Sum formula for SL2 over imaginary quadratic number fields
Lokvenec-Guleska, H.
2004-01-01
The subject of this thesis is generalization of the classical sum formula of Bruggeman and Kuznetsov to the upper half-space H3. The derivation of the preliminary sum formula involves computation of the inner product of two specially chosen Poincar´e series in two different ways: the spectral
Dickmann, M
2015-01-01
In this monograph the authors extend the classical algebraic theory of quadratic forms over fields to diagonal quadratic forms with invertible entries over broad classes of commutative, unitary rings where -1 is not a sum of squares and 2 is invertible. They accomplish this by: (1) Extending the classical notion of matrix isometry of forms to a suitable notion of T-isometry, where T is a preorder of the given ring, A, or T = A^2. (2) Introducing in this context three axioms expressing simple properties of (value) representation of elements of the ring by quadratic forms, well-known to hold in
Fay, Temple H.
2012-01-01
Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…
Polishchuk, Alexander
2005-01-01
Quadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, noncommutative geometry, K-theory, number theory, and noncommutative linear algebra. The book offers a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincar�-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes.
Time-Weighted Balanced Stochastic Model Reduction
DEFF Research Database (Denmark)
Tahavori, Maryamsadat; Shaker, Hamid Reza
2011-01-01
A new relative error model reduction technique for linear time invariant (LTI) systems is proposed in this paper. Both continuous and discrete time systems can be reduced within this framework. The proposed model reduction method is mainly based upon time-weighted balanced truncation and a recently...
Optimal Quadratic Programming Algorithms
Dostal, Zdenek
2009-01-01
Quadratic programming (QP) is one technique that allows for the optimization of a quadratic function in several variables in the presence of linear constraints. This title presents various algorithms for solving large QP problems. It is suitable as an introductory text on quadratic programming for graduate students and researchers
Withers, Christopher S.; Nadarajah, Saralees
2012-01-01
We show that there are exactly four quadratic polynomials, Q(x) = x [superscript 2] + ax + b, such that (x[superscript 2] + ax + b) (x[superscript 2] - ax + b) = (x[superscript 4] + ax[superscript 2] + b). For n = 1, 2, ..., these quadratic polynomials can be written as the product of N = 2[superscript n] quadratic polynomials in x[superscript…
Exact cancellation of quadratic divergences in top condensation models
International Nuclear Information System (INIS)
Blumhofer, A.
1995-01-01
We discuss the hierarchy problem and the corresponding quadratic divergences in the top mode Standard Model. Quadratic divergences appear at each order 1/N c since fermionic and bosonic contributions are of different order 1/N c . It is shown that the full dynamical system to all orders in 1/N c admits a solution, where the sum of all quadratic divergent contributions disappears. ((orig.))
Gravitation and quadratic forms
International Nuclear Information System (INIS)
Ananth, Sudarshan; Brink, Lars; Majumdar, Sucheta; Mali, Mahendra; Shah, Nabha
2017-01-01
The light-cone Hamiltonians describing both pure (N=0) Yang-Mills and N=4 super Yang-Mills may be expressed as quadratic forms. Here, we show that this feature extends to theories of gravity. We demonstrate how the Hamiltonians of both pure gravity and N=8 supergravity, in four dimensions, may be written as quadratic forms. We examine the effect of residual reparametrizations on the Hamiltonian and the resulting quadratic form.
Gravitation and quadratic forms
Energy Technology Data Exchange (ETDEWEB)
Ananth, Sudarshan [Indian Institute of Science Education and Research,Pune 411008 (India); Brink, Lars [Department of Physics, Chalmers University of Technology,S-41296 Göteborg (Sweden); Institute of Advanced Studies and Department of Physics & Applied Physics,Nanyang Technological University,Singapore 637371 (Singapore); Majumdar, Sucheta [Indian Institute of Science Education and Research,Pune 411008 (India); Mali, Mahendra [School of Physics, Indian Institute of Science Education and Research,Thiruvananthapuram, Trivandrum 695016 (India); Shah, Nabha [Indian Institute of Science Education and Research,Pune 411008 (India)
2017-03-31
The light-cone Hamiltonians describing both pure (N=0) Yang-Mills and N=4 super Yang-Mills may be expressed as quadratic forms. Here, we show that this feature extends to theories of gravity. We demonstrate how the Hamiltonians of both pure gravity and N=8 supergravity, in four dimensions, may be written as quadratic forms. We examine the effect of residual reparametrizations on the Hamiltonian and the resulting quadratic form.
Special cases of the quadratic shortest path problem
Sotirov, Renata; Hu, Hao
2017-01-01
The quadratic shortest path problem (QSPP) is the problem of finding a path with prespecified start vertex s and end vertex t in a digraph such that the sum of weights of arcs and the sum of interaction costs over all pairs of arcs on the path is minimized. We first consider a variant of the QSPP
International Nuclear Information System (INIS)
Jackson, A.D.; Weiss, C.; Wirzba, A.
1990-01-01
The Skyrme model has the same high density behavior as a free quark gas. However, the inclusion of higher-order terms spoils this agreement. We consider the all-order sum of a class of chiral invariant Lagrangians of even order in L μ suggested by Marleau. We prove Marleau's conjecture that these terms are of second order in the derivatives of the chiral angle for the hedgehog case and show the terms are unique under the additional condition that, for each order, the identity map on the 3-sphere S 3 (L) is a solution. The general form of the summation can be restricted by physical constraints leading to stable results. Under the assumption that the Lagrangian scales like the non-linear sigma model at low densities and like the free quark gas at high densities, we prove that a chiral phase transition must occur. (orig.)
Ellis, John; Sueiro, Maria
2014-01-01
Inflationary models based on a single scalar field $\\phi$ with a quadratic potential $V = \\frac{1}{2} m^2 \\phi^2$ are disfavoured by the recent Planck constraints on the scalar index, $n_s$, and the tensor-to-scalar ratio for cosmological density perturbations, $r_T$. In this paper we study how such a quadratic inflationary model can be rescued by postulating additional fields with quadratic potentials, such as might occur in sneutrino models, which might serve as either curvatons or supplementary inflatons. Introducing a second scalar field reduces but does not remove the pressure on quadratic inflation, but we find a sample of three-field models that are highly compatible with the Planck data on $n_s$ and $r_T$. We exhibit a specific three-sneutrino example that is also compatible with the data on neutrino mass difference and mixing angles.
Separable quadratic stochastic operators
International Nuclear Information System (INIS)
Rozikov, U.A.; Nazir, S.
2009-04-01
We consider quadratic stochastic operators, which are separable as a product of two linear operators. Depending on properties of these linear operators we classify the set of the separable quadratic stochastic operators: first class of constant operators, second class of linear and third class of nonlinear (separable) quadratic stochastic operators. Since the properties of operators from the first and second classes are well known, we mainly study the properties of the operators of the third class. We describe some Lyapunov functions of the operators and apply them to study ω-limit sets of the trajectories generated by the operators. We also compare our results with known results of the theory of quadratic operators and give some open problems. (author)
On Convex Quadratic Approximation
den Hertog, D.; de Klerk, E.; Roos, J.
2000-01-01
In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of
Alvarez-Gaume, Luis; Kounnas, Costas; Lust, Dieter; Riotto, Antonio
2016-01-01
We discuss quadratic gravity where terms quadratic in the curvature tensor are included in the action. After reviewing the corresponding field equations, we analyze in detail the physical propagating modes in some specific backgrounds. First we confirm that the pure $R^2$ theory is indeed ghost free. Then we point out that for flat backgrounds the pure $R^2$ theory propagates only a scalar massless mode and no spin-two tensor mode. However, the latter emerges either by expanding the theory around curved backgrounds like de Sitter or anti-de Sitter, or by changing the long-distance dynamics by introducing the standard Einstein term. In both cases, the theory is modified in the infrared and a propagating graviton is recovered. Hence we recognize a subtle interplay between the UV and IR properties of higher order gravity. We also calculate the corresponding Newton's law for general quadratic curvature theories. Finally, we discuss how quadratic actions may be obtained from a fundamental theory like string- or M-...
Fay, Temple H.
2010-01-01
Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…
Hidden conic quadratic representation of some nonconvex quadratic optimization problems
Ben-Tal, A.; den Hertog, D.
The problem of minimizing a quadratic objective function subject to one or two quadratic constraints is known to have a hidden convexity property, even when the quadratic forms are indefinite. The equivalent convex problem is a semidefinite one, and the equivalence is based on the celebrated
Binary classification posed as a quadratically constrained quadratic ...
Indian Academy of Sciences (India)
Binary classification is posed as a quadratically constrained quadratic problem and solved using the proposed method. Each class in the binary classification problem is modeled as a multidimensional ellipsoid to forma quadratic constraint in the problem. Particle swarms help in determining the optimal hyperplane or ...
Quadratic Diophantine equations
Andreescu, Titu
2015-01-01
This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems, and applications. Moreover, the exposition aptly demonstrates many applications of results and techniques from the study of Pell-type equations to other problems in number theory. The book is intended for advanced undergraduate and graduate students as well as researchers. It challenges the reader to apply not only specific techniques and strategies, but also to employ methods and tools from other areas of mathematics, such as algebra and analysis.
Indian Academy of Sciences (India)
V. Suresh University Of Hyderabad Hyderabad
2008-10-31
Oct 31, 2008 ... We say that (a1,··· ,an) is a zero of the polynomial f if f (a1,··· ,an) = 0. One of the main problems in Mathematics is to determine whether the given polynomial has a (non-trivial) zero or not. For example, let us recall the Fermat's last theorem: V. Suresh University Of Hyderabad Hyderabad. Isotropy of quadratic ...
Analysis of Quadratic Diophantine Equations with Fibonacci Number Solutions
Leyendekkers, J. V.; Shannon, A. G.
2004-01-01
An analysis is made of the role of Fibonacci numbers in some quadratic Diophantine equations. A general solution is obtained for finding factors in sums of Fibonacci numbers. Interpretation of the results is facilitated by the use of a modular ring which also permits extension of the analysis.
A perturbative solution for gravitational waves in quadratic gravity
International Nuclear Information System (INIS)
Neto, Edgard C de Rey; Aguiar, Odylio D; Araujo, Jose C N de
2003-01-01
We find a gravitational wave solution to the linearized version of quadratic gravity by adding successive perturbations to Einstein's linearized field equations. We show that only the Ricci-squared quadratic invariant contributes to give a different solution to those found in Einstein's general relativity. The perturbative solution is written as a power series in the β parameter, the coefficient of the Ricci-squared term in the quadratic gravitational action. We also show that, for monochromatic waves of a given angular frequency ω, the perturbative solution can be summed out to give an exact solution to the linearized version of quadratic gravity, for 0 1/2 . This result may lead to implications for the predictions for gravitational wave backgrounds of cosmological origin
A Finer Classification of the Unit Sum Number of the Ring of Integers ...
Indian Academy of Sciences (India)
Here we introduce a finer classification for the unit sum number of a ring and in this new classification we completely determine the unit sum number of the ring of integers of a quadratic field. Further we obtain some results on cubic complex fields which one can decide whether the unit sum number is or ∞. Then we ...
Quadratic spatial soliton interactions
Jankovic, Ladislav
Quadratic spatial soliton interactions were investigated in this Dissertation. The first part deals with characterizing the principal features of multi-soliton generation and soliton self-reflection. The second deals with two beam processes leading to soliton interactions and collisions. These subjects were investigated both theoretically and experimentally. The experiments were performed by using potassium niobate (KNBO 3) and periodically poled potassium titanyl phosphate (KTP) crystals. These particular crystals were desirable for these experiments because of their large nonlinear coefficients and, more importantly, because the experiments could be performed under non-critical-phase-matching (NCPM) conditions. The single soliton generation measurements, performed on KNBO3 by launching the fundamental component only, showed a broad angular acceptance bandwidth which was important for the soliton collisions performed later. Furthermore, at high input intensities multi-soliton generation was observed for the first time. The influence on the multi-soliton patterns generated of the input intensity and beam symmetry was investigated. The combined experimental and theoretical efforts indicated that spatial and temporal noise on the input laser beam induced multi-soliton patterns. Another research direction pursued was intensity dependent soliton routing by using of a specially engineered quadratically nonlinear interface within a periodically poled KTP sample. This was the first time demonstration of the self-reflection phenomenon in a system with a quadratic nonlinearity. The feature investigated is believed to have a great potential for soliton routing and manipulation by engineered structures. A detailed investigation was conducted on two soliton interaction and collision processes. Birth of an additional soliton resulting from a two soliton collision was observed and characterized for the special case of a non-planar geometry. A small amount of spiraling, up to 30
Large N saddle formulation of quadratic building block theories
International Nuclear Information System (INIS)
Halpern, M.B.
1980-01-01
I develop a large N saddle point formulation for the broad class of 'theories of quadratic building blocks'. Such theories are those on which the sums over internal indices are contained in quadratic building blocks, e.g. PHI 2 = Σsup(N)sub(a-1)PHi sup(a)sup(a). The formulation applies as well to fermions, derivative coupling and non-polynomial interactions. In a related development, closed Schwinger-Dyson equations for Green functions of the building blocks are derived and solved for large N. (orig.)
Quadratic soliton self-reflection at a quadratically nonlinear interface
Jankovic, Ladislav; Kim, Hongki; Stegeman, George; Carrasco, Silvia; Torner, Lluis; Katz, Mordechai
2003-11-01
The reflection of bulk quadratic solutions incident onto a quadratically nonlinear interface in periodically poled potassium titanyl phosphate was observed. The interface consisted of the boundary between two quasi-phase-matched regions displaced from each other by a half-period. At high intensities and small angles of incidence the soliton is reflected.
Alabdulmohsin, Ibrahim M.
2018-01-01
In this chapter, we extend the previous results of Chap. 2 to the more general case of composite finite sums. We describe what composite finite sums are and how their analysis can be reduced to the analysis of simple finite sums using the chain rule. We apply these techniques, next, on numerical integration and on some identities of Ramanujan.
Alabdulmohsin, Ibrahim M.
2018-03-07
In this chapter, we extend the previous results of Chap. 2 to the more general case of composite finite sums. We describe what composite finite sums are and how their analysis can be reduced to the analysis of simple finite sums using the chain rule. We apply these techniques, next, on numerical integration and on some identities of Ramanujan.
Quadratic brackets from symplectic forms
International Nuclear Information System (INIS)
Alekseev, Anton Yu.; Todorov, Ivan T.
1994-01-01
We give a physicist oriented survey of Poisson-Lie symmetries of classical systems. We consider finite-dimensional geometric actions and the chiral WZNW model as examples for the general construction. An essential point is the appearance of quadratic Poisson brackets for group-like variables. It is believed that upon quantization they lead to quadratic exchange algebras. ((orig.))
Students' Understanding of Quadratic Equations
López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael
2016-01-01
Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…
International Nuclear Information System (INIS)
Ita, B. I.; Ehi-Eromosele, C. O.; Edobor-Osoh, A.; Ikeuba, A. I.
2014-01-01
By using the Nikiforov-Uvarov (NU) method, the Schrödinger equation has been solved for the interaction of inversely quadratic Hellmann (IQHP) and inversely quadratic potential (IQP) for any angular momentum quantum number, l. The energy eigenvalues and their corresponding eigenfunctions have been obtained in terms of Laguerre polynomials. Special cases of the sum of these potentials have been considered and their energy eigenvalues also obtained
A Sequential Quadratically Constrained Quadratic Programming Method of Feasible Directions
International Nuclear Information System (INIS)
Jian Jinbao; Hu Qingjie; Tang Chunming; Zheng Haiyan
2007-01-01
In this paper, a sequential quadratically constrained quadratic programming method of feasible directions is proposed for the optimization problems with nonlinear inequality constraints. At each iteration of the proposed algorithm, a feasible direction of descent is obtained by solving only one subproblem which consist of a convex quadratic objective function and simple quadratic inequality constraints without the second derivatives of the functions of the discussed problems, and such a subproblem can be formulated as a second-order cone programming which can be solved by interior point methods. To overcome the Maratos effect, an efficient higher-order correction direction is obtained by only one explicit computation formula. The algorithm is proved to be globally convergent and superlinearly convergent under some mild conditions without the strict complementarity. Finally, some preliminary numerical results are reported
On Characterization of Quadratic Splines
DEFF Research Database (Denmark)
Chen, B. T.; Madsen, Kaj; Zhang, Shuzhong
2005-01-01
that the representation can be refined in a neighborhood of a non-degenerate point and a set of non-degenerate minimizers. Based on these characterizations, many existing algorithms for specific convex quadratic splines are also finite convergent for a general convex quadratic spline. Finally, we study the relationship...... between the convexity of a quadratic spline function and the monotonicity of the corresponding LCP problem. It is shown that, although both conditions lead to easy solvability of the problem, they are different in general....
Distance matrices and quadratic embedding of graphs
Directory of Open Access Journals (Sweden)
Nobuaki Obata
2018-04-01
Full Text Available A connected graph is said to be of QE class if it admits a quadratic embedding in a Hilbert space, or equivalently, if the distance matrix is conditionally negative definite. Several criteria for a graph to be of QE class are derived from the point of view of graph operations. For a quantitative criterion the QE constant is introduced and concrete examples are shown with explicit calculation. If the distance matrix admits a constant row sum, the QE constant coincides with the second largest eigenvalue of the distance matrix. The QE constants are determined for all graphs on $n$ vertices with $n\\le5$, among which two are not of QE class.
Polarization Nonlinear Optics of Quadratically Nonlinear Azopolymers
International Nuclear Information System (INIS)
Konorov, S.O.; Akimov, D.A.; Ivanov, A.A.; Petrov, A.N.; Alfimov, M.V.; Yakimanskii, A.V.; Smirnov, N.N.; Ivanova, V.N.; Kudryavtsev, V.V.; Podshivalov, A.A.; Sokolova, I.M.; Zheltikov, A.M.
2005-01-01
The polarization properties of second harmonic and sum-frequency signals generated by femtosecond laser pulses in films of polymers containing covalent groups of an azobenzothiazole chromophore polarized by an external electric field are investigated. It is shown that the methods of polarization nonlinear optics make it possible to determine the structure of oriented molecular dipoles and reveal important properties of the motion of collectivized πelectrons in organic molecules with strong optical nonlinearities. The polarization measurements show that the tensor of quadratic nonlinear optical susceptibility of chromophore fragments oriented by an external field in macromolecules of the noted azopolymers has a degenerate form. This is indicative of a predominantly one-dimensional character of motion of collectivized π electrons along an extended group of atoms in such molecules
Alabdulmohsin, Ibrahim M.
2018-03-07
We will begin our treatment of summability calculus by analyzing what will be referred to, throughout this book, as simple finite sums. Even though the results of this chapter are particular cases of the more general results presented in later chapters, they are important to start with for a few reasons. First, this chapter serves as an excellent introduction to what summability calculus can markedly accomplish. Second, simple finite sums are encountered more often and, hence, they deserve special treatment. Third, the results presented in this chapter for simple finite sums will, themselves, be used as building blocks for deriving the most general results in subsequent chapters. Among others, we establish that fractional finite sums are well-defined mathematical objects and show how various identities related to the Euler constant as well as the Riemann zeta function can actually be derived in an elementary manner using fractional finite sums.
Alabdulmohsin, Ibrahim M.
2018-01-01
We will begin our treatment of summability calculus by analyzing what will be referred to, throughout this book, as simple finite sums. Even though the results of this chapter are particular cases of the more general results presented in later chapters, they are important to start with for a few reasons. First, this chapter serves as an excellent introduction to what summability calculus can markedly accomplish. Second, simple finite sums are encountered more often and, hence, they deserve special treatment. Third, the results presented in this chapter for simple finite sums will, themselves, be used as building blocks for deriving the most general results in subsequent chapters. Among others, we establish that fractional finite sums are well-defined mathematical objects and show how various identities related to the Euler constant as well as the Riemann zeta function can actually be derived in an elementary manner using fractional finite sums.
International Nuclear Information System (INIS)
Arenhoevel, H.; Drechsel, D.; Weber, H.J.
1978-01-01
Generalized sum rules are derived by integrating the electromagnetic structure functions along lines of constant ratio of momentum and energy transfer. For non-relativistic systems these sum rules are related to the conventional photonuclear sum rules by a scaling transformation. The generalized sum rules are connected with the absorptive part of the forward scattering amplitude of virtual photons. The analytic structure of the scattering amplitudes and the possible existence of dispersion relations have been investigated in schematic relativistic and non-relativistic models. While for the non-relativistic case analyticity does not hold, the relativistic scattering amplitude is analytical for time-like (but not for space-like) photons and relations similar to the Gell-Mann-Goldberger-Thirring sum rule exist. (Auth.)
Yurinsky, Vadim Vladimirovich
1995-01-01
Surveys the methods currently applied to study sums of infinite-dimensional independent random vectors in situations where their distributions resemble Gaussian laws. Covers probabilities of large deviations, Chebyshev-type inequalities for seminorms of sums, a method of constructing Edgeworth-type expansions, estimates of characteristic functions for random vectors obtained by smooth mappings of infinite-dimensional sums to Euclidean spaces. A self-contained exposition of the modern research apparatus around CLT, the book is accessible to new graduate students, and can be a useful reference for researchers and teachers of the subject.
Stability in quadratic torsion theories
Energy Technology Data Exchange (ETDEWEB)
Vasilev, Teodor Borislavov; Cembranos, Jose A.R.; Gigante Valcarcel, Jorge; Martin-Moruno, Prado [Universidad Complutense de Madrid, Departamento de Fisica Teorica I, Madrid (Spain)
2017-11-15
We revisit the definition and some of the characteristics of quadratic theories of gravity with torsion. We start from a Lagrangian density quadratic in the curvature and torsion tensors. By assuming that General Relativity should be recovered when the torsion vanishes and investigating the behaviour of the vector and pseudo-vector torsion fields in the weak-gravity regime, we present a set of necessary conditions for the stability of these theories. Moreover, we explicitly obtain the gravitational field equations using the Palatini variational principle with the metricity condition implemented via a Lagrange multiplier. (orig.)
Stability in quadratic torsion theories
International Nuclear Information System (INIS)
Vasilev, Teodor Borislavov; Cembranos, Jose A.R.; Gigante Valcarcel, Jorge; Martin-Moruno, Prado
2017-01-01
We revisit the definition and some of the characteristics of quadratic theories of gravity with torsion. We start from a Lagrangian density quadratic in the curvature and torsion tensors. By assuming that General Relativity should be recovered when the torsion vanishes and investigating the behaviour of the vector and pseudo-vector torsion fields in the weak-gravity regime, we present a set of necessary conditions for the stability of these theories. Moreover, we explicitly obtain the gravitational field equations using the Palatini variational principle with the metricity condition implemented via a Lagrange multiplier. (orig.)
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Jørgensen, Allan Grønlund
2008-01-01
In an array of n numbers each of the \\binomn2+nUnknown control sequence '\\binom' contiguous subarrays define a sum. In this paper we focus on algorithms for selecting and reporting maximal sums from an array of numbers. First, we consider the problem of reporting k subarrays inducing the k largest...... sums among all subarrays of length at least l and at most u. For this problem we design an optimal O(n + k) time algorithm. Secondly, we consider the problem of selecting a subarray storing the k’th largest sum. For this problem we prove a time bound of Θ(n · max {1,log(k/n)}) by describing...... an algorithm with this running time and by proving a matching lower bound. Finally, we combine the ideas and obtain an O(n· max {1,log(k/n)}) time algorithm that selects a subarray storing the k’th largest sum among all subarrays of length at least l and at most u....
Quadratic prediction of factor scores
Wansbeek, T
1999-01-01
Factor scores are naturally predicted by means of their conditional expectation given the indicators y. Under normality this expectation is linear in y but in general it is an unknown function of y. II is discussed that under nonnormality factor scores can be more precisely predicted by a quadratic
On quadratic variation of martingales
Indian Academy of Sciences (India)
On quadratic variation of martingales. 459. The proof relied on the theory of stochastic integration. Subsequently, in Karandikar. [4], the formula was derived using only Doob's maximal inequality. Thus this could be the starting point for the development of stochastic calculus for continuous semimartingales without bringing in ...
Impurity solitons with quadratic nonlinearities
DEFF Research Database (Denmark)
Clausen, Carl A. Balslev; Torres, Juan P-; Torner, Lluis
1998-01-01
We fmd families of solitary waves mediated by parametric mixing in quadratic nonlinear media that are localized at point-defect impurities. Solitons localized at attractive impurities are found to be dynamically stable. It is shown that localization at the impurity modifies strongly the soliton...
Quadratic divergences and dimensional regularisation
International Nuclear Information System (INIS)
Jack, I.; Jones, D.R.T.
1990-01-01
We present a detailed analysis of quadratic and quartic divergences in dimensionally regulated renormalisable theories. We perform explicit three-loop calculations for a general theory of scalars and fermions. We find that the higher-order quartic divergences are related to the lower-order ones by the renormalisation group β-functions. (orig.)
Multiparty symmetric sum types
DEFF Research Database (Denmark)
Nielsen, Lasse; Yoshida, Nobuko; Honda, Kohei
2010-01-01
This paper introduces a new theory of multiparty session types based on symmetric sum types, by which we can type non-deterministic orchestration choice behaviours. While the original branching type in session types can represent a choice made by a single participant and accepted by others...... determining how the session proceeds, the symmetric sum type represents a choice made by agreement among all the participants of a session. Such behaviour can be found in many practical systems, including collaborative workflow in healthcare systems for clinical practice guidelines (CPGs). Processes...... with the symmetric sums can be embedded into the original branching types using conductor processes. We show that this type-driven embedding preserves typability, satisfies semantic soundness and completeness, and meets the encodability criteria adapted to the typed setting. The theory leads to an efficient...
DEFF Research Database (Denmark)
T. Frandsen, Mads; Masina, Isabella; Sannino, Francesco
2011-01-01
We introduce new sum rules allowing to determine universal properties of the unknown component of the cosmic rays and show how it can be used to predict the positron fraction at energies not yet explored by current experiments and to constrain specific models.......We introduce new sum rules allowing to determine universal properties of the unknown component of the cosmic rays and show how it can be used to predict the positron fraction at energies not yet explored by current experiments and to constrain specific models....
Quadratic third-order tensor optimization problem with quadratic constraints
Directory of Open Access Journals (Sweden)
Lixing Yang
2014-05-01
Full Text Available Quadratically constrained quadratic programs (QQPs problems play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Semidenite programming (SDP relaxations often provide good approximate solutions to these hard problems. For several special cases of QQP, e.g., convex programs and trust region subproblems, SDP relaxation provides the exact optimal value, i.e., there is a zero duality gap. However, this is not true for the general QQP, or even the QQP with two convex constraints, but a nonconvex objective.In this paper, we consider a certain QQP where the variable is neither vector nor matrix but a third-order tensor. This problem can be viewed as a generalization of the ordinary QQP with vector or matrix as it's variant. Under some mild conditions, we rst show that SDP relaxation provides exact optimal solutions for the original problem. Then we focus on two classes of homogeneous quadratic tensor programming problems which have no requirements on the constraints number. For one, we provide an easily implemental polynomial time algorithm to approximately solve the problem and discuss the approximation ratio. For the other, we show there is no gap between the SDP relaxation and itself.
Evaluation of the convolution sum involving the sum of divisors function for 22, 44 and 52
Directory of Open Access Journals (Sweden)
Ntienjem Ebénézer
2017-04-01
\\end{array} $ where αβ = 22, 44, 52, is evaluated for all natural numbers n. Modular forms are used to achieve these evaluations. Since the modular space of level 22 is contained in that of level 44, we almost completely use the basis elements of the modular space of level 44 to carry out the evaluation of the convolution sums for αβ = 22. We then use these convolution sums to determine formulae for the number of representations of a positive integer by the octonary quadratic forms a(x12+x22+x32+x42+b(x52+x62+x72+x82, $a\\,(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+b\\,(x_{5}^{2}+x_{6}^{2}+x_{7}^{2}+x_{8}^{2},$ where (a, b = (1, 11, (1, 13.
Exact solutions to quadratic gravity
Czech Academy of Sciences Publication Activity Database
Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.
2017-01-01
Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.084025
On Quadratic Variation of Martingales
Indian Academy of Sciences (India)
where D ( [ 0 , ∞ ) , R ) denotes the class of real valued r.c.l.l. functions on [ 0 , ∞ ) such that for a locally square integrable martingale ( M t ) with r.c.l.l. paths,. Ψ ( M . ( ) ) = A . ( ). gives the quadratic variation process (written usually as [ M , M ] t ) of ( M t ) . We also show that this process ( A t ) is the unique increasing ...
Exact solutions to quadratic gravity
Czech Academy of Sciences Publication Activity Database
Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.
2017-01-01
Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals. aps .org/prd/abstract/10.1103/PhysRevD.95.084025
Orthogonality preserving infinite dimensional quadratic stochastic operators
International Nuclear Information System (INIS)
Akın, Hasan; Mukhamedov, Farrukh
2015-01-01
In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators
Extending the Scope of Robust Quadratic Optimization
Marandi, Ahmadreza; Ben-Tal, A.; den Hertog, Dick; Melenberg, Bertrand
In this paper, we derive tractable reformulations of the robust counterparts of convex quadratic and conic quadratic constraints with concave uncertainties for a broad range of uncertainty sets. For quadratic constraints with convex uncertainty, it is well-known that the robust counterpart is, in
Uniform sparse bounds for discrete quadratic phase Hilbert transforms
Kesler, Robert; Arias, Darío Mena
2017-09-01
For each α \\in T consider the discrete quadratic phase Hilbert transform acting on finitely supported functions f : Z → C according to H^{α }f(n):= \\sum _{m ≠ 0} e^{iα m^2} f(n - m)/m. We prove that, uniformly in α \\in T , there is a sparse bound for the bilinear form for every pair of finitely supported functions f,g : Z→ C . The sparse bound implies several mapping properties such as weighted inequalities in an intersection of Muckenhoupt and reverse Hölder classes.
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available We show the existence of a solution for the double-barrier reflected BSDE when the barriers are completely separate and the generator is continuous with quadratic growth. As an application, we solve the risk-sensitive mixed zero-sum stochastic differential game. In addition we deal with recallable options under Knightian uncertainty.
African Journals Online (AJOL)
Tracie1
Résumé. L'activité traduisant est un processus très compliqué qui exige la connaissance extralinguistique chez le traducteur. Ce travail est basé sur la traduction littéraire. La traduction littéraire consistedes textes littéraires que comprennent la poésie, le théâtre, et la prose. La traduction littéraire a quelques problèmes ...
Coherent states for quadratic Hamiltonians
International Nuclear Information System (INIS)
Contreras-Astorga, Alonso; Fernandez C, David J; Velazquez, Mercedes
2011-01-01
The coherent states for a set of quadratic Hamiltonians in the trap regime are constructed. A matrix technique which allows us to directly identify the creation and annihilation operators will be presented. Then, the coherent states as simultaneous eigenstates of the annihilation operators will be derived, and will be compared with those attained through the displacement operator method. The corresponding wavefunction will be found, and a general procedure for obtaining several mean values involving the canonical operators in these states will be described. The results will be illustrated through the asymmetric Penning trap.
Quadratic Variation by Markov Chains
DEFF Research Database (Denmark)
Hansen, Peter Reinhard; Horel, Guillaume
We introduce a novel estimator of the quadratic variation that is based on the the- ory of Markov chains. The estimator is motivated by some general results concerning filtering contaminated semimartingales. Specifically, we show that filtering can in prin- ciple remove the effects of market...... microstructure noise in a general framework where little is assumed about the noise. For the practical implementation, we adopt the dis- crete Markov chain model that is well suited for the analysis of financial high-frequency prices. The Markov chain framework facilitates simple expressions and elegant analyti...
Factorization method of quadratic template
Kotyrba, Martin
2017-07-01
Multiplication of two numbers is a one-way function in mathematics. Any attempt to distribute the outcome to its roots is called factorization. There are many methods such as Fermat's factorization, Dixońs method or quadratic sieve and GNFS, which use sophisticated techniques fast factorization. All the above methods use the same basic formula differing only in its use. This article discusses a newly designed factorization method. Effective implementation of this method in programs is not important, it only represents and clearly defines its properties.
Optimal control linear quadratic methods
Anderson, Brian D O
2007-01-01
This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the
Alabdulmohsin, Ibrahim M.
2018-03-07
In this chapter, we use the theory of summability of divergent series, presented earlier in Chap. 4, to derive the analogs of the Euler-Maclaurin summation formula for oscillating sums. These formulas will, in turn, be used to perform many remarkable deeds with ease. For instance, they can be used to derive analytic expressions for summable divergent series, obtain asymptotic expressions of oscillating series, and even accelerate the convergence of series by several orders of magnitude. Moreover, we will prove the notable fact that, as far as the foundational rules of summability calculus are concerned, summable divergent series behave exactly as if they were convergent.
Alabdulmohsin, Ibrahim M.
2018-01-01
In this chapter, we use the theory of summability of divergent series, presented earlier in Chap. 4, to derive the analogs of the Euler-Maclaurin summation formula for oscillating sums. These formulas will, in turn, be used to perform many remarkable deeds with ease. For instance, they can be used to derive analytic expressions for summable divergent series, obtain asymptotic expressions of oscillating series, and even accelerate the convergence of series by several orders of magnitude. Moreover, we will prove the notable fact that, as far as the foundational rules of summability calculus are concerned, summable divergent series behave exactly as if they were convergent.
Darmann, Andreas; Nicosia, Gaia; Pferschy, Ulrich; Schauer, Joachim
2014-03-16
In this work we address a game theoretic variant of the Subset Sum problem, in which two decision makers (agents/players) compete for the usage of a common resource represented by a knapsack capacity. Each agent owns a set of integer weighted items and wants to maximize the total weight of its own items included in the knapsack. The solution is built as follows: Each agent, in turn, selects one of its items (not previously selected) and includes it in the knapsack if there is enough capacity. The process ends when the remaining capacity is too small for including any item left. We look at the problem from a single agent point of view and show that finding an optimal sequence of items to select is an [Formula: see text]-hard problem. Therefore we propose two natural heuristic strategies and analyze their worst-case performance when (1) the opponent is able to play optimally and (2) the opponent adopts a greedy strategy. From a centralized perspective we observe that some known results on the approximation of the classical Subset Sum can be effectively adapted to the multi-agent version of the problem.
Quadratic reactivity fuel cycle model
International Nuclear Information System (INIS)
Lewins, J.D.
1985-01-01
For educational purposes it is highly desirable to provide simple yet realistic models for fuel cycle and fuel economy. In particular, a lumped model without recourse to detailed spatial calculations would be very helpful in providing the student with a proper understanding of the purposes of fuel cycle calculations. A teaching model for fuel cycle studies based on a lumped model assuming the summability of partial reactivities with a linear dependence of reactivity usefully illustrates fuel utilization concepts. The linear burnup model does not satisfactorily represent natural enrichment reactors. A better model, showing the trend of initial plutonium production before subsequent fuel burnup and fission product generation, is a quadratic fit. The study of M-batch cycles, reloading 1/Mth of the core at end of cycle, is now complicated by nonlinear equations. A complete account of the asymptotic cycle for any order of M-batch refueling can be given and compared with the linear model. A complete account of the transient cycle can be obtained readily in the two-batch model and this exact solution would be useful in verifying numerical marching models. It is convenient to treat the parabolic fit rho = 1 - tau 2 as a special case of the general quadratic fit rho = 1 - C/sub tau/ - (1 - C)tau 2 in suitably normalized reactivity and cycle time units. The parabolic results are given in this paper
Counting Triangles to Sum Squares
DeMaio, Joe
2012-01-01
Counting complete subgraphs of three vertices in complete graphs, yields combinatorial arguments for identities for sums of squares of integers, odd integers, even integers and sums of the triangular numbers.
DeTemple, Duane
2010-01-01
Purely combinatorial proofs are given for the sum of squares formula, 1[superscript 2] + 2[superscript 2] + ... + n[superscript 2] = n(n + 1) (2n + 1) / 6, and the sum of sums of squares formula, 1[superscript 2] + (1[superscript 2] + 2[superscript 2]) + ... + (1[superscript 2] + 2[superscript 2] + ... + n[superscript 2]) = n(n + 1)[superscript 2]…
Dynamical invariants for variable quadratic Hamiltonians
International Nuclear Information System (INIS)
Suslov, Sergei K
2010-01-01
We consider linear and quadratic integrals of motion for general variable quadratic Hamiltonians. Fundamental relations between the eigenvalue problem for linear dynamical invariants and solutions of the corresponding Cauchy initial value problem for the time-dependent Schroedinger equation are emphasized. An eigenfunction expansion of the solution of the initial value problem is also found. A nonlinear superposition principle for generalized Ermakov systems is established as a result of decomposition of the general quadratic invariant in terms of the linear ones.
Quadratically convergent MCSCF scheme using Fock operators
International Nuclear Information System (INIS)
Das, G.
1981-01-01
A quadratically convergent formulation of the MCSCF method using Fock operators is presented. Among its advantages the present formulation is quadratically convergent unlike the earlier ones based on Fock operators. In contrast to other quadratically convergent schemes as well as the one based on generalized Brillouin's theorem, this method leads easily to a hybrid scheme where the weakly coupled orbitals (such as the core) are handled purely by Fock equations, while the rest of the orbitals are treated by a quadratically convergent approach with a truncated virtual space obtained by the use of the corresponding Fock equations
Geometrical and Graphical Solutions of Quadratic Equations.
Hornsby, E. John, Jr.
1990-01-01
Presented are several geometrical and graphical methods of solving quadratic equations. Discussed are Greek origins, Carlyle's method, von Staudt's method, fixed graph methods and imaginary solutions. (CW)
Multiobjective Optimization Involving Quadratic Functions
Directory of Open Access Journals (Sweden)
Oscar Brito Augusto
2014-01-01
Full Text Available Multiobjective optimization is nowadays a word of order in engineering projects. Although the idea involved is simple, the implementation of any procedure to solve a general problem is not an easy task. Evolutionary algorithms are widespread as a satisfactory technique to find a candidate set for the solution. Usually they supply a discrete picture of the Pareto front even if this front is continuous. In this paper we propose three methods for solving unconstrained multiobjective optimization problems involving quadratic functions. In the first, for biobjective optimization defined in the bidimensional space, a continuous Pareto set is found analytically. In the second, applicable to multiobjective optimization, a condition test is proposed to check if a point in the decision space is Pareto optimum or not and, in the third, with functions defined in n-dimensional space, a direct noniterative algorithm is proposed to find the Pareto set. Simple problems highlight the suitability of the proposed methods.
Quadratic Lagrangians and Legendre transformation
International Nuclear Information System (INIS)
Magnano, G.
1988-01-01
In recent years interest is grown about the so-called non-linear Lagrangians for gravitation. In particular, the quadratic lagrangians are currently believed to play a fundamental role both for quantum gravity and for the super-gravity approach. The higher order and high degree of non-linearity of these theories make very difficult to extract physical information out of them. The author discusses how the Legendre transformation can be applied to a wide class of non-linear theories: it corresponds to a conformal transformation whenever the Lagrangian depends only on the scalar curvature, while it has a more general form if the Lagrangian depends on the full Ricci tensor
Quadratic independence of coordinate functions of certain ...
Indian Academy of Sciences (India)
... are `quadratically independent' in the sense that they do not satisfy any nontrivial homogeneous quadratic relations among them. Using this, it is proved that there is no genuine compact quantum group which can act faithfully on C ( M ) such that the action leaves invariant the linear span of the above coordinate functions.
Sibling curves of quadratic polynomials | Wiggins | Quaestiones ...
African Journals Online (AJOL)
Sibling curves were demonstrated in [1, 2] as a novel way to visualize the zeroes of real valued functions. In [3] it was shown that a polynomial of degree n has n sibling curves. This paper focuses on the algebraic and geometric properites of the sibling curves of real and complex quadratic polynomials. Key words: Quadratic ...
An example in linear quadratic optimal control
Weiss, George; Zwart, Heiko J.
1998-01-01
We construct a simple example of a quadratic optimal control problem for an infinite-dimensional linear system based on a shift semigroup. This system has an unbounded control operator. The cost is quadratic in the input and the state, and the weighting operators are bounded. Despite its extreme
Quadratic Boost A-Source Impedance Network
DEFF Research Database (Denmark)
Siwakoti, Yam Prasad; Blaabjerg, Frede; Chub, Andrii
2016-01-01
A novel quadratic boost A-source impedance network is proposed to realize converters that demand very high voltage gain. To satisfy the requirement, the network uses an autotransformer where the obtained gain is quadratically dependent on the duty ratio and is unmatched by any existing impedance...
Social Security Administration — Staging Instance for all SUMs Counts related projects including: Redeterminations/Limited Issue, Continuing Disability Resolution, CDR Performance Measures, Initial...
Quadratic Hedging of Basis Risk
Directory of Open Access Journals (Sweden)
Hardy Hulley
2015-02-01
Full Text Available This paper examines a simple basis risk model based on correlated geometric Brownian motions. We apply quadratic criteria to minimize basis risk and hedge in an optimal manner. Initially, we derive the Föllmer–Schweizer decomposition for a European claim. This allows pricing and hedging under the minimal martingale measure, corresponding to the local risk-minimizing strategy. Furthermore, since the mean-variance tradeoff process is deterministic in our setup, the minimal martingale- and variance-optimal martingale measures coincide. Consequently, the mean-variance optimal strategy is easily constructed. Simple pricing and hedging formulae for put and call options are derived in terms of the Black–Scholes formula. Due to market incompleteness, these formulae depend on the drift parameters of the processes. By making a further equilibrium assumption, we derive an approximate hedging formula, which does not require knowledge of these parameters. The hedging strategies are tested using Monte Carlo experiments, and are compared with results achieved using a utility maximization approach.
Damanik, Asan
2018-03-01
Neutrino mass sum-rele is a very important research subject from theoretical side because neutrino oscillation experiment only gave us two squared-mass differences and three mixing angles. We review neutrino mass sum-rule in literature that have been reported by many authors and discuss its phenomenological implications.
Maua, Denis Deratani; Cozman, Fabio Gagli; Conaty, Diarmaid; de Campos, Cassio P.
2017-01-01
Sum-product networks are a relatively new and increasingly popular class of (precise) probabilistic graphical models that allow for marginal inference with polynomial effort. As with other probabilistic models, sum-product networks are often learned from data and used to perform classification.
Directory of Open Access Journals (Sweden)
Tanwiwat Jaikuna
2017-02-01
Full Text Available Purpose: To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL model. Material and methods : The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR, and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2 was calculated using biological effective dose (BED based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit. Results: Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT and 0.240, 0.320, and 0.849 for brachytherapy (BT in HR-CTV, bladder, and rectum, respectively. Conclusions : The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.
Moreno, Carlos J
2005-01-01
Introduction Prerequisites Outline of Chapters 2 - 8 Elementary Methods Introduction Some Lemmas Two Fundamental Identities Euler's Recurrence for Sigma(n)More Identities Sums of Two Squares Sums of Four Squares Still More Identities Sums of Three Squares An Alternate Method Sums of Polygonal Numbers Exercises Bernoulli Numbers Overview Definition of the Bernoulli Numbers The Euler-MacLaurin Sum Formula The Riemann Zeta Function Signs of Bernoulli Numbers Alternate The von Staudt-Clausen Theorem Congruences of Voronoi and Kummer Irregular Primes Fractional Parts of Bernoulli Numbers Exercises Examples of Modular Forms Introduction An Example of Jacobi and Smith An Example of Ramanujan and Mordell An Example of Wilton: t (n) Modulo 23 An Example of Hamburger Exercises Hecke's Theory of Modular FormsIntroduction Modular Group ? and its Subgroup ? 0 (N) Fundamental Domains For ? and ? 0 (N) Integral Modular Forms Modular Forms of Type Mk(? 0(N);chi) and Euler-Poincare series Hecke Operators Dirichlet Series and ...
Musthofa, M.W.; Salmah, S.; Engwerda, Jacob; Suparwanto, A.
This paper studies the robust optimal control problem for descriptor systems. We applied differential game theory to solve the disturbance attenuation problem. The robust control problem was converted into a reduced ordinary zero-sum game. Within a linear quadratic setting, we solved the problem for
Designing Camera Networks by Convex Quadratic Programming
Ghanem, Bernard; Wonka, Peter; Cao, Yuanhao
2015-01-01
be formulated mathematically as a convex binary quadratic program (BQP) under linear constraints. Moreover, we propose an optimization strategy with a favorable trade-off between speed and solution quality. Our solution
Schur Stability Regions for Complex Quadratic Polynomials
Cheng, Sui Sun; Huang, Shao Yuan
2010-01-01
Given a quadratic polynomial with complex coefficients, necessary and sufficient conditions are found in terms of the coefficients such that all its roots have absolute values less than 1. (Contains 3 figures.)
Quadratic Functionals with General Boundary Conditions
International Nuclear Information System (INIS)
Dosla, Z.; Dosly, O.
1997-01-01
The purpose of this paper is to give the Reid 'Roundabout Theorem' for quadratic functionals with general boundary conditions. In particular, we describe the so-called coupled point and regularity condition introduced in terms of Riccati equation solutions
Linear quadratic optimization for positive LTI system
Muhafzan, Yenti, Syafrida Wirma; Zulakmal
2017-05-01
Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.
Radiotherapy treatment planning linear-quadratic radiobiology
Chapman, J Donald
2015-01-01
Understand Quantitative Radiobiology from a Radiation Biophysics PerspectiveIn the field of radiobiology, the linear-quadratic (LQ) equation has become the standard for defining radiation-induced cell killing. Radiotherapy Treatment Planning: Linear-Quadratic Radiobiology describes tumor cell inactivation from a radiation physics perspective and offers appropriate LQ parameters for modeling tumor and normal tissue responses.Explore the Latest Cell Killing Numbers for Defining Iso-Effective Cancer TreatmentsThe book compil
Solitons in quadratic nonlinear photonic crystals
DEFF Research Database (Denmark)
Corney, Joel Frederick; Bang, Ole
2001-01-01
We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities, which can be defocusing, and we numerically find previously unknown soliton families....... Because of these induced cubic terms, solitons still exist even when the effective quadratic nonlinearity vanishes and conventional theory predicts that there can be no soliton. We demonstrate that both bright and dark forms of these solitons can propagate stably....
Proximinality in generalized direct sums
Directory of Open Access Journals (Sweden)
Darapaneni Narayana
2004-01-01
Full Text Available We consider proximinality and transitivity of proximinality for subspaces of finite codimension in generalized direct sums of Banach spaces. We give several examples of Banach spaces where proximinality is transitive among subspaces of finite codimension.
'Sum rules' for preequilibrium reactions
International Nuclear Information System (INIS)
Hussein, M.S.
1981-03-01
Evidence that suggests a correct relationship between the optical transmission matrix, P, and the several correlation widths, gamma sub(n), found in nsmission matrix, P, and the several correlation widths, n, found in multistep compound (preequilibrium) nuclear reactions, is presented. A second sum rule is also derived within the shell model approach to nuclear reactions. Indications of the potential usefulness of the sum rules in preequilibrium studies are given. (Author) [pt
Sum rules in classical scattering
International Nuclear Information System (INIS)
Bolle, D.; Osborn, T.A.
1981-01-01
This paper derives sum rules associated with the classical scattering of two particles. These sum rules are the analogs of Levinson's theorem in quantum mechanics which provides a relationship between the number of bound-state wavefunctions and the energy integral of the time delay of the scattering process. The associated classical relation is an identity involving classical time delay and an integral over the classical bound-state density. We show that equalities between the Nth-order energy moment of the classical time delay and the Nth-order energy moment of the classical bound-state density hold in both a local and a global form. Local sum rules involve the time delay defined on a finite but otherwise arbitrary coordinate space volume S and the bound-state density associated with this same region. Global sum rules are those that obtain when S is the whole coordinate space. Both the local and global sum rules are derived for potentials of arbitrary shape and for scattering in any space dimension. Finally the set of classical sum rules, together with the known quantum mechanical analogs, are shown to provide a unified method of obtaining the high-temperature expansion of the classical, respectively the quantum-mechanical, virial coefficients
Small sum privacy and large sum utility in data publishing.
Fu, Ada Wai-Chee; Wang, Ke; Wong, Raymond Chi-Wing; Wang, Jia; Jiang, Minhao
2014-08-01
While the study of privacy preserving data publishing has drawn a lot of interest, some recent work has shown that existing mechanisms do not limit all inferences about individuals. This paper is a positive note in response to this finding. We point out that not all inference attacks should be countered, in contrast to all existing works known to us, and based on this we propose a model called SPLU. This model protects sensitive information, by which we refer to answers for aggregate queries with small sums, while queries with large sums are answered with higher accuracy. Using SPLU, we introduce a sanitization algorithm to protect data while maintaining high data utility for queries with large sums. Empirical results show that our method behaves as desired. Copyright © 2014 Elsevier Inc. All rights reserved.
Linear-quadratic control and quadratic differential forms for multidimensional behaviors
Napp, D.; Trentelman, H.L.
2011-01-01
This paper deals with systems described by constant coefficient linear partial differential equations (nD-systems) from a behavioral point of view. In this context we treat the linear-quadratic control problem where the performance functional is the integral of a quadratic differential form. We look
DEFF Research Database (Denmark)
Mak, Vicky; Thomadsen, Tommy
2006-01-01
This paper considers the cardinality constrained quadratic knapsack problem (QKP) and the quadratic selective travelling salesman problem (QSTSP). The QKP is a generalization of the knapsack problem and the QSTSP is a generalization of the travelling salesman problem. Thus, both problems are NP...
Sum rules for collisional processes
International Nuclear Information System (INIS)
Oreg, J.; Goldstein, W.H.; Bar-Shalom, A.; Klapisch, M.
1991-01-01
We derive level-to-configuration sum rules for dielectronic capture and for collisional excitation and ionization. These sum rules give the total transition rate from a detailed atomic level to an atomic configuration. For each process, we show that it is possible to factor out the dependence on continuum-electron wave functions. The remaining explicit level dependence of each rate is then obtained from the matrix element of an effective operator acting on the bound orbitals only. In a large class of cases, the effective operator reduces to a one-electron monopole whose matrix element is proportional to the statistical weight of the level. We show that even in these cases, nonstatistical level dependence enters through the dependence of radial integrals on continuum orbitals. For each process, explicit analytic expressions for the level-to-configuration sum rules are given for all possible cases. Together with the well-known J-file sum rule for radiative rates [E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (University Press, Cambridge, 1935)], the sum rules offer a systematic and efficient procedure for collapsing high-multiplicity configurations into ''effective'' levels for the purpose of modeling the population kinetics of ionized heavy atoms in plasma
Guises and disguises of quadratic divergences
Energy Technology Data Exchange (ETDEWEB)
Cherchiglia, A.L., E-mail: adriano@fisica.ufmg.br [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P.O. BOX 702, 30.161-970, Belo Horizonte, MG (Brazil); Vieira, A.R., E-mail: arvieira@fisica.ufmg.br [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P.O. BOX 702, 30.161-970, Belo Horizonte, MG (Brazil); Hiller, Brigitte, E-mail: brigitte@teor.fis.uc.pt [Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Baêta Scarpelli, A.P., E-mail: scarpelli.apbs@dpf.gov.br [Setor Técnico-Científico, Departamento de Polícia Federal, Rua Hugo D’Antola, 95 - Lapa, São Paulo (Brazil); Sampaio, Marcos, E-mail: marcos.sampaio@durham.ac.uk [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P.O. BOX 702, 30.161-970, Belo Horizonte, MG (Brazil); Centre for Particle Theory, Department of Mathematical Sciences, Durham University, South Road Durham DH1 3LE (United Kingdom)
2014-12-15
In this contribution, we present a new perspective on the control of quadratic divergences in quantum field theory, in general, and in the Higgs naturalness problem, in particular. Our discussion is essentially based on an approach where UV divergences are parameterized, after being reduced to basic divergent integrals (BDI) in one internal momentum, as functions of a cutoff and a renormalization group scale λ. We illustrate our proposal with well-known examples, such as the gluon vacuum self energy of QCD and the Higgs decay in two photons within this approach. We also discuss frameworks in effective low-energy QCD models, where quadratic divergences are indeed fundamental.
Indirect quantum tomography of quadratic Hamiltonians
Energy Technology Data Exchange (ETDEWEB)
Burgarth, Daniel [Institute for Mathematical Sciences, Imperial College London, London SW7 2PG (United Kingdom); Maruyama, Koji; Nori, Franco, E-mail: daniel@burgarth.de, E-mail: kmaruyama@riken.jp [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan)
2011-01-15
A number of many-body problems can be formulated using Hamiltonians that are quadratic in the creation and annihilation operators. Here, we show how such quadratic Hamiltonians can be efficiently estimated indirectly, employing very few resources. We found that almost all the properties of the Hamiltonian are determined by its surface and that these properties can be measured even if the system can only be initialized to a mixed state. Therefore, our method can be applied to various physical models, with important examples including coupled nano-mechanical oscillators, hopping fermions in optical lattices and transverse Ising chains.
Nonlinear dynamics of quadratically cubic systems
International Nuclear Information System (INIS)
Rudenko, O V
2013-01-01
We propose a modified form of the well-known nonlinear dynamic equations with quadratic relations used to model a cubic nonlinearity. We show that such quadratically cubic equations sometimes allow exact solutions and sometimes make the original problem easier to analyze qualitatively. Occasionally, exact solutions provide a useful tool for studying new phenomena. Examples considered include nonlinear ordinary differential equations and Hopf, Burgers, Korteweg–de Vries, and nonlinear Schrödinger partial differential equations. Some problems are solved exactly in the space–time and spectral representations. Unsolved problems potentially solvable by the proposed approach are listed. (methodological notes)
PSQP: Puzzle Solving by Quadratic Programming.
Andalo, Fernanda A; Taubin, Gabriel; Goldenstein, Siome
2017-02-01
In this article we present the first effective method based on global optimization for the reconstruction of image puzzles comprising rectangle pieces-Puzzle Solving by Quadratic Programming (PSQP). The proposed novel mathematical formulation reduces the problem to the maximization of a constrained quadratic function, which is solved via a gradient ascent approach. The proposed method is deterministic and can deal with arbitrary identical rectangular pieces. We provide experimental results showing its effectiveness when compared to state-of-the-art approaches. Although the method was developed to solve image puzzles, we also show how to apply it to the reconstruction of simulated strip-shredded documents, broadening its applicability.
Cascaded Quadratic Soliton Compression in Waveguide Structures
DEFF Research Database (Denmark)
Guo, Hairun
between the Kerr nonlinear effects and the dispersive effects in the medium. A Kerr-like nonlinearity is produced through the cascaded phase mismatched quadratic process, e.g. the second harmonic generation process, which can be flexibly tuned in both the sign and the amplitude, making possible a strong......-phase-matching technology is not necessarily needed. In large-RI-changed waveguides, CQSC is extended to the mid-infrared range to generate single-cycle pulses with purely nonlinear interactions, since an all-normal dispersion profile could be achieved within the guidance band. We believe that CQSC in quadratic waveguides...
On orthogonality preserving quadratic stochastic operators
Energy Technology Data Exchange (ETDEWEB)
Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd [Department of Computational and Theoretical Sciences, Faculty of Science International Islamic University Malaysia, P.O. Box 141, 25710 Kuantan, Pahang Malaysia (Malaysia)
2015-05-15
A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too.
Bound constrained quadratic programming via piecewise
DEFF Research Database (Denmark)
Madsen, Kaj; Nielsen, Hans Bruun; Pinar, M. C.
1999-01-01
of a symmetric, positive definite matrix, and is solved by Newton iteration with line search. The paper describes the algorithm and its implementation including estimation of lambda/sub 1/ , how to get a good starting point for the iteration, and up- and downdating of Cholesky factorization. Results of extensive......We consider the strictly convex quadratic programming problem with bounded variables. A dual problem is derived using Lagrange duality. The dual problem is the minimization of an unconstrained, piecewise quadratic function. It involves a lower bound of lambda/sub 1/ , the smallest eigenvalue...
On orthogonality preserving quadratic stochastic operators
International Nuclear Information System (INIS)
Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd
2015-01-01
A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too
Eigenfunctions of quadratic hamiltonians in Wigner representation
International Nuclear Information System (INIS)
Akhundova, Eh.A.; Dodonov, V.V.; Man'ko, V.I.
1984-01-01
Exact solutions of the Schroedinger equation in Wigner representation are obtained for an arbitrary non-stationary N-dimensional quadratic Hamiltonian. It is shown that the complete system of the solutions can always be chosen in the form of the products of Laguerre polynomials, the arguments of which are the quadratic integrals of motion of the corresponding classical problem. The generating function is found for the transition probabilities between Fock states which represent a many-dimensional generatization of a well-known Husimi formula for the oscillator of variable frequency. As an example, the motion of a charged particle in an uniform alternate electromagnetic field is considered in detail
Engineering quadratic nonlinear photonic crystals for frequency conversion of lasers
Chen, Baoqin; Hong, Lihong; Hu, Chenyang; Zhang, Chao; Liu, Rongjuan; Li, Zhiyuan
2018-03-01
Nonlinear frequency conversion offers an effective way to extend the laser wavelength range. Quadratic nonlinear photonic crystals (NPCs) are artificial materials composed of domain-inversion structures whose sign of nonlinear coefficients are modulated with desire to implement quasi-phase matching (QPM) required for nonlinear frequency conversion. These structures can offer various reciprocal lattice vectors (RLVs) to compensate the phase-mismatching during the quadratic nonlinear optical processes, including second-harmonic generation (SHG), sum-frequency generation and the cascaded third-harmonic generation (THG). The modulation pattern of the nonlinear coefficients is flexible, which can be one-dimensional or two-dimensional (2D), be periodic, quasi-periodic, aperiodic, chirped, or super-periodic. As a result, these NPCs offer very flexible QPM scheme to satisfy various nonlinear optics and laser frequency conversion problems via design of the modulation patterns and RLV spectra. In particular, we introduce the electric poling technique for fabricating QPM structures, a simple effective nonlinear coefficient model for efficiently and precisely evaluating the performance of QPM structures, the concept of super-QPM and super-periodically poled lithium niobate for finely tuning nonlinear optical interactions, the design of 2D ellipse QPM NPC structures enabling continuous tunability of SHG in a broad bandwidth by simply changing the transport direction of pump light, and chirped QPM structures that exhibit broadband RLVs and allow for simultaneous radiation of broadband SHG, THG, HHG and thus coherent white laser from a single crystal. All these technical, theoretical, and physical studies on QPM NPCs can help to gain a deeper insight on the mechanisms, approaches, and routes for flexibly controlling the interaction of lasers with various QPM NPCs for high-efficiency frequency conversion and creation of novel lasers.
Polarizability sum rules in QED
International Nuclear Information System (INIS)
Llanta, E.; Tarrach, R.
1978-01-01
The well founded total photoproduction and the, assumed subtraction free, longitudinal photoproduction polarizability sum rules are checked in QED at the lowest non-trivial order. The first one is shown to hold, whereas the second one turns out to need a subtraction, which makes its usefulness for determining the electromagnetic polarizabilities of the nucleons quite doubtful. (Auth.)
International Nuclear Information System (INIS)
Frandsen, Mads T.; Masina, Isabella; Sannino, Francesco
2011-01-01
We introduce new sum rules allowing to determine universal properties of the unknown component of the cosmic rays; we show how they can be used to predict the positron fraction at energies not yet explored by current experiments, and to constrain specific models.
Sum rules for neutrino oscillations
International Nuclear Information System (INIS)
Kobzarev, I.Yu.; Martemyanov, B.V.; Okun, L.B.; Schepkin, M.G.
1981-01-01
Sum rules for neutrino oscillations are obtained. The derivation of the general form of the s matrix for two stage process lsub(i)sup(-)→ν→lsub(k)sup(+-) (where lsub(i)sup(-)e, μ, tau, ... are initial leptons with flavor i and lsub(k)sup(+-) is final lepton) is presented. The consideration of two stage process lsub(i)sup(-)→ν→lsub(k)sup(+-) gives the possibility to take into account neutrino masses and to obtain the expressions for the oscillating cross sections. In the case of Dirac and left-handed Majorana neutrino is obtained the sum rule for the quantities 1/Vsub(K)σ(lsub(i)sup(-)→lsub(K)sup(+-)), (where Vsub(K) is a velocity of lsub(K)). In the left-handed Majorana neutrino case there is an additional antineutrino admixture leading to lsub(i)sup(-)→lsub(K)sup(+) process. Both components (neutrino and antineutrino) oscillate independently. The sums Σsub(K)1/Vsub(k)σ(lsub(i)sup(-) - lsub(K)sup(+-) then oscillate due to the presence of left-handed antineutrinos and right-handed neutrinos which do not take part in weak interactions. If right-handed currents are added sum rules analogous to considered above may be obtained. All conclusions are valid in the general case when CP is not conserved [ru
Sums of Generalized Harmonic Series
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 9. Sums of Generalized Harmonic Series: For Kids from Five to Fifteen. Zurab Silagadze. General Article Volume 20 Issue 9 September 2015 pp 822-843. Fulltext. Click here to view fulltext PDF. Permanent link:
Quadratic mass relations in topological bootstrap theory
International Nuclear Information System (INIS)
Jones, C.E.; Uschersohn, J.
1980-01-01
From the requirement of reality of discontinuities of scattering amplitudes at the spherical level of the topological bootstrap theory, a large number of mass relations for hadrons is derived. Quadratic mass formulas for the symmetry-breaking pattern of both mesons and baryon is obtained and their relation to conventional models of symmetry breaking is briefly discussed
STABILIZED SEQUENTIAL QUADRATIC PROGRAMMING: A SURVEY
Directory of Open Access Journals (Sweden)
Damián Fernández
2014-12-01
Full Text Available We review the motivation for, the current state-of-the-art in convergence results, and some open questions concerning the stabilized version of the sequential quadratic programming algorithm for constrained optimization. We also discuss the tools required for its local convergence analysis, globalization challenges, and extentions of the method to the more general variational problems.
The Quadratic Selective Travelling Salesman Problem
DEFF Research Database (Denmark)
Thomadsen, Tommy; Stidsen, Thomas K.
2003-01-01
A well-known extension of the Travelling Salesman Problem (TSP) is the Selective TSP (STSP): Each node has an associated profit and instead of visiting all nodes, the most profitable set of nodes, taking into account the tour cost, is visited. The Quadratic STSP (QSTSP) adds the additional...
orthogonal and scaling transformations of quadratic functions
African Journals Online (AJOL)
Preferred Customer
functions of sub-problems of various nonlinear programming problems that employ methods such as sequential quadratic programming and trust-region methods (Sorensen, 1982; Eldersveld,. 1991; Nocedal and Wright, 1999). Various problems in Algebra, Functional Analysis,. Analytic Geometry and Computational Mathe-.
Fundamental quadratic variational principle underlying general relativity
International Nuclear Information System (INIS)
Atkins, W.K.
1983-01-01
The fundamental result of Lanczos is used in a new type of quadratic variational principle whose field equations are the Einstein field equations together with the Yang-Mills type equations for the Riemann curvature. Additionally, a spin-2 theory of gravity for the special case of the Einstein vacuum is discussed
Investigating Students' Mathematical Difficulties with Quadratic Equations
O'Connor, Bronwyn Reid; Norton, Stephen
2016-01-01
This paper examines the factors that hinder students' success in working with and understanding the mathematics of quadratic equations using a case study analysis of student error patterns. Twenty-five Year 11 students were administered a written test to examine their understanding of concepts and procedures associated with this topic. The…
Commuting quantum traces for quadratic algebras
International Nuclear Information System (INIS)
Nagy, Zoltan; Avan, Jean; Doikou, Anastasia; Rollet, Genevieve
2005-01-01
Consistent tensor products on auxiliary spaces, hereafter denoted 'fusion procedures', and commuting transfer matrices are defined for general quadratic algebras, nondynamical and dynamical, inspired by results on reflection algebras. Applications of these procedures then yield integer-indexed families of commuting Hamiltonians
Optimality Conditions for Fuzzy Number Quadratic Programming with Fuzzy Coefficients
Directory of Open Access Journals (Sweden)
Xue-Gang Zhou
2014-01-01
Full Text Available The purpose of the present paper is to investigate optimality conditions and duality theory in fuzzy number quadratic programming (FNQP in which the objective function is fuzzy quadratic function with fuzzy number coefficients and the constraint set is fuzzy linear functions with fuzzy number coefficients. Firstly, the equivalent quadratic programming of FNQP is presented by utilizing a linear ranking function and the dual of fuzzy number quadratic programming primal problems is introduced. Secondly, we present optimality conditions for fuzzy number quadratic programming. We then prove several duality results for fuzzy number quadratic programming problems with fuzzy coefficients.
Relative Error Model Reduction via Time-Weighted Balanced Stochastic Singular Perturbation
DEFF Research Database (Denmark)
Tahavori, Maryamsadat; Shaker, Hamid Reza
2012-01-01
A new mixed method for relative error model reduction of linear time invariant (LTI) systems is proposed in this paper. This order reduction technique is mainly based upon time-weighted balanced stochastic model reduction method and singular perturbation model reduction technique. Compared...... by using the concept and properties of the reciprocal systems. The results are further illustrated by two practical numerical examples: a model of CD player and a model of the atmospheric storm track....
African Journals Online (AJOL)
ISONIC
Résumé. Cardisoma armatum, est une espèce de crabe de terre rencontrée en Afrique de l'ouest en particulier en ... optique suite au traitement histologique ont permis la mise en évidence de quelques critères d'identification de l'espèce et ...... En Côte d'Ivoire il n'est pas rare de voir durant les saisons propices. Cardisoma ...
Directory of Open Access Journals (Sweden)
m. s. osman
2017-09-01
Full Text Available In this paper, we consider fuzzy goal programming (FGP approach for solving multi-level multi-objective quadratic fractional programming (ML-MOQFP problem with fuzzy parameters in the constraints. Firstly, the concept of the ?-cut approach is applied to transform the set of fuzzy constraints into a common deterministic one. Then, the quadratic fractional objective functions in each level are transformed into quadratic objective functions based on a proposed transformation. Secondly, the FGP approach is utilized to obtain a compromise solution for the ML-MOQFP problem by minimizing the sum of the negative deviational variables. Finally, an illustrative numerical example is given to demonstrate the applicability and performance of the proposed approach.
Geometric Approaches to Quadratic Equations from Other Times and Places.
Allaire, Patricia R.; Bradley, Robert E.
2001-01-01
Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)
Coherent states of systems with quadratic Hamiltonians
Energy Technology Data Exchange (ETDEWEB)
Bagrov, V.G., E-mail: bagrov@phys.tsu.ru [Department of Physics, Tomsk State University, Tomsk (Russian Federation); Gitman, D.M., E-mail: gitman@if.usp.br [Tomsk State University, Tomsk (Russian Federation); Pereira, A.S., E-mail: albertoufcg@hotmail.com [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica
2015-06-15
Different families of generalized coherent states (CS) for one-dimensional systems with general time-dependent quadratic Hamiltonian are constructed. In principle, all known CS of systems with quadratic Hamiltonian are members of these families. Some of the constructed generalized CS are close enough to the well-known due to Schroedinger and Glauber CS of a harmonic oscillator; we call them simply CS. However, even among these CS, there exist different families of complete sets of CS. These families differ by values of standard deviations at the initial time instant. According to the values of these initial standard deviations, one can identify some of the families with semiclassical CS. We discuss properties of the constructed CS, in particular, completeness relations, minimization of uncertainty relations and so on. As a unknown application of the general construction, we consider different CS of an oscillator with a time dependent frequency. (author)
Coherent states of systems with quadratic Hamiltonians
International Nuclear Information System (INIS)
Bagrov, V.G.; Gitman, D.M.; Pereira, A.S.
2015-01-01
Different families of generalized coherent states (CS) for one-dimensional systems with general time-dependent quadratic Hamiltonian are constructed. In principle, all known CS of systems with quadratic Hamiltonian are members of these families. Some of the constructed generalized CS are close enough to the well-known due to Schroedinger and Glauber CS of a harmonic oscillator; we call them simply CS. However, even among these CS, there exist different families of complete sets of CS. These families differ by values of standard deviations at the initial time instant. According to the values of these initial standard deviations, one can identify some of the families with semiclassical CS. We discuss properties of the constructed CS, in particular, completeness relations, minimization of uncertainty relations and so on. As a unknown application of the general construction, we consider different CS of an oscillator with a time dependent frequency. (author)
On quadratic residue codes and hyperelliptic curves
Directory of Open Access Journals (Sweden)
David Joyner
2008-01-01
Full Text Available For an odd prime p and each non-empty subset S⊂GF(p, consider the hyperelliptic curve X S defined by y 2 =f S (x, where f S (x = ∏ a∈S (x-a. Using a connection between binary quadratic residue codes and hyperelliptic curves over GF(p, this paper investigates how coding theory bounds give rise to bounds such as the following example: for all sufficiently large primes p there exists a subset S⊂GF(p for which the bound |X S (GF(p| > 1.39p holds. We also use the quasi-quadratic residue codes defined below to construct an example of a formally self-dual optimal code whose zeta function does not satisfy the ``Riemann hypothesis.''
Quaternion orders, quadratic forms, and Shimura curves
Alsina, Montserrat
2004-01-01
Shimura curves are a far-reaching generalization of the classical modular curves. They lie at the crossroads of many areas, including complex analysis, hyperbolic geometry, algebraic geometry, algebra, and arithmetic. The text provides an introduction to the subject from a theoretic and algorithmic perspective. The main topics covered in it are Shimura curves defined over the rational number field, the construction of their fundamental domains, and the determination of their complex multiplication points. The study of complex multiplication points in Shimura curves leads to the study of families of binary quadratic forms with algebraic coefficients and to their classification by arithmetic Fuchsian groups. In this regard, the authors develop a theory full of new possibilities which parallels Gauss' theory on the classification of binary quadratic forms with integral coefficients by the action of the modular group. Each topic covered in the book begins with a theoretical discussion followed by carefully worked...
Quadratic hamiltonians and relativistic quantum mechanics
International Nuclear Information System (INIS)
Razumov, A.V.; Solov'ev, V.O.; Taranov, A.Yu.
1981-01-01
For the case of a charged scalar field described by a quadratic hamiltonian the equivalent relativistic quantum mechanics is constructed in one-particle sector. Complete investigation of a charged relativistic particle motion in the Coulomb field is carried out. Subcritical as well as supercritical cases are considered. In the course of investigation of the charged scalar particle in the Coulomb field the diagonalization of the quadratic hamiltonian describing the charged scalar quantized field interaction with the external Coulomb field has taken place. Mathematically this problem is bound to the construction of self-conjugated expansions of the symmetric operator. The construction of such expansion is necessary at any small external field magnitude [ru
Lambda-lifting in Quadratic Time
DEFF Research Database (Denmark)
Danvy, O.; Schultz, U.P.
2004-01-01
-lifting transforms a block-structured program into a set of recursive equations, one for each local function in the source program. Each equation carries extra parameters to account for the free variables of the corresponding local function and of all its callees. It is the search for these extra parameters......Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...
Quadratic Interpolation and Linear Lifting Design
Directory of Open Access Journals (Sweden)
Joel Solé
2007-03-01
Full Text Available A quadratic image interpolation method is stated. The formulation is connected to the optimization of lifting steps. This relation triggers the exploration of several interpolation possibilities within the same context, which uses the theory of convex optimization to minimize quadratic functions with linear constraints. The methods consider possible knowledge available from a given application. A set of linear equality constraints that relate wavelet bases and coefficients with the underlying signal is introduced in the formulation. As a consequence, the formulation turns out to be adequate for the design of lifting steps. The resulting steps are related to the prediction minimizing the detail signal energy and to the update minimizing the l2-norm of the approximation signal gradient. Results are reported for the interpolation methods in terms of PSNR and also, coding results are given for the new update lifting steps.
Lambda-Lifting in Quadratic Time
DEFF Research Database (Denmark)
Danvy, Olivier; Schultz, Ulrik Pagh
2002-01-01
Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....
Lambda-Lifting in Quadratic Time
DEFF Research Database (Denmark)
Danvy, Olivier; Schultz, Ulrik Pagh
2003-01-01
Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....
Lambda-Lifting in Quadratic Time
DEFF Research Database (Denmark)
Danvy, Olivier; Schultz, Ulrik Pagh
2004-01-01
Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....
Temporal quadratic expansion nodal Green's function method
International Nuclear Information System (INIS)
Liu Cong; Jing Xingqing; Xu Xiaolin
2000-01-01
A new approach is presented to efficiently solve the three-dimensional space-time reactor dynamics equation which overcomes the disadvantages of current methods. In the Temporal Quadratic Expansion Nodal Green's Function Method (TQE/NGFM), the Quadratic Expansion Method (QEM) is used for the temporal solution with the Nodal Green's Function Method (NGFM) employed for the spatial solution. Test calculational results using TQE/NGFM show that its time step size can be 5-20 times larger than that of the Fully Implicit Method (FIM) for similar precision. Additionally, the spatial mesh size with NGFM can be nearly 20 times larger than that using the finite difference method. So, TQE/NGFM is proved to be an efficient reactor dynamics analysis method
Walking solitons in quadratic nonlinear media
Torner Sabata, Lluís; Mazilu, D; Mihalache, Dumitru
1996-01-01
We study self-action of light in parametric wave interactions in nonlinear quadratic media. We show the existence of stationary solitons in the presence of Poynting vector beam walk-off or different group velocities between the waves. We discover that the new solitons constitute a two-parameter family, and they exist for different wave intensities and transverse velocities. We discuss the properties of the walking solitons and their experimental implications. Peer Reviewed
Quadratic Term Structure Models in Discrete Time
Marco Realdon
2006-01-01
This paper extends the results on quadratic term structure models in continuos time to the discrete time setting. The continuos time setting can be seen as a special case of the discrete time one. Recursive closed form solutions for zero coupon bonds are provided even in the presence of multiple correlated underlying factors. Pricing bond options requires simple integration. Model parameters may well be time dependent without scuppering such tractability. Model estimation does not require a r...
Least Squares Problems with Absolute Quadratic Constraints
Directory of Open Access Journals (Sweden)
R. Schöne
2012-01-01
Full Text Available This paper analyzes linear least squares problems with absolute quadratic constraints. We develop a generalized theory following Bookstein's conic-fitting and Fitzgibbon's direct ellipse-specific fitting. Under simple preconditions, it can be shown that a minimum always exists and can be determined by a generalized eigenvalue problem. This problem is numerically reduced to an eigenvalue problem by multiplications of Givens' rotations. Finally, four applications of this approach are presented.
Stochastic Linear Quadratic Optimal Control Problems
International Nuclear Information System (INIS)
Chen, S.; Yong, J.
2001-01-01
This paper is concerned with the stochastic linear quadratic optimal control problem (LQ problem, for short) for which the coefficients are allowed to be random and the cost functional is allowed to have a negative weight on the square of the control variable. Some intrinsic relations among the LQ problem, the stochastic maximum principle, and the (linear) forward-backward stochastic differential equations are established. Some results involving Riccati equation are discussed as well
Quadratic tracer dynamical models tobacco growth
International Nuclear Information System (INIS)
Qiang Jiyi; Hua Cuncai; Wang Shaohua
2011-01-01
In order to study the non-uniformly transferring process of some tracer dosages, we assume that the absorption of some tracer by tobacco is a quadratic function of the tracer quantity of the tracer in the case of fast absorption, whereas the exclusion of the tracer from tobacco is a linear function of the tracer quantity in the case of slow exclusion, after the tracer is introduced into tobacco once at zero time. A single-compartment quadratic dynamical model of Logistic type is established for the leaves of tobacco. Then, a two-compartment quadratic dynamical model is established for leaves and calms of the tobacco. Qualitative analysis of the models shows that the tracer applied to the leaves of the tobacco is excluded finally; however, the tracer stays at the tobacco for finite time. Two methods are also given for computing the parameters in the models. Finally, the results of the models are verified by the 32 P experiment for the absorption of tobacco. (authors)
A Finite Continuation Algorithm for Bound Constrained Quadratic Programming
DEFF Research Database (Denmark)
Madsen, Kaj; Nielsen, Hans Bruun; Pinar, Mustafa C.
1999-01-01
The dual of the strictly convex quadratic programming problem with unit bounds is posed as a linear $\\ell_1$ minimization problem with quadratic terms. A smooth approximation to the linear $\\ell_1$ function is used to obtain a parametric family of piecewise-quadratic approximation problems...
Graphical Solution of the Monic Quadratic Equation with Complex Coefficients
Laine, A. D.
2015-01-01
There are many geometrical approaches to the solution of the quadratic equation with real coefficients. In this article it is shown that the monic quadratic equation with complex coefficients can also be solved graphically, by the intersection of two hyperbolas; one hyperbola being derived from the real part of the quadratic equation and one from…
Dressing method and quadratic bundles related to symmetric spaces. Vanishing boundary conditions
Valchev, T. I.
2016-02-01
We consider quadratic bundles related to Hermitian symmetric spaces of the type SU(m + n)/S(U(m) × U(n)). The simplest representative of the corresponding integrable hierarchy is given by a multi-component Kaup-Newell derivative nonlinear Schrödinger equation which serves as a motivational example for our general considerations. We extensively discuss how one can apply Zakharov-Shabat's dressing procedure to derive reflectionless potentials obeying zero boundary conditions. Those could be used for one to construct fast decaying solutions to any nonlinear equation belonging to the same hierarchy. One can distinguish between generic soliton type solutions and rational solutions.
DEFF Research Database (Denmark)
Gross, Fridolin; Green, Sara
2017-01-01
Systems biologists often distance themselves from reductionist approaches and formulate their aim as understanding living systems “as a whole”. Yet, it is often unclear what kind of reductionism they have in mind, and in what sense their methodologies offer a more comprehensive approach. To addre......-up”. Specifically, we point out that system-level properties constrain lower-scale processes. Thus, large-scale modeling reveals how living systems at the same time are more and less than the sum of the parts....
Borwein, J M; McPhedran, R C
2013-01-01
The study of lattice sums began when early investigators wanted to go from mechanical properties of crystals to the properties of the atoms and ions from which they were built (the literature of Madelung's constant). A parallel literature was built around the optical properties of regular lattices of atoms (initiated by Lord Rayleigh, Lorentz and Lorenz). For over a century many famous scientists and mathematicians have delved into the properties of lattices, sometimes unwittingly duplicating the work of their predecessors. Here, at last, is a comprehensive overview of the substantial body of
Statistical sums of strings on hyperellyptic surfaces
International Nuclear Information System (INIS)
Lebedev, D.; Morozov, A.
1987-01-01
Contributions of hyperellyptic surfaces to statistical sums of string theories are presented. Available results on hyperellyptic surface give the apportunity to check factorization of three-loop statsum. Some remarks on the vanishing statistical sum are presented
Momentum sum rules for fragmentation functions
International Nuclear Information System (INIS)
Meissner, S.; Metz, A.; Pitonyak, D.
2010-01-01
Momentum sum rules for fragmentation functions are considered. In particular, we give a general proof of the Schaefer-Teryaev sum rule for the transverse momentum dependent Collins function. We also argue that corresponding sum rules for related fragmentation functions do not exist. Our model-independent analysis is supplemented by calculations in a simple field-theoretical model.
International Nuclear Information System (INIS)
Silverman, J.N.
1983-01-01
A generalized Euler transformation (GET) is introduced which provides a powerful alternative method of accurately summing strongly divergent Rayleigh-Schroedinger (RS) perturbation series when other summability methods fail or are difficult to apply. The GET is simple to implement and, unlike a number of other summation procedures, requires no a priori knowledge of the analytic properties of the function underlying the RS series. Application of the GET to the difficult problem of the RS weak-field ground-state eigenvalue series of the hydrogen atom in a magnetic field (quadratic Zeeman effect) yields sums of good accuracy over a very wide range of field strengths up to the most intense fields of 10 14 G. The GET results are compared with those obtained by other summing methods
Quadratic stochastic operators: Results and open problems
International Nuclear Information System (INIS)
Ganikhodzhaev, R.N.; Rozikov, U.A.
2009-03-01
The history of the quadratic stochastic operators can be traced back to the work of S. Bernshtein (1924). For more than 80 years this theory has been developed and many papers were published. In recent years it has again become of interest in connection with numerous applications in many branches of mathematics, biology and physics. But most results of the theory were published in non English journals, full text of which are not accessible. In this paper we give a brief description of the results and discuss several open problems. (author)
Sequential Quadratic Programming Algorithms for Optimization
1989-08-01
quadratic program- ma ng (SQ(2l ) aIiatain.seenis to be relgarded aIs tie( buest choice for the solution of smiall. dlense problema (see S tour L)toS...For the step along d, note that a < nOing + 3 szH + i3.ninA A a K f~Iz,;nd and from Id1 _< ,,, we must have that for some /3 , np , 11P11 < dn"p. 5.2...Nevertheless, many of these problems are considered hard to solve. Moreover, for some of these problems the assumptions made in Chapter 2 to establish the
Linear–Quadratic Mean-Field-Type Games: A Direct Method
Directory of Open Access Journals (Sweden)
Tyrone E. Duncan
2018-02-01
Full Text Available In this work, a multi-person mean-field-type game is formulated and solved that is described by a linear jump-diffusion system of mean-field type and a quadratic cost functional involving the second moments, the square of the expected value of the state, and the control actions of all decision-makers. We propose a direct method to solve the game, team, and bargaining problems. This solution approach does not require solving the Bellman–Kolmogorov equations or backward–forward stochastic differential equations of Pontryagin’s type. The proposed method can be easily implemented by beginners and engineers who are new to the emerging field of mean-field-type game theory. The optimal strategies for decision-makers are shown to be in a state-and-mean-field feedback form. The optimal strategies are given explicitly as a sum of the well-known linear state-feedback strategy for the associated deterministic linear–quadratic game problem and a mean-field feedback term. The equilibrium cost of the decision-makers are explicitly derived using a simple direct method. Moreover, the equilibrium cost is a weighted sum of the initial variance and an integral of a weighted variance of the diffusion and the jump process. Finally, the method is used to compute global optimum strategies as well as saddle point strategies and Nash bargaining solution in state-and-mean-field feedback form.
On a quadratic inverse eigenvalue problem
International Nuclear Information System (INIS)
Cai, Yunfeng; Xu, Shufang
2009-01-01
This paper concerns the quadratic inverse eigenvalue problem (QIEP) of constructing real symmetric matrices M, C and K of size n × n, with M nonsingular, so that the quadratic matrix polynomial Q(λ) ≡ λ 2 M + λC + K has a completely prescribed set of eigenvalues and eigenvectors. It is shown via construction that the QIEP has a solution if and only if r 0, where r and δ are computable from the prescribed spectral data. A necessary and sufficient condition for the existence of a solution to the QIEP with M being positive definite is also established in a constructive way. Furthermore, two algorithms are developed: one is to solve the QIEP; another is to find a particular solution to the QIEP with the leading coefficient matrix being positive definite, which also provides us an approach to a simultaneous reduction of real symmetric matrix triple (M, C, K) by real congruence. Numerical results show that the two algorithms are feasible and numerically reliable
Phase space eigenfunctions of multidimensional quadratic Hamiltonians
International Nuclear Information System (INIS)
Dodonov, V.V.; Man'ko, V.I.
1986-01-01
We obtain the explicit expressions for phace space eigenfunctions (PSE),i.e. Weyl's symbols of dyadic operators like vertical stroken> ,vertical strokem>, being the solution of the Schroedinger equation with the Hamiltonian which is a quite arbitrary multidimensional quadratic form of the operators of Cartesian coordinates and conjugated to them momenta with time-dependent coefficients. It is shown that for an arbitrary quadratic Hamiltonian one can always construct the set of completely factorized PSE which are products of N factors, each factor being dependent only on two arguments for nnot=m and on a single argument for n=m. These arguments are nothing but constants of motion of the correspondent classical system. PSE are expressed in terms of the associated Laguerre polynomials in the case of a discrete spectrum and in terms of the Airy functions in the continuous spectrum case. Three examples are considered: a harmonic oscillator with a time-dependent frequency, a charged particle in a nonstationary uniform magnetic field, and a particle in a time-dependent uniform potential field. (orig.)
Quadratic forms for Feynman-Kac semigroups
International Nuclear Information System (INIS)
Hibey, Joseph L.; Charalambous, Charalambos D.
2006-01-01
Some problems in a stochastic setting often involve the need to evaluate the Feynman-Kac formula that follows from models described in terms of stochastic differential equations. Equivalent representations in terms of partial differential equations are also of interest, and these establish the well-known connection between probabilistic and deterministic formulations of these problems. In this Letter, this connection is studied in terms of the quadratic form associated with the Feynman-Kac semigroup. The probability measures that naturally arise in this approach, and thus define how Brownian motion is killed at a specified rate while exiting a set, are interpreted as a random time change of the original stochastic differential equation. Furthermore, since random time changes alter the diffusion coefficients in stochastic differential equations while Girsanov-type measure transformations alter their drift coefficients, their simultaneous use should lead to more tractable solutions for some classes of problems. For example, the minimization of some quadratic forms leads to solutions that satisfy certain partial differential equations and, therefore, the techniques discussed provide a variational approach for finding these solutions
DEFF Research Database (Denmark)
Mak, Vicky; Thomadsen, Tommy
2004-01-01
A well-known extension of the Travelling Salesman Problem (TSP) is the Selective (or Prize-collecting) TSP: In addition to the edge-costs, each node has an associated reward (denoted the node-reward) and instead of visiting all nodes, only profitable nodes are visited. The Quadratic Selective TSP...
Quadratic residues and non-residues selected topics
Wright, Steve
2016-01-01
This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.
Low-rank quadratic semidefinite programming
Yuan, Ganzhao
2013-04-01
Low rank matrix approximation is an attractive model in large scale machine learning problems, because it can not only reduce the memory and runtime complexity, but also provide a natural way to regularize parameters while preserving learning accuracy. In this paper, we address a special class of nonconvex quadratic matrix optimization problems, which require a low rank positive semidefinite solution. Despite their non-convexity, we exploit the structure of these problems to derive an efficient solver that converges to their local optima. Furthermore, we show that the proposed solution is capable of dramatically enhancing the efficiency and scalability of a variety of concrete problems, which are of significant interest to the machine learning community. These problems include the Top-k Eigenvalue problem, Distance learning and Kernel learning. Extensive experiments on UCI benchmarks have shown the effectiveness and efficiency of our proposed method. © 2012.
Gain scheduled linear quadratic control for quadcopter
Okasha, M.; Shah, J.; Fauzi, W.; Hanouf, Z.
2017-12-01
This study exploits the dynamics and control of quadcopters using Linear Quadratic Regulator (LQR) control approach. The quadcopter’s mathematical model is derived using the Newton-Euler method. It is a highly manoeuvrable, nonlinear, coupled with six degrees of freedom (DOF) model, which includes aerodynamics and detailed gyroscopic moments that are often ignored in many literatures. The linearized model is obtained and characterized by the heading angle (i.e. yaw angle) of the quadcopter. The adopted control approach utilizes LQR method to track several reference trajectories including circle and helix curves with significant variation in the yaw angle. The controller is modified to overcome difficulties related to the continuous changes in the operating points and eliminate chattering and discontinuity that is observed in the control input signal. Numerical non-linear simulations are performed using MATLAB and Simulink to illustrate to accuracy and effectiveness of the proposed controller.
Charged black holes in quadratic gravity
International Nuclear Information System (INIS)
Matyjasek, Jerzy; Tryniecki, Dariusz
2004-01-01
Iterative solutions to fourth-order gravity describing static and electrically charged black holes are constructed. The obtained solutions are parametrized by two integration constants which are related to the electric charge and the exact location of the event horizon. Special emphasis is put on the extremal black holes. It is explicitly demonstrated that in the extremal limit the exact location of the (degenerate) event horizon is given by r + =|e|. Similarly to the classical Reissner-Nordstroem solution, the near-horizon geometry of the charged black holes in quadratic gravity, when expanded into the whole manifold, is simply that of Bertotti and Robinson. Similar considerations have been carried out for boundary conditions of the second type which employ the electric charge and the mass of the system as seen by a distant observer. The relations between results obtained within the framework of each method are briefly discussed
Lambda-Lifting in Quadratic Time
DEFF Research Database (Denmark)
Danvy, Olivier; Schultz, Ulrik Pagh
2002-01-01
Lambda-lifting is a program transformation used in compilers and in partial evaluators and that operates in cubic time. In this article, we show how to reduce this complexity to quadratic time. Lambda-lifting transforms a block-structured program into a set of recursive equations, one for each...... local function in the source program. Each equation carries extra parameters to account for the free variables of the corresponding local function and of all its callees. It is the search for these extra parameters that yields the cubic factor in the traditional formulation of lambda-lifting, which...... is not needed. We therefore simplify the search for extra parameters by treating each strongly connected component instead of each function as a unit, thereby reducing the time complexity of lambda-lifting from O(n 3 log n)toO(n2 log n), where n is the size of the program. Since a lambda-lifter can output...
Low-rank quadratic semidefinite programming
Yuan, Ganzhao; Zhang, Zhenjie; Ghanem, Bernard; Hao, Zhifeng
2013-01-01
Low rank matrix approximation is an attractive model in large scale machine learning problems, because it can not only reduce the memory and runtime complexity, but also provide a natural way to regularize parameters while preserving learning accuracy. In this paper, we address a special class of nonconvex quadratic matrix optimization problems, which require a low rank positive semidefinite solution. Despite their non-convexity, we exploit the structure of these problems to derive an efficient solver that converges to their local optima. Furthermore, we show that the proposed solution is capable of dramatically enhancing the efficiency and scalability of a variety of concrete problems, which are of significant interest to the machine learning community. These problems include the Top-k Eigenvalue problem, Distance learning and Kernel learning. Extensive experiments on UCI benchmarks have shown the effectiveness and efficiency of our proposed method. © 2012.
A ''quadratized'' augmented plane wave method
International Nuclear Information System (INIS)
Smrcka, L.
1982-02-01
The exact radial solution inside the muffin-tin sphere is replaced by its Taylor expansion with respect to the energy, truncated after the quadratic term. Making use of it the energy independent augmented plane waves are formed which lead to the secular equations linear in energy. The method resembles the currently used linearized APW method but yields higher accuracy. The analysis of solution inside one muffin-tin sphere shows that the eigenvalue error is proportional to (E-E 0 ) 6 as compared with (E-E 0 ) 4 for LAPW. The error of eigenfunctions is (E-E 0 ) 3 ((E-E 0 ) 2 for LAPW). These conclusions are confirmed by direct numerical calculation of band structure of Cu and Al. (author)
Quadratic gravity in first order formalism
Energy Technology Data Exchange (ETDEWEB)
Alvarez, Enrique; Anero, Jesus; Gonzalez-Martin, Sergio, E-mail: enrique.alvarez@uam.es, E-mail: jesusanero@gmail.com, E-mail: sergio.gonzalez.martin@uam.es [Departamento de Física Teórica and Instituto de Física Teórica (IFT-UAM/CSIC), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid (Spain)
2017-10-01
We consider the most general action for gravity which is quadratic in curvature. In this case first order and second order formalisms are not equivalent. This framework is a good candidate for a unitary and renormalizable theory of the gravitational field; in particular, there are no propagators falling down faster than 1/ p {sup 2}. The drawback is of course that the parameter space of the theory is too big, so that in many cases will be far away from a theory of gravity alone. In order to analyze this issue, the interaction between external sources was examined in some detail. We find that this interaction is conveyed mainly by propagation of the three-index connection field. At any rate the theory as it stands is in the conformal invariant phase; only when Weyl invariance is broken through the coupling to matter can an Einstein-Hilbert term (and its corresponding Planck mass scale) be generated by quantum corrections.
Large-scale sequential quadratic programming algorithms
Energy Technology Data Exchange (ETDEWEB)
Eldersveld, S.K.
1992-09-01
The problem addressed is the general nonlinear programming problem: finding a local minimizer for a nonlinear function subject to a mixture of nonlinear equality and inequality constraints. The methods studied are in the class of sequential quadratic programming (SQP) algorithms, which have previously proved successful for problems of moderate size. Our goal is to devise an SQP algorithm that is applicable to large-scale optimization problems, using sparse data structures and storing less curvature information but maintaining the property of superlinear convergence. The main features are: 1. The use of a quasi-Newton approximation to the reduced Hessian of the Lagrangian function. Only an estimate of the reduced Hessian matrix is required by our algorithm. The impact of not having available the full Hessian approximation is studied and alternative estimates are constructed. 2. The use of a transformation matrix Q. This allows the QP gradient to be computed easily when only the reduced Hessian approximation is maintained. 3. The use of a reduced-gradient form of the basis for the null space of the working set. This choice of basis is more practical than an orthogonal null-space basis for large-scale problems. The continuity condition for this choice is proven. 4. The use of incomplete solutions of quadratic programming subproblems. Certain iterates generated by an active-set method for the QP subproblem are used in place of the QP minimizer to define the search direction for the nonlinear problem. An implementation of the new algorithm has been obtained by modifying the code MINOS. Results and comparisons with MINOS and NPSOL are given for the new algorithm on a set of 92 test problems.
Sum rules for quasifree scattering of hadrons
Peterson, R. J.
2018-02-01
The areas d σ /d Ω of fitted quasifree scattering peaks from bound nucleons for continuum hadron-nucleus spectra measuring d2σ /d Ω d ω are converted to sum rules akin to the Coulomb sums familiar from continuum electron scattering spectra from nuclear charge. Hadronic spectra with or without charge exchange of the beam are considered. These sums are compared to the simple expectations of a nonrelativistic Fermi gas, including a Pauli blocking factor. For scattering without charge exchange, the hadronic sums are below this expectation, as also observed with Coulomb sums. For charge exchange spectra, the sums are near or above the simple expectation, with larger uncertainties. The strong role of hadron-nucleon in-medium total cross sections is noted from use of the Glauber model.
Extremum uncertainty product and sum states
Energy Technology Data Exchange (ETDEWEB)
Mehta, C L; Kumar, S [Indian Inst. of Tech., New Delhi. Dept. of Physics
1978-01-01
The extremum product states and sum states of the uncertainties in non-commuting observables have been examined. These are illustrated by two specific examples of harmonic oscillator and the angular momentum states. It shows that the coherent states of the harmonic oscillator are characterized by the minimum uncertainty sum <(..delta..q)/sup 2/>+<(..delta..p)/sup 2/>. The extremum values of the sums and products of the uncertainties of the components of the angular momentum are also obtained.
QCD Sum Rules, a Modern Perspective
Colangelo, Pietro; Colangelo, Pietro; Khodjamirian, Alexander
2001-01-01
An introduction to the method of QCD sum rules is given for those who want to learn how to use this method. Furthermore, we discuss various applications of sum rules, from the determination of quark masses to the calculation of hadronic form factors and structure functions. Finally, we explain the idea of the light-cone sum rules and outline the recent development of this approach.
Decompounding random sums: A nonparametric approach
DEFF Research Database (Denmark)
Hansen, Martin Bøgsted; Pitts, Susan M.
Observations from sums of random variables with a random number of summands, known as random, compound or stopped sums arise within many areas of engineering and science. Quite often it is desirable to infer properties of the distribution of the terms in the random sum. In the present paper we...... review a number of applications and consider the nonlinear inverse problem of inferring the cumulative distribution function of the components in the random sum. We review the existing literature on non-parametric approaches to the problem. The models amenable to the analysis are generalized considerably...
Sum rules in the response function method
International Nuclear Information System (INIS)
Takayanagi, Kazuo
1990-01-01
Sum rules in the response function method are studied in detail. A sum rule can be obtained theoretically by integrating the imaginary part of the response function over the excitation energy with a corresponding energy weight. Generally, the response function is calculated perturbatively in terms of the residual interaction, and the expansion can be described by diagrammatic methods. In this paper, we present a classification of the diagrams so as to clarify which diagram has what contribution to which sum rule. This will allow us to get insight into the contributions to the sum rules of all the processes expressed by Goldstone diagrams. (orig.)
Orthogonal and Scaling Transformations of Quadratic Functions with ...
African Journals Online (AJOL)
In this paper we present a non-singular transformation that can reduce a given quadratic function defined on Rn to another simpler quadratic function and study the impact of the transformation in relation to the problem of minimization of the function. In particular, we construct a non-singular transformation that can reduce a ...
Quadratic Twists of Rigid Calabi–Yau Threefolds Over
DEFF Research Database (Denmark)
Gouvêa, Fernando Q.; Kiming, Ian; Yui, Noriko
2013-01-01
of weight 4 on some Γ 0(N). We show that quadratic twisting of a threefold corresponds to twisting the attached newform by quadratic characters and illustrate with a number of obvious and not so obvious examples. The question is motivated by the deeper question of which newforms of weight 4 on some Γ 0(N...
Approximate *-derivations and approximate quadratic *-derivations on C*-algebras
Directory of Open Access Journals (Sweden)
Park Choonkil
2011-01-01
Full Text Available Abstract In this paper, we prove the stability of *-derivations and of quadratic *-derivations on Banach *-algebras. We moreover prove the superstability of *-derivations and of quadratic *-derivations on C*-algebras. 2000 Mathematics Subject Classification: 39B52; 47B47; 46L05; 39B72.
A Linear Programming Reformulation of the Standard Quadratic Optimization Problem
de Klerk, E.; Pasechnik, D.V.
2005-01-01
The problem of minimizing a quadratic form over the standard simplex is known as the standard quadratic optimization problem (SQO).It is NPhard, and contains the maximum stable set problem in graphs as a special case.In this note we show that the SQO problem may be reformulated as an (exponentially
Effects of Classroom Instruction on Students' Understanding of Quadratic Equations
Vaiyavutjamai, Pongchawee; Clements, M. A.
2006-01-01
Two hundred and thirty-one students in six Grade 9 classes in two government secondary schools located near Chiang Mai, Thailand, attempted to solve the same 18 quadratic equations before and after participating in 11 lessons on quadratic equations. Data from the students' written responses to the equations, together with data in the form of…
Analysis of Students' Error in Learning of Quadratic Equations
Zakaria, Effandi; Ibrahim; Maat, Siti Mistima
2010-01-01
The purpose of the study was to determine the students' error in learning quadratic equation. The samples were 30 form three students from a secondary school in Jambi, Indonesia. Diagnostic test was used as the instrument of this study that included three components: factorization, completing the square and quadratic formula. Diagnostic interview…
Sketching the General Quadratic Equation Using Dynamic Geometry Software
Stols, G. H.
2005-01-01
This paper explores a geometrical way to sketch graphs of the general quadratic in two variables with Geometer's Sketchpad. To do this, a geometric procedure as described by De Temple is used, bearing in mind that this general quadratic equation (1) represents all the possible conics (conics sections), and the fact that five points (no three of…
Tangent Lines without Derivatives for Quadratic and Cubic Equations
Carroll, William J.
2009-01-01
In the quadratic equation, y = ax[superscript 2] + bx + c, the equation y = bx + c is identified as the equation of the line tangent to the parabola at its y-intercept. This is extended to give a convenient method of graphing tangent lines at any point on the graph of a quadratic or a cubic equation. (Contains 5 figures.)
Visualising the Roots of Quadratic Equations with Complex Coefficients
Bardell, Nicholas S.
2014-01-01
This paper is a natural extension of the root visualisation techniques first presented by Bardell (2012) for quadratic equations with real coefficients. Consideration is now given to the familiar quadratic equation "y = ax[superscript 2] + bx + c" in which the coefficients "a," "b," "c" are generally…
Some Finite Sums Involving Generalized Fibonacci and Lucas Numbers
Directory of Open Access Journals (Sweden)
E. Kılıç
2011-01-01
Full Text Available By considering Melham's sums (Melham, 2004, we compute various more general nonalternating sums, alternating sums, and sums that alternate according to (−12+1 involving the generalized Fibonacci and Lucas numbers.
Where Does Latin "Sum" Come From?
Nyman, Martti A.
1977-01-01
The derivation of Latin "sum,""es(s),""est" from Indo-European "esmi,""est,""esti" involves methodological problems. It is claimed here that the development of "sum" from "esmi" is related to the origin of the variation "est-st" (less than"esti"). The study is primarily concerned with this process, but chronological suggestions are also made. (CHK)
Compound sums and their applications in finance
R. Helmers (Roelof); B. Tarigan
2003-01-01
textabstractCompound sums arise frequently in insurance (total claim size in a portfolio) and in accountancy (total error amount in audit populations). As the normal approximation for compound sums usually performs very badly, one may look for better methods for approximating the distribution of a
Gauss Sum Factorization with Cold Atoms
International Nuclear Information System (INIS)
Gilowski, M.; Wendrich, T.; Mueller, T.; Ertmer, W.; Rasel, E. M.; Jentsch, Ch.; Schleich, W. P.
2008-01-01
We report the first implementation of a Gauss sum factorization algorithm by an internal state Ramsey interferometer using cold atoms. A sequence of appropriately designed light pulses interacts with an ensemble of cold rubidium atoms. The final population in the involved atomic levels determines a Gauss sum. With this technique we factor the number N=263193
Shapley Value for Constant-sum Games
Khmelnitskaya, A.B.
2002-01-01
It is proved that Young's axiomatization for the Shapley value by marginalism, efficiency, and symmetry is still valid for the Shapley value defined on the class of nonnegative constant-sum games and on the entire class of constant-sum games as well. To support an interest to study the class of
Superconvergent sum rules for the normal reflectivity
International Nuclear Information System (INIS)
Furuya, K.; Zimerman, A.H.; Villani, A.
1976-05-01
Families of superconvergent relations for the normal reflectivity function are written. Sum rules connecting the difference of phases of the reflectivities of two materials are also considered. Finally superconvergence relations and sum rules for magneto-reflectivity in the Faraday and Voigt regimes are also studied
Sums and products of sets and estimates of rational trigonometric sums in fields of prime order
Energy Technology Data Exchange (ETDEWEB)
Garaev, Mubaris Z [National Autonomous University of Mexico, Institute of Mathematics (Mexico)
2010-11-16
This paper is a survey of main results on the problem of sums and products of sets in fields of prime order and their applications to estimates of rational trigonometric sums. Bibliography: 85 titles.
Current algebra sum rules for Reggeons
Carlitz, R
1972-01-01
The interplay between the constraints of chiral SU/sub 2/*SU/sub 2/ symmetry and Regge asymptotic behaviour is investigated. The author reviews the derivation of various current algebra sum rules in a study of the reaction pi + alpha to pi + beta . These sum rules imply that all particles may be classified in multiplets of SU/sub 2/*SU/sub 2/ and that each of these multiplets may contain linear combinations of an infinite number of physical states. Extending his study to the reaction pi + alpha to pi + pi + beta , he derives new sum rules involving commutators of the axial charge with the reggeon coupling matrices of the rho and f Regge trajectories. Some applications of these new sum rules are noted, and the general utility of these and related sum rules is discussed. (17 refs).
Study of QCD medium by sum rules
Energy Technology Data Exchange (ETDEWEB)
Mallik, S [Saha Institute of Nuclear Physics, Calcutta (India)
1998-08-01
Though it has no analogue in condensed matter physics, the thermal QCD sum rules can, nevertheless, answer questions of condensed matter type about the QCD medium. The ingredients needed to write such sum rules, viz. the operator product expansion and the spectral representation at finite temperature, are reviewed in detail. The sum rules are then actually written for the case of correlation function of two vector currents. Collecting information on the thermal average of the higher dimension operators from other sources, we evaluate these sum rules for the temperature dependent {rho}-meson parameters. Possibility of extracting more information from the combined set of all sum rules from different correlation functions is also discussed. (author) 30 refs., 2 figs.
Coloring sums of extensions of certain graphs
Directory of Open Access Journals (Sweden)
Johan Kok
2017-12-01
Full Text Available We recall that the minimum number of colors that allow a proper coloring of graph $G$ is called the chromatic number of $G$ and denoted $\\chi(G$. Motivated by the introduction of the concept of the $b$-chromatic sum of a graph the concept of $\\chi'$-chromatic sum and $\\chi^+$-chromatic sum are introduced in this paper. The extended graph $G^x$ of a graph $G$ was recently introduced for certain regular graphs. This paper furthers the concepts of $\\chi'$-chromatic sum and $\\chi^+$-chromatic sum to extended paths and cycles. Bipartite graphs also receive some attention. The paper concludes with patterned structured graphs. These last said graphs are typically found in chemical and biological structures.
International Nuclear Information System (INIS)
2005-01-01
Nature of physical problem solved: AUTOJOM is a computer program that will generate the coefficients of any quadratic equation used to define conic volumes and also the coefficients of the planes needed to define parallelepipeds, wedges, and pyramids. JOMREAD is a computer code to check any 3D geometry composed of and constructed with quadratic surfaces
Are ghost surfaces quadratic-flux-minimizing?
International Nuclear Information System (INIS)
Hudson, S.R.; Dewar, R.L.
2009-01-01
Two candidates for 'almost-invariant' toroidal surfaces passing through magnetic islands, namely quadratic-flux-minimizing (QFMin) surfaces and ghost surfaces, use families of periodic pseudo-orbits (i.e. paths for which the action is not exactly extremal). QFMin pseudo-orbits, which are coordinate-dependent, are field lines obtained from a modified magnetic field, and ghost-surface pseudo-orbits are obtained by displacing closed field lines in the direction of steepest descent of magnetic action, ∫A.dl. A generalized Hamiltonian definition of ghost surfaces is given and specialized to the usual Lagrangian definition. A modified Hamilton's Principle is introduced that allows the use of Lagrangian integration for calculation of the QFMin pseudo-orbits. Numerical calculations show QFMin and Lagrangian ghost surfaces give very similar results for a chaotic magnetic field perturbed from an integrable case, and this is explained using a perturbative construction of an auxiliary poloidal angle for which QFMin and Lagrangian ghost surfaces are the same up to second order. While presented in the context of 3-dimensional magnetic field line systems, the concepts are applicable to defining almost-invariant tori in other 11/2 degree-of-freedom nonintegrable Lagrangian/Hamiltonian systems.
Securing Digital Audio using Complex Quadratic Map
Suryadi, MT; Satria Gunawan, Tjandra; Satria, Yudi
2018-03-01
In This digital era, exchanging data are common and easy to do, therefore it is vulnerable to be attacked and manipulated from unauthorized parties. One data type that is vulnerable to attack is digital audio. So, we need data securing method that is not vulnerable and fast. One of the methods that match all of those criteria is securing the data using chaos function. Chaos function that is used in this research is complex quadratic map (CQM). There are some parameter value that causing the key stream that is generated by CQM function to pass all 15 NIST test, this means that the key stream that is generated using this CQM is proven to be random. In addition, samples of encrypted digital sound when tested using goodness of fit test are proven to be uniform, so securing digital audio using this method is not vulnerable to frequency analysis attack. The key space is very huge about 8.1×l031 possible keys and the key sensitivity is very small about 10-10, therefore this method is also not vulnerable against brute-force attack. And finally, the processing speed for both encryption and decryption process on average about 450 times faster that its digital audio duration.
Designing Camera Networks by Convex Quadratic Programming
Ghanem, Bernard
2015-05-04
In this paper, we study the problem of automatic camera placement for computer graphics and computer vision applications. We extend the problem formulations of previous work by proposing a novel way to incorporate visibility constraints and camera-to-camera relationships. For example, the placement solution can be encouraged to have cameras that image the same important locations from different viewing directions, which can enable reconstruction and surveillance tasks to perform better. We show that the general camera placement problem can be formulated mathematically as a convex binary quadratic program (BQP) under linear constraints. Moreover, we propose an optimization strategy with a favorable trade-off between speed and solution quality. Our solution is almost as fast as a greedy treatment of the problem, but the quality is significantly higher, so much so that it is comparable to exact solutions that take orders of magnitude more computation time. Because it is computationally attractive, our method also allows users to explore the space of solutions for variations in input parameters. To evaluate its effectiveness, we show a range of 3D results on real-world floorplans (garage, hotel, mall, and airport).
A New Sum Analogous to Gauss Sums and Its Fourth Power Mean
Directory of Open Access Journals (Sweden)
Shaofeng Ru
2014-01-01
Full Text Available The main purpose of this paper is to use the analytic methods and the properties of Gauss sums to study the computational problem of one kind of new sum analogous to Gauss sums and give an interesting fourth power mean and a sharp upper bound estimate for it.
International Nuclear Information System (INIS)
Akbari, S.; Khosrovshahi, G.B.; Mofidi, A.
2010-07-01
Let D be a t-(v, k, λ) design and let N i (D), for 1 ≤ i ≤ t, be the higher incidence matrix of D, a (0, 1)-matrix of size (v/i) x b, where b is the number of blocks of D. A zero-sum flow of D is a nowhere-zero real vector in the null space of N 1 (D). A zero-sum k-flow of D is a zero-sum flow with values in {±,...,±(k-1)}. In this paper we show that every non-symmetric design admits an integral zero-sum flow, and consequently we conjecture that every non-symmetric design admits a zero-sum 5-flow. Similarly, the definition of zero-sum flow can be extended to N i (D), 1 ≤ i ≤ t. Let D = t-(v,k, (v-t/k-t)) be the complete design. We conjecture that N t (D) admits a zero-sum 3-flow and prove this conjecture for t = 2. (author)
A revisit to quadratic programming with fuzzy parameters
International Nuclear Information System (INIS)
Liu, S.-T.
2009-01-01
Quadratic programming has been widely applied to solving real-world problems. Recently, Liu describes a solution method for solving a class of fuzzy quadratic programming problems, where the cost coefficients of the linear terms in objective function, constraint coefficients, and right-hand sides are fuzzy numbers [Liu ST. Quadratic programming with fuzzy parameters: a membership function approach. Chaos, Solitons and Fractals 2009;40:237-45]. In this paper, we generalize Liu's method to a more general fuzzy quadratic programming problem, where the cost coefficients in objective function, constraint coefficients, and right-hand sides are all fuzzy numbers. A pair of two-level mathematical programs is formulated to calculate the upper bound and lower bound of the objective values of the fuzzy quadratic program. Based on the duality theorem and by applying the variable transformation technique, the pair of two-level mathematical programs is transformed into a family of conventional one-level quadratic programs. Solving the pair of quadratic programs produces the fuzzy objective values of the problem. With the ability of calculating the fuzzy objective value developed in this paper, it might help initiate wider applications.
Maddison, Ralph; Marsh, Samantha; Foley, Louise; Epstein, Leonard H; Olds, Timothy; Dewes, Ofa; Heke, Ihirangi; Carter, Karen; Jiang, Yannan; Mhurchu, Cliona Ni
2014-09-10
Screen-based activities, such as watching television (TV), playing video games, and using computers, are common sedentary behaviors among young people and have been linked with increased energy intake and overweight. Previous home-based sedentary behaviour interventions have been limited by focusing primarily on the child, small sample sizes, and short follow-up periods. The SWITCH (Screen-Time Weight-loss Intervention Targeting Children at Home) study aimed to determine the effect of a home-based, family-delivered intervention to reduce screen-based sedentary behaviour on body composition, sedentary behaviour, physical activity, and diet over 24 weeks in overweight and obese children. A two-arm, parallel, randomized controlled trial was conducted. Children and their primary caregiver living in Auckland, New Zealand were recruited via schools, community centres, and word of mouth. The intervention, delivered over 20 weeks, consisted of a face-to-face meeting with the parent/caregiver and the child to deliver intervention content, which focused on training and educating them to use a wide range of strategies designed to reduce their child's screen time. Families were given Time Machine TV monitoring devices to assist with allocating screen time, activity packages to promote alternative activities, online support via a website, and monthly newsletters. Control participants were given the intervention material on completion of follow-up. The primary outcome was change in children's BMI z-score from baseline to 24 weeks. Children (n = 251) aged 9-12 years and their primary caregiver were randomized to receive the SWITCH intervention (n = 127) or no intervention (controls; n = 124). There was no significant difference in change of zBMI between the intervention and control groups, although a favorable trend was observed (-0.016; 95% CI: -0.084, 0.051; p = 0.64). There were also no significant differences on secondary outcomes, except for a trend towards
Fixed mass and scaling sum rules
International Nuclear Information System (INIS)
Ward, B.F.L.
1975-01-01
Using the correspondence principle (continuity in dynamics), the approach of Keppell-Jones-Ward-Taha to fixed mass and scaling current algebraic sum rules is extended so as to consider explicitly the contributions of all classes of intermediate states. A natural, generalized formulation of the truncation ideas of Cornwall, Corrigan, and Norton is introduced as a by-product of this extension. The formalism is illustrated in the familiar case of the spin independent Schwinger term sum rule. New sum rules are derived which relate the Regge residue functions of the respective structure functions to their fixed hadronic mass limits for q 2 → infinity. (Auth.)
Directory of Open Access Journals (Sweden)
Irene Machado
2008-11-01
Full Text Available Nem sempre os temas candentes da investigação, numa determinada área do conhecimento, são colocados de maneira orgânica e organizada para o conjunto dos pesquisadores que sobre eles se debruçam. Quase nunca as edições cientícas, que se propõem a torná-los acessíveis a seus leitores, conseguem harmonizá-los sem correr os riscos de aproximações indevidas. A única forma de não incorrer em equívocos perigosos é assumir a idiossincrasia do temário diversificado que constitui o campo em questão. O leitor que ora inicia seu diálogo com este sétimo número de Galáxia não deve tomar esse preâmbulo por alerta, mas sim como tentativa de a revista manter a coerência face a seu compromisso de ser porta-voz dos temas e problemas da comunicação e da cultura pelo prisma das teorias semióticas que orientam o olhar dos vários colaboradores que encontram neste espaço uma tribuna aberta ao trânsito das diferenças. Basta um relance pelo sumário desta edição para que tal armação possa ser confirmada. Os textos que constituem o Fórum, respeitadas as singularidades, tratam de temas que são caros para as abordagens da comunicação e da semiótica na cultura. Temos o privilégio de publicar o texto inédito em português de Jakob von Uexküll em que o autor apresenta sua teoria da Umwelt, caracterizando formulações da biossemiótica sobre o signi.cado do entorno ou do espaço circundante, que são valiosas para compreender a percepção, a interação, o contexto, a informação, os códigos em ambientes de semiose. De um outro lugar - aquele modulado pela lógica da linguagem - Lucrécia Ferrara perscruta o campo conceitual que entende o design não pelo viés da operatividade, mas como processo semiótico-cognitivo. A outra ponta deste que pode ser um triálogo nos é dado pela comunicologia de Vilém Flusser. Para Michael Hanke, Flusser foi um dos grandes teóricos a investigar a importância da mídia para os
Algorithms for sparse, symmetric, definite quadratic lambda-matrix eigenproblems
International Nuclear Information System (INIS)
Scott, D.S.; Ward, R.C.
1981-01-01
Methods are presented for computing eigenpairs of the quadratic lambda-matrix, M lambda 2 + C lambda + K, where M, C, and K are large and sparse, and have special symmetry-type properties. These properties are sufficient to insure that all the eigenvalues are real and that theory analogous to the standard symmetric eigenproblem exists. The methods employ some standard techniques such as partial tri-diagonalization via the Lanczos Method and subsequent eigenpair calculation, shift-and- invert strategy and subspace iteration. The methods also employ some new techniques such as Rayleigh-Ritz quadratic roots and the inertia of symmetric, definite, quadratic lambda-matrices
DEFF Research Database (Denmark)
Liu, Xing; Zhou, Binbin; Guo, Hairun
2015-01-01
in a quadratic nonlinear crystal (beta-barium borate) in the normal dispersion regime due to cascaded (phase-mismatched) second-harmonic generation, and the mid-IR converted wave is formed in the anomalous dispersion regime between. lambda = 2.2-2.4 mu m as a resonant dispersive wave. This process relies...... on nondegenerate four-wave mixing mediated by an effective negative cross-phase modulation term caused by cascaded soliton-probe sum-frequency generation. (C) 2015 Optical Society of America...
International Nuclear Information System (INIS)
Kusakabe, Koichi
2009-01-01
To construct an optimization scheme for an extension of the Kohn-Sham approach, I introduce an operator form of the Coulomb interaction. This form is the sum of quadratic form pairs, which can be redefined in a self-consistent calculation of a multi-reference density functional theory. A detailed derivation of the form is given. A fluctuation term introduced in the extended Kohn-Sham scheme is expressed in this form for regularization. The present procedure also provides an exact derivation of effective negative interactions in charge fluctuation channels. Relevance to high-temperature superconductors is discussed.
A Bayesian analysis of QCD sum rules
International Nuclear Information System (INIS)
Gubler, Philipp; Oka, Makoto
2011-01-01
A new technique has recently been developed, in which the Maximum Entropy Method is used to analyze QCD sum rules. This approach has the virtue of being able to directly generate the spectral function of a given operator, without the need of making an assumption about its specific functional form. To investigate whether useful results can be extracted within this method, we have first studied the vector meson channel, where QCD sum rules are traditionally known to provide a valid description of the spectral function. Our results show a significant peak in the region of the experimentally observed ρ-meson mass, which is in agreement with earlier QCD sum rules studies and suggests that the Maximum Entropy Method is a strong tool for analyzing QCD sum rules.
Sum rules for nuclear collective excitations
International Nuclear Information System (INIS)
Bohigas, O.
1978-07-01
Characterizations of the response function and of integral properties of the strength function via a moment expansion are discussed. Sum rule expressions for the moments in the RPA are derived. The validity of these sum rules for both density independent and density dependent interactions is proved. For forces of the Skyrme type, analytic expressions for the plus one and plus three energy weighted sum rules are given for isoscalar monopole and quadrupole operators. From these, a close relationship between the monopole and quadrupole energies is shown and their dependence on incompressibility and effective mass is studied. The inverse energy weighted sum rule is computed numerically for the monopole operator, and an upper bound for the width of the monopole resonance is given. Finally the reliability of moments given by the RPA with effective interactions is discussed using simple soluble models for the hamiltonian, and also by comparison with experimental data
3He electron scattering sum rules
International Nuclear Information System (INIS)
Kim, Y.E.; Tornow, V.
1982-01-01
Electron scattering sum rules for 3 He are derived with a realistic ground-state wave function. The theoretical results are compared with the experimentally measured integrated cross sections. (author)
Sum formulas for reductive algebraic groups
DEFF Research Database (Denmark)
Andersen, Henning Haahr; Kulkarni, Upendra
2008-01-01
\\supset V^1 \\cdots \\supset V^r = 0$. The sum of the positive terms in this filtration satisfies a well known sum formula. If $T$ denotes a tilting module either for $G$ or $U_q$ then we can similarly filter the space $\\Hom_G(V,T)$, respectively $\\Hom_{U_q}(V,T)$ and there is a sum formula for the positive...... terms here as well. We give an easy and unified proof of these two (equivalent) sum formulas. Our approach is based on an Euler type identity which we show holds without any restrictions on $p$ or $l$. In particular, we get rid of previous such restrictions in the tilting module case....
Gaussian sum rules for optical functions
International Nuclear Information System (INIS)
Kimel, I.
1981-12-01
A new (Gaussian) type of sum rules (GSR) for several optical functions, is presented. The functions considered are: dielectric permeability, refractive index, energy loss function, rotatory power and ellipticity (circular dichroism). While reducing to the usual type of sum rules in a certain limit, the GSR contain in general, a Gaussian factor that serves to improve convergence. GSR might be useful in analysing experimental data. (Author) [pt
Structural relations between nested harmonic sums
International Nuclear Information System (INIS)
Bluemlein, J.
2008-07-01
We describe the structural relations between nested harmonic sums emerging in the description of physical single scale quantities up to the 3-loop level in renormalizable gauge field theories. These are weight w=6 harmonic sums. We identify universal basic functions which allow to describe a large class of physical quantities and derive their complex analysis. For the 3-loop QCD Wilson coefficients 35 basic functions are required, whereas a subset of 15 describes the 3-loop anomalous dimensions. (orig.)
Structural relations between nested harmonic sums
Energy Technology Data Exchange (ETDEWEB)
Bluemlein, J.
2008-07-15
We describe the structural relations between nested harmonic sums emerging in the description of physical single scale quantities up to the 3-loop level in renormalizable gauge field theories. These are weight w=6 harmonic sums. We identify universal basic functions which allow to describe a large class of physical quantities and derive their complex analysis. For the 3-loop QCD Wilson coefficients 35 basic functions are required, whereas a subset of 15 describes the 3-loop anomalous dimensions. (orig.)
The Gross-Llewellyn Smith sum rule
International Nuclear Information System (INIS)
Scott, W.G.
1981-01-01
We present the most recent data on the Gross-Llewellyn Smith sum rule obtained from the combined BEBC Narrow Band Neon and GGM-PS Freon neutrino/antineutrino experiments. The data for the Gross-Llewellyn Smith sum rule as a function of q 2 suggest a smaller value for the QCD coupling constant parameter Λ than is obtained from the analysis of the higher moments. (author)
Electronuclear sum rules for the lightest nuclei
International Nuclear Information System (INIS)
Efros, V.D.
1992-01-01
It is shown that the model-independent longitudinal electronuclear sum rules for nuclei with A = 3 and A = 4 have an accuracy on the order of a percent in the traditional single-nucleon approximation with free nucleons for the nuclear charge-density operator. This makes it possible to test this approximation by using these sum rules. The longitudinal sum rules for A = 3 and A = 4 are calculated using the wave functions of these nuclei corresponding to a large set of realistic NN interactions. The values of the model-independent sum rules lie in the range of values calculated by this method. Model-independent expressions are obtained for the transverse sum rules for nuclei with A = 3 and A = 4. These sum rules are calculated using a large set of realistic wave functions of these nuclei. The contribution of the convection current and the changes in the results for different versions of realistic NN forces are given. 29 refs., 4 tabs
Transition sum rules in the shell model
Lu, Yi; Johnson, Calvin W.
2018-03-01
An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy-weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, which in the case of the EWSR is a double commutator. While most prior applications of the double commutator have been to special cases, we derive general formulas for matrix elements of both operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We apply this simple tool to a number of nuclides and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E 1 ) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground-state electric quadrupole (E 2 ) centroids in the s d shell.
Integrable Hamiltonian systems and interactions through quadratic constraints
International Nuclear Information System (INIS)
Pohlmeyer, K.
1975-08-01
Osub(n)-invariant classical relativistic field theories in one time and one space dimension with interactions that are entirely due to quadratic constraints are shown to be closely related to integrable Hamiltonian systems. (orig.) [de
Accurate nonlocal theory for cascaded quadratic soliton compression
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Moses, Jeffrey
2007-01-01
We study soliton compression in bulk quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion....
Resolving Actuator Redundancy - Control Allocation vs. Linear Quadratic Control
Härkegård, Ola
2004-01-01
When designing control laws for systems with more inputs than controlled variables, one issue to consider is how to deal with actuator redundancy. Two tools for distributing the control effort among a redundant set of actuators are control allocation and linear quadratic control design. In this paper, we investigate the relationship between these two design tools when a quadratic performance index is used for control allocation. We show that for a particular class of linear systems, they give...
Quadratic measurement and conditional state preparation in an optomechanical system
DEFF Research Database (Denmark)
A. Brawley, George; Vanner, Michael A.; Bowen, Warwick P.
2014-01-01
We experimentally demonstrate, for the first time, quadratic measurement of mechanical motion in an optomechanical system. We use this nonlinear easurement to conditionally prepare classical non-Gaussian states of motion of a micro-mechanical oscillator.......We experimentally demonstrate, for the first time, quadratic measurement of mechanical motion in an optomechanical system. We use this nonlinear easurement to conditionally prepare classical non-Gaussian states of motion of a micro-mechanical oscillator....
Scale-Invariant Rotating Black Holes in Quadratic Gravity
Directory of Open Access Journals (Sweden)
Guido Cognola
2015-07-01
Full Text Available Black hole solutions in pure quadratic theories of gravity are interesting since they allow the formulation of a set of scale-invariant thermodynamics laws. Recently, we have proven that static scale-invariant black holes have a well-defined entropy, which characterizes equivalent classes of solutions. In this paper, we generalize these results and explore the thermodynamics of rotating black holes in pure quadratic gravity.
A Trust-region-based Sequential Quadratic Programming Algorithm
DEFF Research Database (Denmark)
Henriksen, Lars Christian; Poulsen, Niels Kjølstad
This technical note documents the trust-region-based sequential quadratic programming algorithm used in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject to linear inequalty constraints and nonlinear equality constraints.......This technical note documents the trust-region-based sequential quadratic programming algorithm used in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject to linear inequalty constraints and nonlinear equality constraints....
Staff turnover in hotels : exploring the quadratic and linear relationships.
Mohsin, A.; Lengler, J.F.B.; Aguzzoli, R.L.
2015-01-01
The aim of this study is to assess whether the relationship between intention to leave the job and its antecedents is quadratic or linear. To explore those relationships a theoretical model (see Fig. 1) and eight hypotheses are proposed. Each linear hypothesis is followed by an alternative quadratic hypothesis. The alternative hypotheses propose that the relationship between the four antecedent constructs and intention to leave the job might not be linear, as the existing literature suggests....
On wave-packet dynamics in a decaying quadratic potential
DEFF Research Database (Denmark)
Møller, Klaus Braagaard; Henriksen, Niels Engholm
1997-01-01
We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics.......We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics....
The stability of quadratic-reciprocal functional equation
Song, Aimin; Song, Minwei
2018-04-01
A new quadratic-reciprocal functional equation f ((k +1 )x +k y )+f ((k +1 )x -k y )=2/f (x )f (y )[(k+1 ) 2f (y )+k2f (x )] [(k+1)2f (y )-k2f (x )] 2 is introduced. The Hyers-Ulam stability for the quadratic-reciprocal functional equations is proved in Banach spaces using the direct method and the fixed point method, respectively.
Burgers' turbulence problem with linear or quadratic external potential
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Leonenko, N.N.
2005-01-01
We consider solutions of Burgers' equation with linear or quadratic external potential and stationary random initial conditions of Ornstein-Uhlenbeck type. We study a class of limit laws that correspond to a scale renormalization of the solutions.......We consider solutions of Burgers' equation with linear or quadratic external potential and stationary random initial conditions of Ornstein-Uhlenbeck type. We study a class of limit laws that correspond to a scale renormalization of the solutions....
Quadratic programming with fuzzy parameters: A membership function approach
International Nuclear Information System (INIS)
Liu, S.-T.
2009-01-01
Quadratic programming has been widely applied to solving real world problems. The conventional quadratic programming model requires the parameters to be known constants. In the real world, however, the parameters are seldom known exactly and have to be estimated. This paper discusses the fuzzy quadratic programming problems where the cost coefficients, constraint coefficients, and right-hand sides are represented by convex fuzzy numbers. Since the parameters in the program are fuzzy numbers, the derived objective value is a fuzzy number as well. Using Zadeh's extension principle, a pair of two-level mathematical programs is formulated to calculate the upper bound and lower bound of the objective values of the fuzzy quadratic program. Based on the duality theorem and by applying the variable transformation technique, the pair of two-level mathematical programs is transformed into a family of conventional one-level quadratic programs. Solving the pair of quadratic programs produces the fuzzy objective values of the problem. An example illustrates method proposed in this paper.
Expansion around half-integer values, binomial sums, and inverse binomial sums
International Nuclear Information System (INIS)
Weinzierl, Stefan
2004-01-01
I consider the expansion of transcendental functions in a small parameter around rational numbers. This includes in particular the expansion around half-integer values. I present algorithms which are suitable for an implementation within a symbolic computer algebra system. The method is an extension of the technique of nested sums. The algorithms allow in addition the evaluation of binomial sums, inverse binomial sums and generalizations thereof
QCD sum rules in a Bayesian approach
International Nuclear Information System (INIS)
Gubler, Philipp; Oka, Makoto
2011-01-01
A novel technique is developed, in which the Maximum Entropy Method is used to analyze QCD sum rules. The main advantage of this approach lies in its ability of directly generating the spectral function of a given operator. This is done without the need of making an assumption about the specific functional form of the spectral function, such as in the 'pole + continuum' ansatz that is frequently used in QCD sum rule studies. Therefore, with this method it should in principle be possible to distinguish narrow pole structures form continuum states. To check whether meaningful results can be extracted within this approach, we have first investigated the vector meson channel, where QCD sum rules are traditionally known to provide a valid description of the spectral function. Our results exhibit a significant peak in the region of the experimentally observed ρ-meson mass, which agrees with earlier QCD sum rules studies and shows that the Maximum Entropy Method is a useful tool for analyzing QCD sum rules.
A bayesian approach to QCD sum rules
International Nuclear Information System (INIS)
Gubler, Philipp; Oka, Makoto
2010-01-01
QCD sum rules are analyzed with the help of the Maximum Entropy Method. We develop a new technique based on the Bayesion inference theory, which allows us to directly obtain the spectral function of a given correlator from the results of the operator product expansion given in the deep euclidean 4-momentum region. The most important advantage of this approach is that one does not have to make any a priori assumptions about the functional form of the spectral function, such as the 'pole + continuum' ansatz that has been widely used in QCD sum rule studies, but only needs to specify the asymptotic values of the spectral function at high and low energies as an input. As a first test of the applicability of this method, we have analyzed the sum rules of the ρ-meson, a case where the sum rules are known to work well. Our results show a clear peak structure in the region of the experimental mass of the ρ-meson. We thus demonstrate that the Maximum Entropy Method is successfully applied and that it is an efficient tool in the analysis of QCD sum rules. (author)
Vacuum structure and QCD sum rules
International Nuclear Information System (INIS)
Shifman, M.A.
1992-01-01
The method of the QCD sum rules was and still is one of the most productive tools in a wide range of problems associated with the hadronic phenomenology. Many heuristic ideas, computational devices, specific formulae which are useful to theorists working not only in hadronic physics, have been accumulated in this method. Some of the results and approaches which have originally been developed in connection with the QCD sum rules can be and are successfully applied in related fields, as supersymmetric gauge theories, nontraditional schemes of quarks and leptons, etc. The amount of literature on these and other more basic problems in hadronic physics has grown enormously in recent years. This volume presents a collection of papers which provide an overview of all basic elements of the sum rule approach and priority has been given to the works which seemed most useful from a pedagogical point of view
Experimental results of the betatron sum resonance
International Nuclear Information System (INIS)
Wang, Y.; Ball, M.; Brabson, B.
1993-06-01
The experimental observations of motion near the betatron sum resonance, ν x + 2ν z = 13, are presented. A fast quadrupole (Panofsky-style ferrite picture-frame magnet with a pulsed power supplier) producing a betatron tune shift of the order of 0.03 at rise time of 1 μs was used. This quadrupole was used to produce betatron tunes which jumped past and then crossed back through a betatron sum resonance line. The beam response as function of initial betatron amplitudes were recorded turn by turn. The correlated growth of the action variables, J x and J z , was observed. The phase space plots in the resonance frame reveal the features of particle motion near the nonlinear sum resonance region
Inverse-moment chiral sum rules
International Nuclear Information System (INIS)
Golowich, E.; Kambor, J.
1996-01-01
A general class of inverse-moment sum rules was previously derived by the authors in a chiral perturbation theory (ChPT) study at two-loop order of the isospin and hypercharge vector-current propagators. Here, we address the evaluation of the inverse-moment sum rules in terms of existing data and theoretical constraints. Two kinds of sum rules are seen to occur: those which contain as-yet undetermined O(q 6 ) counterterms and those free of such quantities. We use the former to obtain phenomenological evaluations of two O(q 6 ) counterterms. Light is shed on the important but difficult issue regarding contributions of higher orders in the ChPT expansion. copyright 1996 The American Physical Society
Least square regularized regression in sum space.
Xu, Yong-Li; Chen, Di-Rong; Li, Han-Xiong; Liu, Lu
2013-04-01
This paper proposes a least square regularized regression algorithm in sum space of reproducing kernel Hilbert spaces (RKHSs) for nonflat function approximation, and obtains the solution of the algorithm by solving a system of linear equations. This algorithm can approximate the low- and high-frequency component of the target function with large and small scale kernels, respectively. The convergence and learning rate are analyzed. We measure the complexity of the sum space by its covering number and demonstrate that the covering number can be bounded by the product of the covering numbers of basic RKHSs. For sum space of RKHSs with Gaussian kernels, by choosing appropriate parameters, we tradeoff the sample error and regularization error, and obtain a polynomial learning rate, which is better than that in any single RKHS. The utility of this method is illustrated with two simulated data sets and five real-life databases.
Systematics of strength function sum rules
Directory of Open Access Journals (Sweden)
Calvin W. Johnson
2015-11-01
Full Text Available Sum rules provide useful insights into transition strength functions and are often expressed as expectation values of an operator. In this letter I demonstrate that non-energy-weighted transition sum rules have strong secular dependences on the energy of the initial state. Such non-trivial systematics have consequences: the simplification suggested by the generalized Brink–Axel hypothesis, for example, does not hold for most cases, though it weakly holds in at least some cases for electric dipole transitions. Furthermore, I show the systematics can be understood through spectral distribution theory, calculated via traces of operators and of products of operators. Seen through this lens, violation of the generalized Brink–Axel hypothesis is unsurprising: one expects sum rules to evolve with excitation energy. Furthermore, to lowest order the slope of the secular evolution can be traced to a component of the Hamiltonian being positive (repulsive or negative (attractive.
Vacuum structure and QCD sum rules
International Nuclear Information System (INIS)
Shifman, M.A.
1992-01-01
The method of the QCD sum rules was and still is one of the most productive tools in a wide range of problems associated with the hadronic phenomenology. Many heuristic ideas, computational devices, specific formulae which are useful to theorists working not only in hadronic physics, have been accumulated in this method. Some of the results and approaches which have been originally developed in connection with the QCD sum rules can be and are successfully applied in related fields, such as supersymmetric gauge theories, nontraditional schemes of quarks and leptons, etc. The amount of literature on these and other more basic problems in hadronic physics has grown enormously in recent years. This collection of papers provides an overview of all basic elements of the sum rule approach. Priority has been given to those works which seemed most useful from a pedagogical point of view
On the Computation of Correctly Rounded Sums
DEFF Research Database (Denmark)
Kornerup, Peter; Lefevre, Vincent; Louvet, Nicolas
2012-01-01
This paper presents a study of some basic blocks needed in the design of floating-point summation algorithms. In particular, in radix-2 floating-point arithmetic, we show that among the set of the algorithms with no comparisons performing only floating-point additions/subtractions, the 2Sum...... algorithm introduced by Knuth is minimal, both in terms of number of operations and depth of the dependency graph. We investigate the possible use of another algorithm, Dekker's Fast2Sum algorithm, in radix-10 arithmetic. We give methods for computing, in radix 10, the floating-point number nearest...... the average value of two floating-point numbers. We also prove that under reasonable conditions, an algorithm performing only round-to-nearest additions/subtractions cannot compute the round-to-nearest sum of at least three floating-point numbers. Starting from an algorithm due to Boldo and Melquiond, we also...
Sum rules for the quarkonium systems
International Nuclear Information System (INIS)
Burnel, A.; Caprasse, H.
1980-01-01
In the framework of the radial Schroedinger equation we derive in a very simple way sum rules relating the potential to physical quantities such as the energy eigenvalues and the square of the lth derivative of the eigenfunctions at the origin. These sum rules contain as particular cases well-known results such as the quantum version of the Clausius theorem in classical mechanics as well as Kramers's relations for the Coulomb potential. Several illustrations are given and the possibilities of applying them to the quarkonium systems are considered
Integrals of Lagrange functions and sum rules
Energy Technology Data Exchange (ETDEWEB)
Baye, Daniel, E-mail: dbaye@ulb.ac.be [Physique Quantique, CP 165/82, Universite Libre de Bruxelles, B 1050 Bruxelles (Belgium); Physique Nucleaire Theorique et Physique Mathematique, CP 229, Universite Libre de Bruxelles, B 1050 Bruxelles (Belgium)
2011-09-30
Exact values are derived for some matrix elements of Lagrange functions, i.e. orthonormal cardinal functions, constructed from orthogonal polynomials. They are obtained with exact Gauss quadratures supplemented by corrections. In the particular case of Lagrange-Laguerre and shifted Lagrange-Jacobi functions, sum rules provide exact values for matrix elements of 1/x and 1/x{sup 2} as well as for the kinetic energy. From these expressions, new sum rules involving Laguerre and shifted Jacobi zeros and weights are derived. (paper)
Comparison between linear quadratic and early time dose models
International Nuclear Information System (INIS)
Chougule, A.A.; Supe, S.J.
1993-01-01
During the 70s, much interest was focused on fractionation in radiotherapy with the aim of improving tumor control rate without producing unacceptable normal tissue damage. To compare the radiobiological effectiveness of various fractionation schedules, empirical formulae such as Nominal Standard Dose, Time Dose Factor, Cumulative Radiation Effect and Tumour Significant Dose, were introduced and were used despite many shortcomings. It has been claimed that a recent linear quadratic model is able to predict the radiobiological responses of tumours as well as normal tissues more accurately. We compared Time Dose Factor and Tumour Significant Dose models with the linear quadratic model for tumour regression in patients with carcinomas of the cervix. It was observed that the prediction of tumour regression estimated by the Tumour Significant Dose and Time Dose factor concepts varied by 1.6% from that of the linear quadratic model prediction. In view of the lack of knowledge of the precise values of the parameters of the linear quadratic model, it should be applied with caution. One can continue to use the Time Dose Factor concept which has been in use for more than a decade as its results are within ±2% as compared to that predicted by the linear quadratic model. (author). 11 refs., 3 figs., 4 tabs
Pentaquarks in QCD Sum Rule Approach
International Nuclear Information System (INIS)
Rodrigues da Silva, R.; Matheus, R.D.; Navarra, F.S.; Nielsen, M.
2004-01-01
We estimate the mass of recently observed pentaquak staes Ξ- (1862) and Θ+(1540) using two kinds of interpolating fields, containing two highly correlated diquarks, in the QCD sum rule approach. We obtained good agreement with the experimental value, using standard continuum threshold
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly...
Summing threshold logs in a parton shower
International Nuclear Information System (INIS)
Nagy, Zoltan; Soper, Davison E.
2016-05-01
When parton distributions are falling steeply as the momentum fractions of the partons increases, there are effects that occur at each order in α s that combine to affect hard scattering cross sections and need to be summed. We show how to accomplish this in a leading approximation in the context of a parton shower Monte Carlo event generator.
On Learning Ring-Sum-Expansions
DEFF Research Database (Denmark)
Fischer, Paul; Simon, H. -U.
1992-01-01
The problem of learning ring-sum-expansions from examples is studied. Ring-sum-expansions (RSE) are representations of Boolean functions over the base {#123;small infinum, (+), 1}#125;, which reflect arithmetic operations in GF(2). k-RSE is the class of ring-sum-expansions containing only monomials...... of length at most k:. term-RSE is the class of ring-sum-expansions having at most I: monomials. It is shown that k-RSE, k>or=1, is learnable while k-term-RSE, k>2, is not learnable if RPnot=NP. Without using a complexity-theoretical hypothesis, it is proven that k-RSE, k>or=1, and k-term-RSE, k>or=2 cannot...... be learned from positive (negative) examples alone. However, if the restriction that the hypothesis which is output by the learning algorithm is also a k-RSE is suspended, then k-RSE is learnable from positive (negative) examples only. Moreover, it is proved that 2-term-RSE is learnable by a conjunction...
Stark resonances: asymptotics and distributional Borel sum
International Nuclear Information System (INIS)
Caliceti, E.; Grecchi, V.; Maioli, M.
1993-01-01
We prove that the Stark effect perturbation theory of a class of bound states uniquely determines the position and the width of the resonances by Distributional Borel Sum. In particular the small field asymptotics of the width is uniquely related to the large order asymptotics of the perturbation coefficients. Similar results apply to all the ''resonances'' of the anharmonic and double well oscillators. (orig.)
Fibonacci Identities via the Determinant Sum Property
Spivey, Michael
2006-01-01
We use the sum property for determinants of matrices to give a three-stage proof of an identity involving Fibonacci numbers. Cassini's and d'Ocagne's Fibonacci identities are obtained at the ends of stages one and two, respectively. Catalan's Fibonacci identity is also a special case.
Summing threshold logs in a parton shower
Energy Technology Data Exchange (ETDEWEB)
Nagy, Zoltán [DESY,Notkestrasse 85, 22607 Hamburg (Germany); Soper, Davison E. [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403-5203 (United States)
2016-10-05
When parton distributions are falling steeply as the momentum fractions of the partons increases, there are effects that occur at each order in α{sub s} that combine to affect hard scattering cross sections and need to be summed. We show how to accomplish this in a leading approximation in the context of a parton shower Monte Carlo event generator.
Demonstration of a Quantum Nondemolition Sum Gate
DEFF Research Database (Denmark)
Yoshikawa, J.; Miwa, Y.; Huck, Alexander
2008-01-01
The sum gate is the canonical two-mode gate for universal quantum computation based on continuous quantum variables. It represents the natural analogue to a qubit C-NOT gate. In addition, the continuous-variable gate describes a quantum nondemolition (QND) interaction between the quadrature...
Sum rule approach to nuclear vibrations
International Nuclear Information System (INIS)
Suzuki, T.
1983-01-01
Velocity field of various collective states is explored by using sum rules for the nuclear current. It is shown that an irrotational and incompressible flow model is applicable to giant resonance states. Structure of the hydrodynamical states is discussed according to Tomonaga's microscopic theory for collective motions. (author)
Generalizations of some zero sum theorems
Indian Academy of Sciences (India)
Let G be an abelian group of order n, written additively. The Davenport constant D(G) is defined to be the smallest natural number t such that any sequence of length t over G has a non-empty subsequence whose sum is zero. Another combinatorial invariant E(G). (known as the EGZ constant) is the smallest natural number t ...
Succinct partial sums and fenwick trees
DEFF Research Database (Denmark)
Bille, Philip; Christiansen, Anders Roy; Prezza, Nicola
2017-01-01
We consider the well-studied partial sums problem in succint space where one is to maintain an array of n k-bit integers subject to updates such that partial sums queries can be efficiently answered. We present two succint versions of the Fenwick Tree â€“ which is known for its simplicity...... and practicality. Our results hold in the encoding model where one is allowed to reuse the space from the input data. Our main result is the first that only requires nk + o(n) bits of space while still supporting sum/update in O(logbn)/O(blogbn) time where 2 â‰¤ b â‰¤ log O(1)n. The second result shows how optimal...... time for sum/update can be achieved while only slightly increasing the space usage to nk + o(nk) bits. Beyond Fenwick Trees, the results are primarily based on bit-packing and sampling â€“ making them very practical â€“ and they also allow for simple optimal parallelization....
The quadratic reciprocity law a collection of classical proofs
Baumgart, Oswald
2015-01-01
This book is the English translation of Baumgart’s thesis on the early proofs of the quadratic reciprocity law (“Über das quadratische Reciprocitätsgesetz. Eine vergleichende Darstellung der Beweise”), first published in 1885. It is divided into two parts. The first part presents a very brief history of the development of number theory up to Legendre, as well as detailed descriptions of several early proofs of the quadratic reciprocity law. The second part highlights Baumgart’s comparisons of the principles behind these proofs. A current list of all known proofs of the quadratic reciprocity law, with complete references, is provided in the appendix. This book will appeal to all readers interested in elementary number theory and the history of number theory.
Quadratic algebra approach to relativistic quantum Smorodinsky-Winternitz systems
International Nuclear Information System (INIS)
Marquette, Ian
2011-01-01
There exists a relation between the Klein-Gordon and the Dirac equations with scalar and vector potentials of equal magnitude and the Schroedinger equation. We obtain the relativistic energy spectrum for the four relativistic quantum Smorodinsky-Winternitz systems from their quasi-Hamiltonian and the quadratic algebras studied by Daskaloyannis in the nonrelativistic context. We also apply the quadratic algebra approach directly to the initial Dirac equation for these four systems and show that the quadratic algebras obtained are the same than those obtained from the quasi-Hamiltonians. We point out how results obtained in context of quantum superintegrable systems and their polynomial algebras can be applied to the quantum relativistic case.
The bounds of feasible space on constrained nonconvex quadratic programming
Zhu, Jinghao
2008-03-01
This paper presents a method to estimate the bounds of the radius of the feasible space for a class of constrained nonconvex quadratic programmingsE Results show that one may compute a bound of the radius of the feasible space by a linear programming which is known to be a P-problem [N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984) 373-395]. It is proposed that one applies this method for using the canonical dual transformation [D.Y. Gao, Canonical duality theory and solutions to constrained nonconvex quadratic programming, J. Global Optimization 29 (2004) 377-399] for solving a standard quadratic programming problem.
Remarks on second-order quadratic systems in algebras
Directory of Open Access Journals (Sweden)
Art Sagle
2017-10-01
Full Text Available This paper is an addendum to our earlier paper [8], where a systematic study of quadratic systems of second order ordinary differential equations defined in commutative algebras was presented. Here we concentrate on special solutions and energy considerations of some quadratic systems defined in algebras which need not be commutative, however, we shall throughout assume the algebra to be associative. We here also give a positive answer to an open question, concerning periodic motions of such systems, posed in our earlier paper.
Dhage Iteration Method for Generalized Quadratic Functional Integral Equations
Directory of Open Access Journals (Sweden)
Bapurao C. Dhage
2015-01-01
Full Text Available In this paper we prove the existence as well as approximations of the solutions for a certain nonlinear generalized quadratic functional integral equation. An algorithm for the solutions is developed and it is shown that the sequence of successive approximations starting at a lower or upper solution converges monotonically to the solutions of related quadratic functional integral equation under some suitable mixed hybrid conditions. We rely our main result on Dhage iteration method embodied in a recent hybrid fixed point theorem of Dhage (2014 in partially ordered normed linear spaces. An example is also provided to illustrate the abstract theory developed in the paper.
Quantum tomography and classical propagator for quadratic quantum systems
International Nuclear Information System (INIS)
Man'ko, O.V.
1999-03-01
The classical propagator for tomographic probability (which describes the quantum state instead of wave function or density matrix) is presented for quadratic quantum systems and its relation to the quantum propagator is considered. The new formalism of quantum mechanics, based on the probability representation of the state, is applied to particular quadratic systems - the harmonic oscillator, particle's free motion, problems of an ion in a Paul trap and in asymmetric Penning trap, and to the process of stimulated Raman scattering. The classical propagator for these systems is written in an explicit form. (author)
New robust chaotic system with exponential quadratic term
International Nuclear Information System (INIS)
Bao Bocheng; Li Chunbiao; Liu Zhong; Xu Jianping
2008-01-01
This paper proposes a new robust chaotic system of three-dimensional quadratic autonomous ordinary differential equations by introducing an exponential quadratic term. This system can display a double-scroll chaotic attractor with only two equilibria, and can be found to be robust chaotic in a very wide parameter domain with positive maximum Lyapunov exponent. Some basic dynamical properties and chaotic behaviour of novel attractor are studied. By numerical simulation, this paper verifies that the three-dimensional system can also evolve into periodic and chaotic behaviours by a constant controller. (general)
Subgroups of class groups of algebraic quadratic function fields
International Nuclear Information System (INIS)
Wang Kunpeng; Zhang Xianke
2001-09-01
Ideal class groups H(K) of algebraic quadratic function fields K are studied, by using mainly the theory of continued fractions of algebraic functions. Properties of such continued fractions are discussed first. Then a necessary and sufficient condition is given for the class group H(K) to contain a cyclic subgroup of any order n, this criterion condition holds true for both real and imaginary fields K. Furthermore, several series of function fields K, including real, inertia imaginary, as well as ramified imaginary quadratic function fields, are given, and their class groups H(K) are proved to contain cyclic subgroups of order n. (author)
Smoothing optimization of supporting quadratic surfaces with Zernike polynomials
Zhang, Hang; Lu, Jiandong; Liu, Rui; Ma, Peifu
2018-03-01
A new optimization method to get a smooth freeform optical surface from an initial surface generated by the supporting quadratic method (SQM) is proposed. To smooth the initial surface, a 9-vertex system from the neighbor quadratic surface and the Zernike polynomials are employed to establish a linear equation system. A local optimized surface to the 9-vertex system can be build by solving the equations. Finally, a continuous smooth optimization surface is constructed by stitching the above algorithm on the whole initial surface. The spot corresponding to the optimized surface is no longer discrete pixels but a continuous distribution.
International Nuclear Information System (INIS)
Bradley, Paul M.; Journey, Celeste A.; Brigham, Mark E.; Burns, Douglas A.; Button, Daniel T.; Riva-Murray, Karen
2013-01-01
To assess inter-comparability of fluvial mercury (Hg) observations at substantially different scales, Hg concentrations, yields, and bivariate-relations were evaluated at nested-basin locations in the Edisto River, South Carolina and Hudson River, New York. Differences between scales were observed for filtered methylmercury (FMeHg) in the Edisto (attributed to wetland coverage differences) but not in the Hudson. Total mercury (THg) concentrations and bivariate-relationships did not vary substantially with scale in either basin. Combining results of this and a previously published multi-basin study, fish Hg correlated strongly with sampled water FMeHg concentration (ρ = 0.78; p = 0.003) and annual FMeHg basin yield (ρ = 0.66; p = 0.026). Improved correlation (ρ = 0.88; p < 0.0001) was achieved with time-weighted mean annual FMeHg concentrations estimated from basin-specific LOADEST models and daily streamflow. Results suggest reasonable scalability and inter-comparability for different basin sizes if wetland area or related MeHg-source-area metrics are considered. - Highlights: ► National scale mercury assessments integrate small scale study results. ► Basin scale differences and representativeness of fluvial mercury samples are concerns. ► Wetland area, not basin size, predicts inter-basin methylmercury variability. ► Time-weighted methylmercury estimates improve the prediction of mercury in basin fish. - Fluvial methylmercury concentration correlates with wetland area not basin scale and time-weighted estimates better predict basin top predator mercury than discrete sample estimates.
International Nuclear Information System (INIS)
Balint, A.B.; Viljoen, J.
1988-01-01
An experimental personal alpha dosimetry program for monitoring exposures of uranium mining facility workers in Canada has been completed. All licenced operating mining facilities were participating. Dosimetry techniques, description of dosimeters used by licences, performance and problems associated with the implementation of the programme as well as technical and administrative advantages and difficulties experienced are discussed. Area monitoring-time weighting methods used and results obtained to determine individual radon and thoron daughter exposure and exposure results generated by using dosimeters are assessed and compared
Limiting law excess sum rule for polyelectrolytes.
Landy, Jonathan; Lee, YongJin; Jho, YongSeok
2013-11-01
We revisit the mean-field limiting law screening excess sum rule that holds for rodlike polyelectrolytes. We present an efficient derivation of this law that clarifies its region of applicability: The law holds in the limit of small polymer radius, measured relative to the Debye screening length. From the limiting law, we determine the individual ion excess values for single-salt electrolytes. We also consider the mean-field excess sum away from the limiting region, and we relate this quantity to the osmotic pressure of a dilute polyelectrolyte solution. Finally, we consider numerical simulations of many-body polymer-electrolyte solutions. We conclude that the limiting law often accurately describes the screening of physical charged polymers of interest, such as extended DNA.
Geometric optimization and sums of algebraic functions
Vigneron, Antoine E.
2014-01-01
We present a new optimization technique that yields the first FPTAS for several geometric problems. These problems reduce to optimizing a sum of nonnegative, constant description complexity algebraic functions. We first give an FPTAS for optimizing such a sum of algebraic functions, and then we apply it to several geometric optimization problems. We obtain the first FPTAS for two fundamental geometric shape-matching problems in fixed dimension: maximizing the volume of overlap of two polyhedra under rigid motions and minimizing their symmetric difference. We obtain the first FPTAS for other problems in fixed dimension, such as computing an optimal ray in a weighted subdivision, finding the largest axially symmetric subset of a polyhedron, and computing minimum-area hulls.
Second harmonic generation and sum frequency generation
International Nuclear Information System (INIS)
Pellin, M.J.; Biwer, B.M.; Schauer, M.W.; Frye, J.M.; Gruen, D.M.
1990-01-01
Second harmonic generation and sum frequency generation are increasingly being used as in situ surface probes. These techniques are coherent and inherently surface sensitive by the nature of the mediums response to intense laser light. Here we will review these two techniques using aqueous corrosion as an example problem. Aqueous corrosion of technologically important materials such as Fe, Ni and Cr proceeds from a reduced metal surface with layer by layer growth of oxide films mitigated by compositional changes in the chemical makeup of the growing film. Passivation of the metal surface is achieved after growth of only a few tens of atomic layers of metal oxide. Surface Second Harmonic Generation and a related nonlinear laser technique, Sum Frequency Generation have demonstrated an ability to probe the surface composition of growing films even in the presence of aqueous solutions. 96 refs., 4 figs
Old tensor mesons in QCD sum rules
International Nuclear Information System (INIS)
Aliev, T.M.; Shifman, M.A.
1981-01-01
Tensor mesons f, A 2 and A 3 are analyzed within the framework of QCD sum rules. The effects of gluon and quark condensate is accounted for phenomenologically. Accurate estimates of meson masses and coupling constants of the lowest-lying states are obtained. It is shown that the masses are reproduced within theoretical uncertainty of about 80 MeV. The coupling of f meson to the corresponding quark current is determined. The results are in good aqreement with experimental data [ru
Disjoint sum forms in reliability theory
Directory of Open Access Journals (Sweden)
B. Anrig
2014-01-01
Full Text Available The structure function f of a binary monotone system is assumed to be known and given in a disjunctive normal form, i.e. as the logical union of products of the indicator variables of the states of its subsystems. Based on this representation of f, an improved Abraham algorithm is proposed for generating the disjoint sum form of f. This form is the base for subsequent numerical reliability calculations. The approach is generalized to multivalued systems. Examples are discussed.
Singlet axial constant from QCD sum rules
International Nuclear Information System (INIS)
Belitskij, A.V.; Teryaev, O.V.
1995-01-01
We analyze the singlet axial form factor of the proton for small momentum transferred in the framework of QCD sum rules using the interpolating nucleon current which explicitly accounts for the gluonic degrees of freedom. As the result we come to the quantitative prediction of the singlet axial constant. It is shown that the bilocal power corrections play the most important role in the analysis. 21 refs., 3 figs
Beautiful mesons from QCD spectral sum rules
International Nuclear Information System (INIS)
Narison, S.
1991-01-01
We discuss the beautiful meson from the point of view of the QCD spectral sum rules (QSSR). The bottom quark mass and the mixed light quark-gluon condensates are determined quite accurately. The decay constant f B is estimated and we present some arguments supporting this result. The decay constants and the masses of the other members of the beautiful meson family are predicted. (orig.)
Decentralized linear quadratic power system stabilizers for multi ...
Indian Academy of Sciences (India)
Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead–lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not ...
Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations
DEFF Research Database (Denmark)
Nam, Phan Thanh; Napiorkowski, Marcin; Solovej, Jan Philip
2016-01-01
We provide general conditions for which bosonic quadratic Hamiltonians on Fock spaces can be diagonalized by Bogoliubov transformations. Our results cover the case when quantum systems have infinite degrees of freedom and the associated one-body kinetic and paring operators are unbounded. Our...
ON WEIGHTED GENERALIZED FUNCTIONS ASSOCIATED WITH QUADRATIC FORMS
Directory of Open Access Journals (Sweden)
E. L. Shishkina
2016-12-01
Full Text Available In this article we consider certain types of weighted generalized functions associated with nondegenerate quadratic forms. Such functions and their derivatives are used for constructing fundamental solutions of iterated ultra-hyperbolic equations with the Bessel operator and for constructing negative real powers of ultra-hyperbolic operators with the Bessel operator.
Feedback nash equilibria for linear quadratic descriptor differential games
Engwerda, J.C.; Salmah, S.
2012-01-01
In this paper, we consider the non-cooperative linear feedback Nash quadratic differential game with an infinite planning horizon for descriptor systems of index one. The performance function is assumed to be indefinite. We derive both necessary and sufficient conditions under which this game has a
Initial post dynamic buckling of a quadratic-cubic column ...
African Journals Online (AJOL)
In this investigation, we determine the dynamic buckling load of an imperfect finite column resting on a mixed quadratic-cubic nonlinear elastic foundation trapped by an explicitly time dependent sinusoidally slowly varying dynamic load .The resultant coefficients are dynamically slowly varying and the formulation contains ...
Quadratic algebras in the noncommutative integration method of wave equation
International Nuclear Information System (INIS)
Varaksin, O.L.
1995-01-01
The paper deals with the investigation of applications of the method of noncommutative integration of linear differential equations by partial derivatives. Nontrivial example was taken for integration of three-dimensions wave equation with the use of non-Abelian quadratic algebras
Propagator of a time-dependent unbound quadratic Hamiltonian system
International Nuclear Information System (INIS)
Yeon, K.H.; Kim, H.J.; Um, C.I.; George, T.F.; Pandey, L.N.
1996-01-01
The propagator for a time-dependent unbound quadratic Hamiltonian system is explicitly evaluated using the path integral method. Two time-invariant quantities of the system are found where these invariants determine whether or not the system is bound. Several examples are considered to illustrate that the propagator obtained for the unbound systems is correct
On Fredholm-Stieltjes quadratic integral equation with supremum
International Nuclear Information System (INIS)
Darwish, M.A.
2007-08-01
We prove an existence theorem of monotonic solutions for a quadratic integral equation of Fredholm-Stieltjes type in C[0,1]. The concept of measure of non-compactness and a fixed point theorem due to Darbo are the main tools in carrying out our proof. (author)
Quadratic theory and feedback controllers for linear time delay systems
International Nuclear Information System (INIS)
Lee, E.B.
1976-01-01
Recent research on the design of controllers for systems having time delays is discussed. Results for the ''open loop'' and ''closed loop'' designs will be presented. In both cases results for minimizing a quadratic cost functional are given. The usefulness of these results is not known, but similar results for the non-delay case are being routinely applied. (author)
Pareto optimality in infinite horizon linear quadratic differential games
Reddy, P.V.; Engwerda, J.C.
2013-01-01
In this article we derive conditions for the existence of Pareto optimal solutions for linear quadratic infinite horizon cooperative differential games. First, we present a necessary and sufficient characterization for Pareto optimality which translates to solving a set of constrained optimal
Quadratic Poisson brackets compatible with an algebra structure
Balinsky, A. A.; Burman, Yu.
1994-01-01
Quadratic Poisson brackets on a vector space equipped with a bilinear multiplication are studied. A notion of a bracket compatible with the multiplication is introduced and an effective criterion of such compatibility is given. Among compatible brackets, a subclass of coboundary brackets is described, and such brackets are enumerated in a number of examples.
On misclassication probabilities of linear and quadratic classiers ...
African Journals Online (AJOL)
We study the theoretical misclassication probability of linear and quadratic classiers and examine the performance of these classiers under distributional variations in theory and using simulation. We derive expression for Bayes errors for some competing distributions from the same family under location shift. Keywords: ...
Feedback Nash Equilibria for Linear Quadratic Descriptor Differential Games
Engwerda, J.C.; Salmah, Y.
2010-01-01
In this note we consider the non-cooperative linear feedback Nash quadratic differential game with an infinite planning horizon for descriptor systems of index one. The performance function is assumed to be indefinite. We derive both necessary and sufficient conditions under which this game has a
A Unified Approach to Teaching Quadratic and Cubic Equations.
Ward, A. J. B.
2003-01-01
Presents a simple method for teaching the algebraic solution of cubic equations via completion of the cube. Shows that this method is readily accepted by students already familiar with completion of the square as a method for quadratic equations. (Author/KHR)
Visualising the Complex Roots of Quadratic Equations with Real Coefficients
Bardell, Nicholas S.
2012-01-01
The roots of the general quadratic equation y = ax[superscript 2] + bx + c (real a, b, c) are known to occur in the following sets: (i) real and distinct; (ii) real and coincident; and (iii) a complex conjugate pair. Case (iii), which provides the focus for this investigation, can only occur when the values of the real coefficients a, b, and c are…
Nonlocal description of X waves in quadratic nonlinear materials
DEFF Research Database (Denmark)
Larsen, Peter Ulrik Vingaard; Sørensen, Mads Peter; Bang, Ole
2006-01-01
We study localized light bullets and X-waves in quadratic media and show how the notion of nonlocality can provide an alternative simple physical picture of both types of multi-dimensional nonlinear waves. For X-waves we show that a local cascading limit in terms of a nonlinear Schrodinger equation...
Linear and quadratic in temperature resistivity from holography
Energy Technology Data Exchange (ETDEWEB)
Ge, Xian-Hui [Department of Physics, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors,Shanghai 200444 (China); Shanghai Key Lab for Astrophysics,100 Guilin Road, 200234 Shanghai (China); Tian, Yu [School of Physics, University of Chinese Academy of Sciences,Beijing, 100049 (China); Shanghai Key Laboratory of High Temperature Superconductors,Shanghai 200444 (China); Wu, Shang-Yu [Department of Electrophysics, National Chiao Tung University,Hsinchu 300 (China); Wu, Shao-Feng [Department of Physics, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors,Shanghai 200444 (China); Shanghai Key Lab for Astrophysics,100 Guilin Road, 200234 Shanghai (China)
2016-11-22
We present a new black hole solution in the asymptotic Lifshitz spacetime with a hyperscaling violating factor. A novel computational method is introduced to compute the DC thermoelectric conductivities analytically. We find that both the linear-T and quadratic-T contributions to the resistivity can be realized, indicating that a more detailed comparison with experimental phenomenology can be performed in this scenario.
A 2-categorical state sum model
Energy Technology Data Exchange (ETDEWEB)
Baratin, Aristide, E-mail: abaratin@uwaterloo.ca [Department of Applied Mathematics, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1 (Canada); Freidel, Laurent, E-mail: lfreidel@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, 31 Caroline Str. N, Waterloo, Ontario N2L 2Y5 (Canada)
2015-01-15
It has long been argued that higher categories provide the proper algebraic structure underlying state sum invariants of 4-manifolds. This idea has been refined recently, by proposing to use 2-groups and their representations as specific examples of 2-categories. The challenge has been to make these proposals fully explicit. Here, we give a concrete realization of this program. Building upon our earlier work with Baez and Wise on the representation theory of 2-groups, we construct a four-dimensional state sum model based on a categorified version of the Euclidean group. We define and explicitly compute the simplex weights, which may be viewed a categorified analogue of Racah-Wigner 6j-symbols. These weights solve a hexagon equation that encodes the formal invariance of the state sum under the Pachner moves of the triangulation. This result unravels the combinatorial formulation of the Feynman amplitudes of quantum field theory on flat spacetime proposed in A. Baratin and L. Freidel [Classical Quantum Gravity 24, 2027–2060 (2007)] which was shown to lead after gauge-fixing to Korepanov’s invariant of 4-manifolds.
Remark on the computation of mode sums
International Nuclear Information System (INIS)
Allen, Theodore J.; Olsson, M. G.; Schmidt, Jeffrey R.
2000-01-01
The computation of mode sums of the types encountered in basic quantum field theoretic applications is addressed with an emphasis on their expansions into functions of distance that can be interpreted as potentials. We show how to regularize and calculate the Casimir energy for the continuum Nambu-Goto string with massive ends as well as for the discrete Isgur-Paton non-relativistic string with massive ends. As an additional example, we examine the effect on the interquark potential of a constant Kalb-Ramond field strength interacting with a QCD string. (c) 2000 The American Physical Society
Sum rules in extended RPA theories
International Nuclear Information System (INIS)
Adachi, S.; Lipparini, E.
1988-01-01
Different moments m k of the excitation strength function are studied in the framework of the second RPA and of the extended RPA in which 2p2h correlations are explicitly introduced into the ground state by using first-order perturbation theory. Formal properties of the equations of motion concerning sum rules are derived and compared with those exhibited by the usual 1p1h RPA. The problem of the separation of the spurious solutions in extended RPA calculations is also discussed. (orig.)
DEFF Research Database (Denmark)
Triantafillou, Peter
2017-01-01
Supreme audit institutions (SAIs) are fundamental institutions in liberal democracies as they enable control of the exercise of state power. In order to maintain this function, SAIs must enjoy a high level of independence. Moreover, SAIs are increasingly expected to be also relevant for government...... and the execution of its policies by way of performance auditing. This article examines how and why the performance auditing of the Danish SAI pursues independence and relevance. It is argued that, in general, the simultaneous pursuit of independence and relevance is highly challenging and amounts to a zero-sum or...
Nuclear Symmetry Energy with QCD Sum Rule
International Nuclear Information System (INIS)
Jeong, K.S.; Lee, S.H.
2013-01-01
We calculate the nucleon self-energies in an isospin asymmetric nuclear matter using QCD sum rule. Taking the difference of these for the neutron and proton enables us to express an important part of the nuclear symmetry energy in terms of local operators. Calculating the operator product expansion up to mass dimension six operators, we find that the main contribution to the difference comes from the iso-vector scalar and vector operators, which is reminiscent to the case of relativistic mean field type theories where mesons with aforementioned quantum numbers produce the difference and provide the dominant mechanism for nuclear symmetry energy. (author)
The cyclicity of period annulus of a quadratic reversible Lotka–Volterra system
International Nuclear Information System (INIS)
Li, Chengzhi; Llibre, Jaume
2009-01-01
We prove that by perturbing the periodic annulus of the quadratic polynomial reversible Lotka–Volterra differential system, inside the class of all quadratic polynomial differential systems we can obtain at most two limit cycles
Induced motion of domain walls in multiferroics with quadratic interaction
Energy Technology Data Exchange (ETDEWEB)
Gerasimchuk, Victor S., E-mail: viktor.gera@gmail.com [National Technical University of Ukraine “Kyiv Polytechnic Institute”, Peremohy Avenue 37, 03056 Kiev (Ukraine); Shitov, Anatoliy A., E-mail: shitov@mail.ru [Donbass National Academy of Civil Engineering, Derzhavina Street 2, 86123 Makeevka, Donetsk Region (Ukraine)
2013-10-15
We theoretically study the dynamics of 180-degree domain wall of the ab-type in magnetic materials with quadratic magnetoelectric interaction in external alternating magnetic and electric fields. The features of the oscillatory and translational motions of the domain walls and stripe structures depending on the parameters of external fields and characteristics of the multiferroics are discussed. The possibility of the domain walls drift in a purely electric field is established. - Highlights: • We study DW and stripe DS in multiferroics with quadratic magnetoelectric interaction. • We build up the theory of oscillatory and translational (drift) DW and DS motion. • DW motion can be caused by crossed alternating electric and magnetic fields. • DW motion can be caused by alternating “pure” electric field. • DW drift velocity is formed by the AFM and Dzyaloshinskii interaction terms.
Symmetric coupling of angular momenta, quadratic algebras and discrete polynomials
International Nuclear Information System (INIS)
Aquilanti, V; Marinelli, D; Marzuoli, A
2014-01-01
Eigenvalues and eigenfunctions of the volume operator, associated with the symmetric coupling of three SU(2) angular momentum operators, can be analyzed on the basis of a discrete Schrödinger–like equation which provides a semiclassical Hamiltonian picture of the evolution of a 'quantum of space', as shown by the authors in [1]. Emphasis is given here to the formalization in terms of a quadratic symmetry algebra and its automorphism group. This view is related to the Askey scheme, the hierarchical structure which includes all hypergeometric polynomials of one (discrete or continuous) variable. Key tool for this comparative analysis is the duality operation defined on the generators of the quadratic algebra and suitably extended to the various families of overlap functions (generalized recoupling coefficients). These families, recognized as lying at the top level of the Askey scheme, are classified and a few limiting cases are addressed
Quadratic grating apodized photon sieves for simultaneous multiplane microscopy
Cheng, Yiguang; Zhu, Jiangping; He, Yu; Tang, Yan; Hu, Song; Zhao, Lixin
2017-10-01
We present a new type of imaging device, named quadratic grating apodized photon sieve (QGPS), used as the objective for simultaneous multiplane imaging in X-rays. The proposed QGPS is structured based on the combination of two concepts: photon sieves and quadratic gratings. Its design principles are also expounded in detail. Analysis of imaging properties of QGPS in terms of point-spread function shows that QGPS can image multiple layers within an object field onto a single image plane. Simulated and experimental results in visible light both demonstrate the feasibility of QGPS for simultaneous multiplane imaging, which is extremely promising to detect dynamic specimens by X-ray microscopy in the physical and life sciences.
QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES.
Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit
2014-01-01
We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n -gon, our construction produces 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n ( n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called 'serendipity' elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed.
Linear Quadratic Controller with Fault Detection in Compact Disk Players
DEFF Research Database (Denmark)
Vidal, Enrique Sanchez; Hansen, K.G.; Andersen, R.S.
2001-01-01
The design of the positioning controllers in Optical Disk Drives are today subjected to a trade off between an acceptable suppression of external disturbances and an acceptable immunity against surfaces defects. In this paper an algorithm is suggested to detect defects of the disk surface combined...... with an observer and a Linear Quadratic Regulator. As a result, the mentioned trade off is minimized and the playability of the tested compact disk player is considerably enhanced....
Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality
Acikmese, Ahmet Behcet; Corless, Martin
2004-01-01
We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic inequality. These observer results unifies earlier results in the literature; and extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities for the observer gain matrices. Results are illustrated by application to a simple model of an underwater.
Information sets as permutation cycles for quadratic residue codes
Directory of Open Access Journals (Sweden)
Richard A. Jenson
1982-01-01
Full Text Available The two cases p=7 and p=23 are the only known cases where the automorphism group of the [p+1, (p+1/2] extended binary quadratic residue code, O(p, properly contains PSL(2,p. These codes have some of their information sets represented as permutation cycles from Aut(Q(p. Analysis proves that all information sets of Q(7 are so represented but those of Q(23 are not.
On a linear-quadratic problem with Caputo derivative
Directory of Open Access Journals (Sweden)
Dariusz Idczak
2016-01-01
Full Text Available In this paper, we study a linear-quadratic optimal control problem with a fractional control system containing a Caputo derivative of unknown function. First, we derive the formulas for the differential and gradient of the cost functional under given constraints. Next, we prove an existence result and derive a maximum principle. Finally, we describe the gradient and projection of the gradient methods for the problem under consideration.
Stationary walking solitons in bulk quadratic nonlinear media
Mihalache, Dumitru; Mazilu, D; Crasonavn, L C; Torner Sabata, Lluís
1997-01-01
We study the mutual trapping of fundamental and second-harmonic light beams propagating in bulk quadratic nonlinear media in the presence of Poynting vector beam walk-off. We show numerically the existence of a two-parameter family of (2 + 1)-dimensional stationary, spatial walking solitons. We have found that the solitons exist at various values of material parameters with different wave intensities and soliton velocities. We discuss the differences between (2 + 1) and (1 + 1)-dimensional wa...
Bifurcation in Z2-symmetry quadratic polynomial systems with delay
International Nuclear Information System (INIS)
Zhang Chunrui; Zheng Baodong
2009-01-01
Z 2 -symmetry systems are considered. Firstly the general forms of Z 2 -symmetry quadratic polynomial system are given, and then a three-dimensional Z 2 equivariant system is considered, which describes the relations of two predator species for a single prey species. Finally, the explicit formulas for determining the Fold and Hopf bifurcations are obtained by using the normal form theory and center manifold argument.
Design of Linear-Quadratic-Regulator for a CSTR process
Meghna, P. R.; Saranya, V.; Jaganatha Pandian, B.
2017-11-01
This paper aims at creating a Linear Quadratic Regulator (LQR) for a Continuous Stirred Tank Reactor (CSTR). A CSTR is a common process used in chemical industries. It is a highly non-linear system. Therefore, in order to create the gain feedback controller, the model is linearized. The controller is designed for the linearized model and the concentration and volume of the liquid in the reactor are kept at a constant value as required.
A Note on 5-bit Quadratic Permutations’ Classification
Božilov, Dušan; Bilgin, Begül; Sahin, Hacı Ali
2017-01-01
Classification of vectorial Boolean functions up to affine equivalence is used widely to analyze various cryptographic and implementation properties of symmetric-key algorithms. We show that there exist 75 affine equivalence classes of 5-bit quadratic permutations. Furthermore, we explore important cryptographic properties of these classes, such as linear and differential properties and degrees of their inverses, together with multiplicative complexity and existence of uniform threshold reali...
Integrable systems with quadratic nonlinearity in Fourier space
International Nuclear Information System (INIS)
Marikhin, V.G.
2003-01-01
The Lax pair representation in Fourier space is used to obtain a list of integrable scalar evolutionary equations with quadratic nonlinearity. The known systems of this type such as KdV, intermediate long-wave equation (ILW), Camassa-Holm and Degasperis-Procesi systems are represented in this list. Some new systems are obtained as well. Two-dimensional and discrete generalizations are discussed
Complex eigenvalues for neutron transport equation with quadratically anisotropic scattering
International Nuclear Information System (INIS)
Sjoestrand, N.G.
1981-01-01
Complex eigenvalues for the monoenergetic neutron transport equation in the buckling approximation have been calculated for various combinations of linearly and quadratically anisotropic scattering. The results are discussed in terms of the time-dependent case. Tables are given of complex bucklings for real decay constants and of complex decay constants for real bucklings. The results fit nicely into the pattern of real and purely imaginary eigenvalues obtained earlier. (author)
Statistical sum of bosonic string, compactified on an orbifold
International Nuclear Information System (INIS)
Morozov, A.; Ol'shanetskij, M.
1986-01-01
Expression for statistical sum of bosonic string, compactified on a singular orbifold, is presented. All the information about the orbifold is encoded the specific combination of theta-functions, which the statistical sum is expressed through
Robinson's radiation damping sum rule: Reaffirmation and extension
International Nuclear Information System (INIS)
Mane, S.R.
2011-01-01
Robinson's radiation damping sum rule is one of the classic theorems of accelerator physics. Recently Orlov has claimed to find serious flaws in Robinson's proof of his sum rule. In view of the importance of the subject, I have independently examined the derivation of the Robinson radiation damping sum rule. Orlov's criticisms are without merit: I work through Robinson's derivation and demonstrate that Orlov's criticisms violate well-established mathematical theorems and are hence not valid. I also show that Robinson's derivation, and his damping sum rule, is valid in a larger domain than that treated by Robinson himself: Robinson derived his sum rule under the approximation of a small damping rate, but I show that Robinson's sum rule applies to arbitrary damping rates. I also display more concise derivations of the sum rule using matrix differential equations. I also show that Robinson's sum rule is valid in the vicinity of a parametric resonance.
A new generalization of Hardy–Berndt sums
Indian Academy of Sciences (India)
4,11,18]. Berndt and Goldberg [4] found analytic properties of these sums and established infinite trigonometric series representations for them. The most important properties of Hardy–. Berndt sums are reciprocity theorems due to Berndt [3] ...
Isospin sum rules for inclusive cross-sections
Rotelli, P.; Suttorp, L.G.
1972-01-01
A systematic analysis of isospin sum rules is presented for the distribution functions of strong, electromagnetic weak inclusive processes. The general expression for these sum rules is given and some new examples are presented.
General quadratic gauge theory: constraint structure, symmetries and physical functions
Energy Technology Data Exchange (ETDEWEB)
Gitman, D M [Institute of Physics, University of Sao Paulo (Brazil); Tyutin, I V [Lebedev Physics Institute, Moscow (Russian Federation)
2005-06-17
How can we relate the constraint structure and constraint dynamics of the general gauge theory in the Hamiltonian formulation to specific features of the theory in the Lagrangian formulation, especially relate the constraint structure to the gauge transformation structure of the Lagrangian action? How can we construct the general expression for the gauge charge if the constraint structure in the Hamiltonian formulation is known? Whether we can identify the physical functions defined as commuting with first-class constraints in the Hamiltonian formulation and the physical functions defined as gauge invariant functions in the Lagrangian formulation? The aim of the present paper is to consider the general quadratic gauge theory and to answer the above questions for such a theory in terms of strict assertions. To fulfil such a programme, we demonstrate the existence of the so-called superspecial phase-space variables in terms of which the quadratic Hamiltonian action takes a simple canonical form. On the basis of such a representation, we analyse a functional arbitrariness in the solutions of the equations of motion of the quadratic gauge theory and derive the general structure of symmetries by analysing a symmetry equation. We then use these results to identify the two definitions of physical functions and thus prove the Dirac conjecture.
Quadratic time dependent Hamiltonians and separation of variables
International Nuclear Information System (INIS)
Anzaldo-Meneses, A.
2017-01-01
Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green’s function is obtained and a comparison with the classical Hamilton–Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei–Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü–Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems. - Highlights: • Exact unitary transformation reducing time dependent quadratic quantum Hamiltonian to zero. • New separation of variables method and simultaneous uncoupling of modes. • Explicit examples of transformations for one to four dimensional problems. • New general evolution equation for quadratic form in the action, respectively Green’s function.
Design of reinforced areas of concrete column using quadratic polynomials
Arif Gunadi, Tjiang; Parung, Herman; Rachman Djamaluddin, Abd; Arwin Amiruddin, A.
2017-11-01
Designing of reinforced concrete columns mostly carried out by a simple planning method which uses column interaction diagram. However, the application of this method is limited because it valids only for certain compressive strenght of the concrete and yield strength of the reinforcement. Thus, a more applicable method is still in need. Another method is the use of quadratic polynomials as a basis for the approach in designing reinforced concrete columns, where the ratio of neutral lines to the effective height of a cross section (ξ) if associated with ξ in the same cross-section with different reinforcement ratios is assumed to form a quadratic polynomial. This is identical to the basic principle used in the Simpson rule for numerical integral using quadratic polynomials and had a sufficiently accurate level of accuracy. The basis of this approach to be used both the normal force equilibrium and the moment equilibrium. The abscissa of the intersection of the two curves is the ratio that had been mentioned, since it fulfill both of the equilibrium. The application of this method is relatively more complicated than the existing method but provided with tables and graphs (N vs ξN ) and (M vs ξM ) so that its used could be simplified. The uniqueness of these tables are only distinguished based on the compresssive strength of the concrete, so in application it could be combined with various yield strenght of the reinforcement available in the market. This method could be solved by using programming languages such as Fortran.
Fast, multiple optimizations of quadratic dose objective functions in IMRT
International Nuclear Information System (INIS)
Breedveld, Sebastiaan; Storchi, Pascal R M; Keijzer, Marleen; Heijmen, Ben J M
2006-01-01
Inverse treatment planning for intensity-modulated radiotherapy may include time consuming, multiple minimizations of an objective function. In this paper, methods are presented to speed up the process of (repeated) minimization of the well-known quadratic dose objective function, extended with a smoothing term that ensures generation of clinically acceptable beam profiles. In between two subsequent optimizations, the voxel-dependent importance factors of the quadratic terms will generally be adjusted, based on an intermediate plan evaluation. The objective function has been written in matrix-vector format, facilitating the use of a recently published, fast quadratic minimization algorithm, instead of commonly applied gradient-based methods. This format also reduces the calculation time in between subsequent minimizations, related to adjustment of the voxel-dependent importance factors. Sparse matrices are used to limit the required amount of computer memory. For three patients, comparisons have been made with a gradient method. Mean speed improvements of up to a factor of 37 have been achieved
Measurement of quadratic electrogyration effect in castor oil
Izdebski, Marek; Ledzion, Rafał; Górski, Piotr
2015-07-01
This work presents a detailed analysis of electrogyration measurement in liquids with the usage of an optical polarimetric technique. Theoretical analysis of the optical response to an applied electric field is illustrated by experimental data for castor oil which exhibits natural optical activity, quadratic electro-optic effect and quadratic electrogyration effect. Moreover, the experimental data show that interaction of the oil with a pair of flat electrodes induces a significant dichroism and natural linear birefringence. The combination of these effects occurring at the same time complicates the procedure of measurements. It has been found that a single measurement is insufficient to separate the contribution of the electrogyration effect, but it is possible on the basis of several measurements performed with various orientations of the polarizer and the analyser. The obtained average values of the quadratic electrogyration coefficient β13 in castor oil at room temperature are from - 0.92 ×10-22 to - 1.44 ×10-22m2V-2 depending on the origin of the oil. Although this study is focused on measurements in castor oil, the presented analysis is much more general.
QCD sum-rules for V-A spectral functions
International Nuclear Information System (INIS)
Chakrabarti, J.; Mathur, V.S.
1980-01-01
The Borel transformation technique of Shifman et al is used to obtain QCD sum-rules for V-A spectral functions. In contrast to the situation in the original Weinberg sum-rules and those of Bernard et al, the problem of saturating the sum-rules by low lying resonances is brought under control. Furthermore, the present sum-rules, on saturation, directly determine useful phenomenological parameters
7 CFR 42.132 - Determining cumulative sum values.
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Determining cumulative sum values. 42.132 Section 42... Determining cumulative sum values. (a) The parameters for the on-line cumulative sum sampling plans for AQL's... 3 1 2.5 3 1 2 1 (b) At the beginning of the basic inspection period, the CuSum value is set equal to...
Deriving the Normalized Min-Sum Algorithm from Cooperative Optimization
Huang, Xiaofei
2006-01-01
The normalized min-sum algorithm can achieve near-optimal performance at decoding LDPC codes. However, it is a critical question to understand the mathematical principle underlying the algorithm. Traditionally, people thought that the normalized min-sum algorithm is a good approximation to the sum-product algorithm, the best known algorithm for decoding LDPC codes and Turbo codes. This paper offers an alternative approach to understand the normalized min-sum algorithm. The algorithm is derive...
Gottfried sum rule and mesonic exchanges in deuteron
International Nuclear Information System (INIS)
Kaptari, L.P.
1991-01-01
Recent NMC data on the experimental value of the Gottfried Sum are discussed. It is shown that the Gottfried Sum is sensitive to the nuclear structure corrections, viz. themesonic exchanges and binding effects. A new estimation of the Gottfried Sum is given. The obtained result is close to the quark-parton prediction of 1/3. 11 refs.; 2 figs
Extremal extensions for the sum of nonnegative selfadjoint relations
Hassi, Seppo; Sandovici, Adrian; De Snoo, Henk; Winkler, Henrik
2007-01-01
The sum A + B of two nonnegative selfadjoint relations (multivalued operators) A and B is a nonnegative relation. The class of all extremal extensions of the sum A + B is characterized as products of relations via an auxiliary Hilbert space associated with A and B. The so-called form sum extension
Moments of the weighted sum-of-digits function | Larcher ...
African Journals Online (AJOL)
The weighted sum-of-digits function is a slight generalization of the well known sum-of-digits function with the difference that here the digits are weighted by some weights. So for example in this concept also the alternated sum-of-digits function is included. In this paper we compute the first and the second moment of the ...
7 CFR 1726.205 - Multiparty lump sum quotations.
2010-01-01
... 7 Agriculture 11 2010-01-01 2010-01-01 false Multiparty lump sum quotations. 1726.205 Section 1726....205 Multiparty lump sum quotations. The borrower or its engineer must contact a sufficient number of... basis of written lump sum quotations, the borrower will select the supplier or contractor based on the...
Lesmana, E.; Chaerani, D.; Khansa, H. N.
2018-03-01
Energy-Saving Generation Dispatch (ESGD) is a scheme made by Chinese Government in attempt to minimize CO2 emission produced by power plant. This scheme is made related to global warming which is primarily caused by too much CO2 in earth’s atmosphere, and while the need of electricity is something absolute, the power plants producing it are mostly thermal-power plant which produced many CO2. Many approach to fulfill this scheme has been made, one of them came through Minimum Cost Flow in which resulted in a Quadratically Constrained Quadratic Programming (QCQP) form. In this paper, ESGD problem with Minimum Cost Flow in QCQP form will be solved using Lagrange’s Multiplier Method
Sum rules for charge transition density
Energy Technology Data Exchange (ETDEWEB)
Gul' karov, I S [Tashkentskij Politekhnicheskij Inst. (USSR)
1979-01-01
The form factors of the quadrupole and octupole oscillations of the /sup 12/C nucleus are compared with the predictions of the sum rules for the charge transition density (CTD). These rules allow one to obtain various CTDs which contain the components k: r/sup lambda + 2k-2/rho(r) and r/sup lambda + 2k-1)(drho(r)/dr) (k = 0, 1, 2...) and can be applied to analyze the inelastic scattering of high energy particles by nuclei. It is shown that the CTD under consideration have different radius dependence and describe the data essentially better (though ambiguously) than the Tassy and Steinwedel-Jensen models do. Recurrence formulas are derived for the ratios of the higher-order transition matrix elements and CTD. These formulas can be used to predict the CTD behavior for highly excited nuclear states.
Neutron matter within QCD sum rules
Cai, Bao-Jun; Chen, Lie-Wen
2018-05-01
The equation of state (EOS) of pure neutron matter (PNM) is studied in QCD sum rules (QCDSRs ). It is found that the QCDSR results on the EOS of PNM are in good agreement with predictions by current advanced microscopic many-body theories. Moreover, the higher-order density terms in quark condensates are shown to be important to describe the empirical EOS of PNM in the density region around and above nuclear saturation density although they play a minor role at subsaturation densities. The chiral condensates in PNM are also studied, and our results indicate that the higher-order density terms in quark condensates, which are introduced to reasonably describe the empirical EOS of PNM at suprasaturation densities, tend to hinder the appearance of chiral symmetry restoration in PNM at high densities.
Scattering and; Delay, Scale, and Sum Migration
Energy Technology Data Exchange (ETDEWEB)
Lehman, S K
2011-07-06
How do we see? What is the mechanism? Consider standing in an open field on a clear sunny day. In the field are a yellow dog and a blue ball. From a wave-based remote sensing point of view the sun is a source of radiation. It is a broadband electromagnetic source which, for the purposes of this introduction, only the visible spectrum is considered (approximately 390 to 750 nanometers or 400 to 769 TeraHertz). The source emits an incident field into the known background environment which, for this example, is free space. The incident field propagates until it strikes an object or target, either the yellow dog or the blue ball. The interaction of the incident field with an object results in a scattered field. The scattered field arises from a mis-match between the background refractive index, considered to be unity, and the scattering object refractive index ('yellow' for the case of the dog, and 'blue' for the ball). This is also known as an impedance mis-match. The scattering objects are referred to as secondary sources of radiation, that radiation being the scattered field which propagates until it is measured by the two receivers known as 'eyes'. The eyes focus the measured scattered field to form images which are processed by the 'wetware' of the brain for detection, identification, and localization. When time series representations of the measured scattered field are available, the image forming focusing process can be mathematically modeled by delayed, scaled, and summed migration. This concept of optical propagation, scattering, and focusing have one-to-one equivalents in the acoustic realm. This document is intended to present the basic concepts of scalar scattering and migration used in wide band wave-based remote sensing and imaging. The terms beamforming and (delayed, scaled, and summed) migration are used interchangeably but are to be distinguished from the narrow band (frequency domain) beamforming to determine
On sum rules for charge transition density
International Nuclear Information System (INIS)
Gul'karov, I.S.
1979-01-01
The form factors of the quadrupole and octupole oscillations of the 12 C nucleus are compared with the predictions of the sum rules for the charge transition density (CTD). These rules allow to obtain various CTD which contain the components k: rsup(lambda+2k-2)rho(r) and rsup(lambda+2k-1)(drho(r)/dr) (k=0, 1, 2...) and can be applied to analyze the inelastic scattering of high energy particles by nuclei. It is shown that the CTD under consideration have different radius dependence and describe the data essentially better (though ambiguously) than the Tassy and Steinwedel-Jensen models do. The recurrent formulas are derived for the ratios of the higher order transition matrix elements and CTD. These formulas can be used to predict the CTD behaviour for highly excited nuclear states
International Nuclear Information System (INIS)
Lopez de la Cruz, J.; Gutierrez, M.A.
2008-01-01
This paper presents a stochastic analysis of spatial point patterns as effect of localized pitting corrosion. The Quadrat Counts method is studied with two empirical pit patterns. The results are dependent on the quadrat size and bias is introduced when empty quadrats are accounted for the analysis. The spatially inhomogeneous Poisson process is used to improve the performance of the Quadrat Counts method. The latter combines Quadrat Counts with distance-based statistics in the analysis of pit patterns. The Inter-Event and the Nearest-Neighbour statistics are here implemented in order to compare their results. Further, the treatment of patterns in irregular domains is discussed
Vacuum solutions of Bianchi cosmologies in quadratic gravity
International Nuclear Information System (INIS)
Deus, Juliano Alves de; Muller, Daniel
2011-01-01
Full text: In this work we solve numerically the vacuum solutions of field equations of Bianchi homogeneous universes in the context of Semiclassical theory. Our interest is to study the quadratic theory of gravity with regard in the cosmological description of our universe in periods of intense fields. Bianchi cosmologies are anisotropic homogeneous cosmological models, but can include the isotropic models as particular cases (Bianchi I, VII and IX include homogeneous and isotropic Friedmann models plane, hyperbolic and spherical, respectively). Homogeneous models are good cosmological representations of our universe. With focus in solutions for intense fields, like the early universe, where isotropy is not necessarily required, the adopted scenario is the vacuum solutions, where the geometry is dominant in determining the gravitation. Still following in this way, the Semiclassical theory, which considers quantum matter fields propagating in classical geometrical background, is addressed to give the field equations. This formalism leads to fourth-order ordinary differential equations, in contrast to second-order equations from General Relativity. The Lagrangian of the theory is quadratic in the Ricci scalar and in the Ricci tensor. The equations system is highly non-linear and can be only numerically solved, except perhaps for few particular cases. We obtained numerical solutions for Bianchi V II A evolving to Minkowski and to de Sitter solutions, and also to singularities. The both first and second solutions were obtained choosing initial conditions near from respective exact vacuum solutions from Einstein theory, which are also exact solutions of the quadratic theory. Other Bianchi types are still under study. (author)
Lipschitz stability of the K-quadratic functional equation | Chahbi ...
African Journals Online (AJOL)
Let N be the set of all positive integers, G an Abelian group with a metric d and E a normed space. For any f : G → E we define the k-quadratic difference of the function f by the formula Qk ƒ(x; y) := 2ƒ(x) + 2k2ƒ(y) - f(x + ky) - f(x - ky) for x; y ∈ G and k ∈ N. Under some assumptions about f and Qkƒ we prove that if Qkƒ is ...
BRST operator for superconformal algebras with quadratic nonlinearity
International Nuclear Information System (INIS)
Khviengia, Z.; Sezgin, E.
1993-07-01
We construct the quantum BRST operators for a large class of superconformal and quasi-superconformal algebras with quadratic nonlinearity. The only free parameter in these algebras is the level of the (super) Kac-Moody sector. The nilpotency of the quantum BRST operator imposes a condition on the level. We find this condition for (quasi) superconformal algebras with a Kac-Moody sector based on a simple Lie algebra and for the Z 2 x Z 2 -graded superconformal algebras with a Kac-Moody sector based on the superalgebra osp(N modul 2M) or sl (N + 2 modul N). (author). 22 refs, 3 tabs
Quadratic integrand double-hybrid made spin-component-scaled
Energy Technology Data Exchange (ETDEWEB)
Brémond, Éric, E-mail: eric.bremond@iit.it; Savarese, Marika [CompuNet, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genoa (Italy); Sancho-García, Juan C.; Pérez-Jiménez, Ángel J. [Departamento de Química Física, Universidad de Alicante, E-03080 Alicante (Spain); Adamo, Carlo [CompuNet, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genoa (Italy); Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris IRCP, F-75005 Paris (France); Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris (France)
2016-03-28
We propose two analytical expressions aiming to rationalize the spin-component-scaled (SCS) and spin-opposite-scaled (SOS) schemes for double-hybrid exchange-correlation density-functionals. Their performances are extensively tested within the framework of the nonempirical quadratic integrand double-hybrid (QIDH) model on energetic properties included into the very large GMTKN30 benchmark database, and on structural properties of semirigid medium-sized organic compounds. The SOS variant is revealed as a less computationally demanding alternative to reach the accuracy of the original QIDH model without losing any theoretical background.
SPEECH EMOTION RECOGNITION USING MODIFIED QUADRATIC DISCRIMINATION FUNCTION
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Quadratic Discrimination Function(QDF)is commonly used in speech emotion recognition,which proceeds on the premise that the input data is normal distribution.In this Paper,we propose a transformation to normalize the emotional features,then derivate a Modified QDF(MQDF) to speech emotion recognition.Features based on prosody and voice quality are extracted and Principal Component Analysis Neural Network (PCANN) is used to reduce dimension of the feature vectors.The results show that voice quality features are effective supplement for recognition.and the method in this paper could improve the recognition ratio effectively.
On Exponential Hedging and Related Quadratic Backward Stochastic Differential Equations
International Nuclear Information System (INIS)
Sekine, Jun
2006-01-01
The dual optimization problem for the exponential hedging problem is addressed with a cone constraint. Without boundedness conditions on the terminal payoff and the drift of the Ito-type controlled process, the backward stochastic differential equation, which has a quadratic growth term in the drift, is derived as a necessary and sufficient condition for optimality via a variational method and dynamic programming. Further, solvable situations are given, in which the value and the optimizer are expressed in closed forms with the help of the Clark-Haussmann-Ocone formula
Quadratic Forms and Semiclassical Eigenfunction Hypothesis for Flat Tori
T. Sardari, Naser
2018-03-01
Let Q( X) be any integral primitive positive definite quadratic form in k variables, where {k≥4}, and discriminant D. For any integer n, we give an upper bound on the number of integral solutions of Q( X) = n in terms of n, k, and D. As a corollary, we prove a conjecture of Lester and Rudnick on the small scale equidistribution of almost all functions belonging to any orthonormal basis of a given eigenspace of the Laplacian on the flat torus {T^d} for {d≥ 5}. This conjecture is motivated by the work of Berry [2,3] on the semiclassical eigenfunction hypothesis.
Abelian groups and quadratic residues in weak arithmetic
Czech Academy of Sciences Publication Activity Database
Jeřábek, Emil
2010-01-01
Roč. 56, č. 3 (2010), s. 262-278 ISSN 0942-5616 R&D Projects: GA AV ČR IAA1019401; GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10190503 Keywords : bounded arithmetic * abelian group * Fermat's little theorem * quadratic reciprocity Subject RIV: BA - General Mathematics Impact factor: 0.361, year: 2010 http://onlinelibrary.wiley.com/doi/10.1002/malq.200910009/abstract;jsessionid=9F636FFACB84C025FD90C7E6880350DD.f03t03
Analysis of electroperforated materials using the quadrat counts method
Energy Technology Data Exchange (ETDEWEB)
Miranda, E; Garzon, C; Garcia-Garcia, J [Departament d' Enginyeria Electronica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); MartInez-Cisneros, C; Alonso, J, E-mail: enrique.miranda@uab.cat [Departament de Quimica AnalItica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)
2011-06-23
The electroperforation distribution in thin porous materials is investigated using the quadrat counts method (QCM), a classical statistical technique aimed to evaluate the deviation from complete spatial randomness (CSR). Perforations are created by means of electrical discharges generated by needle-like tungsten electrodes. The objective of perforating a thin porous material is to enhance its air permeability, a critical issue in many industrial applications involving paper, plastics, textiles, etc. Using image analysis techniques and specialized statistical software it is shown that the perforation locations follow, beyond a certain length scale, a homogeneous 2D Poisson distribution.
C1 Rational Quadratic Trigonometric Interpolation Spline for Data Visualization
Directory of Open Access Journals (Sweden)
Shengjun Liu
2015-01-01
Full Text Available A new C1 piecewise rational quadratic trigonometric spline with four local positive shape parameters in each subinterval is constructed to visualize the given planar data. Constraints are derived on these free shape parameters to generate shape preserving interpolation curves for positive and/or monotonic data sets. Two of these shape parameters are constrained while the other two can be set free to interactively control the shape of the curves. Moreover, the order of approximation of developed interpolant is investigated as O(h3. Numeric experiments demonstrate that our method can construct nice shape preserving interpolation curves efficiently.
Soliton interaction in quadratic and cubic bulk media
DEFF Research Database (Denmark)
Johansen, Steffen Kjær; Bang, Ole
2000-01-01
Summary form only given. The understanding of how and to what extend the cubic nonlinearity affects beam propagation and spatial soliton formation in quadratic media is of vital importance in fundamental and applied nonlinear physics. We consider beam propagation under type-I SHG conditions...... in lossless bulk second order nonlinear optical materials with a nonvanishing third order nonlinearity. It is known that in pure second order systems a single soliton can never collapse whereas in systems with both nonlinearities and that stable single soliton propagation can only in some circumstances...
Linear-quadratic model predictions for tumor control probability
International Nuclear Information System (INIS)
Yaes, R.J.
1987-01-01
Sigmoid dose-response curves for tumor control are calculated from the linear-quadratic model parameters α and Β, obtained from human epidermoid carcinoma cell lines, and are much steeper than the clinical dose-response curves for head and neck cancers. One possible explanation is the presence of small radiation-resistant clones arising from mutations in an initially homogeneous tumor. Using the mutation theory of Delbruck and Luria and of Goldie and Coldman, the authors discuss the implications of such radiation-resistant clones for clinical radiation therapy
Sub-quadratic decoding of one-point hermitian codes
DEFF Research Database (Denmark)
Nielsen, Johan Sebastian Rosenkilde; Beelen, Peter
2015-01-01
We present the first two sub-quadratic complexity decoding algorithms for one-point Hermitian codes. The first is based on a fast realization of the Guruswami-Sudan algorithm using state-of-the-art algorithms from computer algebra for polynomial-ring matrix minimization. The second is a power...... decoding algorithm: an extension of classical key equation decoding which gives a probabilistic decoding algorithm up to the Sudan radius. We show how the resulting key equations can be solved by the matrix minimization algorithms from computer algebra, yielding similar asymptotic complexities....
Field equations for gravity quadratic in the curvature
International Nuclear Information System (INIS)
Rose, B.
1992-01-01
Vacuum field equations for gravity are studied having their origin in a Lagrangian quadratic in the curvature. The motivation for this choice of the Lagrangian-namely the treating of gravity in a strict analogy to gauge theories of Yang-Mills type-is criticized, especially the implied view of connections as gauge potentials with no dynamical relation to the metric. The correct field equations with respect to variation of the connections and the metric independently are given. We deduce field equations which differs from previous ones by variation of the metric, the torsion, and the nonmetricity from which the connections are built. 6 refs
Quadratic Hamiltonians on non-symmetric Poisson structures
International Nuclear Information System (INIS)
Arribas, M.; Blesa, F.; Elipe, A.
2007-01-01
Many dynamical systems may be represented in a set of non-canonical coordinates that generate an su(2) algebraic structure. The topology of the phase space is the one of the S 2 sphere, the Poisson structure is the one of the rigid body, and the Hamiltonian is a parametric quadratic form in these 'spherical' coordinates. However, there are other problems in which the Poisson structure losses its symmetry. In this paper we analyze this case and, we show how the loss of the spherical symmetry affects the phase flow and parametric bifurcations for the bi-parametric cases
International Nuclear Information System (INIS)
Menezes, Filipe; Fedorov, Alexander; Baleizão, Carlos; Berberan-Santos, Mário N; Valeur, Bernard
2013-01-01
Ensemble fluorescence decays are usually analyzed with a sum of exponentials. However, broad continuous distributions of lifetimes, either unimodal or multimodal, occur in many situations. A simple and flexible fitting function for these cases that encompasses the exponential is the Becquerel function. In this work, the applicability of the Becquerel function for the analysis of complex decays of several kinds is tested. For this purpose, decays of mixtures of four different fluorescence standards (binary, ternary and quaternary mixtures) are measured and analyzed. For binary and ternary mixtures, the expected sum of narrow distributions is well recovered from the Becquerel functions analysis, if the correct number of components is used. For ternary mixtures, however, satisfactory fits are also obtained with a number of Becquerel functions smaller than the true number of fluorophores in the mixture, at the expense of broadening the lifetime distributions of the fictitious components. The quaternary mixture studied is well fitted with both a sum of three exponentials and a sum of two Becquerel functions, showing the inevitable loss of information when the number of components is large. Decays of a fluorophore in a heterogeneous environment, known to be represented by unimodal and broad continuous distributions (as previously obtained by the maximum entropy method), are also measured and analyzed. It is concluded that these distributions can be recovered by the Becquerel function method with an accuracy similar to that of the much more complex maximum entropy method. It is also shown that the polar (or phasor) plot is not always helpful for ascertaining the degree (and kind) of complexity of a fluorescence decay. (paper)
The Asymptotic Joint Distribution of Self-Normalized Censored Sums and Sums of Squares
Hahn, Marjorie G.; Kuelbs, Jim; Weiner, Daniel C.
1990-01-01
Empirical versions of appropriate centering and scale constants for random variables which can fail to have second or even first moments are obtainable in various ways via suitable modifications of the summands in the partial sum. This paper discusses a particular modification, called censoring (which is a kind of winsorization), where the (random) number of summands altered tends to infinity but the proportion altered tends to zero as the number of summands increases. Some analytic advantage...
Sum rules and constraints on passive systems
International Nuclear Information System (INIS)
Bernland, A; Gustafsson, M; Luger, A
2011-01-01
A passive system is one that cannot produce energy, a property that naturally poses constraints on the system. A system in convolution form is fully described by its transfer function, and the class of Herglotz functions, holomorphic functions mapping the open upper half-plane to the closed upper half-plane, is closely related to the transfer functions of passive systems. Following a well-known representation theorem, Herglotz functions can be represented by means of positive measures on the real line. This fact is exploited in this paper in order to rigorously prove a set of integral identities for Herglotz functions that relate weighted integrals of the function to its asymptotic expansions at the origin and infinity. The integral identities are the core of a general approach introduced here to derive sum rules and physical limitations on various passive physical systems. Although similar approaches have previously been applied to a wide range of specific applications, this paper is the first to deliver a general procedure together with the necessary proofs. This procedure is described thoroughly and exemplified with examples from electromagnetic theory.
Sum frequency generation for surface vibrational spectroscopy
International Nuclear Information System (INIS)
Hunt, J.H.; Guyot-Sionnest, P.; Shen, Y.R.
1987-01-01
Surface vibrational spectroscopy is one of the best means for characterizing molecular adsorbates. For this reason, many techniques have been developed in the past. However, most of them suffer from poor sensitivity, low spectral and temporal resolution, and applications limited to vacuum solid interfaces. Recently, the second harmonic generation (SHG) technique was proved repeatedly to be a simple but versatile surface probe. It is highly sensitive and surface specific; it is also capable of achieving high temporal, spatial, and spectral resolution. Being an optical technique, it can be applied to any interface accessible by light. The only serious drawback is its lack of molecular selectivity. An obvious remedy is the extension of the technique to IR-visible sum frequency generation (SFG). Surface vibrational spectroscopy with submonolayer sensitivity is then possible using SFG with the help of a tunable IR laser. The authors report here an SFG measurement of the C-H stretch vibration of monolayers of molecules at air-solid and air-liquid interfaces
Fazlul Hoque, Md; Marquette, Ian; Zhang, Yao-Zhong
2015-11-01
We introduce a new family of N dimensional quantum superintegrable models consisting of double singular oscillators of type (n, N-n). The special cases (2,2) and (4,4) have previously been identified as the duals of 3- and 5-dimensional deformed Kepler-Coulomb systems with u(1) and su(2) monopoles, respectively. The models are multiseparable and their wave functions are obtained in (n, N-n) double-hyperspherical coordinates. We obtain the integrals of motion and construct the finitely generated polynomial algebra that is the direct sum of a quadratic algebra Q(3) involving three generators, so(n), so(N-n) (i.e. Q(3) ⨁ so(n) ⨁ so(N-n)). The structure constants of the quadratic algebra itself involve the Casimir operators of the two Lie algebras so(n) and so(N-n). Moreover, we obtain the finite dimensional unitary representations (unirreps) of the quadratic algebra and present an algebraic derivation of the degenerate energy spectrum of the superintegrable model.
Directory of Open Access Journals (Sweden)
Don-Roger Parkinson
2016-02-01
Full Text Available Water samples were collected and analyzed for conductivity, pH, temperature and trihalomethanes (THMs during the fall of 2014 at two monitored municipal drinking water source ponds. Both spot (or grab and time weighted average (TWA sampling methods were assessed over the same two day sampling time period. For spot sampling, replicate samples were taken at each site and analyzed within 12 h of sampling by both Headspace (HS- and direct (DI- solid phase microextraction (SPME sampling/extraction methods followed by Gas Chromatography/Mass Spectrometry (GC/MS. For TWA, a two day passive on-site TWA sampling was carried out at the same sampling points in the ponds. All SPME sampling methods undertaken used a 65-µm PDMS/DVB SPME fiber, which was found optimal for THM sampling. Sampling conditions were optimized in the laboratory using calibration standards of chloroform, bromoform, bromodichloromethane, dibromochloromethane, 1,2-dibromoethane and 1,2-dichloroethane, prepared in aqueous solutions from analytical grade samples. Calibration curves for all methods with R2 values ranging from 0.985–0.998 (N = 5 over the quantitation linear range of 3–800 ppb were achieved. The different sampling methods were compared for quantification of the water samples, and results showed that DI- and TWA- sampling methods gave better data and analytical metrics. Addition of 10% wt./vol. of (NH42SO4 salt to the sampling vial was found to aid extraction of THMs by increasing GC peaks areas by about 10%, which resulted in lower detection limits for all techniques studied. However, for on-site TWA analysis of THMs in natural waters, the calibration standard(s ionic strength conditions, must be carefully matched to natural water conditions to properly quantitate THM concentrations. The data obtained from the TWA method may better reflect actual natural water conditions.
Cyclic subgroups in class groups of real quadratic fields
International Nuclear Information System (INIS)
Washington, L.C.; Zhang Xianke.
1994-01-01
While examining the class numbers of the real quadratic field Q(√n 2 + 3n + 9), we observed that the class number is often a multiple of 3. There is a simple explanation for this, namely -27 = (2n + 3) 2 - 4(n 2 + 3n + 9), so the cubes of the prime ideals above 3 are principal. If the prime ideals themselves are non-principal then 3 must divide the class number. In the present paper, we study this idea from a couple different directions. In the first section we present a criterion that allows us to show that the ideal class group of a real quadratic field has a cyclic subgroup of a given order n. We then give several families of fields to which this criterion applies, hence in which the ideal class groups contain elements of order n. In the second section, we discuss the situation where there is only a potential element of order p (=an odd prime) in the class group, such as the situation described above. We present a modification of the Cohen-Lenstra heuristics for the probability that in this situation the class number is actually a multiple of p. We also extend this idea to predict how often the potential element of order p is actually non-trivial. Both of these predictions agree fairly well with the numerical data. (author). 14 refs, 2 tabs
Universality of quadratic to linear magnetoresistance crossover in disordered conductors
Lara, Silvia; Ramakrishnan, Navneeth; Lai, Ying Tong; Adam, Shaffique
Many experiments measuring Magnetoresistance (MR) showed unsaturating linear behavior at high magnetic fields and quadratic behavior at low fields. In the literature, two very different theoretical models have been used to explain this classical MR as a consequence of sample disorder. The phenomenological Random Resistor Network (RRN) model constructs a grid of four-terminal resistors each with a varying random resistance. The Effective Medium Theory (EMT) model imagines a smoothly varying disorder potential that causes a continuous variation of the local conductivity. In this theoretical work, we demonstrate numerically that both the RRN and EMT models belong to the same universality class, and that a single parameter (the ratio of the fluctuations in the carrier density to the average carrier density) completely determines both the magnitude of the MR and the B-field scale for the crossover from quadratic to linear MR. By considering several experimental data sets in the literature, ranging from thin films of InSb to graphene to Weyl semimetals like Na3Bi, we show that this disorder-induced mechanism for MR is in good agreement with the experiments, and that this comparison of MR with theory reveals information about the spatial carrier density inhomogeneity. This work was supported by the National Research Foundation of Singapore (NRF-NRFF2012-01).
STRUCTURE OPTIMIZATION OF RESERVATION BY PRECISE QUADRATIC REGULARIZATION
Directory of Open Access Journals (Sweden)
KOSOLAP A. I.
2015-11-01
Full Text Available The problem of optimization of the structure of systems redundancy elements. Such problems arise in the design of complex systems. To improve the reliability of operation of such systems of its elements are duplicated. This increases system cost and improves its reliability. When optimizing these systems is maximized probability of failure of the entire system while limiting its cost or the cost is minimized for a given probability of failure-free operation. A mathematical model of the problem is a discrete backup multiextremal. To search for the global extremum of currently used methods of Lagrange multipliers, coordinate descent, dynamic programming, random search. These methods guarantee a just and local solutions are used in the backup tasks of small dimension. In the work for solving redundancy uses a new method for accurate quadratic regularization. This method allows you to convert the original discrete problem to the maximization of multi vector norm on a convex set. This means that the diversity of the tasks given to the problem of redundancy maximize vector norm on a convex set. To solve the problem, a reformed straightdual interior point methods. Currently, it is the best method for local optimization of nonlinear problems. Transformed the task includes a new auxiliary variable, which is determined by dichotomy. There have been numerous comparative numerical experiments in problems with the number of redundant subsystems to one hundred. These experiments confirm the effectiveness of the method of precise quadratic regularization for solving problems of redundancy.
DQM: Decentralized Quadratically Approximated Alternating Direction Method of Multipliers
Mokhtari, Aryan; Shi, Wei; Ling, Qing; Ribeiro, Alejandro
2016-10-01
This paper considers decentralized consensus optimization problems where nodes of a network have access to different summands of a global objective function. Nodes cooperate to minimize the global objective by exchanging information with neighbors only. A decentralized version of the alternating directions method of multipliers (DADMM) is a common method for solving this category of problems. DADMM exhibits linear convergence rate to the optimal objective but its implementation requires solving a convex optimization problem at each iteration. This can be computationally costly and may result in large overall convergence times. The decentralized quadratically approximated ADMM algorithm (DQM), which minimizes a quadratic approximation of the objective function that DADMM minimizes at each iteration, is proposed here. The consequent reduction in computational time is shown to have minimal effect on convergence properties. Convergence still proceeds at a linear rate with a guaranteed constant that is asymptotically equivalent to the DADMM linear convergence rate constant. Numerical results demonstrate advantages of DQM relative to DADMM and other alternatives in a logistic regression problem.
Wave propagation in elastic medium with heterogeneous quadratic nonlinearity
International Nuclear Information System (INIS)
Tang Guangxin; Jacobs, Laurence J.; Qu Jianmin
2011-01-01
This paper studies the one-dimensional wave propagation in an elastic medium with spatially non-uniform quadratic nonlinearity. Two problems are solved analytically. One is for a time-harmonic wave propagating in a half-space where the displacement is prescribed on the surface of the half-space. It is found that spatial non-uniformity of the material nonlinearity causes backscattering of the second order harmonic, which when combined with the forward propagating waves generates a standing wave in steady-state wave motion. The second problem solved is the reflection from and transmission through a layer of finite thickness embedded in an otherwise linearly elastic medium of infinite extent, where it is assumed that the layer has a spatially non-uniform quadratic nonlinearity. The results show that the transmission coefficient for the second order harmonic is proportional to the spatial average of the nonlinearity across the thickness of the layer, independent of the spatial distribution of the nonlinearity. On the other hand, the coefficient of reflection is proportional to a weighted average of the nonlinearity across the layer thickness. The weight function in this weighted average is related to the propagating phase, thus making the coefficient of reflection dependent on the spatial distribution of the nonlinearity. Finally, the paper concludes with some discussions on how to use the reflected and transmitted second harmonic waves to evaluate the variance and autocorrelation length of nonlinear parameter β when the nonlinearity distribution in the layer is a stochastic process.
Electroweak vacuum stability and finite quadratic radiative corrections
Energy Technology Data Exchange (ETDEWEB)
Masina, Isabella [Ferrara Univ. (Italy). Dipt. di Fisica e Scienze della Terra; INFN, Sezione di Ferrara (Italy); Southern Denmark Univ., Odense (Denmark). CP3-Origins; Southern Denmark Univ., Odense (Denmark). DIAS; Nardini, Germano [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quiros, Mariano [Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); IFAE-IAB, Barcelona (Spain)
2015-07-15
If the Standard Model (SM) is an effective theory, as currently believed, it is valid up to some energy scale Λ to which the Higgs vacuum expectation value is sensitive throughout radiative quadratic terms. The latter ones destabilize the electroweak vacuum and generate the SM hierarchy problem. For a given perturbative Ultraviolet (UV) completion, the SM cutoff can be computed in terms of fundamental parameters. If the UV mass spectrum involves several scales the cutoff is not unique and each SM sector has its own UV cutoff Λ{sub i}. We have performed this calculation assuming the Minimal Supersymmetric Standard Model (MSSM) is the SM UV completion. As a result, from the SM point of view, the quadratic corrections to the Higgs mass are equivalent to finite threshold contributions. For the measured values of the top quark and Higgs masses, and depending on the values of the different cutoffs Λ{sub i}, these contributions can cancel even at renormalization scales as low as multi-TeV, unlike the case of a single cutoff where the cancellation only occurs at Planckian energies, a result originally obtained by Veltman. From the MSSM point of view, the requirement of stability of the electroweak minimum under radiative corrections is incorporated into the matching conditions and provides an extra constraint on the Focus Point solution to the little hierarchy problem in the MSSM. These matching conditions can be employed for precise calculations of the Higgs sector in scenarios with heavy supersymmetric fields.
Learning quadratic receptive fields from neural responses to natural stimuli.
Rajan, Kanaka; Marre, Olivier; Tkačik, Gašper
2013-07-01
Models of neural responses to stimuli with complex spatiotemporal correlation structure often assume that neurons are selective for only a small number of linear projections of a potentially high-dimensional input. In this review, we explore recent modeling approaches where the neural response depends on the quadratic form of the input rather than on its linear projection, that is, the neuron is sensitive to the local covariance structure of the signal preceding the spike. To infer this quadratic dependence in the presence of arbitrary (e.g., naturalistic) stimulus distribution, we review several inference methods, focusing in particular on two information theory-based approaches (maximization of stimulus energy and of noise entropy) and two likelihood-based approaches (Bayesian spike-triggered covariance and extensions of generalized linear models). We analyze the formal relationship between the likelihood-based and information-based approaches to demonstrate how they lead to consistent inference. We demonstrate the practical feasibility of these procedures by using model neurons responding to a flickering variance stimulus.
On bent and semi-bent quadratic Boolean functions
DEFF Research Database (Denmark)
Charpin, P.; Pasalic, Enes; Tavernier, C.
2005-01-01
correlation and high nonlinearity. We say that such a sequence is generated by a semi-bent function. Some new families of such function, represented by f(x) = Sigma(i=1)(n-1/2) c(i)Tr(x(2t+1)), n odd and c(i) is an element of F-2, have recently (2002) been introduced by Khoo et al. We first generalize......The maximum-length sequences, also called m-sequences, have received a lot of attention since the late 1960s. In terms of linear-feedback shift register (LFSR) synthesis they are usually generated by certain power polynomials over a finite field and in addition are characterized by a low cross...... their results to even n. We further investigate the conditions on the choice of ci for explicit definitions of new infinite families having three and four trace terms. Also, a class of nonpermutation polynomials whose composition with a quadratic function yields again a quadratic semi-bent function is specified...
Light cone sum rules in nonabelian gauge field theory
Energy Technology Data Exchange (ETDEWEB)
Mallik, S [Bern Univ. (Switzerland). Inst. fuer Theoretische Physik
1981-03-24
The author examines, in the context of nonabelian gauge field theory, the derivation of the light cone sum rules which were obtained earlier on the assumption of dominance of canonical singularity in the current commutator on the light cone. The retarded scaling functions appearing in the sum rules are numbers known in terms of the charges of the quarks and the number of quarks and gluons in the theory. Possible applications of the sum rules are suggested.
On the Laplace transform of the Weinberg type sum rules
International Nuclear Information System (INIS)
Narison, S.
1981-09-01
We consider the Laplace transform of various sum rules of the Weinberg type including the leading non-perturbative effects. We show from the third type Weinberg sum rules that 7.5 to 8.9 1 coupling to the W boson, while the second sum rule gives an upper bound on the A 1 mass (Msub(A 1 ) < or approx. 1.25 GeV). (author)
Premium Pricing of Liability Insurance Using Random Sum Model
Kartikasari, Mujiati Dwi
2017-01-01
Premium pricing is one of important activities in insurance. Nonlife insurance premium is calculated from expected value of historical data claims. The historical data claims are collected so that it forms a sum of independent random number which is called random sum. In premium pricing using random sum, claim frequency distribution and claim severity distribution are combined. The combination of these distributions is called compound distribution. By using liability claim insurance data, we ...
On poisson-stopped-sums that are mixed poisson
Valero Baya, Jordi; Pérez Casany, Marta; Ginebra Molins, Josep
2013-01-01
Maceda (1948) characterized the mixed Poisson distributions that are Poisson-stopped-sum distributions based on the mixing distribution. In an alternative characterization of the same set of distributions here the Poisson-stopped-sum distributions that are mixed Poisson distributions is proved to be the set of Poisson-stopped-sums of either a mixture of zero-truncated Poisson distributions or a zero-modification of it. Peer Reviewed
Inclusive sum rules and spectra of neutrons at the ISR
International Nuclear Information System (INIS)
Grigoryan, A.A.
1975-01-01
Neutron spectra in pp collisions at ISR energies are studied in the framework of sum rules for inclusive processes. The contributions of protons, π- and E- mesons to the energy sum rule are calculated at √5 = 53 GeV. It is shown by means of this sum rule that the spectra of neutrons at the ISR are in contradiction with the spectra of other particles also measured at the ISR
Singular f-sum rule for superfluid 4He
International Nuclear Information System (INIS)
Wong, V.K.
1979-01-01
The validity and applicability to inelastic neutron scattering of a singular f-sum rule for superfluid helium, proposed by Griffin to explain the rhosub(s) dependence in S(k, ω) as observed by Woods and Svensson, are examined in the light of similar sum rules rigorously derived for anharmonic crystals and Bose liquids. It is concluded that the singular f-sum rules are only of microscopic interest. (Auth,)
Compound Poisson Approximations for Sums of Random Variables
Serfozo, Richard F.
1986-01-01
We show that a sum of dependent random variables is approximately compound Poisson when the variables are rarely nonzero and, given they are nonzero, their conditional distributions are nearly identical. We give several upper bounds on the total-variation distance between the distribution of such a sum and a compound Poisson distribution. Included is an example for Markovian occurrences of a rare event. Our bounds are consistent with those that are known for Poisson approximations for sums of...
Coulomb sum rules in the relativistic Fermi gas model
International Nuclear Information System (INIS)
Do Dang, G.; L'Huillier, M.; Nguyen Giai, Van.
1986-11-01
Coulomb sum rules are studied in the framework of the Fermi gas model. A distinction is made between mathematical and observable sum rules. Differences between non-relativistic and relativistic Fermi gas predictions are stressed. A method to deduce a Coulomb response function from the longitudinal response is proposed and tested numerically. This method is applied to the 40 Ca data to obtain the experimental Coulomb sum rule as a function of momentum transfer
Premium Pricing of Liability Insurance Using Random Sum Model
Directory of Open Access Journals (Sweden)
Mujiati Dwi Kartikasari
2017-03-01
Full Text Available Premium pricing is one of important activities in insurance. Nonlife insurance premium is calculated from expected value of historical data claims. The historical data claims are collected so that it forms a sum of independent random number which is called random sum. In premium pricing using random sum, claim frequency distribution and claim severity distribution are combined. The combination of these distributions is called compound distribution. By using liability claim insurance data, we analyze premium pricing using random sum model based on compound distribution
QCD sum rules and applications to nuclear physics
International Nuclear Information System (INIS)
Cohen, T.D.; Xuemin, J.
1994-12-01
Applications of QCD sum-rule methods to the physics of nuclei are reviewed, with an emphasis on calculations of baryon self-energies in infinite nuclear matter. The sum-rule approach relates spectral properties of hadrons propagating in the finite-density medium, such as optical potentials for quasinucleons, to matrix elements of QCD composite operators (condensates). The vacuum formalism for QCD sum rules is generalized to finite density, and the strategy and implementation of the approach is discussed. Predictions for baryon self-energies are compared to those suggested by relativistic nuclear physics phenomenology. Sum rules for vector mesons in dense nuclear matter are also considered. (author)
Adler Function, DIS sum rules and Crewther Relations
International Nuclear Information System (INIS)
Baikov, P.A.; Chetyrkin, K.G.; Kuehn, J.H.
2010-01-01
The current status of the Adler function and two closely related Deep Inelastic Scattering (DIS) sum rules, namely, the Bjorken sum rule for polarized DIS and the Gross-Llewellyn Smith sum rule are briefly reviewed. A new result is presented: an analytical calculation of the coefficient function of the latter sum rule in a generic gauge theory in order O(α s 4 ). It is demonstrated that the corresponding Crewther relation allows to fix two of three colour structures in the O(α s 4 ) contribution to the singlet part of the Adler function.
An electrophysiological signature of summed similarity in visual working memory.
van Vugt, Marieke K; Sekuler, Robert; Wilson, Hugh R; Kahana, Michael J
2013-05-01
Summed-similarity models of short-term item recognition posit that participants base their judgments of an item's prior occurrence on that item's summed similarity to the ensemble of items on the remembered list. We examined the neural predictions of these models in 3 short-term recognition memory experiments using electrocorticographic/depth electrode recordings and scalp electroencephalography. On each experimental trial, participants judged whether a test face had been among a small set of recently studied faces. Consistent with summed-similarity theory, participants' tendency to endorse a test item increased as a function of its summed similarity to the items on the just-studied list. To characterize this behavioral effect of summed similarity, we successfully fit a summed-similarity model to individual participant data from each experiment. Using the parameters determined from fitting the summed-similarity model to the behavioral data, we examined the relation between summed similarity and brain activity. We found that 4-9 Hz theta activity in the medial temporal lobe and 2-4 Hz delta activity recorded from frontal and parietal cortices increased with summed similarity. These findings demonstrate direct neural correlates of the similarity computations that form the foundation of several major cognitive theories of human recognition memory. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Model dependence of energy-weighted sum rules
International Nuclear Information System (INIS)
Kirson, M.W.
1977-01-01
The contribution of the nucleon-nucleon interaction to energy-weighted sum rules for electromagnetic multipole transitions is investigated. It is found that only isoscalar electric transitions might have model-independent energy-weighted sum rules. For these transitions, explicit momentum and angular momentum dependence of the nuclear force give rise to corrections to the sum rule which are found to be negligibly small, thus confirming the model independence of these specific sum rules. These conclusions are unaffected by correlation effects. (author)
Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier
DEFF Research Database (Denmark)
Neumeyer, Stefan; Sorokin, Vladislav; Thomsen, Jon Juel
2016-01-01
We consider the performance of a parametric amplifier with perfect tuning (two-to-one ratio between the parametric and direct excitation frequencies) and quadratic and cubic nonlinearities. A forced Duffing–Mathieu equation with appended quadratic nonlinearity is considered as the model system......, and approximate analytical steady-state solutions and corresponding stabilities are obtained by the method of varying amplitudes. Some general effects of pure quadratic, and mixed quadratic and cubic nonlinearities on parametric amplification are shown. In particular, the effects of mixed quadratic and cubic...... nonlinearities may generate additional amplitude–frequency solutions. In this case an increased response and a more phase sensitive amplitude (phase between excitation frequencies) is obtained, as compared to the case with either pure quadratic or cubic nonlinearity. Furthermore, jumps and bi...
The Model and Quadratic Stability Problem of Buck Converter in DCM
Directory of Open Access Journals (Sweden)
Li Xiaojing
2016-01-01
Full Text Available Quadratic stability is an important performance for control systems. At first, the model of Buck Converter in DCM is built based on the theories of hybrid systems and switched linear systems primarily. Then quadratic stability of SLS and hybrid feedback switching rule are introduced. The problem of Buck Converter’s quadratic stability is researched afterwards. In the end, the simulation analysis and verification are provided. Both experimental verification and theoretical analysis results indicate that the output of Buck Converter in DCM has an excellent performance via quadratic stability control and switching rules.
A Quadratically Convergent O(square root of nL-Iteration Algorithm for Linear Programming
National Research Council Canada - National Science Library
Ye, Y; Gueler, O; Tapia, Richard A; Zhang, Y
1991-01-01
...)-iteration complexity while exhibiting superlinear convergence of the duality gap to zero under the assumption that the iteration sequence converges, and quadratic convergence of the duality gap...
Describing Quadratic Cremer Point Polynomials by Parabolic Perturbations
DEFF Research Database (Denmark)
Sørensen, Dan Erik Krarup
1996-01-01
We describe two infinite order parabolic perturbation proceduresyielding quadratic polynomials having a Cremer fixed point. The main ideais to obtain the polynomial as the limit of repeated parabolic perturbations.The basic tool at each step is to control the behaviour of certain externalrays.......Polynomials of the Cremer type correspond to parameters at the boundary of ahyperbolic component of the Mandelbrot set. In this paper we concentrate onthe main cardioid component. We investigate the differences between two-sided(i.e. alternating) and one-sided parabolic perturbations.In the two-sided case, we prove...... the existence of polynomials having an explicitlygiven external ray accumulating both at the Cremer point and at its non-periodicpreimage. We think of the Julia set as containing a "topologists double comb".In the one-sided case we prove a weaker result: the existence of polynomials havingan explicitly given...
Diagonalizing quadratic bosonic operators by non-autonomous flow equations
Bach, Volker
2016-01-01
The authors study a non-autonomous, non-linear evolution equation on the space of operators on a complex Hilbert space. They specify assumptions that ensure the global existence of its solutions and allow them to derive its asymptotics at temporal infinity. They demonstrate that these assumptions are optimal in a suitable sense and more general than those used before. The evolution equation derives from the Brocketâe"Wegner flow that was proposed to diagonalize matrices and operators by a strongly continuous unitary flow. In fact, the solution of the non-linear flow equation leads to a diagonalization of Hamiltonian operators in boson quantum field theory which are quadratic in the field.
Optimal Piecewise-Linear Approximation of the Quadratic Chaotic Dynamics
Directory of Open Access Journals (Sweden)
J. Petrzela
2012-04-01
Full Text Available This paper shows the influence of piecewise-linear approximation on the global dynamics associated with autonomous third-order dynamical systems with the quadratic vector fields. The novel method for optimal nonlinear function approximation preserving the system behavior is proposed and experimentally verified. This approach is based on the calculation of the state attractor metric dimension inside a stochastic optimization routine. The approximated systems are compared to the original by means of the numerical integration. Real electronic circuits representing individual dynamical systems are derived using classical as well as integrator-based synthesis and verified by time-domain analysis in Orcad Pspice simulator. The universality of the proposed method is briefly discussed, especially from the viewpoint of the higher-order dynamical systems. Future topics and perspectives are also provided
Absence of the Gribov ambiguity in a quadratic gauge
International Nuclear Information System (INIS)
Raval, Haresh
2016-01-01
The Gribov ambiguity exists in various gauges. Algebraic gauges are likely to be ambiguity free. However, algebraic gauges are not Lorentz invariant, which is their fundamental flaw. In addition, they are not generally compatible with the boundary conditions on the gauge fields, which are needed to compactify the space i.e., the ambiguity continues to exist on a compact manifold. Here we discuss a quadratic gauge fixing, which is Lorentz invariant. We consider an example of a spherically symmetric gauge field configuration in which we prove that this Lorentz invariant gauge removes the ambiguity on a compact manifold S 3 , when a proper boundary condition on the gauge configuration is taken into account. Thus, we provide one example where the ambiguity is absent on a compact manifold in the algebraic gauge. We also show that the BRST invariance is preserved in this gauge. (orig.)
Absence of the Gribov ambiguity in a quadratic gauge
Energy Technology Data Exchange (ETDEWEB)
Raval, Haresh [Indian Institute of Technology, Bombay, Department of Physics, Mumbai (India)
2016-05-15
The Gribov ambiguity exists in various gauges. Algebraic gauges are likely to be ambiguity free. However, algebraic gauges are not Lorentz invariant, which is their fundamental flaw. In addition, they are not generally compatible with the boundary conditions on the gauge fields, which are needed to compactify the space i.e., the ambiguity continues to exist on a compact manifold. Here we discuss a quadratic gauge fixing, which is Lorentz invariant. We consider an example of a spherically symmetric gauge field configuration in which we prove that this Lorentz invariant gauge removes the ambiguity on a compact manifold S{sup 3}, when a proper boundary condition on the gauge configuration is taken into account. Thus, we provide one example where the ambiguity is absent on a compact manifold in the algebraic gauge. We also show that the BRST invariance is preserved in this gauge. (orig.)
Quadratic time dependent Hamiltonians and separation of variables
Anzaldo-Meneses, A.
2017-06-01
Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green's function is obtained and a comparison with the classical Hamilton-Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei-Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü-Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems.
Trajectory generation for manipulators using linear quadratic optimal tracking
Directory of Open Access Journals (Sweden)
Olav Egeland
1989-04-01
Full Text Available The reference trajectory is normally known in advance in manipulator control which makes it possible to apply linear quadratic optimal tracking. This gives a control system which rounds corners and generates optimal feedforward. The method may be used for references consisting of straight-line segments as an alternative to the two-step method of using splines to smooth the reference and then applying feedforward. In addition, the method can be used for more complex trajectories. The actual dynamics of the manipulator are taken into account, and this results in smooth and accurate tracking. The method has been applied in combination with the computed torque technique and excellent performance was demonstrated in a simulation study. The method has also been applied experimentally to an industrial spray-painting robot where a saw-tooth reference was tracked. The corner was rounded extremely well, and the steady-state tracking error was eliminated by the optimal feedforward.
Quadratic rational rotations of the torus and dual lattice maps
Kouptsov, K L; Vivaldi, F
2002-01-01
We develop a general formalism for computed-assisted proofs concerning the orbit structure of certain non ergodic piecewise affine maps of the torus, whose eigenvalues are roots of unity. For a specific class of maps, we prove that if the trace is a quadratic irrational (the simplest nontrivial case, comprising 8 maps), then the periodic orbits are organized into finitely many renormalizable families, with exponentially increasing period, plus a finite number of exceptional families. The proof is based on exact computations with algebraic numbers, where units play the role of scaling parameters. Exploiting a duality existing between these maps and lattice maps representing rounded-off planar rotations, we establish the global periodicity of the latter systems, for a set of orbits of full density.
Low photon count based digital holography for quadratic phase cryptography.
Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Ryle, James P; Healy, John J; Lee, Byung-Geun; Sheridan, John T
2017-07-15
Recently, the vulnerability of the linear canonical transform-based double random phase encryption system to attack has been demonstrated. To alleviate this, we present for the first time, to the best of our knowledge, a method for securing a two-dimensional scene using a quadratic phase encoding system operating in the photon-counted imaging (PCI) regime. Position-phase-shifting digital holography is applied to record the photon-limited encrypted complex samples. The reconstruction of the complex wavefront involves four sparse (undersampled) dataset intensity measurements (interferograms) at two different positions. Computer simulations validate that the photon-limited sparse-encrypted data has adequate information to authenticate the original data set. Finally, security analysis, employing iterative phase retrieval attacks, has been performed.
Limits to compression with cascaded quadratic soliton compressors
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Krolikowski, Wieslaw
2008-01-01
We study cascaded quadratic soliton compressors and address the physical mechanisms that limit the compression. A nonlocal model is derived, and the nonlocal response is shown to have an additional oscillatory component in the nonstationary regime when the group-velocity mismatch (GVM) is strong....... This inhibits efficient compression. Raman-like perturbations from the cascaded nonlinearity, competing cubic nonlinearities, higher-order dispersion, and soliton energy may also limit compression, and through realistic numerical simulations we point out when each factor becomes important. We find......, the simulations show that reaching single-cycle duration is ultimately inhibited by competing cubic nonlinearities as well as dispersive waves, that only show up when taking higher-order dispersion into account....
Wind turbine power tracking using an improved multimodel quadratic approach.
Khezami, Nadhira; Benhadj Braiek, Naceur; Guillaud, Xavier
2010-07-01
In this paper, an improved multimodel optimal quadratic control structure for variable speed, pitch regulated wind turbines (operating at high wind speeds) is proposed in order to integrate high levels of wind power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the wind speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the wind turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the wind turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state variables: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control variables. 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Neural network for solving convex quadratic bilevel programming problems.
He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie
2014-03-01
In this paper, using the idea of successive approximation, we propose a neural network to solve convex quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential inclusion. Different from the existing neural network for CQBPP, the model has the least number of state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation results on two numerical examples and the portfolio selection problem show the effectiveness and performance of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.
Quadratic Finite Element Method for 1D Deterministic Transport
International Nuclear Information System (INIS)
Tolar, D R Jr.; Ferguson, J M
2004-01-01
In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ((und r)) and angular ((und (Omega))) dependences on the angular flux ψ(und r),(und (Omega))are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of ψ(und r),(und (Omega)). Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable (μ) in developing the one-dimensional (1D) spherical geometry S N equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S N algorithms
Schwarz and multilevel methods for quadratic spline collocation
Energy Technology Data Exchange (ETDEWEB)
Christara, C.C. [Univ. of Toronto, Ontario (Canada); Smith, B. [Univ. of California, Los Angeles, CA (United States)
1994-12-31
Smooth spline collocation methods offer an alternative to Galerkin finite element methods, as well as to Hermite spline collocation methods, for the solution of linear elliptic Partial Differential Equations (PDEs). Recently, optimal order of convergence spline collocation methods have been developed for certain degree splines. Convergence proofs for smooth spline collocation methods are generally more difficult than for Galerkin finite elements or Hermite spline collocation, and they require stronger assumptions and more restrictions. However, numerical tests indicate that spline collocation methods are applicable to a wider class of problems, than the analysis requires, and are very competitive to finite element methods, with respect to efficiency. The authors will discuss Schwarz and multilevel methods for the solution of elliptic PDEs using quadratic spline collocation, and compare these with domain decomposition methods using substructuring. Numerical tests on a variety of parallel machines will also be presented. In addition, preliminary convergence analysis using Schwarz and/or maximum principle techniques will be presented.
Estimation of stature from sternum - Exploring the quadratic models.
Saraf, Ashish; Kanchan, Tanuj; Krishan, Kewal; Ateriya, Navneet; Setia, Puneet
2018-04-14
Identification of the dead is significant in examination of unknown, decomposed and mutilated human remains. Establishing the biological profile is the central issue in such a scenario, and stature estimation remains one of the important criteria in this regard. The present study was undertaken to estimate stature from different parts of the sternum. A sample of 100 sterna was obtained from individuals during the medicolegal autopsies. Length of the deceased and various measurements of the sternum were measured. Student's t-test was performed to find the sex differences in stature and sternal measurements included in the study. Correlation between stature and sternal measurements were analysed using Karl Pearson's correlation, and linear and quadratic regression models were derived. All the measurements were found to be significantly larger in males than females. Stature correlated best with the combined length of sternum, among males (R = 0.894), females (R = 0.859), and for the total sample (R = 0.891). The study showed that the models derived for stature estimation from combined length of sternum are likely to give the most accurate estimates of stature in forensic case work when compared to manubrium and mesosternum. Accuracy of stature estimation further increased with quadratic models derived for the mesosternum among males and combined length of sternum among males and females when compared to linear regression models. Future studies in different geographical locations and a larger sample size are proposed to confirm the study observations. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Direct and reverse inclusions for strongly multiple summing operators
Indian Academy of Sciences (India)
and strongly multiple summing operators under the assumption that the range has finite cotype. Keywords. .... multiple (q, p)-summing, if there exists a constant C ≥ 0 such that for every choice of systems (x j i j )1≤i j ≤m j ...... Ideals and their Applications in Theoretical Physics (1983) (Leipzig: Teubner-Texte) pp. 185–199.
29 CFR 4044.75 - Other lump sum benefits.
2010-07-01
... sum benefits. The value of a lump sum benefit which is not covered under § 4044.73 or § 4044.74 is equal to— (a) The value under the qualifying bid, if an insurer provides the benefit; or (b) The present value of the benefit as of the date of distribution, determined using reasonable actuarial assumptions...
Lattice QCD evaluation of baryon magnetic moment sum rules
International Nuclear Information System (INIS)
Leinweber, D.B.
1991-05-01
Magnetic moment combinations and sum rules are evaluated using recent results for the magnetic moments of octet baryons determined in a numerical simulation of quenched QCD. The model-independent and parameter-free results of the lattice calculations remove some of the confusion and contradiction surrounding past magnetic moment sum rule analyses. The lattice results reveal the underlying quark dynamics investigated by magnetic moment sum rules and indicate the origin of magnetic moment quenching for the non-strange quarks in Σ. In contrast to previous sum rule analyses, the magnetic moments of nonstrange quarks in Ξ are seen to be enhanced in the lattice results. In most cases, the spin-dependent dynamics and center-of-mass effects giving rise to baryon dependence of the quark moments are seen to be sufficient to violate the sum rules in agreement with experimental measurements. In turn, the sum rules are used to further examine the results of the lattice simulation. The Sachs sum rule suggests that quark loop contributions not included in present lattice calculations may play a key role in removing the discrepancies between lattice and experimental ratios of magnetic moments. This is supported by other sum rules sensitive to quark loop contributions. A measure of the isospin symmetry breaking in the effective quark moments due to quark loop contributions is in agreement with model expectations. (Author) 16 refs., 2 figs., 2 tabs
Luttinger and Hubbard sum rules: are they compatible?
International Nuclear Information System (INIS)
Matho, K.
1992-01-01
A so-called Hubbard sum rule determines the weight of a satellite in fermionic single-particle excitations with strong local repulsion (U→∞). Together with the Luttinger sum rule, this imposes two different energy scales on the remaining finite excitations. In the Hubbard chain, this has been identified microscopically as being due to a separation of spin and charge. (orig.)
Chain hexagonal cacti with the extremal eccentric distance sum.
Qu, Hui; Yu, Guihai
2014-01-01
Eccentric distance sum (EDS), which can predict biological and physical properties, is a topological index based on the eccentricity of a graph. In this paper we characterize the chain hexagonal cactus with the minimal and the maximal eccentric distance sum among all chain hexagonal cacti of length n, respectively. Moreover, we present exact formulas for EDS of two types of hexagonal cacti.
A sum rule description of giant resonances at finite temperature
International Nuclear Information System (INIS)
Meyer, J.; Quentin, P.; Brack, M.
1983-01-01
A generalization of the sum rule approach to collective motion at finite temperature is presented. The m 1 and msub(-1) sum rules for the isovector dipole and the isoscalar monopole electric modes have been evaluated with the modified SkM force for the 208 Pb nucleus. The variation of the resulting giant resonance energies with temperature is discussed. (orig.)
Finding Sums for an Infinite Class of Alternating Series
Chen, Zhibo; Wei, Sheng; Xiao, Xuerong
2012-01-01
Calculus II students know that many alternating series are convergent by the Alternating Series Test. However, they know few alternating series (except geometric series and some trivial ones) for which they can find the sum. In this article, we present a method that enables the students to find sums for infinitely many alternating series in the…
Partial sums of arithmetical functions with absolutely convergent ...
Indian Academy of Sciences (India)
Keywords. Ramanujan expansions; average order; error terms; sum-of-divisors functions; Jordan's totient functions. 2010 Mathematics Subject Classification. 11N37, 11A25, 11K65. 1. Introduction. The theory of Ramanujan sums and Ramanujan expansions has emerged from the seminal article [10] of Ramanujan. In 1918 ...
28 CFR 523.16 - Lump sum awards.
2010-07-01
... satisfactory performance of an unusually hazardous assignment; (c) An act which protects the lives of staff or... TRANSFER COMPUTATION OF SENTENCE Extra Good Time § 523.16 Lump sum awards. Any staff member may recommend... award is calculated. No seniority is accrued for such awards. Staff may recommend lump sum awards of...
Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms
International Nuclear Information System (INIS)
Ablinger, Jakob; Schneider, Carsten
2013-01-01
In recent three-loop calculations of massive Feynman integrals within Quantum Chromodynamics (QCD) and, e.g., in recent combinatorial problems the so-called generalized harmonic sums (in short S-sums) arise. They are characterized by rational (or real) numerator weights also different from ±1. In this article we explore the algorithmic and analytic properties of these sums systematically. We work out the Mellin and inverse Mellin transform which connects the sums under consideration with the associated Poincare iterated integrals, also called generalized harmonic polylogarithms. In this regard, we obtain explicit analytic continuations by means of asymptotic expansions of the S-sums which started to occur frequently in current QCD calculations. In addition, we derive algebraic and structural relations, like differentiation w.r.t. the external summation index and different multi-argument relations, for the compactification of S-sum expressions. Finally, we calculate algebraic relations for infinite S-sums, or equivalently for generalized harmonic polylogarithms evaluated at special values. The corresponding algorithms and relations are encoded in the computer algebra package HarmonicSums.
On contribution of instantons to nucleon sum rules
International Nuclear Information System (INIS)
Dorokhov, A.E.; Kochelev, N.I.
1989-01-01
The contribution of instantons to nucleon QCD sum rules is obtained. It is shown that this contribution does provide stabilization of the sum rules and leads to formation of a nucleon as a bound state of quarks in the instanton field. 17 refs.; 3 figs
Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms
Energy Technology Data Exchange (ETDEWEB)
Ablinger, Jakob; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2013-01-15
In recent three-loop calculations of massive Feynman integrals within Quantum Chromodynamics (QCD) and, e.g., in recent combinatorial problems the so-called generalized harmonic sums (in short S-sums) arise. They are characterized by rational (or real) numerator weights also different from {+-}1. In this article we explore the algorithmic and analytic properties of these sums systematically. We work out the Mellin and inverse Mellin transform which connects the sums under consideration with the associated Poincare iterated integrals, also called generalized harmonic polylogarithms. In this regard, we obtain explicit analytic continuations by means of asymptotic expansions of the S-sums which started to occur frequently in current QCD calculations. In addition, we derive algebraic and structural relations, like differentiation w.r.t. the external summation index and different multi-argument relations, for the compactification of S-sum expressions. Finally, we calculate algebraic relations for infinite S-sums, or equivalently for generalized harmonic polylogarithms evaluated at special values. The corresponding algorithms and relations are encoded in the computer algebra package HarmonicSums.
An electrophysiological signature of summed similarity in visual working memory
Van Vugt, Marieke K.; Sekuler, Robert; Wilson, Hugh R.; Kahana, Michael J.
Summed-similarity models of short-term item recognition posit that participants base their judgments of an item's prior occurrence on that item's summed similarity to the ensemble of items on the remembered list. We examined the neural predictions of these models in 3 short-term recognition memory
Faraday effect revisited: sum rules and convergence issues
DEFF Research Database (Denmark)
Cornean, Horia; Nenciu, Gheorghe
2010-01-01
This is the third paper of a series revisiting the Faraday effect. The question of the absolute convergence of the sums over the band indices entering the Verdet constant is considered. In general, sum rules and traces per unit volume play an important role in solid-state physics, and they give...
Semiempirical search for oxide superconductors based on bond valence sums
International Nuclear Information System (INIS)
Tanaka, S.; Fukushima, N.; Niu, H.; Ando, K.
1992-01-01
Relationships between crystal structures and electronic states of layered transition-metal oxides are analyzed in the light of bond valence sums. Correlations between the superconducting transition temperature T c and the bond-valence-sum parameters are investigated for the high-T c cuprate compounds. Possibility of making nonsuperconducting oxides superconducting is discussed. (orig.)
Efficient yellow beam generation by intracavity sum frequency ...
Indian Academy of Sciences (India)
2014-02-06
Feb 6, 2014 ... We present our studies on dual wavelength operation using a single Nd:YVO4 crystal and its intracavity sum frequency generation by considering the influence of the thermal lensing effect on the performance of the laser. A KTP crystal cut for type-II phase matching was used for intracavity sum frequency ...
Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms
Energy Technology Data Exchange (ETDEWEB)
Ablinger, Jakob; Schneider, Carsten [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040, Linz (Austria); Blümlein, Johannes [Deutsches Elektronen–Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany)
2013-08-15
In recent three-loop calculations of massive Feynman integrals within Quantum Chromodynamics (QCD) and, e.g., in recent combinatorial problems the so-called generalized harmonic sums (in short S-sums) arise. They are characterized by rational (or real) numerator weights also different from ±1. In this article we explore the algorithmic and analytic properties of these sums systematically. We work out the Mellin and inverse Mellin transform which connects the sums under consideration with the associated Poincaré iterated integrals, also called generalized harmonic polylogarithms. In this regard, we obtain explicit analytic continuations by means of asymptotic expansions of the S-sums which started to occur frequently in current QCD calculations. In addition, we derive algebraic and structural relations, like differentiation with respect to the external summation index and different multi-argument relations, for the compactification of S-sum expressions. Finally, we calculate algebraic relations for infinite S-sums, or equivalently for generalized harmonic polylogarithms evaluated at special values. The corresponding algorithms and relations are encoded in the computer algebra package HarmonicSums.
Volume sums of polar Blaschke–Minkowski homomorphisms
Indian Academy of Sciences (India)
In this article, we establish Minkowski and Aleksandrov–Fenchel type inequalities for the volume sum of polars of Blaschke–Minkowski homomorphisms. Keywords. Blaschke–Minkowski homomorphism; volume differences; volume sum; projection body operator. 2010 Mathematics Subject Classification. 52A40, 52A30. 1.
Harmonic sums, polylogarithms, special numbers, and their generalizations
International Nuclear Information System (INIS)
Ablinger, Jakob
2013-04-01
In these introductory lectures we discuss classes of presently known nested sums, associated iterated integrals, and special constants which hierarchically appear in the evaluation of massless and massive Feynman diagrams at higher loops. These quantities are elements of stuffle and shuffle algebras implying algebraic relations being widely independent of the special quantities considered. They are supplemented by structural relations. The generalizations are given in terms of generalized harmonic sums, (generalized) cyclotomic sums, and sums containing in addition binomial and inverse-binomial weights. To all these quantities iterated integrals and special numbers are associated. We also discuss the analytic continuation of nested sums of different kind to complex values of the external summation bound N.
Evaluation of the multi-sums for large scale problems
International Nuclear Information System (INIS)
Bluemlein, J.; Hasselhuhn, A.; Schneider, C.
2012-02-01
A big class of Feynman integrals, in particular, the coefficients of their Laurent series expansion w.r.t. the dimension parameter ε can be transformed to multi-sums over hypergeometric terms and harmonic sums. In this article, we present a general summation method based on difference fields that simplifies these multi--sums by transforming them from inside to outside to representations in terms of indefinite nested sums and products. In particular, we present techniques that assist in the task to simplify huge expressions of such multi-sums in a completely automatic fashion. The ideas are illustrated on new calculations coming from 3-loop topologies of gluonic massive operator matrix elements containing two fermion lines, which contribute to the transition matrix elements in the variable flavor scheme. (orig.)
Harmonic sums, polylogarithms, special numbers, and their generalizations
Energy Technology Data Exchange (ETDEWEB)
Ablinger, Jakob [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2013-04-15
In these introductory lectures we discuss classes of presently known nested sums, associated iterated integrals, and special constants which hierarchically appear in the evaluation of massless and massive Feynman diagrams at higher loops. These quantities are elements of stuffle and shuffle algebras implying algebraic relations being widely independent of the special quantities considered. They are supplemented by structural relations. The generalizations are given in terms of generalized harmonic sums, (generalized) cyclotomic sums, and sums containing in addition binomial and inverse-binomial weights. To all these quantities iterated integrals and special numbers are associated. We also discuss the analytic continuation of nested sums of different kind to complex values of the external summation bound N.
Evaluation of the multi-sums for large scale problems
Energy Technology Data Exchange (ETDEWEB)
Bluemlein, J.; Hasselhuhn, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation
2012-02-15
A big class of Feynman integrals, in particular, the coefficients of their Laurent series expansion w.r.t. the dimension parameter {epsilon} can be transformed to multi-sums over hypergeometric terms and harmonic sums. In this article, we present a general summation method based on difference fields that simplifies these multi--sums by transforming them from inside to outside to representations in terms of indefinite nested sums and products. In particular, we present techniques that assist in the task to simplify huge expressions of such multi-sums in a completely automatic fashion. The ideas are illustrated on new calculations coming from 3-loop topologies of gluonic massive operator matrix elements containing two fermion lines, which contribute to the transition matrix elements in the variable flavor scheme. (orig.)
Lim, Kim-Hui,; Har, Wai-Mun
2008-01-01
The lack of academic and thinking culture is getting more worried and becomes a major challenge to our academia society this 21st century. Few directions that move academia from "cogito ergo sum" to "consumo ergo sum" are actually leading us to "the end of academia". Those directions are: (1) the death of dialectic;…
de Klerk, E.; Sotirov, R.
2007-01-01
We consider semidefinite programming relaxations of the quadratic assignment problem, and show how to exploit group symmetry in the problem data. Thus we are able to compute the best known lower bounds for several instances of quadratic assignment problems from the problem library: [R.E. Burkard,
DEFF Research Database (Denmark)
Bache, Morten; Moses, J.; Wise, F.W.
2010-01-01
Erratum for [M. Bache, J. Moses, and F. W. Wise, "Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities," J. Opt. Soc. Am. B 24, 2752-2762 (2007)].......Erratum for [M. Bache, J. Moses, and F. W. Wise, "Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities," J. Opt. Soc. Am. B 24, 2752-2762 (2007)]....
Directory of Open Access Journals (Sweden)
Xuewen Mu
2015-01-01
quadratic programming over second-order cones and a bounded set. At each iteration, we only need to compute the metric projection onto the second-order cones and the projection onto the bound set. The result of convergence is given. Numerical results demonstrate that our method is efficient for the convex quadratic second-order cone programming problems with bounded constraints.
The regular indefinite linear-quadratic problem with linear endpoint constraints
Soethoudt, J.M.; Trentelman, H.L.
1989-01-01
This paper deals with the infinite horizon linear-quadratic problem with indefinite cost. Given a linear system, a quadratic cost functional and a subspace of the state space, we consider the problem of minimizing the cost functional over all inputs for which the state trajectory converges to that
A Novel Single Switch Transformerless Quadratic DC/DC Buck-Boost Converter
DEFF Research Database (Denmark)
Mostaan, Ali; A. Gorji, Saman; N. Soltani, Mohsen
2017-01-01
A novel quadratic buck-boost DC/DC converter is presented in this study. The proposed converter utilizes only one active switch and can step-up/down the input voltage, while the existing single switch quadratic buck/boost converters can only work in step-up or step-down mode. First, the proposed ...
Geometrical Solutions of Some Quadratic Equations with Non-Real Roots
Pathak, H. K.; Grewal, A. S.
2002-01-01
This note gives geometrical/graphical methods of finding solutions of the quadratic equation ax[squared] + bx + c = 0, a [not equal to] 0, with non-real roots. Three different cases which give rise to non-real roots of the quadratic equation have been discussed. In case I a geometrical construction and its proof for finding the solutions of the…
Estimating sample size for a small-quadrat method of botanical ...
African Journals Online (AJOL)
Reports the results of a study conducted to determine an appropriate sample size for a small-quadrat method of botanical survey for application in the Mixed Bushveld of South Africa. Species density and grass density were measured using a small-quadrat method in eight plant communities in the Nylsvley Nature Reserve.
Directory of Open Access Journals (Sweden)
A. P. Karpenko
2015-01-01
Full Text Available We consider the relatively new and rapidly developing class of methods to solve a problem of multi-objective optimization, based on the preliminary built finite-dimensional approximation of the set, and thereby, the Pareto front of this problem as well. The work investigates the efficiency of several modifications of the method of adaptive weighted sum (AWS. This method proposed in the paper of Ryu and Kim Van (JH. Ryu, S. Kim, H. Wan is intended to build Pareto approximation of the multi-objective optimization problem.The AWS method uses quadratic approximation of the objective functions in the current sub-domain of the search space (the area of trust based on the gradient and Hessian matrix of the objective functions. To build the (quadratic meta objective functions this work uses methods of the experimental design theory, which involves calculating the values of these functions in the grid nodes covering the area of trust (a sensing method of the search domain. There are two groups of the sensing methods under consideration: hypercube- and hyper-sphere-based methods. For each of these groups, a number of test multi-objective optimization tasks has been used to study the efficiency of the following grids: "Latin Hypercube"; grid, which is uniformly random for each measurement; grid, based on the LP sequences.
Zero-sum bias: perceived competition despite unlimited resources
Directory of Open Access Journals (Sweden)
Daniel V Meegan
2010-11-01
Full Text Available Zero-sum bias describes intuitively judging a situation to be zero-sum (i.e., resources gained by one party are matched by corresponding losses to another party when it is actually non-zero-sum. The experimental participants were students at a university where students’ grades are determined by how the quality of their work compares to a predetermined standard of quality rather than to the quality of the work produced by other students. This creates a non-zero-sum situation in which high grades are an unlimited resource. In three experiments, participants were shown the grade distribution after a majority of the students in a course had completed an assigned presentation, and asked to predict the grade of the next presenter. When many high grades had already been given, there was a corresponding increase in low grade predictions. This suggests a zero-sum bias, in which people perceive a competition for a limited resource despite unlimited resource availability. Interestingly, when many low grades had already been given, there was not a corresponding increase in high grade predictions. This suggests that a zero-sum heuristic is only applied in response to the allocation of desirable resources. A plausible explanation for the findings is that a zero-sum heuristic evolved as a cognitive adaptation to enable successful intra-group competition for limited resources. Implications for understanding inter-group interaction are also discussed.
Zero-sum bias: perceived competition despite unlimited resources.
Meegan, Daniel V
2010-01-01
Zero-sum bias describes intuitively judging a situation to be zero-sum (i.e., resources gained by one party are matched by corresponding losses to another party) when it is actually non-zero-sum. The experimental participants were students at a university where students' grades are determined by how the quality of their work compares to a predetermined standard of quality rather than to the quality of the work produced by other students. This creates a non-zero-sum situation in which high grades are an unlimited resource. In three experiments, participants were shown the grade distribution after a majority of the students in a course had completed an assigned presentation, and asked to predict the grade of the next presenter. When many high grades had already been given, there was a corresponding increase in low grade predictions. This suggests a zero-sum bias, in which people perceive a competition for a limited resource despite unlimited resource availability. Interestingly, when many low grades had already been given, there was not a corresponding increase in high grade predictions. This suggests that a zero-sum heuristic is only applied in response to the allocation of desirable resources. A plausible explanation for the findings is that a zero-sum heuristic evolved as a cognitive adaptation to enable successful intra-group competition for limited resources. Implications for understanding inter-group interaction are also discussed.
Harmonic sums and polylogarithms generated by cyclotomic polynomials
Energy Technology Data Exchange (ETDEWEB)
Ablinger, Jakob; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2011-05-15
The computation of Feynman integrals in massive higher order perturbative calculations in renormalizable Quantum Field Theories requires extensions of multiply nested harmonic sums, which can be generated as real representations by Mellin transforms of Poincare-iterated integrals including denominators of higher cyclotomic polynomials. We derive the cyclotomic harmonic polylogarithms and harmonic sums and study their algebraic and structural relations. The analytic continuation of cyclotomic harmonic sums to complex values of N is performed using analytic representations. We also consider special values of the cyclotomic harmonic polylogarithms at argument x=1, resp., for the cyclotomic harmonic sums at N{yields}{infinity}, which are related to colored multiple zeta values, deriving various of their relations, based on the stuffle and shuffle algebras and three multiple argument relations. We also consider infinite generalized nested harmonic sums at roots of unity which are related to the infinite cyclotomic harmonic sums. Basis representations are derived for weight w=1,2 sums up to cyclotomy l=20. (orig.)
Measurement sum theory and application - Application to low level measurements
International Nuclear Information System (INIS)
Puydarrieux, S.; Bruel, V.; Rivier, C.; Crozet, M.; Vivier, A.; Manificat, G.; Thaurel, B.; Mokili, M.; Philippot, B.; Bohaud, E.
2015-09-01
In laboratories, most of the Total Sum methods implemented today use substitution or censure methods for nonsignificant or negative values, and thus create biases which can sometimes be quite large. They are usually positive, and generate, for example, becquerel (Bq) counting or 'administrative' quantities of materials (= 'virtual'), thus artificially falsifying the records kept by the laboratories under regulatory requirements (environment release records, waste records, etc.). This document suggests a methodology which will enable the user to avoid such biases. It is based on the following two fundamental rules: - The Total Sum of measurement values must be established based on all the individual measurement values, even those considered non-significant including the negative values. Any modification of these values, under the pretext that they are not significant, will inevitably lead to biases in the accumulated result and falsify the evaluation of its uncertainty. - In Total Sum operations, the decision thresholds are arrived at in a similar way to the approach used for uncertainties. The document deals with four essential aspects of the notion of 'measurement Total Sums': - The expression of results and associated uncertainties close to Decision Thresholds, and Detection or Quantification Limits, - The Total Sum of these measurements: sum or mean, - The calculation of the uncertainties associated with the Total Sums, - Result presentation (particularly when preparing balance sheets or reports, etc.) Several case studies arising from different situations are used to illustrate the methodology: environmental monitoring reports, release reports, and chemical impurity Total Sums for the qualification of a finished product. The special case of material balances, in which the measurements are usually all significant and correlated (the covariance term cannot then be ignored) will be the subject of a future second document. This
Light cone sum rules for single-pion electroproduction
International Nuclear Information System (INIS)
Mallik, S.
1978-01-01
Light cone dispersion sum rules (of low energy and superconvergence types) are derived for nucleon matrix elements of the commutator involving electromagnetic and divergence of axial vector currents. The superconvergence type sum rules in the fixed mass limit are rewritten without requiring the knowledge of Regge subtractions. The retarded scaling functions occurring in these sum rules are evaluated within the framework of quark light cone algebra of currents. Besides a general consistency check of the framework underlying the derivation, the author infers, on the basis of crude evaluation of scaling functions, an upper limit of 100 MeV for the bare mass of nonstrange quarks. (Auth.)
Parity of Θ+(1540) from QCD sum rules
International Nuclear Information System (INIS)
Lee, Su Houng; Kim, Hungchong; Kwon, Youngshin
2005-01-01
The QCD sum rule for the pentaquark Θ + , first analyzed by Sugiyama, Doi and Oka, is reanalyzed with a phenomenological side that explicitly includes the contribution from the two-particle reducible kaon-nucleon intermediate state. The magnitude for the overlap of the Θ + interpolating current with the kaon-nucleon state is obtained by using soft-kaon theorem and a separate sum rule for the ground state nucleon with the pentaquark nucleon interpolating current. It is found that the K-N intermediate state constitutes only 10% of the sum rule so that the original claim that the parity of Θ + is negative remains valid
The Eccentric-distance Sum of Some Graphs
P, Padmapriya; Mathad, Veena
2017-01-01
Let $G = (V,E)$ be a simple connected graph. Theeccentric-distance sum of $G$ is defined as$\\xi^{ds}(G) =\\ds\\sum_{\\{u,v\\}\\subseteq V(G)} [e(u)+e(v)] d(u,v)$, where $e(u)$ %\\dsis the eccentricity of the vertex $u$ in $G$ and $d(u,v)$ is thedistance between $u$ and $v$. In this paper, we establish formulaeto calculate the eccentric-distance sum for some graphs, namelywheel, star, broom, lollipop, double star, friendship, multi-stargraph and the join of $P_{n-2}$ and $P_2$.
The eccentric-distance sum of some graphs
Directory of Open Access Journals (Sweden)
Padmapriya P
2017-04-01
Full Text Available Let $G = (V,E$ be a simple connected graph. Theeccentric-distance sum of $G$ is defined as$\\xi^{ds}(G =\\ds\\sum_{\\{u,v\\}\\subseteq V(G} [e(u+e(v] d(u,v$, where $e(u$ %\\dsis the eccentricity of the vertex $u$ in $G$ and $d(u,v$ is thedistance between $u$ and $v$. In this paper, we establish formulaeto calculate the eccentric-distance sum for some graphs, namelywheel, star, broom, lollipop, double star, friendship, multi-stargraph and the join of $P_{n-2}$ and $P_2$.
Neutrino mass sum rules and symmetries of the mass matrix
Energy Technology Data Exchange (ETDEWEB)
Gehrlein, Julia [Karlsruhe Institute of Technology, Institut fuer Theoretische Teilchenphysik, Karlsruhe (Germany); Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain); Instituto de Fisica Teorica UAM/CSIC, Madrid (Spain); Spinrath, Martin [Karlsruhe Institute of Technology, Institut fuer Theoretische Teilchenphysik, Karlsruhe (Germany); National Center for Theoretical Sciences, Physics Division, Hsinchu (China)
2017-05-15
Neutrino mass sum rules have recently gained again more attention as a powerful tool to discriminate and test various flavour models in the near future. A related question which has not yet been discussed fully satisfactorily was the origin of these sum rules and if they are related to any residual or accidental symmetry. We will address this open issue here systematically and find previous statements confirmed. Namely, the sum rules are not related to any enhanced symmetry of the Lagrangian after family symmetry breaking but they are simply the result of a reduction of free parameters due to skillful model building. (orig.)
Moessbauer sum rules for use with synchrotron sources
International Nuclear Information System (INIS)
Lipkin, Harry J.
1999-01-01
The availability of tunable synchrotron radiation sources with millivolt resolution has opened new prospects for exploring dynamics of complex systems with Moessbauer spectroscopy. Early Moessbauer treatments and moment sum rules are extended to treat inelastic excitations measured in synchrotron experiments, with emphasis on the unique new conditions absent in neutron scattering and arising in resonance scattering: prompt absorption, delayed emission, recoil-free transitions and coherent forward scattering. The first moment sum rule normalizes the inelastic spectrum. New sum rules obtained for higher moments include the third moment proportional to the second derivative of the potential acting on the Moessbauer nucleus and independent of temperature in the the harmonic approximation
Derivation of sum rules for quark and baryon fields
International Nuclear Information System (INIS)
Bongardt, K.
1978-01-01
In an analogous way to the Weinberg sum rules, two spectral-function sum rules for quark and baryon fields are derived by means of the concept of lightlike charges. The baryon sum rules are valid for the case of SU 3 as well as for SU 4 and the one-particle approximation yields a linear mass relation. This relation is not in disagreement with the normal linear GMO formula for the baryons. The calculated masses of the first resonance states agree very well with the experimental data
Adler-Weisberger sum rule for WLWL→WLWL scattering
International Nuclear Information System (INIS)
Pham, T.N.
1991-01-01
We analyse the Adler-Weisberger sum rule for W L W L →W L W L scattering. We find that at some energy, the W L W L total cross section must be large to saturate the sum rule. Measurements at future colliders would be needed to check the sum rule and to obtain the decay rates Γ(H→W L W L , Z L Z L ) which would be modified by the existence of a P-wave vector meson resonance in the standard model with strongly interacting Higgs sector or in technicolour models. (orig.)
A toolbox for Harmonic Sums and their analytic continuations
Energy Technology Data Exchange (ETDEWEB)
Ablinger, Jakob; Schneider, Carsten [RISC, J. Kepler University, Linz (Austria); Bluemlein, Johannes [DESY, Zeuthen (Germany)
2010-07-01
The package HarmonicSums implemented in the computer algebra system Mathematica is presented. It supports higher loop calculations in QCD and QED to represent single-scale quantities like anomalous dimensions and Wilson coefficients. The package allows to reduce general harmonic sums due to their algebraic and different structural relations. We provide a general framework for these reductions and the explicit representations up to weight w=8. For the use in experimental analyzes we also provide an analytic formalism to continue the harmonic sums form their integer arguments into the complex plane, which includes their recursions and asymptotic representations. The main ideas are illustrated by specific examples.
Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach.
Tanaka, Kazuo; Ohtake, Hiroshi; Wang, Hua O
2009-04-01
This paper presents the guaranteed cost control of polynomial fuzzy systems via a sum of squares (SOS) approach. First, we present a polynomial fuzzy model and controller that are more general representations of the well-known Takagi-Sugeno (T-S) fuzzy model and controller, respectively. Second, we derive a guaranteed cost control design condition based on polynomial Lyapunov functions. Hence, the design approach discussed in this paper is more general than the existing LMI approaches (to T-S fuzzy control system designs) based on quadratic Lyapunov functions. The design condition realizes a guaranteed cost control by minimizing the upper bound of a given performance function. In addition, the design condition in the proposed approach can be represented in terms of SOS and is numerically (partially symbolically) solved via the recent developed SOSTOOLS. To illustrate the validity of the design approach, two design examples are provided. The first example deals with a complicated nonlinear system. The second example presents micro helicopter control. Both the examples show that our approach provides more extensive design results for the existing LMI approach.
Approximate N-Player Nonzero-Sum Game Solution for an Uncertain Continuous Nonlinear System.
Johnson, Marcus; Kamalapurkar, Rushikesh; Bhasin, Shubhendu; Dixon, Warren E
2015-08-01
An approximate online equilibrium solution is developed for an N -player nonzero-sum game subject to continuous-time nonlinear unknown dynamics and an infinite horizon quadratic cost. A novel actor-critic-identifier structure is used, wherein a robust dynamic neural network is used to asymptotically identify the uncertain system with additive disturbances, and a set of critic and actor NNs are used to approximate the value functions and equilibrium policies, respectively. The weight update laws for the actor neural networks (NNs) are generated using a gradient-descent method, and the critic NNs are generated by least square regression, which are both based on the modified Bellman error that is independent of the system dynamics. A Lyapunov-based stability analysis shows that uniformly ultimately bounded tracking is achieved, and a convergence analysis demonstrates that the approximate control policies converge to a neighborhood of the optimal solutions. The actor, critic, and identifier structures are implemented in real time continuously and simultaneously. Simulations on two and three player games illustrate the performance of the developed method.
Energy Technology Data Exchange (ETDEWEB)
Nygaard, K
1967-12-15
The numerical deconvolution of spectra is equivalent to the solution of a (large) system of linear equations with a matrix which is not necessarily a square matrix. The demand that the square sum of the residual errors shall be minimum is not in general sufficient to ensure a unique or 'sound' solution. Therefore other demands which may include the demand for minimum square errors are introduced which lead to 'sound' and 'non-oscillatory' solutions irrespective of the shape of the original matrix and of the determinant of the matrix of the normal equations.
Generation and dynamics of quadratic birefringent spatial gap solitons
International Nuclear Information System (INIS)
Anghel-Vasilescu, P.; Dorignac, J.; Geniet, F.; Leon, J.; Taki, A.
2011-01-01
A method is proposed to generate and study the dynamics of spatial light solitons in a birefringent medium with quadratic nonlinearity. Although no analytical expression for propagating solitons has been obtained, our numerical simulations show the existence of stable localized spatial solitons in the frequency forbidden band gap of the medium. The dynamics of these objects is quite rich and manifests for instance elastic reflections, or inelastic collisions where two solitons merge and propagate as a single solitary wave. We derive the dynamics of the slowly varying envelopes of the three fields (second harmonic pump and two-component signal) and study this new system theoretically. We show that it does present a threshold for nonlinear supratransmission that can be calculated from a series expansion approach with a very high accuracy. Specific physical implications of our theoretical predictions are illustrated on LiGaTe 2 (LGT) crystals. Once irradiated by a cw laser beam of 10 μm wavelength, at an incidence beyond the extinction angle, such crystals will transmit light, in the form of spatial solitons generated in the nonlinear regime above the nonlinear supratransmission threshold.
Elastic Model Transitions Using Quadratic Inequality Constrained Least Squares
Orr, Jeb S.
2012-01-01
A technique is presented for initializing multiple discrete finite element model (FEM) mode sets for certain types of flight dynamics formulations that rely on superposition of orthogonal modes for modeling the elastic response. Such approaches are commonly used for modeling launch vehicle dynamics, and challenges arise due to the rapidly time-varying nature of the rigid-body and elastic characteristics. By way of an energy argument, a quadratic inequality constrained least squares (LSQI) algorithm is employed to e ect a smooth transition from one set of FEM eigenvectors to another with no requirement that the models be of similar dimension or that the eigenvectors be correlated in any particular way. The physically unrealistic and controversial method of eigenvector interpolation is completely avoided, and the discrete solution approximates that of the continuously varying system. The real-time computational burden is shown to be negligible due to convenient features of the solution method. Simulation results are presented, and applications to staging and other discontinuous mass changes are discussed
Quadratic stabilisability of multi-agent systems under switching topologies
Guan, Yongqiang; Ji, Zhijian; Zhang, Lin; Wang, Long
2014-12-01
This paper addresses the stabilisability of multi-agent systems (MASs) under switching topologies. Necessary and/or sufficient conditions are presented in terms of graph topology. These conditions explicitly reveal how the intrinsic dynamics of the agents, the communication topology and the external control input affect stabilisability jointly. With the appropriate selection of some agents to which the external inputs are applied and the suitable design of neighbour-interaction rules via a switching topology, an MAS is proved to be stabilisable even if so is not for each of uncertain subsystem. In addition, a method is proposed to constructively design a switching rule for MASs with norm-bounded time-varying uncertainties. The switching rules designed via this method do not rely on uncertainties, and the switched MAS is quadratically stabilisable via decentralised external self-feedback for all uncertainties. With respect to applications of the stabilisability results, the formation control and the cooperative tracking control are addressed. Numerical simulations are presented to demonstrate the effectiveness of the proposed results.
Asymptotic behavior for a quadratic nonlinear Schrodinger equation
Directory of Open Access Journals (Sweden)
Pavel I. Naumkin
2008-02-01
Full Text Available We study the initial-value problem for the quadratic nonlinear Schrodinger equation $$displaylines{ iu_{t}+frac{1}{2}u_{xx}=partial _{x}overline{u}^{2},quad xin mathbb{R},; t>1, cr u(1,x=u_{1}(x,quad xin mathbb{R}. }$$ For small initial data $u_{1}in mathbf{H}^{2,2}$ we prove that there exists a unique global solution $uin mathbf{C}([1,infty ;mathbf{H}^{2,2}$ of this Cauchy problem. Moreover we show that the large time asymptotic behavior of the solution is defined in the region $|x|leq Csqrt{t}$ by the self-similar solution $frac{1}{sqrt{t}}MS(frac{x}{sqrt{t}}$ such that the total mass $$ frac{1}{sqrt{t}}int_{mathbb{R}}MS(frac{x}{sqrt{t}} dx=int_{mathbb{R}}u_{1}(xdx, $$ and in the far region $|x|>sqrt{t}$ the asymptotic behavior of solutions has rapidly oscillating structure similar to that of the cubic nonlinear Schrodinger equations.
Quadratic electromechanical strain in silicon investigated by scanning probe microscopy
Yu, Junxi; Esfahani, Ehsan Nasr; Zhu, Qingfeng; Shan, Dongliang; Jia, Tingting; Xie, Shuhong; Li, Jiangyu
2018-04-01
Piezoresponse force microscopy (PFM) is a powerful tool widely used to characterize piezoelectricity and ferroelectricity at the nanoscale. However, it is necessary to distinguish microscopic mechanisms between piezoelectricity and non-piezoelectric contributions measured by PFM. In this work, we systematically investigate the first and second harmonic apparent piezoresponses of a silicon wafer in both vertical and lateral modes, and we show that it exhibits an apparent electromechanical response that is quadratic to the applied electric field, possibly arising from ionic electrochemical dipoles induced by the charged probe. As a result, the electromechanical response measured is dominated by the second harmonic response in the vertical mode, and its polarity can be switched by the DC voltage with the evolving coercive field and maximum amplitude, in sharp contrast to typical ferroelectric materials we used as control. The ionic activity in silicon is also confirmed by the scanning thermo-ionic microscopy measurement, and the work points toward a set of methods to distinguish true piezoelectricity from the apparent ones.
Asymptotic performance of regularized quadratic discriminant analysis based classifiers
Elkhalil, Khalil
2017-12-13
This paper carries out a large dimensional analysis of the standard regularized quadratic discriminant analysis (QDA) classifier designed on the assumption that data arise from a Gaussian mixture model. The analysis relies on fundamental results from random matrix theory (RMT) when both the number of features and the cardinality of the training data within each class grow large at the same pace. Under some mild assumptions, we show that the asymptotic classification error converges to a deterministic quantity that depends only on the covariances and means associated with each class as well as the problem dimensions. Such a result permits a better understanding of the performance of regularized QDA and can be used to determine the optimal regularization parameter that minimizes the misclassification error probability. Despite being valid only for Gaussian data, our theoretical findings are shown to yield a high accuracy in predicting the performances achieved with real data sets drawn from popular real data bases, thereby making an interesting connection between theory and practice.
Graph Modeling for Quadratic Assignment Problems Associated with the Hypercube
International Nuclear Information System (INIS)
Mittelmann, Hans; Peng Jiming; Wu Xiaolin
2009-01-01
In the paper we consider the quadratic assignment problem arising from channel coding in communications where one coefficient matrix is the adjacency matrix of a hypercube in a finite dimensional space. By using the geometric structure of the hypercube, we first show that there exist at least n different optimal solutions to the underlying QAPs. Moreover, the inherent symmetries in the associated hypercube allow us to obtain partial information regarding the optimal solutions and thus shrink the search space and improve all the existing QAP solvers for the underlying QAPs.Secondly, we use graph modeling technique to derive a new integer linear program (ILP) models for the underlying QAPs. The new ILP model has n(n-1) binary variables and O(n 3 log(n)) linear constraints. This yields the smallest known number of binary variables for the ILP reformulation of QAPs. Various relaxations of the new ILP model are obtained based on the graphical characterization of the hypercube, and the lower bounds provided by the LP relaxations of the new model are analyzed and compared with what provided by several classical LP relaxations of QAPs in the literature.
Separability of diagonal symmetric states: a quadratic conic optimization problem
Directory of Open Access Journals (Sweden)
Jordi Tura
2018-01-01
Full Text Available We study the separability problem in mixtures of Dicke states i.e., the separability of the so-called Diagonal Symmetric (DS states. First, we show that separability in the case of DS in $C^d\\otimes C^d$ (symmetric qudits can be reformulated as a quadratic conic optimization problem. This connection allows us to exchange concepts and ideas between quantum information and this field of mathematics. For instance, copositive matrices can be understood as indecomposable entanglement witnesses for DS states. As a consequence, we show that positivity of the partial transposition (PPT is sufficient and necessary for separability of DS states for $d \\leq 4$. Furthermore, for $d \\geq 5$, we provide analytic examples of PPT-entangled states. Second, we develop new sufficient separability conditions beyond the PPT criterion for bipartite DS states. Finally, we focus on $N$-partite DS qubits, where PPT is known to be necessary and sufficient for separability. In this case, we present a family of almost DS states that are PPT with respect to each partition but nevertheless entangled.
Linear versus quadratic portfolio optimization model with transaction cost
Razak, Norhidayah Bt Ab; Kamil, Karmila Hanim; Elias, Siti Masitah
2014-06-01
Optimization model is introduced to become one of the decision making tools in investment. Hence, it is always a big challenge for investors to select the best model that could fulfill their goal in investment with respect to risk and return. In this paper we aims to discuss and compare the portfolio allocation and performance generated by quadratic and linear portfolio optimization models namely of Markowitz and Maximin model respectively. The application of these models has been proven to be significant and popular among others. However transaction cost has been debated as one of the important aspects that should be considered for portfolio reallocation as portfolio return could be significantly reduced when transaction cost is taken into consideration. Therefore, recognizing the importance to consider transaction cost value when calculating portfolio' return, we formulate this paper by using data from Shariah compliant securities listed in Bursa Malaysia. It is expected that, results from this paper will effectively justify the advantage of one model to another and shed some lights in quest to find the best decision making tools in investment for individual investors.
Evolution of universes in quadratic theories of gravity
International Nuclear Information System (INIS)
Barrow, John D.; Hervik, Sigbjoern
2006-01-01
We use a dynamical systems approach to investigate Bianchi type I and II universes in quadratic theories of gravity. Because of the complicated nature of the equations of motion we focus on the stability of exact solutions and find that there exists an isotropic Friedmann-Robertson-Walker (FRW) universe acting as a past attractor. This may indicate that there is an isotropization mechanism at early times for these kind of theories. We also discuss the Kasner universes, elucidate the associated center manifold structure, and show that there exists a set of nonzero measure which has the Kasner solutions as a past attractor. Regarding the late-time behavior, the stability shows a dependence of the parameters of the theory. We give the conditions under which the de Sitter solution is stable and also show that for certain values of the parameters there is a possible late-time behavior with phantomlike behavior. New types of anisotropic inflationary behavior are found which do not have counterparts in general relativity
Methods of using the quadratic assignment problem solution
Directory of Open Access Journals (Sweden)
Izabela Kudelska
2012-09-01
Full Text Available Background: Quadratic assignment problem (QAP is one of the most interesting of combinatorial optimization. Was presented by Koopman and Beckamanna in 1957, as a mathematical model of the location of indivisible tasks. This problem belongs to the class NP-hard issues. This forces the application to the solution already approximate methods for tasks with a small size (over 30. Even though it is much harder than other combinatorial optimization problems, it enjoys wide interest because it models the important class of decision problems. Material and methods: The discussion was an artificial intelligence tool that allowed to solve the problem QAP, among others are: genetic algorithms, Tabu Search, Branch and Bound. Results and conclusions: QAP did not arise directly as a model for certain actions, but he found its application in many areas. Examples of applications of the problem is: arrangement of buildings on the campus of the university, layout design of electronic components in systems with large scale integration (VLSI, design a hospital, arrangement of keys on the keyboard.
Noise-induced chaos in a quadratically nonlinear oscillator
International Nuclear Information System (INIS)
Gan Chunbiao
2006-01-01
The present paper focuses on the noise-induced chaos in a quadratically nonlinear oscillator. Simple zero points of the stochastic Melnikov integral theoretically mean the necessary rising of noise-induced chaotic response in the system based on the stochastic Melnikov method. To quantify the noise-induced chaos, the boundary of the system's safe basin is firstly studied and it is shown to be incursively fractal when chaos arises. Three cases are considered in simulating the safe basin of the system, i.e., the system is excited only by the harmonic excitation, by both the harmonic and the Gaussian white noise excitations, and only by the Gaussian white noise excitation. Secondly, the leading Lyapunov exponent by Rosenstein's algorithm is shown to quantify the chaotic nature of the sample time series of the system. The results show that the boundary of the safe basin can also be fractal even if the system is excited only by the external Gaussian white noise. Most importantly, the almost-harmonic, the noise-induced chaotic and the thoroughly random responses can be found in the system
Compton scattering from nuclei and photo-absorption sum rules
International Nuclear Information System (INIS)
Gorchtein, Mikhail; Hobbs, Timothy; Londergan, J. Timothy; Szczepaniak, Adam P.
2011-01-01
We revisit the photo-absorption sum rule for real Compton scattering from the proton and from nuclear targets. In analogy with the Thomas-Reiche-Kuhn sum rule appropriate at low energies, we propose a new 'constituent quark model' sum rule that relates the integrated strength of hadronic resonances to the scattering amplitude on constituent quarks. We study the constituent quark model sum rule for several nuclear targets. In addition, we extract the α=0 pole contribution for both proton and nuclei. Using the modern high-energy proton data, we find that the α=0 pole contribution differs significantly from the Thomson term, in contrast with the original findings by Damashek and Gilman.
Unidirectional ring-laser operation using sum-frequency mixing
DEFF Research Database (Denmark)
Tidemand-Lichtenberg, Peter; Cheng, Haynes Pak Hay; Pedersen, Christian
2010-01-01
A technique enforcing unidirectional operation of ring lasers is proposed and demonstrated. The approach relies on sum-frequency mixing between a single-pass laser and one of the two counterpropagating intracavity fields of the ring laser. Sum-frequency mixing introduces a parametric loss for the...... where lossless second-order nonlinear materials are available. Numerical modeling and experimental demonstration of parametric-induced unidirectional operation of a diode-pumped solid-state 1342 nm cw ring laser are presented.......A technique enforcing unidirectional operation of ring lasers is proposed and demonstrated. The approach relies on sum-frequency mixing between a single-pass laser and one of the two counterpropagating intracavity fields of the ring laser. Sum-frequency mixing introduces a parametric loss...
A simple derivation of new sum rules of Bessel functions
International Nuclear Information System (INIS)
Ciocci, F.; Dattoli, G.; Dipace, A.
1985-01-01
In this note it is exploited a recently suggested technique to get simple expressions for a class of sum rules of Bessel functions appearing in plasma physics; their relevance to the numerical evaluation of the Turkin function is also discussed
Asymptotic distribution of products of sums of independent random ...
Indian Academy of Sciences (India)
integrable random variables (r.v.) are asymptotically log-normal. This fact ... the product of the partial sums of i.i.d. positive random variables as follows. .... Now define ..... by Henan Province Foundation and Frontier Technology Research Plan.
QCD sum rules and applications to nuclear physics
Energy Technology Data Exchange (ETDEWEB)
Cohen, T D [Maryland Univ., College Park, MD (United States). Dept. of Physics; [Washington Univ., Seattle, WA (United States). Dept. of Physics and Inst. for Nuclear Theory; Furnstahl, R J [Ohio State Univ., Columbus, OH (United States). Dept. of Physics; Griegel, D K [Maryland Univ., College Park, MD (United States). Dept. of Physics; [TRIUMF, Vancouver, BC (Canada); Xuemin, J
1994-12-01
Applications of QCD sum-rule methods to the physics of nuclei are reviewed, with an emphasis on calculations of baryon self-energies in infinite nuclear matter. The sum-rule approach relates spectral properties of hadrons propagating in the finite-density medium, such as optical potentials for quasinucleons, to matrix elements of QCD composite operators (condensates). The vacuum formalism for QCD sum rules is generalized to finite density, and the strategy and implementation of the approach is discussed. Predictions for baryon self-energies are compared to those suggested by relativistic nuclear physics phenomenology. Sum rules for vector mesons in dense nuclear matter are also considered. (author). 153 refs., 8 figs.
Effectiveness evaluation of contingency sum as a risk management ...
African Journals Online (AJOL)
Ethiopian Journal of Environmental Studies and Management ... manage risks prone projects have adopted several methods, one of which is contingency sum. ... initial project cost, cost overrun and percentage allowed for contingency.
Power sums of fibonacci and Lucas numbers | Chu | Quaestiones ...
African Journals Online (AJOL)
Lucas numbers are established, which include, as special cases, four for-mulae for odd power sums of Melham type on Fibonacci and Lucas numbers, obtained recently by Ozeki and Prodinger (2009). Quaestiones Mathematicae 34(2011), 75- ...
The black hole interior and a curious sum rule
International Nuclear Information System (INIS)
Giveon, Amit; Itzhaki, Nissan; Troost, Jan
2014-01-01
We analyze the Euclidean geometry near non-extremal NS5-branes in string theory, including regions beyond the horizon and beyond the singularity of the black brane. The various regions have an exact description in string theory, in terms of cigar, trumpet and negative level minimal model conformal field theories. We study the worldsheet elliptic genera of these three superconformal theories, and show that their sum vanishes. We speculate on the significance of this curious sum rule for black hole physics
QCD sum rule for nucleon in nuclear matter
International Nuclear Information System (INIS)
Mallik, S.; Sarkar, Sourav
2010-01-01
We consider the two-point function of nucleon current in nuclear matter and write a QCD sum rule to analyse the residue of the nucleon pole as a function of nuclear density. The nucleon self-energy needed for the sum rule is taken as input from calculations using phenomenological N N potential. Our result shows a decrease in the residue with increasing nuclear density, as is known to be the case with similar quantities. (orig.)
Convolutional Codes with Maximum Column Sum Rank for Network Streaming
Mahmood, Rafid; Badr, Ahmed; Khisti, Ashish
2015-01-01
The column Hamming distance of a convolutional code determines the error correction capability when streaming over a class of packet erasure channels. We introduce a metric known as the column sum rank, that parallels column Hamming distance when streaming over a network with link failures. We prove rank analogues of several known column Hamming distance properties and introduce a new family of convolutional codes that maximize the column sum rank up to the code memory. Our construction invol...
The black hole interior and a curious sum rule
Energy Technology Data Exchange (ETDEWEB)
Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem, 91904 (Israel); Itzhaki, Nissan [Physics Department, Tel-Aviv University,Ramat-Aviv, 69978 (Israel); Troost, Jan [Laboratoire de Physique Théorique,Unité Mixte du CRNS et de l’École Normale Supérieure,associée à l’Université Pierre et Marie Curie 6,UMR 8549 École Normale Supérieure,24 Rue Lhomond Paris 75005 (France)
2014-03-12
We analyze the Euclidean geometry near non-extremal NS5-branes in string theory, including regions beyond the horizon and beyond the singularity of the black brane. The various regions have an exact description in string theory, in terms of cigar, trumpet and negative level minimal model conformal field theories. We study the worldsheet elliptic genera of these three superconformal theories, and show that their sum vanishes. We speculate on the significance of this curious sum rule for black hole physics.
GDH sum rule measurement at low Q2
International Nuclear Information System (INIS)
Bianchi, N.
1996-01-01
The Gerasimov-Drell-Hearn (GDH) sum rule is based on a general dispersive relation for the forward Compton scattering. Multipole analysis suggested the possible violation of the sum rule. Some propositions have been made to modify the original GDH expression. An effort is now being made in several laboratories to shred some light on this topic. The purposes of the different planned experiments are briefly presented according to their Q 2 range
A Quantum Approach to Subset-Sum and Similar Problems
Daskin, Ammar
2017-01-01
In this paper, we study the subset-sum problem by using a quantum heuristic approach similar to the verification circuit of quantum Arthur-Merlin games. Under described certain assumptions, we show that the exact solution of the subset sum problem my be obtained in polynomial time and the exponential speed-up over the classical algorithms may be possible. We give a numerical example and discuss the complexity of the approach and its further application to the knapsack problem.
Spectral sum rule for time delay in R2
International Nuclear Information System (INIS)
Osborn, T.A.; Sinha, K.B.; Bolle, D.; Danneels, C.
1985-01-01
A local spectral sum rule for nonrelativistic scattering in two dimensions is derived for the potential class velement ofL 4 /sup // 3 (R 2 ). The sum rule relates the integral over all scattering energies of the trace of the time-delay operator for a finite region Σis contained inR 2 to the contributions in Σ of the pure point and singularly continuous spectra
Light-cone sum rules: A SCET-based formulation
De Fazio, F; Hurth, Tobias; Feldmann, Th.
2007-01-01
We describe the construction of light-cone sum rules (LCSRs) for exclusive $B$-meson decays into light energetic hadrons from correlation functions within soft-collinear effective theory (SCET). As an example, we consider the SCET sum rule for the $B \\to \\pi$ transition form factor at large recoil, including radiative corrections from hard-collinear loop diagrams at first order in the strong coupling constant.
A Global Optimization Algorithm for Sum of Linear Ratios Problem
Yuelin Gao; Siqiao Jin
2013-01-01
We equivalently transform the sum of linear ratios programming problem into bilinear programming problem, then by using the linear characteristics of convex envelope and concave envelope of double variables product function, linear relaxation programming of the bilinear programming problem is given, which can determine the lower bound of the optimal value of original problem. Therefore, a branch and bound algorithm for solving sum of linear ratios programming problem is put forward, and the c...
An Algorithm to Solve the Equal-Sum-Product Problem
Nyblom, M. A.; Evans, C. D.
2013-01-01
A recursive algorithm is constructed which finds all solutions to a class of Diophantine equations connected to the problem of determining ordered n-tuples of positive integers satisfying the property that their sum is equal to their product. An examination of the use of Binary Search Trees in implementing the algorithm into a working program is given. In addition an application of the algorithm for searching possible extra exceptional values of the equal-sum-product problem is explored after...
Hadronic final states and sum rules in deep inelastic processes
International Nuclear Information System (INIS)
Pal, B.K.
1977-01-01
In order to get maximum information on the hadronic final states and sum rules in deep inelastic processes, Regge phenomenology and quarks parton model have been used. The unified picture for the production of hadrons of type i as a function of Bjorken and Feyman variables with only one adjustable parameter is formulated. The results of neutrino experiments and the production of charm particles are discussed in sum rules. (author)
Comment on QCD sum rules and weak bottom decays
International Nuclear Information System (INIS)
Guberina, B.; Machet, B.
1982-07-01
QCD sum rules derived by Bourrely et al. are applied to B-decays to get a lower and an upper bound for the decay rate. The sum rules are shown to be essentially controlled by the large mass scales involved in the process. These bounds combined with the experimental value of BR (B→eνX) provide an upper bound for the lifetime of the B + meson. A comparison is made with D-meson decays
On the general Dedekind sums and its reciprocity formula
Indian Academy of Sciences (India)
if x is an integer. The various properties of S(h, q) were investigated by many authors. Maybe the most famous property of Dedekind sums is the reciprocity formula (see [2–4]):. S(h, q) + S(q, h) = h2 + q2 + 1. 12hq. −. 1. 4. (1) for all (h, q) = 1,q > 0,h> 0. The main purpose of this paper is to introduce a general. Dedekind sum:.
Root and Critical Point Behaviors of Certain Sums of Polynomials
Indian Academy of Sciences (India)
13
There is an extensive literature concerning roots of sums of polynomials. Many papers and books([5], [6],. [7]) have written about these polynomials. Perhaps the most immediate question of sums of polynomials,. A + B = C, is “given bounds for the roots of A and B, what bounds can be given for the roots of C?” By. Fell [3], if ...
Chiral corrections to the Adler-Weisberger sum rule
Beane, Silas R.; Klco, Natalie
2016-12-01
The Adler-Weisberger sum rule for the nucleon axial-vector charge, gA , offers a unique signature of chiral symmetry and its breaking in QCD. Its derivation relies on both algebraic aspects of chiral symmetry, which guarantee the convergence of the sum rule, and dynamical aspects of chiral symmetry breaking—as exploited using chiral perturbation theory—which allow the rigorous inclusion of explicit chiral symmetry breaking effects due to light-quark masses. The original derivations obtained the sum rule in the chiral limit and, without the benefit of chiral perturbation theory, made various attempts at extrapolating to nonvanishing pion masses. In this paper, the leading, universal, chiral corrections to the chiral-limit sum rule are obtained. Using PDG data, a recent parametrization of the pion-nucleon total cross sections in the resonance region given by the SAID group, as well as recent Roy-Steiner equation determinations of subthreshold amplitudes, threshold parameters, and correlated low-energy constants, the Adler-Weisberger sum rule is confronted with experimental data. With uncertainty estimates associated with the cross-section parametrization, the Goldberger-Treimann discrepancy, and the truncation of the sum rule at O (Mπ4) in the chiral expansion, this work finds gA=1.248 ±0.010 ±0.007 ±0.013 .
Mismatch management for optical and matter-wave quadratic solitons
International Nuclear Information System (INIS)
Driben, R.; Oz, Y.; Malomed, B. A.; Gubeskys, A.; Yurovsky, V. A.
2007-01-01
We propose a way to control solitons in χ (2) (quadratically nonlinear) systems by means of periodic modulation imposed on the phase-mismatch parameter ('mismatch management', MM). It may be realized in the cotransmission of fundamental-frequency (FF) and second-harmonic (SH) waves in a planar optical waveguide via a long-period modulation of the usual quasi-phase-matching pattern of ferroelectric domains. In an altogether different physical setting, the MM may also be implemented by dint of the Feshbach resonance in a harmonically modulated magnetic field in a hybrid atomic-molecular Bose-Einstein condensate (BEC), with the atomic and molecular mean fields (MFs) playing the roles of the FF and SH, respectively. Accordingly, the problem is analyzed in two different ways. First, in the optical model, we identify stability regions for spatial solitons in the MM system, in terms of the MM amplitude and period, using the MF equations for spatially inhomogeneous configurations. In particular, an instability enclave is found inside the stability area. The robustness of the solitons is also tested against variation of the shape of the input pulse, and a threshold for the formation of stable solitons is found in terms of the power. Interactions between stable solitons are virtually unaffected by the MM. The second method (parametric approximation), going beyond the MF description, is developed for spatially homogeneous states in the BEC model. It demonstrates that the MF description is valid for large modulation periods, while, at smaller periods, non-MF components acquire gain, which implies destruction of the MF under the action of the high-frequency MM
Quadratic adaptive algorithm for solving cardiac action potential models.
Chen, Min-Hung; Chen, Po-Yuan; Luo, Ching-Hsing
2016-10-01
An adaptive integration method is proposed for computing cardiac action potential models accurately and efficiently. Time steps are adaptively chosen by solving a quadratic formula involving the first and second derivatives of the membrane action potential. To improve the numerical accuracy, we devise an extremum-locator (el) function to predict the local extremum when approaching the peak amplitude of the action potential. In addition, the time step restriction (tsr) technique is designed to limit the increase in time steps, and thus prevent the membrane potential from changing abruptly. The performance of the proposed method is tested using the Luo-Rudy phase 1 (LR1), dynamic (LR2), and human O'Hara-Rudy dynamic (ORd) ventricular action potential models, and the Courtemanche atrial model incorporating a Markov sodium channel model. Numerical experiments demonstrate that the action potential generated using the proposed method is more accurate than that using the traditional Hybrid method, especially near the peak region. The traditional Hybrid method may choose large time steps near to the peak region, and sometimes causes the action potential to become distorted. In contrast, the proposed new method chooses very fine time steps in the peak region, but large time steps in the smooth region, and the profiles are smoother and closer to the reference solution. In the test on the stiff Markov ionic channel model, the Hybrid blows up if the allowable time step is set to be greater than 0.1ms. In contrast, our method can adjust the time step size automatically, and is stable. Overall, the proposed method is more accurate than and as efficient as the traditional Hybrid method, especially for the human ORd model. The proposed method shows improvement for action potentials with a non-smooth morphology, and it needs further investigation to determine whether the method is helpful during propagation of the action potential. Copyright © 2016 Elsevier Ltd. All rights
Aziz, T. A.; Pramudiani, P.; Purnomo, Y. W.
2018-01-01
Difference between quadratic equation and quadratic function as perceived by Indonesian pre-service secondary mathematics teachers (N = 55) who enrolled at one private university in Jakarta City was investigated. Analysis of participants’ written responses and interviews were conducted consecutively. Participants’ written responses highlighted differences between quadratic equation and function by referring to their general terms, main characteristics, processes, and geometrical aspects. However, they showed several obstacles in describing the differences such as inappropriate constraints and improper interpretations. Implications of the study are discussed.
Isotropic harmonic oscillator plus inverse quadratic potential in N-dimensional spaces
International Nuclear Information System (INIS)
Oyewumi, K.A.; Bangudu, E.A.
2003-01-01
Some aspects of the N-dimensional isotropic harmonic plus inverse quadratic potential were discussed. The hyperradial equation for isotropic harmonic oscillator plus inverse quadratic potential is solved by transformation into the confluent hypergeometric equation to obtain the normalized hyperradial solution. Together with the hyperangular solutions (hyperspherical harmonics), these form the complete energy eigenfunctions of the N-dimensional isotropic harmonic oscillator plus inverse quadratic potential and the energy eigenvalues are also obtained. These are dimensionally dependent. The dependence of radial solution on the dimensions or potential strength and the degeneracy of the energy levels are discussed. (author)
A necessary and sufficient condition for a real quadratic extension to have class number one
International Nuclear Information System (INIS)
Alemu, Y.
1990-02-01
We give a necessary and sufficient condition for a real quadratic extension to have class number one and discuss the applicability of the result to find the class number one fields with small discriminant. 9 refs, 3 tabs
Quadratic contributions of softly broken supersymmetry in the light of loop regularization
Energy Technology Data Exchange (ETDEWEB)
Bai, Dong [Chinese Academy of Sciences, Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); University of Chinese Academy of Sciences, School of Physical Sciences, Beijing (China); Wu, Yue-Liang [Chinese Academy of Sciences, Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); International Centre for Theoretical Physics Asia-Pacific (ICTP-AP), Beijing (China); University of Chinese Academy of Sciences, School of Physical Sciences, Beijing (China)
2017-09-15
Loop regularization (LORE) is a novel regularization scheme in modern quantum field theories. It makes no change to the spacetime structure and respects both gauge symmetries and supersymmetry. As a result, LORE should be useful in calculating loop corrections in supersymmetry phenomenology. To further demonstrate its power, in this article we revisit in the light of LORE the old issue of the absence of quadratic contributions (quadratic divergences) in softly broken supersymmetric field theories. It is shown explicitly by Feynman diagrammatic calculations that up to two loops the Wess-Zumino model with soft supersymmetry breaking terms (WZ' model), one of the simplest models with the explicit supersymmetry breaking, is free of quadratic contributions. All the quadratic contributions cancel with each other perfectly, which is consistent with results dictated by the supergraph techniques. (orig.)
Projection of curves on B-spline surfaces using quadratic reparameterization
Yang, Yijun; Zeng, Wei; Zhang, Hui; Yong, Junhai; Paul, Jean Claude
2010-01-01
Curves on surfaces play an important role in computer aided geometric design. In this paper, we present a hyperbola approximation method based on the quadratic reparameterization of Bézier surfaces, which generates reasonable low degree curves lying
Observers for a class of systems with nonlinearities satisfying an incremental quadratic inequality
Acikmese, Ahmet Behcet; Martin, Corless
2004-01-01
We consider the problem of state estimation from nonlinear time-varying system whose nonlinearities satisfy an incremental quadratic inequality. Observers are presented which guarantee that the state estimation error exponentially converges to zero.
Fouha Bay Moving Window Analysis, Benthic Quadrat Surveys at Guam in 2014
National Oceanic and Atmospheric Administration, Department of Commerce — PIRO Fishery Biologist gathered benthic cover data using a 1m2 quadrat with 25 intersecting points every five meters along a transect running from the inner bay to...
Groenwold, A.A.; Wood, D.W.; Etman, L.F.P.; Tosserams, S.
2009-01-01
We implement and test a globally convergent sequential approximate optimization algorithm based on (convexified) diagonal quadratic approximations. The algorithm resides in the class of globally convergent optimization methods based on conservative convex separable approximations developed by
Guam Community Coral Reef Monitoring Program, Benthic Quadrat Surveys at Guam in 2013
National Oceanic and Atmospheric Administration, Department of Commerce — Guam community members gathered benthic cover data using a 0.25m2 quadrat with 6 intersecting points at each meter along a 25-meter transect. Members identified...
Integrable quadratic classical Hamiltonians on so(4) and so(3, 1)
International Nuclear Information System (INIS)
Sokolov, Vladimir V; Wolf, Thomas
2006-01-01
We investigate a special class of quadratic Hamiltonians on so(4) and so(3, 1) and describe Hamiltonians that have additional polynomial integrals. One of the main results is a new integrable case with an integral of sixth degree
New trace formulae for a quadratic pencil of the Schroedinger operator
International Nuclear Information System (INIS)
Yang Chuanfu
2010-01-01
This work deals with the eigenvalue problem for a quadratic pencil of the Schroedinger operator on a finite closed interval with the two-point boundary conditions. We will obtain new regularized trace formulas for this class of differential pencil.
Fourier transform and mean quadratic variation of Bernoulli convolution on homogeneous Cantor set
Energy Technology Data Exchange (ETDEWEB)
Yu Zuguo E-mail: yuzg@hotmail.comz.yu
2004-07-01
For the Bernoulli convolution on homogeneous Cantor set, under some condition, it is proved that the mean quadratic variation and the average of Fourier transform of this measure are bounded above and below.
Cost Cumulant-Based Control for a Class of Linear Quadratic Tracking Problems
National Research Council Canada - National Science Library
Pham, Khanh D
2007-01-01
.... For instance, the present paper extends the application of cost-cumulant controller design to control of a wide class of linear-quadratic tracking systems where output measurements of a tracker...
International Nuclear Information System (INIS)
Gogala, B.
1983-01-01
The equations of the gauge theory of gravitation are derived from a complex quadratic Lagrangian with torsion. The derivation is performed in a coordinate basis in a completely covariant way. (author)
Use of Quadratic Time-Frequency Representations to Analyze Cetacean Mammal Sounds
National Research Council Canada - National Science Library
Papandreou-Suppappola, Antonia
2001-01-01
.... Analysis of the group delay structure of the mammalian vocal communication signals was matched to the appropriate quadratic time-frequency class for proper signal processing with minimal skewing of the results...
Using Simple Quadratic Equations to Estimate Equilibrium Concentrations of an Acid
Brilleslyper, Michael A.
2004-01-01
Application of quadratic equations to standard problem in chemistry like finding equilibrium concentrations of ions in an acid solution is explained. This clearly shows that pure mathematical analysis has meaningful applications in other areas as well.
Quadratic Hierarchy Flavor Rule as the Origin of Dirac CP-Violating Phases
Lipmanov, E. M.
2007-01-01
The premise of an organizing quadratic hierarchy rule in lepton-quark flavor physics was used earlier for explanation of the hierarchy patterns of four generic pairs of flavor quantities 1) charged-lepton and 2) neutrino deviations from mass-degeneracy, 3) deviations of lepton mixing from maximal magnitude and 4) deviations of quark mixing from minimal one. Here it is shown that the quadratic hierarchy equation that is uniquely related to three flavor particle generations may have yet another...
Electron laser acceleration in vacuum by a quadratically chirped laser pulse
International Nuclear Information System (INIS)
Salamin, Yousef I; Jisrawi, Najeh M
2014-01-01
Single MeV electrons in vacuum subjected to single high-intensity quadratically chirped laser pulses are shown to gain multi-GeV energies. The laser pulses are modelled by finite-duration trapezoidal and cos 2 pulse-shapes and the equations of motion are solved numerically. It is found that, typically, the maximum energy gain from interaction with a quadratic chirp is about half of what would be gained from a linear chirp. (paper)
Institute of Scientific and Technical Information of China (English)
XU Xiu-Wei; REN Ting-Qi; LIU Shu-Yan; MA Qiu-Ming; LIU Sheng-Dian
2007-01-01
Making use of the transformation relation among usual, normal, and antinormal ordering for the multimode boson exponential quadratic polynomial operators (BEQPO's), we present the analytic expression of arbitrary matrix elements for BEQPO's. As a preliminary application, we obtain the exact expressions of partition function about the boson quadratic polynomial system, matrix elements in particle-number, coordinate, and momentum representation, and P representation for the BEQPO's.
Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems
Energy Technology Data Exchange (ETDEWEB)
Szederkenyi, Gabor; Hangos, Katalin M
2004-04-26
We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.
Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems
Szederkényi, Gábor; Hangos, Katalin M.
2004-04-01
We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.
Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems
International Nuclear Information System (INIS)
Szederkenyi, Gabor; Hangos, Katalin M.
2004-01-01
We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities
On the Equivalence of Quadratic Optimization Problems Commonly Used in Portfolio Theory
Taras Bodnar; Nestor Parolya; Wolfgang Schmid
2012-01-01
In the paper, we consider three quadratic optimization problems which are frequently applied in portfolio theory, i.e, the Markowitz mean-variance problem as well as the problems based on the mean-variance utility function and the quadratic utility.Conditions are derived under which the solutions of these three optimization procedures coincide and are lying on the efficient frontier, the set of mean-variance optimal portfolios. It is shown that the solutions of the Markowitz optimization prob...
Decay constants for pulsed monoenergetic neutron systems with quadratically anisotropic scattering
International Nuclear Information System (INIS)
Sjoestrand, N.G.
1977-06-01
The eigenvalues of the time-dependent transport equation for monoenergetic neutrons have been studied numerically for various combinations of linearly and quadratically anisotropic scattering assuming a space dependence of e β . The results, presented in the form of tables and graphs, show that quadratic anisotropy leads to a more complicated eigenvalue spectrum. However, no drastic changes occur in comparison to purely linear anistropy.(author)
International Nuclear Information System (INIS)
Zhitnikov, V.V.; Ponomarev, V.N.
1986-01-01
An attempt is made to compare the solution of field equations, corresponding to quadratic equations for the fields (g μν , Γ μν α ) in gauge gravitation theory (GGT) with general relativity theory solutions. Without restrictions for a concrete type of metrics only solutions of equations, for which torsion turns to zero, are considered. Equivalence of vacuum equations of gauge quadratic theory of gravity and general relativity theory is proved using the Newman-Penrose formalism
Exponential quadratic operators and evolution of bosonic systems coupled to a heat bath
International Nuclear Information System (INIS)
Ni Xiaotong; Liu Yuxi; Kwek, L. C.; Wang Xiangbin
2010-01-01
Using exponential quadratic operators, we present a general framework for studying the exact dynamics of system-bath interaction in which the Hamiltonian is described by the quadratic form of bosonic operators. To demonstrate the versatility of the approach, we study how the environment affects the squeezing of quadrature components of the system. We further propose that the squeezing can be enhanced when parity kicks are applied to the system.
Closed-form summations of Dowker's and related trigonometric sums
International Nuclear Information System (INIS)
Cvijović, Djurdje; Srivastava, H M
2012-01-01
Through a unified and relatively simple approach which uses complex contour integrals, particularly convenient integration contours and calculus of residues, closed-form summation formulas for 12 very general families of trigonometric sums are deduced. One of them is a family of cosecant sums which was first summed in closed form in a series of papers by Dowker (1987 Phys. Rev. D 36 3095–101; 1989 J. Math. Phys. 30 770–3; 1992 J. Phys. A: Math. Gen. 25 2641–8), whose method has inspired our work in this area. All of the formulas derived here involve the higher-order Bernoulli polynomials. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (paper)
A Bayesian analysis of the nucleon QCD sum rules
International Nuclear Information System (INIS)
Ohtani, Keisuke; Gubler, Philipp; Oka, Makoto
2011-01-01
QCD sum rules of the nucleon channel are reanalyzed, using the maximum-entropy method (MEM). This new approach, based on the Bayesian probability theory, does not restrict the spectral function to the usual ''pole + continuum'' form, allowing a more flexible investigation of the nucleon spectral function. Making use of this flexibility, we are able to investigate the spectral functions of various interpolating fields, finding that the nucleon ground state mainly couples to an operator containing a scalar diquark. Moreover, we formulate the Gaussian sum rule for the nucleon channel and find that it is more suitable for the MEM analysis to extract the nucleon pole in the region of its experimental value, while the Borel sum rule does not contain enough information to clearly separate the nucleon pole from the continuum. (orig.)
Subset-sum phase transitions and data compression
Merhav, Neri
2011-09-01
We propose a rigorous analysis approach for the subset-sum problem in the context of lossless data compression, where the phase transition of the subset-sum problem is directly related to the passage between ambiguous and non-ambiguous decompression, for a compression scheme that is based on specifying the sequence composition. The proposed analysis lends itself to straightforward extensions in several directions of interest, including non-binary alphabets, incorporation of side information at the decoder (Slepian-Wolf coding), and coding schemes based on multiple subset sums. It is also demonstrated that the proposed technique can be used to analyze the critical behavior in a more involved situation where the sequence composition is not specified by the encoder.
Limit theorems for multi-indexed sums of random variables
Klesov, Oleg
2014-01-01
Presenting the first unified treatment of limit theorems for multiple sums of independent random variables, this volume fills an important gap in the field. Several new results are introduced, even in the classical setting, as well as some new approaches that are simpler than those already established in the literature. In particular, new proofs of the strong law of large numbers and the Hajek-Renyi inequality are detailed. Applications of the described theory include Gibbs fields, spin glasses, polymer models, image analysis and random shapes. Limit theorems form the backbone of probability theory and statistical theory alike. The theory of multiple sums of random variables is a direct generalization of the classical study of limit theorems, whose importance and wide application in science is unquestionable. However, to date, the subject of multiple sums has only been treated in journals. The results described in this book will be of interest to advanced undergraduates, graduate students and researchers who ...
Power loss analysis in altered tooth-sum spur gearing
Directory of Open Access Journals (Sweden)
Sachidananda H. K.
2018-01-01
Full Text Available The main cause of power loss or dissipation of heat in case of meshed gears is due to friction existing between gear tooth mesh and is a major concern in low rotational speed gears, whereas in case of high operating speed the power loss taking place due to compression of air-lubricant mixture (churning losses and windage losses due to aerodynamic trial of air lubricant mixture which controls the total efficiency needs to be considered. Therefore, in order to improve mechanical efficiency it is necessary for gear designer during gear tooth optimization to consider these energy losses. In this research paper the power loss analysis for a tooth-sum of 100 altered by ±4% operating between a specified center distance is considered. The results show that negative altered tooth-sum gearing performs better as compared to standard and positive altered tooth-sum gearing.
Efficient simulation of tail probabilities of sums of correlated lognormals
DEFF Research Database (Denmark)
Asmussen, Søren; Blanchet, José; Juneja, Sandeep
We consider the problem of efficient estimation of tail probabilities of sums of correlated lognormals via simulation. This problem is motivated by the tail analysis of portfolios of assets driven by correlated Black-Scholes models. We propose two estimators that can be rigorously shown to be eff......We consider the problem of efficient estimation of tail probabilities of sums of correlated lognormals via simulation. This problem is motivated by the tail analysis of portfolios of assets driven by correlated Black-Scholes models. We propose two estimators that can be rigorously shown...... optimize the scaling parameter of the covariance. The second estimator decomposes the probability of interest in two contributions and takes advantage of the fact that large deviations for a sum of correlated lognormals are (asymptotically) caused by the largest increment. Importance sampling...
Convergence problems of Coulomb and multipole sums in crystals
International Nuclear Information System (INIS)
Kholopov, Evgenii V
2004-01-01
Different ways of calculating Coulomb and dipole sums over crystal lattices are analyzed comparatively. It is shown that the currently alleged disagreement between various approaches originates in ignoring the requirement for the self-consistency of surface conditions, which are of fundamental importance due to the long-range nature of the bulk interactions that these sums describe. This is especially true of surfaces arising when direct sums for infinite translation-invariant structures are truncated. The charge conditions for actual surfaces being self-consistently adjusted to the bulk state are formally the same as those on the truncation surface, consistent with the concept of the thermodynamic limit for the bulk-state absolute equilibrium and with the fact that the surface energy contribution in this case is, naturally, statistically small compared to the bulk contribution. Two-point multipole expansions are briefly discussed, and the problems associated with the boundary of their convergence circle are pointed out. (reviews of topical problems)
Closed-form summations of Dowker's and related trigonometric sums
Cvijović, Djurdje; Srivastava, H. M.
2012-09-01
Through a unified and relatively simple approach which uses complex contour integrals, particularly convenient integration contours and calculus of residues, closed-form summation formulas for 12 very general families of trigonometric sums are deduced. One of them is a family of cosecant sums which was first summed in closed form in a series of papers by Dowker (1987 Phys. Rev. D 36 3095-101 1989 J. Math. Phys. 30 770-3 1992 J. Phys. A: Math. Gen. 25 2641-8), whose method has inspired our work in this area. All of the formulas derived here involve the higher-order Bernoulli polynomials. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.