de

  4. An On-Time Power-Aware Scheduling Scheme for Medical Sensor SoC-Based WBAN Systems

    Science.gov (United States)

    Hwang, Tae-Ho; Kim, Dong-Sun; Kim, Jung-Guk

    2013-01-01

    The focus of many leading technologies in the field of medical sensor systems is on low power consumption and robust data transmission. For example, the implantable cardioverter-defibrillator (ICD), which is used to maintain the heart in a healthy state, requires a reliable wireless communication scheme with an extremely low duty-cycle, high bit rate, and energy-efficient media access protocols. Because such devices must be sustained for over 5 years without access to battery replacement, they must be designed to have extremely low power consumption in sleep mode. Here, an on-time, energy-efficient scheduling scheme is proposed that performs power adjustments to minimize the sleep-mode current. The novelty of this scheduler is that it increases the determinacy of power adjustment and the predictability of scheduling by employing non-pre-emptible dual priority scheduling. This predictable scheduling also guarantees the punctuality of important periodic tasks based on their serialization, by using their worst case execution time) and the power consumption optimization. The scheduler was embedded into a system on chip (SoC) developed to support the wireless body area network—a wakeup-radio and wakeup-timer for implantable medical devices. This scheduling system is validated by the experimental results of its performance when used with life-time extensions of ICD devices. PMID:23271602

  5. An on-time power-aware scheduling scheme for medical sensor SoC-based WBAN systems.

    Science.gov (United States)

    Hwang, Tae-Ho; Kim, Dong-Sun; Kim, Jung-Guk

    2012-12-27

    The focus of many leading technologies in the field of medical sensor systems is on low power consumption and robust data transmission. For example, the implantable cardioverter-defibrillator (ICD), which is used to maintain the heart in a healthy state, requires a reliable wireless communication scheme with an extremely low duty-cycle, high bit rate, and energy-efficient media access protocols. Because such devices must be sustained for over 5 years without access to battery replacement, they must be designed to have extremely low power consumption in sleep mode. Here, an on-time, energy-efficient scheduling scheme is proposed that performs power adjustments to minimize the sleep-mode current. The novelty of this scheduler is that it increases the determinacy of power adjustment and the predictability of scheduling by employing non-pre-emptible dual priority scheduling. This predictable scheduling also guarantees the punctuality of important periodic tasks based on their serialization, by using their worst case execution time) and the power consumption optimization. The scheduler was embedded into a system on chip (SoC) developed to support the wireless body area network-a wakeup-radio and wakeup-timer for implantable medical devices. This scheduling system is validated by the experimental results of its performance when used with life-time extensions of ICD devices.

  6. The Motivations and Outcomes of Studying for Part-Time Mature Students in Higher Education

    Science.gov (United States)

    Swain, Jon; Hammond, Cathie

    2011-01-01

    This paper examines the motivations and outcomes for mature students who study part-time in higher education (HE) in the UK. Although many students in HE are mature part-time learners, they have not been the specific focus of much research or policy interest. In-depth narrative interviews were carried out with 18 graduates who had studied…

  7. An alternative approach for real-time balancing of electrical power systems

    NARCIS (Netherlands)

    Virag, A.; Jokic, A.; Lampropoulos, I.; Hermans, R.M.; Bosch, van den P.P.J.

    2012-01-01

    In this paper, we focus on the inefficiencies of current real-time balancing of power systems and propose an alternative solution. Our approach is based on the introduction of double-sided markets for the provision of secondary control and a market-based provision of primary control. We propose

  8. Real-Time Countermeasures Preventing Power System Instability by using PMU data from RTDS simulation

    DEFF Research Database (Denmark)

    Karatas, Bahtiyar Can; Jóhannsson, Hjörtur; Nielsen, Arne Hejde

    2016-01-01

    This paper presents an innovative approach to apply wide-area control actions in real-time and prevent emerging instability. A software platform has been further developed, which utilizes Real Time Digital Simulator (RTDS) technology to prevent scenarios leading to power system instability....... The software platform receives phasor measurement unit (PMU) data at a high repetition rate for full system observability. The PMU data serves as input for methods capable of analyzing the steady state torque balance for each individual generator and to determine available power reserves and possible remedial...

  9. Effect of reduced exposure times on the cytotoxicity of resin luting cements cured by high-power led

    Directory of Open Access Journals (Sweden)

    Gulfem Ergun

    2011-06-01

    Full Text Available OBJECTIVE: Applications of resin luting agents and high-power light-emitting diodes (LED light-curing units (LCUs have increased considerably over the last few years. However, it is not clear whether the effect of reduced exposure time on cytotoxicity of such products have adequate biocompatibility to meet clinical success. This study aimed at assessing the effect of reduced curing time of five resin luting cements (RLCs polymerized by high-power LED curing unit on the viability of a cell of L-929 fibroblast cells. MATERIAL AND METHODS: Disc-shaped samples were prepared in polytetrafluoroethylene moulds with cylindrical cavities. The samples were irradiated from the top through the ceramic discs and acetate strips using LED LCU for 20 s (50% of the manufacturer's recommended exposure time and 40 s (100% exposure time. After curing, the samples were transferred into a culture medium for 24 h. The eluates were obtained and pipetted onto L-929 fibroblast cultures (3x10(4 per well and incubated for evaluating after 24 h. Measurements were performed by dimethylthiazol diphenyltetrazolium assay. Statistical significance was determined by two-way ANOVA and two independent samples were compared by t-test. RESULTS: Results showed that eluates of most of the materials polymerized for 20 s (except Rely X Unicem and Illusion reduced to a higher extent cell viability compared to samples of the same materials polymerized for 40 s. Illusion exhibited the least cytotoxicity for 20 s exposure time compared to the control (culture without samples followed by Rely X Unicem and Rely X ARC (90.81%, 88.90%, and 83.11%, respectively. For Rely X ARC, Duolink and Lute-It 40 s exposure time was better (t=-1.262 p=0,276; t=-9.399 p=0.001; and t=-20.418 p<0.001, respectively. CONCLUSION: The results of this study suggest that reduction of curing time significantly enhances the cytotoxicity of the studied resin cement materials, therefore compromising their clinical

  10. Smart Wireless Power Transfer Operated by Time-Modulated Arrays via a Two-Step Procedure

    Directory of Open Access Journals (Sweden)

    Diego Masotti

    2015-01-01

    Full Text Available The paper introduces a novel method for agile and precise wireless power transmission operated by a time-modulated array. The unique, almost real-time reconfiguration capability of these arrays is fully exploited by a two-step procedure: first, a two-element time-modulated subarray is used for localization of tagged sensors to be energized; the entire 16-element TMA then provides the power to the detected tags, by exploiting the fundamental and first-sideband harmonic radiation. An investigation on the best array architecture is carried out, showing the importance of the adopted nonlinear/full-wave computer-aided-design platform. Very promising simulated energy transfer performance of the entire nonlinear radiating system is demonstrated.

  11. A fuzzy controller for the real time supervision of nuclear power reactors

    International Nuclear Information System (INIS)

    Si Fodil, M.; Guly, F.; Siarry, P.; Tyran, J.L.

    2000-01-01

    We describe the development of a real time fuzzy controller aimed at an adequate core axial power distribution inside a pressurized water reactor (PWR). The system has been implemented in simulation using the EDF model on Matlab-Simulink on a Sun workstation. Some experiments tests at different power levels have been performed: several low levels modeling falls in the network consumption and test modeling falls in the consumption followed by a recovery of the consumption. The results of all these experiments will be discussed. (orig.)

  12. Offset-Free Direct Power Control of DFIG Under Continuous-Time Model Predictive Control

    DEFF Research Database (Denmark)

    Errouissi, Rachid; Al-Durra, Ahmed; Muyeen, S.M.

    2017-01-01

    This paper presents a robust continuous-time model predictive direct power control for doubly fed induction generator (DFIG). The proposed approach uses Taylor series expansion to predict the stator current in the synchronous reference frame over a finite time horizon. The predicted stator current...... is directly used to compute the required rotor voltage in order to minimize the difference between the actual stator currents and their references over the predictive time. However, as the proposed strategy is sensitive to parameter variations and external disturbances, a disturbance observer is embedded...... into the control loop to remove the steady-state error of the stator current. It turns out that the steady-state and the transient performances can be identified by simple design parameters. In this paper, the reference of the stator current is directly calculated from the desired stator active and reactive powers...

  13. Comparison of the effects of nuclear power plants and thermal power plants on the environment

    International Nuclear Information System (INIS)

    Sivintsev, Yu.V.; Teverovskij, E.N.

    1976-01-01

    A comparison of ecological effects produced by a thermal power station (TPS) and a nuclear power plant (NPP) of similar electric capacity has been made. The ecological advantages of NPP over TPS are revealed in analysis of aerosol and gas blow-out and its danger for the environment. From the above data it follows that TPS as compared with NPP of similar electric capacity produces a 100 and 1000 fold higher air pollution effect than the latter. The dose of TPS radiation effect is minimum 500 times higher than that of NPP at normal operation. Large-scale construction of NPP is one of the most perfect means of atmosphere protection against harmful industrial discharges

  14. MODELING OF POWER SYSTEMS AND TESTING OF RELAY PROTECTION DEVICES IN REAL AND MODEL TIME

    Directory of Open Access Journals (Sweden)

    I. V. Novash

    2017-01-01

    Full Text Available The methods of modelling of power system modes and of testing of relay protection devices with the aid the simulation complexes in real time and with the help of computer software systems that enables the simulation of virtual time scale are considered. Information input protection signals in the simulation of the virtual model time are being obtained in the computational experiment, whereas the tests of protective devices are carried out with the help of hardware and software test systems with the use of estimated input signals. Study of power system stability when modes of generating and consuming electrical equipment and conditions of devices of relay protection are being changed requires testing with the use of digital simulators in a mode of a closed loop. Herewith feedbacks between a model of the power system operating in a real time and external devices or their models must be determined (modelled. Modelling in real time and the analysis of international experience in the use of digital simulation power systems for real-time simulation (RTDS simulator have been fulfilled. Examples are given of the use of RTDS systems by foreign energy companies to test relay protection systems and control, to test the equipment and devices of automatic control, analysis of cyber security and evaluation of the operation of energy systems under different scenarios of occurrence of emergency situations. Some quantitative data on the distribution of RTDS in different countries and Russia are presented. It is noted that the leading energy universities of Russia use the real-time simulation not only to solve scientific and technical problems, but also to conduct training and laboratory classes on modelling of electric networks and anti-emergency automatic equipment with the students. In order to check serviceability of devices of relay protection without taking into account the reaction of the power system tests can be performed in an open loop mode with the

  15. Sonochemically preparation and characterization of bimetallic Ni-Co/Al2O3-ZrO2 nanocatalyst: Effects of ultrasound irradiation time and power on catalytic properties and activity in dry reforming of CH4.

    Science.gov (United States)

    Mahboob, Salar; Haghighi, Mohammad; Rahmani, Farhad

    2017-09-01

    The catalytic performance of nanostructured Ni-Co/Al 2 O 3 -ZrO 2 catalysts, prepared by ultrasound-assisted impregnation method was examined in the dry reforming of methane. The effect of irradiation power and irradiation time have been studied by changing time (0, 20, 80min) and power of the sonication (30, 60, 90W) during the synthesis which resulted in different physiochemical properties of the nanocatalyst. The nanocatalysts were characterized by XRD, FESEM, PSD, EDX, TEM, TPR-H 2 , BET, FTIR and TG analyses. Based on the characterization results, ultrasound treatment endowed the sample with more uniform and smaller nanoparticles; higher surface area, stronger metal-support interaction and more homogenous dispersion. Moreover, the analyses exhibited smaller particles with higher surface area and less population of particle aggregates at longer and highly irradiated nanocatalysts. The nanocatalyst irradiated at 90W for 80min (the longest irradiation time and the most intense power) showed a uniform morphology and a very narrow particles size distribution. More than 65% of particles of this nanocatalyst were in the range of 10-30nm. Activity tests demonstrated that employing ultrasound irradiation during impregnation improves feed conversion and products yield, reaching values close to equilibrium. Among sonicated nanocatalysts, with increasing power and time of irradiation, the nanocatalyst represents higher activity. The superior performance amongst the various bimetallic catalysts tested was observed over the catalyst with 90W and 80min ultrasonic irradiation which is stable in 24h time on stream test. The excellent anti-coking performance of this bimetallic catalyst, confirmed by TG and FESEM analyses of spent catalyst, is closely related to the promoting effect of sonication on the metal-support interaction, Ni dispersion and particle size; and probably, the synergy between metallic species. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Extending reactor time-to-poison and reducing poison shutdown time by pre-shutdown power alterations

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, Edward

    1963-10-15

    Manipulation of reactor power prior to shutdown and increasing the time- to-poison a sufficient amount to enable the required maintenance work to be completed and the reactor immediately restarted are discussed. The method employed in the NRU Reactor to gain the maximum timeto-poison with the least production loss is outlined. The method is based on intuition and is described by means of an analog of the iodine--xenon equations rather than the equations themselves. (C.E.S.)

  17. Development of Real Time Implementation of 5/5 Rule based Fuzzy Logic Controller Shunt Active Power Filter for Power Quality Improvement

    Science.gov (United States)

    Puhan, Pratap Sekhar; Ray, Pravat Kumar; Panda, Gayadhar

    2016-12-01

    This paper presents the effectiveness of 5/5 Fuzzy rule implementation in Fuzzy Logic Controller conjunction with indirect control technique to enhance the power quality in single phase system, An indirect current controller in conjunction with Fuzzy Logic Controller is applied to the proposed shunt active power filter to estimate the peak reference current and capacitor voltage. Current Controller based pulse width modulation (CCPWM) is used to generate the switching signals of voltage source inverter. Various simulation results are presented to verify the good behaviour of the Shunt active Power Filter (SAPF) with proposed two levels Hysteresis Current Controller (HCC). For verification of Shunt Active Power Filter in real time, the proposed control algorithm has been implemented in laboratory developed setup in dSPACE platform.

  18. A high resolution, low power time-of-flight system for the space experiment AMS

    International Nuclear Information System (INIS)

    Alvisi, D.; Anselmo, F.; Baldini, L.; Bari, G.; Basile, M.; Bellagamba, L.; Bruni, A.; Bruni, G.; Boscherini, D.; Casadei, D.; Cara Romeo, G.; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Polini, A.; Recupero, S.; Sartorelli, G.; Williams, C.; Zichichi, A.

    1999-01-01

    The system of plastic scintillator counters for the AMS experiment is described. The main characteristics of the detector are: (a) large sensitive area (four 1.6 m 2 planes) with small dead space; (b) low-power consumption (150 W for the power and the read-out electronics of 336 PMs); (c) 120 ps time resolution

  19. Higher spins tunneling from a time dependent and spherically symmetric black hole

    International Nuclear Information System (INIS)

    Siahaan, Haryanto M.

    2016-01-01

    The discussions of Hawking radiation via tunneling method have been performed extensively in the case of scalar particles. Moreover, there are also several works in discussing the tunneling method for Hawking radiation by using higher spins, e.g. neutrino, photon, and gravitino, in the background of static black holes. Interestingly, it is found that the Hawking temperature for static black holes using the higher spins particles has no difference compared to the one computed using scalars. In this paper, we study the Hawking radiation for a spherically symmetric and time dependent black holes using the tunneling of Dirac particles, photon, and gravitino. We find that the obtained Hawking temperature is similar to the one derived in the tunneling method by using scalars. (orig.)

  20. Higher spins tunneling from a time dependent and spherically symmetric black hole

    Energy Technology Data Exchange (ETDEWEB)

    Siahaan, Haryanto M. [Parahyangan Catholic University, Physics Department, Bandung (Indonesia)

    2016-03-15

    The discussions of Hawking radiation via tunneling method have been performed extensively in the case of scalar particles. Moreover, there are also several works in discussing the tunneling method for Hawking radiation by using higher spins, e.g. neutrino, photon, and gravitino, in the background of static black holes. Interestingly, it is found that the Hawking temperature for static black holes using the higher spins particles has no difference compared to the one computed using scalars. In this paper, we study the Hawking radiation for a spherically symmetric and time dependent black holes using the tunneling of Dirac particles, photon, and gravitino. We find that the obtained Hawking temperature is similar to the one derived in the tunneling method by using scalars. (orig.)

  1. Calculating Higher-Order Moments of Phylogenetic Stochastic Mapping Summaries in Linear Time

    Science.gov (United States)

    Dhar, Amrit

    2017-01-01

    Abstract Stochastic mapping is a simulation-based method for probabilistically mapping substitution histories onto phylogenies according to continuous-time Markov models of evolution. This technique can be used to infer properties of the evolutionary process on the phylogeny and, unlike parsimony-based mapping, conditions on the observed data to randomly draw substitution mappings that do not necessarily require the minimum number of events on a tree. Most stochastic mapping applications simulate substitution mappings only to estimate the mean and/or variance of two commonly used mapping summaries: the number of particular types of substitutions (labeled substitution counts) and the time spent in a particular group of states (labeled dwelling times) on the tree. Fast, simulation-free algorithms for calculating the mean of stochastic mapping summaries exist. Importantly, these algorithms scale linearly in the number of tips/leaves of the phylogenetic tree. However, to our knowledge, no such algorithm exists for calculating higher-order moments of stochastic mapping summaries. We present one such simulation-free dynamic programming algorithm that calculates prior and posterior mapping variances and scales linearly in the number of phylogeny tips. Our procedure suggests a general framework that can be used to efficiently compute higher-order moments of stochastic mapping summaries without simulations. We demonstrate the usefulness of our algorithm by extending previously developed statistical tests for rate variation across sites and for detecting evolutionarily conserved regions in genomic sequences. PMID:28177780

  2. Polar coordinated fuzzy controller based real-time maximum-power point control of photovoltaic system

    Energy Technology Data Exchange (ETDEWEB)

    Syafaruddin; Hiyama, Takashi [Department of Computer Science and Electrical Engineering of Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Karatepe, Engin [Department of Electrical and Electronics Engineering of Ege University, 35100 Bornova-Izmir (Turkey)

    2009-12-15

    It is crucial to improve the photovoltaic (PV) system efficiency and to develop the reliability of PV generation control systems. There are two ways to increase the efficiency of PV power generation system. The first is to develop materials offering high conversion efficiency at low cost. The second is to operate PV systems optimally. However, the PV system can be optimally operated only at a specific output voltage and its output power fluctuates under intermittent weather conditions. Moreover, it is very difficult to test the performance of a maximum-power point tracking (MPPT) controller under the same weather condition during the development process and also the field testing is costly and time consuming. This paper presents a novel real-time simulation technique of PV generation system by using dSPACE real-time interface system. The proposed system includes Artificial Neural Network (ANN) and fuzzy logic controller scheme using polar information. This type of fuzzy logic rules is implemented for the first time to operate the PV module at optimum operating point. ANN is utilized to determine the optimum operating voltage for monocrystalline silicon, thin-film cadmium telluride and triple junction amorphous silicon solar cells. The verification of availability and stability of the proposed system through the real-time simulator shows that the proposed system can respond accurately for different scenarios and different solar cell technologies. (author)

  3. Energy Balance of Nuclear Power Generation. Life Cycle Analyses of Nuclear Power

    International Nuclear Information System (INIS)

    Wallner, A.; Wenisch, A.; Baumann, M.; Renner, S.

    2011-01-01

    The accident at the Japanese nuclear power plant Fukushima in March 2011 triggered a debate about phasing out nuclear energy and the safety of nuclear power plants. Several states are preparing to end nuclear power generation. At the same time the operational life time of many nuclear power plants is reaching its end. Governments and utilities now need to take a decision to replace old nuclear power plants or to use other energy sources. In particular the requirement of reducing greenhouse gas emissions (GHG) is used as an argument for a higher share of nuclear energy. To assess the contribution of nuclear power to climate protection, the complete life cycle needs to be taken into account. Some process steps are connected to high CO2 emissions due to the energy used. While the processes before and after conventional fossil-fuel power stations can contribute up to 25% of direct GHG emission, it is up to 90 % for nuclear power (Weisser 2007). This report aims to produce information about the energy balance of nuclear energy production during its life cycle. The following key issues were examined: How will the forecasted decreasing uranium ore grades influence energy intensity and greenhouse emissions and from which ore grade on will no energy be gained anymore? In which range can nuclear energy deliver excess energy and how high are greenhouse gas emissions? Which factors including ore grade have the strongest impact on excess energy? (author)

  4. An On-Time Power-Aware Scheduling Scheme for Medical Sensor SoC-Based WBAN Systems

    Directory of Open Access Journals (Sweden)

    Jung-Guk Kim

    2012-12-01

    Full Text Available The focus of many leading technologies in the field of medical sensor systems is on low power consumption and robust data transmission. For example, the implantable cardioverter-defibrillator (ICD, which is used to maintain the heart in a healthy state, requires a reliable wireless communication scheme with an extremely low duty-cycle, high bit rate, and energy-efficient media access protocols. Because such devices must be sustained for over 5 years without access to battery replacement, they must be designed to have extremely low power consumption in sleep mode. Here, an on-time, energy-efficient scheduling scheme is proposed that performs power adjustments to minimize the sleep-mode current. The novelty of this scheduler is that it increases the determinacy of power adjustment and the predictability of scheduling by employing non-pre-emptible dual priority scheduling. This predictable scheduling also guarantees the punctuality of important periodic tasks based on their serialization, by using their worst case execution time and the power consumption optimization. The scheduler was embedded into a system on chip (SoC developed to support the wireless body area network—a wakeup-radio and wakeup-timer for implantable medical devices. This scheduling system is validated by the experimental results of its performance when used with life-time extensions of ICD devices.

  5. Power management and frequency regulation for microgrid and smart grid: A real-time demand response approach

    Science.gov (United States)

    Pourmousavi Kani, Seyyed Ali

    Future power systems (known as smart grid) will experience a high penetration level of variable distributed energy resources to bring abundant, affordable, clean, efficient, and reliable electric power to all consumers. However, it might suffer from the uncertain and variable nature of these generations in terms of reliability and especially providing required balancing reserves. In the current power system structure, balancing reserves (provided by spinning and non-spinning power generation units) usually are provided by conventional fossil-fueled power plants. However, such power plants are not the favorite option for the smart grid because of their low efficiency, high amount of emissions, and expensive capital investments on transmission and distribution facilities, to name a few. Providing regulation services in the presence of variable distributed energy resources would be even more difficult for islanded microgrids. The impact and effectiveness of demand response are still not clear at the distribution and transmission levels. In other words, there is no solid research reported in the literature on the evaluation of the impact of DR on power system dynamic performance. In order to address these issues, a real-time demand response approach along with real-time power management (specifically for microgrids) is proposed in this research. The real-time demand response solution is utilized at the transmission (through load-frequency control model) and distribution level (both in the islanded and grid-tied modes) to provide effective and fast regulation services for the stable operation of the power system. Then, multiple real-time power management algorithms for grid-tied and islanded microgrids are proposed to economically and effectively operate microgrids. Extensive dynamic modeling of generation, storage, and load as well as different controller design are considered and developed throughout this research to provide appropriate models and simulation

  6. MODELING OF THE CONTROLLED TRACTION POWER SUPPLY SYSTEM IN THE SPACE-TIME COORDINATES

    Directory of Open Access Journals (Sweden)

    Dmitry BOSYI

    2017-09-01

    Full Text Available The problems of the traction power supply system calculation are considered in the article. The authors proposed the space-time model, which is based on the analytical functions of the current- and voltage-drop distributions in the contact network. The usage of the proposed model is shown for the control law calculation both to stabilize the voltage at the pantographs of the electric rolling stocks and to reduce the power losses.

  7. Signal existence verification (SEV) for GPS low received power signal detection using the time-frequency approach.

    Science.gov (United States)

    Jan, Shau-Shiun; Sun, Chih-Cheng

    2010-01-01

    The detection of low received power of global positioning system (GPS) signals in the signal acquisition process is an important issue for GPS applications. Improving the miss-detection problem of low received power signal is crucial, especially for urban or indoor environments. This paper proposes a signal existence verification (SEV) process to detect and subsequently verify low received power GPS signals. The SEV process is based on the time-frequency representation of GPS signal, and it can capture the characteristic of GPS signal in the time-frequency plane to enhance the GPS signal acquisition performance. Several simulations and experiments are conducted to show the effectiveness of the proposed method for low received power signal detection. The contribution of this work is that the SEV process is an additional scheme to assist the GPS signal acquisition process in low received power signal detection, without changing the original signal acquisition or tracking algorithms.

  8. A Work-Demand Analysis Compatible with Preemption-Aware Scheduling for Power-Aware Real-Time Tasks

    Directory of Open Access Journals (Sweden)

    Da-Ren Chen

    2013-01-01

    Full Text Available Due to the importance of slack time utilization for power-aware scheduling algorithms,we propose a work-demand analysis method called parareclamation algorithm (PRA to increase slack time utilization of the existing real-time DVS algorithms. PRA is an online scheduling for power-aware real-time tasks under rate-monotonic (RM policy. It can be implemented and fully compatible with preemption-aware or transition-aware scheduling algorithms without increasing their computational complexities. The key technique of the heuristics method doubles the analytical interval and turns the deferrable workload out the potential slack time. Theoretical proofs show that PRA guarantees the task deadlines in a feasible RM schedule and takes linear time and space complexities. Experimental results indicate that the proposed method combining the preemption-aware methods seamlessly reduces the energy consumption by 14% on average over their original algorithms.

  9. 76 FR 46840 - Time Extension To Accept Proposals, Select One Lessee, and Contract for Hydroelectric Power...

    Science.gov (United States)

    2011-08-03

    ... Lessee, and Contract for Hydroelectric Power Development at the Pueblo Dam River Outlet, a Feature of the... Lessee, and Contract for Hydroelectric Power Development at the Pueblo Dam River Outlet, a feature of the... considered timely only if it is received in the office of the Lease of Power Privilege Coordinator by or...

  10. A new Markov-chain-related statistical approach for modelling synthetic wind power time series

    International Nuclear Information System (INIS)

    Pesch, T; Hake, J F; Schröders, S; Allelein, H J

    2015-01-01

    The integration of rising shares of volatile wind power in the generation mix is a major challenge for the future energy system. To address the uncertainties involved in wind power generation, models analysing and simulating the stochastic nature of this energy source are becoming increasingly important. One statistical approach that has been frequently used in the literature is the Markov chain approach. Recently, the method was identified as being of limited use for generating wind time series with time steps shorter than 15–40 min as it is not capable of reproducing the autocorrelation characteristics accurately. This paper presents a new Markov-chain-related statistical approach that is capable of solving this problem by introducing a variable second lag. Furthermore, additional features are presented that allow for the further adjustment of the generated synthetic time series. The influences of the model parameter settings are examined by meaningful parameter variations. The suitability of the approach is demonstrated by an application analysis with the example of the wind feed-in in Germany. It shows that—in contrast to conventional Markov chain approaches—the generated synthetic time series do not systematically underestimate the required storage capacity to balance wind power fluctuation. (paper)

  11. Report on achievement in developing an ultra low loss power element technology. Survey on practical application of the next generation power semiconductor devices; 1998 nendo choteisonshitsu denryoku soshi gijutsu kaihatsu seika hokokusho. Jisedai power handotai device jitsuyoka chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Trends were surveyed for development of an ultra low loss power element. Performance improvement has been progressed on power semiconductor elements by using Si as the raw material, but loss reduction has come close to the physical limit. SiC is expected of possibility to go beyond this limit. SiC is so very excellent that its band gap is two to three times greater, insulation breakdown electric field is 7.5 times higher, temperature to become a true semiconductor is three to four times higher than those of Si. The wide gap can reduce high temperature leaking current in p-n junctions, and the increased authenticity temperature can increase the upper limit for operation temperature. The insulation breakdown strength being higher by one digit can reduce the drift layer thickness, and is expected to dramatically reduce the loss. The problem is that high quality crystals have not been obtained to date. One of the promising application fields is electric vehicle. The device currently using the power element in the largest scale is used in frequency converting stations to link the 50-Hz power network in the eastern part of Japan to the 60-Hz network in the western part of Japan. Surveys were carried out on the Sakuma frequency converting station and the New Shinano substation. (NEDO)

  12. Ecuador's Higher Education System in Times of Change

    Science.gov (United States)

    Van Hoof, Hubert B.; Estrella, Mateo; Eljuri, Marie-Isabel; León, Leonardo Torres

    2013-01-01

    Ecuador's higher education system is undergoing dramatic changes. The National Constitution of 2008 and the Higher Education Law of 2010 have changed the way Ecuador's universities are funded, administered, and accredited. The importance of research was elevated and drastic changes were made to the academic qualifications and employment conditions…

  13. Effect of construction time, interest rate, and inflation on the capital cost of nuclear power plants

    International Nuclear Information System (INIS)

    Abel, P.S.; Greybeck, E.M.; Omberg, R.P.

    1981-09-01

    Cost estimates for nuclear power plants currently under construction are on the order of four billion dollars. It will be shown, in this paper, that this is a direct consequence of relatively high inflation rates and relatively long construction times. If either inflation rates or construction times, or a combination thereof, should decrease significantly, cost estimates for nuclear power plants could return to approximately two billion dollars

  14. Employers' Demand for and the Provision of Part-Time Higher Education for Employees.

    Science.gov (United States)

    Trotman-Dickenson, Danusia

    1987-01-01

    A study of public and private employers' demand for part-time higher education for their employees and the response of institutions is reported. The study focuses on Wales and on the regional economic and social trends affecting educational demand and supply. Improved communication between employers, employees, and institutions is recommended.…

  15. Higher order multi-term time-fractional partial differential equations involving Caputo-Fabrizio derivative

    OpenAIRE

    Erkinjon Karimov; Sardor Pirnafasov

    2017-01-01

    In this work we discuss higher order multi-term partial differential equation (PDE) with the Caputo-Fabrizio fractional derivative in time. Using method of separation of variables, we reduce fractional order partial differential equation to the integer order. We represent explicit solution of formulated problem in particular case by Fourier series.

  16. Real-Time Pricing in the Nordic Power markets

    International Nuclear Information System (INIS)

    Kopsakangas Savolainen, Maria; Svento, Rauli

    2012-01-01

    In this paper we study the potential effects of Real-Time Pricing (RTP) of electricity on the need for long-run capacities in the Nordic Power markets. A characteristic of the Nordic Power market is the large variety of production technologies, of which hydro and nuclear power are capacity constrained. We analyze the impact of RTP on: the need for total, peak and midmerit capacities; total demand; prices; peak demand hours; and economic welfare. We have also studied whether the results of RTP are sensitive to the simultaneous implementation of tradable emission permits. We find that RTP diminishes the need for total capacity even with inelastic demand. Our results show that even with modest assumptions related to RTP participation, the annual midmerit and peaker capacity efficiency savings amount to 97 million Euros, which are around 6% of their total annual investment costs. The price of the peak demand hour clearly diminishes as the share of the RTP customers increases or demand becomes more price elastic. We compare RTP and tradable emission permits as two separate instruments in reaching energy use efficiencies and show how these two instruments must be seen as complementary and not as substitutable instruments. We show how RTP and tradable emission permits have a positive correlation in promoting market access of renewable energy sources. We find that welfare effects of the implementation of RTP are positive. - Highlights: ► RTP diminishes the need for total capacity even with inelastic demand. ► The capacity efficiency savings are around 6% of their annual investment costs. ► RTP and ETS should be seen as complementary and not as substitutable instruments. ► RTP and ETS have a positive correlation in promoting market access of renewables. ► Welfare effects of the implementation of RTP are positive.

  17. Numerical Solution of Time-Dependent Problems with a Fractional-Power Elliptic Operator

    Science.gov (United States)

    Vabishchevich, P. N.

    2018-03-01

    A time-dependent problem in a bounded domain for a fractional diffusion equation is considered. The first-order evolution equation involves a fractional-power second-order elliptic operator with Robin boundary conditions. A finite-element spatial approximation with an additive approximation of the operator of the problem is used. The time approximation is based on a vector scheme. The transition to a new time level is ensured by solving a sequence of standard elliptic boundary value problems. Numerical results obtained for a two-dimensional model problem are presented.

  18. A new approach for measuring power spectra and reconstructing time series in active galactic nuclei

    Science.gov (United States)

    Li, Yan-Rong; Wang, Jian-Min

    2018-05-01

    We provide a new approach to measure power spectra and reconstruct time series in active galactic nuclei (AGNs) based on the fact that the Fourier transform of AGN stochastic variations is a series of complex Gaussian random variables. The approach parametrizes a stochastic series in frequency domain and transforms it back to time domain to fit the observed data. The parameters and their uncertainties are derived in a Bayesian framework, which also allows us to compare the relative merits of different power spectral density models. The well-developed fast Fourier transform algorithm together with parallel computation enables an acceptable time complexity for the approach.

  19. Real-time digital simulation of power electronics systems with Neutral Point Piloted multilevel inverter using FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Rakotozafy, Mamianja [Groupe de Recherches en Electrotechnique et Electronique de Nancy (GREEN), Faculte des Sciences et Techniques, BP 70239, 54506 Vandoeuvre Cedex (France); CONVERTEAM SAS, Parc d' activites Techn' hom, 24 avenue du Marechal Juin, BP 40437, 90008 Belfort Cedex (France); Poure, Philippe [Laboratoire d' Instrumentation Electronique de Nancy (LIEN), Faculte des Sciences et Techniques, BP 70239, 54506 Vandoeuvre Cedex (France); Saadate, Shahrokh [Groupe de Recherches en Electrotechnique et Electronique de Nancy (GREEN), Faculte des Sciences et Techniques, BP 70239, 54506 Vandoeuvre Cedex (France); Bordas, Cedric; Leclere, Loic [CONVERTEAM SAS, Parc d' activites Techn' hom, 24 avenue du Marechal Juin, BP 40437, 90008 Belfort Cedex (France)

    2011-02-15

    Most of actual real time simulation platforms have practically about ten microseconds as minimum calculation time step, mainly due to computation limits such as processing speed, architecture adequacy and modeling complexities. Therefore, simulation of fast switching converters' instantaneous models requires smaller computing time step. The approach presented in this paper proposes an answer to such limited modeling accuracies and computational bandwidth of the currently available digital simulators.As an example, the authors present a low cost, flexible and high performance FPGA-based real-time digital simulator for a complete complex power system with Neutral Point Piloted (NPP) three-level inverter. The proposed real-time simulator can model accurately and efficiently the complete power system, reducing costs, physical space and avoiding any damage to the actual equipment in the case of any dysfunction of the digital controller prototype. The converter model is computed at a small fixed time step as low as 100 ns. Such a computation time step allows high precision account of the gating signals and thus avoids averaging methods and event compensations. Moreover, a novel high performance model of the NPP three-level inverter has also been proposed for FPGA implementation. The proposed FPGA-based simulator models the environment of the NPP converter: the dc link, the RLE load and the digital controller and gating signals. FPGA-based real time simulation results are presented and compared with offline results obtained using PLECS software. They validate the efficiency and accuracy of the modeling for the proposed high performance FPGA-based real-time simulation approach. This paper also introduces new potential FPGA-based applications such as low cost real time simulator for power systems by developing a library of flexible and portable models for power converters, electrical machines and drives. (author)

  20. Effects of Power Tracking Algorithms on Lifetime of Power Electronic Devices Used in Solar Systems

    Directory of Open Access Journals (Sweden)

    Canras Batunlu

    2016-10-01

    Full Text Available In photovoltaic solar energy systems, power management algorithms (PMAs, usually called maximum power point tracking (MPPT algorithms, are widely used for extracting maximum available power at every point in time. However, tracking the maximum power has negative effects on the availability of solar energy systems. This is due, mainly, to the created disturbances and thermal stresses on the associated power electronic converters (PECs. This work investigates the effects of PMA on the lifetime consumption, thermal stresses and failures on DC-DC converters used in solar systems. Firstly theoretical analysis and modelling of photovoltaic solar systems including converter’s electro thermal characteristics were developed. Subsequently, experiments on photovoltaic solar systems were carried out using two different PMAs, namely, perturb and observe (P&O and incremental conductance (IC. Real-time data was collected, under different operating conditions, including thermal behavior using thermal imaging camera and dSPACE. Converters’ thermal cycling was found to be approximately 3 °C higher with the IC algorithm. The steady state temperature was 52.7 °C, for the IC while it was 42.6 °C for P&O. Although IC algorithm offers more accurate power management tool, it causes more severe thermal stresses which, in this study, has led to approximately 1.4 times greater life consumption compared to P&O.

  1. H-mode confinement properties close to the power threshold in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Ryter, F; Fuchs, J; Schneider, W; Sips, A; Staebler, A; Stober, J

    2008-01-01

    Confinement properties close to the H-mode power threshold are studied in the ASDEX Upgrade tokamak. The results show that good confinement can be obtained close to the threshold with Type-I ELMs. The existence of Type-I ELMs does not necessarily require the heating power to be higher than the H-Mode power threshold, but it requires collisionality to be low enough. At higher collisionality Type-III ELMs replace the Type-I ELMs and confinement time is reduced by about 20%

  2. Sawtooth Pacing by Real-Time Auxiliary Power Control in a Tokamak Plasma

    International Nuclear Information System (INIS)

    Goodman, T. P.; Felici, F.; Sauter, O.; Graves, J. P.

    2011-01-01

    In the standard scenario of tokamak plasma operation, sawtooth crashes are the main perturbations that can trigger performance-degrading, and potentially disruption-generating, neoclassical tearing modes. This Letter demonstrates sawtooth pacing by real-time control of the auxiliary power. It is shown that the sawtooth crash takes place in a reproducible manner shortly after the removal of that power, and this can be used to precisely prescribe, i.e., pace, the individual sawteeth. In combination with preemptive stabilization of the neoclassical tearing modes, sawtooth pacing provides a new sawtooth control paradigm for improved performance in burning plasmas.

  3. Time-dependent fracture of materials at elevated temperature for solar thermal power systems

    International Nuclear Information System (INIS)

    Gupta, G.D.

    1979-01-01

    Various Solar Thermal Power Systems are briefly described. The components of solar power systems in which time-dependent fracture problems become important are identified. Typical materials of interest, temperature ranges, and stress states are developed; and the number of cycles during the design life of these systems are indicated. The ASME Code procedures used by designers to predict the life of these components are briefly described. Some of the major problems associated with the use of these ASME procedures in the design of solar components are indicated. Finally, a number of test and development needs are identified which would enable the designers to predict the life of the solar power system components with a reasonable degree of confidence

  4. Higher order multi-term time-fractional partial differential equations involving Caputo-Fabrizio derivative

    Directory of Open Access Journals (Sweden)

    Erkinjon Karimov

    2017-10-01

    Full Text Available In this work we discuss higher order multi-term partial differential equation (PDE with the Caputo-Fabrizio fractional derivative in time. Using method of separation of variables, we reduce fractional order partial differential equation to the integer order. We represent explicit solution of formulated problem in particular case by Fourier series.

  5. A Study on Evaluation Issues of Real-Time Operating System in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Y. M.; Jeong, C. H.; Koh, J. S.

    2006-01-01

    Control applications such as aircraft, robotics and nuclear power plant have to maintain a very high level of safety, typically defined as the avoidance of unplanned events resulting in hazard. These applications usually operate with hard real-time operating system (RTOS). In this case, hard RTOS software should be reliable and safe. RTOS used in safety-critical I and C system is the base software for the purpose of satisfying the real-time constraints. So, careful evaluation of its safety and functionality is very important. In this paper, we present the case study for RTOSs used in real nuclear power plants (NPP), and suggest the evaluation approach for the RTOS

  6. A Study on Evaluation Issues of Real-Time Operating System in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. M.; Jeong, C. H.; Koh, J. S. [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    2006-07-01

    Control applications such as aircraft, robotics and nuclear power plant have to maintain a very high level of safety, typically defined as the avoidance of unplanned events resulting in hazard. These applications usually operate with hard real-time operating system (RTOS). In this case, hard RTOS software should be reliable and safe. RTOS used in safety-critical I and C system is the base software for the purpose of satisfying the real-time constraints. So, careful evaluation of its safety and functionality is very important. In this paper, we present the case study for RTOSs used in real nuclear power plants (NPP), and suggest the evaluation approach for the RTOS.

  7. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera

    KAUST Repository

    Kiely, Patrick D.

    2010-07-15

    Microbial fuel cell (MFC) anode communities often reveal just a few genera, but it is not known to what extent less abundant bacteria could be important for improving performance. We examined the microbial community in an MFC fed with formic acid for more than 1 year and determined using 16S rRNA gene cloning and fluorescent in situ hybridization that members of the Paracoccus genus comprised most (~30%) of the anode community. A Paracoccus isolate obtained from this biofilm (Paracoccus denitrificans strain PS-1) produced only 5.6 mW/m 2, whereas the original mixed culture produced up to 10 mW/m 2. Despite the absence of any Shewanella species in the clone library, we isolated a strain of Shewanella putrefaciens (strain PS-2) from the same biofilm capable of producing a higher-power density (17.4 mW/m2) than the mixed culture, although voltage generation was variable. Our results suggest that the numerical abundance of microorganisms in biofilms cannot be assumed a priori to correlate to capacities of these predominant species for high-power production. Detailed screening of bacterial biofilms may therefore be needed to identify important strains capable of high-power generation for specific substrates. © 2010 Springer-Verlag.

  8. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera

    Energy Technology Data Exchange (ETDEWEB)

    Kiely, Patrick D.; Call, Douglas F.; Yates, Matthew D.; Regan, John M.; Logan, Bruce E. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Civil and Environmental Engineering

    2010-09-15

    Microbial fuel cell (MFC) anode communities often reveal just a few genera, but it is not known to what extent less abundant bacteria could be important for improving performance. We examined the microbial community in an MFC fed with formic acid for more than 1 year and determined using 16S rRNA gene cloning and fluorescent in situ hybridization that members of the Paracoccus genus comprised most ({proportional_to}30%) of the anode community. A Paracoccus isolate obtained from this biofilm (Paracoccus denitrificans strain PS-1) produced only 5.6 mW/m{sup 2}, whereas the original mixed culture produced up to 10 mW/m{sup 2}. Despite the absence of any Shewanella species in the clone library, we isolated a strain of Shewanella putrefaciens (strain PS-2) from the same biofilm capable of producing a higher-power density (17.4 mW/m{sup 2}) than the mixed culture, although voltage generation was variable. Our results suggest that the numerical abundance of microorganisms in biofilms cannot be assumed a priori to correlate to capacities of these predominant species for high-power production. Detailed screening of bacterial biofilms may therefore be needed to identify important strains capable of high-power generation for specific substrates. (orig.)

  9. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera

    KAUST Repository

    Kiely, Patrick D.; Call, Douglas F.; Yates, Matthew D.; Regan, John M.; Logan, Bruce E.

    2010-01-01

    Microbial fuel cell (MFC) anode communities often reveal just a few genera, but it is not known to what extent less abundant bacteria could be important for improving performance. We examined the microbial community in an MFC fed with formic acid for more than 1 year and determined using 16S rRNA gene cloning and fluorescent in situ hybridization that members of the Paracoccus genus comprised most (~30%) of the anode community. A Paracoccus isolate obtained from this biofilm (Paracoccus denitrificans strain PS-1) produced only 5.6 mW/m 2, whereas the original mixed culture produced up to 10 mW/m 2. Despite the absence of any Shewanella species in the clone library, we isolated a strain of Shewanella putrefaciens (strain PS-2) from the same biofilm capable of producing a higher-power density (17.4 mW/m2) than the mixed culture, although voltage generation was variable. Our results suggest that the numerical abundance of microorganisms in biofilms cannot be assumed a priori to correlate to capacities of these predominant species for high-power production. Detailed screening of bacterial biofilms may therefore be needed to identify important strains capable of high-power generation for specific substrates. © 2010 Springer-Verlag.

  10. Time frequency analysis of olfactory induced EEG-power change.

    Directory of Open Access Journals (Sweden)

    Valentin Alexander Schriever

    Full Text Available The objective of the present study was to investigate the usefulness of time-frequency analysis (TFA of olfactory-induced EEG change with a low-cost, portable olfactometer in the clinical investigation of smell function.A total of 78 volunteers participated. The study was composed of three parts where olfactory stimuli were presented using a custom-built olfactometer. Part I was designed to optimize the stimulus as well as the recording conditions. In part II EEG-power changes after olfactory/trigeminal stimulation were compared between healthy participants and patients with olfactory impairment. In Part III the test-retest reliability of the method was evaluated in healthy subjects.Part I indicated that the most effective paradigm for stimulus presentation was cued stimulus, with an interstimulus interval of 18-20s at a stimulus duration of 1000ms with each stimulus quality presented 60 times in blocks of 20 stimuli each. In Part II we found that central processing of olfactory stimuli analyzed by TFA differed significantly between healthy controls and patients even when controlling for age. It was possible to reliably distinguish patients with olfactory impairment from healthy individuals at a high degree of accuracy (healthy controls vs anosmic patients: sensitivity 75%; specificity 89%. In addition we could show a good test-retest reliability of TFA of chemosensory induced EEG-power changes in Part III.Central processing of olfactory stimuli analyzed by TFA reliably distinguishes patients with olfactory impairment from healthy individuals at a high degree of accuracy. Importantly this can be achieved with a simple olfactometer.

  11. Space-time scenarios of wind power generation produced using a Gaussian copula with parametrized precision matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tastu, J.; Pinson, P.; Madsen, Henrik

    2013-09-01

    The emphasis in this work is placed on generating space-time trajectories (also referred to as scenarios) of wind power generation. This calls for prediction of multivariate densities describing wind power generation at a number of distributed locations and for a number of successive lead times. A modelling approach taking advantage of sparsity of precision matrices is introduced for the description of the underlying space-time dependence structure. The proposed parametrization of the dependence structure accounts for such important process characteristics as non-constant conditional precisions and direction-dependent cross-correlations. Accounting for the space-time effects is shown to be crucial for generating high quality scenarios. (Author)

  12. Study The Effect Extension Of Fuel Element Life Time In The Core Small Power Reactor

    International Nuclear Information System (INIS)

    Dewita, E.; Rusli, A.; Tuka, V.

    1998-01-01

    Mini power reactor is a low power nuclear reactor which mostly are designed especially to supply energy demand in the remote areas, such as for electricity generation, industries, desalination and district heating.The goal of the operation cycle extension to 3 - 5 years is to maximize the use of the fuel in order to achieve much cheaper energy generated. From the stand point of fuel element, in order to maximize the fuel life time there is a need to see all possible effects of extended life time to the fuel behavior in the core. This study has been carried out in order to obtain the understanding on all influencing factors to the fuel element behaviors at extended operation cycle whose results are expected to be useful as the input to fuel design and fabrication. The study has show that the material selection for fuel and cladding materials are the essential factor in maximizing the fuel life time. Development of cladding and fuel materials has been done, and shown that the new zirconium alloy, zircaloy, having composition of Zr-1,0 Sn-0,27 Fe-0,16 Cr-0,1 Nb-0,01 Ni has higher corrosion resistance and mechanical characteristics better than that of the standard zircaloy-4. Adding the Nb content (0,005-0,2 wt %), decreasing the Sn content until 0,5 wt %, and decreasing the ratio of Fe/Cr from 0,6 to 0,5 can increase resistance to corrosion, while decreasing the ratio of Fe and Cr from 0,3 to 0,7 wt % can increase the mechanical characteristics. To enhance the resistance to nodular corrosion in the BWR system, adding the Nb-Mo, Nb-W and Nb-V at low Sn zircaloy-2 can be done. In improving the fuel element it has been shown that adding niobium (Nb 2 O 5 -0,3 wt %) can enlarge the particle size of fuel hence improving the fuel performance

  13. Higher capacity, lower carbon dioxide emissions. Idle power compensation in HV lines; Mehr Kapazitaet, weniger Kohlendioxid. Blindleistungskompensation bei Hochspannungsleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Auer, Jan-Hendrik von [Alstom Grid GmbH, Berlin (Germany). Team Leistungselektronik und Kompensationsanlagen

    2012-07-01

    Even today, many HP lines have reached their limits. It is therefore highly urgent to find measures for optimum utilization of the available overhead transmssion capacities, e.g. by idle power compensation. Together with a filter for harmonics reduction, this will ensure higher grid stability and enhance transport capacities while reducing transport losses, thus saving money and reducing CO{sub 2} emissions. (orig./AKB)

  14. Hydro-thermal power flow scheduling accounting for head variations

    International Nuclear Information System (INIS)

    El-Hawary, M.E.; Ravindranath, K.M.

    1992-01-01

    In this paper the authors treat the problem of optimal economic operation of hydrothermal electric power systems with variable head hydro plants employing the power flow equations to represent the network. Newton's method is used to solve the problem for a number of test systems. A comparison with solutions with fixed head is presented. In general the optimal schedule requires higher slack bus and thermal power generation and cost in the case of variable head hydro plant than that required by the fixed head hydro plant in all demand periods. Correspondingly, the hydro generation is less in the case of variable head hydro plant compared to fixed head hydro plant. A negligible difference in voltage magnitudes in all the time intervals, but it is observed that slightly higher voltages occur in the case of the fixed head hydro plant. Higher power and energy losses occur in the case of variable head hydro plants compared to the fixed head hydro plants

  15. "Times Higher Education" 100 under 50 Ranking: Old Wine in a New Bottle?

    Science.gov (United States)

    Soh, Kaycheng

    2013-01-01

    "Times Higher Education" 100 under 50 ranking is a new twist to the university ranking. It focuses on universities that have a history of 50 years or less with the purpose of offsetting the advantage of prestige of the older ones. This article re-analysed the data publicly available and looked into relevant conceptual and statistical issues. The…

  16. Emissions characteristics of higher alcohol/gasoline blends

    International Nuclear Information System (INIS)

    Gautam, M.; Martin, D.W.; Carder, D.

    2000-01-01

    An experimental investigation was conducted to determine the emissions characteristics of higher alcohols and gasoline (UTG96) blends. While lower alcohols (methanol and ethanol) have been used in blends with gasoline, very little work has been done or reported on higher alcohols (propanol, butanol and pentanol). Comparisons of emissions and fuel characteristics between higher alcohol/gasoline blends and neat gasoline were made to determine the advantages and disadvantages of blending higher alcohols with gasoline. All tests were conducted on a single-cylinder Waukesha Cooperative Fuel Research engine operating at steady state conditions and stoichiometric air-fuel (A/F) ratio. Emissions test were conducted at the optimum spark timing-knock limiting compression ratio combination for the particular blend being tested. The cycle emission [mass per unit time (g/h)] of CO, CO 2 and organic matter hydrocarbon equivalent (OMHCE) from the higher alcohol/gasoline blends were very similar to those from neat gasoline. Cycle emissions of NO x from the blends were higher than those from neat gasoline. However, for all the emissions species considered, the brake specific emissions (g/kW h) were significantly lower for the higher alcohol/gasoline blends than for neat gasoline. This was because the blends had greater resistance to knock and allowed higher compression ratios, which increased engine power output. The contribution of alcohols and aldehydes to the overall OMHCE emissions was found to be minimal. Cycle fuel consumption (g/h) of higher alcohol/gasoline blends was slightly higher than with neat gasoline due to the lower stoichiometric A/F ratios required by the blends. However, the brake specific fuel consumption (g/kW h) for the blends was significantly lower than that for neat gasoline. (Author)

  17. Preliminary research on time degradation of mechanical characteristics of concretes used in nuclear power plant buildings

    International Nuclear Information System (INIS)

    Ciornei, R.

    1991-01-01

    To provide severe safety rules governing the operation of nuclear power plants, reinforced and concrete elements and structures should preserve the quality and time-constant parameters throughout the life-time of the buildings. Some important design parameters are concrete strength and elasticity modulus. Preliminary research on concrete specimens made in laboratory whose strength and static and dynamic elasticity modulus have been determined after an ageing test, has aimed at nuclear power design and building. (author)

  18. Optimizing the diagnostic power with gastric emptying scintigraphy at multiple time points

    Directory of Open Access Journals (Sweden)

    Gajewski Byron J

    2011-05-01

    Full Text Available Abstract Background Gastric Emptying Scintigraphy (GES at intervals over 4 hours after a standardized radio-labeled meal is commonly regarded as the gold standard for diagnosing gastroparesis. The objectives of this study were: 1 to investigate the best time point and the best combination of multiple time points for diagnosing gastroparesis with repeated GES measures, and 2 to contrast and cross-validate Fisher's Linear Discriminant Analysis (LDA, a rank based Distribution Free (DF approach, and the Classification And Regression Tree (CART model. Methods A total of 320 patients with GES measures at 1, 2, 3, and 4 hour (h after a standard meal using a standardized method were retrospectively collected. Area under the Receiver Operating Characteristic (ROC curve and the rate of false classification through jackknife cross-validation were used for model comparison. Results Due to strong correlation and an abnormality in data distribution, no substantial improvement in diagnostic power was found with the best linear combination by LDA approach even with data transformation. With DF method, the linear combination of 4-h and 3-h increased the Area Under the Curve (AUC and decreased the number of false classifications (0.87; 15.0% over individual time points (0.83, 0.82; 15.6%, 25.3%, for 4-h and 3-h, respectively at a higher sensitivity level (sensitivity = 0.9. The CART model using 4 hourly GES measurements along with patient's age was the most accurate diagnostic tool (AUC = 0.88, false classification = 13.8%. Patients having a 4-h gastric retention value >10% were 5 times more likely to have gastroparesis (179/207 = 86.5% than those with ≤10% (18/113 = 15.9%. Conclusions With a mixed group of patients either referred with suspected gastroparesis or investigated for other reasons, the CART model is more robust than the LDA and DF approaches, capable of accommodating covariate effects and can be generalized for cross institutional applications, but

  19. A Unified Trading Model Based on Robust Optimization for Day-Ahead and Real-Time Markets with Wind Power Integration

    DEFF Research Database (Denmark)

    Jiang, Yuewen; Chen, Meisen; You, Shi

    2017-01-01

    In a conventional electricity market, trading is conducted based on power forecasts in the day-ahead market, while the power imbalance is regulated in the real-time market, which is a separate trading scheme. With large-scale wind power connected into the power grid, power forecast errors increase...... in the day-ahead market which lowers the economic efficiency of the separate trading scheme. This paper proposes a robust unified trading model that includes the forecasts of real-time prices and imbalance power into the day-ahead trading scheme. The model is developed based on robust optimization in view...... of the undefined probability distribution of clearing prices of the real-time market. For the model to be used efficiently, an improved quantum-behaved particle swarm algorithm (IQPSO) is presented in the paper based on an in-depth analysis of the limitations of the static character of quantum-behaved particle...

  20. Reactor power monitoring device

    International Nuclear Information System (INIS)

    Kono, Shigehiro.

    1990-01-01

    Among a plurality of power monitoring programs in a reactor power monitoring device, rapid response is required for a scram judging program for the power judging processing of scram signals. Therefore, the scram judging program is stored independently from other power monitoring programs, applied with a priority order, and executed in parallel with other programs, to output scram signals when the detected data exceeds a predetermined value. As a result, the capacity required for the scram judging program is reduced and the processing can be conducted in a short period of time. In addition, since high priority is applied to the scram judging program which is divided into a small capacity, it is executed at higher frequency than other programs when they are executed in parallel. That is, since the entire processings for the power monitoring program are repeated in a short cycle, the response speed of the scram signals required for high responsivity can be increased. (N.H.)

  1. Time response prediction of Brazilian Nuclear Power Plant temperature sensors using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Roberto Carlos dos; Pereira, Iraci Martinez, E-mail: rcsantos@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This work presents the results of the time constants values predicted from ANN using Angra I Brazilian nuclear power plant data. The signals obtained from LCSR loop current step response test sensors installed in the process presents noise end fluctuations that are inherent of operational conditions. Angra I nuclear power plant has 20 RTDs as part of the protection reactor system. The results were compared with those obtained from traditional way. Primary coolant RTDs (Resistance Temperature Detector) typically feed the plant's control and safety systems and must, therefore, be very accurate and have good dynamic performance. An in-situ test method called LCSR - loop current step response test was developed to measure remotely the response time of RTDs. In the LCSR method, the response time of the sensor is identified by means of the LCSR transformation that involves the dynamic response modal time constants determination using a nodal heat transfer model. For this reason, this calculation is not simple and requires specialized personnel. This work combines the two methodologies, Plunge test and LCSR test, using neural networks. With the use of neural networks it will not be necessary to use the LCSR transformation to determine sensor's time constant and this leads to more robust results. (author)

  2. Time response prediction of Brazilian Nuclear Power Plant temperature sensors using neural networks

    International Nuclear Information System (INIS)

    Santos, Roberto Carlos dos; Pereira, Iraci Martinez

    2011-01-01

    This work presents the results of the time constants values predicted from ANN using Angra I Brazilian nuclear power plant data. The signals obtained from LCSR loop current step response test sensors installed in the process presents noise end fluctuations that are inherent of operational conditions. Angra I nuclear power plant has 20 RTDs as part of the protection reactor system. The results were compared with those obtained from traditional way. Primary coolant RTDs (Resistance Temperature Detector) typically feed the plant's control and safety systems and must, therefore, be very accurate and have good dynamic performance. An in-situ test method called LCSR - loop current step response test was developed to measure remotely the response time of RTDs. In the LCSR method, the response time of the sensor is identified by means of the LCSR transformation that involves the dynamic response modal time constants determination using a nodal heat transfer model. For this reason, this calculation is not simple and requires specialized personnel. This work combines the two methodologies, Plunge test and LCSR test, using neural networks. With the use of neural networks it will not be necessary to use the LCSR transformation to determine sensor's time constant and this leads to more robust results. (author)

  3. Influence of Power Delivery Timing on the Energetics and Biomechanics of Humans Wearing a Hip Exoskeleton

    Science.gov (United States)

    Young, Aaron J.; Foss, Jessica; Gannon, Hannah; Ferris, Daniel P.

    2017-01-01

    A broad goal in the field of powered lower limb exoskeletons is to reduce the metabolic cost of walking. Ankle exoskeletons have successfully achieved this goal by correctly timing a plantarflexor torque during late stance phase. Hip exoskeletons have the potential to assist with both flexion and extension during walking gait, but the optimal timing for maximally reducing metabolic cost is unknown. The focus of our study was to determine the best assistance timing for applying hip assistance through a pneumatic exoskeleton on human subjects. Ten non-impaired subjects walked with a powered hip exoskeleton, and both hip flexion and extension assistance were separately provided at different actuation timings using a simple burst controller. The largest average across-subject reduction in metabolic cost for hip extension was at 90% of the gait cycle (just prior to heel contact) and for hip flexion was at 50% of the gait cycle; this resulted in an 8.4 and 6.1% metabolic reduction, respectively, compared to walking with the unpowered exoskeleton. However, the ideal timing for both flexion and extension assistance varied across subjects. When selecting the assistance timing that maximally reduced metabolic cost for each subject, average metabolic cost for hip extension was 10.3% lower and hip flexion was 9.7% lower than the unpowered condition. When taking into account user preference, we found that subject preference did not correlate with metabolic cost. This indicated that user feedback was a poor method of determining the most metabolically efficient assistance power timing. The findings of this study are relevant to developers of exoskeletons that have a powered hip component to assist during human walking gait. PMID:28337434

  4. Influence of Power Delivery Timing on the Energetics and Biomechanics of Humans Wearing a Hip Exoskeleton.

    Science.gov (United States)

    Young, Aaron J; Foss, Jessica; Gannon, Hannah; Ferris, Daniel P

    2017-01-01

    A broad goal in the field of powered lower limb exoskeletons is to reduce the metabolic cost of walking. Ankle exoskeletons have successfully achieved this goal by correctly timing a plantarflexor torque during late stance phase. Hip exoskeletons have the potential to assist with both flexion and extension during walking gait, but the optimal timing for maximally reducing metabolic cost is unknown. The focus of our study was to determine the best assistance timing for applying hip assistance through a pneumatic exoskeleton on human subjects. Ten non-impaired subjects walked with a powered hip exoskeleton, and both hip flexion and extension assistance were separately provided at different actuation timings using a simple burst controller. The largest average across-subject reduction in metabolic cost for hip extension was at 90% of the gait cycle (just prior to heel contact) and for hip flexion was at 50% of the gait cycle; this resulted in an 8.4 and 6.1% metabolic reduction, respectively, compared to walking with the unpowered exoskeleton. However, the ideal timing for both flexion and extension assistance varied across subjects. When selecting the assistance timing that maximally reduced metabolic cost for each subject, average metabolic cost for hip extension was 10.3% lower and hip flexion was 9.7% lower than the unpowered condition. When taking into account user preference, we found that subject preference did not correlate with metabolic cost. This indicated that user feedback was a poor method of determining the most metabolically efficient assistance power timing. The findings of this study are relevant to developers of exoskeletons that have a powered hip component to assist during human walking gait.

  5. Development of an Agent Based Model to Estimate and Reduce Time to Restoration of Storm Induced Power Outages

    Science.gov (United States)

    Walsh, T.; Layton, T.; Mellor, J. E.

    2017-12-01

    Storm damage to the electric grid impacts 23 million electric utility customers and costs US consumers $119 billion annually. Current restoration techniques rely on the past experiences of emergency managers. There are few analytical simulation and prediction tools available for utility managers to optimize storm recovery and decrease consumer cost, lost revenue and restoration time. We developed an agent based model (ABM) for storm recovery in Connecticut. An ABM is a computer modeling technique comprised of agents who are given certain behavioral rules and operate in a given environment. It allows the user to simulate complex systems by varying user-defined parameters to study emergent, unpredicted behavior. The ABM incorporates the road network and electric utility grid for the state, is validated using actual storm event recoveries and utilizes the Dijkstra routing algorithm to determine the best path for repair crews to travel between outages. The ABM has benefits for both researchers and utility managers. It can simulate complex system dynamics, rank variable importance, find tipping points that could significantly reduce restoration time or costs and test a broad range of scenarios. It is a modular, scalable and adaptable technique that can simulate scenarios in silico to inform emergency managers before and during storm events to optimize restoration strategies and better manage expectations of when power will be restored. Results indicate that total restoration time is strongly dependent on the number of crews. However, there is a threshold whereby more crews will not decrease the restoration time, which depends on the total number of outages. The addition of outside crews is more beneficial for storms with a higher number of outages. The time to restoration increases linearly with increasing repair time, while the travel speed has little overall effect on total restoration time. Crews traveling to the nearest outage reduces the total restoration time

  6. Euclidean scalar Green function in a higher dimensional global monopole space-time

    International Nuclear Information System (INIS)

    Bezerra de Mello, E.R.

    2002-01-01

    We construct the explicit Euclidean scalar Green function associated with a massless field in a higher dimensional global monopole space-time, i.e., a (1+d)-space-time with d≥3 which presents a solid angle deficit. Our result is expressed in terms of an infinite sum of products of Legendre functions with Gegenbauer polynomials. Although this Green function cannot be expressed in a closed form, for the specific case where the solid angle deficit is very small, it is possible to develop the sum and obtain the Green function in a more workable expression. Having this expression it is possible to calculate the vacuum expectation value of some relevant operators. As an application of this formalism, we calculate the renormalized vacuum expectation value of the square of the scalar field, 2 (x)> Ren , and the energy-momentum tensor, μν (x)> Ren , for the global monopole space-time with spatial dimensions d=4 and d=5

  7. Design of Instantaneous High Power Supply System with power distribution management for portable military devices

    Science.gov (United States)

    Kwak, Kiho; Kwak, Dongmin; Yoon, Joohong

    2015-08-01

    A design of an Instantaneous High Power Supply System (IHPSS) with a power distribution management (PDM) for portable military devices is newly addressed. The system includes a power board and a hybrid battery that can not only supply instantaneous high power but also maintain stable operation at critical low temperature (-30 °C). The power leakage and battery overcharge are effectively prevented by the optimal PDM. The performance of the proposed system under the required pulse loads and the operating conditions of a Korean Advanced Combat Rifle employed in the battlefield is modeled with simulations and verified experimentally. The system with the IHPSS charged the fuse setter with 1.7 times higher voltage (8.6 V) than the one without (5.4 V) under the pulse discharging rate (1 A at 0.5 duty, 1 ms) for 500 ms.

  8. Optimal Energy Management for the Integrated Power and Gas Systems via Real-time Pricing

    DEFF Research Database (Denmark)

    Shu, KangAn; Ai, Xiaomeng; Wen, Jinyu

    2018-01-01

    This work proposed a bi-level formulation for energy management in the integrated power and natural gas system via real-time price signals. The upper-level problem minimizes the operational cost, in which dynamic electricity price and dynamic gas tariff are proposed. The lower level problem...... and P2Gs plants follow the system operator’s preferences such as wind power accommodation, mitigation of unsupplied load and relieving the network congestion....

  9. Troubleshooting of signal power supply system for Shanghai metro line 7

    Science.gov (United States)

    Lu, Kaixia; Xiao, Jie

    2018-03-01

    With the rapid development of Urban Rail Transit Signal Technology, the demand of signal power supply system for signal equipment is higher and higher. The signal intelligent power supply panel is the main component of the urban rail traffic signal power supply system. Whether the intelligent power supply panel working or not is directly related to traffic safety. The maintenance of intelligent signal power supply panel is particularly important. Line 7 of Shanghai Metro adopts PMZG Signal Intelligent Power Supply Panel, which is produced by Beijing Jinyujiaxin Polytron Technologies Inc. Maintenance of power supply system mainly includes routine maintenance and troubleshooting. This article will make clear the routine maintenance contents of PMZG Signal Intelligent Power Supply Panel, and put forward the common fault information and troubleshooting methods of PMZG Signal Intelligent Power Supply Panel. In accordance with the steps of fault handling, the faults can be eliminated in the shortest possible time, and PMZG Signal Intelligent Power Supply Panel can be quickly restored to normal working state.

  10. Power Minimization for Parallel Real-Time Systems with Malleable Jobs and Homogeneous Frequencies

    OpenAIRE

    Paolillo, Antonio; Goossens, Joël; Hettiarachchi, Pradeep M.; Fisher, Nathan

    2014-01-01

    In this work, we investigate the potential benefit of parallelization for both meeting real-time constraints and minimizing power consumption. We consider malleable Gang scheduling of implicit-deadline sporadic tasks upon multiprocessors. By extending schedulability criteria for malleable jobs to DVFS-enabled multiprocessor platforms, we are able to derive an offline polynomial-time optimal processor/frequency-selection algorithm. Simulations of our algorithm on randomly generated task system...

  11. South Africa: time is ripe for independent power

    Energy Technology Data Exchange (ETDEWEB)

    Webb, C.

    2009-09-15

    Africa's biggest producer of electricity Eskom, is at a crossroad. Almost 90% of South Africa's electricity is generated by coal-fired power stations. On-off plans for nuclear power seem to be 'on' again and the regulatory red tape that has thwarted independent power producers could be cut. 3 photos.

  12. Real-time power plant monitoring and verification and validation issues

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.; Tuerkcan, E.

    1993-03-01

    By means of the advances in the computer technology, the implementation of a real-time power plant monitoring and dynamic signal analysis system is described. As hardware and software, the system has several essential components to perform the task. Among these, mention may be made of a remote-controlled data acquisition system, a fast data processing system and a dynamic signal analysis system. For a complex system like an NPP, the system verification and validation is an important issue as the plant operation involves many engineering disciplines and also the 'soft sciences'. Additionally, the real-time requirements impose substantial time limitation for the implementation of tasks. The system V and V is accomplished partly by means of V and V of the system components which are monitored by the help of sensory signals. Therefore, an essential part of the V and V task involves the real-time analyses of the data provided by these signals. In this respect the NPP real-time monitoring system described possesses the required design features to carry out this task which provides enhanced reliability and availability in plant operation. (orig./HP)

  13. Expert system of real time for support of operators of atomic power plants

    International Nuclear Information System (INIS)

    Bashlykov, A.A.; Davidenko, N.N.; Dumshev, V.G.; Kislov, G.I.; Pavlova, E.V.; Prozorovskij, E.D.; Bashlykov, A.A.

    1994-01-01

    The problems of construction and introdution of an intellectual system for information support of operators at nuclear power plants are discussed. This system is used for operator assisstance during real time decision making for NPP operational regime control

  14. Operation time extension for power units of the first generation NPP and the liability for potential damage

    International Nuclear Information System (INIS)

    Kovalevich, O.M.

    2000-01-01

    The problem on the operation time extension for the six operating NPP first generation power units is discussed. However it is not advisable to improve the safety of these power units up to the acceptable level, therefore there arises the contradiction between the operation time extension of these power units and potential damage for the population. The possibility of having the increased civilian-legal responsibility for potential harm and losses in case of an accident is proposed to be considered as a compensating measure. The measures for realization of this civilian-legal responsibility are described [ru

  15. State of the art in evacuation time estimate studies for nuclear power plants

    International Nuclear Information System (INIS)

    Urbanik, T.E.; Jamison, J.D.

    1992-03-01

    In the event of a major accident at a commercial nuclear power station, exposure of the public to airborne radioactive materials can be prevented or greatly reduced by evacuating the area immediately surrounding the reactor site. Reactor licensees are required to conduct studies to estimate the time needed to evacuate the public from the area surrounding each nuclear power station. The results of such studies are used by regulatory personnel and emergency planners to assess the potential effectiveness of protective responses for the public. The time required to evacuate the public from a 10-mile emergency planning radius is estimated by analyzing the available transportation facilities and other relevant conditions within this radius. To support the analysis, data must be collected and assumptions must be made regarding the transportation facilities, the size and characteristics of the population and other conditions in the planning zone. This report describes standard approaches and provides recommendations regarding the relevant information, assumptions and methods to be used in performing evacuation time estimate studies

  16. Power in Households: Disentangling Bargaining Power

    NARCIS (Netherlands)

    R. Mabsout (Ramzi); I.P. van Staveren (Irene)

    2009-01-01

    textabstractIntroduction Within the household bargaining literature, bargaining power is generally understood in terms of economic resources, such as income or assets. Empirical analyses of women’s bargaining power in households in developed and developing countries find that, in general, higher

  17. Real time estimation of photovoltaic modules characteristics and its application to maximum power point operation

    Energy Technology Data Exchange (ETDEWEB)

    Garrigos, Ausias; Blanes, Jose M.; Carrasco, Jose A. [Area de Tecnologia Electronica, Universidad Miguel Hernandez de Elche, Avda. de la Universidad s/n, 03202 Elche, Alicante (Spain); Ejea, Juan B. [Departamento de Ingenieria Electronica, Universidad de Valencia, Avda. Dr Moliner 50, 46100 Valencia, Valencia (Spain)

    2007-05-15

    In this paper, an approximate curve fitting method for photovoltaic modules is presented. The operation is based on solving a simple solar cell electrical model by a microcontroller in real time. Only four voltage and current coordinates are needed to obtain the solar module parameters and set its operation at maximum power in any conditions of illumination and temperature. Despite its simplicity, this method is suitable for low cost real time applications, as control loop reference generator in photovoltaic maximum power point circuits. The theory that supports the estimator together with simulations and experimental results are presented. (author)

  18. Evaluation of Frequency and Restoration time for Loss of Offsite Power events based on domestic operation experience

    International Nuclear Information System (INIS)

    Park, Jin-Hee; Han, Sang-Hoon; Lee, Ho Joong

    2006-01-01

    It is recognized that the availability of AC power to nuclear power plants is essential for safe operation and shutdown and accident recovery of commercial nuclear power plants (NPPs). Unavailability of AC power can be a important adverse impact on a plant's ability to recover accident sequences and maintain safe shutdown. The probabilistic safety assessment (PSA or PRA) performed for Korea NPPs also indicated that a loss of offsite power (LOOP) event and a station blackout (SBO) event can be a important contributors to total risk at nuclear power plant, contributing from 30% to 70% of the total risk at some NPPs in Korea. But, up to now, the LOOP and subsequent restoration time are important inputs to plant probabilistic risk assessment have relied upon foreign data. Therefore, in this paper, the actual LOOP events that have occurred from 1978 to 2004 at commercial nuclear power plants in Korea are collected. A statistical analysis for LOOP frequency and restoration time are performed to apply NPPs's specific and realistic risk model in Korea. Additionally, an engineering analysis is also performed to obtain the insights about the LOOP events

  19. Maximizing the Social Welfare of Virtual Power Players Operation in Case of Excessive Wind Power

    DEFF Research Database (Denmark)

    Faria, Pedro; Vale, Zita; Morais, Hugo

    2013-01-01

    based generation (including wind power) has caused several changes in the operation and planning of power systems and of electricity markets. Sometimes the available non-dispatchable generation is higher than the demand. This generation must be used; otherwise it is wasted if not stored or used...... that aggregates and manages the available energy resources. When facing a situation of excessive non-dispatchable generation, including wind power, real time pricing is applied in order to induce the increase of consumption so that wind curtailment is minimized. This method is especially useful when actual...... in this paper using a real 937-bus distribution network with 20.310 consumers and 548 distributed generators, some of them non-dispatchable and with must take contracts. The implemented scenario corresponds to a real day in Portuguese power system....

  20. A real-time expert system for nuclear power plant failure diagnosis and operational guide

    International Nuclear Information System (INIS)

    Naito, N.; Sakuma, A.; Shigeno, K.; Mori, N.

    1987-01-01

    A real-time expert system (DIAREX) has been developed to diagnose plant failure and to offer a corrective operational guide for boiling water reactor (BWR) power plants. The failure diagnosis model used in DIAREX was systematically developed, based mainly on deep knowledge, to cover heuristics. Complex paradigms for knowledge representation were adopted, i.e., the process representation language and the failure propagation tree. The system is composed of a knowledge base, knowledge base editor, preprocessor, diagnosis processor, and display processor. The DIAREX simulation test has been carried out for many transient scenarios, including multiple failures, using a real-time full-scope simulator modeled after the 1100-MW(electric) BWR power plant. Test results showed that DIAREX was capable of diagnosing a plant failure quickly and of providing a corrective operational guide with a response time fast enough to offer valuable information to plant operators

  1. Performance of automatic generation control mechanisms with large-scale wind power

    Energy Technology Data Exchange (ETDEWEB)

    Ummels, B.C.; Gibescu, M.; Paap, G.C. [Delft Univ. of Technology (Netherlands); Kling, W.L. [Transmission Operations Department of TenneT bv (Netherlands)

    2007-11-15

    The unpredictability and variability of wind power increasingly challenges real-time balancing of supply and demand in electric power systems. In liberalised markets, balancing is a responsibility jointly held by the TSO (real-time power balancing) and PRPs (energy programs). In this paper, a procedure is developed for the simulation of power system balancing and the assessment of AGC performance in the presence of large-scale wind power, using the Dutch control zone as a case study. The simulation results show that the performance of existing AGC-mechanisms is adequate for keeping ACE within acceptable bounds. At higher wind power penetrations, however, the capabilities of the generation mix are increasingly challenged and additional reserves are required at the same level. (au)

  2. Power system analysis of Hanlim superconducting HVDC system using real time digital simulator

    Science.gov (United States)

    Won, Y. J.; Kim, J. G.; Kim, A. R.; Kim, G. H.; Park, M.; Yu, I. K.; Sim, K. D.; Cho, J.; Lee, S.; Jeong, K. W.; Watanabe, K.

    2011-11-01

    Jeju island is located approximately 100 km south from the mainland of Korea, and had a peak load of about 553 MW in 2008. The demand increases 7.2% a year over the last 5 years. Since the wind profiles of Jeju island are more favorable than mainland of Korea, many companies have shown interest in the wind power business at the Jeju island. Moreover KEPCO has a plan for renewable energy test too whose power will be delivered by HVDC system. One kilometer length of total 8 km was designed as superconducting DC cable. Rest 7 km will be the conventional overhead line. In this paper, the authors have developed a simulation model of the power network around 8 km HVDC system using real time digital simulator (RTDS).

  3. SOSPO-SP: Secure Operation of Sustainable Power Systems Simulation Platform for Real-Time System State Evaluation and Control

    DEFF Research Database (Denmark)

    Morais, Hugo; Vancraeyveld, Pieter; Pedersen, Allan Henning Birger

    2014-01-01

    Measurement Units (PMUs) provides more information and enables wide-area monitoring with accurate timing. One of the challenges in the near future is converting the high quantity and quality of information provided by PMUs into useful knowledge about operational state of a global system. The use of real-time...... simulation in closed-loop is essential to develop and validate new real-time applications of wide-area PMU data. This paper presents a simulation platform developed within the research project Secure Operation of Sustainable Power Systems (SOSPO). The SOSPO simulation platform (SOSPO-SP) functions...... in a closed-loop, integrating new real-time assessment methods to provide useful information to operators in power system control centers and to develop new control methodologies that handle emergency situations and avoid power system blackouts....

  4. Planning for Higher Education.

    Science.gov (United States)

    Lindstrom, Caj-Gunnar

    1984-01-01

    Decision processes for strategic planning for higher education institutions are outlined using these parameters: institutional goals and power structure, organizational climate, leadership attitudes, specific problem type, and problem-solving conditions and alternatives. (MSE)

  5. A stochastic dynamic model for optimal timing of investments in new generation capacity in restructured power systems

    International Nuclear Information System (INIS)

    Botterud, Audun; Korpaas, Magnus

    2007-01-01

    In this paper we formulate the power generation investment problem for a decentralised and profit-maximising investor operating in a restructured and competitive power system. In particular, we look at how uncertainty influences the optimal timing of investments in new power generation capacity. A real options approach is used to take long-term uncertainty in load growth, and its influence on future electricity prices, into account in the investment optimisation. In order to value the operational flexibility of a new power plant we use an electricity price model, where the spot price is a function of load level and installed generation capacity, in addition to short-term uncertainties and temporal fluctuations in the market. The investor's income from a capacity payment, which also can depend on the system's total capacity balance, can also be represented. Hence, with the optimisation model we can analyse power plant profitability and optimal timing of new investments under different market designs. In a case study from the Nordic electricity market we analyse the effect of uncertainty on optimal investment timing. We also examine how a fixed or variable capacity payment would influence the investment decision, and discuss the system consequences of the resulting investment strategies. (author)

  6. A Unified Trading Model Based on Robust Optimization for Day-Ahead and Real-Time Markets with Wind Power Integration

    Directory of Open Access Journals (Sweden)

    Yuewen Jiang

    2017-04-01

    Full Text Available In a conventional electricity market, trading is conducted based on power forecasts in the day-ahead market, while the power imbalance is regulated in the real-time market, which is a separate trading scheme. With large-scale wind power connected into the power grid, power forecast errors increase in the day-ahead market which lowers the economic efficiency of the separate trading scheme. This paper proposes a robust unified trading model that includes the forecasts of real-time prices and imbalance power into the day-ahead trading scheme. The model is developed based on robust optimization in view of the undefined probability distribution of clearing prices of the real-time market. For the model to be used efficiently, an improved quantum-behaved particle swarm algorithm (IQPSO is presented in the paper based on an in-depth analysis of the limitations of the static character of quantum-behaved particle swarm algorithm (QPSO. Finally, the impacts of associated parameters on the separate trading and unified trading model are analyzed to verify the superiority of the proposed model and algorithm.

  7. Optimal robust stabilizer design based on UPFC for interconnected power systems considering time delay

    Directory of Open Access Journals (Sweden)

    Koofigar Hamid Reza

    2017-09-01

    Full Text Available A robust auxiliary wide area damping controller is proposed for a unified power flow controller (UPFC. The mixed H2 / H∞ problem with regional pole placement, resolved by linear matrix inequality (LMI, is applied for controller design. Based on modal analysis, the optimal wide area input signals for the controller are selected. The time delay of input signals, due to electrical distance from the UPFC location is taken into account in the design procedure. The proposed controller is applied to a multi-machine interconnected power system from the IRAN power grid. It is shown that the both transient and dynamic stability are significantly improved despite different disturbances and loading conditions.

  8. RF power generation for future linear colliders

    International Nuclear Information System (INIS)

    Fowkes, W.R.; Allen, M.A.; Callin, R.S.; Caryotakis, G.; Eppley, K.R.; Fant, K.S.; Farkas, Z.D.; Feinstein, J.; Ko, K.; Koontz, R.F.; Kroll, N.; Lavine, T.L.; Lee, T.G.; Miller, R.H.; Pearson, C.; Spalek, G.; Vlieks, A.E.; Wilson, P.B.

    1990-06-01

    The next linear collider will require 200 MW of rf power per meter of linac structure at relatively high frequency to produce an accelerating gradient of about 100 MV/m. The higher frequencies result in a higher breakdown threshold in the accelerating structure hence permit higher accelerating gradients per meter of linac. The lower frequencies have the advantage that high peak power rf sources can be realized. 11.42 GHz appears to be a good compromise and the effort at the Stanford Linear Accelerator Center (SLAC) is being concentrated on rf sources operating at this frequency. The filling time of the accelerating structure for each rf feed is expected to be about 80 ns. Under serious consideration at SLAC is a conventional klystron followed by a multistage rf pulse compression system, and the Crossed-Field Amplifier. These are discussed in this paper

  9. Whither probabilistic security management for real-time operation of power systems ?

    OpenAIRE

    Karangelos, Efthymios; Panciatici, Patrick; Wehenkel, Louis

    2016-01-01

    This paper investigates the stakes of introducing probabilistic approaches for the management of power system’s security. In real-time operation, the aim is to arbitrate in a rational way between preventive and corrective control, while taking into account i) the prior probabilities of contingencies, ii) the possible failure modes of corrective control actions, iii) the socio-economic consequences of service interruptions. This work is a first step towards the construction of a globally co...

  10. Determination of the needed power of an electric motor on the basis of acceleration time of the electric car

    Science.gov (United States)

    Sapundzhiev, M.; Evtimov, I.; Ivanov, R.

    2017-10-01

    The paper presents an upgraded methodology for determination of the electric motor power considering the time for acceleration. The influence of the speed factor of electric motor on the value of needed power at same acceleration time is studied. Some calculations on the basis of real vehicle were made. The numeric and graphical results are given. They show a decrease of needed power with the increase of the speed factor of motor, because the high speed factor allows the use of a larger range of the characteristic with the maximum power of the motor. An experimental verification of methodology was done.

  11. Low Power Design with High-Level Power Estimation and Power-Aware Synthesis

    CERN Document Server

    Ahuja, Sumit; Shukla, Sandeep Kumar

    2012-01-01

    Low-power ASIC/FPGA based designs are important due to the need for extended battery life, reduced form factor, and lower packaging and cooling costs for electronic devices. These products require fast turnaround time because of the increasing demand for handheld electronic devices such as cell-phones, PDAs and high performance machines for data centers. To achieve short time to market, design flows must facilitate a much shortened time-to-product requirement. High-level modeling, architectural exploration and direct synthesis of design from high level description enable this design process. This book presents novel research techniques, algorithms,methodologies and experimental results for high level power estimation and power aware high-level synthesis. Readers will learn to apply such techniques to enable design flows resulting in shorter time to market and successful low power ASIC/FPGA design. Integrates power estimation and reduction for high level synthesis, with low-power, high-level design; Shows spec...

  12. Applications of power beaming from space-based nuclear power stations. [Laser beaming to airplanes; microwave beaming to ground

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.R.; Botts, T.E.; Hertzberg, A.

    1981-01-01

    Power beaming from space-based reactor systems is examined using an advanced compact, lightweight Rotating Bed Reactor (RBR). Closed Brayton power conversion efficiencies in the range of 30 to 40% can be achieved with turbines, with reactor exit temperatures on the order of 2000/sup 0/K and a liquid drop radiator to reject heat at temperatures of approx. 500/sup 0/K. Higher RBR coolant temperatures (up to approx. 3000/sup 0/K) are possible, but gains in power conversion efficiency are minimal, due to lower expander efficiency (e.g., a MHD generator). Two power beaming applications are examined - laser beaming to airplanes and microwave beaming to fixed ground receivers. Use of the RBR greatly reduces system weight and cost, as compared to solar power sources. Payback times are a few years at present prices for power and airplane fuel.

  13. Efficient Power Allocation for Video over Superposition Coding

    KAUST Repository

    Lau, Chun Pong

    2013-03-01

    In this paper we consider a wireless multimedia system by mapping scalable video coded (SVC) bit stream upon superposition coded (SPC) signals, referred to as (SVC-SPC) architecture. Empirical experiments using a software-defined radio(SDR) emulator are conducted to gain a better understanding of its efficiency, specifically, the impact of the received signal due to different power allocation ratios. Our experimental results show that to maintain high video quality, the power allocated to the base layer should be approximately four times higher than the power allocated to the enhancement layer.

  14. Study of Real Time Location System For Worker in Containment Building at Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y.; Kim, G. S. [Samchang Enterprise Company, Ulsan (Korea, Republic of); Kim, H. S. [Ulsan Univ., Ulsan (Korea, Republic of)

    2012-03-15

    Workers are required special management to minimize radiation exposure in nuclear power plant. Especially, there are many limitation in their activities at containment building in nuclear power plant. Test personnel shall administer the workers by tracing the location of them inside containment building in nuclear power plant. They may be exposed to the unnecessary radiation due to a complex and high radiation area in the building. Test personnel needs to manage efficiently for worker's safety and work hours at containment building. Therefore, it is critical for the test personnel to notice the risk to the workers by identifying the location when the workers are facing the dangerous situation on the high area. In this paper, we introduce requirements and design method to develop the one and two dimensional RTLS(Real Time Locating System) by using CSS(Chirp Spread Spectrum) which enables precise location measurement and robust data communication even indoor environment with serious electromagnetic interference caused by complicated structure such as the inside of containment building in the nuclear power plant. In the algorithm to compute the distance, it is suggested to use SDS-TWR(Symmetrical Double-Sided Two-Way Ranging) to solve the issue of indirect routes, and develop the power circuit with 10mW of designing gain for output power to meet the KCC standard in order to increase the raging distance, in addition, communication between Anchor and distance measuring computer shall be designed to increase energy using time of Tags(nodes) by using CAN(Controller Area Network) communication.

  15. The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species.

    Science.gov (United States)

    Joyce, E; Phull, S S; Lorimer, J P; Mason, T J

    2003-10-01

    Some species of bacteria produce colonies and spores which agglomerate in spherical clusters (Bacillus subtilis) and this serves as a protection for the organisms inside against biocidal attack. Flocs of fine particles e.g. clay can entrap bacteria which can also protect them against the biocides. It is because of problems such as these that alternative methods of disinfecting water are under active investigation. One such method is the use of power ultrasound, either alone or in combination with other methods. Ultrasound is able to inactivate bacteria and deagglomerate bacterial clusters or flocs through a number of physical, mechanical and chemical effects arising from acoustic cavitation. The aim of this study was to investigate the effect of power ultrasound at different powers and frequencies on Bacillus subtilis. Viable plate count techniques were used as a measure of microbial activity. Results showed a significant increase in percent kill for Bacillus species with increasing duration of exposure and intensity of ultrasound in the low-kilohertz range (20 and 38 kHz). Results obtained at two higher frequencies (512 and 850 kHz) indicated a significant increase in bacteria count suggesting declumping. In assessing the bacterial kill with time under different sonication regimes three types of behaviour were characterized: High power ultrasound (lower frequencies) in low volumes of bacterial suspension results in a continuous reduction in bacterial cell numbers i.e. the kill rate predominates. High power ultrasound (lower frequencies) in larger volumes results in an initial rise in cell numbers suggesting declumping of the bacteria but this initial rise then falls as the declumping finishes and the kill rate becomes more important. Low intensity ultrasound (higher frequencies) gives an initial rise in cell numbers as a result of declumping. The kill rate is low and so there is no significant subsequent decrease in bacterial cell numbers.

  16. Combined Approach of PNN and Time-Frequency as the Classifier for Power System Transient Problems

    Directory of Open Access Journals (Sweden)

    Aslam Pervez Memon

    2013-04-01

    Full Text Available The transients in power system cause serious disturbances in the reliability, safety and economy of the system. The transient signals possess the nonstationary characteristics in which the frequency as well as varying time information is compulsory for the analysis. Hence, it is vital, first to detect and classify the type of transient fault and then to mitigate them. This article proposes time-frequency and FFNN (Feedforward Neural Network approach for the classification of power system transients problems. In this work it is suggested that all the major categories of transients are simulated, de-noised, and decomposed with DWT (Discrete Wavelet and MRA (Multiresolution Analysis algorithm and then distinctive features are extracted to get optimal vector as input for training of PNN (Probabilistic Neural Network classifier. The simulation results of proposed approach prove their simplicity, accurateness and effectiveness for the automatic detection and classification of PST (Power System Transient types

  17. Time-Domain Voltage Sag State Estimation Based on the Unscented Kalman Filter for Power Systems with Nonlinear Components

    Directory of Open Access Journals (Sweden)

    Rafael Cisneros-Magaña

    2018-06-01

    Full Text Available This paper proposes a time-domain methodology based on the unscented Kalman filter to estimate voltage sags and their characteristics, such as magnitude and duration in power systems represented by nonlinear models. Partial and noisy measurements from the electrical network with nonlinear loads, used as data, are assumed. The characteristics of voltage sags can be calculated in a discrete form with the unscented Kalman filter to estimate all the busbar voltages; being possible to determine the rms voltage magnitude and the voltage sag starting and ending time, respectively. Voltage sag state estimation results can be used to obtain the power quality indices for monitored and unmonitored busbars in the power grid and to design adequate mitigating techniques. The proposed methodology is successfully validated against the results obtained with the time-domain system simulation for the power system with nonlinear components, being the normalized root mean square error less than 3%.

  18. Recommendations relating to safety-critical real-time software in nuclear power plants

    International Nuclear Information System (INIS)

    1992-01-01

    The Advisory Committee on Nuclear Safety (ACNS) has reviewed safety issues associated with the software for the digital computers in the safety shutdown systems for the Darlington NGS. From this review the ACNS has developed four recommendations for safety-critical real-time software in nuclear power plants. These recommendations cover: the completion of the present efforts to develop an overall standard and sub-tier standards for safety-critical real-time software; the preparation of schedules and lists of responsibilities for this development; the concentration of AECB efforts on ensuring the scrutability of safety-critical real-time software; and, the collection of data on reliability and causes of failure (error) of safety-critical real-time software systems and on the probability and causes of common-mode failures (errors). (9 refs.)

  19. Real-time power angle determination of salient-pole synchronous machine based on air gap measurements

    Energy Technology Data Exchange (ETDEWEB)

    Despalatovic, Marin; Jadric, Martin; Terzic, Bozo [FESB University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, R. Boskovica bb, 21000 Split (Croatia)

    2008-11-15

    This paper presents a new method for the real-time power angle determination of the salient-pole synchronous machines. This method is based on the terminal voltage and air gap measurements, which are the common features of the hydroturbine generator monitoring system. The raw signal of the air gap sensor is used to detect the rotor displacement with reference to the fundamental component of the terminal voltage. First, the algorithm developed for the real-time power angle determination is tested using the synthetic data obtained by the standard machine model simulation. Thereafter, the experimental investigation is carried out on the 26 MVA utility generator. The validity of the method is verified by comparing with another method, which is based on a tooth gear mounted on the rotor shaft. The proposed real-time algorithm has an adequate accuracy and needs a very short processing time. For applications that do not require real-time processing, such as the estimation of the synchronous machine parameters, the accuracy is additionally increased by applying an off-line data-processing algorithm. (author)

  20. Analysis and Design of Timing Recovery Schemes for DMT Systems over Indoor Power-Line Channels

    Directory of Open Access Journals (Sweden)

    Cortés José Antonio

    2007-01-01

    Full Text Available Discrete multitone (DMT modulation is a suitable technique to cope with main impairments of broadband indoor power-line channels: spectral selectivity and cyclic time variations. Due to the high-density constellations employed to achieve the required bit-rates, synchronization issues became an important concern in these scenarios. This paper analyzes the performance of a conventional DMT timing recovery scheme designed for linear time-invariant (LTI channels when employed over indoor power lines. The influence of the channel cyclic short-term variations and the sampling jitter on the system performance is assessed. Bit-rate degradation due to timing errors is evaluated in a set of measured channels. It is shown that this synchronization mechanism limits the system performance in many residential channels. Two improvements are proposed to avoid this end: a new phase error estimator that takes into account the short-term changes in the channel response, and the introduction of notch filters in the timing recovery loop. Simulations confirm that the new scheme eliminates the bit-rate loss in most situations.

  1. Longer operating times of nuclear power plants. Options for compensating public utility advantages

    International Nuclear Information System (INIS)

    Bode, Sven; Kondziella, Hendrik; Bruckner, Thomas

    2010-01-01

    The current German government of CDU/CSU and FDP intends to prolong the operating time of existing nuclear power plants in Germany. The advantages resulting for public utilities are to be compensated. The authors discuss how compensation may be achieved and outline the available instruments. (orig.)

  2. Real-time contrast ultrasound muscle perfusion imaging with intermediate-power imaging coupled with acoustically durable microbubbles.

    Science.gov (United States)

    Seol, Sang-Hoon; Davidson, Brian P; Belcik, J Todd; Mott, Brian H; Goodman, Reid M; Ammi, Azzdine; Lindner, Jonathan R

    2015-06-01

    There is growing interest in limb contrast-enhanced ultrasound (CEU) perfusion imaging for the evaluation of peripheral artery disease. Because of low resting microvascular blood flow in skeletal muscle, signal enhancement during limb CEU is prohibitively low for real-time imaging. The aim of this study was to test the hypothesis that this obstacle can be overcome by intermediate- rather than low-power CEU when performed with an acoustically resilient microbubble agent. Viscoelastic properties of Definity and Sonazoid were assessed by measuring bulk modulus during incremental increases in ambient pressure to 200 mm Hg. Comparison of in vivo microbubble destruction and signal enhancement at a mechanical index (MI) of 0.1 to 0.4 was performed by sequential reduction in pulsing interval from 10 to 0.05 sec during limb CEU at 7 MHz in mice and 1.8 MHz in dogs. Destruction was also assessed by broadband signal generation during passive cavitation detection. Real-time CEU perfusion imaging with destruction-replenishment was then performed at 1.8 MHz in dogs using an MI of 0.1, 0.2, or 0.3. Sonazoid had a higher bulk modulus than Definity (66 ± 12 vs 29 ± 2 kPa, P = .02) and exhibited less inertial cavitation (destruction) at MIs ≥ 0.2. On in vivo CEU, maximal signal intensity increased incrementally with MI for both agents and was equivalent between agents except at an MI of 0.1 (60% and 85% lower for Sonazoid at 7 and 1.8 MHz, respectively, P power imaging coupled with a durable microbubble contrast agent. Copyright © 2015 American Society of Echocardiography. All rights reserved.

  3. Real-Time Dynamic Simulation of Korean Power Grid for Frequency Regulation Control by MW Battery Energy Storage System

    Directory of Open Access Journals (Sweden)

    Tae-Hwan Jin

    2016-12-01

    Full Text Available The aim of this study was to develop a real-time dynamic simulator of a power grid with power plant and battery model. The simulator was used to investigate the frequency control characteristics of a megawatt-scale high-capacity energy storage system connected to the electric power grid. In this study, a lithium-ion secondary battery was chosen as one of the batteries for a grid-connected model. The dynamics of the model was analysed in both steady and transient states. The frequency control system of the battery model plays a role in regulating the grid frequency by controlling the power of energy storage systems according to process variables and grid frequencies. The power grid model based on the current power network of South Korea, included power plants, substations and power demands. The power supply is classified by the type of turbine generator as thermal, nuclear, hydro power, pumped power storage, combined power plants, and batteries, including high-capacity energy storage systems rated for a maximum of 500 MW. This study deals with an installed capacity of 87.17 GW and peak load of 77.30 GW in the Korean power grid. For 24 hours of operation, the maximum and minimum power outputs were simulated as 61.59 GW and 46.32 GW, respectively. The commercialized real-time dynamic simulation software ProTRAX was used. The simulation was conducted to observe the operation characteristics of the frequency control system during a breakdown of power plants, as well as under governor-free operation, auto generation control operation, and with the battery energy storage system connected. The results show that the model is valid for each power plant breakdown simulation. They also confirm that the output power and frequency controls of the battery operated well during simulations.

  4. Comment on "Time needed to board an airplane: a power law and the structure behind it".

    Science.gov (United States)

    Bernstein, Noam

    2012-08-01

    Frette and Hemmer [Phys. Rev. E 85, 011130 (2012)] recently showed that for a simple model for the boarding of an airplane, the mean time to board scales as a power law with the number of passengers N and the exponent is less than 1. They note that this scaling leads to the prediction that the "back-to-front" strategy, where passengers are divided into groups from contiguous ranges of rows and each group is allowed to board in turn from back to front once the previous group has found their seats, has a longer boarding time than would a single group. Here I extend their results to a larger number of passengers using a sampling approach and explore a scenario where the queue is presorted into groups from back to front, but allowed to enter the plane as soon as they can. I show that the power law dependence on passenger numbers is different for large N and that there is a boarding time reduction for presorted groups, with a power law dependence on the number of presorted groups.

  5. High-speed extended-term time-domain simulation for online cascading analysis of power system

    Science.gov (United States)

    Fu, Chuan

    A high-speed extended-term (HSET) time domain simulator (TDS), intended to become a part of an energy management system (EMS), has been newly developed for use in online extended-term dynamic cascading analysis of power systems. HSET-TDS includes the following attributes for providing situational awareness of high-consequence events: (i) online analysis, including n-1 and n-k events, (ii) ability to simulate both fast and slow dynamics for 1-3 hours in advance, (iii) inclusion of rigorous protection-system modeling, (iv) intelligence for corrective action ID, storage, and fast retrieval, and (v) high-speed execution. Very fast on-line computational capability is the most desired attribute of this simulator. Based on the process of solving algebraic differential equations describing the dynamics of power system, HSET-TDS seeks to develop computational efficiency at each of the following hierarchical levels, (i) hardware, (ii) strategies, (iii) integration methods, (iv) nonlinear solvers, and (v) linear solver libraries. This thesis first describes the Hammer-Hollingsworth 4 (HH4) implicit integration method. Like the trapezoidal rule, HH4 is symmetrically A-Stable but it possesses greater high-order precision (h4 ) than the trapezoidal rule. Such precision enables larger integration steps and therefore improves simulation efficiency for variable step size implementations. This thesis provides the underlying theory on which we advocate use of HH4 over other numerical integration methods for power system time-domain simulation. Second, motivated by the need to perform high speed extended-term time domain simulation (HSET-TDS) for on-line purposes, this thesis presents principles for designing numerical solvers of differential algebraic systems associated with power system time-domain simulation, including DAE construction strategies (Direct Solution Method), integration methods(HH4), nonlinear solvers(Very Dishonest Newton), and linear solvers(SuperLU). We have

  6. Time-dependent spectrum analysis of high power gyrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Schlaich, Andreas

    2015-07-01

    In this work, an investigation of vacuum electronic oscillators capable of generating multi-megawatt continuous wave output power in the millimeter-wave range (so-called gyrotrons) through spectral measurements is presented. The centerpiece is the development of a measurement system with a high dynamic range (50-60 dB) for time-dependent spectrum analysis, covering the frequency range 100-170 GHz with instantaneous bandwidths of 6-12 GHz. Despite relying on heterodyne reception through harmonic mixers, the Pulse Spectrum Analysis (PSA) system maintains RF unambiguity in the spectrogram output through the application of a novel RF reconstruction technique. Using the new possibilities, a wide range of spectral phenomena in gyrotrons has been investigated, such as cavity mode jumps, lowfrequency modulation, frequency tuning in long pulses and the spectral behavior during the presence of an RF window arc. A dedicated investigation on parasitic RF oscillations in W7-X gyrotrons combining several analysis techniques led to the conclusion that after-cavity oscillations can be physical reality in high power gyrotrons, and are the probable cause for the undesired signals observed. Apart from systematic parameter sweeps using the PSA system, an analytical dispersion analysis in the Brillouin diagram was applied, and numerical gyrotron interaction simulations of unprecedented extent were conducted. Furthermore, the improved frequency measurement capabilities were employed to analyze the frequency tuning through thermal expansion and electrostatic neutralization caused by ionization inside the tube in long-pulse operation. By macroscopically modeling the gas dynamics and ionization processes in combination with a fitting process, the time dependences of the two processes could be investigated. In doing so, indication was found that the neutralization in W7-X gyrotrons amounts to only 60% of the electrostatic depression voltage, instead of 100% as widely believed for

  7. Time-dependent spectrum analysis of high power gyrotrons

    International Nuclear Information System (INIS)

    Schlaich, Andreas

    2015-01-01

    In this work, an investigation of vacuum electronic oscillators capable of generating multi-megawatt continuous wave output power in the millimeter-wave range (so-called gyrotrons) through spectral measurements is presented. The centerpiece is the development of a measurement system with a high dynamic range (50-60 dB) for time-dependent spectrum analysis, covering the frequency range 100-170 GHz with instantaneous bandwidths of 6-12 GHz. Despite relying on heterodyne reception through harmonic mixers, the Pulse Spectrum Analysis (PSA) system maintains RF unambiguity in the spectrogram output through the application of a novel RF reconstruction technique. Using the new possibilities, a wide range of spectral phenomena in gyrotrons has been investigated, such as cavity mode jumps, lowfrequency modulation, frequency tuning in long pulses and the spectral behavior during the presence of an RF window arc. A dedicated investigation on parasitic RF oscillations in W7-X gyrotrons combining several analysis techniques led to the conclusion that after-cavity oscillations can be physical reality in high power gyrotrons, and are the probable cause for the undesired signals observed. Apart from systematic parameter sweeps using the PSA system, an analytical dispersion analysis in the Brillouin diagram was applied, and numerical gyrotron interaction simulations of unprecedented extent were conducted. Furthermore, the improved frequency measurement capabilities were employed to analyze the frequency tuning through thermal expansion and electrostatic neutralization caused by ionization inside the tube in long-pulse operation. By macroscopically modeling the gas dynamics and ionization processes in combination with a fitting process, the time dependences of the two processes could be investigated. In doing so, indication was found that the neutralization in W7-X gyrotrons amounts to only 60% of the electrostatic depression voltage, instead of 100% as widely believed for

  8. Power of tests for comparing trend curves with application to national immunization survey (NIS).

    Science.gov (United States)

    Zhao, Zhen

    2011-02-28

    To develop statistical tests for comparing trend curves of study outcomes between two socio-demographic strata across consecutive time points, and compare statistical power of the proposed tests under different trend curves data, three statistical tests were proposed. For large sample size with independent normal assumption among strata and across consecutive time points, the Z and Chi-square test statistics were developed, which are functions of outcome estimates and the standard errors at each of the study time points for the two strata. For small sample size with independent normal assumption, the F-test statistic was generated, which is a function of sample size of the two strata and estimated parameters across study period. If two trend curves are approximately parallel, the power of Z-test is consistently higher than that of both Chi-square and F-test. If two trend curves cross at low interaction, the power of Z-test is higher than or equal to the power of both Chi-square and F-test; however, at high interaction, the powers of Chi-square and F-test are higher than that of Z-test. The measurement of interaction of two trend curves was defined. These tests were applied to the comparison of trend curves of vaccination coverage estimates of standard vaccine series with National Immunization Survey (NIS) 2000-2007 data. Copyright © 2011 John Wiley & Sons, Ltd.

  9. The database system of the real-time dose appreciation for Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Jiang Li; Chai Luquan

    1993-01-01

    The paper is about the data base system of the real-time dose appreciation for Qinshan Nuclear Power Plant and describes in detail the design of the system, the data structure, the programming and the characteristics

  10. Optimal testing input sets for reduced diagnosis time of nuclear power plant digital electronic circuits

    International Nuclear Information System (INIS)

    Kim, D.S.; Seong, P.H.

    1994-01-01

    This paper describes the optimal testing input sets required for the fault diagnosis of the nuclear power plant digital electronic circuits. With the complicated systems such as very large scale integration (VLSI), nuclear power plant (NPP), and aircraft, testing is the major factor of the maintenance of the system. Particularly, diagnosis time grows quickly with the complexity of the component. In this research, for reduce diagnosis time the authors derived the optimal testing sets that are the minimal testing sets required for detecting the failure and for locating of the failed component. For reduced diagnosis time, the technique presented by Hayes fits best for the approach to testing sets generation among many conventional methods. However, this method has the following disadvantages: (a) it considers only the simple network (b) it concerns only whether the system is in failed state or not and does not provide the way to locate the failed component. Therefore the authors have derived the optimal testing input sets that resolve these problems by Hayes while preserving its advantages. When they applied the optimal testing sets to the automatic fault diagnosis system (AFDS) which incorporates the advanced fault diagnosis method of artificial intelligence technique, they found that the fault diagnosis using the optimal testing sets makes testing the digital electronic circuits much faster than that using exhaustive testing input sets; when they applied them to test the Universal (UV) Card which is a nuclear power plant digital input/output solid state protection system card, they reduced the testing time up to about 100 times

  11. Effects of various deposition times and RF powers on CdTe thin film growth using magnetron sputtering

    Science.gov (United States)

    Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.

    2016-09-01

    Cadmium telluride (CdTe) is a p-type II-VI compound semiconductor, which is an active component for producing photovoltaic solar cells in the form of thin films, due to its desirable physical properties. In this study, CdTe film was deposited using the radio frequency (RF) magnetron sputtering system onto a glass substrate. To improve the properties of the CdTe film, effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD), atomic force microscopy (AFM) and spectrophotometer were used to study the structural, morphological and optical properties of the CdTe samples grown at different experimental conditions, respectively. Our results suggest that film properties strongly depend on the experimental parameters and by optimizing these parameters, it is possible to tune the desired structural, morphological and optical properties. From XRD data, it is found that increasing the deposition time and RF power leads to increasing the crystallinity as well as the crystal sizes of the grown film, and all the films represent zinc blende cubic structure. Roughness values given from AFM images suggest increasing the roughness of the CdTe films by increasing the RF power and deposition times. Finally, optical investigations reveal increasing the film band gaps by increasing the RF power and the deposition time.

  12. Sensor response time calculation with no stationary signals from a Nuclear Power Plant

    International Nuclear Information System (INIS)

    Vela, O.; Vallejo, I.

    1998-01-01

    Protection systems in a Nuclear Power Plant have to response in a specific time fixed by design requirements. This time includes the event detection (sensor delay) and the actuation time system. This time is obtained in refuel simulating the physics event, which trigger the protection system, with an electric signal and measuring the protection system actuation time. Nowadays sensor delay is calculated with noise analysis techniques. The signals are measured in Control Room during the normal operation of the Plant, decreasing both the cost in time and personal radioactive exposure. The noise analysis techniques require stationary signals but normally the data collected are mixed with process signals that are no stationary. This work shows the signals processing to avoid no-stationary components using conventional filters and new wavelets analysis. (Author) 2 refs

  13. Discontinuous Galerkin Time-Domain Analysis of Power-Ground Planes Taking Into Account Decoupling Capacitors

    KAUST Repository

    Li, Ping; Jiang, Li Jun; Bagci, Hakan

    2017-01-01

    In this paper, a discontinuous Galerkin time-domain (DGTD) method is developed to analyze the power-ground planes taking into account the decoupling capacitors. In the presence of decoupling capacitors, the whole physical system can be split

  14. Improving Spiking Dynamical Networks: Accurate Delays, Higher-Order Synapses, and Time Cells.

    Science.gov (United States)

    Voelker, Aaron R; Eliasmith, Chris

    2018-03-01

    Researchers building spiking neural networks face the challenge of improving the biological plausibility of their model networks while maintaining the ability to quantitatively characterize network behavior. In this work, we extend the theory behind the neural engineering framework (NEF), a method of building spiking dynamical networks, to permit the use of a broad class of synapse models while maintaining prescribed dynamics up to a given order. This theory improves our understanding of how low-level synaptic properties alter the accuracy of high-level computations in spiking dynamical networks. For completeness, we provide characterizations for both continuous-time (i.e., analog) and discrete-time (i.e., digital) simulations. We demonstrate the utility of these extensions by mapping an optimal delay line onto various spiking dynamical networks using higher-order models of the synapse. We show that these networks nonlinearly encode rolling windows of input history, using a scale invariant representation, with accuracy depending on the frequency content of the input signal. Finally, we reveal that these methods provide a novel explanation of time cell responses during a delay task, which have been observed throughout hippocampus, striatum, and cortex.

  15. Development of a higher power cooling system for lithium targets.

    Science.gov (United States)

    Phoenix, B; Green, S; Scott, M C; Bennett, J R J; Edgecock, T R

    2015-12-01

    The accelerator based Boron Neutron Capture Therapy beam at the University of Birmingham is based around a solid thick lithium target cooled by heavy water. Significant upgrades to Birmingham's Dynamitron accelerator are planned prior to commencing a clinical trial. These upgrades will result in an increase in maximum achievable beam current to at least 3 mA. Various upgrades to the target cooling system to cope with this increased power have been investigated. Tests of a phase change coolant known as "binary ice" have been carried out using an induction heater to provide a comparable power input to the Dynamitron beam. The experimental data shows no improvement over chilled water in the submerged jet system, with both systems exhibiting the same heat input to target temperature relation for a given flow rate. The relationship between the cooling circuit pumping rate and the target temperature in the submerged jet system has also been tested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Real time Intelligent Control Laboratory (RT-ICL) of PowerLabDK for smart grid technology development

    DEFF Research Database (Denmark)

    Ostergaard, Jacob; Wu, Qiuwei; Garcia-Valle, Rodrigo

    2012-01-01

    This paper presents the Intelligent Control Laboratory (ICL) of the PowerLabDK and describes examples of ongoing research work utilizing the ICL. The ICL is comprised of a real time digital simulator (RTDS) with 5 racks, a full scale SCADA system and experimental control room with a link to the B......This paper presents the Intelligent Control Laboratory (ICL) of the PowerLabDK and describes examples of ongoing research work utilizing the ICL. The ICL is comprised of a real time digital simulator (RTDS) with 5 racks, a full scale SCADA system and experimental control room with a link...

  17. Response Time Test for The Application of the Data Communication Network to Nuclear Power Plant

    International Nuclear Information System (INIS)

    Shin, Y.C.; Lee, J.Y.; Park, H.Y.; Seong, S.H.; Chung, H.Y.

    2002-01-01

    This paper discusses the response time test for the application of the Data Communication Network (DCN) to Nuclear Power Plant (NPP). Conventional Instrumentation and Control (I and C) Systems using the analog technology in NPP have raised many problems regarding the lack of spare parts, maintenance burden, inaccuracy, etc.. In order to solve the problems, the Korean Next Generation Reactor (KNGR) I and C system has adopted the digital technology and new design features of using the data communication networks. It is essential to prove the response time requirements that arise from the introduction of digital I and C technology and data communication networks to nuclear power plant design. For the response time test, a high reliable data communication network structure has been developed to meet the requirements of redundancy, diversity, and segmentation. This paper presents the results of network load analysis and response time test for the KNGR DCN prototype. The test has been focused on the response time from the field components to the gateway because the response times from the gateway to the specific systems are similar to those of the existing design. It is verified that the response time requirements are met through the prototype test for KNGR I and C systems. (authors)

  18. Temporal multiplexing for economical measurement of power versus time on NIF

    International Nuclear Information System (INIS)

    Thomas, S.; Boyd, B.; Davis, D.T.; Hall, B.

    1996-10-01

    The researchers have designed an economical device to measure the power time history in the National Ignition Facility's (NIF) 192 beam laser. The heart of the system is a commercial, high-speed, four-channel digitizer with a 15,000 point record length. Samples of several beams are taken with fiberoptic pickoffs, separated in time with appropriate fiberoptic delays and presented to high-speed vacuum photodiodes, which convert the samples to electrical signals for the digitizer. Amplitude and time multiplexing are used to cover the required dynamic range and to record 12 samples on the digitizer, making the cost per sample competitive with alternative approaches. Forty-eight digitizers can record the required three samples from each of the 192 beams. An additional similar but lower bandwidth system is used to record the backreflected light from the main laser amplifiers and elsewhere. The recording electronics are discussed in detail

  19. Temporal multiplexing for economical measurement of power versus time on NIF

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S.; Boyd, B.; Davis, D.T.; Hall, B.

    1996-10-01

    The researchers have designed an economical device to measure the power time history in the National Ignition Facility`s (NIF) 192 beam laser. The heart of the system is a commercial, high-speed, four-channel digitizer with a 15,000 point record length. Samples of several beams are taken with fiberoptic pickoffs, separated in time with appropriate fiberoptic delays and presented to high-speed vacuum photodiodes, which convert the samples to electrical signals for the digitizer. Amplitude and time multiplexing are used to cover the required dynamic range and to record 12 samples on the digitizer, making the cost per sample competitive with alternative approaches. Forty-eight digitizers can record the required three samples from each of the 192 beams. An additional similar but lower bandwidth system is used to record the backreflected light from the main laser amplifiers and elsewhere. The recording electronics are discussed in detail.

  20. Luminosity Optimization for a Higher-Energy LHC

    CERN Document Server

    Dominguez, O

    2011-01-01

    A Higher-Energy Large Hadron Collider (HE-LHC) is an option to further push the energy frontier of particle physics beyond the present LHC. A beam energy of 16.5 TeV would require 20 T dipole magnets in the existing LHC tunnel, which should be compared with 7 TeV and 8.33 T for the nominal LHC. Since the synchrotron radiation power increases with the fourth power of the energy, radiation damping becomes significant for the HE-LHC. It calls for transverse and longitudinal emittance control vis-a-vis beam-beam interaction and Landau damping. The heat load from synchrotron radiation, gas scattering, and electron cloud also increases with respect to the LHC. In this paper we discuss the proposed HE-LHC beam parameters; the time evolution of luminosity, beam-beam tune shifts, and emittances during an HE-LHC store; the expected heat load; and luminosity optimization schemes for both round and flat beams.

  1. A Novel Generation Method for the PV Power Time Series Combining the Decomposition Technique and Markov Chain Theory

    DEFF Research Database (Denmark)

    Xu, Shenzhi; Ai, Xiaomeng; Fang, Jiakun

    2017-01-01

    Photovoltaic (PV) power generation has made considerable developments in recent years. But its intermittent and volatility of its output has seriously affected the security operation of the power system. In order to better understand the PV generation and provide sufficient data support...... for analysis the impacts, a novel generation method for PV power time series combining decomposition technique and Markov chain theory is presented in this paper. It digs important factors from historical data from existing PV plants and then reproduce new data with similar patterns. In detail, the proposed...... method first decomposes the PV power time series into ideal output curve, amplitude parameter series and random fluctuating component three parts. Then generating daily ideal output curve by the extraction of typical daily data, amplitude parameter series based on the Markov chain Monte Carlo (MCMC...

  2. Deviations from uniform power law scaling in nonstationary time series

    Science.gov (United States)

    Viswanathan, G. M.; Peng, C. K.; Stanley, H. E.; Goldberger, A. L.

    1997-01-01

    A classic problem in physics is the analysis of highly nonstationary time series that typically exhibit long-range correlations. Here we test the hypothesis that the scaling properties of the dynamics of healthy physiological systems are more stable than those of pathological systems by studying beat-to-beat fluctuations in the human heart rate. We develop techniques based on the Fano factor and Allan factor functions, as well as on detrended fluctuation analysis, for quantifying deviations from uniform power-law scaling in nonstationary time series. By analyzing extremely long data sets of up to N = 10(5) beats for 11 healthy subjects, we find that the fluctuations in the heart rate scale approximately uniformly over several temporal orders of magnitude. By contrast, we find that in data sets of comparable length for 14 subjects with heart disease, the fluctuations grow erratically, indicating a loss of scaling stability.

  3. Space-to-Space Power Beaming Enabling High Performance Rapid Geocentric Orbit Transfer

    Science.gov (United States)

    Dankanich, John W.; Vassallo, Corinne; Tadge, Megan

    2015-01-01

    The use of electric propulsion is more prevalent than ever, with industry pursuing all electric orbit transfers. Electric propulsion provides high mass utilization through efficient propellant transfer. However, the transfer times become detrimental as the delta V transitions from near-impulsive to low-thrust. Increasing power and therefore thrust has diminishing returns as the increasing mass of the power system limits the potential acceleration of the spacecraft. By using space-to-space power beaming, the power system can be decoupled from the spacecraft and allow significantly higher spacecraft alpha (W/kg) and therefore enable significantly higher accelerations while maintaining high performance. This project assesses the efficacy of space-to-space power beaming to enable rapid orbit transfer while maintaining high mass utilization. Concept assessment requires integrated techniques for low-thrust orbit transfer steering laws, efficient large-scale rectenna systems, and satellite constellation configuration optimization. This project includes the development of an integrated tool with implementation of IPOPT, Q-Law, and power-beaming models. The results highlight the viability of the concept, limits and paths to infusion, and comparison to state-of-the-art capabilities. The results indicate the viability of power beaming for what may be the only approach for achieving the desired transit times with high specific impulse.

  4. Some properties of zero power neutron noise in a time-varying medium with delayed neutrons

    International Nuclear Information System (INIS)

    Kitamura, Y.; Pal, L.; Pazsit, I.; Yamamoto, A.; Yamane, Y.

    2008-01-01

    The temporal evolution of the distribution of the number of neutrons in a time-varying multiplying system, producing only prompt neutrons, was treated recently with the master equation technique by some of the present authors. Such a treatment gives account of both the so-called zero power reactor noise and the power reactor noise simultaneously. In particular, the first two moments of the neutron number, as well as the concept of criticality for time-varying systems, were investigated and discussed. The present paper extends these investigations to the case when delayed neutrons are also taken into account. Due to the complexity of the description, only the expectation of the neutron number is calculated. The concept of criticality of a time-varying system is also generalized to systems with delayed neutrons. The temporal behaviour of the expectation of the number of neutrons and its asymptotic properties are displayed and discussed

  5. Experimental evaluation of the MIT-SNL period-generated minimum time control laws for the rapid adjustment of reactor power

    International Nuclear Information System (INIS)

    Bernard, J.A.; Kwok, K.S.; Menadier, P.T.; Thome, F.V.; Wyant, F.J.

    1987-01-01

    The rapid adjustment of reactor neutronic power has recently been achieved by developing control laws that determine the actuator mechanism velocity necessary to produce a specified reactor period. Designated as the 'MIT-SNL Period-Generated Minimum Time Control Laws,' these relations are closed-form expressions of general applicability. In particular, if there is no limitation on the available rate of change of reactivity, these laws can be used to achieve virtually any desired power profile including time optimal ones. The innovative aspect of these laws is that the rate of change of reactivity rather than the reactivity itself is used as the control signal. For example, relative to a time-optimal response, these laws function by altering the rate of change of reactivity so that the instantaneous period is stepped from infinity to its minimum allowed value, held at that value until the desired power level is attained, and then stepped back to infinity. The response is time-optimal because the power adjustment is continuously made at the maximum allowed rate

  6. SiC for microwave power transistors

    Energy Technology Data Exchange (ETDEWEB)

    Sriram, S.; Siergiej, R.R.; Clarke, R.C.; Agarwal, A.K.; Brandt, C.D. [Northrop Grumman Sci. and Technol. Center, Pittsburgh, PA (United States)

    1997-07-16

    The advantages of SiC for high power, microwave devices are discussed. The design considerations, fabrication, and experimental results are described for SiC MESFETs and SITs. The highest reported f{sub max} for a 0.5 {mu}m MESFET using semi-insulating 4H-SiC is 42 GHz. These devices also showed a small signal gain of 5.1 dB at 20 GHz. Other 4H-SiC MESFETs have shown a power density of 3.3 W/mm at 850 MHz. The largest SiC power transistor reported is a 450 W SIT measured at 600 MHz. The power output density of this SIT is 2.5 times higher than that of comparable silicon devices. SITs have been designed to operate as high as 3.0 GHz, with a 3 cm periphery part delivering 38 W of output power. (orig.) 28 refs.

  7. Time-resolved photoemission micro-spectrometer using higher-order harmonics of Ti:sapphire laser

    International Nuclear Information System (INIS)

    Azuma, J.; Kamada, M.; Kondo, Y.

    2004-01-01

    Full text: A new photoemission spectrometer is under construction for the photoemission microscopy and the time-resolved pump- probe experiment. The higher order harmonics of the Ti:sapphire laser is used as the light source of the VUV region in this system. Because the fundamental laser is focused tightly into the rare gas jet to generate the higher order harmonics, the spot size of the laser, in other words, the spot size of the VUV light source is smaller than a few tens of micrometer. This smallness of the spot size has advantage for the microscopy. In order to compensate the low flux of the laser harmonics, a multilayer-coated schwaltzshild optics was designed. The multilayers play also as the monochromatic filter. The spatial resolution of this schwaltzshild system is found to be less than 1 micrometer by the ray-tracing calculations. A main chamber of the system is equipped with a time-of-flight energy analyzer to improve the efficiency of the electron detection. The main chamber and the gas chamber are separated by a differential pumping chamber and a thin Al foil. The system is designed for the study of the clean surface. It will be capable to perform the sub-micron photoemission microscopy and the femto-second pump-probe photoemission study for the various photo-excited dynamics on clean surfaces

  8. Comparison of Solar and Wind Power Output and Correlation with Real-Time Pricing

    Science.gov (United States)

    Hoepfl, Kathryn E.; Compaan, Alvin D.; Solocha, Andrew

    2011-03-01

    This study presents a method that can be used to determine the least volatile power output of a wind and solar hybrid energy system in which wind and solar systems have the same peak power. Hourly data for wind and PV systems in Northwest Ohio are used to show that a combination of both types of sustainable energy sources produces a more stable power output and would be more valuable to the grid than either individually. This method could be used to determine the ideal ratio in any part of the country and should help convince electric utility companies to bring more renewable generation online. This study also looks at real-time market pricing and how each system (solar, wind, and hybrid) correlates with 2009 hourly pricing from the Midwest Interconnect. KEH acknowledges support from the NSF-REU grant PHY-1004649 to the Univ. of Toledo and Garland Energy Systems/Ohio Department of Development.

  9. Environmental radioactivity at the heat power complex enterprises

    International Nuclear Information System (INIS)

    Krylov, D.A.; Putintseva, V.E.

    1997-01-01

    Environmental radioactivity at the heat power complex enterprises (coal mines, oil and gas deposits, coal thermal power plants and heat-electric generation plant) is considered. IT is shown that elevated level of radiation effect on the personnel lungs (2-3 times higher than that of safety standard) is observed at 80 coal mines. High levels of gamma radiation from natural radionuclides (300 μR/h and above) are marked at the separate objects of oil and gas mining industry. It is revealed that the contamination of ash wastes resulted from certain coals combustion reaches 520 Bq/kg at separate thermal power plants

  10. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    Science.gov (United States)

    Button, Robert M.

    2004-01-01

    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  11. Radioactive emission from thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, K [New South Wales Univ., Kensington (Australia). Dept. of Applied Mathematics

    1981-07-01

    Radioactive hazards of the emissions and wastes of thermal power plants arising from fuel impurities of uranium and thorium are discussed. The hazard due to radioactive emission is calculated for an average Australian bituminous coal which contains 2 ppm of U and 2.7 ppm of Th. When the dust removal efficiency of a coal-fired power plant is 99%, the radioactive hazard is greater than that of a nuclear reactor of the same electrical output. After 500 years the radioactive toxicity of the coal waste will be higher than that of fission products of a nuclear reactor and after 2,000 years it will exceed the toxicity of all the nuclear wastes including actinides. The results of a recent calculation are shown, according to which the radioactive hazard of a coal-fired power plant to the public is from several hundred to several tens of thousands of times higher than that of a total fuel cycle of plutonium. It is found that in some regions, such as Japan, the hazard due to /sup 210/Po through seafood could be considerable.

  12. Wavelet Transform Based Higher Order Statistical Analysis of Wind and Wave Time Histories

    Science.gov (United States)

    Habib Huseni, Gulamhusenwala; Balaji, Ramakrishnan

    2017-10-01

    Wind, blowing on the surface of the ocean, imparts the energy to generate the waves. Understanding the wind-wave interactions is essential for an oceanographer. This study involves higher order spectral analyses of wind speeds and significant wave height time histories, extracted from European Centre for Medium-Range Weather Forecast database at an offshore location off Mumbai coast, through continuous wavelet transform. The time histories were divided by the seasons; pre-monsoon, monsoon, post-monsoon and winter and the analysis were carried out to the individual data sets, to assess the effect of various seasons on the wind-wave interactions. The analysis revealed that the frequency coupling of wind speeds and wave heights of various seasons. The details of data, analysing technique and results are presented in this paper.

  13. Developing Student Worksheet Based On Higher Order Thinking Skills on the Topic of Transistor Power Amplifier

    Science.gov (United States)

    Sardia Ratna Kusuma, Luckey; Rakhmawati, Lusia; Wiryanto

    2018-04-01

    The purpose of this study is to develop a student worksheet about the transistor power amplifier based on higher order thinking skills include critical, logical, reflective, metacognitive, and creative thinking, which could be useful for teachers in improving student learning outcomes. Research and Development (R & D) methodology was used in this study. The pilot study of the worksheet was carried out with class X AV 2 at SMK Negeri 5 Surabaya. The result showed satisfies aspect of validity with 81.76 %, and effectiveness (students learning outcomes is classically passed out with percentage of 82.4 % and the students gave positive responses to the student worksheet of each statement. It can be concluded that this worksheet categorized good and worthy to be used as a source of learning in the learning activities.

  14. Outage Analysis of Cooperative Transmission with Energy Harvesting Relay: Time Switching versus Power Splitting

    Directory of Open Access Journals (Sweden)

    Guanyao Du

    2015-01-01

    Full Text Available This paper investigates the multiuser transmission network with an energy harvesting (EH cooperative relay, where a source transmits independent information to multiple destinations with the help of an energy constrained relay. The relay can harvest energy from the radio frequency (RF signals transmitted from the source, and it helps the multiuser transmission only by consuming the harvested energy. By adopting the time switching and the power splitting relay receiver architectures, we firstly propose two protocols, the time switching cooperative multiuser transmission (TSCMT protocol and the power splitting cooperative multiuser transmission (PSCMT protocol, to enable the simultaneous information processing and EH at the relay for the system. To evaluate the system performance, we theoretically analyze the system outage probability for the two proposed protocols and then derive explicit expressions for each of them, respectively. Numerical results are provided to demonstrate the accuracy of our analytical results and reveal that compared with traditional noncooperative scheme our proposed protocols are green solutions to offer reliable communication and lower system outage probability without consuming additional energy. In particular, for the same transmit power at the source, the PSCMT protocol is superior to the TSCMT protocol to obtain lower system outage probability.

  15. CERN: Higher energies at LEP

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This year will be the last that CERN's 27-kilometre LEP electron-positron collider will run routinely at around 45 GeV per beam. In the run, scheduled to begin in May, the four big experiments will top up their harvest so far of over 12 million Z particles for a final polishing of precision Z data. Behind the scenes, LEP is being prepared for higher energy running and a new phase of physics. After a brief technical stop in October, the aim is for a test run of up to 70 GeV per beam before the end of the year. Higher energy demands more radiofrequency power, which will be supplied by superconducting cavities. With this goal in mind, a programme of development work began at CERN over ten years ago, when LEP was still on the drawing board. Initially this effort focused on cavities made from sheet niobium, but later switched to copper covered by a sputtered niobium film, which gives better thermal and r.f. performance (September 1990, page 24). The first industrially-manufactured four-cavity niobium coated module, complete with its cryostat and r.f plumbing, was installed in LEP in 1993. Although it quickly achieved its nominal accelerating gradient of 6 MV/m, its reliability was affected by unforeseen problems in the associated power couplers. This delayed the installation schedule, but after a crash programme of design and modification of the power couplers, together with improvements in actual cavity design and manufacture, module supply and testing has now attained a satisfactory rhythm. Two modules installed in LEP amassed between them over 50 days of continuous running in 1994, and confidence is now high that the emphasis can shift towards integrating the cavities into LEP, rather than running the cavities themselves. During LEP's 1994-5 winter shutdown, modules are being installed at Points 2 and 6. Later, additional cavities will be installed in Points 2, 6 and 8 prior to embarking on the higher energy test run at the end of the year. After

  16. Real-time assessment of radiation burden of the population in the vicinity of nuclear power plants during radiation accidents

    International Nuclear Information System (INIS)

    Stubna, M.

    1986-01-01

    The method is presented of real-time calculation of the radiation situation (dose equivalents) in the environs of a nuclear power plant in case of an accident involving the release of radioactive substances into the atmosphere, this for the potentially most significant exposure paths in the initial and medium stages of the accident. The method allows to take into consideration the time dependence of the rate of radioactive substance release from the nuclear power plant and to assess the development in space and time of the radiation situation in the environs of the nuclear power plant. The use of the method is illustrated by an example of the calculation of the development of the radiation situation for model accidents of a hypothetical PWR with containment. (author)

  17. Higher order mode damping of a higher harmonic superconducting cavity for SSRF

    International Nuclear Information System (INIS)

    Yu Haibo; Liu Jianfei; Hou Hongtao; Ma Zhenyu; Feng Xiqiang; Mao Dongqing

    2012-01-01

    Adopting a higher harmonic cavity on a synchrotron radiation facility can increase the beam lifetime and suppress the beam instability. In this paper, we report the simulation and preliminary design on higher order modes (HOMs) damping of the designed and fabricated higher harmonic superconducting cavity for Shanghai Synchrotron Radiation Facility (SSRF). The requirements for the HOM damping are analyzed, and the length and location of the HOM damper are optimized by using the SEAFISH code. The results show that the design can provide heavy damping for harmful HOMs with decreased impedance, and the beam instability requirement of SSRF can be satisfied. By using the ABCI code, the loss factor is obtained and the HOM power is estimated. (authors)

  18. Energy Payback Time of a Solar Photovoltaic Powered Waste Plastic Recyclebot System

    Directory of Open Access Journals (Sweden)

    Shan Zhong

    2017-06-01

    Full Text Available The growth of both plastic consumption and prosumer 3-D printing are driving an interest in producing 3-D printer filaments from waste plastic. This study quantifies the embodied energy of a vertical DC solar photovoltaic (PV powered recyclebot based on life cycle energy analysis and compares it to horizontal AC recyclebots, conventional recycling, and the production of a virgin 3-D printer filament. The energy payback time (EPBT is calculated using the embodied energy of the materials making up the recyclebot itself and is found to be about five days for the extrusion of a poly lactic acid (PLA filament or 2.5 days for the extrusion of an acrylonitrile butadiene styrene (ABS filament. A mono-crystalline silicon solar PV system is about 2.6 years alone. However, this can be reduced by over 96% if the solar PV system powers the recyclebot to produce a PLA filament from waste plastic (EPBT is only 0.10 year or about a month. Likewise, if an ABS filament is produced from a recyclebot powered by the solar PV system, the energy saved is 90.6–99.9 MJ/kg and 26.33–29.43 kg of the ABS filament needs to be produced in about half a month for the system to pay for itself. The results clearly show that the solar PV system powered recyclebot is already an excellent way to save energy for sustainable development.

  19. Optimization of Modulator and Circuits for Low Power Continuous-Time Delta-Sigma ADC

    DEFF Research Database (Denmark)

    Marker-Villumsen, Niels; Bruun, Erik

    2014-01-01

    This paper presents a new optimization method for achieving a minimum current consumption in a continuous-time Delta-Sigma analog-to-digital converter (ADC). The method is applied to a continuous-time modulator realised with active-RC integrators and with a folded-cascode operational transconduc...... levels are swept. Based on the results of the circuit analysis, for each modulator combination the summed current consumption of the 1st integrator and quantizer of the ADC is determined. By also sweeping the partitioning of the noise power for the different circuit parts, the optimum modulator...

  20. Large Scale Triboelectric Nanogenerator and Self-Powered Flexible Sensor for Human Sleep Monitoring

    Directory of Open Access Journals (Sweden)

    Xiaoheng Ding

    2018-05-01

    Full Text Available The triboelectric nanogenerator (TENG and its application as a sensor is a popular research subject. There is demand for self-powered, flexible sensors with high sensitivity and high power-output for the next generation of consumer electronics. In this study, a 300 mm × 300 mm carbon nanotube (CNT-doped porous PDMS film was successfully fabricated wherein the CNT influenced the micropore structure. A self-powered TENG tactile sensor was established according to triboelectric theory. The CNT-doped porous TENG showed a voltage output seven times higher than undoped porous TENG and 16 times higher than TENG with pure PDMS, respectively. The TENG successfully acquired human motion signals, breath signals, and heartbeat signals during a sleep monitoring experiment. The results presented here may provide an effective approach for fabricating large-scale and low-cost flexible TENG sensors.

  1. A New Approach in Teaching Power Electronics Control of Electrical Drives using Real-Time

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Bech, Michael Møller; Blaabjerg, Frede

    2000-01-01

    A new approach in teaching power electronics and electrical drives is achieved at the Flexible Drives System Laboratory (FDSL) from Aalborg University by using the new Total Development Environment (TDE) concept that allows a full visual block-oriented programming of dynamic real-time systems...

  2. Effect of higher frequency on the classification of steady-state visual evoked potentials

    Science.gov (United States)

    Won, Dong-Ok; Hwang, Han-Jeong; Dähne, Sven; Müller, Klaus-Robert; Lee, Seong-Whan

    2016-02-01

    Objective. Most existing brain-computer interface (BCI) designs based on steady-state visual evoked potentials (SSVEPs) primarily use low frequency visual stimuli (e.g., visual fatigue and no stimulus-related seizures. The fundamental objective of this study was to investigate the effect of stimulation frequency and duty-cycle on the usability of an SSVEP-based BCI system. Approach. We developed an SSVEP-based BCI speller using multiple LEDs flickering with low frequencies (6-14.9 Hz) with a duty-cycle of 50%, or higher frequencies (26-34.7 Hz) with duty-cycles of 50%, 60%, and 70%. The four different experimental conditions were tested with 26 subjects in order to investigate the impact of stimulation frequency and duty-cycle on performance and visual fatigue, and evaluated with a questionnaire survey. Resting state alpha powers were utilized to interpret our results from the neurophysiological point of view. Main results. The stimulation method employing higher frequencies not only showed less visual fatigue, but it also showed higher and more stable classification performance compared to that employing relatively lower frequencies. Different duty-cycles in the higher frequency stimulation conditions did not significantly affect visual fatigue, but a duty-cycle of 50% was a better choice with respect to performance. The performance of the higher frequency stimulation method was also less susceptible to resting state alpha powers, while that of the lower frequency stimulation method was negatively correlated with alpha powers. Significance. These results suggest that the use of higher frequency visual stimuli is more beneficial for performance improvement and stability as time passes when developing practical SSVEP-based BCI applications.

  3. Development of a low-cost biogas filtration system to achieve higher-power efficient AC generator

    Science.gov (United States)

    Mojica, Edison E.; Ardaniel, Ar-Ar S.; Leguid, Jeanlou G.; Loyola, Andrea T.

    2018-02-01

    The paper focuses on the development of a low-cost biogas filtration system for alternating current generator to achieve higher efficiency in terms of power production. A raw biogas energy comprises of 57% combustible element and 43% non-combustible elements containing carbon dioxide (36%), water vapor (5%), hydrogen sulfide (0.5%), nitrogen (1%), oxygen (0 - 2%), and ammonia (0 - 1%). The filtration system composes of six stages: stage 1 is the water scrubber filter intended to remove the carbon dioxide and traces of hydrogen sulfide; stage 2 is the silica gel filter intended to reduce the water vapor; stage 3 is the iron sponge filter intended to remove the remaining hydrogen sulfide; stage 4 is the sodium hydroxide solution filter intended to remove the elemental sulfur formed during the interaction of the hydrogen sulfide and the iron sponge and for further removal of carbon dioxide; stage 5 is the silica gel filter intended to further eliminate the water vapor gained in stage 4; and, stage 6 is the activated carbon filter intended to remove the carbon dioxide. The filtration system was able to lower the non-combustible elements by 72% and thus, increasing the combustible element by 54.38%. The unfiltered biogas is capable of generating 16.3 kW while the filtered biogas is capable of generating 18.6 kW. The increased in methane concentration resulted to 14.11% increase in the power output. The outcome resulted to better engine performance in the generation of electricity.

  4. Study of time-critical diagnostic method for emergency operation of nuclear power plant

    International Nuclear Information System (INIS)

    Gofuku, A.; Yoshikawa, H.; Itoh, K.; Wakabayashi, J.

    1986-01-01

    In order to support the emergency operation of nuclear power plant, the method of time-critical diagnostic plant analyzer has been investigated. The conception of the emergency operation support center is proposed and two types of plant analyzer may be installed in this center. One analyzer is a real-time tracking simulation code using the observed signals and another is a fast trend-prediction code. A real-time tracking code, TOKRAC, has been developed for analyzing the PWR primary loop thermo-hydraulics at SBLOCA, and the applicability of this code was examined by the numerical experiments for the initial phase transient of both TMI-2 accident and 6% coldleg SBLOCA of a Westinghouse-type PWR plant. The results showed that fairly good tracking was carried out by TOKRAC. The CPU time of TOKRAC was about 12-14 percent of real-time

  5. The economic analysis of power market architectures: application to real-time market design

    International Nuclear Information System (INIS)

    Saguan, M.

    2007-04-01

    This work contributes to the economic analysis of power market architectures. A modular framework is used to separate problems of market design in different modules. The work's goal is to study real-time market design. A two-stage market equilibrium model is used to analyse the two main real-time designs: the 'market' and the 'mechanism' (with penalty). Numerical simulations show that design applied in real-time is not neutral vis-a-vis of energy markets sequence and the competition dynamic. Designs using penalty (mechanisms) cause distortions, inefficiencies and can create barriers to entry. The size of distortions is given by the temporal position of the gate that closure the forward markets. This model has also allowed us to show the key role of real-time integration between zones and the importance of good harmonization between real-time designs of each zone. (author)

  6. Effect of a time varying power level in EBR-II on mixed-oxide fuel burnup

    International Nuclear Information System (INIS)

    Stone, I.Z.; Jost, J.W.; Baker, R.B.

    1979-01-01

    A refined prediction of burnup of mixed-oxide fuel in EBR-2 is compared with measured data. The calculation utilizes a time-varying power factor and results in a general improvement to previous calculations

  7. Performance evaluation of time-delay control schemes for uninterruptible power supplies

    DEFF Research Database (Denmark)

    Loh, P.C; Tang, Y.; Blaabjerg, Frede

    2008-01-01

    a more powerful processor. Avoiding these added complexities, this paper presents and compares a number of time-delay control schemes for UPS control, where the main building blocks needed are readily available memory storages and simple transfer functions formulated with either no or at least one......-matching characteristic, the presented control schemes are expected to be more robust and less sensitive to implementation noises. In addition, the presented control schemes are deduced to have fast dynamic response, implying that the supplypsilas output voltage is virtually not influenced by any transient load...

  8. Evaluation of the electric power production cost growth due to decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Basso, G.

    1982-01-01

    The increase of production cost for electric power generated by nuclear plants, due to their decommissioning and the end of operating life, is analysed in respect to (a) waiting time from indefinite shut-down date to the start of dismantlement, (b) financing method, (c) interest and inflation rates. The analysis shows that the additional cost is always small for those solutions which have higher probability to be adopted

  9. Power uprates in nuclear power plants: international experiences and approaches for implementation

    International Nuclear Information System (INIS)

    Kang, Ki Sig

    2008-01-01

    The greater demand for electricity and the available capacity within safety margins in some operating NPPs are prompting nuclear utilities to request license modification to enable operation at a higher power level, beyond their original license provisions. Such plant modifications require an in-depth safety analysis to evaluate the possible safety impact. The analysis must consider the thermo hydraulic, radiological and structural aspects, and the plant behavior, while taking into account the capability of the structures, systems and components, and the reactor protection and safeguard systems set points. The purpose of this paper is to introduce international experiences and approaches for implementation of power uprates related to the reactor thermal power of nuclear power plants. The paper is intended to give the reader a general overview of the major processes, work products, issues, challenges, events, and experiences in the power uprates program. The process of increasing the licensed power level of a nuclear power plants is called a power uprate. One way of increasing the thermal output from a reactor is to increase the amount of fissile material in use. It is also possible to increase the core power by increasing the performance of the high power bundles. Safety margins can be maintained by either using fuels with a higher performance, or through the use of improved methods of analysis to demonstrate that the required margins are retained even at the higher power levels. The paper will review all types of power uprates, from small to large, and across various reactor types, including light and heavy water, pressurized, and boiling water reactors. Generally, however, the content of the report focuses on power uprates of the stretch and extended type. The International Atomic Energy Agency (IAEA) is developing a technical guideline on power uprates and side effects of power uprates in nuclear power plants

  10. A study on low-cost, high-accuracy, and real-time stereo vision algorithms for UAV power line inspection

    Science.gov (United States)

    Wang, Hongyu; Zhang, Baomin; Zhao, Xun; Li, Cong; Lu, Cunyue

    2018-04-01

    Conventional stereo vision algorithms suffer from high levels of hardware resource utilization due to algorithm complexity, or poor levels of accuracy caused by inadequacies in the matching algorithm. To address these issues, we have proposed a stereo range-finding technique that produces an excellent balance between cost, matching accuracy and real-time performance, for power line inspection using UAV. This was achieved through the introduction of a special image preprocessing algorithm and a weighted local stereo matching algorithm, as well as the design of a corresponding hardware architecture. Stereo vision systems based on this technique have a lower level of resource usage and also a higher level of matching accuracy following hardware acceleration. To validate the effectiveness of our technique, a stereo vision system based on our improved algorithms were implemented using the Spartan 6 FPGA. In comparative experiments, it was shown that the system using the improved algorithms outperformed the system based on the unimproved algorithms, in terms of resource utilization and matching accuracy. In particular, Block RAM usage was reduced by 19%, and the improved system was also able to output range-finding data in real time.

  11. The mean first passage time in an energy-diffusion controlled regime with power-law distributions

    International Nuclear Information System (INIS)

    Zhou, Yanjun; Du, Jiulin

    2013-01-01

    Based on the mean first passage time (MFPT) theory, we derive an expression of the MFPT in an energy-diffusion controlled regime with a power-law distribution. We discuss the finite barrier effect (i.e. the thermal energy k B T is not small with respect to the potential barrier E b ) and compare it with Kramers’ infinite barrier result both in a power-law distribution and in a Maxwell–Boltzmann distribution. It is shown that the MFPT with a power-law distribution extends Kramers’ low-damping result to a relatively low barrier. We pay attention to the energy-diffusion controlled regime, which is of great interest in the context of Josephson junctions, and study how the power-law parameter κ affects the current distribution function in experiments with Josephson junctions. (paper)

  12. Time-resolved investigation of dual high power impulse magnetron sputtering with closed magnetic field during deposition of Ti-Cu thin films

    International Nuclear Information System (INIS)

    Stranak, Vitezslav; Hippler, Rainer; Cada, Martin; Hubicka, Zdenek; Tichy, Milan

    2010-01-01

    Time-resolved comparative study of dual magnetron sputtering (dual-MS) and dual high power impulse magnetron sputtering (dual-HiPIMS) systems arranged with closed magnetic field is presented. The dual-MS system was operated with a repetition frequency 4.65 kHz (duty cycle ≅50%). The frequency during dual-HiPIMS is lower as well as its duty cycle (f=100 Hz, duty 1%). Different metallic targets (Ti, Cu) and different cathode voltages were applied to get required stoichiometry of Ti-Cu thin films. The plasma parameters of the interspace between magnetrons in the substrate position were investigated by time-resolved optical emission spectroscopy, Langmuir probe technique, and measurement of ion fluxes to the substrate. It is shown that plasma density as well as ion flux is higher about two orders of magnitude in dual-HiPIMS system. This fact is partially caused by low diffusion of ionized sputtered particles (Ti + ,Cu + ) which creates a preionized medium.

  13. Real-time computing in environmental monitoring of a nuclear power plant

    International Nuclear Information System (INIS)

    Deme, S.; Lang, E.; Nagy, Gy.

    1987-06-01

    A real-time computing method is described for calculating the environmental radiation exposure due to a nuclear power plant both at normal operation and at accident. The effects of the Gaussian plume are recalculated in every ten minutes based on meteorological parameters measured at a height of 20 and 120 m as well as on emission data. At normal operation the quantity of radioactive materials released through the stacks is measured and registered while, at an accident, the source strength is unknown and the calculated relative data are normalized to the values measured at the eight environmental monitoring stations. The doses due to noble gases and to dry and wet deposition as well as the time integral of 131 I concentration are calculated and stored by a professional personal computer for 720 points of the environment of 11 km radius. (author)

  14. Advertising Emergency Department Wait Times

    OpenAIRE

    Weiner, Scott G

    2013-01-01

    Advertising emergency department (ED) wait times has become a common practice in the United States. Proponents of this practice state that it is a powerful marketing strategy that can help steer patients to the ED. Opponents worry about the risk to the public health that arises from a patient with an emergent condition self-triaging to a further hospital, problems with inaccuracy and lack of standard definition of the reported time, and directing lower acuity patients to the higher cost ED se...

  15. Real time neutron flux monitoring using Rh self powered neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Juna, Byung Jin; Lee, Byung Chul; Park, Sang Jun; Jung, Hoan Sung [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Rhodium (Rh) self powered neutron detectors (SPNDs) are widely used for on line monitoring of local neutron flux. Its signal is slower than the actual variation of neutron flux owing to a delayed {beta} decay of the Rh activation product, but real time monitoring is possible by solving equations between the neutron reaction rate in the detector and its signal. While the measuring system is highly reliable, the accuracy depends on the method solving the equations and accuracy of the parameters in the equations. The uncertain parameters are the contribution of gamma rays to the signal, and the branching ratios of Rh 104 and Rh 104m after the neutron absorption of Rh 103. Real time neutron flux monitoring using Rh SPNDs has been quite successful for neutron transmutation doping (NTD) at HANARO. We revisited the initial data used for the verification of a real time monitoring system, to refine algorithm for a better solution and to check the parameters for correctness. As a result, we suggest an effective way to determine the prompt parameter.

  16. Real time neutron flux monitoring using Rh self powered neutron detector

    International Nuclear Information System (INIS)

    Juna, Byung Jin; Lee, Byung Chul; Park, Sang Jun; Jung, Hoan Sung

    2012-01-01

    Rhodium (Rh) self powered neutron detectors (SPNDs) are widely used for on line monitoring of local neutron flux. Its signal is slower than the actual variation of neutron flux owing to a delayed β decay of the Rh activation product, but real time monitoring is possible by solving equations between the neutron reaction rate in the detector and its signal. While the measuring system is highly reliable, the accuracy depends on the method solving the equations and accuracy of the parameters in the equations. The uncertain parameters are the contribution of gamma rays to the signal, and the branching ratios of Rh 104 and Rh 104m after the neutron absorption of Rh 103. Real time neutron flux monitoring using Rh SPNDs has been quite successful for neutron transmutation doping (NTD) at HANARO. We revisited the initial data used for the verification of a real time monitoring system, to refine algorithm for a better solution and to check the parameters for correctness. As a result, we suggest an effective way to determine the prompt parameter

  17. CPU time reduction strategies for the Lambda modes calculation of a nuclear power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, V.; Garayoa, J.; Hernandez, V. [Universidad Politecnica de Valencia (Spain). Dept. de Sistemas Informaticos y Computacion; Navarro, J.; Verdu, G.; Munoz-Cobo, J.L. [Universidad Politecnica de Valencia (Spain). Dept. de Ingenieria Quimica y Nuclear; Ginestar, D. [Universidad Politecnica de Valencia (Spain). Dept. de Matematica Aplicada

    1997-12-01

    In this paper, we present two strategies to reduce the CPU time spent in the lambda modes calculation for a realistic nuclear power reactor.The discretization of the multigroup neutron diffusion equation has been made using a nodal collocation method, solving the associated eigenvalue problem with two different techniques: the Subspace Iteration Method and Arnoldi`s Method. CPU time reduction is based on a coarse grain parallelization approach together with a multistep algorithm to initialize adequately the solution. (author). 9 refs., 6 tabs.

  18. Flexible Learning and Teaching: Looking Beyond the Binary of Full-time/Part-time Provision in South African Higher Education

    Directory of Open Access Journals (Sweden)

    Barbara M Jones

    2015-06-01

    Full Text Available This paper engages with literature on flexible learning and teaching in order to explore whether it may be possible, within the South African context, to have flexible learning and teaching provide a third way which goes beyond the current practice of full-time/part-time provision. This binary classification of students is a proxy for day-time/after-hours delivery.  The argument is made that effective, flexible learning and teaching requires a fundamental shift in thinking about learning and teaching in higher education that moves us beyond such binaries. The paper proposes that in order to ensure access and success for students, ‘common knowledge’ (Edwards, 2010 will need to be co-constructed which understands flexible learning and teaching in ways which will meet needs of a diversity of students, including working students. It will require ‘resourceful leadership’ (Edwards, 2014 within the university that recognises, enhances and gives purpose to the capability of colleagues at every level of the systems they lead. Also, it will require the building of ‘common knowledge’ between certain sectors of universities and particular workplaces.

  19. Rf power amplification by energy storage and switching

    International Nuclear Information System (INIS)

    Vernon, W.

    1989-01-01

    This paper reports that during the last decade there have been several suggestions for RF storage and switching schemes. The principle behind these schemes is simply that energy from a source which is on for a long time at moderate power can be stored in a resonant cavity and dumped (switched) in a short time to yield higher power. This is also the basis of SLED which is driving the SLC, but the major difference is in the switching and the proposed power gains. In the case of SLED there is no switch only a phase agile RF source, and the maximum power gain is about a factor of 3. Proposed storage and switching schemes are often based on large ratios of charge to discharge times, say 5 μsec/50 nsec = 100 which could be the power amplification ratio. An early demonstration of the switching of a superconducting cavity was reported. It was observed that a peak power gain of 9 at low power levels with a cold cavity and a room-temperature switch. The switch was a He gas filled tube positioned in the leg of a waveguide T so that a η/2 stub turned into a η/4 stub when the gas broke down and became a good conductor. All switches encountered to date are some variant of this technique; the stubs reflects back an out-of-phase signal which cancels the one from the cavity so that no power escapes while the low-loss dielectric tube is non-conducting

  20. Variability in large-scale wind power generation: Variability in large-scale wind power generation

    Energy Technology Data Exchange (ETDEWEB)

    Kiviluoma, Juha [VTT Technical Research Centre of Finland, Espoo Finland; Holttinen, Hannele [VTT Technical Research Centre of Finland, Espoo Finland; Weir, David [Energy Department, Norwegian Water Resources and Energy Directorate, Oslo Norway; Scharff, Richard [KTH Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Söder, Lennart [Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Menemenlis, Nickie [Institut de recherche Hydro-Québec, Montreal Canada; Cutululis, Nicolaos A. [DTU, Wind Energy, Roskilde Denmark; Danti Lopez, Irene [Electricity Research Centre, University College Dublin, Dublin Ireland; Lannoye, Eamonn [Electric Power Research Institute, Palo Alto California USA; Estanqueiro, Ana [LNEG, Laboratorio Nacional de Energia e Geologia, UESEO, Lisbon Spain; Gomez-Lazaro, Emilio [Renewable Energy Research Institute and DIEEAC/EDII-AB, Castilla-La Mancha University, Albacete Spain; Zhang, Qin [State Grid Corporation of China, Beijing China; Bai, Jianhua [State Grid Energy Research Institute Beijing, Beijing China; Wan, Yih-Huei [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA; Milligan, Michael [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA

    2015-10-25

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1 h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power.

  1. Time-of-Use Rates and Electricity Costs of Representative New York Dairy Farms

    OpenAIRE

    Boisvert, Richard N.; Bills, Nelson L.; Middagh, Mark C.; Schenkel, Mark

    1992-01-01

    Electric utilities throughout the Nation are experimenting with strategies to reduce total electricity consumption or to alter the timing of electrical power use by their customers. This report focuses on one such strategy, time-of-use (TaU) electric rates, and the likely effect of this pricing option on the New York dairy sector. The purpose of the study is to assess the change in farm electrical energy costs when power is sold to dairymen at higher rates for periods of peak power demand and...

  2. Optimized Database of Higher Education Management Using Data Warehouse

    Directory of Open Access Journals (Sweden)

    Spits Warnars

    2010-04-01

    Full Text Available The emergence of new higher education institutions has created the competition in higher education market, and data warehouse can be used as an effective technology tools for increasing competitiveness in the higher education market. Data warehouse produce reliable reports for the institution’s high-level management in short time for faster and better decision making, not only on increasing the admission number of students, but also on the possibility to find extraordinary, unconventional funds for the institution. Efficiency comparison was based on length and amount of processed records, total processed byte, amount of processed tables, time to run query and produced record on OLTP database and data warehouse. Efficiency percentages was measured by the formula for percentage increasing and the average efficiency percentage of 461.801,04% shows that using data warehouse is more powerful and efficient rather than using OLTP database. Data warehouse was modeled based on hypercube which is created by limited high demand reports which usually used by high level management. In every table of fact and dimension fields will be inserted which represent the loading constructive merge where the ETL (Extraction, Transformation and Loading process is run based on the old and new files.

  3. Comprehensive Power Losses Model for Electronic Power Transformer

    DEFF Research Database (Denmark)

    Yue, Quanyou; Li, Canbing; Cao, Yijia

    2018-01-01

    and considering the impact of the non-unity power factor and the three-phase unbalanced current, the overall power losses in the distribution network when using the EPT to replace the conventional transformer is analyzed, and the conditions in which the application of the EPT can cause less power losses...... reduced power losses in the distribution network require a comprehensive consideration when comparing the power losses of theEPT and conventional transformer. In this paper, a comprehensive power losses analysis model for the EPT in distribution networks is proposed. By analyzing the EPT self-losses......The electronic power transformer (EPT) has highe rpower losses than the conventional transformer. However, the EPT can correct the power factor, compensate the unbalanced current and reduce the line power losses in the distribution network.Therefore, the higher losses of the EPT and the consequent...

  4. Comprehensive Power Losses Model for Electronic Power Transformer

    DEFF Research Database (Denmark)

    Yue, Quanyou; Li, Canbing; Cao, Yijia

    2018-01-01

    The electronic power transformer (EPT) has highe rpower losses than the conventional transformer. However, the EPT can correct the power factor, compensate the unbalanced current and reduce the line power losses in the distribution network.Therefore, the higher losses of the EPT and the consequent...... reduced power losses in the distribution network require a comprehensive consideration when comparing the power losses of theEPT and conventional transformer. In this paper, a comprehensive power losses analysis model for the EPT in distribution networks is proposed. By analyzing the EPT self......-losses and considering the impact of the non-unity power factor and the three-phase unbalanced current, the overall power losses in the distribution network when using the EPT to replace the conventional transformer is analyzed, and the conditions in which the application of the EPT can cause less power losses...

  5. High reliable and Real-time Data Communication Network Technology for Nuclear Power Plant

    International Nuclear Information System (INIS)

    Jeong, K. I.; Lee, J. K.; Choi, Y. R.; Lee, J. C.; Choi, Y. S.; Cho, J. W.; Hong, S. B.; Jung, J. E.; Koo, I. S.

    2008-03-01

    As advanced digital Instrumentation and Control (I and C) system of NPP(Nuclear Power Plant) are being introduced to replace analog systems, a Data Communication Network(DCN) is becoming the important system for transmitting the data generated by I and C systems in NPP. In order to apply the DCNs to NPP I and C design, DCNs should conform to applicable acceptance criteria and meet the reliability and safety goals of the system. As response time is impacted by the selected protocol, network topology, network performance, and the network configuration of I and C system, DCNs should transmit a data within time constraints and response time required by I and C systems to satisfy response time requirements of I and C system. To meet these requirements, the DCNs of NPP I and C should be a high reliable and real-time system. With respect to high reliable and real-time system, several reports and techniques having influences upon the reliability and real-time requirements of DCNs are surveyed and analyzed

  6. Electric power demand forecasting using interval time series. A comparison between VAR and iMLP

    International Nuclear Information System (INIS)

    Garcia-Ascanio, Carolina; Mate, Carlos

    2010-01-01

    Electric power demand forecasts play an essential role in the electric industry, as they provide the basis for making decisions in power system planning and operation. A great variety of mathematical methods have been used for demand forecasting. The development and improvement of appropriate mathematical tools will lead to more accurate demand forecasting techniques. In order to forecast the monthly electric power demand per hour in Spain for 2 years, this paper presents a comparison between a new forecasting approach considering vector autoregressive (VAR) forecasting models applied to interval time series (ITS) and the iMLP, the multi-layer perceptron model adapted to interval data. In the proposed comparison, for the VAR approach two models are fitted per every hour, one composed of the centre (mid-point) and radius (half-range), and another one of the lower and upper bounds according to the interval representation assumed by the ITS in the learning set. In the case of the iMLP, only the model composed of the centre and radius is fitted. The other interval representation composed of the lower and upper bounds is obtained from the linear combination of the two. This novel approach, obtaining two bivariate models each hour, makes possible to establish, for different periods in the day, which interval representation is more accurate. Furthermore, the comparison between two different techniques adapted to interval time series allows us to determine the efficiency of these models in forecasting electric power demand. It is important to note that the iMLP technique has been selected for the comparison, as it has shown its accuracy in forecasting daily electricity price intervals. This work shows the ITS forecasting methods as a potential tool that will lead to a reduction in risk when making power system planning and operational decisions. (author)

  7. Cost estimates for nuclear power in the UK

    International Nuclear Information System (INIS)

    Harris, Grant; Heptonstall, Phil; Gross, Robert; Handley, David

    2013-01-01

    Current UK Government support for nuclear power has in part been informed by cost estimates that suggest that electricity from new nuclear power stations will be competitive with alternative low carbon generation options. The evidence and analysis presented in this paper suggests that the capital cost estimates for nuclear power that are being used to inform these projections rely on costs escalating over the pre-construction and construction phase of the new build programme at a level significantly below those that have been experienced by past US and European programmes. This paper applies observed construction time and cost escalation rates to the published estimates of capital costs for new nuclear plant in the UK and calculates the potential impact on levelised cost per unit of electricity produced. The results suggest that levelised cost may turn out to be significantly higher than expected which in turn has important implications for policy, both in general terms of the potential costs to consumers and more specifically for negotiations around the level of policy support and contractual arrangements offered to individual projects through the proposed contract for difference strike price. -- Highlights: •Nuclear power projects costs can rise substantially during the construction period. •Pre-construction and construction time can be much longer than anticipated. •Adjusting estimates for observed experience increases levelised costs significantly. •Higher costs suggest that more policy support than envisaged may be required

  8. Performance Analysis of FLC Controlled PV-Wind Hybrid Power System for dc Load with Real-Time Data in Matlab, Simulink

    Directory of Open Access Journals (Sweden)

    A. V. Pavan Kumar

    2017-05-01

    Full Text Available Hybrid power system is a combination of different but complementary energy generation systems based on renewable energies. The Hybrid power system harnesses most of the power from the environmental conditions, reduces the losses and repetitive maintenance, thus improving efficiency and reliability of the system. This is achieved by proper coordination control between the Renewable Energy Sources (RES. This paper focuses on the implementation of Photovoltaic - Wind hybrid power system with real-time data of environmental conditions. The continuous real-time values of the solar irradiation and wind speed are obtained from the weather monitoring system at the location. The PV will be the primary source of generation during the day and wind generation can act as power conditioning. The Hybrid model is implemented in Matlab Simulink and its performance is examined under variable environmental conditions with a variable resistive load. A scale down experiment set-up of PV-Wind hybrid system is utilized to evaluate the performance of the proposed control logic. It has emerged from the simulation and experimental study that the hybrid system implemented with the real-time data maintains the output voltage constant irrespective of environmental conditions and load condition.

  9. Comprehensive Cost Minimization in Distribution Networks Using Segmented-time Feeder Reconfiguration and Reactive Power Control of Distributed Generators

    DEFF Research Database (Denmark)

    Chen, Shuheng; Hu, Weihao; Chen, Zhe

    2016-01-01

    In this paper, an efficient methodology is proposed to deal with segmented-time reconfiguration problem of distribution networks coupled with segmented-time reactive power control of distributed generators. The target is to find the optimal dispatching schedule of all controllable switches...... and distributed generators’ reactive powers in order to minimize comprehensive cost. Corresponding constraints, including voltage profile, maximum allowable daily switching operation numbers (MADSON), reactive power limits, and so on, are considered. The strategy of grouping branches is used to simplify...... (FAHPSO) is implemented in VC++ 6.0 program language. A modified version of the typical 70-node distribution network and several real distribution networks are used to test the performance of the proposed method. Numerical results show that the proposed methodology is an efficient method for comprehensive...

  10. Powering Up With Space-Time Wind Forecasting

    KAUST Repository

    Hering, Amanda S.

    2010-03-01

    The technology to harvest electricity from wind energy is now advanced enough to make entire cities powered by it a reality. High-quality, short-term forecasts of wind speed are vital to making this a more reliable energy source. Gneiting et al. (2006) have introduced a model for the average wind speed two hours ahead based on both spatial and temporal information. The forecasts produced by this model are accurate, and subject to accuracy, the predictive distribution is sharp, that is, highly concentrated around its center. However, this model is split into nonunique regimes based on the wind direction at an offsite location. This paper both generalizes and improves upon this model by treating wind direction as a circular variable and including it in the model. It is robust in many experiments, such as predicting wind at other locations. We compare this with the more common approach of modeling wind speeds and directions in the Cartesian space and use a skew-t distribution for the errors. The quality of the predictions from all of these models can be more realistically assessed with a loss measure that depends upon the power curve relating wind speed to power output. This proposed loss measure yields more insight into the true value of each models predictions. © 2010 American Statistical Association.

  11. Powering Up With Space-Time Wind Forecasting

    KAUST Repository

    Hering, Amanda S.; Genton, Marc G.

    2010-01-01

    The technology to harvest electricity from wind energy is now advanced enough to make entire cities powered by it a reality. High-quality, short-term forecasts of wind speed are vital to making this a more reliable energy source. Gneiting et al. (2006) have introduced a model for the average wind speed two hours ahead based on both spatial and temporal information. The forecasts produced by this model are accurate, and subject to accuracy, the predictive distribution is sharp, that is, highly concentrated around its center. However, this model is split into nonunique regimes based on the wind direction at an offsite location. This paper both generalizes and improves upon this model by treating wind direction as a circular variable and including it in the model. It is robust in many experiments, such as predicting wind at other locations. We compare this with the more common approach of modeling wind speeds and directions in the Cartesian space and use a skew-t distribution for the errors. The quality of the predictions from all of these models can be more realistically assessed with a loss measure that depends upon the power curve relating wind speed to power output. This proposed loss measure yields more insight into the true value of each models predictions. © 2010 American Statistical Association.

  12. A Low-input-voltage Wireless Power Transfer for Biomedical Implants

    DEFF Research Database (Denmark)

    Jiang, Hao; Bai, Kangjun; Zhu, Weijie

    2015-01-01

    Wireless power transfer is an essential technology to increase implants' longevity. A pair of inductivelycoupled coils operating at radio-frequency is extensively used to deliver electrical power to implants wirelessly. In this system, a power conditioning circuit is required convert the induced...... in the rectifier for the efficient AC to DC conversion. This requirement results in larger coil size, shorter operating distance or more stringent geometrical alignment between the two coils. In this paper, a low-input-voltage wireless power transfer has been demonstrated. In this system, the opencircuit voltage...... time-varying AC power harvested by the receiving coil to a stable DC power that is needed for powering circuits and sensors. Most existing power conditioning circuits require the induced voltage of the receiving coil to be significantly higher than the turn-on voltage of the diodes used...

  13. Real-time control of power systems using nodal prices

    NARCIS (Netherlands)

    Jokic, A.; Lazar, M.; Bosch, van den P.P.J.

    2009-01-01

    This article presents a novel control scheme for achieving optimal power balancing and congestion management in electrical power systems via nodal prices. We develop a dynamic controller that guarantees economically optimal steady-state operation while respecting all line flow constraints in

  14. Power manager and method for managing power

    NARCIS (Netherlands)

    Burchard, A.T.; Kersten, G.; Molnos, A.M.; Milutinovic, A.; Goossens, K.G.W.; Steffens, E.F.M.

    2009-01-01

    A power manager (106) and method for managing the power supplied to an electronic device is provided. Furthermore, a system wherein the power supplied to an electronic device is managed is provided. The power manager (106) is operative to monitor a hardware monitor (104) during a monitoring time

  15. The new control system of J-TEXT divertor power supply system using J-TEXT real-time framework

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ming; Zheng, Guozhen; Chen, Zhi [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zheng, Wei, E-mail: zhengwei@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yuan, Tao; Li, Yang [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-11-15

    Highlights: • The most highlight of this paper is the J-TEXT Real-Time Framework (JRTF). JRTF is a flexible real-time software framework which allows users to develop real-time applications rapidly without compromise on the performance. It makes a clear separation between control functions and hard/software administration, developers just need to focus on the control logic and algorithms. • The JRTF based control system can achieve a precise control loop cycle of 1 ms and a jitter under 0.01 ms on Linux operation system. The real-time performance meets the requirement of the real-time control tasks in J-TEXT. • Several days of operation with no faults were already achieved with the system running and in real-time 8 h per day. The stability of the new system is qualified for discharging experiment. - Abstract: The J-TEXT divertor power supply system is designed as a parallel connection, 12-pulse rectifier which is powered by a 100 MVA pulse generator unit. To achieve robust current feedback control, high performance real-time control system is required. The new control system adopts a more powerful software framework named J-TEXT real-time framework (JRTF). JRTF is a flexible real-time software framework designed for the implementation of real-time control systems. A JRTF application contains various Application Blocks (AB) which execute specific functions such as feedback computing and protection. JRTF is compatible with ITER standard PFC (Plant Fast Controller) hardware and ITER CODAC (Control, Data Access and Communication) Core software, so it can be monitored and configured by any EPICS based control system. The hardware of the new control system is upgraded to standard ITER fast controller which are much faster and more reliable than former controllers. This control system is the first application of JRTF, and the result shows that the new control system is running properly and stably. It provides an instance for real-time control schemes in J-TEXT, and

  16. The new control system of J-TEXT divertor power supply system using J-TEXT real-time framework

    International Nuclear Information System (INIS)

    Zhang, Ming; Zheng, Guozhen; Chen, Zhi; Zheng, Wei; Yuan, Tao; Li, Yang

    2016-01-01

    Highlights: • The most highlight of this paper is the J-TEXT Real-Time Framework (JRTF). JRTF is a flexible real-time software framework which allows users to develop real-time applications rapidly without compromise on the performance. It makes a clear separation between control functions and hard/software administration, developers just need to focus on the control logic and algorithms. • The JRTF based control system can achieve a precise control loop cycle of 1 ms and a jitter under 0.01 ms on Linux operation system. The real-time performance meets the requirement of the real-time control tasks in J-TEXT. • Several days of operation with no faults were already achieved with the system running and in real-time 8 h per day. The stability of the new system is qualified for discharging experiment. - Abstract: The J-TEXT divertor power supply system is designed as a parallel connection, 12-pulse rectifier which is powered by a 100 MVA pulse generator unit. To achieve robust current feedback control, high performance real-time control system is required. The new control system adopts a more powerful software framework named J-TEXT real-time framework (JRTF). JRTF is a flexible real-time software framework designed for the implementation of real-time control systems. A JRTF application contains various Application Blocks (AB) which execute specific functions such as feedback computing and protection. JRTF is compatible with ITER standard PFC (Plant Fast Controller) hardware and ITER CODAC (Control, Data Access and Communication) Core software, so it can be monitored and configured by any EPICS based control system. The hardware of the new control system is upgraded to standard ITER fast controller which are much faster and more reliable than former controllers. This control system is the first application of JRTF, and the result shows that the new control system is running properly and stably. It provides an instance for real-time control schemes in J-TEXT, and

  17. Wide-field time-correlated single photon counting (TCSPC) microscopy with time resolution below the frame exposure time

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, Liisa M. [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Petrášek, Zdeněk [Max Planck Institute of Biochemistry, Department of Cellular and Molecular Biophysics, Am Klopferspitz 18, D-82152 Martinsried (Germany); Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom)

    2015-07-01

    Fast frame rate CMOS cameras in combination with photon counting intensifiers can be used for fluorescence imaging with single photon sensitivity at kHz frame rates. We show here how the phosphor decay of the image intensifier can be exploited for accurate timing of photon arrival well below the camera exposure time. This is achieved by taking ratios of the intensity of the photon events in two subsequent frames, and effectively allows wide-field TCSPC. This technique was used for measuring decays of ruthenium compound Ru(dpp) with lifetimes as low as 1 μs with 18.5 μs frame exposure time, including in living HeLa cells, using around 0.1 μW excitation power. We speculate that by using an image intensifier with a faster phosphor decay to match a higher camera frame rate, photon arrival time measurements on the nanosecond time scale could well be possible.

  18. Thermoelectric self-cooling for power electronics: Increasing the cooling power

    International Nuclear Information System (INIS)

    Martinez, Alvaro; Astrain, David; Aranguren, Patricia

    2016-01-01

    Thermoelectric self-cooling was firstly conceived to increase, without electricity consumption, the cooling power of passive cooling systems. This paper studies the combination of heat pipe exchangers and thermoelectric self-cooling, and demonstrates its applicability to the cooling of power electronics. Experimental tests indicate that source-to-ambient thermal resistance reduces by around 30% when thermoelectric self-cooling system is installed, compared to that of the heat pipe exchanger under natural convection. Neither additional electric power nor cooling fluids are required. This thermal resistance reaches 0.346 K/W for a heat flux of 24.1 kW/m"2, being one order of magnitude lower than that obtained in previous designs. In addition, the system adapts to the cooling demand, reducing this thermal resistance for increasing heat. Simulation tests have indicated that simple system modifications allow relevant improvements in the cooling power. Replacement of a thermoelectric module with a thermal bridge leads to 33.54 kW/m"2 of top cooling power. Likewise, thermoelectric modules with shorter legs and higher number of pairs lead to a top cooling power of 44.17 kW/m"2. These results demonstrate the applicability of thermoelectric self-cooling to power electronics. - Highlights: • Cooling power of passive systems increased. • No electric power consumption. • Applicable for the cooling of power electronics. • Up to 44.17 kW/m"2 of cooling power, one order of magnitude higher. • Source-to-ambient thermal resistance reduces by 30%.

  19. Phase shift PWM with double two-switch bridge for high power capacitor charging

    International Nuclear Information System (INIS)

    Karandikar, U.S.; Singh, Yashpal; Thakurta, A.C.

    2013-01-01

    Pulse power supply systems working at higher voltage and high repetition rate demands for higher power from capacitor chargers. Capacitor charging requirement become more challenging in such cases. In pulse power circuits, energy storage capacitor should be charged to its desired voltage before the next switching occurs. It is discharged within a small time, delivering large pulse power. A capacitor charger has to work with wide load variation repeatedly. Many schemes are used for this purpose. The proposed scheme aims at reducing stresses on switches by reducing peak current and their evils. A high voltage power supply is designed for capacitor charging. The proposed scheme is based on a Phase-Shifted PWM without using any extra component to achieve soft switching. Indirect constant average current capacitor charging is achieved with a simple control scheme. A double two-switch bridge is proposed to enhance reliability. Power supply has been developed to charge a capacitor of 50 μF to 2.5 kV at 25 Hz. (author)

  20. Power in Practice: Adult Education and the Struggle for Knowledge and Power in Society. The Jossey-Bass Higher and Adult Education Series.

    Science.gov (United States)

    Cervero, Ronald M.; Wilson, Arthur L.

    This book contains 14 papers on adult education and the struggle for knowledge and power in society. The following papers are included: "At the Heart of Practice: The Struggle for Knowledge and Power" (Ronald M. Cervero, Arthur L. Wilson); "The Power of Economic Globalization: Deskilling Immigrant Women through Training"…

  1. Power Electronics

    Indian Academy of Sciences (India)

    They cover a wide spectrum of areas from power supplies to power system ... Ramanarayanan describe the modelling and design of a family of soft transition ... of power when the drive is operating in the braking mode and fast dynamic response. ... time models are extremely important, as they can be included in real time ...

  2. Power Play: The Dynamics of Power and Interpersonal Communication in Higher Education as Reflected in David Mamet's "Oleanna"

    Science.gov (United States)

    Chiaramonte, Peter

    2014-01-01

    David Mamet's play "Oleanna" may be infamous for reasons that do not do justice to the play's real accomplishments. One reason for the controversy is the author's apparent focus on sexual harassment. The play is not about sexual harassment. It is about power. And in particular the power of language to shape relationships…

  3. Acquisition of Real Time Simulator for Intelligent Power Networks in Operational Energy Applications

    Science.gov (United States)

    2017-12-05

    and fixed power installations to enhance DoD mission effectiveness. The long term goal of this effort is to create a strong research and education ...effort is to create a strong research and education center at UTSA focused on innovative technologies and solutions for Energy-Systems Management...in Real-Time. , Grid Low voltage dc = ~ Dual Active Bridge (DAB) With 3-Level NPC HV bridge and High frequency transformer High voltage dc

  4. Towards Optimal Power Management of Hybrid Electric Vehicles in Real-Time: A Review on Methods, Challenges, and State-Of-The-Art Solutions

    Directory of Open Access Journals (Sweden)

    Ahmed M. Ali

    2018-02-01

    Full Text Available In light of increasing alerts about limited energy sources and environment degradation, it has become essential to search for alternatives to thermal engine-based vehicles which are a major source of air pollution and fossil fuel depletion. Hybrid electric vehicles (HEVs, encompassing multiple energy sources, are a short-term solution that meets the performance requirements and contributes to fuel saving and emission reduction aims. Power management methods such as regulating efficient energy flow to the vehicle propulsion, are core technologies of HEVs. Intelligent power management methods, capable of acquiring optimal power handling, accommodating system inaccuracies, and suiting real-time applications can significantly improve the powertrain efficiency at different operating conditions. Rule-based methods are simply structured and easily implementable in real-time; however, a limited optimality in power handling decisions can be achieved. Optimization-based methods are more capable of achieving this optimality at the price of augmented computational load. In the last few years, these optimization-based methods have been under development to suit real-time application using more predictive, recognitive, and artificial intelligence tools. This paper presents a review-based discussion about these new trends in real-time optimal power management methods. More focus is given to the adaptation tools used to boost methods optimality in real-time. The contribution of this work can be identified in two points: First, to provide researchers and scholars with an overview of different power management methods. Second, to point out the state-of-the-art trends in real-time optimal methods and to highlight promising approaches for future development.

  5. Implications of power uprates on safety margins of nuclear power plants. Report of a technical meeting

    International Nuclear Information System (INIS)

    2004-09-01

    The safety of nuclear power plants (NPPs) is based on the defence in depth concept, which relies on successive physical barriers (fuel matrix, cladding, primary system pressure boundary and containment) and other provisions to control radioactive materials and on multiple levels of protection against damage to these barriers. Deterministic safety analysis is an important tool for conforming the adequacy and efficiency of provisions within the defence in depth concept and is used to predict the response of an NPP in predetermined operational states. This type of safety analysis applies a specific set of rules and specific acceptance criteria. Deterministic analysis is typically focused on neutronic, thermohydraulic, radiological and structural aspects, which are often analysed with different computational tools. The advanced computational tools developed for deterministic safety analysis are used for better establishment and utilization of licensing margins or safety margins in consideration of analysis results. At the same time, the existence of such margins ensures that NPPs operate safely in all modes of operation and at all times. To properly assess and address the existing margins and to be able to take advantage of unnecessary conservatisms, state of the art analytical tools intended for safety assessment have been developed. Progress made in the development and application of modern codes for safety analysis and better understanding of phenomena involved in plant design and operation enable the analysts to determine safety margins in consideration of analysis results (licensing margins) with higher precision. There is a general tendency for utilities to take advantage of unnecessarily large conservatisms in safety analyses and to utilize them for reactor power uprates, better utilization of nuclear fuel, higher operational flexibility and for justification of lifetime extension. The present publication sets forth the results of a Technical Meeting on the

  6. Energy efficiency comparison between geothermal power systems

    Directory of Open Access Journals (Sweden)

    Luo Chao

    2017-01-01

    Full Text Available The geothermal water which can be considered for generating electricity with the temperature ranging from 80℃ to 150℃ in China because of shortage of electricity and fossil energy. There are four basic types of geothermal power systems: single flash, double flash, binary cycle, and flash-binary system, which can be adapted to geothermal energy utilization in China. The paper discussed the performance indices and applicable conditions of different power system. Based on physical and mathematical models, simulation result shows that, when geofluid temperature ranges from 100℃ to 130℃, the net power output of double flash power is bigger than flash-binary system. When the geothermal resource temperature is between 130℃ and 150℃, the net power output of flash-binary geothermal power system is higher than double flash system by the maximum value 5.5%. However, the sum water steam amount of double flash power system is 2 to 3 times larger than flash-binary power system, which will cause the bigger volume of equipment of power system. Based on the economy and power capacity, it is better to use flash-binary power system when the geofluid temperature is between 100℃ and 150℃.

  7. Optimization of Combine Heat and Power Plants in the Russian Wholesale Power Market Conditions

    Directory of Open Access Journals (Sweden)

    I. A. Chuchueva

    2015-01-01

    Full Text Available The paper concerns the relevant problem to optimize the combine heat and power (CHP plants in the Russian wholesale power market conditions. Since 1975 the CHP plants specialists faced the problem of fuel rate or fuel cost reduction while ensuring the fixed level of heat and power production. The optimality criterion was the fuel rate or fuel cost which has to be minimized. Produced heat and power was paid by known tariff. Since the power market started in 2006 the power payment scheme has essentially changed: produced power is paid by market price. In such condition a new optimality criterion the paper offers is a profit which has to be maximized for the given time horizon. Depending on the optimization horizon the paper suggests four types of the problem urgency, namely: long-term, mid-term, short-term, and operative optimization. It clearly shows that the previous problem of fuel cost minimization is a special case of profit maximization problem. To bring the problem to the mixed-integer linear programming problem a new linear characteristic curves of steam and gas turbine are introduced. Error of linearization is 0.6%. The formal statement of the problem of short-term CHP plants optimization in the market conditions is offered. The problem was solved with IRM software (OpenLinkInternational for seven power plants of JSC “Quadra”: Dyagilevskaya CHP, Kurskaya CHP-1, Lipetskaya CHP-2, Orlovskaya CHP, Kurskaya CHP NWR, Tambovskaya CHP, and Smolenskaya CHP-2.The conducted computational experiment showed that a potential profit is between 1.7% and 4.7% of the fuel cost of different CHP plants and depends on the power plant operation conditions. The potential profit value is 2–3 times higher than analogous estimations, which were obtained solving fuel cost minimization problem. The perspectives of the work are formalization of mid-term and long-term CHP plants optimization problem and development of domestic software for the new problem

  8. Real-time simulation of energy management in a domestic consumer

    DEFF Research Database (Denmark)

    Fernandes, F.; Silva, M.; Faria, P.

    2013-01-01

    Recent and future changes in power systems, mainly in the smart grid operation context, are related to a high complexity of power networks operation. This leads to more complex communications and to higher network elements monitoring and control levels, both from network’s and consumers’ standpoi......-time simulation from Opal RT. This makes possible the integration of Matlab®/Simulink® real-time simulation models. The main goal of the present paper is to compare the advantages of the resulting improved system, while managing the energy consumption of a domestic consumer....

  9. Mathematical modelling and optimization of a large-scale combined cooling, heat, and power system that incorporates unit changeover and time-of-use electricity price

    International Nuclear Information System (INIS)

    Zhu, Qiannan; Luo, Xianglong; Zhang, Bingjian; Chen, Ying

    2017-01-01

    Highlights: • We propose a novel superstructure for the design and optimization of LSCCHP. • A multi-objective multi-period MINLP model is formulated. • The unit start-up cost and time-of-use electricity prices are involved. • Unit size discretization strategy is proposed to linearize the original MINLP model. • A case study is elaborated to demonstrate the effectiveness of the proposed method. - Abstract: Building energy systems, particularly large public ones, are major energy consumers and pollutant emission contributors. In this study, a superstructure of large-scale combined cooling, heat, and power system is constructed. The off-design unit, economic cost, and CO_2 emission models are also formulated. Moreover, a multi-objective mixed integer nonlinear programming model is formulated for the simultaneous system synthesis, technology selection, unit sizing, and operation optimization of large-scale combined cooling, heat, and power system. Time-of-use electricity price and unit changeover cost are incorporated into the problem model. The economic objective is to minimize the total annual cost, which comprises the operation and investment costs of large-scale combined cooling, heat, and power system. The environmental objective is to minimize the annual global CO_2 emission of large-scale combined cooling, heat, and power system. The augmented ε–constraint method is applied to achieve the Pareto frontier of the design configuration, thereby reflecting the set of solutions that represent optimal trade-offs between the economic and environmental objectives. Sensitivity analysis is conducted to reflect the impact of natural gas price on the combined cooling, heat, and power system. The synthesis and design of combined cooling, heat, and power system for an airport in China is studied to test the proposed synthesis and design methodology. The Pareto curve of multi-objective optimization shows that the total annual cost varies from 102.53 to 94.59 M

  10. On real-time assessment of post-emergency condition existence in complex electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Vladimir I. [Irkutsk State Technical University 83, Lermontov Street, Irkutsk 664074 (Russian Federation)

    2008-12-15

    This paper presents two effective numerical criteria of estimating post-emergency operating conditions' non-existence in complicated electric power systems. These criteria are based on mathematic and programming tools of the regularized quadratic descent method and the regularized two-parameter minimization method. The proposed criteria can be effectively applied in calculations of real-time electric operating conditions. (author)

  11. High figure-of-merit SOI power LDMOS for power integrated circuits

    Directory of Open Access Journals (Sweden)

    Yashvir Singh

    2015-06-01

    Full Text Available The structural modifications in the conventional power laterally diffused metal-oxide-semiconductor field-effect transistor (LDMOS are carried out to improve the breakdown voltage, on-resistance, gate-charge and figure-of-merits of the device with reduced cell pitch. The modified device has planer structure implemented on silicon-on-insulator which is suitable for low to medium voltage power integrated circuits. The proposed LDMOS consists of two gate electrodes placed vertically in two separate trenches build in the drift region and single source and drain contacts are taken on the top. The trench structure reduces the electric field inside the drift region and allow increased drift layer doping concentration leading to higher breakdown voltage, lower specific on-resistance, reduced gate-drain charge, and substantial improvement in the figure-of-merits. Using two-dimensional simulations, the performance of the proposed LDMOS is optimized and results are compared with the conventional LDMOS. Our simulation results show that the proposed device exhibits 110% higher breakdown voltage, 40% reduction in cell pitch, 19% lower specific on-resistance, 30% lower gate-to-drain charge leading to 5.5 times improvement in Baliga's figure-of-merit and 43% reduction in dynamic figure-of-merit over the conventional device.

  12. ARIMA-Based Time Series Model of Stochastic Wind Power Generation

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Pedersen, Troels; Bak-Jensen, Birgitte

    2010-01-01

    This paper proposes a stochastic wind power model based on an autoregressive integrated moving average (ARIMA) process. The model takes into account the nonstationarity and physical limits of stochastic wind power generation. The model is constructed based on wind power measurement of one year from...... the Nysted offshore wind farm in Denmark. The proposed limited-ARIMA (LARIMA) model introduces a limiter and characterizes the stochastic wind power generation by mean level, temporal correlation and driving noise. The model is validated against the measurement in terms of temporal correlation...... and probability distribution. The LARIMA model outperforms a first-order transition matrix based discrete Markov model in terms of temporal correlation, probability distribution and model parameter number. The proposed LARIMA model is further extended to include the monthly variation of the stochastic wind power...

  13. An innovative ORC power plant layout for heat and power generation from medium- to low-temperature geothermal resources

    International Nuclear Information System (INIS)

    Fiaschi, Daniele; Lifshitz, Adi; Manfrida, Giampaolo; Tempesti, Duccio

    2014-01-01

    Highlights: • Explotation of medium temperature geothermal resource with ORC–CHP is investigated. • A new CHP configuration to provide higher temperature to thermal user is proposed. • Several organic fluids and wide range of heat demand are studied. • The system produces higher power (almost 55%) in comparison to typical layouts. • Optimal working fluids vary with the characteristics of the heat demand. - Abstract: Medium temperature (up to 170 °C), water dominated geothermal resources are the most widespread in the world. The binary geothermal-ORC power plants are the most suitable energy conversion systems for this kind of resource. Specifically, combined heat and power (CHP) systems have the potential to improve the efficiency in exploiting the geothermal resources by cascading the geothermal fluid heat carrier to successively lower temperature users, thus increasing first and second law efficiency of the entire power plant. However, geothermal CHPs usually extract heat from the geofluid either in parallel or in series to the ORC, and usually provide only low temperature heat, which is seldom suitable for industrial use. In this paper, a new CHP configuration, called Cross Parallel CHP, has been proposed and analyzed. It aims to provide higher temperature heat suitable for industrial use, allowing the exploitation of geothermal resources even in areas where district heating is not needed. The proposed CHP allows the reduction of the irreversibilities in the heat exchangers and the loss to the environment related to the re-injection of geofluid, thus producing higher electric power output while satisfying, at the same time, the heat demand of the thermal utility for a wide range of temperatures and mass flow rates (80–140 °C; 3–13 kg/s). Several organic fluids are investigated and the related optimizing working conditions are found by a built in procedure making use of genetic algorithms. The results show that the optimal working fluids and

  14. Time response measurements of Rosemount Pressure Transmitters (model 3154) of Angra-1 power plant

    International Nuclear Information System (INIS)

    Santos, Roberto Carlos dos; Pereira, Iraci Martinez; Justino, Marcelo C.; Silva, Marcos C.

    2017-01-01

    This paper shows the Response of time five Rosemount model 3154N pressure transmitter from the Angra I Nuclear Power Plant. The tests were performed using the Hydraulic Ramp and Pressure Step Generator from the Sensor Response Time Measurement laboratory of CEN - Nuclear Engineering Center of IPEN. For each transmitter, damping was adjusted so that the time constant was less than or equal to 500 ms. This value has been determined so that the total value of the protection chain response time does not exceed the established maximum value of 2 seconds. For each transmitter ten tests were performed, obtaining mean values of time constant of 499.7 ms, 464.1 ms, 473.8 ms, 484.7 ms and 511.5 ms, with mean deviations 0.85%, 0.24%, 0.97%, 1.26% and 0.64% respectively. (author)

  15. Time response measurements of Rosemount Pressure Transmitters (model 3154) of Angra-1 power plant

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Roberto Carlos dos; Pereira, Iraci Martinez [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Justino, Marcelo C.; Silva, Marcos C., E-mail: rcsantos@ipen.br, E-mail: justino@eletronuclear.gov.br [Eletrobrás Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    This paper shows the Response of time five Rosemount model 3154N pressure transmitter from the Angra I Nuclear Power Plant. The tests were performed using the Hydraulic Ramp and Pressure Step Generator from the Sensor Response Time Measurement laboratory of CEN - Nuclear Engineering Center of IPEN. For each transmitter, damping was adjusted so that the time constant was less than or equal to 500 ms. This value has been determined so that the total value of the protection chain response time does not exceed the established maximum value of 2 seconds. For each transmitter ten tests were performed, obtaining mean values of time constant of 499.7 ms, 464.1 ms, 473.8 ms, 484.7 ms and 511.5 ms, with mean deviations 0.85%, 0.24%, 0.97%, 1.26% and 0.64% respectively. (author)

  16. Analysis of relationships between hourly electricity price and load in deregulated real-time power markets

    International Nuclear Information System (INIS)

    Lo, K.L.; Wu, Y.K.

    2004-01-01

    Risk management in the electric power industry involves measuring the risk for all instruments owned by a company. The value of many of these instruments depends directly on electricity prices. In theory, the wholesale price in a real-time market should reflect the short-run marginal cost. However, most markets are not perfectly competitive, therefore by understanding the degree of correlation between price and physical drivers, electric traders and consumers can manage their risk more effectively and efficiently. Market data from two power-pool architectures, both pre-2003 ISO-NE and Australia's NEM, have been studied. The dynamic character of electricity price is mean-reverting, and consists of intra-day and weekly variations, seasonal fluctuations, and instant jumps. Parts of them are affected by load demands. Hourly signals on both price and load are divided into deterministic and random components with a discrete Fourier transform algorithm. Next, the real-time price-load relationship for periodic and random signals is examined. In addition, time-varying volatility models are constructed on random price and random load with the GARCH model, and the correlation between them analysed. Volatility plays a critical role on evaluating option pricing and risk management. (author)

  17. A Practical Framework to Study Low-Power Scheduling Algorithms on Real-Time and Embedded Systems

    Directory of Open Access Journals (Sweden)

    Jian (Denny Lin

    2014-05-01

    Full Text Available With the advanced technology used to design VLSI (Very Large Scale Integration circuits, low-power and energy-efficiency have played important roles for hardware and software implementation. Real-time scheduling is one of the fields that has attracted extensive attention to design low-power, embedded/real-time systems. The dynamic voltage scaling (DVS and CPU shut-down are the two most popular techniques used to design the algorithms. In this paper, we firstly review the fundamental advances in the research of energy-efficient, real-time scheduling. Then, a unified framework with a real Intel PXA255 Xscale processor, namely real-energy, is designed, which can be used to measure the real performance of the algorithms. We conduct a case study to evaluate several classical algorithms by using the framework. The energy efficiency and the quantitative difference in their performance, as well as the practical issues found in the implementation of these algorithms are discussed. Our experiments show a gap between the theoretical and real results. Our framework not only gives researchers a tool to evaluate their system designs, but also helps them to bridge this gap in their future works.

  18. Zooming into local active galactic nuclei: the power of combining SDSS-IV MaNGA with higher resolution integral field unit observations

    Science.gov (United States)

    Wylezalek, Dominika; Schnorr Müller, Allan; Zakamska, Nadia L.; Storchi-Bergmann, Thaisa; Greene, Jenny E.; Müller-Sánchez, Francisco; Kelly, Michael; Liu, Guilin; Law, David R.; Barrera-Ballesteros, Jorge K.; Riffel, Rogemar A.; Thomas, Daniel

    2017-05-01

    Ionized gas outflows driven by active galactic nuclei (AGN) are ubiquitous in high-luminosity AGN with outflow speeds apparently correlated with the total bolometric luminosity of the AGN. This empirical relation and theoretical work suggest that in the range Lbol ˜ 1043-45 erg s-1 there must exist a threshold luminosity above which the AGN becomes powerful enough to launch winds that will be able to escape the galaxy potential. In this paper, we present pilot observations of two AGN in this transitional range that were taken with the Gemini North Multi-Object Spectrograph integral field unit (IFU). Both sources have also previously been observed within the Sloan Digital Sky Survey-IV (SDSS) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. While the MaNGA IFU maps probe the gas fields on galaxy-wide scales and show that some regions are dominated by AGN ionization, the new Gemini IFU data zoom into the centre with four times better spatial resolution. In the object with the lower Lbol we find evidence of a young or stalled biconical AGN-driven outflow where none was obvious at the MaNGA resolution. In the object with the higher Lbol we trace the large-scale biconical outflow into the nuclear region and connect the outflow from small to large scales. These observations suggest that AGN luminosity and galaxy potential are crucial in shaping wind launching and propagation in low-luminosity AGN. The transition from small and young outflows to galaxy-wide feedback can only be understood by combining large-scale IFU data that trace the galaxy velocity field with higher resolution, small-scale IFU maps.

  19. Comparison of Battery-Powered and Manual Bone Biopsy Systems for Core Needle Biopsy of Sclerotic Bone Lesions.

    Science.gov (United States)

    Cohen, Micah G; McMahon, Colm J; Kung, Justin W; Wu, Jim S

    2016-05-01

    The purpose of this study was to compare manual and battery-powered bone biopsy systems for diagnostic yield and procedural factors during core needle biopsy of sclerotic bone lesions. A total of 155 consecutive CT-guided core needle biopsies of sclerotic bone lesions were performed at one institution from January 2006 to November 2014. Before March 2012, lesions were biopsied with manual bone drill systems. After March 2012, most biopsies were performed with a battery-powered system and either noncoaxial or coaxial biopsy needles. Diagnostic yield, crush artifact, CT procedure time, procedure radiation dose, conscious sedation dose, and complications were compared between the manual and battery-powered core needle biopsy systems by Fisher exact test and t test. One-way ANOVA was used for subgroup analysis of the two battery-powered systems for procedure time and radiation dose. The diagnostic yield for all sclerotic lesions was 60.0% (93/155) and was significantly higher with the battery-powered system (73.0% [27/37]) than with the manual systems (55.9% [66/118]) (p = 0.047). There was no significant difference between the two systems in terms of crush artifact, procedure time, radiation dose, conscious sedation administered, or complications. In subgroup analysis, the coaxial battery-powered biopsies had shorter procedure times (p = 0.01) and lower radiation doses (p = 0.002) than the coaxial manual systems, but the noncoaxial battery-powered biopsies had longer average procedure times and higher radiation doses than the coaxial manual systems. In biopsy of sclerotic bone lesions, use of a battery-powered bone drill system improves diagnostic yield over use of a manual system.

  20. Credentialism, Adults, and Part-Time Higher Education in the United Kingdom: An Account of Rising Take Up and Some Implications for Policy.

    Science.gov (United States)

    Fuller, Alison

    2001-01-01

    Explains the growing importance of higher-level qualifications for adults in the UK, highlighting statistical trends in commitment to learning and qualifying-the result of taking part-time courses in higher education. Most part-time undergraduates fund their own tuition. Mature students' backgrounds and perspectives partly account for their rising…

  1. Area, speed and power measurements of FPGA-based complex orthogonal space-time block code channel encoders

    Science.gov (United States)

    Passas, Georgios; Freear, Steven; Fawcett, Darren

    2010-01-01

    Space-time coding (STC) is an important milestone in modern wireless communications. In this technique, more copies of the same signal are transmitted through different antennas (space) and different symbol periods (time), to improve the robustness of a wireless system by increasing its diversity gain. STCs are channel coding algorithms that can be readily implemented on a field programmable gate array (FPGA) device. This work provides some figures for the amount of required FPGA hardware resources, the speed that the algorithms can operate and the power consumption requirements of a space-time block code (STBC) encoder. Seven encoder very high-speed integrated circuit hardware description language (VHDL) designs have been coded, synthesised and tested. Each design realises a complex orthogonal space-time block code with a different transmission matrix. All VHDL designs are parameterisable in terms of sample precision. Precisions ranging from 4 bits to 32 bits have been synthesised. Alamouti's STBC encoder design [Alamouti, S.M. (1998), 'A Simple Transmit Diversity Technique for Wireless Communications', IEEE Journal on Selected Areas in Communications, 16:55-108.] proved to be the best trade-off, since it is on average 3.2 times smaller, 1.5 times faster and requires slightly less power than the next best trade-off in the comparison, which is a 3/4-rate full-diversity 3Tx-antenna STBC.

  2. Inconsistency of Minkowski higher-derivative theories

    Energy Technology Data Exchange (ETDEWEB)

    Aglietti, Ugo G. [Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); Anselmi, Damiano [Universita di Pisa, Dipartimento di Fisica ' ' Enrico Fermi' ' , Pisa (Italy); INFN, Sezione di Pisa, Pisa (Italy)

    2017-02-15

    We show that Minkowski higher-derivative quantum field theories are generically inconsistent, because they generate nonlocal, non-hermitian ultraviolet divergences, which cannot be removed by means of standard renormalization procedures. By ''Minkowski theories'' we mean theories that are defined directly in Minkowski spacetime. The problems occur when the propagators have complex poles, so that the correlation functions cannot be obtained as the analytic continuations of their Euclidean versions. The usual power counting rules fail and are replaced by much weaker ones. Self-energies generate complex divergences proportional to inverse powers of D'Alembertians. Three-point functions give more involved nonlocal divergences, which couple to infrared effects. We illustrate the violations of the locality and hermiticity of counterterms in scalar models and higher-derivative gravity. (orig.)

  3. Optimal pricing of non-utility generated electric power

    International Nuclear Information System (INIS)

    Siddiqi, S.N.; Baughman, M.L.

    1994-01-01

    The importance of an optimal pricing policy for pricing non-utility generated power is pointed out in this paper. An optimal pricing policy leads to benefits for all concerned: the utility, industry, and the utility's other customers. In this paper, it is shown that reliability differentiated real-time pricing provides an optimal non-utility generated power pricing policy, from a societal welfare point of view. Firm capacity purchase, and hence an optimal price for purchasing firm capacity, are an integral part of this pricing policy. A case study shows that real-time pricing without firm capacity purchase results in improper investment decisions and higher costs for the system as a whole. Without explicit firm capacity purchase, the utility makes greater investment in capacity addition in order to meet its reliability criteria than is socially optimal. It is concluded that the non-utility generated power pricing policy presented in this paper and implied by reliability differentiated pricing policy results in social welfare-maximizing investment and operation decisions

  4. Technology Efficiency Study on Nuclear Power and Coal Power in Guangdong Province Based on DEA

    International Nuclear Information System (INIS)

    Yinong Li; Dong Wang

    2006-01-01

    Guangdong Province has taken the lead in embarking on nuclear power development to resolve its dire lack of primary resources. With the deepening of the on-going structural reform in the electric power sector in China, the market competition scheme is putting electricity generation enterprises under severe strain. Consequently, it is incumbent upon the nuclear power producers to steadily upgrade management, enhance technical capabilities, reduce cost and improve efficiency. At present, gradual application of such efficiency evaluation methodology has already commenced in some sectors in China including the electric power industry. The purpose of this paper is to use the Data Envelopment Analysis (DEA), which is a cutting-edge approach in the efficiency evaluation field - to study the technological efficiency between nuclear power and coal power in Guangdong Province. The DEA results demonstrate that, as far as Guangdong Province is concerned, the technological efficiency of nuclear power is higher than that of coal power in terms of Technological Efficiency (TE), Pure Technology Efficiency (PTE) and Scale Efficiency (SE). The reason is that nuclear power technology is advanced with a much higher equipment availability factor. Under the same scale, the generation output of nuclear power is far higher than that of equivalent coal power generation. With the environmental protection and sustainable development requirements taken into full account, nuclear power constitutes a clean, safe and highly-efficient energy form which should be extensively harnessed in Guangdong Province to fuel its future continuing economic growth. (authors)

  5. Internationalization of Chinese Higher Education

    Science.gov (United States)

    Chen, Linhan; Huang, Danyan

    2013-01-01

    This paper probes into the development of internationalization of higher education in China from ancient times to modern times, including the emergence of international connections in Chinese higher education and the subsequent development of such connections, the further development of internationalization of Chinese higher education, and the…

  6. An Optimization Mechanism Intended for Static Power Reduction Using Dual-thTechnique

    Directory of Open Access Journals (Sweden)

    Rodolfo P. Santos

    2012-01-01

    Full Text Available Power consumption reduction is a challenge nowadays. Techniques for dynamic and static power minimization have been proposed, but most of them are very time consuming. This work proposes an algorithm for reducing static power, which can be perfectly inserted in the conventional design flow for integrated systems considering an open source environment (open access infrastructure. The proposed approach, based on a Dual-Threshold technique, replaces part of the cells of the circuit by cells with a higher threshold voltage without resulting in timing violations in the circuit. The decision to replace a cell is based on timing estimates of the circuit modeling with the cell replacement, before it is actually replaced. The fact that only some cells are replaced every iteration results in a reduction of the runtime of the algorithm. Additionally, results showed a reduction in static power up to 39.28%, when applying the proposed approach in the ISCAS85 benchmark circuits.

  7. Fuel element concept for long life high power nuclear reactors

    Science.gov (United States)

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  8. Single-Wire Electric-Field Coupling Power Transmission Using Nonlinear Parity-Time-Symmetric Model with Coupled-Mode Theory

    Directory of Open Access Journals (Sweden)

    Xujian Shu

    2018-03-01

    Full Text Available The output power and transmission efficiency of the traditional single-wire electric-field coupling power transmission (ECPT system will drop sharply with the increase of the distance between transmitter and receiver, thus, in order to solve the above problem, in this paper, a new nonlinear parity-time (PT-symmetric model for single-wire ECPT system based on coupled-mode theory (CMT is proposed. The proposed model for single-wire ECPT system not only achieves constant output power but also obtains a high constant transmission efficiency against variable distance, and the steady-state characteristics of the single-wire ECPT system are analyzed. Based on the theoretical analysis and circuit simulation, it shows that the transmission efficiency with constant output power remains 60% over a transmission distance of approximately 34 m without the need for any tuning. Furthermore, the application of a nonlinear PT-symmetric circuit based on CMT enables robust electric power transfer to moving devices or vehicles.

  9. Decentralized and Real-Time Power Dispatch Control for an Islanded Microgrid Supported by Distributed Power Sources

    Directory of Open Access Journals (Sweden)

    Changsun Ahn

    2013-12-01

    Full Text Available Microgrids can deploy traditional and/or renewable power sources to support remote sites. Utilizing renewable power sources requires more complicated control strategies to achieve acceptable power quality and maintain grid stability. In this research, we assume that the grid stability problem is already solved. As a next step, we focus on how the power can be dispatched from multiple power sources for improved grid efficiency. Isolated microgrids frequently require reconfigurations because of the grid expansion or component failures. Therefore, the control strategies ideally should be implemented in a plug-and-play fashion. Moreover, these strategies ideally require no pre-knowledge of the grid structure, and as little communication with neighboring power sources as possible. The control objective is to minimize a cost function that can be adjusted to reflect the desire to minimize energy cost and/or losses. An algorithm is designed to satisfy a derived necessary condition of function optimality. Such conditions are obtained by formulating Lagrange functions. An equivalent grid model approximates the grid structure which was later confirmed to represent the grid behavior adequately. For decentralized operations, we execute the distributed control sequentially using a simple token communication protocol. The performance of the combined system identification-Lagrange function minimization algorithm is demonstrated through simulations.

  10. Nuclear power: status and outlook

    International Nuclear Information System (INIS)

    Rogner, H.H.; Langlois, L.M.; McDonald, A.

    2001-01-01

    Nuclear power plants worldwide make important contributions to energy production. A total of 439 plants are in operation; with nearly 10 000 years of operating history, they reliably provide some 16 percent of the world's electricity production. The growth rates of nuclear power expansion in the seventies and eighties are no longer achievable now. Growing operating experience and further optimization of plant operation have caused the electricity generation in existing plants to grow overproportionally, corresponding to a calculated equivalent of 28 000 MW of capacity increment in the nineties. The short-term perspectives of nuclear power generation until 2020 as outlined by the International Energy Agency (IEA) indicate a slight decrease of electricity production with a variety of different regional developments. Over the same period of time, there will mainly be further improvements in reliable operation, resulting in higher availability and added safety, as well as measures extending plant life. Studies going beyond the time frame of the IEA Study forecast a major increase in nuclear generating capacity for the period after 2020 up to 2050. The foreseeable long-term developments on the world energy markets, with their limited fossil energy resources, are seen as a reason why nuclear power and renewable energies jointly will be important components in meeting energy requirements and, simultaneously, fulfilling the needs of climate protection. Specific problems of nuclear power, which can be solved, are seen to be the development of innovative plants, a stable cost situation, and the reduction of economic risks because of the long periods of payback of the capital invested. (orig.) [de

  11. Comparison of inter-trial recovery times for the determination of critical power and W' in cycling.

    Science.gov (United States)

    Karsten, Bettina; Hopker, James; Jobson, Simon A; Baker, Jonathan; Petrigna, Luca; Klose, Andreas; Beedie, Christopher

    2017-07-01

    Critical Power (CP) and W' are often determined using multi-day testing protocols. To investigate this cumbersome testing method, the purpose of this study was to compare the differences between the conventional use of a 24-h inter-trial recovery time with those of 3 h and 30 min for the determination of CP and W'. 9 moderately trained cyclists performed an incremental test to exhaustion to establish the power output associated with the maximum oxygen uptake (p[Formula: see text] max ), and 3 protocols requiring time-to-exhaustion trials at a constant work-rate performed at 80%, 100% and 105% of p[Formula: see text] max. Design: Protocol A utilised 24-h inter-trial recovery (CP 24 /W' 24 ), protocol B utilised 3-h inter-trial recovery (CP 3 /W' 3 ), and protocol C used 30-min inter-trial recovery period (CP 0.5 /W' 0.5 ). CP and W' were calculated using the inverse time (1/t) versus power (P) relation (P = W'(1/t) + CP). 95% Limits of Agreement between protocol A and B were -9 to 15 W; -7.4 to 7.8 kJ (CP/W') and between protocol A and protocol C they were -27 to 22 W; -7.2 to 15.1 kJ (CP/W'). Compared to criterion protocol A, the average prediction error of protocol B was 2.5% (CP) and 25.6% (W'), whilst for protocol C it was 3.7% (CP) and 32.9% (W'). 3-h and 30-min inter-trial recovery time protocols provide valid methods of determining CP but not W' in cycling.

  12. Power Supply Interruption Costs: Models and Methods Incorporating Time Dependent Patterns

    International Nuclear Information System (INIS)

    Kjoelle, G.H.

    1996-12-01

    This doctoral thesis develops models and methods for estimation of annual interruption costs for delivery points, emphasizing the handling of time dependent patterns and uncertainties in the variables determining the annual costs. It presents an analytical method for calculation of annual expected interruption costs for delivery points in radial systems, based on a radial reliability model, with time dependent variables. And a similar method for meshed systems, based on a list of outage events, assuming that these events are found in advance from load flow and contingency analyses. A Monte Carlo simulation model is given which handles both time variations and stochastic variations in the input variables and is based on the same list of outage events. This general procedure for radial and meshed systems provides expectation values and probability distributions for interruption costs from delivery points. There is also a procedure for handling uncertainties in input variables by a fuzzy description, giving annual interruption costs as a fuzzy membership function. The methods are developed for practical applications in radial and meshed systems, based on available data from failure statistics, load registrations and customer surveys. Traditional reliability indices such as annual interruption time, power- and energy not supplied, are calculated as by-products. The methods are presented as algorithms and/or procedures which are available as prototypes. 97 refs., 114 figs., 62 tabs

  13. Power Supply Interruption Costs: Models and Methods Incorporating Time Dependent Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Kjoelle, G.H.

    1996-12-01

    This doctoral thesis develops models and methods for estimation of annual interruption costs for delivery points, emphasizing the handling of time dependent patterns and uncertainties in the variables determining the annual costs. It presents an analytical method for calculation of annual expected interruption costs for delivery points in radial systems, based on a radial reliability model, with time dependent variables. And a similar method for meshed systems, based on a list of outage events, assuming that these events are found in advance from load flow and contingency analyses. A Monte Carlo simulation model is given which handles both time variations and stochastic variations in the input variables and is based on the same list of outage events. This general procedure for radial and meshed systems provides expectation values and probability distributions for interruption costs from delivery points. There is also a procedure for handling uncertainties in input variables by a fuzzy description, giving annual interruption costs as a fuzzy membership function. The methods are developed for practical applications in radial and meshed systems, based on available data from failure statistics, load registrations and customer surveys. Traditional reliability indices such as annual interruption time, power- and energy not supplied, are calculated as by-products. The methods are presented as algorithms and/or procedures which are available as prototypes. 97 refs., 114 figs., 62 tabs.

  14. Gas-fired power plants: Investment timing, operating flexibility and CO2 capture

    International Nuclear Information System (INIS)

    Fleten, Stein-Erik; Naesaekkaelae, Erkka

    2010-01-01

    We analyze investments in gas-fired power plants based on stochastic electricity and natural gas prices. A simple but realistic two-factor model is used for price processes, enabling analysis of the value of operating flexibility, the opportunity to abandon the capital equipment, as well as finding thresholds for energy prices for which it is optimal to enter into the investment. We develop a method to compute upper and lower bounds on plant values and investment threshold levels. Our case study uses representative power plant investment and operations data, and historical forward prices from well-functioning energy markets. We find that when the decision to build is considered, the abandonment option does not have significant value, whereas the operating flexibility and time-to-build option have significant effect on the building threshold. Furthermore, the joint value of the operating flexibility and the abandonment option is much smaller than the sum of their separate values, because both are options to shut down. The effects of emission costs on the value of installing CO 2 capture technology are also analyzed.

  15. A study on economics of power generation in Pakistan

    International Nuclear Information System (INIS)

    Akbar, S.; Saleem Shahid, M.; Anwar Khan, M.; Khushnood, S.

    2005-01-01

    Pakistan is a developing country and has ever increasing requirement of electric power for its development process. Due to lack of timely and proper planning in this field, there has been acute shortage of power supply which has resulted into sever set back specially in industrial sector. To make up this deficiency government of Pakistan invited foreign and local companies for power generation, which has been purchased by WAPDA (water and power development authority-government of Pakistan) at exorbitant rates comparatively higher in this region. The Authors have thoroughly deliberated on the subject, collected the relative data from various government agencies, organizations and literature then carried out the comparative cost analysis of generation of electric power using various resources, keeping in mind the following factors: a) Fuel b) Plant Factor c) Investment Cost d) Operating and Maintenance Cost. The tariff rates of WAPDA have also been considered in this study. Recently two others organizations NEPRA (national electric power regulation authority) and PPIB (private power infrastructure board) has been constituted to regulate the tariffs and issuance of license to the private power generating companies. Now the efforts are in hand to regulate the purchase rate of electric power from the private companies by allowing reasonable profit without exploiting any body. The authors has concluded that timely planning, by providing necessary facilities to the power generation companies and regulating the tariff can facilitate the consumer and protecting them from paying exorbitant tariff. (authors)

  16. Collaborative Scheduling between OSPPs and Gasholders in Steel Mill under Time-of-Use Power Price

    Directory of Open Access Journals (Sweden)

    Juxian Hao

    2017-08-01

    Full Text Available Byproduct gases generated during steel production process are the main fuels for on-site power plants (OSPPs in steel enterprises. Recently, with the implementation of time-of-use (TOU power price in China, increasing attention has been paid to the collaborative scheduling between OSPPs and gasholders. However, the load shifting potential of OSPPs has seldom been discussed in previous studies. In this paper, a mixed integer linear programming (MILP-based scheduling model is built to evaluate the load shifting potential and the corresponding economic benefits. A case study is conducted on two steel enterprises with different configurations of OSPPs, and the optimal operation strategy is also discussed.

  17. Phased Array Focusing for Acoustic Wireless Power Transfer.

    Science.gov (United States)

    Tseng, Victor Farm-Guoo; Bedair, Sarah S; Lazarus, Nathan

    2018-01-01

    Wireless power transfer (WPT) through acoustic waves can achieve higher efficiencies than inductive coupling when the distance is above several times the transducer size. This paper demonstrates the use of ultrasonic phased arrays to focus power to receivers at arbitrary locations to increase the power transfer efficiency. Using a phased array consisting of 37 elements at a distance nearly 5 times the receiver transducer diameter, a factor of 2.6 increase in efficiency was achieved when compared to a case equivalent to a single large transducer with the same peak efficiency distance. The array has a total diameter of 7 cm, and transmits through air at 40 kHz to a 1.1-cm diameter receiver, achieving a peak overall efficiency of 4% at a distance of 5 cm. By adjusting the focal distance, the efficiency can also be maintained relatively constant at distances up to 9 cm. Numerical models were developed and shown to closely match the experimental energy transfer behavior; modeling results indicate that the efficiency can be further doubled by increasing the number of elements. For comparison, an inductive WPT system was also built with the diameters of the transmitting and receiving coils equivalent to the dimensions of the transmitting ultrasonic phased array and receiver transducer, and the acoustic WPT system achieved higher efficiencies than the inductive WPT system when the transmit-to-receive distance is above 5 cm. In addition, beam angle steering was demonstrated by using a simplified seven-element 1-D array, achieving power transfer less dependent on receiver placement.

  18. Knowledge based support for real time application of multiagent control and automation in electric power systems

    DEFF Research Database (Denmark)

    Saleem, Arshad; Nordstrom, Lars; Lind, Morten

    2011-01-01

    This paper presents a mechanism for developing knowledge based support for real time application of multiagent systems (MAS) in control, automation and diagnosis of electric power systems. In particular it presents a way for autonomous agents to utilize a qualitative means-ends based model...... for reasoning about control situations. The proposed mechanism has been used in different scenarios of electric power distribution system protection and control. Results show that agents can use local models of their environment and coordinate with other agents to analyze and understand a disturbance situation...

  19. Exposure to power frequency electromagnetic fields

    International Nuclear Information System (INIS)

    Skotte, J.

    1993-01-01

    The purpose was to asses personal exposure to power frequency electromagnetic fields in Denmark. Exposure to electrical and magnetic 50 Hz fields were measured with personal dosimeters in periods of 24 hours covering both occupational and residential environments. The study included both highly exposed and 'normal' exposed jobs. Measurements were carried out with dosimeters, which sample electrical and magnetic fields every 5 sec. Participants also wore the dosimeter during transportation. The dynamic range of the dosimeters was 0.01-200 μT and 0.6-10000 V/m. The highest average exposure in homes near high power lines was 2.24 μT. In most homes without nearby high power lines the average exposure was below 0.05 μT. Average values of '24-hour-dose' (μT times hours) for the generator facility, transmission line and substation workers were approximately the same as for the people living near high power lines (5 μT x hours). Electric field measurements with personal dosimeters involve several factors of uncertainty, as the body, posture, position of dosimeter etc. influence the results. The highest exposed groups were transmission line workers (GM: 44 V/m) and substation workers (GM: 23 V/m) but there were large variations (GSD: 4.7-4.8). In the work time the exposure level was the same for office workers and workers in the industry groups (GM: 12-13 V/m). In homes near high power lines (GM: 23 V/m) there was a non-significant tendency to higher exposure compared to homes without nearby high power lines. (AB) (11 refs.)

  20. A Low-Power and Low-Voltage Power Management Strategy for On-Chip Micro Solar Cells

    Directory of Open Access Journals (Sweden)

    Ismail Cevik

    2015-01-01

    Full Text Available Fundamental characteristics of on-chip micro solar cell (MSC structures were investigated in this study. Several MSC structures using different layers in three different CMOS processes were designed and fabricated. Effects of PN junction structure and process technology on solar cell performance were measured. Parameters for low-power and low-voltage implementation of power management strategy and boost converter based circuits utilizing fractional voltage maximum power point tracking (FVMPPT algorithm were determined. The FVMPPT algorithm works based on the fraction between the maximum power point operation voltage and the open circuit voltage of the solar cell structure. This ratio is typically between 0.72 and 0.78 for commercially available poly crystalline silicon solar cells that produce several watts of power under typical daylight illumination. Measurements showed that the fractional voltage ratio is much higher and fairly constant between 0.82 and 0.85 for on-chip mono crystalline silicon micro solar cell structures that produce micro watts of power. Mono crystalline silicon solar cell structures were observed to result in better power fill factor (PFF that is higher than 74% indicating a higher energy harvesting efficiency.

  1. Implementing low power consumption in standby mode in the case of power supplies with power factor correction

    OpenAIRE

    Martín, Kevin; F., Pablo; G., Diego; Sebastián, Javier; Álvarez, Santiago

    2017-01-01

    This work analyzes different options to implement low power consumption in Switching Mode Power Supplies (SMPSs) with Power Factor Correction (PFC) when they are in standby mode. The standard SMPSs for power levels higher than 100 W are made up of two stages: a classical PFC stage based on a Boost Converter operating in the Continuous Conduction Mode and a second stage based on any type of isolated DC-DC converter. The value of the resistive sensors needed by the PFC control stage determines ...

  2. Development of modular scalable pulsed power systems for high power magnetized plasma experiments

    Science.gov (United States)

    Bean, I. A.; Weber, T. E.; Adams, C. S.; Henderson, B. R.; Klim, A. J.

    2017-10-01

    New pulsed power switches and trigger drivers are being developed in order to explore higher energy regimes in the Magnetic Shock Experiment (MSX) at Los Alamos National Laboratory. To achieve the required plasma velocities, high-power (approx. 100 kV, 100s of kA), high charge transfer (approx. 1 C), low-jitter (few ns) gas switches are needed. A study has been conducted on the effects of various electrode geometries and materials, dielectric media, and triggering strategies; resulting in the design of a low-inductance annular field-distortion switch, optimized for use with dry air at 90 psig, and triggered by a low-jitter, rapid rise-time solid-state Linear Transformer Driver. The switch geometry and electrical characteristics are designed to be compatible with Syllac style capacitors, and are intended to be deployed in modular configurations. The scalable nature of this approach will enable the rapid design and implementation of a wide variety of high-power magnetized plasma experiments. This work is supported by the U.S. Department of Energy, National Nuclear Security Administration. Approved for unlimited release, LA-UR-17-2578.

  3. Estimation of burst-mode LDA power spectra

    DEFF Research Database (Denmark)

    Velte, Clara Marika; George, William K.; Buchhave, Preben

    2014-01-01

    . The signal can be interpreted correctly by applying residence time weighting to all statistics and using the residence time-weighted discrete Fourier transform to compute the Fourier transform. A new spectral algorithm using the latter is applied to two experiments: a cylinder wake and an axisymmetric......The estimation of power spectra from LDA data provides signal processing challenges for fluid dynamicists for several reasons: acquisition is dictated by randomly arriving particles, the registered particle velocities tend to be biased toward higher values, and the signal is highly intermittent...

  4. automatic generation of root locus plots for linear time invariant

    African Journals Online (AJOL)

    user

    peak time, its real power is its ability to solve problems with higher order systems. ... implementation of a computer program for the automatic generation of root loci using .... the concepts of complex variables, the angle condition can be ...

  5. Opportunities for Combined Heat and Power in Data Centers

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, Ken [ICF International; Hedman, Bruce [ICF International

    2009-03-01

    Data centers represent a rapidly growing and very energy intensive activity in commercial, educational, and government facilities. In the last five years the growth of this sector was the electric power equivalent to seven new coal-fired power plants. Data centers consume 1.5% of the total power in the U.S. Growth over the next five to ten years is expected to require a similar increase in power generation. This energy consumption is concentrated in buildings that are 10-40 times more energy intensive than a typical office building. The sheer size of the market, the concentrated energy consumption per facility, and the tendency of facilities to cluster in 'high-tech' centers all contribute to a potential power infrastructure crisis for the industry. Meeting the energy needs of data centers is a moving target. Computing power is advancing rapidly, which reduces the energy requirements for data centers. A lot of work is going into improving the computing power of servers and other processing equipment. However, this increase in computing power is increasing the power densities of this equipment. While fewer pieces of equipment may be needed to meet a given data processing load, the energy density of a facility designed to house this higher efficiency equipment will be as high as or higher than it is today. In other words, while the data center of the future may have the IT power of ten data centers of today, it is also going to have higher power requirements and higher power densities. This report analyzes the opportunities for CHP technologies to assist primary power in making the data center more cost-effective and energy efficient. Broader application of CHP will lower the demand for electricity from central stations and reduce the pressure on electric transmission and distribution infrastructure. This report is organized into the following sections: (1) Data Center Market Segmentation--the description of the overall size of the market, the size and

  6. Application of Entry-Time Processes to Asset Management in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Nelson, Paul; Wang, Shuwen; Kee, Ernie J.

    2006-01-01

    The entry-time approach to dynamic reliability is based upon computational solution of the Chapman-Kolmogorov (generalized state-transition) equations underlying a certain class of marked point processes. Previous work has verified a particular finite-difference approach to computational solution of these equations. The objective of this work is to illustrate the potential application of the entry-time approach to risk-informed asset management (RIAM) decisions regarding maintenance or replacement of major systems within a plant. Results are presented in the form of plots, with replacement/maintenance period as a parameter, of expected annual revenue, along with annual variance and annual skewness as indicators of associated risks. Present results are for a hypothetical system, to illustrate the capability of the approach, but some considerations related to potential application of this approach to nuclear power plants are discussed. (authors)

  7. Real-time versus day-ahead market power in a hydro-based electricity market

    OpenAIRE

    Tangerås, Thomas P.; Mauritzen, Johannes

    2014-01-01

    We analyse in a theoretical framework the link between real-time and day-ahead market performance in a hydro-based and imperfectly competitive wholesale electricity market. Theoretical predictions of the model are tested on data from the Nordic power exchange, Nord Pool Spot (NPS).We reject the hypothesis that prices at NPS were at their competitive levels throughout the period under examination. The empirical approach uses equilibrium prices and quantities and does not rely on bid data nor o...

  8. Electrofishing power requirements in relation to duty cycle

    Science.gov (United States)

    Miranda, L.E.; Dolan, C.R.

    2004-01-01

    Under controlled laboratory conditions we measured the electrical peak power required to immobilize (i.e., narcotize or tetanize) fish of various species and sizes with duty cycles (i.e., percentage of time a field is energized) ranging from 1.5% to 100%. Electrofishing effectiveness was closely associated with duty cycle. Duty cycles of 10-50% required the least peak power to immobilize fish; peak power requirements increased gradually above 50% duty cycle and sharply below 10%. Small duty cycles can increase field strength by making possible higher instantaneous peak voltages that allow the threshold power needed to immobilize fish to radiate farther away from the electrodes. Therefore, operating within the 10-50% range of duty cycles would allow a larger radius of immobilization action than operating with higher duty cycles. This 10-50% range of duty cycles also coincided with some of the highest margins of difference between the electrical power required to narcotize and that required to tetanize fish. This observation is worthy of note because proper use of duty cycle could help reduce the mortality associated with tetany documented by some authors. Although electrofishing with intermediate duty cycles can potentially increase effectiveness of electrofishing, our results suggest that immobilization response is not fully accounted for by duty cycle because of a potential interaction between pulse frequency and duration that requires further investigation.

  9. Ion energy characteristics downstream of a high power helicon

    International Nuclear Information System (INIS)

    Prager, James; Winglee, Robert; Ziemba, Tim; Roberson, B Race; Quetin, Gregory

    2008-01-01

    The High Power Helicon eXperiment operates at higher powers (37 kW) and lower background neutral pressure than other helicon experiments. The ion velocity distribution function (IVDF) has been measured at multiple locations downstream of the helicon source and a mach 3-6 flowing plasma was observed. The helicon antenna has a direct effect in accelerating the plasma downstream of the source. Also, the IVDF is affected by the cloud of neutrals from the initial gas puff, which keeps the plasma speed low at early times near the source.

  10. Ion energy characteristics downstream of a high power helicon

    Energy Technology Data Exchange (ETDEWEB)

    Prager, James; Winglee, Robert; Ziemba, Tim; Roberson, B Race; Quetin, Gregory [University of Washington, Johnson Hall 070, Box 351310, 4000 15th Avenue NE, Seattle, WA 98195-1310 (United States)], E-mail: jprager@u.washington.edu

    2008-05-01

    The High Power Helicon eXperiment operates at higher powers (37 kW) and lower background neutral pressure than other helicon experiments. The ion velocity distribution function (IVDF) has been measured at multiple locations downstream of the helicon source and a mach 3-6 flowing plasma was observed. The helicon antenna has a direct effect in accelerating the plasma downstream of the source. Also, the IVDF is affected by the cloud of neutrals from the initial gas puff, which keeps the plasma speed low at early times near the source.

  11. Self-Powered Implantable Skin-Like Glucometer for Real-Time Detection of Blood Glucose Level In Vivo

    Science.gov (United States)

    Zhang, Wanglinhan; Zhang, Linlin; Gao, Huiling; Yang, Wenyan; Wang, Shuai; Xing, Lili; Xue, Xinyu

    2018-06-01

    Implantable bioelectronics for analyzing physiological biomarkers has recently been recognized as a promising technique in medical treatment or diagnostics. In this study, we developed a self-powered implantable skin-like glucometer for real-time detection of blood glucose level in vivo. Based on the piezo-enzymatic-reaction coupling effect of GOx@ZnO nanowire, the device under an applied deformation can actively output piezoelectric signal containing the glucose-detecting information. No external electricity power source or battery is needed for this device, and the outputting piezoelectric voltage acts as both the biosensing signal and electricity power. A practical application of the skin-like glucometer implanted in mouse body for detecting blood glucose level has been simply demonstrated. These results provide a new technique path for diabetes prophylaxis and treatment.

  12. Static wormhole solution for higher-dimensional gravity in vacuum

    International Nuclear Information System (INIS)

    Dotti, Gustavo; Oliva, Julio; Troncoso, Ricardo

    2007-01-01

    A static wormhole solution for gravity in vacuum is found for odd dimensions greater than four. In five dimensions the gravitational theory considered is described by the Einstein-Gauss-Bonnet action where the coupling of the quadratic term is fixed in terms of the cosmological constant. In higher dimensions d=2n+1, the theory corresponds to a particular case of the Lovelock action containing higher powers of the curvature, so that in general, it can be written as a Chern-Simons form for the AdS group. The wormhole connects two asymptotically locally AdS spacetimes each with a geometry at the boundary locally given by RxS 1 xH d-3 . Gravity pulls towards a fixed hypersurface located at some arbitrary proper distance parallel to the neck. The causal structure shows that both asymptotic regions are connected by light signals in a finite time. The Euclidean continuation of the wormhole is smooth independently of the Euclidean time period, and it can be seen as instanton with vanishing Euclidean action. The mass can also be obtained from a surface integral and it is shown to vanish

  13. The reliability of linear position transducer, force plate and combined measurement of explosive power-time variables during a loaded jump squat in elite athletes.

    Science.gov (United States)

    Hansen, Keir T; Cronin, John B; Newton, Michael J

    2011-03-01

    The purpose of this study was to determine the between day reliability of power-time measures calculated with data collected using the linear position transducer or the force plate independently, or a combination of the two technologies. Twenty-five male rugby union players performed three jump squats on two occasions one week apart. Ground reaction forces were measured via a force plate and position data were collected using a linear position transducer. From these data, a number of power-time variables were calculated for each method. The force plate, linear position transducer and a combined method were all found to be a reliable means of measuring peak power (ICC = 0.87-0.95, CV = 3.4%-8.0%). The absolute consistency of power-time measures varied between methods (CV = 8.0%-53.4%). Relative consistency of power-time measures was generally comparable between methods and measures, and for many variables was at an acceptable level (ICC = 0.77-0.94). Although a number of time-dependent power variables can be reliably calculated from data acquired from the three methods investigated, the reliability of a number of these measures is below that which is acceptable for use in research and for practical applications.

  14. Modernization of turbines in nuclear power plants

    International Nuclear Information System (INIS)

    Harig, T.

    2005-01-01

    An ongoing goal in the power generation industry is to maximize the output of currently installed assets. This is most important at nuclear power plants due to the large capital investments that went into these plants and their base loaded service demands. Recent trends in the United States show a majority of nuclear plants are either obtaining, or are in the process of obtaining NRC approvals for operating license extensions and power uprates. This trend is evident in other countries as well. For example, all Swedish nuclear power plants are currently working on projects to extend their service life and maximize capacity through thermal uprate and turbine-generator upgrade with newest technology. The replacement of key components with improved ones is a means of optimizing the service life and availability of power plants. Economic advantages result from increased efficiency, higher output, shorter startup and shutdown times as well as reduced outage times and service costs. The rapid advances over recent years in the development of calculation programs enables adaptation of the latest blading technology to the special requirements imposed by steam turbine upgrading. This results in significant potential for generating additional output with the implementation of new technology, even without increased thermal power. In contrast to maintenance and investment in pure replacement or repair of a component with the primary goal of maintaining operability and reliability, the additional output gained by upgrading enables a return on investment to be reaped. (orig.)

  15. Power plants investment decision-making in consideration of investment risk

    International Nuclear Information System (INIS)

    Oda, Junichiro; Matsuhashi, Ryuji; Yoshida, Yoshikuni; Takashima, Ryuta

    2005-01-01

    In this paper, we consider the investment risk of nuclear power plants using the real options approach. It is essential that the Japanese society evaluate the investment risk, because nuclear power plants are facing definite uncertainty and Japanese governments intend to promote and assist nuclear power plants through subsidies and policy actions. We assumed that the wholesale market prices of electricity constitute the definite uncertainty and that the wholesale market prices follow the geometric Brownian motion with drift. Using the Bellman equation and a lattice framework, we evaluated the value of investment opportunity, the value of equipment, and the critical prices that are optimal prices to invest in a nuclear power plant in the finite time horizon. This analysis shows that higher volatility of the wholesale market prices would give power companies lower incentive to construct electric power plants, particularly capital-intensive power plants. In order to deliberate and hold the Japanese governments accountable for the economics of nuclear power plants, multifaceted evaluation is needed. (author)

  16. Fabrication of Very High Efficiency 5.8 GHz Power Amplifiers using AlGaN HFETs on SiC Substrates for Wireless Power Transmission

    Science.gov (United States)

    Sullivan, Gerry

    2001-01-01

    For wireless power transmission using microwave energy, very efficient conversion of the DC power into microwave power is extremely important. Class E amplifiers have the attractive feature that they can, in theory, be 100% efficient at converting, DC power to RF power. Aluminum gallium nitride (AlGaN) semiconductor material has many advantageous properties, relative to silicon (Si), gallium arsenide (GaAs), and silicon carbide (SiC), such as a much larger bandgap, and the ability to form AlGaN/GaN heterojunctions. The large bandgap of AlGaN also allows for device operation at higher temperatures than could be tolerated by a smaller bandgap transistor. This could reduce the cooling requirements. While it is unlikely that the AlGaN transistors in a 5.8 GHz class E amplifier can operate efficiently at temperatures in excess of 300 or 400 C, AlGaN based amplifiers could operate at temperatures that are higher than a GaAs or Si based amplifier could tolerate. Under this program, AlGaN microwave power HFETs have been fabricated and characterized. Hybrid class E amplifiers were designed and modeled. Unfortunately, within the time frame of this program, good quality HFETs were not available from either the RSC laboratories or commercially, and so the class E amplifiers were not constructed.

  17. The time is ripe to introduce nuclear power plants in Asia

    International Nuclear Information System (INIS)

    Machi, Sueo; Odera, Mitsutoshi; Ishii, Noriyuki; Nakasugi, Hideo; Mukaiyama, Takehiko; Nagasaki, Takao; Ake, Yutaka

    2010-01-01

    While the ambitious growth in nuclear power generation is expected in China and India, a number of countries in East and South Asia such as Vietnam and Indonesia are planning to construct new nuclear power plants to meet their increasing demands for electricity. In this feature article, eight experts described the state of introduction of nuclear power plants in such countries. These were titled as 'Trends of Deployment of Nuclear Energy in Asia-FNCA Ministerial Level Meeting', 'Vietnam- National Assembly Approval of Pre-feasibility Study and its Implementation', 'Present State of Nuclear Power Introduction in Indonesia-Awaiting the Decision of the President-', 'Present Status of Volcanic Hazard Assessment for Nuclear Facilities and Case of Bataan Nuclear Power Plant in Philippines', 'State of Nuclear Power Introduction in Thailand', 'Slow Start of Nuclear Power Introduction in Malaysia', 'Nuclear Energy Development in China in the View of Asian Market' and 'Is the Rollback in the Asian Market of Japan Group Possible?' It is highly expected Japan's high level of technology and safety with nuclear power generation would lead to promote international activities and cooperation of Japan group in the Asian Market. (T. Tanaka)

  18. Research on real-time simulation test for upgrades of digital I and C system in nuclear power plant

    International Nuclear Information System (INIS)

    Shi Ji; Jiang Mingyu; Ma Yunqin

    2005-01-01

    The developing trend that digital instrument and control (I and C) system will supplant traditional analog I and C system in nuclear power plant is emphasized. This paper introduces mathematical model of steam generator of full scope simulator for nuclear power plant. The independent real-time simulation system, which forms the interactive closed loop together with the steam generator control system, can be applied to provide a simulation target for upgrades of instrument and control system and the research of control schemes. At the same time, a simulation method for this purpose is presented in this paper. In this method all of the hardware and software are composed of real distributed control system except the model of controlled object. This will not only create favorable conditions for commissioning on site in the future, but also give a theoretical analysis for upgrades of digital I and C system in nuclear power plant. (authors)

  19. Uncertainty analysis of power monitoring transit time ultrasonic flow meters

    International Nuclear Information System (INIS)

    Orosz, A.; Miller, D. W.; Christensen, R. N.; Arndt, S.

    2006-01-01

    A general uncertainty analysis is applied to chordal, transit time ultrasonic flow meters that are used in nuclear power plant feedwater loops. This investigation focuses on relationships between the major parameters of the flow measurement. For this study, mass flow rate is divided into three components, profile factor, density, and a form of volumetric flow rate. All system parameters are used to calculate values for these three components. Uncertainty is analyzed using a perturbation method. Sensitivity coefficients for major system parameters are shown, and these coefficients are applicable to a range of ultrasonic flow meters used in similar applications. Also shown is the uncertainty to be expected for density along with its relationship to other system uncertainties. One other conclusion is that pipe diameter sensitivity coefficients may be a function of the calibration technique used. (authors)

  20. A Time-Varying Potential-Based Demand Response Method for Mitigating the Impacts of Wind Power Forecasting Errors

    Directory of Open Access Journals (Sweden)

    Jia Ning

    2017-11-01

    Full Text Available The uncertainty of wind power results in wind power forecasting errors (WPFE which lead to difficulties in formulating dispatching strategies to maintain the power balance. Demand response (DR is a promising tool to balance power by alleviating the impact of WPFE. This paper offers a control method of combining DR and automatic generation control (AGC units to smooth the system’s imbalance, considering the real-time DR potential (DRP and security constraints. A schematic diagram is proposed from the perspective of a dispatching center that manages smart appliances including air conditioner (AC, water heater (WH, electric vehicle (EV loads, and AGC units to maximize the wind accommodation. The presented model schedules the AC, WH, and EV loads without compromising the consumers’ comfort preferences. Meanwhile, the ramp constraint of generators and power flow transmission constraint are considered to guarantee the safety and stability of the power system. To demonstrate the performance of the proposed approach, simulations are performed in an IEEE 24-node system. The results indicate that considerable benefits can be realized by coordinating the DR and AGC units to mitigate the WPFE impacts.