WorldWideScience

Sample records for time-varying linear systems

  1. Global Stability of Polytopic Linear Time-Varying Dynamic Systems under Time-Varying Point Delays and Impulsive Controls

    Directory of Open Access Journals (Sweden)

    M. de la Sen

    2010-01-01

    Full Text Available This paper investigates the stability properties of a class of dynamic linear systems possessing several linear time-invariant parameterizations (or configurations which conform a linear time-varying polytopic dynamic system with a finite number of time-varying time-differentiable point delays. The parameterizations may be timevarying and with bounded discontinuities and they can be subject to mixed regular plus impulsive controls within a sequence of time instants of zero measure. The polytopic parameterization for the dynamics associated with each delay is specific, so that (q+1 polytopic parameterizations are considered for a system with q delays being also subject to delay-free dynamics. The considered general dynamic system includes, as particular cases, a wide class of switched linear systems whose individual parameterizations are timeinvariant which are governed by a switching rule. However, the dynamic system under consideration is viewed as much more general since it is time-varying with timevarying delays and the bounded discontinuous changes of active parameterizations are generated by impulsive controls in the dynamics and, at the same time, there is not a prescribed set of candidate potential parameterizations.

  2. Global stabilization of linear continuous time-varying systems with bounded controls

    International Nuclear Information System (INIS)

    Phat, V.N.

    2004-08-01

    This paper deals with the problem of global stabilization of a class of linear continuous time-varying systems with bounded controls. Based on the controllability of the nominal system, a sufficient condition for the global stabilizability is proposed without solving any Riccati differential equation. Moreover, we give sufficient conditions for the robust stabilizability of perturbation/uncertain linear time-varying systems with bounded controls. (author)

  3. Overlapping quadratic optimal control of linear time-varying commutative systems

    Czech Academy of Sciences Publication Activity Database

    Bakule, Lubomír; Rodellar, J.; Rossell, J. M.

    2002-01-01

    Roč. 40, č. 5 (2002), s. 1611-1627 ISSN 0363-0129 R&D Projects: GA AV ČR IAA2075802 Institutional research plan: CEZ:AV0Z1075907 Keywords : overlapping * optimal control * linear time-varying systems Subject RIV: BC - Control Systems Theory Impact factor: 1.441, year: 2002

  4. Exponential stability of switched linear systems with time-varying delay

    Directory of Open Access Journals (Sweden)

    Satiracoo Pairote

    2007-11-01

    Full Text Available We use a Lyapunov-Krasovskii functional approach to establish the exponential stability of linear systems with time-varying delay. Our delay-dependent condition allows to compute simultaneously the two bounds that characterize the exponential stability rate of the solution. A simple procedure for constructing switching rule is also presented.

  5. Finite-Time H∞ Filtering for Linear Continuous Time-Varying Systems with Uncertain Observations

    Directory of Open Access Journals (Sweden)

    Huihong Zhao

    2012-01-01

    Full Text Available This paper is concerned with the finite-time H∞ filtering problem for linear continuous time-varying systems with uncertain observations and ℒ2-norm bounded noise. The design of finite-time H∞ filter is equivalent to the problem that a certain indefinite quadratic form has a minimum and the filter is such that the minimum is positive. The quadratic form is related to a Krein state-space model according to the Krein space linear estimation theory. By using the projection theory in Krein space, the finite-time H∞ filtering problem is solved. A numerical example is given to illustrate the performance of the H∞ filter.

  6. Uniform stability for time-varying infinite-dimensional discrete linear systems

    International Nuclear Information System (INIS)

    Kubrusly, C.S.

    1988-09-01

    Stability for time-varying discrete linear systems in a Banach space is investigated. On the one hand, it established a fairly complete collection of necessary and sufficient conditions for uniform asymptotic equistability for input-free systems. This includes uniform and strong power equistability, and uniform and strong l p -equistability, among other technical conditions which also play essential role in stability theory. On other hand, it is shown that uniform asymptotic equistability for input-free systems is equivalent to each of the following concepts of uniform stability for forced systems: l p -input l p -state, c o -input c o -state, bounded-input bounded-state, l p>1 -input bounded-state, c sub (o)-input bounded-state, and convergent-input bounded-state; which are also equivalent to their nonuniform counterparts. For time-varying convergent systems, the above is also equivalent to convergent-input convergent-state stability. The proofs presented here are all ''elementary'' in the sense that they are based essentially only on the Banach-Steinhaus theorem. (autor) [pt

  7. Weighted H∞ Filtering for a Class of Switched Linear Systems with Additive Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Li-li Li

    2015-01-01

    Full Text Available This paper is concerned with the problem of weighted H∞ filtering for a class of switched linear systems with two additive time-varying delays, which represent a general class of switched time-delay systems with strong practical background. Combining average dwell time (ADT technique with piecewise Lyapunov functionals, sufficient conditions are established to guarantee the exponential stability and weighted H∞ performance for the filtering error systems. The parameters of the designed switched filters are obtained by solving linear matrix inequalities (LMIs. A modification of Jensen integral inequality is exploited to derive results with less theoretical conservatism and computational complexity. Finally, two examples are given to demonstrate the effectiveness of the proposed method.

  8. Robust distributed model predictive control of linear systems with structured time-varying uncertainties

    Science.gov (United States)

    Zhang, Langwen; Xie, Wei; Wang, Jingcheng

    2017-11-01

    In this work, synthesis of robust distributed model predictive control (MPC) is presented for a class of linear systems subject to structured time-varying uncertainties. By decomposing a global system into smaller dimensional subsystems, a set of distributed MPC controllers, instead of a centralised controller, are designed. To ensure the robust stability of the closed-loop system with respect to model uncertainties, distributed state feedback laws are obtained by solving a min-max optimisation problem. The design of robust distributed MPC is then transformed into solving a minimisation optimisation problem with linear matrix inequality constraints. An iterative online algorithm with adjustable maximum iteration is proposed to coordinate the distributed controllers to achieve a global performance. The simulation results show the effectiveness of the proposed robust distributed MPC algorithm.

  9. Linear Parameter Varying Versus Linear Time Invariant Reduced Order Controller Design of Turboprop Aircraft Dynamics

    Directory of Open Access Journals (Sweden)

    Widowati

    2012-07-01

    Full Text Available The applicability of parameter varying reduced order controllers to aircraft model is proposed. The generalization of the balanced singular perturbation method of linear time invariant (LTI system is used to reduce the order of linear parameter varying (LPV system. Based on the reduced order model the low-order LPV controller is designed by using synthesis technique. The performance of the reduced order controller is examined by applying it to lateral-directional control of aircraft model having 20th order. Furthermore, the time responses of the closed loop system with reduced order LPV controllers and reduced order LTI controller is compared. From the simulation results, the 8th order LPV controller can maintain stability and to provide the same level of closed-loop systems performance as the full-order LPV controller. It is different with the reduced-order LTI controller that cannot maintain stability and performance for all allowable parameter trajectories.

  10. A receding horizon scheme for discrete-time polytopic linear parameter varying systems in networked architectures

    International Nuclear Information System (INIS)

    Franzè, Giuseppe; Lucia, Walter; Tedesco, Francesco

    2014-01-01

    This paper proposes a Model Predictive Control (MPC) strategy to address regulation problems for constrained polytopic Linear Parameter Varying (LPV) systems subject to input and state constraints in which both plant measurements and command signals in the loop are sent through communication channels subject to time-varying delays (Networked Control System (NCS)). The results here proposed represent a significant extension to the LPV framework of a recent Receding Horizon Control (RHC) scheme developed for the so-called robust case. By exploiting the parameter availability, the pre-computed sequences of one- step controllable sets inner approximations are less conservative than the robust counterpart. The resulting framework guarantees asymptotic stability and constraints fulfilment regardless of plant uncertainties and time-delay occurrences. Finally, experimental results on a laboratory two-tank test-bed show the effectiveness of the proposed approach

  11. Time-varying linear control for tiltrotor aircraft

    Directory of Open Access Journals (Sweden)

    Jing ZHANG

    2018-04-01

    Full Text Available Tiltrotor aircraft have three flight modes: helicopter mode, airplane mode, and transition mode. A tiltrotor has characteristics of highly nonlinear, time-varying flight dynamics and inertial/control couplings in its transition mode. It can transit from the helicopter mode to the airplane mode by tilting its nacelles, and an effective controller is crucial to accomplish tilting transition missions. Longitudinal dynamic characteristics of the tiltrotor are described by a nonlinear Lagrange-form model, which takes into account inertial/control couplings and aerodynamic interferences. Reference commands for airspeed velocity and attitude in the transition mode are calculated dynamically by visiting a command library which is founded in advance by analyzing the flight envelope of the tiltrotor. A Time-Varying Linear (TVL model is obtained using a Taylor-expansion based online linearization technique from the nonlinear model. Subsequently, based on an optimal control concept, an online optimization based control method with input constraints considered is proposed. To validate the proposed control method, three typical tilting transition missions are simulated using the nonlinear model of XV-15 tiltrotor aircraft. Simulation results show that the controller can be used to control the tiltrotor throughout its operating envelop which includes a transition flight, and can also deal with vertical gust disturbances. Keywords: Constrained optimal control, Inertia/control couplings, Tiltrotor aircraft, Time-varying control, Transition mode

  12. Control of Linear Parameter Varying Systems with Applications

    CERN Document Server

    Mohammadpour, Javad

    2012-01-01

    Control of Linear Parameter Varying Systems with Applications compiles state-of-the-art contributions on novel analytical and computational methods to address system modeling and identification, complexity reduction, performance analysis and control design for time-varying and nonlinear systems in the LPV framework. The book has an interdisciplinary character by emphasizing techniques that can be commonly applied in various engineering fields. It also includes a rich collection of illustrative applications in diverse domains to substantiate the effectiveness of the design methodologies and provide pointers to open research directions. The book is divided into three parts. The first part collects chapters of a more tutorial character on the background of LPV systems modeling and control. The second part gathers chapters devoted to the theoretical advancement of LPV analysis and synthesis methods to cope with the design constraints such as uncertainties and time delay. The third part of the volume showcases con...

  13. Off-Line Robust Constrained MPC for Linear Time-Varying Systems with Persistent Disturbances

    Directory of Open Access Journals (Sweden)

    P. Bumroongsri

    2014-01-01

    Full Text Available An off-line robust constrained model predictive control (MPC algorithm for linear time-varying (LTV systems is developed. A novel feature is the fact that both model uncertainty and bounded additive disturbance are explicitly taken into account in the off-line formulation of MPC. In order to reduce the on-line computational burdens, a sequence of explicit control laws corresponding to a sequence of positively invariant sets is computed off-line. At each sampling time, the smallest positively invariant set containing the measured state is determined and the corresponding control law is implemented in the process. The proposed MPC algorithm can guarantee robust stability while ensuring the satisfaction of input and output constraints. The effectiveness of the proposed MPC algorithm is illustrated by two examples.

  14. Zhang neural network for online solution of time-varying convex quadratic program subject to time-varying linear-equality constraints

    International Nuclear Information System (INIS)

    Zhang Yunong; Li Zhan

    2009-01-01

    In this Letter, by following Zhang et al.'s method, a recurrent neural network (termed as Zhang neural network, ZNN) is developed and analyzed for solving online the time-varying convex quadratic-programming problem subject to time-varying linear-equality constraints. Different from conventional gradient-based neural networks (GNN), such a ZNN model makes full use of the time-derivative information of time-varying coefficient. The resultant ZNN model is theoretically proved to have global exponential convergence to the time-varying theoretical optimal solution of the investigated time-varying convex quadratic program. Computer-simulation results further substantiate the effectiveness, efficiency and novelty of such ZNN model and method.

  15. Application of a Statistical Linear Time-Varying System Model of High Grazing Angle Sea Clutter for Computing Interference Power

    Science.gov (United States)

    2017-12-08

    STATISTICAL LINEAR TIME-VARYING SYSTEM MODEL OF HIGH GRAZING ANGLE SEA CLUTTER FOR COMPUTING INTERFERENCE POWER 1. INTRODUCTION Statistical linear time...beam. We can approximate one of the sinc factors using the Dirichlet kernel to facilitate computation of the integral in (6) as follows: ∣∣∣∣sinc(WB...plotted in Figure 4. The resultant autocorrelation can then be found by substituting (18) into (28). The Python code used to generate Figures 1-4 is found

  16. LMI-based gain scheduled controller synthesis for a class of linear parameter varying systems

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Anderson, Brian; Lanzon, Alexander

    2006-01-01

    This paper presents a novel method for constructing controllers for a class of single-input multiple-output (SIMO) linear parameter varying (LPV) systems. This class of systems encompasses many physical systems, in particular systems where individual components vary with time, and is therefore...... of significant practical relevance to control designers. The control design presented in this paper has the properties that the system matrix of the closed loop is multi-affine in the various scalar parameters, and that the resulting controller ensures a certain degree of stability for the closed loop even when...... as a standard linear time-invariant (LTI) design combined with a set of linear matrix inequalities, which can be solved efficiently with software tools. The design procedure is illustrated by a numerical example....

  17. On H∞ Fault Estimator Design for Linear Discrete Time-Varying Systems under Unreliable Communication Link

    Directory of Open Access Journals (Sweden)

    Yueyang Li

    2014-01-01

    Full Text Available This paper investigates the H∞ fixed-lag fault estimator design for linear discrete time-varying (LDTV systems with intermittent measurements, which is described by a Bernoulli distributed random variable. Through constructing a novel partially equivalent dynamic system, the fault estimator design is converted into a deterministic quadratic minimization problem. By applying the innovation reorganization technique and the projection formula in Krein space, a necessary and sufficient condition is obtained for the existence of the estimator. The parameter matrices of the estimator are derived by recursively solving two standard Riccati equations. An illustrative example is provided to show the effectiveness and applicability of the proposed algorithm.

  18. Distributed Time-Varying Formation Robust Tracking for General Linear Multiagent Systems With Parameter Uncertainties and External Disturbances.

    Science.gov (United States)

    Hua, Yongzhao; Dong, Xiwang; Li, Qingdong; Ren, Zhang

    2017-05-18

    This paper investigates the time-varying formation robust tracking problems for high-order linear multiagent systems with a leader of unknown control input in the presence of heterogeneous parameter uncertainties and external disturbances. The followers need to accomplish an expected time-varying formation in the state space and track the state trajectory produced by the leader simultaneously. First, a time-varying formation robust tracking protocol with a totally distributed form is proposed utilizing the neighborhood state information. With the adaptive updating mechanism, neither any global knowledge about the communication topology nor the upper bounds of the parameter uncertainties, external disturbances and leader's unknown input are required in the proposed protocol. Then, in order to determine the control parameters, an algorithm with four steps is presented, where feasible conditions for the followers to accomplish the expected time-varying formation tracking are provided. Furthermore, based on the Lyapunov-like analysis theory, it is proved that the formation tracking error can converge to zero asymptotically. Finally, the effectiveness of the theoretical results is verified by simulation examples.

  19. Output-only modal parameter estimator of linear time-varying structural systems based on vector TAR model and least squares support vector machine

    Science.gov (United States)

    Zhou, Si-Da; Ma, Yuan-Chen; Liu, Li; Kang, Jie; Ma, Zhi-Sai; Yu, Lei

    2018-01-01

    Identification of time-varying modal parameters contributes to the structural health monitoring, fault detection, vibration control, etc. of the operational time-varying structural systems. However, it is a challenging task because there is not more information for the identification of the time-varying systems than that of the time-invariant systems. This paper presents a vector time-dependent autoregressive model and least squares support vector machine based modal parameter estimator for linear time-varying structural systems in case of output-only measurements. To reduce the computational cost, a Wendland's compactly supported radial basis function is used to achieve the sparsity of the Gram matrix. A Gamma-test-based non-parametric approach of selecting the regularization factor is adapted for the proposed estimator to replace the time-consuming n-fold cross validation. A series of numerical examples have illustrated the advantages of the proposed modal parameter estimator on the suppression of the overestimate and the short data. A laboratory experiment has further validated the proposed estimator.

  20. Linear response approach to active Brownian particles in time-varying activity fields

    Science.gov (United States)

    Merlitz, Holger; Vuijk, Hidde D.; Brader, Joseph; Sharma, Abhinav; Sommer, Jens-Uwe

    2018-05-01

    In a theoretical and simulation study, active Brownian particles (ABPs) in three-dimensional bulk systems are exposed to time-varying sinusoidal activity waves that are running through the system. A linear response (Green-Kubo) formalism is applied to derive fully analytical expressions for the torque-free polarization profiles of non-interacting particles. The activity waves induce fluxes that strongly depend on the particle size and may be employed to de-mix mixtures of ABPs or to drive the particles into selected areas of the system. Three-dimensional Langevin dynamics simulations are carried out to verify the accuracy of the linear response formalism, which is shown to work best when the particles are small (i.e., highly Brownian) or operating at low activity levels.

  1. The necessity for a time local dimension in systems with time-varying attractors

    DEFF Research Database (Denmark)

    Særmark, Knud H; Ashkenazy, Y; Levitan, J

    1997-01-01

    We show that a simple non-linear system for ordinary differential equations may possess a time-varying attractor dimension. This indicates that it is infeasible to characterize EEG and MEG time series with a single time global dimension. We suggest another measure for the description of non...

  2. Finite-Time Stability of Large-Scale Systems with Interval Time-Varying Delay in Interconnection

    Directory of Open Access Journals (Sweden)

    T. La-inchua

    2017-01-01

    Full Text Available We investigate finite-time stability of a class of nonlinear large-scale systems with interval time-varying delays in interconnection. Time-delay functions are continuous but not necessarily differentiable. Based on Lyapunov stability theory and new integral bounding technique, finite-time stability of large-scale systems with interval time-varying delays in interconnection is derived. The finite-time stability criteria are delays-dependent and are given in terms of linear matrix inequalities which can be solved by various available algorithms. Numerical examples are given to illustrate effectiveness of the proposed method.

  3. Globally Asymptotic Stability of Stochastic Nonlinear Systems with Time-Varying Delays via Output Feedback Control

    Directory of Open Access Journals (Sweden)

    Mingzhu Song

    2016-01-01

    Full Text Available We address the problem of globally asymptotic stability for a class of stochastic nonlinear systems with time-varying delays. By the backstepping method and Lyapunov theory, we design a linear output feedback controller recursively based on the observable linearization for a class of stochastic nonlinear systems with time-varying delays to guarantee that the closed-loop system is globally asymptotically stable in probability. In particular, we extend the deterministic nonlinear system to stochastic nonlinear systems with time-varying delays. Finally, an example and its simulations are given to illustrate the theoretical results.

  4. Robust Stabilization of Discrete-Time Systems with Time-Varying Delay: An LMI Approach

    Directory of Open Access Journals (Sweden)

    Valter J. S. Leite

    2008-01-01

    Full Text Available Sufficient linear matrix inequality (LMI conditions to verify the robust stability and to design robust state feedback gains for the class of linear discrete-time systems with time-varying delay and polytopic uncertainties are presented. The conditions are obtained through parameter-dependent Lyapunov-Krasovskii functionals and use some extra variables, which yield less conservative LMI conditions. Both problems, robust stability analysis and robust synthesis, are formulated as convex problems where all system matrices can be affected by uncertainty. Some numerical examples are presented to illustrate the advantages of the proposed LMI conditions.

  5. Distributed fault-tolerant time-varying formation control for high-order linear multi-agent systems with actuator failures.

    Science.gov (United States)

    Hua, Yongzhao; Dong, Xiwang; Li, Qingdong; Ren, Zhang

    2017-11-01

    This paper investigates the fault-tolerant time-varying formation control problems for high-order linear multi-agent systems in the presence of actuator failures. Firstly, a fully distributed formation control protocol is presented to compensate for the influences of both bias fault and loss of effectiveness fault. Using the adaptive online updating strategies, no global knowledge about the communication topology is required and the bounds of actuator failures can be unknown. Then an algorithm is proposed to determine the control parameters of the fault-tolerant formation protocol, where the time-varying formation feasible conditions and an approach to expand the feasible formation set are given. Furthermore, the stability of the proposed algorithm is proven based on the Lyapunov-like theory. Finally, two simulation examples are given to demonstrate the effectiveness of the theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Time-dependent switched discrete-time linear systems control and filtering

    CERN Document Server

    Zhang, Lixian; Shi, Peng; Lu, Qiugang

    2016-01-01

    This book focuses on the basic control and filtering synthesis problems for discrete-time switched linear systems under time-dependent switching signals. Chapter 1, as an introduction of the book, gives the backgrounds and motivations of switched systems, the definitions of the typical time-dependent switching signals, the differences and links to other types of systems with hybrid characteristics and a literature review mainly on the control and filtering for the underlying systems. By summarizing the multiple Lyapunov-like functions (MLFs) approach in which different requirements on comparisons of Lyapunov function values at switching instants, a series of methodologies are developed for the issues on stability and stabilization, and l2-gain performance or tube-based robustness for l∞ disturbance, respectively, in Chapters 2 and 3. Chapters 4 and 5 are devoted to the control and filtering problems for the time-dependent switched linear systems with either polytopic uncertainties or measurable time-varying...

  7. Discrete-Time Sliding-Mode Control of Uncertain Systems with Time-Varying Delays via Descriptor Approach

    Directory of Open Access Journals (Sweden)

    Maode Yan

    2008-01-01

    Full Text Available This paper considers the problem of robust discrete-time sliding-mode control (DT-SMC design for a class of uncertain linear systems with time-varying delays. By applying a descriptor model transformation and Moon's inequality for bounding cross terms, a delay-dependent sufficient condition for the existence of stable sliding surface is given in terms of linear matrix inequalities (LMIs. Based on this existence condition, the synthesized sliding mode controller can guarantee the sliding-mode reaching condition of the specified discrete-time sliding surface for all admissible uncertainties and time-varying delays. An illustrative example verifies the effectiveness of the proposed method.

  8. Stability of Nonlinear Systems with Unknown Time-varying Feedback Delay

    Science.gov (United States)

    Chunodkar, Apurva A.; Akella, Maruthi R.

    2013-12-01

    This paper considers the problem of stabilizing a class of nonlinear systems with unknown bounded delayed feedback wherein the time-varying delay is 1) piecewise constant 2) continuous with a bounded rate. We also consider application of these results to the stabilization of rigid-body attitude dynamics. In the first case, the time-delay in feedback is modeled specifically as a switch among an arbitrarily large set of unknown constant values with a known strict upper bound. The feedback is a linear function of the delayed states. In the case of linear systems with switched delay feedback, a new sufficiency condition for average dwell time result is presented using a complete type Lyapunov-Krasovskii (L-K) functional approach. Further, the corresponding switched system with nonlinear perturbations is proven to be exponentially stable inside a well characterized region of attraction for an appropriately chosen average dwell time. In the second case, the concept of the complete type L-K functional is extended to a class of nonlinear time-delay systems with unknown time-varying time-delay. This extension ensures stability robustness to time-delay in the control design for all values of time-delay less than the known upper bound. Model-transformation is used in order to partition the nonlinear system into a nominal linear part that is exponentially stable with a bounded perturbation. We obtain sufficient conditions which ensure exponential stability inside a region of attraction estimate. A constructive method to evaluate the sufficient conditions is presented together with comparison with the corresponding constant and piecewise constant delay. Numerical simulations are performed to illustrate the theoretical results of this paper.

  9. Achieving Synchronization in Arrays of Coupled Differential Systems with Time-Varying Couplings

    Directory of Open Access Journals (Sweden)

    Xinlei Yi

    2013-01-01

    Full Text Available We study complete synchronization of the complex dynamical networks described by linearly coupled ordinary differential equation systems (LCODEs. Here, the coupling is timevarying in both network structure and reaction dynamics. Inspired by our previous paper (Lu et al. (2007-2008, the extended Hajnal diameter is introduced and used to measure the synchronization in a general differential system. Then we find that the Hajnal diameter of the linear system induced by the time-varying coupling matrix and the largest Lyapunov exponent of the synchronized system play the key roles in synchronization analysis of LCODEs with identity inner coupling matrix. As an application, we obtain a general sufficient condition guaranteeing directed time-varying graph to reach consensus. Example with numerical simulation is provided to show the effectiveness of the theoretical results.

  10. Asymptotic stability of discrete-time systems with time-varying delay subject to saturation nonlinearities

    International Nuclear Information System (INIS)

    Chen, S.-F.

    2009-01-01

    The asymptotic stability problem for discrete-time systems with time-varying delay subject to saturation nonlinearities is addressed in this paper. In terms of linear matrix inequalities (LMIs), a delay-dependent sufficient condition is derived to ensure the asymptotic stability. A numerical example is given to demonstrate the theoretical results.

  11. Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations.

    Science.gov (United States)

    Xiao, Lin; Liao, Bolin; Li, Shuai; Chen, Ke

    2018-02-01

    In order to solve general time-varying linear matrix equations (LMEs) more efficiently, this paper proposes two nonlinear recurrent neural networks based on two nonlinear activation functions. According to Lyapunov theory, such two nonlinear recurrent neural networks are proved to be convergent within finite-time. Besides, by solving differential equation, the upper bounds of the finite convergence time are determined analytically. Compared with existing recurrent neural networks, the proposed two nonlinear recurrent neural networks have a better convergence property (i.e., the upper bound is lower), and thus the accurate solutions of general time-varying LMEs can be obtained with less time. At last, various different situations have been considered by setting different coefficient matrices of general time-varying LMEs and a great variety of computer simulations (including the application to robot manipulators) have been conducted to validate the better finite-time convergence of the proposed two nonlinear recurrent neural networks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Exponential networked synchronization of master-slave chaotic systems with time-varying communication topologies

    International Nuclear Information System (INIS)

    Yang Dong-Sheng; Liu Zhen-Wei; Liu Zhao-Bing; Zhao Yan

    2012-01-01

    The networked synchronization problem of a class of master-slave chaotic systems with time-varying communication topologies is investigated in this paper. Based on algebraic graph theory and matrix theory, a simple linear state feedback controller is designed to synchronize the master chaotic system and the slave chaotic systems with a time-varying communication topology connection. The exponential stability of the closed-loop networked synchronization error system is guaranteed by applying Lyapunov stability theory. The derived novel criteria are in the form of linear matrix inequalities (LMIs), which are easy to examine and tremendously reduce the computation burden from the feedback matrices. This paper provides an alternative networked secure communication scheme which can be extended conveniently. An illustrative example is given to demonstrate the effectiveness of the proposed networked synchronization method. (general)

  13. Dynamic IQC-Based Control of Uncertain LFT Systems With Time-Varying State Delay.

    Science.gov (United States)

    Yuan, Chengzhi; Wu, Fen

    2016-12-01

    This paper presents a new exact-memory delay control scheme for a class of uncertain systems with time-varying state delay under the integral quadratic constraint (IQC) framework. The uncertain system is described as a linear fractional transformation model including a state-delayed linear time-invariant (LTI) system and time-varying structured uncertainties. The proposed exact-memory delay controller consists of a linear state-feedback control law and an additional term that captures the delay behavior of the plant. We first explore the delay stability and the L 2 -gain performance using dynamic IQCs incorporated with quadratic Lyapunov functions. Then, the design of exact-memory controllers that guarantee desired L 2 -gain performance is examined. The resulting delay control synthesis conditions are formulated in terms of linear matrix inequalities, which are convex on all design variables including the scaling matrices associated with the IQC multipliers. The IQC-based exact-memory control scheme provides a novel approach for delay control designs via convex optimization, and advances existing control methods in two important ways: 1) better controlled performance and 2) simplified design procedure with less computational cost. The effectiveness and advantages of the proposed approach have been demonstrated through numerical studies.

  14. Nonlinear control of linear parameter varying systems with applications to hypersonic vehicles

    Science.gov (United States)

    Wilcox, Zachary Donald

    The focus of this dissertation is to design a controller for linear parameter varying (LPV) systems, apply it specifically to air-breathing hypersonic vehicles, and examine the interplay between control performance and the structural dynamics design. Specifically a Lyapunov-based continuous robust controller is developed that yields exponential tracking of a reference model, despite the presence of bounded, nonvanishing disturbances. The hypersonic vehicle has time varying parameters, specifically temperature profiles, and its dynamics can be reduced to an LPV system with additive disturbances. Since the HSV can be modeled as an LPV system the proposed control design is directly applicable. The control performance is directly examined through simulations. A wide variety of applications exist that can be effectively modeled as LPV systems. In particular, flight systems have historically been modeled as LPV systems and associated control tools have been applied such as gain-scheduling, linear matrix inequalities (LMIs), linear fractional transformations (LFT), and mu-types. However, as the type of flight environments and trajectories become more demanding, the traditional LPV controllers may no longer be sufficient. In particular, hypersonic flight vehicles (HSVs) present an inherently difficult problem because of the nonlinear aerothermoelastic coupling effects in the dynamics. HSV flight conditions produce temperature variations that can alter both the structural dynamics and flight dynamics. Starting with the full nonlinear dynamics, the aerothermoelastic effects are modeled by a temperature dependent, parameter varying state-space representation with added disturbances. The model includes an uncertain parameter varying state matrix, an uncertain parameter varying non-square (column deficient) input matrix, and an additive bounded disturbance. In this dissertation, a robust dynamic controller is formulated for a uncertain and disturbed LPV system. The developed

  15. Risk adjusted receding horizon control of constrained linear parameter varying systems

    NARCIS (Netherlands)

    Sznaier, M.; Lagoa, C.; Stoorvogel, Antonie Arij; Li, X.

    2005-01-01

    In the past few years, control of Linear Parameter Varying Systems (LPV) has been the object of considerable attention, as a way of formalizing the intuitively appealing idea of gain scheduling control for nonlinear systems. However, currently available LPV techniques are both computationally

  16. Lyapunov stability robust analysis and robustness design for linear continuous-time systems

    NARCIS (Netherlands)

    Luo, J.S.; Johnson, A.; Bosch, van den P.P.J.

    1995-01-01

    The linear continuous-time systems to be discussed are described by state space models with structured time-varying uncertainties. First, the explicit maximal perturbation bound for maintaining quadratic Lyapunov stability of the closed-loop systems is presented. Then, a robust design method is

  17. Estimation of time-varying reactivity by the H∞ optimal linear filter

    International Nuclear Information System (INIS)

    Suzuki, Katsuo; Shimazaki, Junya; Watanabe, Koiti

    1995-01-01

    The problem of estimating the time-varying net reactivity from flux measurements is solved for a point reactor kinetics model using a linear filtering technique in an H ∞ settings. In order to sue this technique, an appropriate dynamical model of the reactivity is constructed that can be embedded into the reactor model as one of its variables. A filter, which minimizes the H ∞ norm of the estimation error power spectrum, operates on neutron density measurements corrupted by noise and provides an estimate of the dynamic net reactivity. Computer simulations are performed to reveal the basic characteristics of the H ∞ optimal filter. The results of the simulation indicate that the filter can be used to determine the time-varying reactivity from neutron density measurements that have been corrupted by noise

  18. Decentralized H∞ Control of Interconnected Systems with Time-varying Delays

    Directory of Open Access Journals (Sweden)

    Amal Zouhri

    2017-01-01

    Full Text Available This paper focuses on the problem of delay dependent stability/stabilization of interconnected systems with time-varying delays. The approach is based on a new Lyapunov-Krasovskii functional. A decentralized delay-dependent stability analysis is performed to characterize linear matrix inequalities (LMIs based on the conditions under which every local subsystem of the linear interconnected delay system is asymptotically stable. Then we design a decentralized state-feedback stabilization scheme such that the family of closedloop feedback subsystems enjoys the delay-dependent asymptotic stability for each subsystem. The decentralized feedback gains are determined by convex optimization over LMIs. All the developed results are tested on a representative example and compared with some recent previous ones.

  19. Finite-Time Robust H∞ Control for Uncertain Linear Continuous-Time Singular Systems with Exogenous Disturbances

    Directory of Open Access Journals (Sweden)

    Songlin Wo

    2018-01-01

    Full Text Available Singular systems arise in a great deal of domains of engineering and can be used to solve problems which are more difficult and more extensive than regular systems to solve. Therefore, in this paper, the definition of finite-time robust H∞ control for uncertain linear continuous-time singular systems is presented. The problem we address is to design a robust state feedback controller which can deal with the singular system with time-varying norm-bounded exogenous disturbance, such that the singular system is finite-time robust bounded (FTRB with disturbance attenuation γ. Sufficient conditions for the existence of solutions to this problem are obtained in terms of linear matrix equalities (LMIs. When these LMIs are feasible, the desired robust controller is given. A detailed solving method is proposed for the restricted linear matrix inequalities. Finally, examples are given to show the validity of the methodology.

  20. H∞ Consensus for Multiagent Systems with Heterogeneous Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Beibei Wang

    2013-01-01

    Full Text Available We apply the linear matrix inequality method to consensus and H∞ consensus problems of the single integrator multiagent system with heterogeneous delays in directed networks. To overcome the difficulty caused by heterogeneous time-varying delays, we rewrite the multiagent system into a partially reduced-order system and an integral system. As a result, a particular Lyapunov function is constructed to derive sufficient conditions for consensus of multiagent systems with fixed (switched topologies. We also apply this method to the H∞ consensus of multiagent systems with disturbances and heterogeneous delays. Numerical examples are given to illustrate the theoretical results.

  1. Distributed Event-Triggered Control of Multiagent Systems with Time-Varying Topology

    Directory of Open Access Journals (Sweden)

    Jingwei Ma

    2014-01-01

    Full Text Available This paper studies the consensus of first-order discrete-time multiagent systems, where the interaction topology is time-varying. The event-triggered control is used to update the control input of each agent, and the event-triggering condition is designed based on the combination of the relative states of each agent to its neighbors. By applying the common Lyapunov function method, a sufficient condition for consensus, which is expressed as a group of linear matrix inequalities, is obtained and the feasibility of these linear matrix inequalities is further analyzed. Simulation examples are provided to explain the effectiveness of the theoretical results.

  2. Robust Moving Horizon H∞ Control of Discrete Time-Delayed Systems with Interval Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    F. Yıldız Tascikaraoglu

    2014-01-01

    Full Text Available In this study, design of a delay-dependent type moving horizon state-feedback control (MHHC is considered for a class of linear discrete-time system subject to time-varying state delays, norm-bounded uncertainties, and disturbances with bounded energies. The closed-loop robust stability and robust performance problems are considered to overcome the instability and poor disturbance rejection performance due to the existence of parametric uncertainties and time-delay appeared in the system dynamics. Utilizing a discrete-time Lyapunov-Krasovskii functional, some delay-dependent linear matrix inequality (LMI based conditions are provided. It is shown that if one can find a feasible solution set for these LMI conditions iteratively at each step of run-time, then we can construct a control law which guarantees the closed-loop asymptotic stability, maximum disturbance rejection performance, and closed-loop dissipativity in view of the actuator limitations. Two numerical examples with simulations on a nominal and uncertain discrete-time, time-delayed systems, are presented at the end, in order to demonstrate the efficiency of the proposed method.

  3. Structured Control of Affine Linear Parameter Varying Systems

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob

    2011-01-01

    This paper presents a new procedure to design structured controllers for discrete-time affine linear parametervarying systems (A LPV). The class of control structures includes decentralized of any order, fixed order output feedback, simultaneous plant-control design, among others. A parametervarying...... non-convex condition for an upper bound on the induced L2-norm performance is solved by an iterative linear matrix inequalities (LMI) optimization algorithm. Numerical examples demostrate the effectiveness of the proposed approach....

  4. Observer-based linear parameter varying H∞ tracking control for hypersonic vehicles

    Directory of Open Access Journals (Sweden)

    Yiqing Huang

    2016-11-01

    Full Text Available This article aims to develop observer-based linear parameter varying output feedback H∞ tracking controller for hypersonic vehicles. Due to the complexity of an original nonlinear model of the hypersonic vehicle dynamics, a slow–fast loop linear parameter varying polytopic model is introduced for system stability analysis and controller design. Then, a state observer is developed by linear parameter varying technique in order to estimate the unmeasured attitude angular for slow loop system. Also, based on the designed linear parameter varying state observer, a kind of attitude tracking controller is presented to reduce tracking errors for all bounded reference attitude angular inputs. The closed-loop linear parameter varying system is proved to be quadratically stable by Lypapunov function technique. Finally, simulation results show that the developed linear parameter varying H∞ controller has good tracking capability for reference commands.

  5. Incremental Closed-loop Identification of Linear Parameter Varying Systems

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2011-01-01

    , closed-loop system identification is more difficult than open-loop identification. In this paper we prove that the so-called Hansen Scheme, a technique known from linear time-invariant systems theory for transforming closed-loop system identification problems into open-loop-like problems, can be extended...

  6. Adaptive control of chaotic systems with stochastic time varying unknown parameters

    Energy Technology Data Exchange (ETDEWEB)

    Salarieh, Hassan [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, P.O. Box 11365-9567, Azadi Avenue, Tehran (Iran, Islamic Republic of)], E-mail: salarieh@mech.sharif.edu; Alasty, Aria [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, P.O. Box 11365-9567, Azadi Avenue, Tehran (Iran, Islamic Republic of)], E-mail: aalasti@sharif.edu

    2008-10-15

    In this paper based on the Lyapunov stability theorem, an adaptive control scheme is proposed for stabilizing the unstable periodic orbits (UPO) of chaotic systems. It is assumed that the chaotic system has some linearly dependent unknown parameters which are stochastically time varying. The stochastic parameters are modeled through the Weiner process derivative. To demonstrate the effectiveness of the proposed technique it has been applied to the Lorenz, Chen and Rossler dynamical systems, as some case studies. Simulation results indicate that the proposed adaptive controller has a high performance in stabilizing the UPO of chaotic systems in noisy environment.

  7. Delay-Dependent Guaranteed Cost Control of an Interval System with Interval Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Xiao Min

    2009-01-01

    Full Text Available This paper concerns the problem of the delay-dependent robust stability and guaranteed cost control for an interval system with time-varying delay. The interval system with matrix factorization is provided and leads to less conservative conclusions than solving a square root. The time-varying delay is assumed to belong to an interval and the derivative of the interval time-varying delay is not a restriction, which allows a fast time-varying delay; also its applicability is broad. Based on the Lyapunov-Ktasovskii approach, a delay-dependent criterion for the existence of a state feedback controller, which guarantees the closed-loop system stability, the upper bound of cost function, and disturbance attenuation lever for all admissible uncertainties as well as out perturbation, is proposed in terms of linear matrix inequalities (LMIs. The criterion is derived by free weighting matrices that can reduce the conservatism. The effectiveness has been verified in a number example and the compute results are presented to validate the proposed design method.

  8. Power System Event Ranking Using a New Linear Parameter-Varying Modeling with a Wide Area Measurement System-Based Approach

    Directory of Open Access Journals (Sweden)

    Mohammad Bagher Abolhasani Jabali

    2017-07-01

    Full Text Available Detecting critical power system events for Dynamic Security Assessment (DSA is required for reliability improvement. The approach proposed in this paper investigates the effects of events on dynamic behavior during nonlinear system response while common approaches use steady-state conditions after events. This paper presents some new and enhanced indices for event ranking based on time-domain simulation and polytopic linear parameter-varying (LPV modeling of a power system. In the proposed approach, a polytopic LPV representation is generated via linearization about some points of the nonlinear dynamic behavior of power system using wide-area measurement system (WAMS concepts and then event ranking is done based on the frequency response of the system models on the vertices. Therefore, the nonlinear behaviors of the system in the time of fault occurrence are considered for events ranking. The proposed algorithm is applied to a power system using nonlinear simulation. The comparison of the results especially in different fault conditions shows the advantages of the proposed approach and indices.

  9. Analysis and identification of time-invariant systems, time-varying systems, and multi-delay systems using orthogonal hybrid functions theory and algorithms with Matlab

    CERN Document Server

    Deb, Anish; Sarkar, Gautam

    2016-01-01

    This book introduces a new set of orthogonal hybrid functions (HF) which approximates time functions in a piecewise linear manner which is very suitable for practical applications. The book presents an analysis of different systems namely, time-invariant system, time-varying system, multi-delay systems---both homogeneous and non-homogeneous type- and the solutions are obtained in the form of discrete samples. The book also investigates system identification problems for many of the above systems. The book is spread over 15 chapters and contains 180 black and white figures, 18 colour figures, 85 tables and 56 illustrative examples. MATLAB codes for many such examples are included at the end of the book.

  10. Finite-time H∞ control for linear continuous system with norm-bounded disturbance

    Science.gov (United States)

    Meng, Qingyi; Shen, Yanjun

    2009-04-01

    In this paper, the definition of finite-time H∞ control is presented. The system under consideration is subject to time-varying norm-bounded exogenous disturbance. The main aim of this paper is focused on the design a state feedback controller which ensures that the closed-loop system is finite-time bounded (FTB) and reduces the effect of the disturbance input on the controlled output to a prescribed level. A sufficient condition is presented for the solvability of this problem, which can be reduced to a feasibility problem involving linear matrix inequalities (LMIs). A detailed solving method is proposed for the restricted linear matrix inequalities. Finally, examples are given to show the validity of the methodology.

  11. A Parametric Learning and Identification Based Robust Iterative Learning Control for Time Varying Delay Systems

    Directory of Open Access Journals (Sweden)

    Lun Zhai

    2014-01-01

    Full Text Available A parametric learning based robust iterative learning control (ILC scheme is applied to the time varying delay multiple-input and multiple-output (MIMO linear systems. The convergence conditions are derived by using the H∞ and linear matrix inequality (LMI approaches, and the convergence speed is analyzed as well. A practical identification strategy is applied to optimize the learning laws and to improve the robustness and performance of the control system. Numerical simulations are illustrated to validate the above concepts.

  12. Closed-loop Identification for Control of Linear Parameter Varying Systems

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2014-01-01

    , closed- loop system identification is more difficult than open-loop identification. In this paper we prove that the so-called Hansen Scheme, a technique known from linear time-invariant systems theory for transforming closed-loop system identification problems into open-loop-like problems, can...

  13. Delay-Dependent Guaranteed Cost H∞ Control of an Interval System with Interval Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Zhongke Shi

    2009-01-01

    Full Text Available This paper concerns the problem of the delay-dependent robust stability and guaranteed cost H∞ control for an interval system with time-varying delay. The interval system with matrix factorization is provided and leads to less conservative conclusions than solving a square root. The time-varying delay is assumed to belong to an interval and the derivative of the interval time-varying delay is not a restriction, which allows a fast time-varying delay; also its applicability is broad. Based on the Lyapunov-Ktasovskii approach, a delay-dependent criterion for the existence of a state feedback controller, which guarantees the closed-loop system stability, the upper bound of cost function, and disturbance attenuation lever for all admissible uncertainties as well as out perturbation, is proposed in terms of linear matrix inequalities (LMIs. The criterion is derived by free weighting matrices that can reduce the conservatism. The effectiveness has been verified in a number example and the compute results are presented to validate the proposed design method.

  14. Time-optimal feedback control for linear systems

    International Nuclear Information System (INIS)

    Mirica, S.

    1976-01-01

    The paper deals with the results of qualitative investigations of the time-optimal feedback control for linear systems with constant coefficients. In the first section, after some definitions and notations, two examples are given and it is shown that even the time-optimal control problem for linear systems with constant coefficients which looked like ''completely solved'' requires a further qualitative investigation of the stability to ''permanent perturbations'' of optimal feedback control. In the second section some basic results of the linear time-optimal control problem are reviewed. The third section deals with the definition of Boltyanskii's ''regular synthesis'' and its connection to Filippov's theory of right-hand side discontinuous differential equations. In the fourth section a theorem is proved concerning the stability to perturbations of time-optimal feedback control for linear systems with scalar control. In the last two sections it is proved that, if the matrix which defines the system has only real eigenvalues or is three-dimensional, the time-optimal feedback control defines a regular synthesis and therefore is stable to perturbations. (author)

  15. Identification of Affine Linear Parameter Varying Models for Adaptive Interventions in Fibromyalgia Treatment.

    Science.gov (United States)

    Dos Santos, P Lopes; Deshpande, Sunil; Rivera, Daniel E; Azevedo-Perdicoúlis, T-P; Ramos, J A; Younger, Jarred

    2013-12-31

    There is good evidence that naltrexone, an opioid antagonist, has a strong neuroprotective role and may be a potential drug for the treatment of fibromyalgia. In previous work, some of the authors used experimental clinical data to identify input-output linear time invariant models that were used to extract useful information about the effect of this drug on fibromyalgia symptoms. Additional factors such as anxiety, stress, mood, and headache, were considered as additive disturbances. However, it seems reasonable to think that these factors do not affect the drug actuation, but only the way in which a participant perceives how the drug actuates on herself. Under this hypothesis the linear time invariant models can be replaced by State-Space Affine Linear Parameter Varying models where the disturbances are seen as a scheduling signal signal only acting at the parameters of the output equation. In this paper a new algorithm for identifying such a model is proposed. This algorithm minimizes a quadratic criterion of the output error. Since the output error is a linear function of some parameters, the Affine Linear Parameter Varying system identification is formulated as a separable nonlinear least squares problem. Likewise other identification algorithms using gradient optimization methods several parameter derivatives are dynamical systems that must be simulated. In order to increase time efficiency a canonical parametrization that minimizes the number of systems to be simulated is chosen. The effectiveness of the algorithm is assessed in a case study where an Affine Parameter Varying Model is identified from the experimental data used in the previous study and compared with the time-invariant model.

  16. Fault Detection for Non-Gaussian Stochastic Systems with Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Tao Li

    2013-01-01

    Full Text Available Fault detection (FD for non-Gaussian stochastic systems with time-varying delay is studied. The available information for the addressed problem is the input and the measured output probability density functions (PDFs of the system. In this framework, firstly, by constructing an augmented Lyapunov functional, which involves some slack variables and a tuning parameter, a delay-dependent condition for the existence of FD observer is derived in terms of linear matrix inequality (LMI and the fault can be detected through a threshold. Secondly, in order to improve the detection sensitivity performance, the optimal algorithm is applied to minimize the threshold value. Finally, paper-making process example is given to demonstrate the applicability of the proposed approach.

  17. Lectures on algebraic system theory: Linear systems over rings

    Science.gov (United States)

    Kamen, E. W.

    1978-01-01

    The presentation centers on four classes of systems that can be treated as linear systems over a ring. These are: (1) discrete-time systems over a ring of scalars such as the integers; (2) continuous-time systems containing time delays; (3) large-scale discrete-time systems; and (4) time-varying discrete-time systems.

  18. Identification of time-varying nonlinear systems using differential evolution algorithm

    DEFF Research Database (Denmark)

    Perisic, Nevena; Green, Peter L; Worden, Keith

    2013-01-01

    (DE) algorithm for the identification of time-varying systems. DE is an evolutionary optimisation method developed to perform direct search in a continuous space without requiring any derivative estimation. DE is modified so that the objective function changes with time to account for the continuing......, thus identification of time-varying systems with nonlinearities can be a very challenging task. In order to avoid conventional least squares and gradient identification methods which require uni-modal and double differentiable objective functions, this work proposes a modified differential evolution...... inclusion of new data within an error metric. This paper presents results of identification of a time-varying SDOF system with Coulomb friction using simulated noise-free and noisy data for the case of time-varying friction coefficient, stiffness and damping. The obtained results are promising and the focus...

  19. Prediction-based control for LTI systems with uncertain time-varying delays and partial state knowledge

    Science.gov (United States)

    Léchappé, V.; Moulay, E.; Plestan, F.

    2018-06-01

    The stability of a prediction-based controller for linear time-invariant (LTI) systems is studied in the presence of time-varying input and output delays. The uncertain delay case is treated as well as the partial state knowledge case. The reduction method is used in order to prove the convergence of the closed-loop system including the state observer, the predictor and the plant. Explicit conditions that guarantee the closed-loop stability are given, thanks to a Lyapunov-Razumikhin analysis. Simulations illustrate the theoretical results.

  20. Finite-time stability of neutral-type neural networks with random time-varying delays

    Science.gov (United States)

    Ali, M. Syed; Saravanan, S.; Zhu, Quanxin

    2017-11-01

    This paper is devoted to the finite-time stability analysis of neutral-type neural networks with random time-varying delays. The randomly time-varying delays are characterised by Bernoulli stochastic variable. This result can be extended to analysis and design for neutral-type neural networks with random time-varying delays. On the basis of this paper, we constructed suitable Lyapunov-Krasovskii functional together and established a set of sufficient linear matrix inequalities approach to guarantee the finite-time stability of the system concerned. By employing the Jensen's inequality, free-weighting matrix method and Wirtinger's double integral inequality, the proposed conditions are derived and two numerical examples are addressed for the effectiveness of the developed techniques.

  1. Modal Analysis in Periodic, Time-Varying Systems with emphasis to the Coupling between Flexible Rotating Beams and Non-Rotating Flexible Structures

    DEFF Research Database (Denmark)

    Saracho, C. M.; Santos, Ilmar

    2003-01-01

    The analysis of dynamical response of a system built by a non-rotating structure coupled to flexible rotating beams is the purpose of this work. The effect of rotational speed upon the beam natural frequencies is well-known, so that an increase in the angular speeds leads to an increase in beam...... natural frequencies, the so-called centrifugal stiffening. The equations of motion of such a global system present matrices with time-depending coefficients, which vary periodically with the angular rotor speed, and introduce parametric vibrations into the system response. The principles of modal analysis...... for time-invariant linear systems are expanded to investigate time-varying systems. Concepts as eigenvalues and eigenvectors, which in this special case are also time-varying, are used to analyse the dynamical response of global system. The time-varying frequencies and modes are also illustrated....

  2. Reliable Memory Feedback Design for a Class of Nonlinear Fuzzy Systems with Time-varying Delay

    Institute of Scientific and Technical Information of China (English)

    You-Qing Wang; Dong-Hua Zhou; Li-Heng Liu

    2007-01-01

    This paper is concerned with the robust reliable memory controller design for a class of fuzzy uncertain systems with time-varying delay. The system under consideration is more general than those in other existent works. The controller, which is dependent on the magnitudes and derivative of the delay, is proposed in terms of linear matrix inequality (LMI). The closed-loop system is asymptotically stable for all admissible uncertainties as well as actuator faults. A numerical example is presented for illustration.

  3. Exponential synchronization of chaotic Lur'e systems with time-varying delay via sampled-data control

    International Nuclear Information System (INIS)

    Rakkiyappan, R.; Sivasamy, R.; Lakshmanan, S.

    2014-01-01

    In this paper, we study the exponential synchronization of chaotic Lur'e systems with time-varying delays via sampled-data control by using sector nonlinearties. In order to make full use of information about sampling intervals and interval time-varying delays, new Lyapunov—Krasovskii functionals with triple integral terms are introduced. Based on the convex combination technique, two kinds of synchronization criteria are derived in terms of linear matrix inequalities, which can be efficiently solved via standard numerical software. Finally, three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results

  4. Simultaneous Robust Fault and State Estimation for Linear Discrete-Time Uncertain Systems

    Directory of Open Access Journals (Sweden)

    Feten Gannouni

    2017-01-01

    Full Text Available We consider the problem of robust simultaneous fault and state estimation for linear uncertain discrete-time systems with unknown faults which affect both the state and the observation matrices. Using transformation of the original system, a new robust proportional integral filter (RPIF having an error variance with an optimized guaranteed upper bound for any allowed uncertainty is proposed to improve robust estimation of unknown time-varying faults and to improve robustness against uncertainties. In this study, the minimization problem of the upper bound of the estimation error variance is formulated as a convex optimization problem subject to linear matrix inequalities (LMI for all admissible uncertainties. The proportional and the integral gains are optimally chosen by solving the convex optimization problem. Simulation results are given in order to illustrate the performance of the proposed filter, in particular to solve the problem of joint fault and state estimation.

  5. Linear parameter varying representations for nonlinear control design

    Science.gov (United States)

    Carter, Lance Huntington

    Linear parameter varying (LPV) systems are investigated as a framework for gain-scheduled control design and optimal hybrid control. An LPV system is defined as a linear system whose dynamics depend upon an a priori unknown but measurable exogenous parameter. A gain-scheduled autopilot design is presented for a bank-to-turn (BTT) missile. The method is novel in that the gain-scheduled design does not involve linearizations about operating points. Instead, the missile dynamics are brought to LPV form via a state transformation. This idea is applied to the design of a coupled longitudinal/lateral BTT missile autopilot. The pitch and yaw/roll dynamics are separately transformed to LPV form, where the cross axis states are treated as "exogenous" parameters. These are actually endogenous variables, so such a plant is called "quasi-LPV." Once in quasi-LPV form, a family of robust controllers using mu synthesis is designed for both the pitch and yaw/roll channels, using angle-of-attack and roll rate as the scheduling variables. The closed-loop time response is simulated using the original nonlinear model and also using perturbed aerodynamic coefficients. Modeling and control of engine idle speed is investigated using LPV methods. It is shown how generalized discrete nonlinear systems may be transformed into quasi-LPV form. A discrete nonlinear engine model is developed and expressed in quasi-LPV form with engine speed as the scheduling variable. An example control design is presented using linear quadratic methods. Simulations are shown comparing the LPV based controller performance to that using PID control. LPV representations are also shown to provide a setting for hybrid systems. A hybrid system is characterized by control inputs consisting of both analog signals and discrete actions. A solution is derived for the optimal control of hybrid systems with generalized cost functions. This is shown to be computationally intensive, so a suboptimal strategy is proposed that

  6. Asynchronous L1-gain control of uncertain switched positive linear systems with dwell time.

    Science.gov (United States)

    Li, Yang; Zhang, Hongbin

    2018-04-01

    In this paper, dwell time (DT) stability, L 1 -gain performance analysis and asynchronous L 1 -gain controller design problems of uncertain switched positive linear systems (SPLSs) are investigated. Via a time-scheduled multiple linear co-positive Lyapunov function (TSMLCLF) approach, convex sufficient conditions of DT stability and L 1 -gain performance of SPLSs with interval and polytopic uncertainties are presented. Furthermore, by utilizing the feature that the TSMLCLF keeps decreasing even if the controller is running asynchronously with the system, the asynchronous L 1 -gain controller design problem of SPLSs with interval and polytopic uncertainties is investigated. Convex sufficient conditions of the existence of time-varying asynchronous state-feedback controller which can ensure the closed-loop system's positivity, stability and L 1 -gain performance are established, and the controller gain matrices can be calculated instantaneously online. The obtained L 1 -gain in the paper is standard. All the results are presented in terms of linear programming. A practical example is provided to show the effectiveness of the results. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Identification of a time-varying point source in a system of two coupled linear diffusion-advection- reaction equations: application to surface water pollution

    International Nuclear Information System (INIS)

    Hamdi, Adel

    2009-01-01

    This paper deals with the identification of a point source (localization of its position and recovering the history of its time-varying intensity function) that constitutes the right-hand side of the first equation in a system of two coupled 1D linear transport equations. Assuming that the source intensity function vanishes before reaching the final control time, we prove the identifiability of the sought point source from recording the state relative to the second coupled transport equation at two observation points framing the source region. Note that at least one of the two observation points should be strategic. We establish an identification method that uses these records to identify the source position as the root of a continuous and strictly monotonic function. Whereas the source intensity function is recovered using a recursive formula without any need of an iterative process. Some numerical experiments on a variant of the surface water pollution BOD–OD coupled model are presented

  8. Optimal critic learning for robot control in time-varying environments.

    Science.gov (United States)

    Wang, Chen; Li, Yanan; Ge, Shuzhi Sam; Lee, Tong Heng

    2015-10-01

    In this paper, optimal critic learning is developed for robot control in a time-varying environment. The unknown environment is described as a linear system with time-varying parameters, and impedance control is employed for the interaction control. Desired impedance parameters are obtained in the sense of an optimal realization of the composite of trajectory tracking and force regulation. Q -function-based critic learning is developed to determine the optimal impedance parameters without the knowledge of the system dynamics. The simulation results are presented and compared with existing methods, and the efficacy of the proposed method is verified.

  9. Mixed H2/Hinfinity output-feedback control of second-order neutral systems with time-varying state and input delays.

    Science.gov (United States)

    Karimi, Hamid Reza; Gao, Huijun

    2008-07-01

    A mixed H2/Hinfinity output-feedback control design methodology is presented in this paper for second-order neutral linear systems with time-varying state and input delays. Delay-dependent sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller, which guarantees asymptotic stability and a mixed H2/Hinfinity performance for the closed-loop system of the second-order neutral linear system, is then developed directly instead of coupling the model to a first-order neutral system. A Lyapunov-Krasovskii method underlies the LMI-based mixed H2/Hinfinity output-feedback control design using some free weighting matrices. The simulation results illustrate the effectiveness of the proposed methodology.

  10. Dynamics of unsymmetric piecewise-linear/non-linear systems using finite elements in time

    Science.gov (United States)

    Wang, Yu

    1995-08-01

    The dynamic response and stability of a single-degree-of-freedom system with unsymmetric piecewise-linear/non-linear stiffness are analyzed using the finite element method in the time domain. Based on a Hamilton's weak principle, this method provides a simple and efficient approach for predicting all possible fundamental and sub-periodic responses. The stability of the steady state response is determined by using Floquet's theory without any special effort for calculating transition matrices. This method is applied to a number of examples, demonstrating its effectiveness even for a strongly non-linear problem involving both clearance and continuous stiffness non-linearities. Close agreement is found between available published findings and the predictions of the finite element in time approach, which appears to be an efficient and reliable alternative technique for non-linear dynamic response and stability analysis of periodic systems.

  11. a Continuous-Time Positive Linear System

    Directory of Open Access Journals (Sweden)

    Kyungsup Kim

    2013-01-01

    Full Text Available This paper discusses a computational method to construct positive realizations with sparse matrices for continuous-time positive linear systems with multiple complex poles. To construct a positive realization of a continuous-time system, we use a Markov sequence similar to the impulse response sequence that is used in the discrete-time case. The existence of the proposed positive realization can be analyzed with the concept of a polyhedral convex cone. We provide a constructive algorithm to compute positive realizations with sparse matrices of some positive systems under certain conditions. A sufficient condition for the existence of a positive realization, under which the proposed constructive algorithm works well, is analyzed.

  12. Kalman filtering for time-delayed linear systems

    Institute of Scientific and Technical Information of China (English)

    LU Xiao; WANG Wei

    2006-01-01

    This paper is to study the linear minimum variance estimation for discrete- time systems. A simple approach to the problem is presented by developing re-organized innovation analysis for the systems with instantaneous and double time-delayed measurements. It is shown that the derived estimator involves solving three different standard Kalman filtering with the same dimension as the original system. The obtained results form the basis for solving some complicated problems such as H∞ fixed-lag smoothing, preview control, H∞ filtering and control with time delays.

  13. New delay-dependent absolute stability criteria for Lur'e systems with time-varying delay

    Science.gov (United States)

    Chen, Yonggang; Bi, Weiping; Li, Wenlin

    2011-07-01

    In this article, the absolute stability problem is investigated for Lur'e systems with time-varying delay and sector-bounded nonlinearity. By employing the delay fractioning idea, the new augmented Lyapunov functional is first constructed. Then, by introducing some slack matrices and by reserving the useful term when estimating the upper bound of the derivative of Lyapunov functional, the new delay-dependent absolute stability criteria are derived in terms of linear matrix inequalities. Several numerical examples are presented to show the effectiveness and the less conservativeness of the proposed method.

  14. Mittag-Leffler synchronization of fractional neural networks with time-varying delays and reaction-diffusion terms using impulsive and linear controllers.

    Science.gov (United States)

    Stamova, Ivanka; Stamov, Gani

    2017-12-01

    In this paper, we propose a fractional-order neural network system with time-varying delays and reaction-diffusion terms. We first develop a new Mittag-Leffler synchronization strategy for the controlled nodes via impulsive controllers. Using the fractional Lyapunov method sufficient conditions are given. We also study the global Mittag-Leffler synchronization of two identical fractional impulsive reaction-diffusion neural networks using linear controllers, which was an open problem even for integer-order models. Since the Mittag-Leffler stability notion is a generalization of the exponential stability concept for fractional-order systems, our results extend and improve the exponential impulsive control theory of neural network system with time-varying delays and reaction-diffusion terms to the fractional-order case. The fractional-order derivatives allow us to model the long-term memory in the neural networks, and thus the present research provides with a conceptually straightforward mathematical representation of rather complex processes. Illustrative examples are presented to show the validity of the obtained results. We show that by means of appropriate impulsive controllers we can realize the stability goal and to control the qualitative behavior of the states. An image encryption scheme is extended using fractional derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Window observers for linear systems

    Directory of Open Access Journals (Sweden)

    Utkin Vadim

    2000-01-01

    Full Text Available Given a linear system x ˙ = A x + B u with output y = C x and a window function ω ( t , i.e., ∀ t , ω ( t ∈ {0,1 }, and assuming that the window function is Lebesgue measurable, we refer to the following observer, x ˆ = A x + B u + ω ( t L C ( x − x ˆ as a window observer. The stability issue is treated in this paper. It is proven that for linear time-invariant systems, the window observer can be stabilized by an appropriate design under a very mild condition on the window functions, albeit for linear time-varying system, some regularity of the window functions is required to achieve observer designs with the asymptotic stability. The corresponding design methods are developed. An example is included to illustrate the possible applications

  16. PCA-based detection of damage in time-varying systems

    Science.gov (United States)

    Bellino, A.; Fasana, A.; Garibaldi, L.; Marchesiello, S.

    2010-10-01

    When performing Structural Health Monitoring, it is well known that the natural frequencies do not depend only on the damage but also on environmental conditions, such as temperature and humidity. The Principal Component Analysis is used to take this problem into account, because it allows eliminating the effect of external factors. The purpose of the present work is to show that this technique can be successfully used not only for time-invariant systems, but also for time-varying ones. Referring to the latter, one of the most studied systems which shows these characteristics is the bridge with crossing loads, such as the case of the railway bridge studied in present paper; in this case, the mass and the velocity of the train can be considered as "environmental" factors.This paper, after a brief description of the PCA method and one example of its application on time-invariant systems, presents the great potentialities of the methodology when applied to time-varying systems. The results show that this method is able to better detect the presence of damage and also to properly distinguish among different levels of crack depths.

  17. Robust Stability and H∞ Stabilization of Switched Systems with Time-Varying Delays Using Delta Operator Approach

    Directory of Open Access Journals (Sweden)

    Chen Qin

    2013-01-01

    Full Text Available This paper considers the problems of the robust stability and robust H∞ controller design for time-varying delay switched systems using delta operator approach. Based on the average dwell time approach and delta operator theory, a sufficient condition of the robust exponential stability is presented by choosing an appropriate Lyapunov-Krasovskii functional candidate. Then, a state feedback controller is designed such that the resulting closed-loop system is exponentially stable with a guaranteed H∞ performance. The obtained results are formulated in the form of linear matrix inequalities (LMIs. Finally, a numerical example is provided to explicitly illustrate the feasibility and effectiveness of the proposed method.

  18. Time-varying BRDFs.

    Science.gov (United States)

    Sun, Bo; Sunkavalli, Kalyan; Ramamoorthi, Ravi; Belhumeur, Peter N; Nayar, Shree K

    2007-01-01

    The properties of virtually all real-world materials change with time, causing their bidirectional reflectance distribution functions (BRDFs) to be time varying. However, none of the existing BRDF models and databases take time variation into consideration; they represent the appearance of a material at a single time instance. In this paper, we address the acquisition, analysis, modeling, and rendering of a wide range of time-varying BRDFs (TVBRDFs). We have developed an acquisition system that is capable of sampling a material's BRDF at multiple time instances, with each time sample acquired within 36 sec. We have used this acquisition system to measure the BRDFs of a wide range of time-varying phenomena, which include the drying of various types of paints (watercolor, spray, and oil), the drying of wet rough surfaces (cement, plaster, and fabrics), the accumulation of dusts (household and joint compound) on surfaces, and the melting of materials (chocolate). Analytic BRDF functions are fit to these measurements and the model parameters' variations with time are analyzed. Each category exhibits interesting and sometimes nonintuitive parameter trends. These parameter trends are then used to develop analytic TVBRDF models. The analytic TVBRDF models enable us to apply effects such as paint drying and dust accumulation to arbitrary surfaces and novel materials.

  19. Quantum theory for magnons and phonons interactions under time-varying magnetic fields

    International Nuclear Information System (INIS)

    Guerreiro, S.C.

    1971-01-01

    The magnon-fonon interaction in a ferromagnetic material submited to a time-varying magnetic field is studied by quantum methods. This problem has already been solved by semi-classical methods, and one of its results is that under certain conditions a state of lattice vibrations may be completely converted into spin oscillations. The main proporties of magnetoelastic waves in static magnetic fields and extend the quantum treatment for the time varying magnetic field case is revised. Field operators whose equations of motion are analogous to the classical ones are introduced. Their equations, which appear as a linear system of first order coupled equations, are converted into equations for complex functions by an expansion of the field operators in a time t as linear combinations of the same operators in a time t 0 prior to the variation of the magnetic field. The quantity g vector obtained from the classical solution is quantized and shown to be the linear momentum density of the magnetoelastic system, the quantum field spin density operator is deduced for the two interacting fields, and finally the results are used to study the magnetization and lattice displacement vector fields in the case of a system described by a coherent state of one of its normal modes

  20. The extinction probability in systems randomly varying in time

    Directory of Open Access Journals (Sweden)

    Imre Pázsit

    2017-09-01

    Full Text Available The extinction probability of a branching process (a neutron chain in a multiplying medium is calculated for a system randomly varying in time. The evolution of the first two moments of such a process was calculated previously by the authors in a system randomly shifting between two states of different multiplication properties. The same model is used here for the investigation of the extinction probability. It is seen that the determination of the extinction probability is significantly more complicated than that of the moments, and it can only be achieved by pure numerical methods. The numerical results indicate that for systems fluctuating between two subcritical or two supercritical states, the extinction probability behaves as expected, but for systems fluctuating between a supercritical and a subcritical state, there is a crucial and unexpected deviation from the predicted behaviour. The results bear some significance not only for neutron chains in a multiplying medium, but also for the evolution of biological populations in a time-varying environment.

  1. Finite-Time Reentry Attitude Control Using Time-Varying Sliding Mode and Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Xuzhong Wu

    2015-01-01

    Full Text Available This paper presents the finite-time attitude control problem for reentry vehicle with redundant actuators in consideration of planet uncertainties and external disturbances. Firstly, feedback linearization technique is used to cancel the nonlinearities of equations of motion to construct a basic mode for attitude controller. Secondly, two kinds of time-varying sliding mode control methods with disturbance observer are integrated with the basic mode in order to enhance the control performance and system robustness. One method is designed based on boundary layer technique and the other is a novel second-order sliding model control method. The finite-time stability analyses of both resultant closed-loop systems are carried out. Furthermore, after attitude controller produces the torque commands, an optimization control allocation approach is introduced to allocate them into aerodynamic surface deflections and on-off reaction control system thrusts. Finally, the numerical simulation results demonstrate that both of the time-varying sliding mode control methods are robust to uncertainties and disturbances without chattering phenomenon. Moreover, the proposed second-order sliding mode control method possesses better control accuracy.

  2. Finite-Time Stability Analysis of Discrete-Time Linear Singular Systems

    Directory of Open Access Journals (Sweden)

    Songlin Wo

    2014-01-01

    Full Text Available The finite-time stability (FTS problem of discrete-time linear singular systems (DTLSS is considered in this paper. A necessary and sufficient condition for FTS is obtained, which can be expressed in terms of matrix inequalities. Then, another form of the necessary and sufficient condition for FTS is also given by using matrix-null space technology. In order to solve the stability problem expediently, a sufficient condition for FTS is given via linear matrix inequality (LMI approach; this condition can be expressed in terms of LMIs. Finally, an illustrating example is also given to show the effectiveness of the proposed method.

  3. New Delay-Dependent Robust Exponential Stability Criteria of LPD Neutral Systems with Mixed Time-Varying Delays and Nonlinear Perturbations

    Directory of Open Access Journals (Sweden)

    Sirada Pinjai

    2013-01-01

    Full Text Available This paper is concerned with the problem of robust exponential stability for linear parameter-dependent (LPD neutral systems with mixed time-varying delays and nonlinear perturbations. Based on a new parameter-dependent Lyapunov-Krasovskii functional, Leibniz-Newton formula, decomposition technique of coefficient matrix, free-weighting matrices, Cauchy’s inequality, modified version of Jensen’s inequality, model transformation, and linear matrix inequality technique, new delay-dependent robust exponential stability criteria are established in terms of linear matrix inequalities (LMIs. Numerical examples are given to show the effectiveness and less conservativeness of the proposed methods.

  4. On the discretization of linear fractional representations of LPV systems

    NARCIS (Netherlands)

    Toth, R.; Lovera, M.; Heuberger, P.S.C.; Corno, M.; Hof, Van den P.M.J.

    2012-01-01

    Commonly, controllers for linear parameter-varying (LPV) systems are designed in continuous time using a linear fractional representation (LFR) of the plant. However, the resulting controllers are implemented on digital hardware. Furthermore, discrete-time LPV synthesis approaches require a

  5. Linear quadratic Gaussian balancing for discrete-time infinite-dimensional linear systems

    NARCIS (Netherlands)

    Opmeer, MR; Curtain, RF

    2004-01-01

    In this paper, we study the existence of linear quadratic Gaussian (LQG)-balanced realizations for discrete-time infinite-dimensional systems. LQG-balanced realizations are those for which the smallest nonnegative self-adjoint solutions of the control and filter Riccati equations are equal. We show

  6. Multistability of neural networks with discontinuous non-monotonic piecewise linear activation functions and time-varying delays.

    Science.gov (United States)

    Nie, Xiaobing; Zheng, Wei Xing

    2015-05-01

    This paper is concerned with the problem of coexistence and dynamical behaviors of multiple equilibrium points for neural networks with discontinuous non-monotonic piecewise linear activation functions and time-varying delays. The fixed point theorem and other analytical tools are used to develop certain sufficient conditions that ensure that the n-dimensional discontinuous neural networks with time-varying delays can have at least 5(n) equilibrium points, 3(n) of which are locally stable and the others are unstable. The importance of the derived results is that it reveals that the discontinuous neural networks can have greater storage capacity than the continuous ones. Moreover, different from the existing results on multistability of neural networks with discontinuous activation functions, the 3(n) locally stable equilibrium points obtained in this paper are located in not only saturated regions, but also unsaturated regions, due to the non-monotonic structure of discontinuous activation functions. A numerical simulation study is conducted to illustrate and support the derived theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Model-Checking of Linear-Time Properties in Multi-Valued Systems

    OpenAIRE

    Li, Yongming; Droste, Manfred; Lei, Lihui

    2012-01-01

    In this paper, we study model-checking of linear-time properties in multi-valued systems. Safety property, invariant property, liveness property, persistence and dual-persistence properties in multi-valued logic systems are introduced. Some algorithms related to the above multi-valued linear-time properties are discussed. The verification of multi-valued regular safety properties and multi-valued $\\omega$-regular properties using lattice-valued automata are thoroughly studied. Since the law o...

  8. Robust stabilisation of time-varying delay systems with probabilistic uncertainties

    Science.gov (United States)

    Jiang, Ning; Xiong, Junlin; Lam, James

    2016-09-01

    For robust stabilisation of time-varying delay systems, only sufficient conditions are available to date. A natural question is as follows: if the existing sufficient conditions are not satisfied, and hence no controllers can be found, what can one do to improve the stability performance of time-varying delay systems? This question is addressed in this paper when there is a probabilistic structure on the parameter uncertainty set. A randomised algorithm is proposed to design a state-feedback controller, which stabilises the system over the uncertainty domain in a probabilistic sense. The capability of the designed controller is quantified by the probability of stability of the resulting closed-loop system. The accuracy of the solution obtained from the randomised algorithm is also analysed. Finally, numerical examples are used to illustrate the effectiveness and advantages of the developed controller design approach.

  9. Linear Parameter Varying Control of Induction Motors

    DEFF Research Database (Denmark)

    Trangbæk, Klaus

    The subject of this thesis is the development of linear parameter varying (LPV) controllers and observers for control of induction motors. The induction motor is one of the most common machines in industrial applications. Being a highly nonlinear system, it poses challenging control problems...... for high performance applications. This thesis demonstrates how LPV control theory provides a systematic way to achieve good performance for these problems. The main contributions of this thesis are the application of the LPV control theory to induction motor control as well as various contributions...

  10. Adaptive Neural Network Control for Nonlinear Hydraulic Servo-System with Time-Varying State Constraints

    Directory of Open Access Journals (Sweden)

    Shu-Min Lu

    2017-01-01

    Full Text Available An adaptive neural network control problem is addressed for a class of nonlinear hydraulic servo-systems with time-varying state constraints. In view of the low precision problem of the traditional hydraulic servo-system which is caused by the tracking errors surpassing appropriate bound, the previous works have shown that the constraint for the system is a good way to solve the low precision problem. Meanwhile, compared with constant constraints, the time-varying state constraints are more general in the actual systems. Therefore, when the states of the system are forced to obey bounded time-varying constraint conditions, the high precision tracking performance of the system can be easily realized. In order to achieve this goal, the time-varying barrier Lyapunov function (TVBLF is used to prevent the states from violating time-varying constraints. By the backstepping design, the adaptive controller will be obtained. A radial basis function neural network (RBFNN is used to estimate the uncertainties. Based on analyzing the stability of the hydraulic servo-system, we show that the error signals are bounded in the compacts sets; the time-varying state constrains are never violated and all singles of the hydraulic servo-system are bounded. The simulation and experimental results show that the tracking accuracy of system is improved and the controller has fast tracking ability and strong robustness.

  11. Robust outer synchronization between two nonlinear complex networks with parametric disturbances and mixed time-varying delays

    Science.gov (United States)

    Zhang, Chuan; Wang, Xingyuan; Luo, Chao; Li, Junqiu; Wang, Chunpeng

    2018-03-01

    In this paper, we focus on the robust outer synchronization problem between two nonlinear complex networks with parametric disturbances and mixed time-varying delays. Firstly, a general complex network model is proposed. Besides the nonlinear couplings, the network model in this paper can possess parametric disturbances, internal time-varying delay, discrete time-varying delay and distributed time-varying delay. Then, according to the robust control strategy, linear matrix inequality and Lyapunov stability theory, several outer synchronization protocols are strictly derived. Simple linear matrix controllers are designed to driver the response network synchronize to the drive network. Additionally, our results can be applied on the complex networks without parametric disturbances. Finally, by utilizing the delayed Lorenz chaotic system as the dynamics of all nodes, simulation examples are given to demonstrate the effectiveness of our theoretical results.

  12. Robust Stability for Nonlinear Systems with Time-Varying Delay and Uncertainties via the H∞ Quasi-Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Yi-You Hou

    2014-01-01

    Full Text Available This paper considers the problem of the robust stability for the nonlinear system with time-varying delay and parameters uncertainties. Based on the H∞ theorem, Lyapunov-Krasovskii theory, and linear matrix inequality (LMI optimization technique, the H∞ quasi-sliding mode controller and switching function are developed such that the nonlinear system is asymptotically stable in the quasi-sliding mode and satisfies the disturbance attenuation (H∞-norm performance. The effectiveness and accuracy of the proposed methods are shown in numerical simulations.

  13. Decentralized control of discrete-time linear time invariant systems with input saturation

    NARCIS (Netherlands)

    Deliu, C.; Deliu, Ciprian; Malek, Babak; Roy, Sandip; Saberi, Ali; Stoorvogel, Antonie Arij

    We study decentralized stabilization of discrete-time linear time invariant (LTI) systems subject to actuator saturation, using LTI controllers. The requirement of stabilization under both saturation constraints and decentralization impose obvious necessary conditions on the open-loop plant, namely

  14. Decentralized control of discrete-time linear time invariant systems with input saturation

    NARCIS (Netherlands)

    Deliu, Ciprian; Deliu, C.; Malek, Babak; Roy, Sandip; Saberi, Ali; Stoorvogel, Antonie Arij

    2009-01-01

    We study decentralized stabilization of discrete time linear time invariant (LTI) systems subject to actuator saturation, using LTI controllers. The requirement of stabilization under both saturation constraints and decentralization impose obvious necessary conditions on the open-loop plant, namely

  15. Control system analysis for the perturbed linear accelerator rf system

    CERN Document Server

    Sung Il Kwon

    2002-01-01

    This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller.

  16. CONTROL SYSTEM ANALYSIS FOR THE PERTURBED LINEAR ACCELERATOR RF SYSTEM

    International Nuclear Information System (INIS)

    SUNG-IL KWON; AMY H. REGAN

    2002-01-01

    This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller

  17. Linear system identification via backward-time observer models

    Science.gov (United States)

    Juang, Jer-Nan; Phan, Minh

    1993-01-01

    This paper presents an algorithm to identify a state-space model of a linear system using a backward-time approach. The procedure consists of three basic steps. First, the Markov parameters of a backward-time observer are computed from experimental input-output data. Second, the backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) from which a backward-time state-space model is realized using the Eigensystem Realization Algorithm. Third, the obtained backward-time state space model is converted to the usual forward-time representation. Stochastic properties of this approach will be discussed. Experimental results are given to illustrate when and to what extent this concept works.

  18. Holographic cinematography of time-varying reflecting and time-varying phase objects using a Nd:YAG laser

    Science.gov (United States)

    Decker, A. J.

    1982-01-01

    The use of a Nd:YAG laser to record holographic motion pictures of time-varying reflecting objects and time-varying phase objects is discussed. Sample frames from both types of holographic motion pictures are presented. The holographic system discussed is intended for three-dimensional flow visualization of the time-varying flows that occur in jet-engine components.

  19. Truncated predictor feedback for time-delay systems

    CERN Document Server

    Zhou, Bin

    2014-01-01

    This book provides a systematic approach to the design of predictor based controllers for (time-varying) linear systems with either (time-varying) input or state delays. Differently from those traditional predictor based controllers, which are infinite-dimensional static feedback laws and may cause difficulties in their practical implementation, this book develops a truncated predictor feedback (TPF) which involves only finite dimensional static state feedback. Features and topics: A novel approach referred to as truncated predictor feedback for the stabilization of (time-varying) time-delay systems in both the continuous-time setting and the discrete-time setting is built systematically Semi-global and global stabilization problems of linear time-delay systems subject to either magnitude saturation or energy constraints are solved in a systematic manner Both stabilization of a single system and consensus of a group of systems (multi-agent systems) are treated in a unified manner by applying the truncated pre...

  20. Linear matrix inequality approach to exponential synchronization of a class of chaotic neural networks with time-varying delays

    Science.gov (United States)

    Wu, Wei; Cui, Bao-Tong

    2007-07-01

    In this paper, a synchronization scheme for a class of chaotic neural networks with time-varying delays is presented. This class of chaotic neural networks covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks, and bidirectional associative memory networks. The obtained criteria are expressed in terms of linear matrix inequalities, thus they can be efficiently verified. A comparison between our results and the previous results shows that our results are less restrictive.

  1. Controllable excitation of higher-order rogue waves in nonautonomous systems with both varying linear and harmonic external potentials

    Science.gov (United States)

    Jia, Heping; Yang, Rongcao; Tian, Jinping; Zhang, Wenmei

    2018-05-01

    The nonautonomous nonlinear Schrödinger (NLS) equation with both varying linear and harmonic external potentials is investigated and the semirational rogue wave (RW) solution is presented by similarity transformation. Based on the solution, the interactions between Peregrine soliton and breathers, and the controllability of the semirational RWs in periodic distribution and exponential decreasing nonautonomous systems with both linear and harmonic potentials are studied. It is found that the harmonic potential only influences the constraint condition of the semirational solution, the linear potential is related to the trajectory of the semirational RWs, while dispersion and nonlinearity determine the excitation position of the higher-order RWs. The higher-order RWs can be partly, completely and biperiodically excited in periodic distribution system and the diverse excited patterns can be generated for different parameter relations in exponential decreasing system. The results reveal that the excitation of the higher-order RWs can be controlled in the nonautonomous system by choosing dispersion, nonlinearity and external potentials.

  2. Stability analysis of linear switching systems with time delays

    International Nuclear Information System (INIS)

    Li Ping; Zhong Shouming; Cui Jinzhong

    2009-01-01

    The issue of stability analysis of linear switching system with discrete and distributed time delays is studied in this paper. An appropriate switching rule is applied to guarantee the stability of the whole switching system. Our results use a Riccati-type Lyapunov functional under a condition on the time delay. So, switching systems with mixed delays are developed. A numerical example is given to illustrate the effectiveness of our results.

  3. Flexible time-varying filter banks

    Science.gov (United States)

    Tuncer, Temel E.; Nguyen, Truong Q.

    1993-09-01

    Linear phase maximally flat FIR Butterworth filter approximations are discussed and a new filter design method is introduced. This variable cutoff filter design method uses the cosine modulated versions of a prototype filter. The design procedure is simple and different variants of this procedure can be used to obtain close to optimum linear phase filters. Using this method, flexible time-varying filter banks with good reconstruction error are introduced. These types of oversampled filter banks have small magnitude error which can be easily controlled by the appropriate choice of modulation frequency. This error can be further decreased by magnitude equalization without increasing the computational complexity considerably. Two dimensional design examples are also given.

  4. Linear parameter-varying control for engineering applications

    CERN Document Server

    White, Andrew P; Choi, Jongeun

    2013-01-01

    The objective of this brief is to carefully illustrate a procedure of applying linear parameter-varying (LPV) control to a class of dynamic systems via a systematic synthesis of gain-scheduling controllers with guaranteed stability and performance. The existing LPV control theories rely on the use of either H-infinity or H2 norm to specify the performance of the LPV system.  The challenge that arises with LPV control for engineers is twofold. First, there is no systematic procedure for applying existing LPV control system theory to solve practical engineering problems from modeling to control design. Second, there exists no LPV control synthesis theory to design LPV controllers with hard constraints. For example, physical systems usually have hard constraints on their required performance outputs along with their sensors and actuators. Furthermore, the H-infinity and H2 performance criteria cannot provide hard constraints on system outputs. As a result, engineers in industry could find it difficult to utiliz...

  5. Signals and transforms in linear systems analysis

    CERN Document Server

    Wasylkiwskyj, Wasyl

    2013-01-01

    Signals and Transforms in Linear Systems Analysis covers the subject of signals and transforms, particularly in the context of linear systems theory. Chapter 2 provides the theoretical background for the remainder of the text. Chapter 3 treats Fourier series and integrals. Particular attention is paid to convergence properties at step discontinuities. This includes the Gibbs phenomenon and its amelioration via the Fejer summation techniques. Special topics include modulation and analytic signal representation, Fourier transforms and analytic function theory, time-frequency analysis and frequency dispersion. Fundamentals of linear system theory for LTI analogue systems, with a brief account of time-varying systems, are covered in Chapter 4 . Discrete systems are covered in Chapters 6 and 7.  The Laplace transform treatment in Chapter 5 relies heavily on analytic function theory as does Chapter 8 on Z -transforms. The necessary background on complex variables is provided in Appendix A. This book is intended to...

  6. Adaptive operational modal identification for slow linear time-varying structures based on frozen-in coefficient method and limited memory recursive principal component analysis

    Science.gov (United States)

    Wang, Cheng; Guan, Wei; Wang, J. Y.; Zhong, Bineng; Lai, Xiongming; Chen, Yewang; Xiang, Liang

    2018-02-01

    To adaptively identify the transient modal parameters for linear weakly damped structures with slow time-varying characteristics under unmeasured stationary random ambient loads, this paper proposes a novel operational modal analysis (OMA) method based on the frozen-in coefficient method and limited memory recursive principal component analysis (LMRPCA). In the modal coordinate, the random vibration response signals of mechanical weakly damped structures can be decomposed into the inner product of modal shapes and modal responses, from which the natural frequencies and damping ratios can be well acquired by single-degree-of-freedom (SDOF) identification approach such as FFT. Hence, for the OMA method based on principal component analysis (PCA), it becomes very crucial to examine the relation between the transformational matrix and the modal shapes matrix, to find the association between the principal components (PCs) matrix and the modal responses matrix, and to turn the operational modal parameter identification problem into PCA of the stationary random vibration response signals of weakly damped mechanical structures. Based on the theory of "time-freezing", the method of frozen-in coefficient, and the assumption of "short time invariant" and "quasistationary", the non-stationary random response signals of the weakly damped and slow linear time-varying structures (LTV) can approximately be seen as the stationary random response time series of weakly damped and linear time invariant structures (LTI) in a short interval. Thus, the adaptive identification of time-varying operational modal parameters is turned into decompositing the PCs of stationary random vibration response signals subsection of weakly damped mechanical structures after choosing an appropriate limited memory window. Finally, a three-degree-of-freedom (DOF) structure with weakly damped and slow time-varying mass is presented to illustrate this method of identification. Results show that the LMRPCA

  7. Lag synchronization of chaotic systems with time-delayed linear

    Indian Academy of Sciences (India)

    In this paper, the lag synchronization of chaotic systems with time-delayed linear terms via impulsive control is investigated. Based on the stability theory of impulsive delayed differential equations, some sufficient conditions are obtained guaranteeing the synchronized behaviours between two delayed chaotic systems.

  8. Pattern formation in individual-based systems with time-varying parameters

    Science.gov (United States)

    Ashcroft, Peter; Galla, Tobias

    2013-12-01

    We study the patterns generated in finite-time sweeps across symmetry-breaking bifurcations in individual-based models. Similar to the well-known Kibble-Zurek scenario of defect formation, large-scale patterns are generated when model parameters are varied slowly, whereas fast sweeps produce a large number of small domains. The symmetry breaking is triggered by intrinsic noise, originating from the discrete dynamics at the microlevel. Based on a linear-noise approximation, we calculate the characteristic length scale of these patterns. We demonstrate the applicability of this approach in a simple model of opinion dynamics, a model in evolutionary game theory with a time-dependent fitness structure, and a model of cell differentiation. Our theoretical estimates are confirmed in simulations. In further numerical work, we observe a similar phenomenon when the symmetry-breaking bifurcation is triggered by population growth.

  9. Linear and nonlinear dynamic systems in financial time series prediction

    Directory of Open Access Journals (Sweden)

    Salim Lahmiri

    2012-10-01

    Full Text Available Autoregressive moving average (ARMA process and dynamic neural networks namely the nonlinear autoregressive moving average with exogenous inputs (NARX are compared by evaluating their ability to predict financial time series; for instance the S&P500 returns. Two classes of ARMA are considered. The first one is the standard ARMA model which is a linear static system. The second one uses Kalman filter (KF to estimate and predict ARMA coefficients. This model is a linear dynamic system. The forecasting ability of each system is evaluated by means of mean absolute error (MAE and mean absolute deviation (MAD statistics. Simulation results indicate that the ARMA-KF system performs better than the standard ARMA alone. Thus, introducing dynamics into the ARMA process improves the forecasting accuracy. In addition, the ARMA-KF outperformed the NARX. This result may suggest that the linear component found in the S&P500 return series is more dominant than the nonlinear part. In sum, we conclude that introducing dynamics into the ARMA process provides an effective system for S&P500 time series prediction.

  10. An Offline Formulation of MPC for LPV Systems Using Linear Matrix Inequalities

    Directory of Open Access Journals (Sweden)

    P. Bumroongsri

    2014-01-01

    Full Text Available An offline model predictive control (MPC algorithm for linear parameter varying (LPV systems is presented. The main contribution is to develop an offline MPC algorithm for LPV systems that can deal with both time-varying scheduling parameter and persistent disturbance. The norm-bounding technique is used to derive an offline MPC algorithm based on the parameter-dependent state feedback control law and the parameter-dependent Lyapunov functions. The online computational time is reduced by solving offline the linear matrix inequality (LMI optimization problems to find the sequences of explicit state feedback control laws. At each sampling instant, a parameter-dependent state feedback control law is computed by linear interpolation between the precomputed state feedback control laws. The algorithm is illustrated with two examples. The results show that robust stability can be ensured in the presence of both time-varying scheduling parameter and persistent disturbance.

  11. Noise level estimation in weakly nonlinear slowly time-varying systems

    International Nuclear Information System (INIS)

    Aerts, J R M; Dirckx, J J J; Lataire, J; Pintelon, R

    2008-01-01

    Recently, a method using multisine excitation was proposed for estimating the frequency response, the nonlinear distortions and the disturbing noise of weakly nonlinear time-invariant systems. This method has been demonstrated on the measurement of nonlinear distortions in the vibration of acoustically driven systems such as a latex membrane, which is a good example of a time-invariant system [1]. However, not all systems are perfectly time invariant, e.g. biomechanical systems. This time variation can be misinterpreted as an elevated noise floor, and the classical noise estimation method gives a wrong result. Two improved methods to retrieve the correct noise information from the measurements are presented. Both of them make use of multisine excitations. First, it is demonstrated that the improved methods give the same result as the classical noise estimation method when applied to a time-invariant system (high-quality microphone membrane). Next, it is demonstrated that the new methods clearly give an improved estimate of the noise level on time-varying systems. As an application example results for the vibration response of an eardrum are shown

  12. Genetic algorithm–based varying parameter linear quadratic regulator control for four-wheel independent steering vehicle

    Directory of Open Access Journals (Sweden)

    Linlin Gao

    2015-11-01

    Full Text Available From the perspective of vehicle dynamics, the four-wheel independent steering vehicle dynamics stability control method is studied, and a four-wheel independent steering varying parameter linear quadratic regulator control system is proposed with the help of expert control method. In the article, a four-wheel independent steering linear quadratic regulator controller for model following purpose is designed first. Then, by analyzing the four-wheel independent steering vehicle dynamic characteristics and the influence of linear quadratic regulator control parameters on control performance, a linear quadratic regulator control parameter adjustment strategy based on vehicle steering state is proposed to achieve the adaptive adjustment of linear quadratic regulator control parameters. In addition, to further improve the control performance, the proposed varying parameter linear quadratic regulator control system is optimized by genetic algorithm. Finally, simulation studies have been conducted by applying the proposed control system to the 8-degree-of-freedom four-wheel independent steering vehicle dynamics model. The simulation results indicate that the proposed control system has better performance and robustness and can effectively improve the stability and steering safety of the four-wheel independent steering vehicle.

  13. Stability Tests of Positive Fractional Continuous-time Linear Systems with Delays

    Directory of Open Access Journals (Sweden)

    Tadeusz Kaczorek

    2013-06-01

    Full Text Available Necessary and sufficient conditions for the asymptotic stability of positive fractional continuous-time linear systems with many delays are established. It is shown that: 1 the asymptotic stability of the positive fractional system is independent of their delays, 2 the checking of the asymptotic stability of the positive fractional systems with delays can be reduced to checking of the asymptotic stability of positive standard linear systems without delays.

  14. Using linear time-invariant system theory to estimate kinetic parameters directly from projection measurements

    International Nuclear Information System (INIS)

    Zeng, G.L.; Gullberg, G.T.

    1995-01-01

    It is common practice to estimate kinetic parameters from dynamically acquired tomographic data by first reconstructing a dynamic sequence of three-dimensional reconstructions and then fitting the parameters to time activity curves generated from the time-varying reconstructed images. However, in SPECT, the pharmaceutical distribution can change during the acquisition of a complete tomographic data set, which can bias the estimated kinetic parameters. It is hypothesized that more accurate estimates of the kinetic parameters can be obtained by fitting to the projection measurements instead of the reconstructed time sequence. Estimation from projections requires the knowledge of their relationship between the tissue regions of interest or voxels with particular kinetic parameters and the project measurements, which results in a complicated nonlinear estimation problem with a series of exponential factors with multiplicative coefficients. A technique is presented in this paper where the exponential decay parameters are estimated separately using linear time-invariant system theory. Once the exponential factors are known, the coefficients of the exponentials can be estimated using linear estimation techniques. Computer simulations demonstrate that estimation of the kinetic parameters directly from the projections is more accurate than the estimation from the reconstructed images

  15. H∞ state estimation of generalised neural networks with interval time-varying delays

    Science.gov (United States)

    Saravanakumar, R.; Syed Ali, M.; Cao, Jinde; Huang, He

    2016-12-01

    This paper focuses on studying the H∞ state estimation of generalised neural networks with interval time-varying delays. The integral terms in the time derivative of the Lyapunov-Krasovskii functional are handled by the Jensen's inequality, reciprocally convex combination approach and a new Wirtinger-based double integral inequality. A delay-dependent criterion is derived under which the estimation error system is globally asymptotically stable with H∞ performance. The proposed conditions are represented by linear matrix inequalities. Optimal H∞ norm bounds are obtained easily by solving convex problems in terms of linear matrix inequalities. The advantage of employing the proposed inequalities is illustrated by numerical examples.

  16. Mean Transit Time and Mean Residence Time for Linear Diffusion–Convection–Reaction Transport System

    Directory of Open Access Journals (Sweden)

    Jacek Waniewski

    2007-01-01

    Full Text Available Characteristic times for transport processes in biological systems may be evaluated as mean transit times (MTTs (for transit states or mean residence times (MRT (for steady states. It is shown in a general framework of a (linear reaction–diffusion–convection equation that these two times are related. Analytical formulas are also derived to calculate moments of exit time distribution using solutions for a stationary state of the system.

  17. Multi-pulse chaotic motions of a rotor-active magnetic bearing system with time-varying stiffness

    International Nuclear Information System (INIS)

    Zhang, W.; Yao, M.H.; Zhan, X.P.

    2006-01-01

    In this paper, we investigate the Shilnikov type multi-pulse chaotic dynamics for a rotor-active magnetic bearings (AMB) system with 8-pole legs and the time-varying stiffness. The stiffness in the AMB is considered as the time-varying in a periodic form. The dimensionless equation of motion for the rotor-AMB system with the time-varying stiffness in the horizontal and vertical directions is a two-degree-of-freedom nonlinear system with quadratic and cubic nonlinearities and parametric excitation. The asymptotic perturbation method is used to obtain the averaged equations in the case of primary parametric resonance and 1/2 subharmonic resonance. It is found from the numerical results that there are the phenomena of the Shilnikov type multi-pulse chaotic motions for the rotor-AMB system. A new jumping phenomenon is discovered in the rotor-AMB system with the time-varying stiffness

  18. Mean Square Exponential Stability of Stochastic Switched System with Interval Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Manlika Rajchakit

    2012-01-01

    Full Text Available This paper is concerned with mean square exponential stability of switched stochastic system with interval time-varying delays. The time delay is any continuous function belonging to a given interval, but not necessary to be differentiable. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, a switching rule for the mean square exponential stability of switched stochastic system with interval time-varying delays and new delay-dependent sufficient conditions for the mean square exponential stability of the switched stochastic system are first established in terms of LMIs. Numerical example is given to show the effectiveness of the obtained result.

  19. An Explicit MOT-TD-VIE Solver for Time Varying Media

    KAUST Repository

    Sayed, Sadeed Bin

    2016-03-15

    An explicit marching on-in-time (MOT) scheme for solving the time domain electric field integral equation enforced on volumes with time varying dielectric permittivity is proposed. Unknowns of the integral equation and the constitutive relation, i.e., flux density and field intensity, are discretized using full and half Schaubert-Wilton-Glisson functions in space. Temporal interpolation is carried out using band limited approximate prolate spherical wave functions. The discretized coupled system of integral equation and constitutive relation is integrated in time using a PE(CE)m type linear multistep scheme. Unlike the existing MOT methods, the resulting explicit MOT scheme allows for straightforward incorporation of the time variation in the dielectric permittivity.

  20. Output-only cyclo-stationary linear-parameter time-varying stochastic subspace identification method for rotating machinery and spinning structures

    Science.gov (United States)

    Velazquez, Antonio; Swartz, R. Andrew

    2015-02-01

    Economical maintenance and operation are critical issues for rotating machinery and spinning structures containing blade elements, especially large slender dynamic beams (e.g., wind turbines). Structural health monitoring systems represent promising instruments to assure reliability and good performance from the dynamics of the mechanical systems. However, such devices have not been completely perfected for spinning structures. These sensing technologies are typically informed by both mechanistic models coupled with data-driven identification techniques in the time and/or frequency domain. Frequency response functions are popular but are difficult to realize autonomously for structures of higher order, especially when overlapping frequency content is present. Instead, time-domain techniques have shown to possess powerful advantages from a practical point of view (i.e. low-order computational effort suitable for real-time or embedded algorithms) and also are more suitable to differentiate closely-related modes. Customarily, time-varying effects are often neglected or dismissed to simplify this analysis, but such cannot be the case for sinusoidally loaded structures containing spinning multi-bodies. A more complex scenario is constituted when dealing with both periodic mechanisms responsible for the vibration shaft of the rotor-blade system and the interaction of the supporting substructure. Transformations of the cyclic effects on the vibrational data can be applied to isolate inertial quantities that are different from rotation-generated forces that are typically non-stationary in nature. After applying these transformations, structural identification can be carried out by stationary techniques via data-correlated eigensystem realizations. In this paper, an exploration of a periodic stationary or cyclo-stationary subspace identification technique is presented here for spinning multi-blade systems by means of a modified Eigensystem Realization Algorithm (ERA) via

  1. New Delay-Dependent Stability Criteria for Uncertain Neutral Systems with Mixed Time-Varying Delays and Nonlinear Perturbations

    Directory of Open Access Journals (Sweden)

    Hamid Reza Karimi

    2009-01-01

    Full Text Available The problem of stability analysis for a class of neutral systems with mixed time-varying neutral, discrete and distributed delays and nonlinear parameter perturbations is addressed. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor model transformation, the Leibniz-Newton formula, some free-weighting matrices, and a suitable change of variables, new sufficient conditions are established for the stability of the considered system, which are neutral-delay-dependent, discrete-delay-range-dependent, and distributed-delay-dependent. The conditions are presented in terms of linear matrix inequalities (LMIs and can be efficiently solved using convex programming techniques. Two numerical examples are given to illustrate the efficiency of the proposed method.

  2. New Inference Procedures for Semiparametric Varying-Coefficient Partially Linear Cox Models

    Directory of Open Access Journals (Sweden)

    Yunbei Ma

    2014-01-01

    Full Text Available In biomedical research, one major objective is to identify risk factors and study their risk impacts, as this identification can help clinicians to both properly make a decision and increase efficiency of treatments and resource allocation. A two-step penalized-based procedure is proposed to select linear regression coefficients for linear components and to identify significant nonparametric varying-coefficient functions for semiparametric varying-coefficient partially linear Cox models. It is shown that the penalized-based resulting estimators of the linear regression coefficients are asymptotically normal and have oracle properties, and the resulting estimators of the varying-coefficient functions have optimal convergence rates. A simulation study and an empirical example are presented for illustration.

  3. Construction of exact invariants of time-dependent linear nonholonomic dynamical systems

    International Nuclear Information System (INIS)

    Fu Jingli; Jimenez, Salvador; Tang Yifa; Vazquez, Luis

    2008-01-01

    In this work, we build exact dynamical invariants for time-dependent, linear, nonholonomic Hamiltonian systems in two dimensions. Our aim is to obtain an additional insight into the theoretical understanding of generalized Hamilton canonical equations. In particular, we investigate systems represented by a quadratic Hamiltonian subject to linear nonholonomic constraints. We use a Lie algebraic method on the systems to build the invariants. The role and scope of these invariants is pointed out

  4. Construction of exact invariants of time-dependent linear nonholonomic dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Fu Jingli [Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)], E-mail: sqfujingli@163.com; Jimenez, Salvador [Departamento de Matematica Aplicada TTII, E.T.S.I. Telecomunicacion, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Tang Yifa [State Key Laboratory of Scientific and Engineering Computing, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, PO Box 2719, Beijing 100080 (China); Vazquez, Luis [Departamento de Matematica Aplicada Facultad de Informatica, Universidad Complutense de Madrid, 28040 Madrid (Spain); Centro de Astrobiologia (CSIC-INTA), Torrejon de Ardoz, 28850 Madrid (Spain)

    2008-03-03

    In this work, we build exact dynamical invariants for time-dependent, linear, nonholonomic Hamiltonian systems in two dimensions. Our aim is to obtain an additional insight into the theoretical understanding of generalized Hamilton canonical equations. In particular, we investigate systems represented by a quadratic Hamiltonian subject to linear nonholonomic constraints. We use a Lie algebraic method on the systems to build the invariants. The role and scope of these invariants is pointed out.

  5. Comparison of Linear Microinstability Calculations of Varying Input Realism

    International Nuclear Information System (INIS)

    Rewoldt, G.

    2003-01-01

    The effect of varying ''input realism'' or varying completeness of the input data for linear microinstability calculations, in particular on the critical value of the ion temperature gradient for the ion temperature gradient mode, is investigated using gyrokinetic and gyrofluid approaches. The calculations show that varying input realism can have a substantial quantitative effect on the results

  6. Comparison of linear microinstability calculations of varying input realism

    International Nuclear Information System (INIS)

    Rewoldt, G.; Kinsey, J.E.

    2004-01-01

    The effect of varying 'input realism' or varying completeness of the input data for linear microinstability calculations, in particular on the critical value of the ion temperature gradient for the ion temperature gradient mode, is investigated using gyrokinetic and gyrofluid approaches. The calculations show that varying input realism can have a substantial quantitative effect on the results

  7. Compensating Unknown Time-Varying Delay in Opto-Electronic Platform Tracking Servo System

    Directory of Open Access Journals (Sweden)

    Ruihong Xie

    2017-05-01

    Full Text Available This paper investigates the problem of compensating miss-distance delay in opto-electronic platform tracking servo system. According to the characteristic of LOS (light-of-sight motion, we setup the Markovian process model and compensate this unknown time-varying delay by feed-forward forecasting controller based on robust H∞ control. Finally, simulation based on double closed-loop PI (Proportion Integration control system indicates that the proposed method is effective for compensating unknown time-varying delay. Tracking experiments on the opto-electronic platform indicate that RMS (root-mean-square error is 1.253 mrad when tracking 10° 0.2 Hz signal.

  8. Stability Control of Force-Reflected Nonlinear Multilateral Teleoperation System under Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Da Sun

    2016-01-01

    Full Text Available A novel control algorithm based on the modified wave-variable controllers is proposed to achieve accurate position synchronization and reasonable force tracking of the nonlinear single-master-multiple-slave teleoperation system and simultaneously guarantee overall system’s stability in the presence of large time-varying delays. The system stability in different scenarios of human and environment situations has been analyzed. The proposed method is validated through experimental work based on the 3-DOF trilateral teleoperation system consisting of three different manipulators. The experimental results clearly demonstrate the feasibility of the proposed algorithm to achieve high transparency and robust stability in nonlinear single-master-multiple-slave teleoperation system in the presence of time-varying delays.

  9. A new timing system for the Stanford Linear Collider

    International Nuclear Information System (INIS)

    Paffrath, L.; Bernstein, D.; Kang, H.; Koontz, R.; Leger, G.; Pierce, W.; Ross, M.; Wilmunder, A.

    1985-01-01

    In order to be able to meet the goals of the Stanford Linear Collider, a much more precise timing system had to be implemented. This paper describes the specification and design of this system, and the results obtained from its use on 1/3 of the SLAC linac. The functions of various elements are described, and a programmable delay unit (PDU) is described in detail

  10. Balanced truncation for linear switched systems

    DEFF Research Database (Denmark)

    Petreczky, Mihaly; Wisniewski, Rafal; Leth, John-Josef

    2013-01-01

    In this paper, we present a theoretical analysis of the model reduction algorithm for linear switched systems from Shaker and Wisniewski (2011, 2009) and . This algorithm is a reminiscence of the balanced truncation method for linear parameter varying systems (Wood et al., 1996) [3]. Specifically...

  11. Multivariate time-varying volatility modeling using probabilistic fuzzy systems

    NARCIS (Netherlands)

    Basturk, N.; Almeida, R.J.; Golan, R.; Kaymak, U.

    2016-01-01

    Methods to accurately analyze financial risk have drawn considerable attention in financial institutions. One difficulty in financial risk analysis is the fact that banks and other financial institutions invest in several assets which show time-varying volatilities and hence time-varying financial

  12. Comparison of modal spectral and non-linear time history analysis of a piping system

    International Nuclear Information System (INIS)

    Gerard, R.; Aelbrecht, D.; Lafaille, J.P.

    1987-01-01

    A typical piping system of the discharge line of the chemical and volumetric control system, outside the containment, between the penetration and the heat exchanger, an operating power plant was analyzed using four different methods: Modal spectral analysis with 2% constant damping, modal spectral analysis using ASME Code Case N411 (PVRC damping), linear time history analysis, non-linear time history analysis. This paper presents an estimation of the conservatism of the linear methods compared to the non-linear analysis. (orig./HP)

  13. Algorithmic Approach to Abstracting Linear Systems by Timed Automata

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2011-01-01

    This paper proposes an LMI-based algorithm for abstracting dynamical systems by timed automata, which enables automatic formal verification of linear systems. The proposed abstraction is based on partitioning the state space of the system using positive invariant sets, generated by Lyapunov...... functions. This partitioning ensures that the vector field of the dynamical system is transversal to all facets of the cells, which induces some desirable properties of the abstraction. The algorithm is based on identifying intersections of level sets of quadratic Lyapunov functions, and determining...

  14. Delay-Dependent Stability Criteria of Uncertain Periodic Switched Recurrent Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Xing Yin

    2011-01-01

    uncertain periodic switched recurrent neural networks with time-varying delays. When uncertain discrete-time recurrent neural network is a periodic system, it is expressed as switched neural network for the finite switching state. Based on the switched quadratic Lyapunov functional approach (SQLF and free-weighting matrix approach (FWM, some linear matrix inequality criteria are found to guarantee the delay-dependent asymptotical stability of these systems. Two examples illustrate the exactness of the proposed criteria.

  15. An improved robust model predictive control for linear parameter-varying input-output models

    NARCIS (Netherlands)

    Abbas, H.S.; Hanema, J.; Tóth, R.; Mohammadpour, J.; Meskin, N.

    2018-01-01

    This paper describes a new robust model predictive control (MPC) scheme to control the discrete-time linear parameter-varying input-output models subject to input and output constraints. Closed-loop asymptotic stability is guaranteed by including a quadratic terminal cost and an ellipsoidal terminal

  16. Robust performance results for discrete-time systems

    Directory of Open Access Journals (Sweden)

    Mahmoud Magdi S.

    1997-01-01

    Full Text Available The problems of robust performance and feedback control synthesis for a class of linear discrete-time systems with time-varying parametric uncertainties are addressed in this paper. The uncertainties are bound and have a linear matrix fractional form. Based on the concept of strongly robust H ∞ -performance criterion, results of robust stability and performance are developed and expressed in easily computable linear matrix inequalities. Synthesis of robust feedback controllers is carried out for several system models of interest.

  17. Relay selection in cooperative communication systems over continuous time-varying fading channel

    Directory of Open Access Journals (Sweden)

    Ke Geng

    2017-02-01

    Full Text Available In this paper, we study relay selection under outdated channel state information (CSI in a decode-and-forward (DF cooperative system. Unlike previous researches on cooperative communication under outdated CSI, we consider that the channel varies continuously over time, i.e., the channel not only changes between relay selection and data transmission but also changes during data transmission. Thus the level of accuracy of the CSI used in relay selection degrades with data transmission. We first evaluate the packet error rate (PER of the cooperative system under continuous time-varying fading channel, and find that the PER performance deteriorates more seriously under continuous time-varying fading channel than when the channel is assumed to be constant during data transmission. Then, we propose a repeated relay selection (RRS strategy to improve the PER performance, in which the forwarded data is divided into multiple segments and relay is reselected before the transmission of each segment based on the updated CSI. Finally, we propose a combined relay selection (CRS strategy which takes advantage of three different relay selection strategies to further mitigate the impact of outdated CSI.

  18. Non-fragile guaranteed cost control for uncertain neutral dynamic systems with time-varying delays in state and control input

    International Nuclear Information System (INIS)

    Lien, C.-H.

    2007-01-01

    This article considers non-fragile guaranteed cost control problem for a class of uncertain neutral system with time-varying delays in both state and control input. Delay-dependent criteria are proposed to guarantee the robust stabilization of systems. Linear matrix inequality (LMI) optimization approach is used to solve the non-fragile guaranteed cost control problem. Non-fragile guaranteed cost control for unperturbed neutral system is considered in the first step. Robust non-fragile guaranteed cost control for uncertain neutral system is designed directly from the unperturbed condition. An efficient approach is proposed to design the non-fragile guaranteed cost control for uncertain neutral systems. LMI toolbox of Matlab is used to implement the proposed results. Finally, a numerical example is illustrated to show the usefulness of the proposed results

  19. Research on Adaptive Neural Network Control System Based on Nonlinear U-Model with Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Fengxia Xu

    2014-01-01

    Full Text Available U-model can approximate a large class of smooth nonlinear time-varying delay system to any accuracy by using time-varying delay parameters polynomial. This paper proposes a new approach, namely, U-model approach, to solving the problems of analysis and synthesis for nonlinear systems. Based on the idea of discrete-time U-model with time-varying delay, the identification algorithm of adaptive neural network is given for the nonlinear model. Then, the controller is designed by using the Newton-Raphson formula and the stability analysis is given for the closed-loop nonlinear systems. Finally, illustrative examples are given to show the validity and applicability of the obtained results.

  20. Linear system theory

    Science.gov (United States)

    Callier, Frank M.; Desoer, Charles A.

    1991-01-01

    The aim of this book is to provide a systematic and rigorous access to the main topics of linear state-space system theory in both the continuous-time case and the discrete-time case; and the I/O description of linear systems. The main thrusts of the work are the analysis of system descriptions and derivations of their properties, LQ-optimal control, state feedback and state estimation, and MIMO unity-feedback systems.

  1. Design of Filter for a Class of Switched Linear Neutral Systems

    Directory of Open Access Journals (Sweden)

    Caiyun Wu

    2013-01-01

    Full Text Available This paper is concerned with the filtering problem for a class of switched linear neutral systems with time-varying delays. The time-varying delays appear not only in the state but also in the state derivatives. Based on the average dwell time approach and the piecewise Lyapunov functional technique, sufficient conditions are proposed for the exponential stability of the filtering error dynamic system. Then, the corresponding solvability condition for a desired filter satisfying a weighted performance is established. All the conditions obtained are delay-dependent. Finally, two numerical examples are given to illustrate the effectiveness of the proposed theory.

  2. Robust control and linear parameter varying approaches application to vehicle dynamics

    CERN Document Server

    Gaspar, Peter; Bokor, József

    2013-01-01

    Vehicles are complex systems (non-linear, multi-variable) where the abundance of embedded controllers should ensure better security. This book aims at emphasizing the interest and potential of Linear Parameter Varying methods within the framework of vehicle dynamics, e.g.   ·          proposed control-oriented model, complex enough to handle some system non linearities but still simple for control or observer design,   ·          take into account the adaptability of the vehicle's response to driving situations, to the driver request and/or to the road sollicitations,   ·          manage interactions between various actuators to optimize the dynamic behavior of vehicles.   This book results from the 32th International Summer School in Automatic that held in Grenoble, France, in September 2011, where recent methods (based on robust control and LPV technics), then applied to the control of vehicle dynamics, have been presented. After some theoretical background and a view on so...

  3. Time-varying value of electric energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Mims, Natalie A.; Eckman, Tom; Goldman, Charles

    2017-06-30

    Electric energy efficiency resources save energy and may reduce peak demand. Historically, quantification of energy efficiency benefits has largely focused on the economic value of energy savings during the first year and lifetime of the installed measures. Due in part to the lack of publicly available research on end-use load shapes (i.e., the hourly or seasonal timing of electricity savings) and energy savings shapes, consideration of the impact of energy efficiency on peak demand reduction (i.e., capacity savings) has been more limited. End-use load research and the hourly valuation of efficiency savings are used for a variety of electricity planning functions, including load forecasting, demand-side management and evaluation, capacity and demand response planning, long-term resource planning, renewable energy integration, assessing potential grid modernization investments, establishing rates and pricing, and customer service. This study reviews existing literature on the time-varying value of energy efficiency savings, provides examples in four geographically diverse locations of how consideration of the time-varying value of efficiency savings impacts the calculation of power system benefits, and identifies future research needs to enhance the consideration of the time-varying value of energy efficiency in cost-effectiveness screening analysis. Findings from this study include: -The time-varying value of individual energy efficiency measures varies across the locations studied because of the physical and operational characteristics of the individual utility system (e.g., summer or winter peaking, load factor, reserve margin) as well as the time periods during which savings from measures occur. -Across the four locations studied, some of the largest capacity benefits from energy efficiency are derived from the deferral of transmission and distribution system infrastructure upgrades. However, the deferred cost of such upgrades also exhibited the greatest range

  4. Active fault detection and isolation of discrete-time linear time-varying systems: a set-membership approach

    DEFF Research Database (Denmark)

    Tabatabaeipour, Mojtaba

    2013-01-01

    Active fault detection and isolation (AFDI) is used for detection and isolation of faults that are hidden in the normal operation because of a low excitation signal or due to the regulatory actions of the controller. In this paper, a new AFDI method based on set-membership approaches is proposed...... un-falsified, the AFDI method is used to generate an auxiliary signal that is injected into the system for detection and isolation of faults that remain otherwise hidden or non-isolated using passive FDI (PFDI) methods. Having the set-valued estimation of the states for each model, the proposed AFDI...... method finds an optimal input signal that guarantees FDI in a finite time horizon. The input signal is updated at each iteration in a decreasing receding horizon manner based on the set-valued estimation of the current states and un-falsified models at the current sample time. The problem is solved...

  5. Simulations of hybrid system varying solar radiation and microturbine response time

    Directory of Open Access Journals (Sweden)

    Yolanda Fernández Ribaya

    2015-07-01

    Full Text Available Hybrid power systems, such as combinations of renewable power sources with intermittent power production and non-renewable power sources, theoretically increase the reliability and thus integration of renewable sources in the electrical system. However, a recent increase in the number of hybrid installations has sparked interest in the effects of their connection to the grid, especially in remote areas. This paper analyses a photovoltaic-gas microturbine hybrid system dimensioned to be installed in La Paz (Mexico.The research presented in this paper studies and quantifies the effects on the total electric power produced, varying both the solar radiation and the gas microturbine response time. The gas microturbine and the photovoltaic panels are modelled using Matlab/Simulink software, obtaining a platform where different tests to simulate real conditions have been executed. They consist of diverse ramps of irradiance that replicate solar radiation variations, and different microturbine response times reproduced by the time constants of a first order transfer function that models the microturbine dynamic response. The results obtained show that when radiation varies quickly it does not produce significant differences in the power guarantee or the microturbine gas consumption, to any microturbine response time. However, these two parameters are highly variable with smooth radiance variations. The maximum total power variation decreases greatly as the radiation variation gets lower. In addition, by decreasing the microturbine response time, it is possible to appreciably increase the power guarantee although the maximum power variation and gas consumption increase. Only in cases of low radiation variation is there no appreciable difference in the maximum power variation obtained by the different turbine response times.

  6. Simulations of hybrid system varying solar radiation and microturbine response time

    Energy Technology Data Exchange (ETDEWEB)

    Fernández Ribaya, Yolanda, E-mail: fernandezryolanda@uniovi.es; Álvarez, Eduardo; Paredes Sánchez, José Pablo; Xiberta Bernat, Jorge [Department of Energy E.I.M.E.M., University of Oviedo. 13 Independencia Street 2" n" d floor, 36004, Oviedo (Spain)

    2015-07-15

    Hybrid power systems, such as combinations of renewable power sources with intermittent power production and non-renewable power sources, theoretically increase the reliability and thus integration of renewable sources in the electrical system. However, a recent increase in the number of hybrid installations has sparked interest in the effects of their connection to the grid, especially in remote areas. This paper analyses a photovoltaic-gas microturbine hybrid system dimensioned to be installed in La Paz (Mexico).The research presented in this paper studies and quantifies the effects on the total electric power produced, varying both the solar radiation and the gas microturbine response time. The gas microturbine and the photovoltaic panels are modelled using Matlab/Simulink software, obtaining a platform where different tests to simulate real conditions have been executed. They consist of diverse ramps of irradiance that replicate solar radiation variations, and different microturbine response times reproduced by the time constants of a first order transfer function that models the microturbine dynamic response. The results obtained show that when radiation varies quickly it does not produce significant differences in the power guarantee or the microturbine gas consumption, to any microturbine response time. However, these two parameters are highly variable with smooth radiance variations. The maximum total power variation decreases greatly as the radiation variation gets lower. In addition, by decreasing the microturbine response time, it is possible to appreciably increase the power guarantee although the maximum power variation and gas consumption increase. Only in cases of low radiation variation is there no appreciable difference in the maximum power variation obtained by the different turbine response times.

  7. Design of 2D time-varying vector fields.

    Science.gov (United States)

    Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D; Zhang, Eugene

    2012-10-01

    Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects.

  8. H ∞ synchronization of the coronary artery system with input time-varying delay

    International Nuclear Information System (INIS)

    Li Xiao-Meng; Zhao Zhan-Shan; Sun Lian-Kun; Zhang Jing

    2016-01-01

    This paper investigates the H ∞ synchronization of the coronary artery system with input delay and disturbance. We focus on reducing the conservatism of existing synchronization strategies. Base on the triple integral forms of the Lyapunov–Krasovskii functional (LKF), we utilize single and double integral forms of Wirtinger-based inequality to guarantee that the synchronization feedback controller has good performance against time-varying delay and external disturbance. The effectiveness of our strategy can be exhibited by simulations under the different time-varying delays and different disturbances. (paper)

  9. Synchronization approach for chaotic time-varying delay system based on Wirtinger inequality

    Directory of Open Access Journals (Sweden)

    Zhanshan Zhao

    2017-01-01

    Full Text Available A novel control approach based on Wirtinger inequality is designed for nonlinear chaos synchronization time delay system. In order to reduce the conservatism for the stability criterion, a Lyapunov–Krasovskii functional with triple-integral term is constructed. The improved Wirtinger inequality is used to reduce the conservative which is caused by Jensen inequality, and a stability criterion is proposed by reciprocally convex method. Furthermore, a state feedback controller is designed to synchronize the master-slave systems based on the proposed criteria through cone complementary linearization approach. Finally, a simulation for Lorenz chaos time delay system is given to prove the validity based on the proposed synchronization control approach.

  10. Design of 2D Time-Varying Vector Fields

    KAUST Repository

    Chen, Guoning

    2012-10-01

    Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects. © 1995-2012 IEEE.

  11. Design of 2D Time-Varying Vector Fields

    KAUST Repository

    Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D.; Zhang, Eugene

    2012-01-01

    Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects. © 1995-2012 IEEE.

  12. Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme

    Science.gov (United States)

    Khanzadeh, Alireza; Pourgholi, Mahdi

    2016-08-01

    In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time.

  13. Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme

    International Nuclear Information System (INIS)

    Khanzadeh, Alireza; Pourgholi, Mahdi

    2016-01-01

    In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time. (paper)

  14. Stability and Linear Quadratic Differential Games of Discrete-Time Markovian Jump Linear Systems with State-Dependent Noise

    Directory of Open Access Journals (Sweden)

    Huiying Sun

    2014-01-01

    Full Text Available We mainly consider the stability of discrete-time Markovian jump linear systems with state-dependent noise as well as its linear quadratic (LQ differential games. A necessary and sufficient condition involved with the connection between stochastic Tn-stability of Markovian jump linear systems with state-dependent noise and Lyapunov equation is proposed. And using the theory of stochastic Tn-stability, we give the optimal strategies and the optimal cost values for infinite horizon LQ stochastic differential games. It is demonstrated that the solutions of infinite horizon LQ stochastic differential games are concerned with four coupled generalized algebraic Riccati equations (GAREs. Finally, an iterative algorithm is presented to solve the four coupled GAREs and a simulation example is given to illustrate the effectiveness of it.

  15. Non-linear dynamical classification of short time series of the rössler system in high noise regimes.

    Science.gov (United States)

    Lainscsek, Claudia; Weyhenmeyer, Jonathan; Hernandez, Manuel E; Poizner, Howard; Sejnowski, Terrence J

    2013-01-01

    Time series analysis with delay differential equations (DDEs) reveals non-linear properties of the underlying dynamical system and can serve as a non-linear time-domain classification tool. Here global DDE models were used to analyze short segments of simulated time series from a known dynamical system, the Rössler system, in high noise regimes. In a companion paper, we apply the DDE model developed here to classify short segments of encephalographic (EEG) data recorded from patients with Parkinson's disease and healthy subjects. Nine simulated subjects in each of two distinct classes were generated by varying the bifurcation parameter b and keeping the other two parameters (a and c) of the Rössler system fixed. All choices of b were in the chaotic parameter range. We diluted the simulated data using white noise ranging from 10 to -30 dB signal-to-noise ratios (SNR). Structure selection was supervised by selecting the number of terms, delays, and order of non-linearity of the model DDE model that best linearly separated the two classes of data. The distances d from the linear dividing hyperplane was then used to assess the classification performance by computing the area A' under the ROC curve. The selected model was tested on untrained data using repeated random sub-sampling validation. DDEs were able to accurately distinguish the two dynamical conditions, and moreover, to quantify the changes in the dynamics. There was a significant correlation between the dynamical bifurcation parameter b of the simulated data and the classification parameter d from our analysis. This correlation still held for new simulated subjects with new dynamical parameters selected from each of the two dynamical regimes. Furthermore, the correlation was robust to added noise, being significant even when the noise was greater than the signal. We conclude that DDE models may be used as a generalizable and reliable classification tool for even small segments of noisy data.

  16. ROBUST MPC FOR STABLE LINEAR SYSTEMS

    Directory of Open Access Journals (Sweden)

    M.A. Rodrigues

    2002-03-01

    Full Text Available In this paper, a new model predictive controller (MPC, which is robust for a class of model uncertainties, is developed. Systems with stable dynamics and time-invariant model uncertainty are treated. The development herein proposed is focused on real industrial systems where the controller is part of an on-line optimization scheme and works in the output-tracking mode. In addition, the system has a time-varying number of degrees of freedom since some of the manipulated inputs may become constrained. Moreover, the number of controlled outputs may also vary during system operation. Consequently, the actual system may show operating conditions with a number of controlled outputs larger than the number of available manipulated inputs. The proposed controller uses a state-space model, which is aimed at the representation of the output-predicted trajectory. Based on this model, a cost function is proposed whereby the output error is integrated along an infinite prediction horizon. It is considered the case of multiple operating points, where the controller stabilizes a set of models corresponding to different operating conditions for the system. It is shown that closed-loop stability is guaranteed by the feasibility of a linear matrix optimization problem.

  17. Essential uncontrollability of discrete linear, time-invariant, dynamical systems

    Science.gov (United States)

    Cliff, E. M.

    1975-01-01

    The concept of a 'best approximating m-dimensional subspace' for a given set of vectors in n-dimensional whole space is introduced. Such a subspace is easily described in terms of the eigenvectors of an associated Gram matrix. This technique is used to approximate an achievable set for a discrete linear time-invariant dynamical system. This approximation characterizes the part of the state space that may be reached using modest levels of control. If the achievable set can be closely approximated by a proper subspace of the whole space then the system is 'essentially uncontrollable'. The notion finds application in studies of failure-tolerant systems, and in decoupling.

  18. Stochastic ℋ∞ Finite-Time Control of Discrete-Time Systems with Packet Loss

    Directory of Open Access Journals (Sweden)

    Yingqi Zhang

    2012-01-01

    Full Text Available This paper investigates the stochastic finite-time stabilization and ℋ∞ control problem for one family of linear discrete-time systems over networks with packet loss, parametric uncertainties, and time-varying norm-bounded disturbance. Firstly, the dynamic model description studied is given, which, if the packet dropout is assumed to be a discrete-time homogenous Markov process, the class of discrete-time linear systems with packet loss can be regarded as Markovian jump systems. Based on Lyapunov function approach, sufficient conditions are established for the resulting closed-loop discrete-time system with Markovian jumps to be stochastic ℋ∞ finite-time boundedness and then state feedback controllers are designed to guarantee stochastic ℋ∞ finite-time stabilization of the class of stochastic systems. The stochastic ℋ∞ finite-time boundedness criteria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an auxiliary result, we also give sufficient conditions on the robust stochastic stabilization of the class of linear systems with packet loss. Finally, simulation examples are presented to illustrate the validity of the developed scheme.

  19. Modal Vibration Control in Periodic Time-Varying Structures with Focus on Rotor Blade Systems

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    of active modal controllers. The main aim is to reduce vibrations in periodic time-varying structures. Special emphasis is given to vibration control of coupled bladed rotor systems. A state feedback modal control law is developed based on modal analysis in periodic time-varying structures. The first step...... in the procedure is a transformation of the model into a time-invariant modal form by applying the modal matrices, which are also periodic time-variant. Due to coupled rotor and blade motions complex vibration modes occur in the modal transformed state space model. This implies that the modal transformed model...

  20. Sliding mode control-based linear functional observers for discrete-time stochastic systems

    Science.gov (United States)

    Singh, Satnesh; Janardhanan, Sivaramakrishnan

    2017-11-01

    Sliding mode control (SMC) is one of the most popular techniques to stabilise linear discrete-time stochastic systems. However, application of SMC becomes difficult when the system states are not available for feedback. This paper presents a new approach to design a SMC-based functional observer for discrete-time stochastic systems. The functional observer is based on the Kronecker product approach. Existence conditions and stability analysis of the proposed observer are given. The control input is estimated by a novel linear functional observer. This approach leads to a non-switching type of control, thereby eliminating the fundamental cause of chatter. Furthermore, the functional observer is designed in such a way that the effect of process and measurement noise is minimised. Simulation example is given to illustrate and validate the proposed design method.

  1. Linear optical response of finite systems using multishift linear system solvers

    Energy Technology Data Exchange (ETDEWEB)

    Hübener, Hannes; Giustino, Feliciano [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)

    2014-07-28

    We discuss the application of multishift linear system solvers to linear-response time-dependent density functional theory. Using this technique the complete frequency-dependent electronic density response of finite systems to an external perturbation can be calculated at the cost of a single solution of a linear system via conjugate gradients. We show that multishift time-dependent density functional theory yields excitation energies and oscillator strengths in perfect agreement with the standard diagonalization of the response matrix (Casida's method), while being computationally advantageous. We present test calculations for benzene, porphin, and chlorophyll molecules. We argue that multishift solvers may find broad applicability in the context of excited-state calculations within density-functional theory and beyond.

  2. Interpolation of polytopic control Lyapunov functions for discrete–time linear systems

    NARCIS (Netherlands)

    Nguyen, T.T.; Lazar, M.; Spinu, V.; Boje, E.; Xia, X.

    2014-01-01

    This paper proposes a method for interpolating two (or more) polytopic control Lyapunov functions (CLFs) for discrete--time linear systems subject to polytopic constraints, thereby combining different control objectives. The corresponding interpolated CLF is used for synthesis of a stabilizing

  3. Consensus for linear multi-agent system with intermittent information transmissions using the time-scale theory

    Science.gov (United States)

    Taousser, Fatima; Defoort, Michael; Djemai, Mohamed

    2016-01-01

    This paper investigates the consensus problem for linear multi-agent system with fixed communication topology in the presence of intermittent communication using the time-scale theory. Since each agent can only obtain relative local information intermittently, the proposed consensus algorithm is based on a discontinuous local interaction rule. The interaction among agents happens at a disjoint set of continuous-time intervals. The closed-loop multi-agent system can be represented using mixed linear continuous-time and linear discrete-time models due to intermittent information transmissions. The time-scale theory provides a powerful tool to combine continuous-time and discrete-time cases and study the consensus protocol under a unified framework. Using this theory, some conditions are derived to achieve exponential consensus under intermittent information transmissions. Simulations are performed to validate the theoretical results.

  4. Dynamics of soluble and inert pollutant concentrations in linear and deterministic systems with time varying parameters

    International Nuclear Information System (INIS)

    Meltzer, M.

    1977-04-01

    The tracer theory in steady and non-steady systems is presented. The unsteady system was applied in the study of the concentration dynamics of the National Water Carrier in Israel. A method that uses Bromine 82 for the investigation of the transfer time distribution and of the dynamics of inert matter concentration in the system is desribed. (B.G.)

  5. Controllability of a Class of Bimodal Discrete-Time Piecewise Linear Systems

    NARCIS (Netherlands)

    Yurtseven, E.; Camlibel, M.K.; Heemels, W.P.M.H.

    2013-01-01

    In this paper we will provide algebraic necessary and sufficient conditions for the controllability/reachability/null controllability of a class of bimodal discrete-time piecewise linear systems including several instances of interest that are not covered by existing works which focus primarily on

  6. Identification of time-varying structural dynamic systems - An artificial intelligence approach

    Science.gov (United States)

    Glass, B. J.; Hanagud, S.

    1992-01-01

    An application of the artificial intelligence-derived methodologies of heuristic search and object-oriented programming to the problem of identifying the form of the model and the associated parameters of a time-varying structural dynamic system is presented in this paper. Possible model variations due to changes in boundary conditions or configurations of a structure are organized into a taxonomy of models, and a variant of best-first search is used to identify the model whose simulated response best matches that of the current physical structure. Simulated model responses are verified experimentally. An output-error approach is used in a discontinuous model space, and an equation-error approach is used in the parameter space. The advantages of the AI methods used, compared with conventional programming techniques for implementing knowledge structuring and inheritance, are discussed. Convergence conditions and example problems have been discussed. In the example problem, both the time-varying model and its new parameters have been identified when changes occur.

  7. Robust and Fault-Tolerant Linear Parameter-Varying Control of Wind Turbines

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Esbensen, Thomas; Stoustrup, Jakob

    2011-01-01

    High performance and reliability are required for wind turbines to be competitive within the energy market. To capture their nonlinear behavior, wind turbines are often modeled using parameter-varying models. In this paper we design and compare multiple linear parameter-varying (LPV) controllers,...

  8. A note on the time decay of solutions for the linearized Wigner-Poisson system

    KAUST Repository

    Gamba, Irene; Gualdani, Maria; Sparber, Christof

    2009-01-01

    We consider the one-dimensional Wigner-Poisson system of plasma physics, linearized around a (spatially homogeneous) Lorentzian distribution and prove that the solution of the corresponding linearized problem decays to zero in time. We also give

  9. Estimation of exponential convergence rate and exponential stability for neural networks with time-varying delay

    International Nuclear Information System (INIS)

    Tu Fenghua; Liao Xiaofeng

    2005-01-01

    We study the problem of estimating the exponential convergence rate and exponential stability for neural networks with time-varying delay. Some criteria for exponential stability are derived by using the linear matrix inequality (LMI) approach. They are less conservative than the existing ones. Some analytical methods are employed to investigate the bounds on the interconnection matrix and activation functions so that the systems are exponentially stable

  10. Time varying voltage combustion control and diagnostics sensor

    Science.gov (United States)

    Chorpening, Benjamin T [Morgantown, WV; Thornton, Jimmy D [Morgantown, WV; Huckaby, E David [Morgantown, WV; Fincham, William [Fairmont, WV

    2011-04-19

    A time-varying voltage is applied to an electrode, or a pair of electrodes, of a sensor installed in a fuel nozzle disposed adjacent the combustion zone of a continuous combustion system, such as of the gas turbine engine type. The time-varying voltage induces a time-varying current in the flame which is measured and used to determine flame capacitance using AC electrical circuit analysis. Flame capacitance is used to accurately determine the position of the flame from the sensor and the fuel/air ratio. The fuel and/or air flow rate (s) is/are then adjusted to provide reduced flame instability problems such as flashback, combustion dynamics and lean blowout, as well as reduced emissions. The time-varying voltage may be an alternating voltage and the time-varying current may be an alternating current.

  11. Application of Statistical Linear Time-Varying System Theory to Modeling of High Grazing Angle Sea Clutter

    Science.gov (United States)

    2017-10-25

    9 3.2 Time -Frequency Power Distribution at Channel Output .................................................. 16 3.3...describes the distribution of the radar return as a function of lag τ and correlation time ∆t [1, 3]. In an airborne pulse-Doppler radar system we can...obtained by interpolating data points taken from Figure 7.13 from [37]. 3.2 Time -Frequency Power Distribution at Channel Output One of the goals of pulse

  12. Experimental evidence for amplitude death induced by a time-varying interaction

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, K. [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Shrimali, M.D. [Department of Physics, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer 305 801 (India); Prasad, Awadhesh [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Thamilmaran, K., E-mail: maran.cnld@gmail.com [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India)

    2014-08-01

    In this paper, we study the time-varying interaction in coupled oscillatory systems. For this purpose, we have designed a novel time-varying resistive network using an analog switch and inverter circuits. We have applied this time-varying resistive network to mutually coupled identical Chua's oscillators. When the resistances are varied in time, we find that amplitude death arises in coupled identical oscillators. This has been observed numerically as well as verified through hardware experiments. - Highlights: • We have implemented the time-varying interaction in coupled oscillatory systems. • We have designed a novel time-varying resistive network using an analog switch and inverter circuits. • When the resistances are varied in time, we find that amplitude death arises in coupled identical oscillators.

  13. Communication scheduling in robust self-triggered MPC for linear discrete-time systems

    NARCIS (Netherlands)

    Brunner, F.D.; Gommans, T.M.P.; Heemels, W.P.M.H.; Allgöwer, F.

    2015-01-01

    We consider a networked control system consisting of a physical plant, an actuator, a sensor, and a controller that is connected to the actuator and sensor via a communication network. The plant is described by a linear discrete-time system subject to additive disturbances. In order to reduce the

  14. Gain scheduling for non-linear time-delay systems using approximated model

    NARCIS (Netherlands)

    Pham, H.T.; Lim, J.T

    2012-01-01

    The authors investigate a regulation problem of non-linear systems driven by an exogenous signal and time-delay in the input. In order to compensate for the input delay, they propose a reduction transformation containing the past information of the control input. Then, by utilising the Euler

  15. A note on the time decay of solutions for the linearized Wigner-Poisson system

    KAUST Repository

    Gamba, Irene

    2009-01-01

    We consider the one-dimensional Wigner-Poisson system of plasma physics, linearized around a (spatially homogeneous) Lorentzian distribution and prove that the solution of the corresponding linearized problem decays to zero in time. We also give an explicit algebraic decay rate.

  16. Delay-Dependent Exponential Stability for Discrete-Time BAM Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Yonggang Chen

    2008-01-01

    Full Text Available This paper considers the delay-dependent exponential stability for discrete-time BAM neural networks with time-varying delays. By constructing the new Lyapunov functional, the improved delay-dependent exponential stability criterion is derived in terms of linear matrix inequality (LMI. Moreover, in order to reduce the conservativeness, some slack matrices are introduced in this paper. Two numerical examples are presented to show the effectiveness and less conservativeness of the proposed method.

  17. Nonlinear systems time-varying parameter estimation: Application to induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Kenne, Godpromesse [Laboratoire d' Automatique et d' Informatique Appliquee (LAIA), Departement de Genie Electrique, IUT FOTSO Victor, Universite de Dschang, B.P. 134 Bandjoun (Cameroon); Ahmed-Ali, Tarek [Ecole Nationale Superieure des Ingenieurs des Etudes et Techniques d' Armement (ENSIETA), 2 Rue Francois Verny, 29806 Brest Cedex 9 (France); Lamnabhi-Lagarrigue, F. [Laboratoire des Signaux et Systemes (L2S), C.N.R.S-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Arzande, Amir [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France)

    2008-11-15

    In this paper, an algorithm for time-varying parameter estimation for a large class of nonlinear systems is presented. The proof of the convergence of the estimates to their true values is achieved using Lyapunov theories and does not require that the classical persistent excitation condition be satisfied by the input signal. Since the induction motor (IM) is widely used in several industrial sectors, the algorithm developed is potentially useful for adjusting the controller parameters of variable speed drives. The method proposed is simple and easily implementable in real-time. The application of this approach to on-line estimation of the rotor resistance of IM shows a rapidly converging estimate in spite of measurement noise, discretization effects, parameter uncertainties (e.g. inaccuracies on motor inductance values) and modeling inaccuracies. The robustness analysis for this IM application also revealed that the proposed scheme is insensitive to the stator resistance variations within a wide range. The merits of the proposed algorithm in the case of on-line time-varying rotor resistance estimation are demonstrated via experimental results in various operating conditions of the induction motor. The experimental results obtained demonstrate that the application of the proposed algorithm to update on-line the parameters of an adaptive controller (e.g. IM and synchronous machines adaptive control) can improve the efficiency of the industrial process. The other interesting features of the proposed method include fault detection/estimation and adaptive control of IM and synchronous machines. (author)

  18. Real time computer control of a nonlinear Multivariable System via Linearization and Stability Analysis

    International Nuclear Information System (INIS)

    Raza, K.S.M.

    2004-01-01

    This paper demonstrates that if a complicated nonlinear, non-square, state-coupled multi variable system is smartly linearized and subjected to a thorough stability analysis then we can achieve our design objectives via a controller which will be quite simple (in term of resource usage and execution time) and very efficient (in terms of robustness). Further the aim is to implement this controller via computer in a real time environment. Therefore first a nonlinear mathematical model of the system is achieved. An intelligent work is done to decouple the multivariable system. Linearization and stability analysis techniques are employed for the development of a linearized and mathematically sound control law. Nonlinearities like the saturation in actuators are also been catered. The controller is then discretized using Runge-Kutta integration. Finally the discretized control law is programmed in a computer in a real time environment. The programme is done in RT -Linux using GNU C for the real time realization of the control scheme. The real time processes, like sampling and controlled actuation, and the non real time processes, like graphical user interface and display, are programmed as different tasks. The issue of inter process communication, between real time and non real time task is addressed quite carefully. The results of this research pursuit are presented graphically. (author)

  19. Stability analysis and backward whirl investigation of cracked rotors with time-varying stiffness

    Science.gov (United States)

    AL-Shudeifat, Mohammad A.

    2015-07-01

    The dynamic stability of dynamical systems with time-periodic stiffness is addressed here. Cracked rotor systems with time-periodic stiffness are well-known examples of such systems. Time-varying area moments of inertia at the cracked element cross-section of a cracked rotor have been used to formulate the time-periodic finite element stiffness matrix. The semi-infinite coefficient matrix obtained by applying the harmonic balance (HB) solution to the finite element (FE) equations of motion is employed here to study the dynamic stability of the system. Consequently, the sign of the determinant of a scaled version of a sub-matrix of this semi-infinite coefficient matrix at a finite number of harmonics in the HB solution is found to be sufficient for identifying the major unstable zones of the system in the parameter plane. Specifically, it is found that the negative determinant always corresponds to unstable zones in all of the systems considered. This approach is applied to a parametrically excited Mathieu's equation, a two degree-of-freedom linear time-periodic dynamical system, a cracked Jeffcott rotor and a finite element model of the cracked rotor system. Compared to the corresponding results obtained by Floquet's theory, the sign of the determinant of the scaled sub-matrix is found to be an efficient tool for identifying the major unstable zones of the linear time-periodic parametrically excited systems, especially large-scale FE systems. Moreover, it is found that the unstable zones for a FE cracked rotor with an open transverse crack model only appear at the backward whirl. The theoretical and experimental results have been found to agree well for verifying that the open crack model excites the backward whirl amplitudes at the critical backward whirling rotational speeds.

  20. Relative null controllability of linear systems with multiple delays in ...

    African Journals Online (AJOL)

    varying multiple delays in state and control are developed. If the uncontrolled system is uniformly asymptotically stable, and if the linear system is controllable, then the linear system is null controllable. Journal of the Nigerian Association of ...

  1. Improving linear accelerator service response with a real- time electronic event reporting system.

    Science.gov (United States)

    Hoisak, Jeremy D P; Pawlicki, Todd; Kim, Gwe-Ya; Fletcher, Richard; Moore, Kevin L

    2014-09-08

    To track linear accelerator performance issues, an online event recording system was developed in-house for use by therapists and physicists to log the details of technical problems arising on our institution's four linear accelerators. In use since October 2010, the system was designed so that all clinical physicists would receive email notification when an event was logged. Starting in October 2012, we initiated a pilot project in collaboration with our linear accelerator vendor to explore a new model of service and support, in which event notifications were also sent electronically directly to dedicated engineers at the vendor's technical help desk, who then initiated a response to technical issues. Previously, technical issues were reported by telephone to the vendor's call center, which then disseminated information and coordinated a response with the Technical Support help desk and local service engineers. The purpose of this work was to investigate the improvements to clinical operations resulting from this new service model. The new and old service models were quantitatively compared by reviewing event logs and the oncology information system database in the nine months prior to and after initiation of the project. Here, we focus on events that resulted in an inoperative linear accelerator ("down" machine). Machine downtime, vendor response time, treatment cancellations, and event resolution were evaluated and compared over two equivalent time periods. In 389 clinical days, there were 119 machine-down events: 59 events before and 60 after introduction of the new model. In the new model, median time to service response decreased from 45 to 8 min, service engineer dispatch time decreased 44%, downtime per event decreased from 45 to 20 min, and treatment cancellations decreased 68%. The decreased vendor response time and reduced number of on-site visits by a service engineer resulted in decreased downtime and decreased patient treatment cancellations.

  2. LQR-Based Optimal Distributed Cooperative Design for Linear Discrete-Time Multiagent Systems.

    Science.gov (United States)

    Zhang, Huaguang; Feng, Tao; Liang, Hongjing; Luo, Yanhong

    2017-03-01

    In this paper, a novel linear quadratic regulator (LQR)-based optimal distributed cooperative design method is developed for synchronization control of general linear discrete-time multiagent systems on a fixed, directed graph. Sufficient conditions are derived for synchronization, which restrict the graph eigenvalues into a bounded circular region in the complex plane. The synchronizing speed issue is also considered, and it turns out that the synchronizing region reduces as the synchronizing speed becomes faster. To obtain more desirable synchronizing capacity, the weighting matrices are selected by sufficiently utilizing the guaranteed gain margin of the optimal regulators. Based on the developed LQR-based cooperative design framework, an approximate dynamic programming technique is successfully introduced to overcome the (partially or completely) model-free cooperative design for linear multiagent systems. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design methods.

  3. A solution to the varying response of the linear power monitor induced by xenon poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Godsey, T A; Randall, J D [Texas A and M University (United States)

    1974-07-01

    After conversion to FLIP fuel at Texas A and M, the fuel temperatures were examined very carefully. It was observed that the fuel temperature at 1 Mw varied over a wide range during the week. This variation was shown to be due to the variation in response of the linear CIC which was used to establish reactor power level. A modification of the linear power monitor was designed and installed. The response of this system was verified by using cobalt wires, fuel temperature, and a fission chamber located at 6 feet from the reactor core. The system has proven to be operationally satisfactory. (author)

  4. Adaptive sliding control of non-autonomous active suspension systems with time-varying loadings

    Science.gov (United States)

    Chen, Po-Chang; Huang, An-Chyau

    2005-04-01

    An adaptive sliding controller is proposed in this paper for controlling a non-autonomous quarter-car suspension system with time-varying loadings. The bound of the car-body loading is assumed to be available. Then, the reference coordinate is placed at the static position under the nominal loading so that the system dynamic equation is derived. Due to spring nonlinearities, the system property becomes asymmetric after coordinate transformation. Besides, in practical cases, system parameters are not easy to be obtained precisely for controller design. Therefore, in this paper, system uncertainties are lumped into two unknown time-varying functions. Since the variation bound of one of the unknown functions is not available, conventional adaptive schemes and robust designs are not applicable. To deal with this problem, the function approximation technique is employed to represent the unknown function as a finite combination of basis functions. The Lyapunov direct method can thus be used to find adaptive laws for updating coefficients in the approximating series and to prove stability of the closed-loop system. Since the position and velocity measurements of the unsprung mass are lumped into the unknown function, there is no need to install sensors on the axle and wheel assembly in the actual implementation. Simulation results are presented to show the performance of the proposed strategy.

  5. Target Tracking of a Linear Time Invariant System under Irregular Sampling

    Directory of Open Access Journals (Sweden)

    Jin Xue-Bo

    2012-11-01

    Full Text Available Due to event-triggered sampling in a system, or maybe with the aim of reducing data storage, tracking many applications will encounter irregular sampling time. By calculating the matrix exponential using an inverse Laplace transform, this paper transforms the irregular sampling tracking problem to the problem of tracking with time-varying parameters of a system. Using the common Kalman filter, the developed method is used to track a target for the simulated trajectory and video tracking. The results of simulation experiments have shown that it can obtain good estimation performance even at a very high irregular rate of measurement sampling time.

  6. A Comparison of Evolutionary Algorithms for Tracking Time-Varying Recursive Systems

    Directory of Open Access Journals (Sweden)

    White Michael S

    2003-01-01

    Full Text Available A comparison is made of the behaviour of some evolutionary algorithms in time-varying adaptive recursive filter systems. Simulations show that an algorithm including random immigrants outperforms a more conventional algorithm using the breeder genetic algorithm as the mutation operator when the time variation is discontinuous, but neither algorithm performs well when the time variation is rapid but smooth. To meet this deficit, a new hybrid algorithm which uses a hill climber as an additional genetic operator, applied for several steps at each generation, is introduced. A comparison is made of the effect of applying the hill climbing operator a few times to all members of the population or a larger number of times solely to the best individual; it is found that applying to the whole population yields the better results, substantially improved compared with those obtained using earlier methods.

  7. Nonlinear isochrones in murine left ventricular pressure-volume loops: how well does the time-varying elastance concept hold?

    Science.gov (United States)

    Claessens, T E; Georgakopoulos, D; Afanasyeva, M; Vermeersch, S J; Millar, H D; Stergiopulos, N; Westerhof, N; Verdonck, P R; Segers, P

    2006-04-01

    The linear time-varying elastance theory is frequently used to describe the change in ventricular stiffness during the cardiac cycle. The concept assumes that all isochrones (i.e., curves that connect pressure-volume data occurring at the same time) are linear and have a common volume intercept. Of specific interest is the steepest isochrone, the end-systolic pressure-volume relationship (ESPVR), of which the slope serves as an index for cardiac contractile function. Pressure-volume measurements, achieved with a combined pressure-conductance catheter in the left ventricle of 13 open-chest anesthetized mice, showed a marked curvilinearity of the isochrones. We therefore analyzed the shape of the isochrones by using six regression algorithms (two linear, two quadratic, and two logarithmic, each with a fixed or time-varying intercept) and discussed the consequences for the elastance concept. Our main observations were 1) the volume intercept varies considerably with time; 2) isochrones are equally well described by using quadratic or logarithmic regression; 3) linear regression with a fixed intercept shows poor correlation (R(2) volume intercept of the ESPVR. In conclusion, the linear time-varying elastance fails to provide a sufficiently robust model to account for changes in pressure and volume during the cardiac cycle in the mouse ventricle. A new framework accounting for the nonlinear shape of the isochrones needs to be developed.

  8. Visualization of particle trajectories in time-varying electromagnetic fields by CAVE-type virtual reality system

    International Nuclear Information System (INIS)

    Ohno, Nobuaki; Ohtani, Hiroaki; Horiuchi, Ritoku; Matsuoka, Daisuke

    2012-01-01

    The particle kinetic effects play an important role in breaking the frozen-in condition and exciting collisionless magnetic reconnection in high temperature plasmas. Because this effect is originating from a complex thermal motion near reconnection point, it is very important to examine particle trajectories using scientific visualization technique, especially in the presence of plasma instability. We developed interactive visualization environment for the particle trajectories in time-varying electromagnetic fields in the CAVE-type virtual reality system based on VFIVE, which is interactive visualization software for the CAVE system. From the analysis of ion trajectories using the particle simulation data, it was found that time-varying electromagnetic fields around the reconnection region accelerate ions toward the downstream region. (author)

  9. Multistability of memristive Cohen-Grossberg neural networks with non-monotonic piecewise linear activation functions and time-varying delays.

    Science.gov (United States)

    Nie, Xiaobing; Zheng, Wei Xing; Cao, Jinde

    2015-11-01

    The problem of coexistence and dynamical behaviors of multiple equilibrium points is addressed for a class of memristive Cohen-Grossberg neural networks with non-monotonic piecewise linear activation functions and time-varying delays. By virtue of the fixed point theorem, nonsmooth analysis theory and other analytical tools, some sufficient conditions are established to guarantee that such n-dimensional memristive Cohen-Grossberg neural networks can have 5(n) equilibrium points, among which 3(n) equilibrium points are locally exponentially stable. It is shown that greater storage capacity can be achieved by neural networks with the non-monotonic activation functions introduced herein than the ones with Mexican-hat-type activation function. In addition, unlike most existing multistability results of neural networks with monotonic activation functions, those obtained 3(n) locally stable equilibrium points are located both in saturated regions and unsaturated regions. The theoretical findings are verified by an illustrative example with computer simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Property - preserving convergent sequences of invariant sets for linear discrete - time systems

    NARCIS (Netherlands)

    Athanasopoulos, N.; Lazar, M.; Bitsoris, G.

    2014-01-01

    Abstract: New sequences of monotonically increasing sets are introduced, for linear discrete-time systems subject to input and state constraints. The elements of the set sequences are controlled invariant and admissible regions of stabilizability. They are generated from the iterative application of

  11. Adaptive modification of the delayed feedback control algorithm with a continuously varying time delay

    International Nuclear Information System (INIS)

    Pyragas, V.; Pyragas, K.

    2011-01-01

    We propose a simple adaptive delayed feedback control algorithm for stabilization of unstable periodic orbits with unknown periods. The state dependent time delay is varied continuously towards the period of controlled orbit according to a gradient-descent method realized through three simple ordinary differential equations. We demonstrate the efficiency of the algorithm with the Roessler and Mackey-Glass chaotic systems. The stability of the controlled orbits is proven by computation of the Lyapunov exponents of linearized equations. -- Highlights: → A simple adaptive modification of the delayed feedback control algorithm is proposed. → It enables the control of unstable periodic orbits with unknown periods. → The delay time is varied continuously according to a gradient descend method. → The algorithm is embodied by three simple ordinary differential equations. → The validity of the algorithm is proven by computation of the Lyapunov exponents.

  12. Global exponential stability of BAM neural networks with time-varying delays: The discrete-time case

    Science.gov (United States)

    Raja, R.; Marshal Anthoni, S.

    2011-02-01

    This paper deals with the problem of stability analysis for a class of discrete-time bidirectional associative memory (BAM) neural networks with time-varying delays. By employing the Lyapunov functional and linear matrix inequality (LMI) approach, a new sufficient conditions is proposed for the global exponential stability of discrete-time BAM neural networks. The proposed LMI based results can be easily checked by LMI control toolbox. Moreover, an example is also provided to demonstrate the effectiveness of the proposed method.

  13. Global exponential stability of uncertain fuzzy BAM neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Syed Ali, M.; Balasubramaniam, P.

    2009-01-01

    In this paper, the Takagi-Sugeno (TS) fuzzy model representation is extended to the stability analysis for uncertain Bidirectional Associative Memory (BAM) neural networks with time-varying delays using linear matrix inequality (LMI) theory. A novel LMI-based stability criterion is obtained by LMI optimization algorithms to guarantee the exponential stability of uncertain BAM neural networks with time-varying delays which are represented by TS fuzzy models. Finally, the proposed stability conditions are demonstrated with numerical examples.

  14. Continuous time modelling with individually varying time intervals for oscillating and non-oscillating processes.

    Science.gov (United States)

    Voelkle, Manuel C; Oud, Johan H L

    2013-02-01

    When designing longitudinal studies, researchers often aim at equal intervals. In practice, however, this goal is hardly ever met, with different time intervals between assessment waves and different time intervals between individuals being more the rule than the exception. One of the reasons for the introduction of continuous time models by means of structural equation modelling has been to deal with irregularly spaced assessment waves (e.g., Oud & Delsing, 2010). In the present paper we extend the approach to individually varying time intervals for oscillating and non-oscillating processes. In addition, we show not only that equal intervals are unnecessary but also that it can be advantageous to use unequal sampling intervals, in particular when the sampling rate is low. Two examples are provided to support our arguments. In the first example we compare a continuous time model of a bivariate coupled process with varying time intervals to a standard discrete time model to illustrate the importance of accounting for the exact time intervals. In the second example the effect of different sampling intervals on estimating a damped linear oscillator is investigated by means of a Monte Carlo simulation. We conclude that it is important to account for individually varying time intervals, and encourage researchers to conceive of longitudinal studies with different time intervals within and between individuals as an opportunity rather than a problem. © 2012 The British Psychological Society.

  15. Distributed leader-follower flocking control for multi-agent dynamical systems with time-varying velocities

    NARCIS (Netherlands)

    Yu, Wenwu; Chen, Guanrong; Cao, Ming

    Using tools from algebraic graph theory and nonsmooth analysis in combination with ideas of collective potential functions, velocity consensus and navigation feedback, a distributed leader-follower flocking algorithm for multi-agent dynamical systems with time-varying velocities is developed where

  16. Frequency Domain Training-Aided Channel Estimation and Equalization in Time-Varying Optical Transmission Systems

    DEFF Research Database (Denmark)

    Pittalà, Fabio; Msallem, Majdi; Hauske, Fabian N.

    2012-01-01

    We propose a non-weighted feed-forward equalization method with filter update by averaging channel estimations based on short CAZAC sequences. Three averaging methods are presented and tested by simulations in a time-varying 2×2 MIMO optical system....

  17. Recurrent-Neural-Network-Based Multivariable Adaptive Control for a Class of Nonlinear Dynamic Systems With Time-Varying Delay.

    Science.gov (United States)

    Hwang, Chih-Lyang; Jan, Chau

    2016-02-01

    At the beginning, an approximate nonlinear autoregressive moving average (NARMA) model is employed to represent a class of multivariable nonlinear dynamic systems with time-varying delay. It is known that the disadvantages of robust control for the NARMA model are as follows: 1) suitable control parameters for larger time delay are more sensitive to achieving desirable performance; 2) it only deals with bounded uncertainty; and 3) the nominal NARMA model must be learned in advance. Due to the dynamic feature of the NARMA model, a recurrent neural network (RNN) is online applied to learn it. However, the system performance becomes deteriorated due to the poor learning of the larger variation of system vector functions. In this situation, a simple network is employed to compensate the upper bound of the residue caused by the linear parameterization of the approximation error of RNN. An e -modification learning law with a projection for weight matrix is applied to guarantee its boundedness without persistent excitation. Under suitable conditions, the semiglobally ultimately bounded tracking with the boundedness of estimated weight matrix is obtained by the proposed RNN-based multivariable adaptive control. Finally, simulations are presented to verify the effectiveness and robustness of the proposed control.

  18. Robust state estimation for uncertain fuzzy bidirectional associative memory networks with time-varying delays

    Science.gov (United States)

    Vadivel, P.; Sakthivel, R.; Mathiyalagan, K.; Arunkumar, A.

    2013-09-01

    This paper addresses the issue of robust state estimation for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying delays and parameter uncertainties. By constructing the Lyapunov-Krasovskii functional, which contains the triple-integral term and using the free-weighting matrix technique, a set of sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to estimate the neuron states through available output measurements such that the dynamics of the estimation error system is robustly asymptotically stable. In particular, we consider a generalized activation function in which the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. More precisely, the design of the state estimator for such BAM neural networks can be obtained by solving some LMIs, which are dependent on the size of the time derivative of the time-varying delays. Finally, a numerical example with simulation result is given to illustrate the obtained theoretical results.

  19. Robust state estimation for uncertain fuzzy bidirectional associative memory networks with time-varying delays

    International Nuclear Information System (INIS)

    Vadivel, P; Sakthivel, R; Mathiyalagan, K; Arunkumar, A

    2013-01-01

    This paper addresses the issue of robust state estimation for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying delays and parameter uncertainties. By constructing the Lyapunov–Krasovskii functional, which contains the triple-integral term and using the free-weighting matrix technique, a set of sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to estimate the neuron states through available output measurements such that the dynamics of the estimation error system is robustly asymptotically stable. In particular, we consider a generalized activation function in which the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. More precisely, the design of the state estimator for such BAM neural networks can be obtained by solving some LMIs, which are dependent on the size of the time derivative of the time-varying delays. Finally, a numerical example with simulation result is given to illustrate the obtained theoretical results. (paper)

  20. Optimal Robust Fault Detection for Linear Discrete Time Systems

    Directory of Open Access Journals (Sweden)

    Nike Liu

    2008-01-01

    Full Text Available This paper considers robust fault-detection problems for linear discrete time systems. It is shown that the optimal robust detection filters for several well-recognized robust fault-detection problems, such as ℋ−/ℋ∞, ℋ2/ℋ∞, and ℋ∞/ℋ∞ problems, are the same and can be obtained by solving a standard algebraic Riccati equation. Optimal filters are also derived for many other optimization criteria and it is shown that some well-studied and seeming-sensible optimization criteria for fault-detection filter design could lead to (optimal but useless fault-detection filters.

  1. Observer-based output feedback control of networked control systems with non-uniform sampling and time-varying delay

    Science.gov (United States)

    Meng, Su; Chen, Jie; Sun, Jian

    2017-10-01

    This paper investigates the problem of observer-based output feedback control for networked control systems with non-uniform sampling and time-varying transmission delay. The sampling intervals are assumed to vary within a given interval. The transmission delay belongs to a known interval. A discrete-time model is first established, which contains time-varying delay and norm-bounded uncertainties coming from non-uniform sampling intervals. It is then converted to an interconnection of two subsystems in which the forward channel is delay-free. The scaled small gain theorem is used to derive the stability condition for the closed-loop system. Moreover, the observer-based output feedback controller design method is proposed by utilising a modified cone complementary linearisation algorithm. Finally, numerical examples illustrate the validity and superiority of the proposed method.

  2. Linear Time Varying Approach to Satellite Attitude Control Using only Electromagnetic Actuation

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    1997-01-01

    , lightweight, and power efficient actuators is therefore crucial and viable. This paper discusses linear attitude control strategies for a low earth orbit satellite actuated by a set of mutually perpendicular electromagnetic coils. The principle is to use the interaction between the Earth's magnetic field...... systems is limited, nevertheless, a solution of the Riccati equation gives an excellent frame for investigations provided in this paper. An observation that geomagnetic field changes approximately periodically when a satellite is on a near polar orbit is used throughout this paper. Three types of attitude...... controllers are proposed: an infinite horizon, a finite horizon, and a constant gain controller. Their performance is evaluated and compared in the simulation study of the realistic environment....

  3. Analysis of nonlinear systems with time varying inputs and its application to gain scheduling

    Directory of Open Access Journals (Sweden)

    J.-T. Lim

    1996-01-01

    Full Text Available An analytical framework for analysis of a class of nonlinear systems with time varying inputs is presented. It is shown that the trajectories of the transformed nonlinear systems are uniformly bounded with an ultimate bound under certain conditions shown in this paper. The result obtained is useful for applications, in particular, analysis and design of gain scheduling.

  4. Identifiability of Additive, Time-Varying Actuator and Sensor Faults by State Augmentation

    Science.gov (United States)

    Upchurch, Jason M.; Gonzalez, Oscar R.; Joshi, Suresh M.

    2014-01-01

    Recent work has provided a set of necessary and sucient conditions for identifiability of additive step faults (e.g., lock-in-place actuator faults, constant bias in the sensors) using state augmentation. This paper extends these results to an important class of faults which may affect linear, time-invariant systems. In particular, the faults under consideration are those which vary with time and affect the system dynamics additively. Such faults may manifest themselves in aircraft as, for example, control surface oscillations, control surface runaway, and sensor drift. The set of necessary and sucient conditions presented in this paper are general, and apply when a class of time-varying faults affects arbitrary combinations of actuators and sensors. The results in the main theorems are illustrated by two case studies, which provide some insight into how the conditions may be used to check the theoretical identifiability of fault configurations of interest for a given system. It is shown that while state augmentation can be used to identify certain fault configurations, other fault configurations are theoretically impossible to identify using state augmentation, giving practitioners valuable insight into such situations. That is, the limitations of state augmentation for a given system and configuration of faults are made explicit. Another limitation of model-based methods is that there can be large numbers of fault configurations, thus making identification of all possible configurations impractical. However, the theoretical identifiability of known, credible fault configurations can be tested using the theorems presented in this paper, which can then assist the efforts of fault identification practitioners.

  5. A Linear Programming Approach to Routing Control in Networks of Constrained Nonlinear Positive Systems with Concave Flow Rates

    Science.gov (United States)

    Arneson, Heather M.; Dousse, Nicholas; Langbort, Cedric

    2014-01-01

    We consider control design for positive compartmental systems in which each compartment's outflow rate is described by a concave function of the amount of material in the compartment.We address the problem of determining the routing of material between compartments to satisfy time-varying state constraints while ensuring that material reaches its intended destination over a finite time horizon. We give sufficient conditions for the existence of a time-varying state-dependent routing strategy which ensures that the closed-loop system satisfies basic network properties of positivity, conservation and interconnection while ensuring that capacity constraints are satisfied, when possible, or adjusted if a solution cannot be found. These conditions are formulated as a linear programming problem. Instances of this linear programming problem can be solved iteratively to generate a solution to the finite horizon routing problem. Results are given for the application of this control design method to an example problem. Key words: linear programming; control of networks; positive systems; controller constraints and structure.

  6. Distributed Leader-Following Finite-Time Consensus Control for Linear Multiagent Systems under Switching Topology

    Science.gov (United States)

    Xu, Xiaole; Chen, Shengyong

    2014-01-01

    This paper investigates the finite-time consensus problem of leader-following multiagent systems. The dynamical models for all following agents and the leader are assumed the same general form of linear system, and the interconnection topology among the agents is assumed to be switching and undirected. We mostly consider the continuous-time case. By assuming that the states of neighbouring agents are known to each agent, a sufficient condition is established for finite-time consensus via a neighbor-based state feedback protocol. While the states of neighbouring agents cannot be available and only the outputs of neighbouring agents can be accessed, the distributed observer-based consensus protocol is proposed for each following agent. A sufficient condition is provided in terms of linear matrix inequalities to design the observer-based consensus protocol, which makes the multiagent systems achieve finite-time consensus under switching topologies. Then, we discuss the counterparts for discrete-time case. Finally, we provide an illustrative example to show the effectiveness of the design approach. PMID:24883367

  7. Optimal control linear quadratic methods

    CERN Document Server

    Anderson, Brian D O

    2007-01-01

    This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the

  8. A compensation controller based on a regional pole-assignment method for AMD control systems with a time-varying delay

    Science.gov (United States)

    Li, Zuohua; Chen, Chaojun; Teng, Jun; Wang, Ying

    2018-04-01

    Active mass damper/driver (AMD) control system has been proposed as an effective tool for high-rise buildings to resist strong dynamic loads. However, such disadvantage as time-varying delay in AMD control systems impedes their application in practices. Time-varying delay, which has an effect on the performance and stability of single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems, is considered in the paper. In addition, a new time-delay compensation controller based on regional pole-assignment method is presented. To verify its effectiveness, the proposed method is applied to a numerical example of a ten-storey frame and an experiment of a single span four-storey steel frame. Both numerical and experimental results demonstrate that the proposed method can enhance the performances of an AMD control system with time-varying delays.

  9. Parameter Estimation of a Closed Loop Coupled Tank Time Varying System using Recursive Methods

    International Nuclear Information System (INIS)

    Basir, Siti Nora; Yussof, Hanafiah; Shamsuddin, Syamimi; Selamat, Hazlina; Zahari, Nur Ismarrubie

    2013-01-01

    This project investigates the direct identification of closed loop plant using discrete-time approach. The uses of Recursive Least Squares (RLS), Recursive Instrumental Variable (RIV) and Recursive Instrumental Variable with Centre-Of-Triangle (RIV + COT) in the parameter estimation of closed loop time varying system have been considered. The algorithms were applied in a coupled tank system that employs covariance resetting technique where the time of parameter changes occur is unknown. The performances of all the parameter estimation methods, RLS, RIV and RIV + COT were compared. The estimation of the system whose output was corrupted with white and coloured noises were investigated. Covariance resetting technique successfully executed when the parameters change. RIV + COT gives better estimates than RLS and RIV in terms of convergence and maximum overshoot

  10. Exponential stability for stochastic delayed recurrent neural networks with mixed time-varying delays and impulses: the continuous-time case

    International Nuclear Information System (INIS)

    Karthik Raja, U; Leelamani, A; Raja, R; Samidurai, R

    2013-01-01

    In this paper, the exponential stability for a class of stochastic neural networks with time-varying delays and impulsive effects is considered. By constructing suitable Lyapunov functionals and by using the linear matrix inequality optimization approach, we obtain sufficient delay-dependent criteria to ensure the exponential stability of stochastic neural networks with time-varying delays and impulses. Two numerical examples with simulation results are provided to illustrate the effectiveness of the obtained results over those already existing in the literature. (paper)

  11. Design of an Optimal Preview Controller for Linear Discrete-Time Descriptor Noncausal Multirate Systems

    Directory of Open Access Journals (Sweden)

    Mengjuan Cao

    2014-01-01

    Full Text Available The linear discrete-time descriptor noncausal multirate system is considered for the presentation of a new design approach for optimal preview control. First, according to the characteristics of causal controllability and causal observability, the descriptor noncausal system is constructed into a descriptor causal closed-loop system. Second, by using the characteristics of the causal system and elementary transformation, the descriptor causal closed-loop system is transformed into a normal system. Then, taking advantage of the discrete lifting technique, the normal multirate system is converted to a single-rate system. By making use of the standard preview control method, we construct the descriptor augmented error system. The quadratic performance index for the multirate system is given, which can be changed into one for the single-rate system. In addition, a new single-rate system is obtained, the optimal control law of which is given. Returning to the original system, the optimal preview controller for linear discrete-time descriptor noncausal multirate systems is derived. The stabilizability and detectability of the lifted single-rate system are discussed in detail. The optimal preview control design techniques are illustrated by simulation results for a simple example.

  12. Comparison between linear quadratic and early time dose models

    International Nuclear Information System (INIS)

    Chougule, A.A.; Supe, S.J.

    1993-01-01

    During the 70s, much interest was focused on fractionation in radiotherapy with the aim of improving tumor control rate without producing unacceptable normal tissue damage. To compare the radiobiological effectiveness of various fractionation schedules, empirical formulae such as Nominal Standard Dose, Time Dose Factor, Cumulative Radiation Effect and Tumour Significant Dose, were introduced and were used despite many shortcomings. It has been claimed that a recent linear quadratic model is able to predict the radiobiological responses of tumours as well as normal tissues more accurately. We compared Time Dose Factor and Tumour Significant Dose models with the linear quadratic model for tumour regression in patients with carcinomas of the cervix. It was observed that the prediction of tumour regression estimated by the Tumour Significant Dose and Time Dose factor concepts varied by 1.6% from that of the linear quadratic model prediction. In view of the lack of knowledge of the precise values of the parameters of the linear quadratic model, it should be applied with caution. One can continue to use the Time Dose Factor concept which has been in use for more than a decade as its results are within ±2% as compared to that predicted by the linear quadratic model. (author). 11 refs., 3 figs., 4 tabs

  13. Robust stability analysis of uncertain stochastic neural networks with interval time-varying delay

    International Nuclear Information System (INIS)

    Feng Wei; Yang, Simon X.; Fu Wei; Wu Haixia

    2009-01-01

    This paper addresses the stability analysis problem for uncertain stochastic neural networks with interval time-varying delays. The parameter uncertainties are assumed to be norm bounded, and the delay factor is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. A sufficient condition is derived such that for all admissible uncertainties, the considered neural network is robustly, globally, asymptotically stable in the mean square. Some stability criteria are formulated by means of the feasibility of a linear matrix inequality (LMI), which can be effectively solved by some standard numerical packages. Finally, numerical examples are provided to demonstrate the usefulness of the proposed criteria.

  14. Estimating epidemic arrival times using linear spreading theory

    Science.gov (United States)

    Chen, Lawrence M.; Holzer, Matt; Shapiro, Anne

    2018-01-01

    We study the dynamics of a spatially structured model of worldwide epidemics and formulate predictions for arrival times of the disease at any city in the network. The model is composed of a system of ordinary differential equations describing a meta-population susceptible-infected-recovered compartmental model defined on a network where each node represents a city and the edges represent the flight paths connecting cities. Making use of the linear determinacy of the system, we consider spreading speeds and arrival times in the system linearized about the unstable disease free state and compare these to arrival times in the nonlinear system. Two predictions are presented. The first is based upon expansion of the heat kernel for the linearized system. The second assumes that the dominant transmission pathway between any two cities can be approximated by a one dimensional lattice or a homogeneous tree and gives a uniform prediction for arrival times independent of the specific network features. We test these predictions on a real network describing worldwide airline traffic.

  15. Error Analysis for RADAR Neighbor Matching Localization in Linear Logarithmic Strength Varying Wi-Fi Environment

    Directory of Open Access Journals (Sweden)

    Mu Zhou

    2014-01-01

    Full Text Available This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs in logarithmic received signal strength (RSS varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future.

  16. Error Analysis for RADAR Neighbor Matching Localization in Linear Logarithmic Strength Varying Wi-Fi Environment

    Science.gov (United States)

    Tian, Zengshan; Xu, Kunjie; Yu, Xiang

    2014-01-01

    This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs) in logarithmic received signal strength (RSS) varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs) as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future. PMID:24683349

  17. Non linear dynamics of memristor based 3rd order oscillatory system

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-07-23

    In this paper, we report for the first time the nonlinear dynamics of three memristor based phase shift oscillators, and consider them as a plausible solution for the realization of parametric oscillation as an autonomous linear time variant system. Sustained oscillation is reported through oscillating resistance while time dependent poles are present. The memristor based phase shift oscillator is explored further by varying the parameters so as to present the resistance of the memristor as a time varying parameter, thus potentially eliminating the need of external periodic forces in order for it to oscillate. Multi memristors, used simultaneously with similar and different parameters, are investigated in this paper. Mathematical formulas for analyzing such oscillators are verified with simulation results and are found to be in good agreement. © 2011 Elsevier Ltd. All rights reserved.

  18. H∞ state estimation of stochastic memristor-based neural networks with time-varying delays.

    Science.gov (United States)

    Bao, Haibo; Cao, Jinde; Kurths, Jürgen; Alsaedi, Ahmed; Ahmad, Bashir

    2018-03-01

    This paper addresses the problem of H ∞ state estimation for a class of stochastic memristor-based neural networks with time-varying delays. Under the framework of Filippov solution, the stochastic memristor-based neural networks are transformed into systems with interval parameters. The present paper is the first to investigate the H ∞ state estimation problem for continuous-time Itô-type stochastic memristor-based neural networks. By means of Lyapunov functionals and some stochastic technique, sufficient conditions are derived to ensure that the estimation error system is asymptotically stable in the mean square with a prescribed H ∞ performance. An explicit expression of the state estimator gain is given in terms of linear matrix inequalities (LMIs). Compared with other results, our results reduce control gain and control cost effectively. Finally, numerical simulations are provided to demonstrate the efficiency of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Estimation of Nonlinear Functions of State Vector for Linear Systems with Time-Delays and Uncertainties

    Directory of Open Access Journals (Sweden)

    Il Young Song

    2015-01-01

    Full Text Available This paper focuses on estimation of a nonlinear function of state vector (NFS in discrete-time linear systems with time-delays and model uncertainties. The NFS represents a multivariate nonlinear function of state variables, which can indicate useful information of a target system for control. The optimal nonlinear estimator of an NFS (in mean square sense represents a function of the receding horizon estimate and its error covariance. The proposed receding horizon filter represents the standard Kalman filter with time-delays and special initial horizon conditions described by the Lyapunov-like equations. In general case to calculate an optimal estimator of an NFS we propose using the unscented transformation. Important class of polynomial NFS is considered in detail. In the case of polynomial NFS an optimal estimator has a closed-form computational procedure. The subsequent application of the proposed receding horizon filter and nonlinear estimator to a linear stochastic system with time-delays and uncertainties demonstrates their effectiveness.

  20. Study of a class of hybrid-time systems

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, I. [Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Ingenieria Mecanica y Electrica-Culhuacan-IPN, Av. San Ana 1000 Col. San Fco. Culhuacan, Mexico D.F. 04430 (Mexico) and Insituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Departamento de Matematicas Aplicadas y Sistemas Computacionales, Camino a la Presa San Jose 2055, Col. Lomas 4a, seccion C.P. 78216, San Luis Potosi, San Luis Potosi (Mexico)]. E-mail: ilse@calmecac.esimecu.ipn.mx; Femat, R. [Insituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Departamento de Matematicas Aplicadas y Sistemas Computacionales, Camino a la Presa San Jose 2055, Col. Lomas 4a, seccion C.P. 78216, San Luis Potosi, San Luis Potosi (Mexico); Leyva-Ramos, J. [Insituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Departamento de Matematicas Aplicadas y Sistemas Computacionales, Camino a la Presa San Jose 2055, Col. Lomas 4a, seccion C.P. 78216, San Luis Potosi, San Luis Potosi (Mexico)

    2007-05-15

    The aim of this paper is to study the dynamic behavior of a class of hybrid-time systems. In particular, we concern about switched systems constituted by two linear second order systems with a time varying (sinusoidal type) translation term. By means of numerical simulations, system behavior and its relation to system parameters are studied. It is shown that system eigenvalues play a crucial role in the time evolution of the system leading either to regular behavior, oscillatory patterns or intermittent erratic-periodic behavior. Furthermore, it is shown that under certain conditions, presumable fractal structures can be obtained.

  1. Study of a class of hybrid-time systems

    International Nuclear Information System (INIS)

    Cervantes, I.; Femat, R.; Leyva-Ramos, J.

    2007-01-01

    The aim of this paper is to study the dynamic behavior of a class of hybrid-time systems. In particular, we concern about switched systems constituted by two linear second order systems with a time varying (sinusoidal type) translation term. By means of numerical simulations, system behavior and its relation to system parameters are studied. It is shown that system eigenvalues play a crucial role in the time evolution of the system leading either to regular behavior, oscillatory patterns or intermittent erratic-periodic behavior. Furthermore, it is shown that under certain conditions, presumable fractal structures can be obtained

  2. Robustness analysis of the Zhang neural network for online time-varying quadratic optimization

    International Nuclear Information System (INIS)

    Zhang Yunong; Ruan Gongqin; Li Kene; Yang Yiwen

    2010-01-01

    A general type of recurrent neural network (termed as Zhang neural network, ZNN) has recently been proposed by Zhang et al for the online solution of time-varying quadratic-minimization (QM) and quadratic-programming (QP) problems. Global exponential convergence of the ZNN could be achieved theoretically in an ideal error-free situation. In this paper, with the normal differentiation and dynamics-implementation errors considered, the robustness properties of the ZNN model are investigated for solving these time-varying problems. In addition, linear activation functions and power-sigmoid activation functions could be applied to such a perturbed ZNN model. Both theoretical-analysis and computer-simulation results demonstrate the good ZNN robustness and superior performance for online time-varying QM and QP problem solving, especially when using power-sigmoid activation functions.

  3. Improving Delay-Range-Dependent Stability Condition for Systems with Interval Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Wei Qian

    2013-01-01

    Full Text Available This paper discusses the delay-range-dependent stability for systems with interval time-varying delay. Through defining the new Lyapunov-Krasovskii functional and estimating the derivative of the LKF by introducing new vectors, using free matrices and reciprocally convex approach, the new delay-range-dependent stability conditions are obtained. Two well-known examples are given to illustrate the less conservatism of the proposed theoretical results.

  4. Robust stability of uncertain Markovian jumping Cohen-Grossberg neural networks with mixed time-varying delays

    International Nuclear Information System (INIS)

    Sheng Li; Yang Huizhong

    2009-01-01

    This paper considers the robust stability of a class of uncertain Markovian jumping Cohen-Grossberg neural networks (UMJCGNNs) with mixed time-varying delays. The parameter uncertainties are norm-bounded and the mixed time-varying delays comprise discrete and distributed time delays. Based on the Lyapunov stability theory and linear matrix inequality (LMI) technique, some robust stability conditions guaranteeing the global robust convergence of the equilibrium point are derived. An example is given to show the effectiveness of the proposed results.

  5. Non-predictor control of a class of feedforward nonlinear systems with unknown time-varying delays

    Science.gov (United States)

    Koo, Min-Sung; Choi, Ho-Lim

    2016-08-01

    This paper generalises the several recent results on the control of feedforward time-delay nonlinear systems. First, in view of system formulation, there are unknown time-varying delays in both states and main control input. Also, the considered nonlinear system has extended feedforward nonlinearities. Second, in view of control solution, our proposed controller is a non-predictor feedback controller whereas smith-predictor type controllers are used in the several existing results. Moreover, our controller does not need any information on the unknown delays except their upper bounds. Thus, our result has certain merits in both system formulation and control solution perspective. The analysis and example are given for clear illustration.

  6. State control of discrete-time linear systems to be bound in state variables by equality constraints

    International Nuclear Information System (INIS)

    Filasová, Anna; Krokavec, Dušan; Serbák, Vladimír

    2014-01-01

    The paper is concerned with the problem of designing the discrete-time equivalent PI controller to control the discrete-time linear systems in such a way that the closed-loop state variables satisfy the prescribed equality constraints. Since the problem is generally singular, using standard form of the Lyapunov function and a symmetric positive definite slack matrix, the design conditions are proposed in the form of the enhanced Lyapunov inequality. The results, offering the conditions of the control existence and the optimal performance with respect to the prescribed equality constraints for square discrete-time linear systems, are illustrated with the numerical example to note effectiveness and applicability of the considered approach

  7. Robust control design for active driver assistance systems a linear-parameter-varying approach

    CERN Document Server

    Gáspár, Péter; Bokor, József; Nemeth, Balazs

    2017-01-01

    This monograph focuses on control methods that influence vehicle dynamics to assist the driver in enhancing passenger comfort, road holding, efficiency and safety of transport, etc., while maintaining the driver’s ability to override that assistance. On individual-vehicle-component level the control problem is formulated and solved by a unified modelling and design method provided by the linear parameter varying (LPV) framework. The global behaviour desired is achieved by a judicious interplay between the individual components, guaranteed by an integrated control mechanism. The integrated control problem is also formalized and solved in the LPV framework. Most important among the ideas expounded in the book are: application of the LPV paradigm in the modelling and control design methodology; application of the robust LPV design as a unified framework for setting control tasks related to active driver assistance; formulation and solution proposals for the integrated vehicle control problem; proposal for a re...

  8. A New Time-varying Concept of Risk in a Changing Climate

    Science.gov (United States)

    Sarhadi, Ali; Ausín, María Concepción; Wiper, Michael P.

    2016-10-01

    In a changing climate arising from anthropogenic global warming, the nature of extreme climatic events is changing over time. Existing analytical stationary-based risk methods, however, assume multi-dimensional extreme climate phenomena will not significantly vary over time. To strengthen the reliability of infrastructure designs and the management of water systems in the changing environment, multidimensional stationary risk studies should be replaced with a new adaptive perspective. The results of a comparison indicate that current multi-dimensional stationary risk frameworks are no longer applicable to projecting the changing behaviour of multi-dimensional extreme climate processes. Using static stationary-based multivariate risk methods may lead to undesirable consequences in designing water system infrastructures. The static stationary concept should be replaced with a flexible multi-dimensional time-varying risk framework. The present study introduces a new multi-dimensional time-varying risk concept to be incorporated in updating infrastructure design strategies under changing environments arising from human-induced climate change. The proposed generalized time-varying risk concept can be applied for all stochastic multi-dimensional systems that are under the influence of changing environments.

  9. A New Time-varying Concept of Risk in a Changing Climate.

    Science.gov (United States)

    Sarhadi, Ali; Ausín, María Concepción; Wiper, Michael P

    2016-10-20

    In a changing climate arising from anthropogenic global warming, the nature of extreme climatic events is changing over time. Existing analytical stationary-based risk methods, however, assume multi-dimensional extreme climate phenomena will not significantly vary over time. To strengthen the reliability of infrastructure designs and the management of water systems in the changing environment, multidimensional stationary risk studies should be replaced with a new adaptive perspective. The results of a comparison indicate that current multi-dimensional stationary risk frameworks are no longer applicable to projecting the changing behaviour of multi-dimensional extreme climate processes. Using static stationary-based multivariate risk methods may lead to undesirable consequences in designing water system infrastructures. The static stationary concept should be replaced with a flexible multi-dimensional time-varying risk framework. The present study introduces a new multi-dimensional time-varying risk concept to be incorporated in updating infrastructure design strategies under changing environments arising from human-induced climate change. The proposed generalized time-varying risk concept can be applied for all stochastic multi-dimensional systems that are under the influence of changing environments.

  10. Time-Varying Uncertainty in Shock and Vibration Applications Using the Impulse Response

    Directory of Open Access Journals (Sweden)

    J.B. Weathers

    2012-01-01

    Full Text Available Design of mechanical systems often necessitates the use of dynamic simulations to calculate the displacements (and their derivatives of the bodies in a system as a function of time in response to dynamic inputs. These types of simulations are especially prevalent in the shock and vibration community where simulations associated with models having complex inputs are routine. If the forcing functions as well as the parameters used in these simulations are subject to uncertainties, then these uncertainties will propagate through the models resulting in uncertainties in the outputs of interest. The uncertainty analysis procedure for these kinds of time-varying problems can be challenging, and in many instances, explicit data reduction equations (DRE's, i.e., analytical formulas, are not available because the outputs of interest are obtained from complex simulation software, e.g. FEA programs. Moreover, uncertainty propagation in systems modeled using nonlinear differential equations can prove to be difficult to analyze. However, if (1 the uncertainties propagate through the models in a linear manner, obeying the principle of superposition, then the complexity of the problem can be significantly simplified. If in addition, (2 the uncertainty in the model parameters do not change during the simulation and the manner in which the outputs of interest respond to small perturbations in the external input forces is not dependent on when the perturbations are applied, then the number of calculations required can be greatly reduced. Conditions (1 and (2 characterize a Linear Time Invariant (LTI uncertainty model. This paper seeks to explain one possible approach to obtain the uncertainty results based on these assumptions.

  11. Visualizing time-varying harmonics using filter banks

    NARCIS (Netherlands)

    Duque, C.A.; Da Silveira, P.M.; Ribeiro, P.F.

    2011-01-01

    Although it is well known that Fourier analysis is in reality only accurately applicable to steady state waveforms, it is a widely used tool to study and monitor time-varying signals, such as are commonplace in electrical power systems. The disadvantages of Fourier analysis, such as frequency

  12. Exploring inductive linearization for pharmacokinetic-pharmacodynamic systems of nonlinear ordinary differential equations.

    Science.gov (United States)

    Hasegawa, Chihiro; Duffull, Stephen B

    2018-02-01

    Pharmacokinetic-pharmacodynamic systems are often expressed with nonlinear ordinary differential equations (ODEs). While there are numerous methods to solve such ODEs these methods generally rely on time-stepping solutions (e.g. Runge-Kutta) which need to be matched to the characteristics of the problem at hand. The primary aim of this study was to explore the performance of an inductive approximation which iteratively converts nonlinear ODEs to linear time-varying systems which can then be solved algebraically or numerically. The inductive approximation is applied to three examples, a simple nonlinear pharmacokinetic model with Michaelis-Menten elimination (E1), an integrated glucose-insulin model and an HIV viral load model with recursive feedback systems (E2 and E3, respectively). The secondary aim of this study was to explore the potential advantages of analytically solving linearized ODEs with two examples, again E3 with stiff differential equations and a turnover model of luteinizing hormone with a surge function (E4). The inductive linearization coupled with a matrix exponential solution provided accurate predictions for all examples with comparable solution time to the matched time-stepping solutions for nonlinear ODEs. The time-stepping solutions however did not perform well for E4, particularly when the surge was approximated by a square wave. In circumstances when either a linear ODE is particularly desirable or the uncertainty in matching the integrator to the ODE system is of potential risk, then the inductive approximation method coupled with an analytical integration method would be an appropriate alternative.

  13. Adaptive fuzzy dynamic surface control of nonlinear systems with input saturation and time-varying output constraints

    Science.gov (United States)

    Edalati, L.; Khaki Sedigh, A.; Aliyari Shooredeli, M.; Moarefianpour, A.

    2018-02-01

    This paper deals with the design of adaptive fuzzy dynamic surface control for uncertain strict-feedback nonlinear systems with asymmetric time-varying output constraints in the presence of input saturation. To approximate the unknown nonlinear functions and overcome the problem of explosion of complexity, a Fuzzy logic system is combined with the dynamic surface control in the backstepping design technique. To ensure the output constraints satisfaction, an asymmetric time-varying Barrier Lyapunov Function (BLF) is used. Moreover, by applying the minimal learning parameter technique, the number of the online parameters update for each subsystem is reduced to 2. Hence, the semi-globally uniformly ultimately boundedness (SGUUB) of all the closed-loop signals with appropriate tracking error convergence is guaranteed. The effectiveness of the proposed control is demonstrated by two simulation examples.

  14. PWR control system design using advanced linear and non-linear methodologies

    International Nuclear Information System (INIS)

    Rabindran, N.; Whitmarsh-Everiss, M.J.

    2004-01-01

    Consideration is here given to the methodology deployed for non-linear heuristic analysis in the time domain supported by multi-variable linear control system design methods for the purposes of operational dynamics and control system analysis. This methodology is illustrated by the application of structural singular value μ analysis to Pressurised Water Reactor control system design. (author)

  15. H∞ Control for a Networked Control Model of Systems with Two Additive Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Hanyong Shao

    2014-01-01

    Full Text Available This paper is concerned with H∞ control for a networked control model of systems with two additive time-varying delays. A new Lyapunov functional is constructed to make full use of the information of the delays, and for the derivative of the Lyapunov functional a novel technique is employed to compute a tighter upper bound, which is dependent on the two time-varying delays instead of the upper bounds of them. Then the convex polyhedron method is proposed to check the upper bound of the derivative of the Lyapunov functional. The resulting stability criteria have fewer matrix variables but less conservatism than some existing ones. The stability criteria are applied to designing a state feedback controller, which guarantees that the closed-loop system is asymptotically stable with a prescribed H∞ disturbance attenuation level. Finally examples are given to show the advantages of the stability criteria and the effectiveness of the proposed control method.

  16. Linearized fermion-gravitation system in a (2+1)-dimensional space-time with Chern-Simons data

    International Nuclear Information System (INIS)

    Mello, E.R.B. de.

    1990-01-01

    The fermion-graviton system at linearized level in a (2+1)-dimensional space-time with the gravitational Chern-Simons term is studied. In this approximation it is shown that this system presents anomalous rotational properties and spin, in analogy with the gauge field-matter system. (A.C.A.S.) [pt

  17. Stabilization of the Wave Equation with Boundary Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Hao Li

    2014-01-01

    Full Text Available We study the stabilization of the wave equation with variable coefficients in a bounded domain and a time-varying delay term in the time-varying, weakly nonlinear boundary feedbacks. By the Riemannian geometry methods and a suitable assumption of nonlinearity, we obtain the uniform decay of the energy of the closed loop system.

  18. Linear quadratic optimization for positive LTI system

    Science.gov (United States)

    Muhafzan, Yenti, Syafrida Wirma; Zulakmal

    2017-05-01

    Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.

  19. Optimal control of LQR for discrete time-varying systems with input delays

    Science.gov (United States)

    Yin, Yue-Zhu; Yang, Zhong-Lian; Yin, Zhi-Xiang; Xu, Feng

    2018-04-01

    In this work, we consider the optimal control problem of linear quadratic regulation for discrete time-variant systems with single input and multiple input delays. An innovative and simple method to derive the optimal controller is given. The studied problem is first equivalently converted into a problem subject to a constraint condition. Last, with the established duality, the problem is transformed into a static mathematical optimisation problem without input delays. The optimal control input solution to minimise performance index function is derived by solving this optimisation problem with two methods. A numerical simulation example is carried out and its results show that our two approaches are both feasible and very effective.

  20. Closeness-Centrality-Based Synchronization Criteria for Complex Dynamical Networks With Interval Time-Varying Coupling Delays.

    Science.gov (United States)

    Park, Myeongjin; Lee, Seung-Hoon; Kwon, Oh-Min; Seuret, Alexandre

    2017-09-06

    This paper investigates synchronization in complex dynamical networks (CDNs) with interval time-varying delays. The CDNs are representative of systems composed of a large number of interconnected dynamical units, and for the purpose of the mathematical analysis, the leading work is to model them as graphs whose nodes represent the dynamical units. At this time, we take note of the importance of each node in networks. One way, in this paper, is that the closeness-centrality mentioned in the field of social science is grafted onto the CDNs. By constructing a suitable Lyapunov-Krasovskii functional, and utilizing some mathematical techniques, the sufficient and closeness-centrality-based conditions for synchronization stability of the networks are established in terms of linear matrix inequalities. Ultimately, the use of the closeness-centrality can be weighted with regard to not only the interconnection relation among the nodes, which was utilized in the existing works but also more information about nodes. Here, the centrality will be added as the concerned information. Moreover, to avoid the computational burden causing the nonconvex term including the square of the time-varying delay, how to deal with it is applied by estimating it to the convex term including time-varying delay. Finally, two illustrative examples are given to show the advantage of the closeness-centrality in point of the robustness on time-delay.

  1. Fast Solvers for Dense Linear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kauers, Manuel [Research Institute for Symbolic Computation (RISC), Altenbergerstrasse 69, A4040 Linz (Austria)

    2008-10-15

    It appears that large scale calculations in particle physics often require to solve systems of linear equations with rational number coefficients exactly. If classical Gaussian elimination is applied to a dense system, the time needed to solve such a system grows exponentially in the size of the system. In this tutorial paper, we present a standard technique from computer algebra that avoids this exponential growth: homomorphic images. Using this technique, big dense linear systems can be solved in a much more reasonable time than using Gaussian elimination over the rationals.

  2. A hepatitis C virus infection model with time-varying drug effectiveness: solution and analysis.

    Directory of Open Access Journals (Sweden)

    Jessica M Conway

    2014-08-01

    Full Text Available Simple models of therapy for viral diseases such as hepatitis C virus (HCV or human immunodeficiency virus assume that, once therapy is started, the drug has a constant effectiveness. More realistic models have assumed either that the drug effectiveness depends on the drug concentration or that the effectiveness varies over time. Here a previously introduced varying-effectiveness (VE model is studied mathematically in the context of HCV infection. We show that while the model is linear, it has no closed-form solution due to the time-varying nature of the effectiveness. We then show that the model can be transformed into a Bessel equation and derive an analytic solution in terms of modified Bessel functions, which are defined as infinite series, with time-varying arguments. Fitting the solution to data from HCV infected patients under therapy has yielded values for the parameters in the model. We show that for biologically realistic parameters, the predicted viral decay on therapy is generally biphasic and resembles that predicted by constant-effectiveness (CE models. We introduce a general method for determining the time at which the transition between decay phases occurs based on calculating the point of maximum curvature of the viral decay curve. For the parameter regimes of interest, we also find approximate solutions for the VE model and establish the asymptotic behavior of the system. We show that the rate of second phase decay is determined by the death rate of infected cells multiplied by the maximum effectiveness of therapy, whereas the rate of first phase decline depends on multiple parameters including the rate of increase of drug effectiveness with time.

  3. Partial Synchronization Manifolds for Linearly Time-Delay Coupled Systems

    OpenAIRE

    Steur, Erik; van Leeuwen, Cees; Michiels, Wim

    2014-01-01

    Sometimes a network of dynamical systems shows a form of incomplete synchronization characterized by synchronization of some but not all of its systems. This type of incomplete synchronization is called partial synchronization. Partial synchronization is associated with the existence of partial synchronization manifolds, which are linear invariant subspaces of C, the state space of the network of systems. We focus on partial synchronization manifolds in networks of system...

  4. Real time damage detection using recursive principal components and time varying auto-regressive modeling

    Science.gov (United States)

    Krishnan, M.; Bhowmik, B.; Hazra, B.; Pakrashi, V.

    2018-02-01

    In this paper, a novel baseline free approach for continuous online damage detection of multi degree of freedom vibrating structures using Recursive Principal Component Analysis (RPCA) in conjunction with Time Varying Auto-Regressive Modeling (TVAR) is proposed. In this method, the acceleration data is used to obtain recursive proper orthogonal components online using rank-one perturbation method, followed by TVAR modeling of the first transformed response, to detect the change in the dynamic behavior of the vibrating system from its pristine state to contiguous linear/non-linear-states that indicate damage. Most of the works available in the literature deal with algorithms that require windowing of the gathered data owing to their data-driven nature which renders them ineffective for online implementation. Algorithms focussed on mathematically consistent recursive techniques in a rigorous theoretical framework of structural damage detection is missing, which motivates the development of the present framework that is amenable for online implementation which could be utilized along with suite experimental and numerical investigations. The RPCA algorithm iterates the eigenvector and eigenvalue estimates for sample covariance matrices and new data point at each successive time instants, using the rank-one perturbation method. TVAR modeling on the principal component explaining maximum variance is utilized and the damage is identified by tracking the TVAR coefficients. This eliminates the need for offline post processing and facilitates online damage detection especially when applied to streaming data without requiring any baseline data. Numerical simulations performed on a 5-dof nonlinear system under white noise excitation and El Centro (also known as 1940 Imperial Valley earthquake) excitation, for different damage scenarios, demonstrate the robustness of the proposed algorithm. The method is further validated on results obtained from case studies involving

  5. Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays

    Science.gov (United States)

    Syed Ali, M.; Balasubramaniam, P.

    2008-07-01

    In this Letter, by utilizing the Lyapunov functional and combining with the linear matrix inequality (LMI) approach, we analyze the global asymptotic stability of uncertain stochastic fuzzy Bidirectional Associative Memory (BAM) neural networks with time-varying delays which are represented by the Takagi-Sugeno (TS) fuzzy models. A new class of uncertain stochastic fuzzy BAM neural networks with time varying delays has been studied and sufficient conditions have been derived to obtain conservative result in stochastic settings. The developed results are more general than those reported in the earlier literatures. In addition, the numerical examples are provided to illustrate the applicability of the result using LMI toolbox in MATLAB.

  6. Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Syed Ali, M.; Balasubramaniam, P.

    2008-01-01

    In this Letter, by utilizing the Lyapunov functional and combining with the linear matrix inequality (LMI) approach, we analyze the global asymptotic stability of uncertain stochastic fuzzy Bidirectional Associative Memory (BAM) neural networks with time-varying delays which are represented by the Takagi-Sugeno (TS) fuzzy models. A new class of uncertain stochastic fuzzy BAM neural networks with time varying delays has been studied and sufficient conditions have been derived to obtain conservative result in stochastic settings. The developed results are more general than those reported in the earlier literatures. In addition, the numerical examples are provided to illustrate the applicability of the result using LMI toolbox in MATLAB

  7. Networked control of discrete-time linear systems over lossy digital communication channels

    Science.gov (United States)

    Jin, Fang; Zhao, Guang-Rong; Liu, Qing-Quan

    2013-12-01

    This article addresses networked control problems for linear time-invariant systems. The insertion of the digital communication network inevitably leads to packet dropout, time delay and quantisation error. Due to data rate limitations, quantisation error is not neglected. In particular, the case where the sensors and controllers are geographically separated and connected via noisy, bandwidth-limited digital communication channels is considered. A fundamental limitation on the data rate of the channel for mean-square stabilisation of the closed-loop system is established. Sufficient conditions for mean-square stabilisation are derived. It is shown that there exists a quantisation, coding and control scheme to stabilise the unstable system over packet dropout communication channels if the data rate is larger than the lower bound proposed in our result. An illustrative example is given to demonstrate the effectiveness of the proposed conditions.

  8. Time-Varying Value of Energy Efficiency in Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Mims, Natalie; Eckman, Tom; Schwartz, Lisa C.

    2018-04-02

    Quantifying the time-varying value of energy efficiency is necessary to properly account for all of its benefits and costs and to identify and implement efficiency resources that contribute to a low-cost, reliable electric system. Historically, most quantification of the benefits of efficiency has focused largely on the economic value of annual energy reduction. Due to the lack of statistically representative metered end-use load shape data in Michigan (i.e., the hourly or seasonal timing of electricity savings), the ability to confidently characterize the time-varying value of energy efficiency savings in the state, especially for weather-sensitive measures such as central air conditioning, is limited. Still, electric utilities in Michigan can take advantage of opportunities to incorporate the time-varying value of efficiency into their planning. For example, end-use load research and hourly valuation of efficiency savings can be used for a variety of electricity planning functions, including load forecasting, demand-side management and evaluation, capacity planning, long-term resource planning, renewable energy integration, assessing potential grid modernization investments, establishing rates and pricing, and customer service (KEMA 2012). In addition, accurately calculating the time-varying value of efficiency may help energy efficiency program administrators prioritize existing offerings, set incentive or rebate levels that reflect the full value of efficiency, and design new programs.

  9. Controllable deterioration rate for time-dependent demand and time-varying holding cost

    Directory of Open Access Journals (Sweden)

    Mishra Vinod Kumar

    2014-01-01

    Full Text Available In this paper, we develop an inventory model for non-instantaneous deteriorating items under the consideration of the facts: deterioration rate can be controlled by using the preservation technology (PT during deteriorating period, and holding cost and demand rate both are linear function of time, which was treated as constant in most of the deteriorating inventory models. So in this paper, we developed a deterministic inventory model for non-instantaneous deteriorating items in which both demand rate and holding cost are a linear function of time, deterioration rate is constant, backlogging rate is variable and depend on the length of the next replenishment, shortages are allowed and partially backlogged. The model is solved analytically by minimizing the total cost of the inventory system. The model can be applied to optimizing the total inventory cost of non-instantaneous deteriorating items inventory for the business enterprises, where the preservation technology is used to control the deterioration rate, and demand & holding cost both are a linear function of time.

  10. Inverse chaos synchronization in linearly and nonlinearly coupled systems with multiple time-delays

    International Nuclear Information System (INIS)

    Shahverdiev, E.M.; Hashimov, R.H.; Nuriev, R.A.; Hashimova, L.H.; Huseynova, E.M.; Shore, K.A.

    2005-04-01

    We report on inverse chaos synchronization between two unidirectionally linearly and nonlinearly coupled chaotic systems with multiple time-delays and find the existence and stability conditions for different synchronization regimes. We also study the effect of parameter mismatches on synchonization regimes. The method is tested on the famous Ikeda model. Numerical simulations fully support the analytical approach. (author)

  11. Discrete-time recurrent neural networks with time-varying delays: Exponential stability analysis

    International Nuclear Information System (INIS)

    Liu, Yurong; Wang, Zidong; Serrano, Alan; Liu, Xiaohui

    2007-01-01

    This Letter is concerned with the analysis problem of exponential stability for a class of discrete-time recurrent neural networks (DRNNs) with time delays. The delay is of the time-varying nature, and the activation functions are assumed to be neither differentiable nor strict monotonic. Furthermore, the description of the activation functions is more general than the recently commonly used Lipschitz conditions. Under such mild conditions, we first prove the existence of the equilibrium point. Then, by employing a Lyapunov-Krasovskii functional, a unified linear matrix inequality (LMI) approach is developed to establish sufficient conditions for the DRNNs to be globally exponentially stable. It is shown that the delayed DRNNs are globally exponentially stable if a certain LMI is solvable, where the feasibility of such an LMI can be easily checked by using the numerically efficient Matlab LMI Toolbox. A simulation example is presented to show the usefulness of the derived LMI-based stability condition

  12. Time-varying Crash Risk

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunoua, Bruno; Jeon, Yoontae

    We estimate a continuous-time model with stochastic volatility and dynamic crash probability for the S&P 500 index and find that market illiquidity dominates other factors in explaining the stock market crash risk. While the crash probability is time-varying, its dynamic depends only weakly on re...

  13. Fractional order differentiation by integration: An application to fractional linear systems

    KAUST Repository

    Liu, Dayan

    2013-02-04

    In this article, we propose a robust method to compute the output of a fractional linear system defined through a linear fractional differential equation (FDE) with time-varying coefficients, where the input can be noisy. We firstly introduce an estimator of the fractional derivative of an unknown signal, which is defined by an integral formula obtained by calculating the fractional derivative of a truncated Jacobi polynomial series expansion. We then approximate the FDE by applying to each fractional derivative this formal algebraic integral estimator. Consequently, the fractional derivatives of the solution are applied on the used Jacobi polynomials and then we need to identify the unknown coefficients of the truncated series expansion of the solution. Modulating functions method is used to estimate these coefficients by solving a linear system issued from the approximated FDE and some initial conditions. A numerical result is given to confirm the reliability of the proposed method. © 2013 IFAC.

  14. Robust stability analysis for Markovian jumping interval neural networks with discrete and distributed time-varying delays

    International Nuclear Information System (INIS)

    Balasubramaniam, P.; Lakshmanan, S.; Manivannan, A.

    2012-01-01

    Highlights: ► Robust stability analysis for Markovian jumping interval neural networks is considered. ► Both linear fractional and interval uncertainties are considered. ► A new LKF is constructed with triple integral terms. ► MATLAB LMI control toolbox is used to validate theoretical results. ► Numerical examples are given to illustrate the effectiveness of the proposed method. - Abstract: This paper investigates robust stability analysis for Markovian jumping interval neural networks with discrete and distributed time-varying delays. The parameter uncertainties are assumed to be bounded in given compact sets. The delay is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Based on the new Lyapunov–Krasovskii functional (LKF), some inequality techniques and stochastic stability theory, new delay-dependent stability criteria have been obtained in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are given to illustrate the less conservative and effectiveness of our theoretical results.

  15. Application of Minimum-time Optimal Control System in Buck-Boost Bi-linear Converters

    Directory of Open Access Journals (Sweden)

    S. M. M. Shariatmadar

    2017-08-01

    Full Text Available In this study, the theory of minimum-time optimal control system in buck-boost bi-linear converters is described, so that output voltage regulation is carried out within minimum time. For this purpose, the Pontryagin's Minimum Principle is applied to find optimal switching level applying minimum-time optimal control rules. The results revealed that by utilizing an optimal switching level instead of classical switching patterns, output voltage regulation will be carried out within minimum time. However, transient energy index of increased overvoltage significantly reduces in order to attain minimum time optimal control in reduced output load. The laboratory results were used in order to verify numerical simulations.

  16. New results on global exponential stability of recurrent neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Xu Shengyuan; Chu Yuming; Lu Junwei

    2006-01-01

    This Letter provides new sufficient conditions for the existence, uniqueness and global exponential stability of the equilibrium point of recurrent neural networks with time-varying delays by employing Lyapunov functions and using the Halanay inequality. The time-varying delays are not necessarily differentiable. Both Lipschitz continuous activation functions and monotone nondecreasing activation functions are considered. The derived stability criteria are expressed in terms of linear matrix inequalities (LMIs), which can be checked easily by resorting to recently developed algorithms solving LMIs. Furthermore, the proposed stability results are less conservative than some previous ones in the literature, which is demonstrated via some numerical examples

  17. New results on global exponential stability of recurrent neural networks with time-varying delays

    Energy Technology Data Exchange (ETDEWEB)

    Xu Shengyuan [Department of Automation, Nanjing University of Science and Technology, Nanjing 210094 (China)]. E-mail: syxu02@yahoo.com.cn; Chu Yuming [Department of Mathematics, Huzhou Teacher' s College, Huzhou, Zhejiang 313000 (China); Lu Junwei [School of Electrical and Automation Engineering, Nanjing Normal University, 78 Bancang Street, Nanjing, 210042 (China)

    2006-04-03

    This Letter provides new sufficient conditions for the existence, uniqueness and global exponential stability of the equilibrium point of recurrent neural networks with time-varying delays by employing Lyapunov functions and using the Halanay inequality. The time-varying delays are not necessarily differentiable. Both Lipschitz continuous activation functions and monotone nondecreasing activation functions are considered. The derived stability criteria are expressed in terms of linear matrix inequalities (LMIs), which can be checked easily by resorting to recently developed algorithms solving LMIs. Furthermore, the proposed stability results are less conservative than some previous ones in the literature, which is demonstrated via some numerical examples.

  18. A Method of Time-Varying Rayleigh Channel Tracking in MIMO Radio System

    Institute of Scientific and Technical Information of China (English)

    GONG Yan-fei; HE Zi-shu; HAN Chun-lin

    2005-01-01

    A method of MIMO channel tracking based on Kalman filter and MMSE-DFE is proposed. The Kalman filter tracks the time-varying channel by using the MMSE-DFE decision and the MMSE-DFE conducts the next decision by using the channel estimates produced by the Kalman filter. Polynomial fitting is used to bridge the gap between the channel estimates produced by the Kalman filter and those needed for the DFE decision. Computer simulation demonstrates that this method can track the MIMO time-varying channel effectively.

  19. Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties.

    Science.gov (United States)

    Li, Zhijun; Su, Chun-Yi

    2013-09-01

    In this paper, adaptive neural network control is investigated for single-master-multiple-slaves teleoperation in consideration of time delays and input dead-zone uncertainties for multiple mobile manipulators carrying a common object in a cooperative manner. Firstly, concise dynamics of teleoperation systems consisting of a single master robot, multiple coordinated slave robots, and the object are developed in the task space. To handle asymmetric time-varying delays in communication channels and unknown asymmetric input dead zones, the nonlinear dynamics of the teleoperation system are transformed into two subsystems through feedback linearization: local master or slave dynamics including the unknown input dead zones and delayed dynamics for the purpose of synchronization. Then, a model reference neural network control strategy based on linear matrix inequalities (LMI) and adaptive techniques is proposed. The developed control approach ensures that the defined tracking errors converge to zero whereas the coordination internal force errors remain bounded and can be made arbitrarily small. Throughout this paper, stability analysis is performed via explicit Lyapunov techniques under specific LMI conditions. The proposed adaptive neural network control scheme is robust against motion disturbances, parametric uncertainties, time-varying delays, and input dead zones, which is validated by simulation studies.

  20. Linear and non-linear systems identification for adaptive control in mechanical applications vibration suppression

    Science.gov (United States)

    Cazzulani, Gabriele; Resta, Ferruccio; Ripamonti, Francesco

    2012-04-01

    During the last years, more and more mechanical applications saw the introduction of active control strategies. In particular, the need of improving the performances and/or the system health is very often associated to vibration suppression. This goal can be achieved considering both passive and active solutions. In this sense, many active control strategies have been developed, such as the Independent Modal Space Control (IMSC) or the resonant controllers (PPF, IRC, . . .). In all these cases, in order to tune and optimize the control strategy, the knowledge of the system dynamic behaviour is very important and it can be achieved both considering a numerical model of the system or through an experimental identification process. Anyway, dealing with non-linear or time-varying systems, a tool able to online identify the system parameters becomes a key-point for the control logic synthesis. The aim of the present work is the definition of a real-time technique, based on ARMAX models, that estimates the system parameters starting from the measurements of piezoelectric sensors. These parameters are returned to the control logic, that automatically adapts itself to the system dynamics. The problem is numerically investigated considering a carbon-fiber plate model forced through a piezoelectric patch.

  1. A block Krylov subspace time-exact solution method for linear ordinary differential equation systems

    NARCIS (Netherlands)

    Bochev, Mikhail A.

    2013-01-01

    We propose a time-exact Krylov-subspace-based method for solving linear ordinary differential equation systems of the form $y'=-Ay+g(t)$ and $y"=-Ay+g(t)$, where $y(t)$ is the unknown function. The method consists of two stages. The first stage is an accurate piecewise polynomial approximation of

  2. Improved Criteria on Delay-Dependent Stability for Discrete-Time Neural Networks with Interval Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    O. M. Kwon

    2012-01-01

    Full Text Available The purpose of this paper is to investigate the delay-dependent stability analysis for discrete-time neural networks with interval time-varying delays. Based on Lyapunov method, improved delay-dependent criteria for the stability of the networks are derived in terms of linear matrix inequalities (LMIs by constructing a suitable Lyapunov-Krasovskii functional and utilizing reciprocally convex approach. Also, a new activation condition which has not been considered in the literature is proposed and utilized for derivation of stability criteria. Two numerical examples are given to illustrate the effectiveness of the proposed method.

  3. Linear Regression Based Real-Time Filtering

    Directory of Open Access Journals (Sweden)

    Misel Batmend

    2013-01-01

    Full Text Available This paper introduces real time filtering method based on linear least squares fitted line. Method can be used in case that a filtered signal is linear. This constraint narrows a band of potential applications. Advantage over Kalman filter is that it is computationally less expensive. The paper further deals with application of introduced method on filtering data used to evaluate a position of engraved material with respect to engraving machine. The filter was implemented to the CNC engraving machine control system. Experiments showing its performance are included.

  4. A Discrete-Time Recurrent Neural Network for Solving Rank-Deficient Matrix Equations With an Application to Output Regulation of Linear Systems.

    Science.gov (United States)

    Liu, Tao; Huang, Jie

    2017-04-17

    This paper presents a discrete-time recurrent neural network approach to solving systems of linear equations with two features. First, the system of linear equations may not have a unique solution. Second, the system matrix is not known precisely, but a sequence of matrices that converges to the unknown system matrix exponentially is known. The problem is motivated from solving the output regulation problem for linear systems. Thus, an application of our main result leads to an online solution to the output regulation problem for linear systems.

  5. Event-driven control of a speed varying digital displacement machine

    DEFF Research Database (Denmark)

    Pedersen, Niels Henrik; Johansen, Per; Andersen, Torben O.

    2017-01-01

    . The controller synthesis is carried out as a discrete optimal deterministic problem with full state feedback. Based on a linear analysis of the feedback control system, stability is proven in a pre-specified operation region. Simulation of a non-linear evaluation model with the controller implemented shows great...... be treated as a Discrete Linear Time Invariant control problem with synchronous sampling rate. To make synchronous linear control theory applicable for a variable speed digital displacement machine, a method based on event-driven control is presented. Using this method, the time domain differential equations...... are converted into the spatial (position) domain to obtain a constant sampling rate and thus allowing for use of classical control theory. The method is applied to a down scaled digital fluid power motor, where the motor speed is controlled at varying references under varying pressure and load torque conditions...

  6. A note on "Multicriteria adaptive paths in stochastic, time-varying networks"

    DEFF Research Database (Denmark)

    Pretolani, Daniele; Nielsen, Lars Relund; Andersen, Kim Allan

    In a recent paper, Opasanon and Miller-Hooks study multicriteria adaptive paths in stochastic time-varying networks. They propose a label correcting algorithm for finding the full set of efficient strategies. In this note we show that their algorithm is not correct, since it is based on a property...... that does not hold in general. Opasanon and Miller-Hooks also propose an algorithm for solving a parametric problem. We give a simplified algorithm which is linear in the input size....

  7. Robust synchronization analysis in nonlinear stochastic cellular networks with time-varying delays, intracellular perturbations and intercellular noise.

    Science.gov (United States)

    Chen, Po-Wei; Chen, Bor-Sen

    2011-08-01

    Naturally, a cellular network consisted of a large amount of interacting cells is complex. These cells have to be synchronized in order to emerge their phenomena for some biological purposes. However, the inherently stochastic intra and intercellular interactions are noisy and delayed from biochemical processes. In this study, a robust synchronization scheme is proposed for a nonlinear stochastic time-delay coupled cellular network (TdCCN) in spite of the time-varying process delay and intracellular parameter perturbations. Furthermore, a nonlinear stochastic noise filtering ability is also investigated for this synchronized TdCCN against stochastic intercellular and environmental disturbances. Since it is very difficult to solve a robust synchronization problem with the Hamilton-Jacobi inequality (HJI) matrix, a linear matrix inequality (LMI) is employed to solve this problem via the help of a global linearization method. Through this robust synchronization analysis, we can gain a more systemic insight into not only the robust synchronizability but also the noise filtering ability of TdCCN under time-varying process delays, intracellular perturbations and intercellular disturbances. The measures of robustness and noise filtering ability of a synchronized TdCCN have potential application to the designs of neuron transmitters, on-time mass production of biochemical molecules, and synthetic biology. Finally, a benchmark of robust synchronization design in Escherichia coli repressilators is given to confirm the effectiveness of the proposed methods. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Global Robust Stability of Switched Interval Neural Networks with Discrete and Distributed Time-Varying Delays of Neural Type

    Directory of Open Access Journals (Sweden)

    Huaiqin Wu

    2012-01-01

    Full Text Available By combing the theories of the switched systems and the interval neural networks, the mathematics model of the switched interval neural networks with discrete and distributed time-varying delays of neural type is presented. A set of the interval parameter uncertainty neural networks with discrete and distributed time-varying delays of neural type are used as the individual subsystem, and an arbitrary switching rule is assumed to coordinate the switching between these networks. By applying the augmented Lyapunov-Krasovskii functional approach and linear matrix inequality (LMI techniques, a delay-dependent criterion is achieved to ensure to such switched interval neural networks to be globally asymptotically robustly stable in terms of LMIs. The unknown gain matrix is determined by solving this delay-dependent LMIs. Finally, an illustrative example is given to demonstrate the validity of the theoretical results.

  9. Memory State Feedback RMPC for Multiple Time-Delayed Uncertain Linear Systems with Input Constraints

    Directory of Open Access Journals (Sweden)

    Wei-Wei Qin

    2014-01-01

    Full Text Available This paper focuses on the problem of asymptotic stabilization for a class of discrete-time multiple time-delayed uncertain linear systems with input constraints. Then, based on the predictive control principle of receding horizon optimization, a delayed state dependent quadratic function is considered for incorporating MPC problem formulation. By developing a memory state feedback controller, the information of the delayed plant states can be taken into full consideration. The MPC problem is formulated to minimize the upper bound of infinite horizon cost that satisfies the sufficient conditions. Then, based on the Lyapunov-Krasovskii function, a delay-dependent sufficient condition in terms of linear matrix inequality (LMI can be derived to design a robust MPC algorithm. Finally, the digital simulation results prove availability of the proposed method.

  10. Stability Analysis and H∞ Model Reduction for Switched Discrete-Time Time-Delay Systems

    Directory of Open Access Journals (Sweden)

    Zheng-Fan Liu

    2014-01-01

    Full Text Available This paper is concerned with the problem of exponential stability and H∞ model reduction of a class of switched discrete-time systems with state time-varying delay. Some subsystems can be unstable. Based on the average dwell time technique and Lyapunov-Krasovskii functional (LKF approach, sufficient conditions for exponential stability with H∞ performance of such systems are derived in terms of linear matrix inequalities (LMIs. For the high-order systems, sufficient conditions for the existence of reduced-order model are derived in terms of LMIs. Moreover, the error system is guaranteed to be exponentially stable and an H∞ error performance is guaranteed. Numerical examples are also given to demonstrate the effectiveness and reduced conservatism of the obtained results.

  11. Compensation for the distortion in satellite laser range predictions due to varying pulse travel times

    Science.gov (United States)

    Paunonen, Matti

    1993-01-01

    A method for compensating for the effect of the varying travel time of a transmitted laser pulse to a satellite is described. The 'observed minus predicted' range differences then appear to be linear, which makes data screening or use in range gating more effective.

  12. Non linear system become linear system

    Directory of Open Access Journals (Sweden)

    Petre Bucur

    2007-01-01

    Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.

  13. Remaining useful life estimation for deteriorating systems with time-varying operational conditions and condition-specific failure zones

    Directory of Open Access Journals (Sweden)

    Li Qi

    2016-06-01

    Full Text Available Dynamic time-varying operational conditions pose great challenge to the estimation of system remaining useful life (RUL for the deteriorating systems. This paper presents a method based on probabilistic and stochastic approaches to estimate system RUL for periodically monitored degradation processes with dynamic time-varying operational conditions and condition-specific failure zones. The method assumes that the degradation rate is influenced by specific operational condition and moreover, the transition between different operational conditions plays the most important role in affecting the degradation process. These operational conditions are assumed to evolve as a discrete-time Markov chain (DTMC. The failure thresholds are also determined by specific operational conditions and described as different failure zones. The 2008 PHM Conference Challenge Data is utilized to illustrate our method, which contains mass sensory signals related to the degradation process of a commercial turbofan engine. The RUL estimation method using the sensor measurements of a single sensor was first developed, and then multiple vital sensors were selected through a particular optimization procedure in order to increase the prediction accuracy. The effectiveness and advantages of the proposed method are presented in a comparison with existing methods for the same dataset.

  14. From dynamical systems with time-varying delay to circle maps and Koopman operators

    Science.gov (United States)

    Müller, David; Otto, Andreas; Radons, Günter

    2017-06-01

    In this paper, we investigate the influence of the retarded access by a time-varying delay on the dynamics of delay systems. We show that there are two universality classes of delays, which lead to fundamental differences in dynamical quantities such as the Lyapunov spectrum. Therefore, we introduce an operator theoretic framework, where the solution operator of the delay system is decomposed into the Koopman operator describing the delay access and an operator similar to the solution operator known from systems with constant delay. The Koopman operator corresponds to an iterated map, called access map, which is defined by the iteration of the delayed argument of the delay equation. The dynamics of this one-dimensional iterated map determines the universality classes of the infinite-dimensional state dynamics governed by the delay differential equation. In this way, we connect the theory of time-delay systems with the theory of circle maps and the framework of the Koopman operator. In this paper, we extend our previous work [A. Otto, D. Müller, and G. Radons, Phys. Rev. Lett. 118, 044104 (2017), 10.1103/PhysRevLett.118.044104] by elaborating the mathematical details and presenting further results also on the Lyapunov vectors.

  15. A Semiparametric Time Trend Varying Coefficients Model: With An Application to Evaluate Credit Rationing in U.S. Credit Market

    OpenAIRE

    Jingping Gu; Paula Hernandez-Verme

    2009-01-01

    In this paper, we propose a new semiparametric varying coefficient model which extends the existing semi-parametric varying coefficient models to allow for a time trend regressor with smooth coefficient function. We propose to use the local linear method to estimate the coefficient functions and we provide the asymptotic theory to describe the asymptotic distribution of the local linear estimator. We present an application to evaluate credit rationing in the U.S. credit market. Using U.S. mon...

  16. A Semiparametric Time Trend Varying Coefficients Model: With An Application to Evaluate Credit Rationing in U.S. Credit Market

    OpenAIRE

    Qi Gao; Jingping Gu; Paula Hernandez-Verme

    2012-01-01

    In this paper, we propose a new semiparametric varying coefficient model which extends the existing semi-parametric varying coefficient models to allow for a time trend regressor with smooth coefficient function. We propose to use the local linear method to estimate the coefficient functions and we provide the asymptotic theory to describe the asymptotic distribution of the local linear estimator. We present an application to evaluate credit rationing in the U.S. credit market. Using U.S. mon...

  17. Flexible Demand Management under Time-Varying Prices

    Science.gov (United States)

    Liang, Yong

    In this dissertation, the problem of flexible demand management under time-varying prices is studied. This generic problem has many applications, which usually have multiple periods in which decisions on satisfying demand need to be made, and prices in these periods are time-varying. Examples of such applications include multi-period procurement problem, operating room scheduling, and user-end demand scheduling in the Smart Grid, where the last application is used as the main motivating story throughout the dissertation. The current grid is experiencing an upgrade with lots of new designs. What is of particular interest is the idea of passing time-varying prices that reflect electricity market conditions to end users as incentives for load shifting. One key component, consequently, is the demand management system at the user-end. The objective of the system is to find the optimal trade-off between cost saving and discomfort increment resulted from load shifting. In this dissertation, we approach this problem from the following aspects: (1) construct a generic model, solve for Pareto optimal solutions, and analyze the robust solution that optimizes the worst-case payoffs, (2) extend to a distribution-free model for multiple types of demand (appliances), for which an approximate dynamic programming (ADP) approach is developed, and (3) design other efficient algorithms for practical purposes of the flexible demand management system. We first construct a novel multi-objective flexible demand management model, in which there are a finite number of periods with time-varying prices, and demand arrives in each period. In each period, the decision maker chooses to either satisfy or defer outstanding demand to minimize costs and discomfort over a certain number of periods. We consider both the deterministic model, models with stochastic demand or prices, and when only partial information about the stochastic demand or prices is known. We first analyze the stochastic

  18. New Passivity Criteria for Fuzzy Bam Neural Networks with Markovian Jumping Parameters and Time-Varying Delays

    Science.gov (United States)

    Vadivel, P.; Sakthivel, R.; Mathiyalagan, K.; Thangaraj, P.

    2013-02-01

    This paper addresses the problem of passivity analysis issue for a class of fuzzy bidirectional associative memory (BAM) neural networks with Markovian jumping parameters and time varying delays. A set of sufficient conditions for the passiveness of the considered fuzzy BAM neural network model is derived in terms of linear matrix inequalities by using the delay fractioning technique together with the Lyapunov function approach. In addition, the uncertainties are inevitable in neural networks because of the existence of modeling errors and external disturbance. Further, this result is extended to study the robust passivity criteria for uncertain fuzzy BAM neural networks with time varying delays and uncertainties. These criteria are expressed in the form of linear matrix inequalities (LMIs), which can be efficiently solved via standard numerical software. Two numerical examples are provided to demonstrate the effectiveness of the obtained results.

  19. Stability Analysis and Stabilization of T-S Fuzzy Delta Operator Systems with Time-Varying Delay via an Input-Output Approach

    Directory of Open Access Journals (Sweden)

    Zhixiong Zhong

    2013-01-01

    Full Text Available The stability analysis and stabilization of Takagi-Sugeno (T-S fuzzy delta operator systems with time-varying delay are investigated via an input-output approach. A model transformation method is employed to approximate the time-varying delay. The original system is transformed into a feedback interconnection form which has a forward subsystem with constant delays and a feedback one with uncertainties. By applying the scaled small gain (SSG theorem to deal with this new system, and based on a Lyapunov Krasovskii functional (LKF in delta operator domain, less conservative stability analysis and stabilization conditions are obtained. Numerical examples are provided to illustrate the advantages of the proposed method.

  20. Analysis on Passivity for Uncertain Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    O. M. Kwon

    2014-01-01

    Full Text Available The problem of passivity analysis for neural networks with time-varying delays and parameter uncertainties is considered. By the consideration of newly constructed Lyapunov-Krasovskii functionals, improved sufficient conditions to guarantee the passivity of the concerned networks are proposed with the framework of linear matrix inequalities (LMIs, which can be solved easily by various efficient convex optimization algorithms. The enhancement of the feasible region of the proposed criteria is shown via two numerical examples by the comparison of maximum allowable delay bounds.

  1. A delay-dependent LMI approach to dynamics analysis of discrete-time recurrent neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Song, Qiankun; Wang, Zidong

    2007-01-01

    In this Letter, the analysis problem for the existence and stability of periodic solutions is investigated for a class of general discrete-time recurrent neural networks with time-varying delays. For the neural networks under study, a generalized activation function is considered, and the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. By employing the latest free-weighting matrix method, an appropriate Lyapunov-Krasovskii functional is constructed and several sufficient conditions are established to ensure the existence, uniqueness, and globally exponential stability of the periodic solution for the addressed neural network. The conditions are dependent on both the lower bound and upper bound of the time-varying time delays. Furthermore, the conditions are expressed in terms of the linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. Two simulation examples are given to show the effectiveness and less conservatism of the proposed criteria

  2. On exponential stability of bidirectional associative memory neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Park, Ju H.; Lee, S.M.; Kwon, O.M.

    2009-01-01

    For bidirectional associate memory neural networks with time-varying delays, the problems of determining the exponential stability and estimating the exponential convergence rate are investigated by employing the Lyapunov functional method and linear matrix inequality (LMI) technique. A novel criterion for the stability, which give information on the delay-dependent property, is derived. A numerical example is given to demonstrate the effectiveness of the obtained results.

  3. A Direct Algorithm for Pole Placement by State-derivative Feedback for Single-input Linear Systems

    Directory of Open Access Journals (Sweden)

    Taha H. S. Abdelaziz

    2003-01-01

    Full Text Available This paper deals with the direct solution of the pole placement problem for single-input linear systems using state-derivative feedback. This pole placement problem is always solvable for any controllable systems if all eigenvalues of the original system are nonzero. Then any arbitrary closed-loop poles can be placed in order to achieve the desired system performance. The solving procedure results in a formula similar to the Ackermann formula. Its derivation is based on the transformation of a linear single-input system into Frobenius canonical form by a special coordinate transformation, then solving the pole placement problem by state derivative feedback. Finally the solution is extended also for single-input time-varying control systems. The simulation results are included to show the effectiveness of the proposed approach.

  4. Study on the Variation of Groundwater Level under Time-varying Recharge

    Science.gov (United States)

    Wu, Ming-Chang; Hsieh, Ping-Cheng

    2017-04-01

    The slopes of the suburbs come to important areas by focusing on the work of soil and water conservation in recent years. The water table inside the aquifer is affected by rainfall, geology and topography, which will result in the change of groundwater discharge and water level. Currently, the way to obtain water table information is to set up the observation wells; however, owing to that the cost of equipment and the wells excavated is too expensive, we develop a mathematical model instead, which might help us to simulate the groundwater level variation. In this study, we will discuss the groundwater level change in a sloping unconfined aquifer with impermeable bottom under time-varying rainfall events. Referring to Child (1971), we employ the Boussinesq equation as the governing equation, and apply the General Integral Transforms Method (GITM) to analyzing the groundwater level after linearizing the Boussinesq equation. After comparing the solution with Verhoest & Troch (2000) and Bansal & Das (2010), we get satisfactory results. To sum up, we have presented an alternative approach to solve the linearized Boussinesq equation for the response of groundwater level in a sloping unconfined aquifer. The present analytical results combine the effect of bottom slope and the time-varying recharge pattern on the water table fluctuations. Owing to the limitation and difficulty of measuring the groundwater level directly, we develop such a mathematical model that we can predict or simulate the variation of groundwater level affected by any rainfall events in advance.

  5. Application of Nearly Linear Solvers to Electric Power System Computation

    Science.gov (United States)

    Grant, Lisa L.

    To meet the future needs of the electric power system, improvements need to be made in the areas of power system algorithms, simulation, and modeling, specifically to achieve a time frame that is useful to industry. If power system time-domain simulations could run in real-time, then system operators would have situational awareness to implement online control and avoid cascading failures, significantly improving power system reliability. Several power system applications rely on the solution of a very large linear system. As the demands on power systems continue to grow, there is a greater computational complexity involved in solving these large linear systems within reasonable time. This project expands on the current work in fast linear solvers, developed for solving symmetric and diagonally dominant linear systems, in order to produce power system specific methods that can be solved in nearly-linear run times. The work explores a new theoretical method that is based on ideas in graph theory and combinatorics. The technique builds a chain of progressively smaller approximate systems with preconditioners based on the system's low stretch spanning tree. The method is compared to traditional linear solvers and shown to reduce the time and iterations required for an accurate solution, especially as the system size increases. A simulation validation is performed, comparing the solution capabilities of the chain method to LU factorization, which is the standard linear solver for power flow. The chain method was successfully demonstrated to produce accurate solutions for power flow simulation on a number of IEEE test cases, and a discussion on how to further improve the method's speed and accuracy is included.

  6. Parametric output-only identification of time-varying structures using a kernel recursive extended least squares TARMA approach

    Science.gov (United States)

    Ma, Zhi-Sai; Liu, Li; Zhou, Si-Da; Yu, Lei; Naets, Frank; Heylen, Ward; Desmet, Wim

    2018-01-01

    The problem of parametric output-only identification of time-varying structures in a recursive manner is considered. A kernelized time-dependent autoregressive moving average (TARMA) model is proposed by expanding the time-varying model parameters onto the basis set of kernel functions in a reproducing kernel Hilbert space. An exponentially weighted kernel recursive extended least squares TARMA identification scheme is proposed, and a sliding-window technique is subsequently applied to fix the computational complexity for each consecutive update, allowing the method to operate online in time-varying environments. The proposed sliding-window exponentially weighted kernel recursive extended least squares TARMA method is employed for the identification of a laboratory time-varying structure consisting of a simply supported beam and a moving mass sliding on it. The proposed method is comparatively assessed against an existing recursive pseudo-linear regression TARMA method via Monte Carlo experiments and shown to be capable of accurately tracking the time-varying dynamics. Furthermore, the comparisons demonstrate the superior achievable accuracy, lower computational complexity and enhanced online identification capability of the proposed kernel recursive extended least squares TARMA approach.

  7. H infinity Integrated Fault Estimation and Fault Tolerant Control of Discrete-time Piecewise Linear Systems

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Bak, Thomas

    2012-01-01

    In this paper we consider the problem of fault estimation and accommodation for discrete time piecewise linear systems. A robust fault estimator is designed to estimate the fault such that the estimation error converges to zero and H∞ performance of the fault estimation is minimized. Then, the es...

  8. Stochastic Power Control for Time-Varying Long-Term Fading Wireless Networks

    Directory of Open Access Journals (Sweden)

    Charalambous Charalambos D

    2006-01-01

    Full Text Available A new time-varying (TV long-term fading (LTF channel model which captures both the space and time variations of wireless systems is developed. The proposed TV LTF model is based on a stochastic differential equation driven by Brownian motion. This model is more realistic than the static models usually encountered in the literature. It allows viewing the wireless channel as a dynamical system, thus enabling well-developed tools of adaptive and nonadaptive estimation and identification techniques to be applied to this class of problems. In contrast with the traditional models, the statistics of the proposed model are shown to be TV, but converge in steady state to their static counterparts. Moreover, optimal power control algorithms (PCAs based on the new model are proposed. A centralized PCA is shown to reduce to a simple linear programming problem if predictable power control strategies (PPCS are used. In addition, an iterative distributed stochastic PCA is used to solve for the optimization problem using stochastic approximations. The latter solely requires each mobile to know its received signal-to-interference ratio. Generalizations of the power control problem based on convex optimization techniques are provided if PPCS are not assumed. Numerical results show that there are potentially large gains to be achieved by using TV stochastic models, and the distributed stochastic PCA provides better power stability and consumption than the distributed deterministic PCA.

  9. Decentralized Observer with a Consensus Filter for Distributed Discrete-Time Linear Systems

    Science.gov (United States)

    Acikmese, Behcet; Mandic, Milan

    2011-01-01

    This paper presents a decentralized observer with a consensus filter for the state observation of a discrete-time linear distributed systems. In this setup, each agent in the distributed system has an observer with a model of the plant that utilizes the set of locally available measurements, which may not make the full plant state detectable. This lack of detectability is overcome by utilizing a consensus filter that blends the state estimate of each agent with its neighbors' estimates. We assume that the communication graph is connected for all times as well as the sensing graph. It is proven that the state estimates of the proposed observer asymptotically converge to the actual plant states under arbitrarily changing, but connected, communication and sensing topologies. As a byproduct of this research, we also obtained a result on the location of eigenvalues, the spectrum, of the Laplacian for a family of graphs with self-loops.

  10. Neutron fluctuations in a medium randomly varying in time

    International Nuclear Information System (INIS)

    Lenard, Pal; Imre, Pazsit

    2005-01-01

    The master equation approach, which has traditionally been used for the calculation of neutron fluctuations in zero power systems with constant parameters, is extended to a case when the parameters of the system change randomly in time. We consider a forward type master equation for the probability distribution of the number of particles in a multiplying system whose properties jump randomly between two discrete states, both with and without an external source. The first two factorial moments are calculated, including the covariance. This model can be considered the unification of stochastic methods that were used either in a constant multiplying medium via the master equation technique, or in a fluctuating medium via the Langevin technique. In contrast to these methods, the one presented here can calculate the inherent noise in time-varying systems. The results obtained show a much richer characteristics of the zero power noise than that in constant systems. Even the concept of criticality has to be given a probabilistic interpretation. The asymptotic behaviour of the variance will be also qualitatively different from that in constant systems. The covariance of the neutron number in a subcritical system with a source, and the corresponding power spectrum, shows both the inherent and parametrically induced noise components. The results are relevant in medium power subcritical systems where the zero power noise is still significant, but they also have a bearing on all types of branching processes, such as evolution of biological systems, spreading of epidemics etc., which are set in a time-varying environment. (authors)

  11. Neutron fluctuations in a medium randomly varying in time

    Energy Technology Data Exchange (ETDEWEB)

    Lenard, Pal [KFKI Atomic Energy Research Institute, Budapest (Hungary); Imre, Pazsit [Chalmers Univ. of Technology, Dept. of Nuclear Engineering, SE, Goteborg (Sweden)

    2005-07-01

    The master equation approach, which has traditionally been used for the calculation of neutron fluctuations in zero power systems with constant parameters, is extended to a case when the parameters of the system change randomly in time. We consider a forward type master equation for the probability distribution of the number of particles in a multiplying system whose properties jump randomly between two discrete states, both with and without an external source. The first two factorial moments are calculated, including the covariance. This model can be considered the unification of stochastic methods that were used either in a constant multiplying medium via the master equation technique, or in a fluctuating medium via the Langevin technique. In contrast to these methods, the one presented here can calculate the inherent noise in time-varying systems. The results obtained show a much richer characteristics of the zero power noise than that in constant systems. Even the concept of criticality has to be given a probabilistic interpretation. The asymptotic behaviour of the variance will be also qualitatively different from that in constant systems. The covariance of the neutron number in a subcritical system with a source, and the corresponding power spectrum, shows both the inherent and parametrically induced noise components. The results are relevant in medium power subcritical systems where the zero power noise is still significant, but they also have a bearing on all types of branching processes, such as evolution of biological systems, spreading of epidemics etc., which are set in a time-varying environment. (authors)

  12. A linear, time-varying simulation of the respiratory tract system

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, O.

    1992-11-01

    These results show that regional deposition efficiencies of inhaled particles are highly dependent on the level of physical activity in all the spectrum of thermodynamic and aerodynamic aerosol particle sizes; also it was shown that for particles in the aerodynamic size range, the values of regional deposition efficiencies at the inner regions of the lung are highly dependent on age. In addition, the shape of regional deposition efficiency curves as a function of particle size have a similar behavior for all ages; thus, any variation of the airway geometry and respiratory physiological parameters such as tidal volumes and breathing frequencies due to age difference do not cause a change in the fundamental mechanisms of deposition. Thus, for all the cases of physical activity and age dependency, the deposition of ultrafine aerosol particles is highly enhanced by diffusive processes in all regions of the respiratory tract, and for very large aerosol size particles this behavior is repeated again due to impaction and sedimentation mechanisms. Although the results presented at this work, are the result of computer simulations based on different sources of experimental data, the structure of the computer simulation code BIODEP is flexible enough to the acquisition of any kind of new experimental information in terms of biokinetic analysis and regional deposition parameters. In addition, since the design of BIODEP was intended for easy access to the users, then with exception of the subroutine DIVPAG, at this moment, the modular design of BIODEP using FORTRAN 77 allows the implementation of all the subroutines of BIODEP to be used in a interactive mode with any microcomputer.

  13. Explicit/multi-parametric model predictive control (MPC) of linear discrete-time systems by dynamic and multi-parametric programming

    KAUST Repository

    Kouramas, K.I.; Faí sca, N.P.; Panos, C.; Pistikopoulos, E.N.

    2011-01-01

    This work presents a new algorithm for solving the explicit/multi- parametric model predictive control (or mp-MPC) problem for linear, time-invariant discrete-time systems, based on dynamic programming and multi-parametric programming techniques

  14. Robust stability analysis of switched Hopfield neural networks with time-varying delay under uncertainty

    International Nuclear Information System (INIS)

    Huang He; Qu Yuzhong; Li Hanxiong

    2005-01-01

    With the development of intelligent control, switched systems have been widely studied. Here we try to introduce some ideas of the switched systems into the field of neural networks. In this Letter, a class of switched Hopfield neural networks with time-varying delay is investigated. The parametric uncertainty is considered and assumed to be norm bounded. Firstly, the mathematical model of the switched Hopfield neural networks is established in which a set of Hopfield neural networks are used as the individual subsystems and an arbitrary switching rule is assumed; Secondly, robust stability analysis for such switched Hopfield neural networks is addressed based on the Lyapunov-Krasovskii approach. Some criteria are given to guarantee the switched Hopfield neural networks to be globally exponentially stable for all admissible parametric uncertainties. These conditions are expressed in terms of some strict linear matrix inequalities (LMIs). Finally, a numerical example is provided to illustrate our results

  15. Passivity of memristive BAM neural networks with leakage and additive time-varying delays

    Science.gov (United States)

    Wang, Weiping; Wang, Meiqi; Luo, Xiong; Li, Lixiang; Zhao, Wenbing; Liu, Linlin; Ping, Yuan

    2018-02-01

    This paper investigates the passivity of memristive bidirectional associate memory neural networks (MBAMNNs) with leakage and additive time-varying delays. Based on some useful inequalities and appropriate Lyapunov-Krasovskii functionals (LKFs), several delay-dependent conditions for passivity performance are obtained in linear matrix inequalities (LMIs). Moreover, the leakage delays as well as additive delays are considered separately. Finally, numerical simulations are provided to demonstrate the feasibility of the theoretical results.

  16. A new look at the robust control of discrete-time Markov jump linear systems

    Science.gov (United States)

    Todorov, M. G.; Fragoso, M. D.

    2016-03-01

    In this paper, we make a foray in the role played by a set of four operators on the study of robust H2 and mixed H2/H∞ control problems for discrete-time Markov jump linear systems. These operators appear in the study of mean square stability for this class of systems. By means of new linear matrix inequality (LMI) characterisations of controllers, which include slack variables that, to some extent, separate the robustness and performance objectives, we introduce four alternative approaches to the design of controllers which are robustly stabilising and at the same time provide a guaranteed level of H2 performance. Since each operator provides a different degree of conservatism, the results are unified in the form of an iterative LMI technique for designing robust H2 controllers, whose convergence is attained in a finite number of steps. The method yields a new way of computing mixed H2/H∞ controllers, whose conservatism decreases with iteration. Two numerical examples illustrate the applicability of the proposed results for the control of a small unmanned aerial vehicle, and for an underactuated robotic arm.

  17. State estimation for neural neutral-type networks with mixed time-varying delays and Markovian jumping parameters

    International Nuclear Information System (INIS)

    Lakshmanan, S.; Park, Ju H.; Jung, H. Y.; Balasubramaniam, P.

    2012-01-01

    This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed time-varying delays and Markovian jumping parameters. The addressed neural networks have a finite number of modes, and the modes may jump from one to another according to a Markov process. By construction of a suitable Lyapunov—Krasovskii functional, a delay-dependent condition is developed to estimate the neuron states through available output measurements such that the estimation error system is globally asymptotically stable in a mean square. The criterion is formulated in terms of a set of linear matrix inequalities (LMIs), which can be checked efficiently by use of some standard numerical packages

  18. Dose linearity and uniformity of a linear accelerator designed for implementation of multileaf collimation system-based intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Saw, Cheng B.; Li Sicong; Ayyangar, Komanduri M.; Yoe-Sein, Maung; Pillai, Susha; Enke, Charles A.; Celi, Juan C.

    2003-01-01

    The dose linearity and uniformity of a linear accelerator designed for multileaf collimation system- (MLC) based IMRT was studied as a part of commissioning and also in response to recently published data. The linear accelerator is equipped with a PRIMEVIEW, a graphical interface and a SIMTEC IM-MAXX, which is an enhanced autofield sequencer. The SIMTEC IM-MAXX sequencer permits the radiation beam to be 'ON' continuously while delivering intensity modulated radiation therapy subfields at a defined gantry angle. The dose delivery is inhibited when the electron beam in the linear accelerator is forced out of phase with the microwave power while the MLC configures the field shape of a subfield. This beam switching mechanism reduces the overhead time and hence shortens the patient treatment time. The dose linearity, reproducibility, and uniformity were assessed for this type of dose delivery mechanism. The subfields with monitor units ranged from 1 MU to 100 MU were delivered using 6 MV and 23 MV photon beams. The doses were computed and converted to dose per monitor unit. The dose linearity was found to vary within 2% for both 6 MV and 23 MV photon beam using high dose rate setting (300 MU/min) except below 2 MU. The dose uniformity was assessed by delivering 4 subfields to a Kodak X-OMAT TL film using identical low monitor units. The optical density was converted to dose and found to show small variation within 3%. Our results indicate that this linear accelerator with SIMTEC IM-MAXX sequencer has better dose linearity, reproducibility, and uniformity than had been reported

  19. Robust Synchronization of Fractional-Order Chaotic Systems at a Pre-Specified Time Using Sliding Mode Controller with Time-Varying Switching Surfaces

    International Nuclear Information System (INIS)

    Khanzadeh, Alireza; Pourgholi, Mahdi

    2016-01-01

    A main problem associated with the synchronization of two chaotic systems is that the time in which complete synchronization will occur is not specified. Synchronization time is either infinitely large or is finite but only its upper bound is known and this bound depends on the systems' initial conditions. In this paper we propose a method for synchronizing of two chaotic systems precisely at a time which we want. To this end, time-varying switching surfaces sliding mode control is used and the control law based on Lyapunov stability theorem is derived which is able to synchronize two fractional-order chaotic systems precisely at a pre specified time without concerning about their initial conditions. Moreover, by eliminating the reaching phase in the proposed synchronization scheme, robustness against existence of uncertainties and exogenous disturbances is obtained. Because of the existence of fractional integral of the sign function instead of the sign function in the control equation, the necessity for infinitely fast switching be obviated in this method. To show the effectiveness of the proposed method the illustrative examples under different situations are provided and the simulation results are reported.

  20. Scattering of a TEM wave from a time varying surface

    Science.gov (United States)

    Elcrat, Alan R.; Harder, T. Mark; Stonebraker, John T.

    1990-03-01

    A solution is given for reflection of a plane wave with TEM polarization from a planar surface with time varying properties. These properties are given in terms of the currents on the surface. The solution is obtained by numerically solving a system of differential-delay equations in the time domain.

  1. Soil erosion under multiple time-varying rainfall events

    Science.gov (United States)

    Heng, B. C. Peter; Barry, D. Andrew; Jomaa, Seifeddine; Sander, Graham C.

    2010-05-01

    Soil erosion is a function of many factors and process interactions. An erosion event produces changes in surface soil properties such as texture and hydraulic conductivity. These changes in turn alter the erosion response to subsequent events. Laboratory-scale soil erosion studies have typically focused on single independent rainfall events with constant rainfall intensities. This study investigates the effect of multiple time-varying rainfall events on soil erosion using the EPFL erosion flume. The rainfall simulator comprises ten Veejet nozzles mounted on oscillating bars 3 m above a 6 m × 2 m flume. Spray from the nozzles is applied onto the soil surface in sweeps; rainfall intensity is thus controlled by varying the sweeping frequency. Freshly-prepared soil with a uniform slope was subjected to five rainfall events at daily intervals. In each 3-h event, rainfall intensity was ramped up linearly to a maximum of 60 mm/h and then stepped down to zero. Runoff samples were collected and analysed for particle size distribution (PSD) as well as total sediment concentration. We investigate whether there is a hysteretic relationship between sediment concentration and discharge within each event and how this relationship changes from event to event. Trends in the PSD of the eroded sediment are discussed and correlated with changes in sediment concentration. Close-up imagery of the soil surface following each event highlight changes in surface soil structure with time. This study enhances our understanding of erosion processes in the field, with corresponding implications for soil erosion modelling.

  2. H2 Control for the Continuous-Time Markovian Jump Linear Uncertain Systems with Partly Known Transition Rates and Input Quantization

    Directory of Open Access Journals (Sweden)

    Xin-Gang Zhao

    2013-01-01

    Full Text Available For a class of continuous-time Markovian jump linear uncertain systems with partly known transition rates and input quantization, the H2 state-feedback control design is considered. The elements in the transition rates matrix include completely known, boundary known, and completely unknown ones. First, an H2 cost index for Markovian jump linear uncertain systems is introduced; then by introducing a new matrix inequality condition, sufficient conditions are formulated in terms of linear matrix inequalities (LMIs for the H2 control of the Markovian jump linear uncertain systems. Less conservativeness is achieved than the result obtained with the existing technique. Finally, a numerical example is given to verify the validity of the theoretical results.

  3. Tracking time-varying cerebral autoregulation in response to changes in respiratory PaCO2

    International Nuclear Information System (INIS)

    Liu, Jia; Simpson, M David; Allen, Robert; Yan, Jingyu

    2010-01-01

    Cerebral autoregulation has been studied by linear filter systems, with arterial blood pressure (ABP) as the input and cerebral blood flow velocity (CBFV—from transcranial Doppler Ultrasound) as the output. The current work extends this by using adaptive filters to investigate the dynamics of time-varying cerebral autoregulation during step-wise changes in arterial PaCO 2 . Cerebral autoregulation was transiently impaired in 11 normal adult volunteers, by switching inspiratory air to a CO 2 /air mixture (5% CO 2 , 30% O 2 and 65% N 2 ) for approximately 2 min and then back to the ambient air, causing step-wise changes in end-tidal CO 2 (EtCO 2 ). Simultaneously, ABP and CBFV were recorded continuously. Simulated data corresponding to the same protocol were also generated using an established physiological model, in order to refine the signal analysis methods. Autoregulation was quantified by the time-varying phase lead, estimated from the adaptive filter model. The adaptive filter was able to follow rapid changes in autoregulation, as was confirmed in the simulated data. In the recorded signals, there was a slow decrease in autoregulatory function following the step-wise increase in PaCO 2 (but this did not reach a steady state within approximately 2 min of recording), with a more rapid change in autoregulation on return to normocapnia. Adaptive filter modelling was thus able to demonstrate time-varying autoregulation. It was further noted that impairment and recovery of autoregulation during transient increases in EtCO 2 occur in an asymmetric manner, which should be taken into account when designing experimental protocols for the study of autoregulation

  4. Theory and computation of disturbance invariant sets for discrete-time linear systems

    Directory of Open Access Journals (Sweden)

    Kolmanovsky Ilya

    1998-01-01

    Full Text Available This paper considers the characterization and computation of invariant sets for discrete-time, time-invariant, linear systems with disturbance inputs whose values are confined to a specified compact set but are otherwise unknown. The emphasis is on determining maximal disturbance-invariant sets X that belong to a specified subset Γ of the state space. Such d-invariant sets have important applications in control problems where there are pointwise-in-time state constraints of the form χ ( t ∈ Γ . One purpose of the paper is to unite and extend in a rigorous way disparate results from the prior literature. In addition there are entirely new results. Specific contributions include: exploitation of the Pontryagin set difference to clarify conceptual matters and simplify mathematical developments, special properties of maximal invariant sets and conditions for their finite determination, algorithms for generating concrete representations of maximal invariant sets, practical computational questions, extension of the main results to general Lyapunov stable systems, applications of the computational techniques to the bounding of state and output response. Results on Lyapunov stable systems are applied to the implementation of a logic-based, nonlinear multimode regulator. For plants with disturbance inputs and state-control constraints it enlarges the constraint-admissible domain of attraction. Numerical examples illustrate the various theoretical and computational results.

  5. PID Controller Design of Nonlinear System using a New Modified Particle Swarm Optimization with Time-Varying Constriction Coefficient

    Directory of Open Access Journals (Sweden)

    Alrijadjis .

    2014-12-01

    Full Text Available The proportional integral derivative (PID controllers have been widely used in most process control systems for a long time. However, it is a very important problem how to choose PID parameters, because these parameters give a great influence on the control performance. Especially, it is difficult to tune these parameters for nonlinear systems. In this paper, a new modified particle swarm optimization (PSO is presented to search for optimal PID parameters for such system. The proposed algorithm is to modify constriction coefficient which is nonlinearly decreased time-varying for improving the final accuracy and the convergence speed of PSO. To validate the control performance of the proposed method, a typical nonlinear system control, a continuous stirred tank reactor (CSTR process, is illustrated. The results testify that a new modified PSO algorithm can perform well in the nonlinear PID control system design in term of lesser overshoot, rise-time, settling-time, IAE and ISE. Keywords: PID controller, Particle Swarm Optimization (PSO,constriction factor, nonlinear system.

  6. Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity

    Science.gov (United States)

    Pandey, Vikash; Holm, Sverre

    2016-09-01

    Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional derivative element often called a springpot. On the other hand, the creep compliance of the time-varying Maxwell model is identified as Lomnitz's logarithmic creep law, making this possibly its first direct derivation. In this way both fractional derivatives and Lomnitz's creep law are linked to time-varying viscosity. A mechanism which yields fractional viscoelasticity and logarithmic creep behavior has therefore been found. Further, as a result of this linking, the curve-fitting parameters involved in the fractional viscoelastic modeling, and the Lomnitz law gain physical interpretation.

  7. A Linear Time Complexity of Breadth-First Search Using P System with Membrane Division

    Directory of Open Access Journals (Sweden)

    Einallah Salehi

    2013-01-01

    Full Text Available One of the known methods for solving the problems with exponential time complexity such as NP-complete problems is using the brute force algorithms. Recently, a new parallel computational framework called Membrane Computing is introduced which can be applied in brute force algorithms. The usual way to find a solution for the problems with exponential time complexity with Membrane Computing techniques is by P System with active membrane using division rule. It makes an exponential workspace and solves the problems with exponential complexity in a polynomial (even linear time. On the other hand, searching is currently one of the most used methods for finding solution for problems in real life, that the blind search algorithms are accurate, but their time complexity is exponential such as breadth-first search (BFS algorithm. In this paper, we proposed a new approach for implementation of BFS by using P system with division rule technique for first time. The theorem shows time complexity of BSF in this framework on randomly binary trees reduced from O(2d to O(d.

  8. Time-varying surrogate data to assess nonlinearity in nonstationary time series: application to heart rate variability.

    Science.gov (United States)

    Faes, Luca; Zhao, He; Chon, Ki H; Nollo, Giandomenico

    2009-03-01

    We propose a method to extend to time-varying (TV) systems the procedure for generating typical surrogate time series, in order to test the presence of nonlinear dynamics in potentially nonstationary signals. The method is based on fitting a TV autoregressive (AR) model to the original series and then regressing the model coefficients with random replacements of the model residuals to generate TV AR surrogate series. The proposed surrogate series were used in combination with a TV sample entropy (SE) discriminating statistic to assess nonlinearity in both simulated and experimental time series, in comparison with traditional time-invariant (TIV) surrogates combined with the TIV SE discriminating statistic. Analysis of simulated time series showed that using TIV surrogates, linear nonstationary time series may be erroneously regarded as nonlinear and weak TV nonlinearities may remain unrevealed, while the use of TV AR surrogates markedly increases the probability of a correct interpretation. Application to short (500 beats) heart rate variability (HRV) time series recorded at rest (R), after head-up tilt (T), and during paced breathing (PB) showed: 1) modifications of the SE statistic that were well interpretable with the known cardiovascular physiology; 2) significant contribution of nonlinear dynamics to HRV in all conditions, with significant increase during PB at 0.2 Hz respiration rate; and 3) a disagreement between TV AR surrogates and TIV surrogates in about a quarter of the series, suggesting that nonstationarity may affect HRV recordings and bias the outcome of the traditional surrogate-based nonlinearity test.

  9. A Novel Finite-Sum Inequality-Based Method for Robust H∞ Control of Uncertain Discrete-Time Takagi-Sugeno Fuzzy Systems With Interval-Like Time-Varying Delays.

    Science.gov (United States)

    Zhang, Xian-Ming; Han, Qing-Long; Ge, Xiaohua

    2017-09-22

    This paper is concerned with the problem of robust H∞ control of an uncertain discrete-time Takagi-Sugeno fuzzy system with an interval-like time-varying delay. A novel finite-sum inequality-based method is proposed to provide a tighter estimation on the forward difference of certain Lyapunov functional, leading to a less conservative result. First, an auxiliary vector function is used to establish two finite-sum inequalities, which can produce tighter bounds for the finite-sum terms appearing in the forward difference of the Lyapunov functional. Second, a matrix-based quadratic convex approach is employed to equivalently convert the original matrix inequality including a quadratic polynomial on the time-varying delay into two boundary matrix inequalities, which delivers a less conservative bounded real lemma (BRL) for the resultant closed-loop system. Third, based on the BRL, a novel sufficient condition on the existence of suitable robust H∞ fuzzy controllers is derived. Finally, two numerical examples and a computer-simulated truck-trailer system are provided to show the effectiveness of the obtained results.

  10. Timed arrays wideband and time varying antenna arrays

    CERN Document Server

    Haupt, Randy L

    2015-01-01

    Introduces timed arrays and design approaches to meet the new high performance standards The author concentrates on any aspect of an antenna array that must be viewed from a time perspective. The first chapters briefly introduce antenna arrays and explain the difference between phased and timed arrays. Since timed arrays are designed for realistic time-varying signals and scenarios, the book also reviews wideband signals, baseband and passband RF signals, polarization and signal bandwidth. Other topics covered include time domain, mutual coupling, wideband elements, and dispersion. The auth

  11. Time-Frequency Analysis of Non-Stationary Biological Signals with Sparse Linear Regression Based Fourier Linear Combiner

    Directory of Open Access Journals (Sweden)

    Yubo Wang

    2017-06-01

    Full Text Available It is often difficult to analyze biological signals because of their nonlinear and non-stationary characteristics. This necessitates the usage of time-frequency decomposition methods for analyzing the subtle changes in these signals that are often connected to an underlying phenomena. This paper presents a new approach to analyze the time-varying characteristics of such signals by employing a simple truncated Fourier series model, namely the band-limited multiple Fourier linear combiner (BMFLC. In contrast to the earlier designs, we first identified the sparsity imposed on the signal model in order to reformulate the model to a sparse linear regression model. The coefficients of the proposed model are then estimated by a convex optimization algorithm. The performance of the proposed method was analyzed with benchmark test signals. An energy ratio metric is employed to quantify the spectral performance and results show that the proposed method Sparse-BMFLC has high mean energy (0.9976 ratio and outperforms existing methods such as short-time Fourier transfrom (STFT, continuous Wavelet transform (CWT and BMFLC Kalman Smoother. Furthermore, the proposed method provides an overall 6.22% in reconstruction error.

  12. Time-Frequency Analysis of Non-Stationary Biological Signals with Sparse Linear Regression Based Fourier Linear Combiner.

    Science.gov (United States)

    Wang, Yubo; Veluvolu, Kalyana C

    2017-06-14

    It is often difficult to analyze biological signals because of their nonlinear and non-stationary characteristics. This necessitates the usage of time-frequency decomposition methods for analyzing the subtle changes in these signals that are often connected to an underlying phenomena. This paper presents a new approach to analyze the time-varying characteristics of such signals by employing a simple truncated Fourier series model, namely the band-limited multiple Fourier linear combiner (BMFLC). In contrast to the earlier designs, we first identified the sparsity imposed on the signal model in order to reformulate the model to a sparse linear regression model. The coefficients of the proposed model are then estimated by a convex optimization algorithm. The performance of the proposed method was analyzed with benchmark test signals. An energy ratio metric is employed to quantify the spectral performance and results show that the proposed method Sparse-BMFLC has high mean energy (0.9976) ratio and outperforms existing methods such as short-time Fourier transfrom (STFT), continuous Wavelet transform (CWT) and BMFLC Kalman Smoother. Furthermore, the proposed method provides an overall 6.22% in reconstruction error.

  13. Modern linear control design a time-domain approach

    CERN Document Server

    Caravani, Paolo

    2013-01-01

    This book offers a compact introduction to modern linear control design.  The simplified overview presented of linear time-domain methodology paves the road for the study of more advanced non-linear techniques. Only rudimentary knowledge of linear systems theory is assumed - no use of Laplace transforms or frequency design tools is required. Emphasis is placed on assumptions and logical implications, rather than abstract completeness; on interpretation and physical meaning, rather than theoretical formalism; on results and solutions, rather than derivation or solvability.  The topics covered include transient performance and stabilization via state or output feedback; disturbance attenuation and robust control; regional eigenvalue assignment and constraints on input or output variables; asymptotic regulation and disturbance rejection. Lyapunov theory and Linear Matrix Inequalities (LMI) are discussed as key design methods. All methods are demonstrated with MATLAB to promote practical use and comprehension. ...

  14. Asymptotic Stabilization of Continuous-Time Linear Systems with Input and State Quantizations

    Directory of Open Access Journals (Sweden)

    Sung Wook Yun

    2014-01-01

    Full Text Available This paper discusses the asymptotic stabilization problem of linear systems with input and state quantizations. In order to achieve asymptotic stabilization of such systems, we propose a state-feedback controller comprising two control parts: the main part is used to determine the fundamental characteristics of the system associated with the cost, and the additional part is employed to eliminate the effects of input and state quanizations. In particular, in order to implement the additional part, we introduce a quantizer with a region-decision making process (RDMP for a certain linear switching surface. The simulation results show the effectiveness of the proposed controller.

  15. Low-sensitivity H ∞ filter design for linear delta operator systems with sampling time jitter

    Science.gov (United States)

    Guo, Xiang-Gui; Yang, Guang-Hong

    2012-04-01

    This article is concerned with the problem of designing H ∞ filters for a class of linear discrete-time systems with low-sensitivity to sampling time jitter via delta operator approach. Delta-domain model is used to avoid the inherent numerical ill-condition resulting from the use of the standard shift-domain model at high sampling rates. Based on projection lemma in combination with the descriptor system approach often used to solve problems related to delay, a novel bounded real lemma with three slack variables for delta operator systems is presented. A sensitivity approach based on this novel lemma is proposed to mitigate the effects of sampling time jitter on system performance. Then, the problem of designing a low-sensitivity filter can be reduced to a convex optimisation problem. An important consideration in the design of correlation filters is the optimal trade-off between the standard H ∞ criterion and the sensitivity of the transfer function with respect to sampling time jitter. Finally, a numerical example demonstrating the validity of the proposed design method is given.

  16. Dense time discretization technique for verification of real time systems

    International Nuclear Information System (INIS)

    Makackas, Dalius; Miseviciene, Regina

    2016-01-01

    Verifying the real-time system there are two different models to control the time: discrete and dense time based models. This paper argues a novel verification technique, which calculates discrete time intervals from dense time in order to create all the system states that can be reached from the initial system state. The technique is designed for real-time systems specified by a piece-linear aggregate approach. Key words: real-time system, dense time, verification, model checking, piece-linear aggregate

  17. Linear parameter-varying modeling and control of the steam temperature in a Canadian SCWR

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Peiwei, E-mail: sunpeiwei@mail.xjtu.edu.cn; Zhang, Jianmin; Su, Guanghui

    2017-03-15

    Highlights: • Nonlinearity of Canadian SCWR is analyzed based on step responses and Nyquist plots. • LPV model is derived through Jacobian linearization and curve fitting. • An output feedback H{sub ∞} controller is synthesized for the steam temperature. • The control performance is evaluated by step disturbances and wide range operation. • The controller can stabilize the system and reject the reactor power disturbance. - Abstract: The Canadian direct-cycle Supercritical Water-cooled Reactor (SCWR) is a pressure-tube type SCWR under development in Canada. The dynamics of the steam temperature have a high degree of nonlinearity and are highly sensitive to reactor power disturbances. Traditional gain scheduling control cannot theoretically guarantee stability for all operating regions. The control performance can also be deteriorated when the controllers are switched. In this paper, a linear parameter-varying (LPV) strategy is proposed to solve such problems. Jacobian linearization and curve fitting are applied to derive the LPV model, which is verified using a nonlinear dynamic model and determined to be sufficiently accurate for control studies. An output feedback H{sub ∞} controller is synthesized to stabilize the steam temperature system and reject reactor power disturbances. The LPV steam temperature controller is implemented using a nonlinear dynamic model, and step changes in the setpoints and typical load patterns are carried out in the testing process. It is demonstrated through numerical simulation that the LPV controller not only stabilizes the steam temperature under different disturbances but also efficiently rejects reactor power disturbances and suppresses the steam temperature variation at different power levels. The LPV approach is effective in solving control problems of the steam temperature in the Canadian SCWR.

  18. State space and input-output linear systems

    CERN Document Server

    Delchamps, David F

    1988-01-01

    It is difficult for me to forget the mild sense of betrayal I felt some ten years ago when I discovered, with considerable dismay, that my two favorite books on linear system theory - Desoer's Notes for a Second Course on Linear Systems and Brockett's Finite Dimensional Linear Systems - were both out of print. Since that time, of course, linear system theory has undergone a transformation of the sort which always attends the maturation of a theory whose range of applicability is expanding in a fashion governed by technological developments and by the rate at which such advances become a part of engineering practice. The growth of the field has inspired the publication of some excellent books; the encyclopedic treatises by Kailath and Chen, in particular, come immediately to mind. Nonetheless, I was inspired to write this book primarily by my practical needs as a teacher and researcher in the field. For the past five years, I have taught a one semester first year gradu­ ate level linear system theory course i...

  19. Robust Adaptive Dynamic Programming of Two-Player Zero-Sum Games for Continuous-Time Linear Systems.

    Science.gov (United States)

    Fu, Yue; Fu, Jun; Chai, Tianyou

    2015-12-01

    In this brief, an online robust adaptive dynamic programming algorithm is proposed for two-player zero-sum games of continuous-time unknown linear systems with matched uncertainties, which are functions of system outputs and states of a completely unknown exosystem. The online algorithm is developed using the policy iteration (PI) scheme with only one iteration loop. A new analytical method is proposed for convergence proof of the PI scheme. The sufficient conditions are given to guarantee globally asymptotic stability and suboptimal property of the closed-loop system. Simulation studies are conducted to illustrate the effectiveness of the proposed method.

  20. On global exponential stability of high-order neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Zhang Baoyong; Xu Shengyuan; Li Yongmin; Chu Yuming

    2007-01-01

    This Letter investigates the problem of stability analysis for a class of high-order neural networks with time-varying delays. The delays are bounded but not necessarily differentiable. Based on the Lyapunov stability theory together with the linear matrix inequality (LMI) approach and the use of Halanay inequality, sufficient conditions guaranteeing the global exponential stability of the equilibrium point of the considered neural networks are presented. Two numerical examples are provided to demonstrate the effectiveness of the proposed stability criteria

  1. On global exponential stability of high-order neural networks with time-varying delays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Baoyong [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China)]. E-mail: baoyongzhang@yahoo.com.cn; Xu Shengyuan [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China)]. E-mail: syxu02@yahoo.com.cn; Li Yongmin [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China) and Department of Mathematics, Huzhou Teacher' s College, Huzhou 313000, Zhejiang (China)]. E-mail: ymlwww@163.com; Chu Yuming [Department of Mathematics, Huzhou Teacher' s College, Huzhou 313000, Zhejiang (China)

    2007-06-18

    This Letter investigates the problem of stability analysis for a class of high-order neural networks with time-varying delays. The delays are bounded but not necessarily differentiable. Based on the Lyapunov stability theory together with the linear matrix inequality (LMI) approach and the use of Halanay inequality, sufficient conditions guaranteeing the global exponential stability of the equilibrium point of the considered neural networks are presented. Two numerical examples are provided to demonstrate the effectiveness of the proposed stability criteria.

  2. The new Toyota variable valve timing and lift system

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K.; Fuwa, N.; Yoshihara, Y. [Toyota Motor Corporation (Japan); Hori, K. [Toyota Boshoku Corporation (Japan)

    2007-07-01

    A continuously variable valve timing (duration and phase) and lift system was developed. This system was applied to the valvetrain of a new 2.0L L4 engine (3ZRFAE) for the Japanese market. The system has rocker arms, which allow continuously variable timing and lift, situated between a conventional roller-rocker arm and the camshaft, an electromotor actuator to drive it and a phase mechanism for intake and exhaust camshafts (Dual VVT-i). The rocking center of the rocker arm is stationary, and the axial linear motion of a helical spline changes the initial phase of the rocker arm which varies the timing and lift. The linear motion mechanism uses an original planetary roller screw and is driven by a brushless motor with a built-in electric control unit. Since the rocking center and the linear motion helical spline center coincide, a compact cylinder head design was possible, and the cylinder head is a common design with a conventional engine. Since the ECU controls intake valve duration and timing, a fuel economy gain of maximum 10% (depending on driving condition) is obtained by reducing light to medium load pumping losses. Also intake efficiency was maximized throughout the speed range, resulting in a power gain of 10%. Further, HC emissions were reduced due to increased air speed at low valve lift. (orig.)

  3. On output regulation for linear systems

    NARCIS (Netherlands)

    Saberi, Ali; Stoorvogel, Antonie Arij; Sannuti, Peddapullaiah

    For both continuous- and discrete-time systems, we revisit the output regulation problem for linear systems. We generalize the problem formulation in order • to expand the class of reference or disturbance signals, • to utilize the derivative or feedforward information of reference signals whenever

  4. Linearization of the Lorenz system

    International Nuclear Information System (INIS)

    Li, Chunbiao; Sprott, Julien Clinton; Thio, Wesley

    2015-01-01

    A partial and complete piecewise linearized version of the Lorenz system is proposed. The linearized versions have an independent total amplitude control parameter. Additional further linearization leads naturally to a piecewise linear version of the diffusionless Lorenz system. A chaotic circuit with a single amplitude controller is then implemented using a new switch element, producing a chaotic oscillation that agrees with the numerical calculation for the piecewise linear diffusionless Lorenz system. - Highlights: • A partial and complete piecewise linearized version of the Lorenz system are addressed. • The linearized versions have an independent total amplitude control parameter. • A piecewise linear version of the diffusionless Lorenz system is derived by further linearization. • A corresponding chaotic circuit without any multiplier is implemented for the chaotic oscillation

  5. Linearization of the Lorenz system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunbiao, E-mail: goontry@126.com [School of Electronic & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Engineering Technology Research and Development Center of Jiangsu Circulation Modernization Sensor Network, Jiangsu Institute of Commerce, Nanjing 211168 (China); Sprott, Julien Clinton [Department of Physics, University of Wisconsin–Madison, Madison, WI 53706 (United States); Thio, Wesley [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210 (United States)

    2015-05-08

    A partial and complete piecewise linearized version of the Lorenz system is proposed. The linearized versions have an independent total amplitude control parameter. Additional further linearization leads naturally to a piecewise linear version of the diffusionless Lorenz system. A chaotic circuit with a single amplitude controller is then implemented using a new switch element, producing a chaotic oscillation that agrees with the numerical calculation for the piecewise linear diffusionless Lorenz system. - Highlights: • A partial and complete piecewise linearized version of the Lorenz system are addressed. • The linearized versions have an independent total amplitude control parameter. • A piecewise linear version of the diffusionless Lorenz system is derived by further linearization. • A corresponding chaotic circuit without any multiplier is implemented for the chaotic oscillation.

  6. Mediation analysis with time varying exposures and mediators.

    Science.gov (United States)

    VanderWeele, Tyler J; Tchetgen Tchetgen, Eric J

    2017-06-01

    In this paper we consider causal mediation analysis when exposures and mediators vary over time. We give non-parametric identification results, discuss parametric implementation, and also provide a weighting approach to direct and indirect effects based on combining the results of two marginal structural models. We also discuss how our results give rise to a causal interpretation of the effect estimates produced from longitudinal structural equation models. When there are time-varying confounders affected by prior exposure and mediator, natural direct and indirect effects are not identified. However, we define a randomized interventional analogue of natural direct and indirect effects that are identified in this setting. The formula that identifies these effects we refer to as the "mediational g-formula." When there is no mediation, the mediational g-formula reduces to Robins' regular g-formula for longitudinal data. When there are no time-varying confounders affected by prior exposure and mediator values, then the mediational g-formula reduces to a longitudinal version of Pearl's mediation formula. However, the mediational g-formula itself can accommodate both mediation and time-varying confounders and constitutes a general approach to mediation analysis with time-varying exposures and mediators.

  7. Parametric estimation of time varying baselines in airborne interferometric SAR

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    1996-01-01

    A method for estimation of time varying spatial baselines in airborne interferometric synthetic aperture radar (SAR) is described. The range and azimuth distortions between two images acquired with a non-linear baseline are derived. A parametric model of the baseline is then, in a least square...... sense, estimated from image shifts obtained by cross correlation of numerous small patches throughout the image. The method has been applied to airborne EMISAR imagery from the 1995 campaign over the Storstrommen Glacier in North East Greenland conducted by the Danish Center for Remote Sensing. This has...... reduced the baseline uncertainties from several meters to the centimeter level in a 36 km scene. Though developed for airborne SAR the method can easily be adopted to satellite data...

  8. Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity

    OpenAIRE

    Pandey, Vikash; Holm, Sverre

    2016-01-01

    Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional deriva...

  9. Invariant operator theory for the single-photon energy in time-varying media

    International Nuclear Information System (INIS)

    Jeong-Ryeol, Choi

    2010-01-01

    After the birth of quantum mechanics, the notion in physics that the frequency of light is the only factor that determines the energy of a single photon has played a fundamental role. However, under the assumption that the theory of Lewis–Riesenfeld invariants is applicable in quantum optics, it is shown in the present work that this widely accepted notion is valid only for light described by a time-independent Hamiltonian, i.e., for light in media satisfying the conditions, ε(i) = ε(0), μ(t) = μ(0), and σ(t) = 0 simultaneously. The use of the Lewis–Riesenfeld invariant operator method in quantum optics leads to a marvelous result: the energy of a single photon propagating through time-varying linear media exhibits nontrivial time dependence without a change of frequency. (general)

  10. Exponential synchronization of chaotic systems with time-varying delays and parameter mismatches via intermittent control.

    Science.gov (United States)

    Cai, Shuiming; Hao, Junjun; Liu, Zengrong

    2011-06-01

    This paper studies the synchronization of coupled chaotic systems with time-varying delays in the presence of parameter mismatches by means of periodically intermittent control. Some novel and useful quasisynchronization criteria are obtained by using the methods which are different from the techniques employed in the existing works, and the derived results are less conservative. Especially, a strong constraint on the control width that the control width should be larger than the time delay imposed by the current references is released in this paper. Moreover, our results show that the synchronization criteria depend on the ratio of control width to control period, but not the control width or the control period. Finally, some numerical simulations are given to show the effectiveness of the theoretical results.

  11. Generalized Projective Synchronization between Two Complex Networks with Time-Varying Coupling Delay

    International Nuclear Information System (INIS)

    Mei, Sun; Chang-Yan, Zeng; Li-Xin, Tian

    2009-01-01

    Generalized projective synchronization (GPS) between two complex networks with time-varying coupling delay is investigated. Based on the Lyapunov stability theory, a nonlinear controller and adaptive updated laws are designed. Feasibility of the proposed scheme is proven in theory. Moreover, two numerical examples are presented, using the energy resource system and Lü's system [Physica A 382 (2007) 672] as the nodes of the networks. GPS between two energy resource complex networks with time-varying coupling delay is achieved. This study can widen the application range of the generalized synchronization methods and will be instructive for the demand–supply of energy resource in some regions of China

  12. Generalized Projective Synchronization between Two Complex Networks with Time-Varying Coupling Delay

    Science.gov (United States)

    Sun, Mei; Zeng, Chang-Yan; Tian, Li-Xin

    2009-01-01

    Generalized projective synchronization (GPS) between two complex networks with time-varying coupling delay is investigated. Based on the Lyapunov stability theory, a nonlinear controller and adaptive updated laws are designed. Feasibility of the proposed scheme is proven in theory. Moreover, two numerical examples are presented, using the energy resource system and Lü's system [Physica A 382 (2007) 672] as the nodes of the networks. GPS between two energy resource complex networks with time-varying coupling delay is achieved. This study can widen the application range of the generalized synchronization methods and will be instructive for the demand-supply of energy resource in some regions of China.

  13. On Stochastic Finite-Time Control of Discrete-Time Fuzzy Systems with Packet Dropout

    Directory of Open Access Journals (Sweden)

    Yingqi Zhang

    2012-01-01

    Full Text Available This paper is concerned with the stochastic finite-time stability and stochastic finite-time boundedness problems for one family of fuzzy discrete-time systems over networks with packet dropout, parametric uncertainties, and time-varying norm-bounded disturbance. Firstly, we present the dynamic model description studied, in which the discrete-time fuzzy T-S systems with packet loss can be described by one class of fuzzy Markovian jump systems. Then, the concepts of stochastic finite-time stability and stochastic finite-time boundedness and problem formulation are given. Based on Lyapunov function approach, sufficient conditions on stochastic finite-time stability and stochastic finite-time boundedness are established for the resulting closed-loop fuzzy discrete-time system with Markovian jumps, and state-feedback controllers are designed to ensure stochastic finite-time stability and stochastic finite-time boundedness of the class of fuzzy systems. The stochastic finite-time stability and stochastic finite-time boundedness criteria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an auxiliary result, we also give sufficient conditions on the stochastic stability of the class of fuzzy T-S systems with packet loss. Finally, two illustrative examples are presented to show the validity of the developed methodology.

  14. Adaptive robust fault-tolerant control for linear MIMO systems with unmatched uncertainties

    Science.gov (United States)

    Zhang, Kangkang; Jiang, Bin; Yan, Xing-Gang; Mao, Zehui

    2017-10-01

    In this paper, two novel fault-tolerant control design approaches are proposed for linear MIMO systems with actuator additive faults, multiplicative faults and unmatched uncertainties. For time-varying multiplicative and additive faults, new adaptive laws and additive compensation functions are proposed. A set of conditions is developed such that the unmatched uncertainties are compensated by actuators in control. On the other hand, for unmatched uncertainties with their projection in unmatched space being not zero, based on a (vector) relative degree condition, additive functions are designed to compensate for the uncertainties from output channels in the presence of actuator faults. The developed fault-tolerant control schemes are applied to two aircraft systems to demonstrate the efficiency of the proposed approaches.

  15. A statistical theory of cell killing by radiation of varying linear energy transfer

    International Nuclear Information System (INIS)

    Hawkins, R.B.

    1994-01-01

    A theory is presented that provides an explanation for the observed features of the survival of cultured cells after exposure to densely ionizing high-linear energy transfer (LET) radiation. It starts from a phenomenological postulate based on the linear-quadratic form of cell survival observed for low-LET radiation and uses principles of statistics and fluctuation theory to demonstrate that the effect of varying LET on cell survival can be attributed to random variation of dose to small volumes contained within the nucleus. A simple relation is presented for surviving fraction of cells after exposure to radiation of varying LET that depends on the α and β parameters for the same cells in the limit of low-LET radiation. This relation implies that the value of β is independent of LET. Agreement of the theory with selected observations of cell survival from the literature is demonstrated. A relation is presented that gives relative biological effectiveness (RBE) as a function of the α and β parameters for low-LET radiation. Measurements from microdosimetry are used to estimate the size of the subnuclear volume to which the fluctuation pertains. 11 refs., 4 figs., 2 tabs

  16. Reactivity-induced time-dependencies of EBR-II linear and non-linear feedbacks

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1988-01-01

    Time-dependent linear feedback reactivities are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a kinetic code analysis of an experiment in which the change in power resulted from the dropping of a control rod. Shown with these linear reactivities are the reactivity associated with the control-rod shaft contraction and also time-dependent non-linear (mainly bowing) component deduced from the inverse kinetics of the experimentally measured fission power and the calculated linear reactivities. (author)

  17. ORACLS: A system for linear-quadratic-Gaussian control law design

    Science.gov (United States)

    Armstrong, E. S.

    1978-01-01

    A modern control theory design package (ORACLS) for constructing controllers and optimal filters for systems modeled by linear time-invariant differential or difference equations is described. Numerical linear-algebra procedures are used to implement the linear-quadratic-Gaussian (LQG) methodology of modern control theory. Algorithms are included for computing eigensystems of real matrices, the relative stability of a matrix, factored forms for nonnegative definite matrices, the solutions and least squares approximations to the solutions of certain linear matrix algebraic equations, the controllability properties of a linear time-invariant system, and the steady state covariance matrix of an open-loop stable system forced by white noise. Subroutines are provided for solving both the continuous and discrete optimal linear regulator problems with noise free measurements and the sampled-data optimal linear regulator problem. For measurement noise, duality theory and the optimal regulator algorithms are used to solve the continuous and discrete Kalman-Bucy filter problems. Subroutines are also included which give control laws causing the output of a system to track the output of a prescribed model.

  18. Reliability modelling and simulation of switched linear system ...

    African Journals Online (AJOL)

    Reliability modelling and simulation of switched linear system control using temporal databases. ... design of fault-tolerant real-time switching systems control and modelling embedded micro-schedulers for complex systems maintenance.

  19. Time-varying properties of renal autoregulatory mechanisms

    DEFF Research Database (Denmark)

    Zou, Rui; Cupples, Will A; Yip, K P

    2002-01-01

    In order to assess the possible time-varying properties of renal autoregulation, time-frequency and time-scaling methods were applied to renal blood flow under broad-band forced arterial blood pressure fluctuations and single-nephron renal blood flow with spontaneous oscillations obtained from...... normotensive (Sprague-Dawley, Wistar, and Long-Evans) rats, and spontaneously hypertensive rats. Time-frequency analyses of normotensive and hypertensive blood flow data obtained from either the whole kidney or the single-nephron show that indeed both the myogenic and tubuloglomerular feedback (TGF) mechanisms...... have time-varying characteristics. Furthermore, we utilized the Renyi entropy to measure the complexity of blood-flow dynamics in the time-frequency plane in an effort to discern differences between normotensive and hypertensive recordings. We found a clear difference in Renyi entropy between...

  20. Robust LS-SVM-based adaptive constrained control for a class of uncertain nonlinear systems with time-varying predefined performance

    Science.gov (United States)

    Luo, Jianjun; Wei, Caisheng; Dai, Honghua; Yuan, Jianping

    2018-03-01

    This paper focuses on robust adaptive control for a class of uncertain nonlinear systems subject to input saturation and external disturbance with guaranteed predefined tracking performance. To reduce the limitations of classical predefined performance control method in the presence of unknown initial tracking errors, a novel predefined performance function with time-varying design parameters is first proposed. Then, aiming at reducing the complexity of nonlinear approximations, only two least-square-support-vector-machine-based (LS-SVM-based) approximators with two design parameters are required through norm form transformation of the original system. Further, a novel LS-SVM-based adaptive constrained control scheme is developed under the time-vary predefined performance using backstepping technique. Wherein, to avoid the tedious analysis and repeated differentiations of virtual control laws in the backstepping technique, a simple and robust finite-time-convergent differentiator is devised to only extract its first-order derivative at each step in the presence of external disturbance. In this sense, the inherent demerit of backstepping technique-;explosion of terms; brought by the recursive virtual controller design is conquered. Moreover, an auxiliary system is designed to compensate the control saturation. Finally, three groups of numerical simulations are employed to validate the effectiveness of the newly developed differentiator and the proposed adaptive constrained control scheme.

  1. About a Class of Positive Hybrid Dynamic Linear Systems and an Associate Extended Kalman-Yakubovich-Popov Lemma

    Directory of Open Access Journals (Sweden)

    M. De la Sen

    2017-01-01

    Full Text Available This paper formulates an “ad hoc” robust version under parametrical disturbances of the discrete version of the Kalman-Yakubovich-Popov Lemma for a class of positive hybrid dynamic linear systems which consist of a continuous-time system coupled with a discrete-time or a digital one. An extended discrete system, whose state vector contains both the digital one and the discretization of the continuous-time one at sampling instants, is a key analysis element in the formulation. The hyperstability and asymptotic hyperstability properties of the studied class of positive hybrid systems under feedback from any member of a nonlinear (and, eventually, time-varying class of controllers, which satisfies a Popov’s-type inequality, are also investigated as linked to the positive realness of the associated transfer matrices.

  2. The optimal manufacturing batch size with rework under time-varying demand process for a finite time horizon

    Science.gov (United States)

    Musa, Sarah; Supadi, Siti Suzlin; Omar, Mohd

    2014-07-01

    Rework is one of the solutions to some of the main issues in reverse logistic and green supply chain as it reduces production cost and environmental problem. Many researchers focus on developing rework model, but to the knowledge of the author, none of them has developed a model for time-varying demand rate. In this paper, we extend previous works and develop multiple batch production system for time-varying demand rate with rework. In this model, the rework is done within the same production cycle.

  3. A discrete time-varying internal model-based approach for high precision tracking of a multi-axis servo gantry.

    Science.gov (United States)

    Zhang, Zhen; Yan, Peng; Jiang, Huan; Ye, Peiqing

    2014-09-01

    In this paper, we consider the discrete time-varying internal model-based control design for high precision tracking of complicated reference trajectories generated by time-varying systems. Based on a novel parallel time-varying internal model structure, asymptotic tracking conditions for the design of internal model units are developed, and a low order robust time-varying stabilizer is further synthesized. In a discrete time setting, the high precision tracking control architecture is deployed on a Voice Coil Motor (VCM) actuated servo gantry system, where numerical simulations and real time experimental results are provided, achieving the tracking errors around 3.5‰ for frequency-varying signals. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Design of an optimal preview controller for linear discrete-time descriptor systems with state delay

    Science.gov (United States)

    Cao, Mengjuan; Liao, Fucheng

    2015-04-01

    In this paper, the linear discrete-time descriptor system with state delay is studied, and a design method for an optimal preview controller is proposed. First, by using the discrete lifting technique, the original system is transformed into a general descriptor system without state delay in form. Then, taking advantage of the first-order forward difference operator, we construct a descriptor augmented error system, including the state vectors of the lifted system, error vectors, and desired target signals. Rigorous mathematical proofs are given for the regularity, stabilisability, causal controllability, and causal observability of the descriptor augmented error system. Based on these, the optimal preview controller with preview feedforward compensation for the original system is obtained by using the standard optimal regulator theory of the descriptor system. The effectiveness of the proposed method is shown by numerical simulation.

  5. Linear and non-linear energy barriers in systems of interacting single-domain ferromagnetic particles

    International Nuclear Information System (INIS)

    Petrila, Iulian; Bodale, Ilie; Rotarescu, Cristian; Stancu, Alexandru

    2011-01-01

    A comparative analysis between linear and non-linear energy barriers used for modeling statistical thermally-excited ferromagnetic systems is presented. The linear energy barrier is obtained by new symmetry considerations about the anisotropy energy and the link with the non-linear energy barrier is also presented. For a relevant analysis we compare the effects of linear and non-linear energy barriers implemented in two different models: Preisach-Neel and Ising-Metropolis. The differences between energy barriers which are reflected in different coercive field dependence of the temperature are also presented. -- Highlights: → The linear energy barrier is obtained from symmetry considerations. → The linear and non-linear energy barriers are calibrated and implemented in Preisach-Neel and Ising-Metropolis models. → The temperature and time effects of the linear and non-linear energy barriers are analyzed.

  6. Multiple-step fault estimation for interval type-II T-S fuzzy system of hypersonic vehicle with time-varying elevator faults

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2017-03-01

    Full Text Available This article proposes a multiple-step fault estimation algorithm for hypersonic flight vehicles that uses an interval type-II Takagi–Sugeno fuzzy model. An interval type-II Takagi–Sugeno fuzzy model is developed to approximate the nonlinear dynamic system and handle the parameter uncertainties of hypersonic firstly. Then, a multiple-step time-varying additive fault estimation algorithm is designed to estimate time-varying additive elevator fault of hypersonic flight vehicles. Finally, the simulation is conducted in both aspects of modeling and fault estimation; the validity and availability of such method are verified by a series of the comparison of numerical simulation results.

  7. Linear Time Varying Approach to Satellite Attitude Control Using only Electromagnetic Actuation

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    , lightweight, and power efficient actuators is therefore crucial and viable. This paper discusser linear attitude control strategies for a low earth orbit satellite actuated by a set of mutually perpendicular electromagnetic coils. The principle is to use the interaction between the Earth's magnetic field......, nevertheless, a solution of the riccati equation gives an excellent frame for investigations provided in this paper. An observation that geomagnetic field changes approximately periodically when satellite is on a near polar orbit is used throughout this paper. Three types of attitude controllers are proposed......: an infinite horizon, a finite horizon, and a constant gain controller. Their performance is evaluated and compared in the simulation study of the environment...

  8. Integrating a Linear Signal Model with Groundwater and Rainfall time-series on the Characteristic Identification of Groundwater Systems

    Science.gov (United States)

    Chen, Yu-Wen; Wang, Yetmen; Chang, Liang-Cheng

    2017-04-01

    Groundwater resources play a vital role on regional supply. To avoid irreversible environmental impact such as land subsidence, the characteristic identification of groundwater system is crucial before sustainable management of groundwater resource. This study proposes a signal process approach to identify the character of groundwater systems based on long-time hydrologic observations include groundwater level and rainfall. The study process contains two steps. First, a linear signal model (LSM) is constructed and calibrated to simulate the variation of underground hydrology based on the time series of groundwater levels and rainfall. The mass balance equation of the proposed LSM contains three major terms contain net rate of horizontal exchange, rate of rainfall recharge and rate of pumpage and four parameters are required to calibrate. Because reliable records of pumpage is rare, the time-variant groundwater amplitudes of daily frequency (P ) calculated by STFT are assumed as linear indicators of puamage instead of pumpage records. Time series obtained from 39 observation wells and 50 rainfall stations in and around the study area, Pintung Plain, are paired for model construction. Second, the well-calibrated parameters of the linear signal model can be used to interpret the characteristic of groundwater system. For example, the rainfall recharge coefficient (γ) means the transform ratio between rainfall intention and groundwater level raise. The area around the observation well with higher γ means that the saturated zone here is easily affected by rainfall events and the material of unsaturated zone might be gravel or coarse sand with high infiltration ratio. Considering the spatial distribution of γ, the values of γ decrease from the upstream to the downstream of major rivers and also are correlated to the spatial distribution of grain size of surface soil. Via the time-series of groundwater levels and rainfall, the well-calibrated parameters of LSM have

  9. Control of the tokamak safety factor profile with time-varying constraints using MPC

    International Nuclear Information System (INIS)

    Maljaars, E.; Felici, F.; De Baar, M.R.; Geelen, P.J.M.; Steinbuch, M.; Van Dongen, J.; Hogeweij, G.M.D.

    2015-01-01

    A controller is designed for the tokamak safety factor profile that takes real-time-varying operational and physics limits into account. This so-called model predictive controller (MPC) employs a prediction model in order to compute optimal control inputs that satisfy the given limits. The use of linearized models around a reference trajectory results in a quadratic programming problem that can easily be solved online. The performance of the controller is analysed in a set of ITER L-mode scenarios simulated with the non-linear plasma transport code RAPTOR. It is shown that the controller can reduce the tracking error due to an overestimation or underestimation of the modelled transport, while making a trade-off between residual error and amount of controller action. It is also shown that the controller can account for a sudden decrease in the available actuator power, while providing warnings ahead of time about expected violations of operational and physics limits. This controller can be extended and implemented in existing tokamaks in the near future. (paper)

  10. Some properties of zero power neutron noise in a time-varying medium with delayed neutrons

    International Nuclear Information System (INIS)

    Kitamura, Y.; Pal, L.; Pazsit, I.; Yamamoto, A.; Yamane, Y.

    2008-01-01

    The temporal evolution of the distribution of the number of neutrons in a time-varying multiplying system, producing only prompt neutrons, was treated recently with the master equation technique by some of the present authors. Such a treatment gives account of both the so-called zero power reactor noise and the power reactor noise simultaneously. In particular, the first two moments of the neutron number, as well as the concept of criticality for time-varying systems, were investigated and discussed. The present paper extends these investigations to the case when delayed neutrons are also taken into account. Due to the complexity of the description, only the expectation of the neutron number is calculated. The concept of criticality of a time-varying system is also generalized to systems with delayed neutrons. The temporal behaviour of the expectation of the number of neutrons and its asymptotic properties are displayed and discussed

  11. Dead time effects from linear amplifiers and discriminators in single detector systems

    International Nuclear Information System (INIS)

    Funck, E.

    1986-01-01

    The dead-time losses originating from a linear amplifier combined with a discriminator for pulse-height selection are investigated. Measurements are carried out to determine the type of dead time represented by the amplifier-discriminator combination. The corrections involved by feeding the discriminator output pulses into an electronic module producing a blocking time are discussed and practical hints are given to reduce them. (orig.)

  12. Robust H∞ Control of Neutral System with Time-Delay for Dynamic Positioning Ships

    Directory of Open Access Journals (Sweden)

    Dawei Zhao

    2015-01-01

    Full Text Available Due to the input time-delay existing in most thrust systems of the ships, the robust H∞ controller is designed for the ship dynamic positioning (DP system with time-delay. The input delay system is turned to a neutral time-delay system by a state-derivative control law. The less conservative result is derived for the neutral system with state-derivative feedback by the delay-decomposition approach and linear matrix inequality (LMI. Finally, the numerical simulations demonstrate the asymptotic stability and robustness of the controller and verify that the designed DP controller is effective in the varying environment disturbances of wind, waves, and ocean currents.

  13. Equivalence of Linear MMSE Detection in DS-CDMA and MC-CDMA Systems over Time and Frequency Selective Channels

    Directory of Open Access Journals (Sweden)

    Tamer A. Kadous

    2003-01-01

    Full Text Available The goal of this paper is to compare the performance of the linear minimum mean square error (MMSE detector for a class of code division multiple access (CDMA systems in time and frequency selective channels. Specifically, we consider direct sequence (DS-CDMA, multicarrier (MC-CDMA, and the MC-DS-CDMA systems. Two key tools are used in our development. First, a general time-frequency framework that includes the different CDMA systems as special cases. Second, the duality between time and frequency domains that is used to derive equivalences between the different CDMA systems operating over purely frequency selective and purely time selective channels. We then combine the insights obtained from these special cases to assess the performance of CDMA systems over time and frequency selective channels. We provide sufficient conditions for the codes employed by the CDMA systems for the equivalences to hold. Numerical results are presented to illustrate the results.

  14. Compact tunable silicon photonic differential-equation solver for general linear time-invariant systems.

    Science.gov (United States)

    Wu, Jiayang; Cao, Pan; Hu, Xiaofeng; Jiang, Xinhong; Pan, Ting; Yang, Yuxing; Qiu, Ciyuan; Tremblay, Christine; Su, Yikai

    2014-10-20

    We propose and experimentally demonstrate an all-optical temporal differential-equation solver that can be used to solve ordinary differential equations (ODEs) characterizing general linear time-invariant (LTI) systems. The photonic device implemented by an add-drop microring resonator (MRR) with two tunable interferometric couplers is monolithically integrated on a silicon-on-insulator (SOI) wafer with a compact footprint of ~60 μm × 120 μm. By thermally tuning the phase shifts along the bus arms of the two interferometric couplers, the proposed device is capable of solving first-order ODEs with two variable coefficients. The operation principle is theoretically analyzed, and system testing of solving ODE with tunable coefficients is carried out for 10-Gb/s optical Gaussian-like pulses. The experimental results verify the effectiveness of the fabricated device as a tunable photonic ODE solver.

  15. Pemodelan Markov Switching Dengan Time-varying Transition Probability

    OpenAIRE

    Savitri, Anggita Puri; Warsito, Budi; Rahmawati, Rita

    2016-01-01

    Exchange rate or currency is an economic variable which reflects country's state of economy. It fluctuates over time because of its ability to switch the condition or regime caused by economic and political factors. The changes in the exchange rate are depreciation and appreciation. Therefore, it could be modeled using Markov Switching with Time-Varying Transition Probability which observe the conditional changes and use information variable. From this model, time-varying transition probabili...

  16. Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis

    Science.gov (United States)

    Freund, Roland W.

    1991-01-01

    We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  17. Analysis of time-varying psoriasis lesion image patterns

    DEFF Research Database (Denmark)

    Maletti, Gabriela Mariel; Ersbøll, Bjarne Kjær; Nielsen, Allan Aasbjerg

    2004-01-01

    The multivariate alteration detection transform is applied to pairs of within and between time varying registered psoriasis image patterns. Color band contribution to the variates explaining maximal change is analyzed.......The multivariate alteration detection transform is applied to pairs of within and between time varying registered psoriasis image patterns. Color band contribution to the variates explaining maximal change is analyzed....

  18. Optimal Linear Responses for Markov Chains and Stochastically Perturbed Dynamical Systems

    Science.gov (United States)

    Antown, Fadi; Dragičević, Davor; Froyland, Gary

    2018-03-01

    The linear response of a dynamical system refers to changes to properties of the system when small external perturbations are applied. We consider the little-studied question of selecting an optimal perturbation so as to (i) maximise the linear response of the equilibrium distribution of the system, (ii) maximise the linear response of the expectation of a specified observable, and (iii) maximise the linear response of the rate of convergence of the system to the equilibrium distribution. We also consider the inhomogeneous, sequential, or time-dependent situation where the governing dynamics is not stationary and one wishes to select a sequence of small perturbations so as to maximise the overall linear response at some terminal time. We develop the theory for finite-state Markov chains, provide explicit solutions for some illustrative examples, and numerically apply our theory to stochastically perturbed dynamical systems, where the Markov chain is replaced by a matrix representation of an approximate annealed transfer operator for the random dynamical system.

  19. Robust Adaptive Stabilization of Linear Time-Invariant Dynamic Systems by Using Fractional-Order Holds and Multirate Sampling Controls

    Directory of Open Access Journals (Sweden)

    S. Alonso-Quesada

    2010-01-01

    Full Text Available This paper presents a strategy for designing a robust discrete-time adaptive controller for stabilizing linear time-invariant (LTI continuous-time dynamic systems. Such systems may be unstable and noninversely stable in the worst case. A reduced-order model is considered to design the adaptive controller. The control design is based on the discretization of the system with the use of a multirate sampling device with fast-sampled control signal. A suitable on-line adaptation of the multirate gains guarantees the stability of the inverse of the discretized estimated model, which is used to parameterize the adaptive controller. A dead zone is included in the parameters estimation algorithm for robustness purposes under the presence of unmodeled dynamics in the controlled dynamic system. The adaptive controller guarantees the boundedness of the system measured signal for all time. Some examples illustrate the efficacy of this control strategy.

  20. Robust Stabilization of Nonlinear Systems with Uncertain Varying Control Coefficient

    Directory of Open Access Journals (Sweden)

    Zaiyue Yang

    2014-01-01

    Full Text Available This paper investigates the stabilization problem for a class of nonlinear systems, whose control coefficient is uncertain and varies continuously in value and sign. The study emphasizes the development of a robust control that consists of a modified Nussbaum function to tackle the uncertain varying control coefficient. By such a method, the finite-time escape phenomenon has been prevented when the control coefficient is crossing zero and varying its sign. The proposed control guarantees the asymptotic stabilization of the system and boundedness of all closed-loop signals. The control performance is illustrated by a numerical simulation.

  1. Network Coded Cooperation Over Time-Varying Channels

    DEFF Research Database (Denmark)

    Khamfroush, Hana; Roetter, Daniel Enrique Lucani; Barros, João

    2014-01-01

    transmissions, e.g., in terms of the rate of packet transmission or the energy consumption. A comprehensive analysis of the MDP solution is carried out under different network conditions to extract optimal rules of packet transmission. Inspired by the extracted rules, we propose two near-optimal heuristics......In this paper, we investigate the optimal design of cooperative network-coded strategies for a three-node wireless network with time-varying, half-duplex erasure channels. To this end, we formulate the problem of minimizing the total cost of transmitting M packets from source to two receivers...... as a Markov Decision Process (MDP). The actions of the MDP model include the source and the type of transmission to be used in a given time slot given perfect knowledge of the system state. The cost of packet transmission is defined such that it can incorporate the difference between broadcast and unicast...

  2. ON THE STABILIZATION OF THE LINEAR HYBRID SYSTEM STRUCTURE

    Directory of Open Access Journals (Sweden)

    Kirillov

    2014-11-01

    Full Text Available The linear control hybrid system, consisting of a fi- nite set of subsystems (modes having different dimensions, is considered. The moments of reset time are determined by some complementary function – evolutionary time. This function satisfies the special complementary ordinary differential equation. The mode stabilization problem is solved for some class of piecewise linear controls. The method of stabilization relies on the set of invariant planes, the existence of which is due to the special form of the hybrid system.

  3. Projective synchronization of time-varying delayed neural network with adaptive scaling factors

    International Nuclear Information System (INIS)

    Ghosh, Dibakar; Banerjee, Santo

    2013-01-01

    Highlights: • Projective synchronization in coupled delayed neural chaotic systems with modulated delay time is introduced. • An adaptive rule for the scaling factors is introduced. • This scheme is highly applicable in secure communication. -- Abstract: In this work, the projective synchronization between two continuous time delayed neural systems with time varying delay is investigated. A sufficient condition for synchronization for the coupled systems with modulated delay is presented analytically with the help of the Krasovskii–Lyapunov approach. The effect of adaptive scaling factors on synchronization are also studied in details. Numerical simulations verify the effectiveness of the analytic results

  4. Non-linear Imaging using an Experimental Synthetic Aperture Real Time Ultrasound Scanner

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    This paper presents the first non-linear B-mode image of a wire phantom using pulse inversion attained via an experimental synthetic aperture real-time ultrasound scanner (SARUS). The purpose of this study is to implement and validate non-linear imaging on SARUS for the further development of new...... non-linear techniques. This study presents non-linear and linear B-mode images attained via SARUS and an existing ultrasound system as well as a Field II simulation. The non-linear image shows an improved spatial resolution and lower full width half max and -20 dB resolution values compared to linear...

  5. Entropy Rate of Time-Varying Wireless Networks

    DEFF Research Database (Denmark)

    Cika, Arta; Badiu, Mihai Alin; Coon, Justin P.

    2018-01-01

    In this paper, we present a detailed framework to analyze the evolution of the random topology of a time-varying wireless network via the information theoretic notion of entropy rate. We consider a propagation channel varying over time with random node positions in a closed space and Rayleigh...... fading affecting the connections between nodes. The existence of an edge between two nodes at given locations is modeled by a Markov chain, enabling memory effects in network dynamics. We then derive a lower and an upper bound on the entropy rate of the spatiotemporal network. The entropy rate measures...

  6. Delay-Dependent Stability Criterion for Bidirectional Associative Memory Neural Networks with Interval Time-Varying Delays

    Science.gov (United States)

    Park, Ju H.; Kwon, O. M.

    In the letter, the global asymptotic stability of bidirectional associative memory (BAM) neural networks with delays is investigated. The delay is assumed to be time-varying and belongs to a given interval. A novel stability criterion for the stability is presented based on the Lyapunov method. The criterion is represented in terms of linear matrix inequality (LMI), which can be solved easily by various optimization algorithms. Two numerical examples are illustrated to show the effectiveness of our new result.

  7. Modeling intensive longitudinal data with mixtures of nonparametric trajectories and time-varying effects.

    Science.gov (United States)

    Dziak, John J; Li, Runze; Tan, Xianming; Shiffman, Saul; Shiyko, Mariya P

    2015-12-01

    Behavioral scientists increasingly collect intensive longitudinal data (ILD), in which phenomena are measured at high frequency and in real time. In many such studies, it is of interest to describe the pattern of change over time in important variables as well as the changing nature of the relationship between variables. Individuals' trajectories on variables of interest may be far from linear, and the predictive relationship between variables of interest and related covariates may also change over time in a nonlinear way. Time-varying effect models (TVEMs; see Tan, Shiyko, Li, Li, & Dierker, 2012) address these needs by allowing regression coefficients to be smooth, nonlinear functions of time rather than constants. However, it is possible that not only observed covariates but also unknown, latent variables may be related to the outcome. That is, regression coefficients may change over time and also vary for different kinds of individuals. Therefore, we describe a finite mixture version of TVEM for situations in which the population is heterogeneous and in which a single trajectory would conceal important, interindividual differences. This extended approach, MixTVEM, combines finite mixture modeling with non- or semiparametric regression modeling, to describe a complex pattern of change over time for distinct latent classes of individuals. The usefulness of the method is demonstrated in an empirical example from a smoking cessation study. We provide a versatile SAS macro and R function for fitting MixTVEMs. (c) 2015 APA, all rights reserved).

  8. Experimental quantum computing to solve systems of linear equations.

    Science.gov (United States)

    Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2013-06-07

    Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.

  9. Identification of general linear mechanical systems

    Science.gov (United States)

    Sirlin, S. W.; Longman, R. W.; Juang, J. N.

    1983-01-01

    Previous work in identification theory has been concerned with the general first order time derivative form. Linear mechanical systems, a large and important class, naturally have a second order form. This paper utilizes this additional structural information for the purpose of identification. A realization is obtained from input-output data, and then knowledge of the system input, output, and inertia matrices is used to determine a set of linear equations whereby we identify the remaining unknown system matrices. Necessary and sufficient conditions on the number, type and placement of sensors and actuators are given which guarantee identificability, and less stringent conditions are given which guarantee generic identifiability. Both a priori identifiability and a posteriori identifiability are considered, i.e., identifiability being insured prior to obtaining data, and identifiability being assured with a given data set.

  10. Enhancing damping of gas bearings using linear parameter-varying control

    DEFF Research Database (Denmark)

    Theisen, Lukas Roy Svane; Niemann, Hans Henrik; Galeazzi, Roberto

    2017-01-01

    systems to regulate the injection pressure of the fluid. Due to the strong dependencies of system performance on system parameters, the sought controller should be robust over a large range of operational conditions. This paper addresses the damping enhancement of controllable gas bearings through robust...... control approaches. Through an extensive experimental campaign the paper evaluates two robust controllers, a linear parametervarying (LPV) controller and ∞ controller, on their capability to guarantee stability and performance of a gas bearing across the large operational envelopes in rotational speed...

  11. Compressor Surge Control Design Using Linear Matrix Inequality Approach

    OpenAIRE

    Uddin, Nur; Gravdahl, Jan Tommy

    2017-01-01

    A novel design for active compressor surge control system (ASCS) using linear matrix inequality (LMI) approach is presented and including a case study on piston-actuated active compressor surge control system (PAASCS). The non-linear system dynamics of the PAASCS is transformed into linear parameter varying (LPV) system dynamics. The system parameters are varying as a function of the compressor performance curve slope. A compressor surge stabilization problem is then formulated as a LMI probl...

  12. System and method for constructing filters for detecting signals whose frequency content varies with time

    Science.gov (United States)

    Qian, S.; Dunham, M.E.

    1996-11-12

    A system and method are disclosed for constructing a bank of filters which detect the presence of signals whose frequency content varies with time. The present invention includes a novel system and method for developing one or more time templates designed to match the received signals of interest and the bank of matched filters use the one or more time templates to detect the received signals. Each matched filter compares the received signal x(t) with a respective, unique time template that has been designed to approximate a form of the signals of interest. The robust time domain template is assumed to be of the order of w(t)=A(t)cos(2{pi}{phi}(t)) and the present invention uses the trajectory of a joint time-frequency representation of x(t) as an approximation of the instantaneous frequency function {phi}{prime}(t). First, numerous data samples of the received signal x(t) are collected. A joint time frequency representation is then applied to represent the signal, preferably using the time frequency distribution series. The joint time-frequency transformation represents the analyzed signal energy at time t and frequency f, P(t,f), which is a three-dimensional plot of time vs. frequency vs. signal energy. Then P(t,f) is reduced to a multivalued function f(t), a two dimensional plot of time vs. frequency, using a thresholding process. Curve fitting steps are then performed on the time/frequency plot, preferably using Levenberg-Marquardt curve fitting techniques, to derive a general instantaneous frequency function {phi}{prime}(t) which best fits the multivalued function f(t). Integrating {phi}{prime}(t) along t yields {phi}{prime}(t), which is then inserted into the form of the time template equation. A suitable amplitude A(t) is also preferably determined. Once the time template has been determined, one or more filters are developed which each use a version or form of the time template. 7 figs.

  13. Knowledge diffusion in complex networks by considering time-varying information channels

    Science.gov (United States)

    Zhu, He; Ma, Jing

    2018-03-01

    In this article, based on a model of epidemic spreading, we explore the knowledge diffusion process with an innovative mechanism for complex networks by considering time-varying information channels. To cover the knowledge diffusion process in homogeneous and heterogeneous networks, two types of networks (the BA network and the ER network) are investigated. The mean-field theory is used to theoretically draw the knowledge diffusion threshold. Numerical simulation demonstrates that the knowledge diffusion threshold is almost linearly correlated with the mean of the activity rate. In addition, under the influence of the activity rate and distinct from the classic Susceptible-Infected-Susceptible (SIS) model, the density of knowers almost linearly grows with the spreading rate. Finally, in consideration of the ubiquitous mechanism of innovation, we further study the evolution of knowledge in our proposed model. The results suggest that compared with the effect of the spreading rate, the average knowledge version of the population is affected more by the innovation parameter and the mean of the activity rate. Furthermore, in the BA network, the average knowledge version of individuals with higher degree is always newer than those with lower degree.

  14. Seismic analysis of equipment system with non-linearities such as gap and friction using equivalent linearization method

    International Nuclear Information System (INIS)

    Murakami, H.; Hirai, T.; Nakata, M.; Kobori, T.; Mizukoshi, K.; Takenaka, Y.; Miyagawa, N.

    1989-01-01

    Many of the equipment systems of nuclear power plants contain a number of non-linearities, such as gap and friction, due to their mechanical functions. It is desirable to take such non-linearities into account appropriately for the evaluation of the aseismic soundness. However, in usual design works, linear analysis method with rough assumptions is applied from engineering point of view. An equivalent linearization method is considered to be one of the effective analytical techniques to evaluate non-linear responses, provided that errors to a certain extent are tolerated, because it has greater simplicity in analysis and economization in computing time than non-linear analysis. The objective of this paper is to investigate the applicability of the equivalent linearization method to evaluate the maximum earthquake response of equipment systems such as the CANDU Fuelling Machine which has multiple non- linearities

  15. Long memory of financial time series and hidden Markov models with time-varying parameters

    DEFF Research Database (Denmark)

    Nystrup, Peter; Madsen, Henrik; Lindström, Erik

    Hidden Markov models are often used to capture stylized facts of daily returns and to infer the hidden state of financial markets. Previous studies have found that the estimated models change over time, but the implications of the time-varying behavior for the ability to reproduce the stylized...... facts have not been thoroughly examined. This paper presents an adaptive estimation approach that allows for the parameters of the estimated models to be time-varying. It is shown that a two-state Gaussian hidden Markov model with time-varying parameters is able to reproduce the long memory of squared...... daily returns that was previously believed to be the most difficult fact to reproduce with a hidden Markov model. Capturing the time-varying behavior of the parameters also leads to improved one-step predictions....

  16. Linear time heteronymous damping in nonlinear parametric systems

    Czech Academy of Sciences Publication Activity Database

    Hortel, Milan; Škuderová, Alena; Houfek, Martin

    2016-01-01

    Roč. 40, 23-24 (2016), s. 10038-10051 ISSN 0307-904X Institutional support: RVO:61388998 Keywords : nonlinear dynamics of systems * parametric systems * time heteronymous damping * gears Subject RIV: JT - Propulsion, Motors ; Fuels Impact factor: 2.350, year: 2016

  17. Model Predictive Control for Linear Complementarity and Extended Linear Complementarity Systems

    Directory of Open Access Journals (Sweden)

    Bambang Riyanto

    2005-11-01

    Full Text Available In this paper, we propose model predictive control method for linear complementarity and extended linear complementarity systems by formulating optimization along prediction horizon as mixed integer quadratic program. Such systems contain interaction between continuous dynamics and discrete event systems, and therefore, can be categorized as hybrid systems. As linear complementarity and extended linear complementarity systems finds applications in different research areas, such as impact mechanical systems, traffic control and process control, this work will contribute to the development of control design method for those areas as well, as shown by three given examples.

  18. Time-varying output performances of piezoelectric vibration energy harvesting under nonstationary random vibrations

    Science.gov (United States)

    Yoon, Heonjun; Kim, Miso; Park, Choon-Su; Youn, Byeng D.

    2018-01-01

    Piezoelectric vibration energy harvesting (PVEH) has received much attention as a potential solution that could ultimately realize self-powered wireless sensor networks. Since most ambient vibrations in nature are inherently random and nonstationary, the output performances of PVEH devices also randomly change with time. However, little attention has been paid to investigating the randomly time-varying electroelastic behaviors of PVEH systems both analytically and experimentally. The objective of this study is thus to make a step forward towards a deep understanding of the time-varying performances of PVEH devices under nonstationary random vibrations. Two typical cases of nonstationary random vibration signals are considered: (1) randomly-varying amplitude (amplitude modulation; AM) and (2) randomly-varying amplitude with randomly-varying instantaneous frequency (amplitude and frequency modulation; AM-FM). In both cases, this study pursues well-balanced correlations of analytical predictions and experimental observations to deduce the relationships between the time-varying output performances of the PVEH device and two primary input parameters, such as a central frequency and an external electrical resistance. We introduce three correlation metrics to quantitatively compare analytical prediction and experimental observation, including the normalized root mean square error, the correlation coefficient, and the weighted integrated factor. Analytical predictions are in an excellent agreement with experimental observations both mechanically and electrically. This study provides insightful guidelines for designing PVEH devices to reliably generate electric power under nonstationary random vibrations.

  19. Time-varying coefficient vector autoregressions model based on dynamic correlation with an application to crude oil and stock markets

    International Nuclear Information System (INIS)

    Lu, Fengbin; Qiao, Han; Wang, Shouyang; Lai, Kin Keung; Li, Yuze

    2017-01-01

    This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor’s 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relations evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model.

  20. Time-varying coefficient vector autoregressions model based on dynamic correlation with an application to crude oil and stock markets

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Fengbin, E-mail: fblu@amss.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China); Qiao, Han, E-mail: qiaohan@ucas.ac.cn [School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190 (China); Wang, Shouyang, E-mail: sywang@amss.ac.cn [School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190 (China); Lai, Kin Keung, E-mail: mskklai@cityu.edu.hk [Department of Management Sciences, City University of Hong Kong (Hong Kong); Li, Yuze, E-mail: richardyz.li@mail.utoronto.ca [Department of Industrial Engineering, University of Toronto (Canada)

    2017-01-15

    This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor’s 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relations evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model.

  1. When to call a linear system nonnegative

    NARCIS (Netherlands)

    Nieuwenhuis, J.W.

    1998-01-01

    In this paper we will consider discrete time invariant linear systems that allow for an input-state-output representation with a finite dimensional state space, and that have a finite number of inputs and outputs. The basic issue in this paper is when to call these systems nonnegative. An important

  2. Finite Abstractions of Max-Plus-Linear Systems : Theory and Algorithms

    NARCIS (Netherlands)

    Adzkiya, D.

    2014-01-01

    Max-Plus-Linear (MPL) systems are a class of discrete-event systems with a continuous state space characterizing the timing of the underlying sequential discrete events. These systems are predisposed to describe the timing synchronization between interleaved processes. MPL systems are employed in

  3. Conduction cooling systems for linear accelerator cavities

    Science.gov (United States)

    Kephart, Robert

    2017-05-02

    A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.

  4. Time-varying Capital Requirements and Disclosure Rules

    DEFF Research Database (Denmark)

    Kragh, Jonas; Rangvid, Jesper

    , implying that resilience in the banking system is also increased. The increase in capital ratios is partly due to a modest reduction in lending. Using a policy changes, we show that banks react stronger to changes in capital requirements when these are public. Our results further suggest that the impact......Unique and confidential Danish data allow us to identify how changes in disclosure requirements and bank-specific time-varying capital requirements affect banks' lending and capital accumu-lation decisions. We find that banks increase their capital ratios after capital requirements are increased...... of capital requirements differ for small and large banks. Large banks raise their capital ratios more, reduce lending less, and accumulate more new capital compared to small banks....

  5. Overcoming Spurious Regression Using time-Varying Fourier ...

    African Journals Online (AJOL)

    Non-stationary time series data have been traditionally analyzed in the frequency domain by assuming constant amplitudes regardless of the timelag. A new approach called time-varying amplitude method (TVAM) is presented here. Oscillations are analyzed for changes in the magnitude of Fourier Coefficients which are ...

  6. Vesicle biomechanics in a time-varying magnetic field.

    Science.gov (United States)

    Ye, Hui; Curcuru, Austen

    2015-01-01

    Cells exhibit distortion when exposed to a strong electric field, suggesting that the field imposes control over cellular biomechanics. Closed pure lipid bilayer membranes (vesicles) have been widely used for the experimental and theoretical studies of cellular biomechanics under this electrodeformation. An alternative method used to generate an electric field is by electromagnetic induction with a time-varying magnetic field. References reporting the magnetic control of cellular mechanics have recently emerged. However, theoretical analysis of the cellular mechanics under a time-varying magnetic field is inadequate. We developed an analytical theory to investigate the biomechanics of a modeled vesicle under a time-varying magnetic field. Following previous publications and to simplify the calculation, this model treated the inner and suspending media as lossy dielectrics, the membrane thickness set at zero, and the electric resistance of the membrane assumed to be negligible. This work provided the first analytical solutions for the surface charges, electric field, radial pressure, overall translational forces, and rotational torques introduced on a vesicle by the time-varying magnetic field. Frequency responses of these measures were analyzed, particularly the frequency used clinically by transcranial magnetic stimulation (TMS). The induced surface charges interacted with the electric field to produce a biomechanical impact upon the vesicle. The distribution of the induced surface charges depended on the orientation of the coil and field frequency. The densities of these charges were trivial at low frequency ranges, but significant at high frequency ranges. The direction of the radial force on the vesicle was dependent on the conductivity ratio between the vesicle and the medium. At relatively low frequencies (biomechanics under a time-varying magnetic field. Biological effects of clinical TMS are not likely to occur via alteration of the biomechanics of brain

  7. Correlated Levy Noise in Linear Dynamical Systems

    International Nuclear Information System (INIS)

    Srokowski, T.

    2011-01-01

    Linear dynamical systems, driven by a non-white noise which has the Levy distribution, are analysed. Noise is modelled by a specific stochastic process which is defined by the Langevin equation with a linear force and the Levy distributed symmetric white noise. Correlation properties of the process are discussed. The Fokker-Planck equation driven by that noise is solved. Distributions have the Levy shape and their width, for a given time, is smaller than for processes in the white noise limit. Applicability of the adiabatic approximation in the case of the linear force is discussed. (author)

  8. A Novel Approach to Sliding Mode Control of Time-Delay Systems

    Directory of Open Access Journals (Sweden)

    Hongwei Xia

    2013-01-01

    Full Text Available This paper is concerned with the sliding mode control for a class of linear systems with time-varying delays. By utilizing a novel Lyapunov-Krasovskii functional and combining it with the delay fractioning approach as well as the free-weighting matrix technology, a sufficient condition is established such that the resulting sliding mode dynamics is asymptotically stable. Then, a sliding mode controller for reaching motion is synthesized to guarantee that the trajectories of the resulting closed-loop system can be driven onto a prescribed sliding surface and maintained there for all subsequent time. A numerical example is provided to illustrate the effectiveness of the proposed design approach.

  9. Modelling Time-Varying Volatility in Financial Returns

    DEFF Research Database (Denmark)

    Amado, Cristina; Laakkonen, Helinä

    2014-01-01

    The “unusually uncertain” phase in the global financial markets has inspired many researchers to study the effects of ambiguity (or “Knightian uncertainty”) on the decisions made by investors and their implications for the capital markets. We contribute to this literature by using a modified...... version of the time-varying GARCH model of Amado and Teräsvirta (2013) to analyze whether the increasing uncertainty has caused excess volatility in the US and European government bond markets. In our model, volatility is multiplicatively decomposed into two time-varying conditional components: the first...... being captured by a stable GARCH(1,1) process and the second driven by the level of uncertainty in the financial market....

  10. A Regularized Linear Dynamical System Framework for Multivariate Time Series Analysis.

    Science.gov (United States)

    Liu, Zitao; Hauskrecht, Milos

    2015-01-01

    Linear Dynamical System (LDS) is an elegant mathematical framework for modeling and learning Multivariate Time Series (MTS). However, in general, it is difficult to set the dimension of an LDS's hidden state space. A small number of hidden states may not be able to model the complexities of a MTS, while a large number of hidden states can lead to overfitting. In this paper, we study learning methods that impose various regularization penalties on the transition matrix of the LDS model and propose a regularized LDS learning framework (rLDS) which aims to (1) automatically shut down LDSs' spurious and unnecessary dimensions, and consequently, address the problem of choosing the optimal number of hidden states; (2) prevent the overfitting problem given a small amount of MTS data; and (3) support accurate MTS forecasting. To learn the regularized LDS from data we incorporate a second order cone program and a generalized gradient descent method into the Maximum a Posteriori framework and use Expectation Maximization to obtain a low-rank transition matrix of the LDS model. We propose two priors for modeling the matrix which lead to two instances of our rLDS. We show that our rLDS is able to recover well the intrinsic dimensionality of the time series dynamics and it improves the predictive performance when compared to baselines on both synthetic and real-world MTS datasets.

  11. Is the time-dependent behaviour of the aortic valve intrinsically quasi-linear?

    Science.gov (United States)

    Anssari-Benam, Afshin

    2014-05-01

    The widely popular quasi-linear viscoelasticity (QLV) theory has been employed extensively in the literature for characterising the time-dependent behaviour of many biological tissues, including the aortic valve (AV). However, in contrast to other tissues, application of QLV to AV data has been met with varying success, with studies reporting discrepancies in the values of the associated quantified parameters for data collected from different timescales in experiments. Furthermore, some studies investigating the stress-relaxation phenomenon in valvular tissues have suggested discrete relaxation spectra, as an alternative to the continuous spectrum proposed by the QLV. These indications put forward a more fundamental question: Is the time-dependent behaviour of the aortic valve intrinsically quasi-linear? In other words, can the inherent characteristics of the tissue that govern its biomechanical behaviour facilitate a quasi-linear time-dependent behaviour? This paper attempts to address these questions by presenting a mathematical analysis to derive the expressions for the stress-relaxation G( t) and creep J( t) functions for the AV tissue within the QLV theory. The principal inherent characteristic of the tissue is incorporated into the QLV formulation in the form of the well-established gradual fibre recruitment model, and the corresponding expressions for G( t) and J( t) are derived. The outcomes indicate that the resulting stress-relaxation and creep functions do not appear to voluntarily follow the observed experimental trends reported in previous studies. These results highlight that the time-dependent behaviour of the AV may not be quasi-linear, and more suitable theoretical criteria and models may be required to explain the phenomenon based on tissue's microstructure, and for more accurate estimation of the associated material parameters. In general, these results may further be applicable to other planar soft tissues of the same class, i.e. with the same

  12. Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules

    DEFF Research Database (Denmark)

    Jimenez, M.J.; Madsen, Henrik; Bloem, J.J.

    2008-01-01

    This paper focuses on a method for linear or non-linear continuous time modelling of physical systems using discrete time data. This approach facilitates a more appropriate modelling of more realistic non-linear systems. Particularly concerning advanced building components, convective and radiati...... that a description of the non-linear heat transfer is essential. The resulting model is a non-linear first order stochastic differential equation for the heat transfer of the PV component....... heat interchanges are non-linear effects and represent significant contributions in a variety of components such as photovoltaic integrated facades or roofs and those using these effects as passive cooling strategies, etc. Since models are approximations of the physical system and data is encumbered...

  13. The theory of a general quantum system interacting with a linear dissipative system

    International Nuclear Information System (INIS)

    Feynman, R.P.; Vernon, F.L.

    2000-01-01

    A formalism has been developed, using Feynman's space-time formulation of nonrelativistic quantum mechanics whereby the behavior of a system of interest, which is coupled to other external quantum systems, may be calculated in terms of its own variables only. It is shown that the effect of the external systems in such a formalism can always be included in a general class of functionals (influence functionals) of the coordinates of the system only. The properties of influence functionals for general systems are examined. Then, specific forms of influence functionals representing the effect of definite and random classical forces, linear dissipative systems at finite temperatures, and combinations of these are analyzed in detail. The linear system analysis is first done for perfectly linear systems composed of combinations of harmonic oscillators, loss being introduced by continuous distributions of oscillators. Then approximately linear systems and restrictions necessary for the linear behavior are considered. Influence functionals for all linear systems are shown to have the same form in terms of their classical response functions. In addition, a fluctuation-dissipation theorem is derived relating temperature and dissipation of the linear system to a fluctuating classical potential acting on the system of interest which reduces to the Nyquist-Johnson relation for noise in the case of electric circuits. Sample calculations of transition probabilities for the spontaneous emission of an atom in free space and in a cavity are made. Finally, a theorem is proved showing that within the requirements of linearity all sources of noise or quantum fluctuation introduced by maser-type amplification devices are accounted for by a classical calculation of the characteristics of the maser

  14. A method for fitting regression splines with varying polynomial order in the linear mixed model.

    Science.gov (United States)

    Edwards, Lloyd J; Stewart, Paul W; MacDougall, James E; Helms, Ronald W

    2006-02-15

    The linear mixed model has become a widely used tool for longitudinal analysis of continuous variables. The use of regression splines in these models offers the analyst additional flexibility in the formulation of descriptive analyses, exploratory analyses and hypothesis-driven confirmatory analyses. We propose a method for fitting piecewise polynomial regression splines with varying polynomial order in the fixed effects and/or random effects of the linear mixed model. The polynomial segments are explicitly constrained by side conditions for continuity and some smoothness at the points where they join. By using a reparameterization of this explicitly constrained linear mixed model, an implicitly constrained linear mixed model is constructed that simplifies implementation of fixed-knot regression splines. The proposed approach is relatively simple, handles splines in one variable or multiple variables, and can be easily programmed using existing commercial software such as SAS or S-plus. The method is illustrated using two examples: an analysis of longitudinal viral load data from a study of subjects with acute HIV-1 infection and an analysis of 24-hour ambulatory blood pressure profiles.

  15. Force Characteristics of the H-module Linear Actuator with Varying Tooth-shift-distance

    DEFF Research Database (Denmark)

    Liu, Xiao; Chen, Zhe; Lu, Kaiyuan

    2013-01-01

    The large normal force of a single-sided linear actuator may cause vibration, noise and reduce the positioning accuracy. To overcome these disadvantages, a new H-module linear actuator (HMLA) is proposed to reduce effectively the normal force without using expensive air suspension system...

  16. Channel Characteristics and Performance of MIMO E-SDM Systems in an Indoor Time-Varying Fading Environment

    Directory of Open Access Journals (Sweden)

    Huu Phu Bui

    2010-01-01

    Full Text Available Multiple-input multiple-output (MIMO systems employ advanced signal processing techniques. However, the performance is affected by propagation environments and antenna characteristics. The main contributions of the paper are to investigate Doppler spectrum based on measured data in a typical meeting room and to evaluate the performance of MIMO systems based on an eigenbeam-space division multiplexing (E-SDM technique in an indoor time-varying fading environment, which has various distributions of scatterers, line-of-sight wave existence, and mutual coupling effect among antennas. We confirm that due to the mutual coupling among antennas, patterns of antenna elements are changed and different from an omnidirectional one of a single antenna. Results based on the measured channel data in our measurement campaigns show that received power, channel autocorrelation, and Doppler spectrum are dependent not only on the direction of terminal motion but also on the antenna configuration. Even in the obstructed-line-of-sight environment, observed Doppler spectrum is quite different from the theoretical U-shaped Jakes one. In addition, it has been also shown that a channel change during the time interval between the transmit weight matrix determination and the actual data transmission can degrade the performance of MIMO E-SDM systems.

  17. Efficient method for time-domain simulation of the linear feedback systems containing fractional order controllers.

    Science.gov (United States)

    Merrikh-Bayat, Farshad

    2011-04-01

    One main approach for time-domain simulation of the linear output-feedback systems containing fractional-order controllers is to approximate the transfer function of the controller with an integer-order transfer function and then perform the simulation. In general, this approach suffers from two main disadvantages: first, the internal stability of the resulting feedback system is not guaranteed, and second, the amount of error caused by this approximation is not exactly known. The aim of this paper is to propose an efficient method for time-domain simulation of such systems without facing the above mentioned drawbacks. For this purpose, the fractional-order controller is approximated with an integer-order transfer function (possibly in combination with the delay term) such that the internal stability of the closed-loop system is guaranteed, and then the simulation is performed. It is also shown that the resulting approximate controller can effectively be realized by using the proposed method. Some formulas for estimating and correcting the simulation error, when the feedback system under consideration is subjected to the unit step command or the unit step disturbance, are also presented. Finally, three numerical examples are studied and the results are compared with the Oustaloup continuous approximation method. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Equivalent model construction for a non-linear dynamic system based on an element-wise stiffness evaluation procedure and reduced analysis of the equivalent system

    Science.gov (United States)

    Kim, Euiyoung; Cho, Maenghyo

    2017-11-01

    In most non-linear analyses, the construction of a system matrix uses a large amount of computation time, comparable to the computation time required by the solving process. If the process for computing non-linear internal force matrices is substituted with an effective equivalent model that enables the bypass of numerical integrations and assembly processes used in matrix construction, efficiency can be greatly enhanced. A stiffness evaluation procedure (STEP) establishes non-linear internal force models using polynomial formulations of displacements. To efficiently identify an equivalent model, the method has evolved such that it is based on a reduced-order system. The reduction process, however, makes the equivalent model difficult to parameterize, which significantly affects the efficiency of the optimization process. In this paper, therefore, a new STEP, E-STEP, is proposed. Based on the element-wise nature of the finite element model, the stiffness evaluation is carried out element-by-element in the full domain. Since the unit of computation for the stiffness evaluation is restricted by element size, and since the computation is independent, the equivalent model can be constructed efficiently in parallel, even in the full domain. Due to the element-wise nature of the construction procedure, the equivalent E-STEP model is easily characterized by design parameters. Various reduced-order modeling techniques can be applied to the equivalent system in a manner similar to how they are applied in the original system. The reduced-order model based on E-STEP is successfully demonstrated for the dynamic analyses of non-linear structural finite element systems under varying design parameters.

  19. Output-only modal analysis of linear time-periodic systems with application to wind turbine simulation data

    DEFF Research Database (Denmark)

    Allen, Matthew S.; Sracic, Michael W.; Chauhan, Shashank

    2011-01-01

    to interrogate simulated measurements from a rotating wind turbine. The measurements were simulated for a 5 MW turbine modeled in the HAWC2 simulation code, which includes both structural dynamic and aerodynamic effects. This simulated system identification provides insights into the test and measurement......Many important systems, such as wind turbines, helicopters and turbomachinery, must be modeled with linear time-periodic equations of motion to correctly predict resonance phenomena. Time periodic effects in wind turbines might arise due to blade-to-blade manufacturing variations, stratification...... in the velocity of the wind with height and changes in the aerodynamics of the blades as they pass the tower. These effects may cause parametric resonance or other unexpected phenomena, so it is important to properly characterize them so that these machines can be designed to achieve high reliability, safety...

  20. Modeling the time-varying and level-dependent effects of the medial olivocochlear reflex in auditory nerve responses.

    Science.gov (United States)

    Smalt, Christopher J; Heinz, Michael G; Strickland, Elizabeth A

    2014-04-01

    The medial olivocochlear reflex (MOCR) has been hypothesized to provide benefit for listening in noisy environments. This advantage can be attributed to a feedback mechanism that suppresses auditory nerve (AN) firing in continuous background noise, resulting in increased sensitivity to a tone or speech. MOC neurons synapse on outer hair cells (OHCs), and their activity effectively reduces cochlear gain. The computational model developed in this study implements the time-varying, characteristic frequency (CF) and level-dependent effects of the MOCR within the framework of a well-established model for normal and hearing-impaired AN responses. A second-order linear system was used to model the time-course of the MOCR using physiological data in humans. The stimulus-level-dependent parameters of the efferent pathway were estimated by fitting AN sensitivity derived from responses in decerebrate cats using a tone-in-noise paradigm. The resulting model uses a binaural, time-varying, CF-dependent, level-dependent OHC gain reduction for both ipsilateral and contralateral stimuli that improves detection of a tone in noise, similarly to recorded AN responses. The MOCR may be important for speech recognition in continuous background noise as well as for protection from acoustic trauma. Further study of this model and its efferent feedback loop may improve our understanding of the effects of sensorineural hearing loss in noisy situations, a condition in which hearing aids currently struggle to restore normal speech perception.

  1. Neutron fluctuations in a multiplying medium randomly varying in time

    Energy Technology Data Exchange (ETDEWEB)

    Pal, L. [KFKI Atomic Energy Research Inst., Budapest (Hungary); Pazsit, I. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Engineering

    2006-07-15

    The master equation approach, which has traditionally been used for the calculation of neutron fluctuations in multiplying systems with constant parameters, is extended to a case when the parameters of the system change randomly in time. A forward type master equation is considered for the case of a multiplying system whose properties jump randomly between two discrete states, both with and without a stationary external source. The first two factorial moments are calculated, including the covariance. This model can be considered as the unification of stochastic methods that were used either in a constant multiplying medium via the master equation technique, or in a fluctuating medium via the Langevin technique. The results obtained show a much richer characteristic of the zero power noise than that in constant systems. The results are relevant in medium power subcritical nuclear systems where the zero power noise is still significant, but they also have a bearing on all types of branching processes, such as evolution of biological systems, spreading of epidemics etc, which are set in a time-varying environment.

  2. Neutron fluctuations in a multiplying medium randomly varying in time

    International Nuclear Information System (INIS)

    Pal, L.; Pazsit, I.

    2006-01-01

    The master equation approach, which has traditionally been used for the calculation of neutron fluctuations in multiplying systems with constant parameters, is extended to a case when the parameters of the system change randomly in time. A forward type master equation is considered for the case of a multiplying system whose properties jump randomly between two discrete states, both with and without a stationary external source. The first two factorial moments are calculated, including the covariance. This model can be considered as the unification of stochastic methods that were used either in a constant multiplying medium via the master equation technique, or in a fluctuating medium via the Langevin technique. The results obtained show a much richer characteristic of the zero power noise than that in constant systems. The results are relevant in medium power subcritical nuclear systems where the zero power noise is still significant, but they also have a bearing on all types of branching processes, such as evolution of biological systems, spreading of epidemics etc, which are set in a time-varying environment

  3. A Novel Switching-Based Control Framework for Improved Task Performance in Teleoperation System With Asymmetric Time-Varying Delays.

    Science.gov (United States)

    Zhai, Di-Hua; Xia, Yuanqing

    2018-02-01

    This paper addresses the adaptive control for task-space teleoperation systems with constrained predefined synchronization error, where a novel switched control framework is investigated. Based on multiple Lyapunov-Krasovskii functionals method, the stability of the resulting closed-loop system is established in the sense of state-independent input-to-output stability. Compared with previous work, the developed method can simultaneously handle the unknown kinematics/dynamics, asymmetric varying time delays, and prescribed performance control in a unified framework. It is shown that the developed controller can guarantee the prescribed transient-state and steady-state synchronization performances between the master and slave robots, which is demonstrated by the simulation study.

  4. Time-varying acceleration coefficients IPSO for solving dynamic economic dispatch with non-smooth cost function

    International Nuclear Information System (INIS)

    Mohammadi-ivatloo, Behnam; Rabiee, Abbas; Ehsan, Mehdi

    2012-01-01

    Highlights: ► New approach to solve power systems dynamic economic dispatch. ► Considering Valve-point effect, prohibited operation zones. ► Proposing TVAC-IPSO algorithm. - Abstract: The objective of the dynamic economic dispatch (DED) problem is to schedule power generation for the online units for a given time horizon economically, satisfying various operational constraints. Due to the effect of valve-point effects and prohibited operating zones (POZs) in the generating units cost functions, DED problem is a highly non-linear and non-convex optimization problem. The DED problem even may be more complicated if transmission losses and ramp-rate constraints are taken into account. This paper presents a novel and heuristic algorithm to solve DED problem of generating units, by employing time varying acceleration coefficients iteration particle swarm optimization (TVAC-IPSO) method. The effectiveness of the proposed method is examined and validated by carrying out extensive tests on different test systems, i.e. 5-unit and 10-unit test systems. Valve-point effects, POZs and ramp-rate constraints along with transmission losses are considered. To examine the efficiency of the proposed TVAC-IPSO algorithm, comprehensive studies are carried out, which compare convergence properties of the proposed TVAC-IPSO approach with conventional PSO algorithm, in addition to the other recently reported approaches. Numerical results show that the TVAC-IPSO method has good convergence properties and the generation costs resulted from the proposed method are lower than other algorithms reported in recent literature.

  5. Non-fragile robust stabilization and H{sub {infinity}} control for uncertain stochastic nonlinear time-delay systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jinhui [Department of Automatic Control, Beijing Institute of Technology, Beijing 100081 (China)], E-mail: jinhuizhang82@gmail.com; Shi Peng [Faculty of Advanced Technology, University of Glamorgan, Pontypridd CF37 1DL (United Kingdom); ILSCM, School of Science and Engineering, Victoria University, Melbourne, Vic. 8001 (Australia); School of Mathematics and Statistics, University of South Australia, Mawson Lakes, SA 5095 (Australia)], E-mail: pshi@glam.ac.uk; Yang Hongjiu [Department of Automatic Control, Beijing Institute of Technology, Beijing 100081 (China)], E-mail: yanghongjiu@gmail.com

    2009-12-15

    This paper deals with the problem of non-fragile robust stabilization and H{sub {infinity}} control for a class of uncertain stochastic nonlinear time-delay systems. The parametric uncertainties are real time-varying as well as norm bounded. The time-delay factors are unknown and time-varying with known bounds. The aim is to design a memoryless non-fragile state feedback control law such that the closed-loop system is stochastically asymptotically stable in the mean square and the effect of the disturbance input on the controlled output is less than a prescribed level for all admissible parameter uncertainties. New sufficient conditions for the existence of such controllers are presented based on the linear matrix inequalities (LMIs) approach. Numerical example is given to illustrate the effectiveness of the developed techniques.

  6. Fault-tolerant Control of Discrete-time LPV systems using Virtual Actuators and Sensors

    DEFF Research Database (Denmark)

    Tabatabaeipour, Mojtaba; Stoustrup, Jakob; Bak, Thomas

    2015-01-01

    This paper proposes a new fault-tolerant control (FTC) method for discrete-time linear parameter varying (LPV) systems using a reconfiguration block. The basic idea of the method is to achieve the FTC goal without re-designing the nominal controller by inserting a reconfiguration block between......, it transforms the output of the controller for the faulty system such that the stability and performance goals are preserved. Input-to-state stabilizing LPV gains of the virtual actuator and sensor are obtained by solving linear matrix inequalities (LMIs). We show that separate design of these gains guarantees....... Finally, the effectiveness of the method is demonstrated via a numerical example and stator current control of an induction motor....

  7. Delay-Range-Dependent H∞ Control for Automatic Mooring Positioning System with Time-Varying Input Delay

    Directory of Open Access Journals (Sweden)

    Xiaoyu Su

    2014-01-01

    Full Text Available Aiming at the economy and security of the positioning system in semi-submersible platform, the paper presents a new scheme based on the mooring line switching strategy. Considering the input delay in switching process, H∞ control with time-varying input delay is designed to calculate the control forces to resist disturbing forces. In order to reduce the conservativeness, the information of the lower bound of delay is taken into account, and a Lyapunov function which contains the range of delay is constructed. Besides, the input constraint is considered to avoid breakage of mooring lines. The sufficient conditions for delay-range-dependent stabilization are derived in terms of LMI, and the controller is also obtained. The effectiveness of the proposed approach is illustrated by a realistic design example.

  8. Stability analysis of switched linear systems defined by graphs

    NARCIS (Netherlands)

    Athanasopoulos, N.; Lazar, M.

    2014-01-01

    We present necessary and sufficient conditions for global exponential stability for switched discrete-time linear systems, under arbitrary switching, which is constrained within a set of admissible transitions. The class of systems studied includes the family of systems under arbitrary switching,

  9. Estimate the time varying brain receptor occupancy in PET imaging experiments using non-linear fixed and mixed effect modeling approach

    International Nuclear Information System (INIS)

    Zamuner, Stefano; Gomeni, Roberto; Bye, Alan

    2002-01-01

    Positron-Emission Tomography (PET) is an imaging technology currently used in drug development as a non-invasive measure of drug distribution and interaction with biochemical target system. The level of receptor occupancy achieved by a compound can be estimated by comparing time-activity measurements in an experiment done using tracer alone with the activity measured when the tracer is given following administration of unlabelled compound. The effective use of this surrogate marker as an enabling tool for drug development requires the definition of a model linking the brain receptor occupancy with the fluctuation of plasma concentrations. However, the predictive performance of such a model is strongly related to the precision on the estimate of receptor occupancy evaluated in PET scans collected at different times following drug treatment. Several methods have been proposed for the analysis and the quantification of the ligand-receptor interactions investigated from PET data. The aim of the present study is to evaluate alternative parameter estimation strategies based on the use of non-linear mixed effect models allowing to account for intra and inter-subject variability on the time-activity and for covariates potentially explaining this variability. A comparison of the different modeling approaches is presented using real data. The results of this comparison indicates that the mixed effect approach with a primary model partitioning the variance in term of Inter-Individual Variability (IIV) and Inter-Occasion Variability (IOV) and a second stage model relating the changes on binding potential to the dose of unlabelled drug is definitely the preferred approach

  10. Identification of Time-Varying Pilot Control Behavior in Multi-Axis Control Tasks

    Science.gov (United States)

    Zaal, Peter M. T.; Sweet, Barbara T.

    2012-01-01

    Recent developments in fly-by-wire control architectures for rotorcraft have introduced new interest in the identification of time-varying pilot control behavior in multi-axis control tasks. In this paper a maximum likelihood estimation method is used to estimate the parameters of a pilot model with time-dependent sigmoid functions to characterize time-varying human control behavior. An experiment was performed by 9 general aviation pilots who had to perform a simultaneous roll and pitch control task with time-varying aircraft dynamics. In 8 different conditions, the axis containing the time-varying dynamics and the growth factor of the dynamics were varied, allowing for an analysis of the performance of the estimation method when estimating time-dependent parameter functions. In addition, a detailed analysis of pilots adaptation to the time-varying aircraft dynamics in both the roll and pitch axes could be performed. Pilot control behavior in both axes was significantly affected by the time-varying aircraft dynamics in roll and pitch, and by the growth factor. The main effect was found in the axis that contained the time-varying dynamics. However, pilot control behavior also changed over time in the axis not containing the time-varying aircraft dynamics. This indicates that some cross coupling exists in the perception and control processes between the roll and pitch axes.

  11. Scaling properties in time-varying networks with memory

    Science.gov (United States)

    Kim, Hyewon; Ha, Meesoon; Jeong, Hawoong

    2015-12-01

    The formation of network structure is mainly influenced by an individual node's activity and its memory, where activity can usually be interpreted as the individual inherent property and memory can be represented by the interaction strength between nodes. In our study, we define the activity through the appearance pattern in the time-aggregated network representation, and quantify the memory through the contact pattern of empirical temporal networks. To address the role of activity and memory in epidemics on time-varying networks, we propose temporal-pattern coarsening of activity-driven growing networks with memory. In particular, we focus on the relation between time-scale coarsening and spreading dynamics in the context of dynamic scaling and finite-size scaling. Finally, we discuss the universality issue of spreading dynamics on time-varying networks for various memory-causality tests.

  12. H-Shaped Multiple Linear Motor Drive Platform Control System Design Based on an Inverse System Method

    Directory of Open Access Journals (Sweden)

    Caiyan Qin

    2017-12-01

    Full Text Available Due to its simple mechanical structure and high motion stability, the H-shaped platform has been increasingly widely used in precision measuring, numerical control machining and semiconductor packaging equipment, etc. The H-shaped platform is normally driven by multiple (three permanent magnet synchronous linear motors. The main challenges for H-shaped platform-control include synchronous control between the two linear motors in the Y direction as well as total positioning error of the platform mover, a combination of position deviation in X and Y directions. To deal with the above challenges, this paper proposes a control strategy based on the inverse system method through state feedback and dynamic decoupling of the thrust force. First, mechanical dynamics equations have been deduced through the analysis of system coupling based on the platform structure. Second, the mathematical model of the linear motors and the relevant coordinate transformation between dq-axis currents and ABC-phase currents are analyzed. Third, after the main concept of inverse system method being explained, the inverse system model of the platform control system has been designed after defining relevant system variables. Inverse system model compensates the original nonlinear coupled system into pseudo-linear decoupled linear system, for which typical linear control methods, like PID, can be adopted to control the system. The simulation model of the control system is built in MATLAB/Simulink and the simulation result shows that the designed control system has both small synchronous deviation and small total trajectory tracking error. Furthermore, the control program has been run on NI controller for both fixed-loop-time and free-loop-time modes, and the test result shows that the average loop computation time needed is rather small, which makes it suitable for real industrial applications. Overall, it proves that the proposed new control strategy can be used in

  13. Transformation of binaural response properties in the ascending auditory pathway: influence of time-varying interaural phase disparity.

    Science.gov (United States)

    Spitzer, M W; Semple, M N

    1998-12-01

    Transformation of binaural response properties in the ascending auditory pathway: influence of time-varying interaural phase disparity. J. Neurophysiol. 80: 3062-3076, 1998. Previous studies demonstrated that tuning of inferior colliculus (IC) neurons to interaural phase disparity (IPD) is often profoundly influenced by temporal variation of IPD, which simulates the binaural cue produced by a moving sound source. To determine whether sensitivity to simulated motion arises in IC or at an earlier stage of binaural processing we compared responses in IC with those of two major IPD-sensitive neuronal classes in the superior olivary complex (SOC), neurons whose discharges were phase locked (PL) to tonal stimuli and those that were nonphase locked (NPL). Time-varying IPD stimuli consisted of binaural beats, generated by presenting tones of slightly different frequencies to the two ears, and interaural phase modulation (IPM), generated by presenting a pure tone to one ear and a phase modulated tone to the other. IC neurons and NPL-SOC neurons were more sharply tuned to time-varying than to static IPD, whereas PL-SOC neurons were essentially uninfluenced by the mode of stimulus presentation. Preferred IPD was generally similar in responses to static and time-varying IPD for all unit populations. A few IC neurons were highly influenced by the direction and rate of simulated motion, but the major effect for most IC neurons and all SOC neurons was a linear shift of preferred IPD at high rates-attributable to response latency. Most IC and NPL-SOC neurons were strongly influenced by IPM stimuli simulating motion through restricted ranges of azimuth; simulated motion through partially overlapping azimuthal ranges elicited discharge profiles that were highly discontiguous, indicating that the response associated with a particular IPD is dependent on preceding portions of the stimulus. In contrast, PL-SOC responses tracked instantaneous IPD throughout the trajectory of simulated

  14. FAST modularization framework for wind turbine simulation: full-system linearization

    Science.gov (United States)

    Jonkman, J. M.; Jonkman, B. J.

    2016-09-01

    The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well- established methods and tools for analyzing linear systems. This paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.

  15. Velocity distribution of electrons in time-varying low-temperature plasmas: progress in theoretical procedures over the past 70 years

    Science.gov (United States)

    Makabe, Toshiaki

    2018-03-01

    A time-varying low-temperature plasma sustained by electrical powers with various kinds of fRequencies has played a key role in the historical development of new technologies, such as gas lasers, ozonizers, micro display panels, dry processing of materials, medical care, and so on, since World War II. Electrons in a time-modulated low-temperature plasma have a proper velocity spectrum, i.e. velocity distribution dependent on the microscopic quantum characteristics of the feed gas molecule and on the external field strength and the frequency. In order to solve and evaluate the time-varying velocity distribution, we have mostly two types of theoretical methods based on the classical and linear Boltzmann equations, namely, the expansion method using the orthogonal function and the procedure of non-expansional temporal evolution. Both methods have been developed discontinuously and progressively in synchronization with those technological developments. In this review, we will explore the historical development of the theoretical procedure to evaluate the electron velocity distribution in a time-varying low-temperature plasma over the past 70 years.

  16. Time-varying coefficient vector autoregressions model based on dynamic correlation with an application to crude oil and stock markets.

    Science.gov (United States)

    Lu, Fengbin; Qiao, Han; Wang, Shouyang; Lai, Kin Keung; Li, Yuze

    2017-01-01

    This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor's 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relations evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Do Tick Attachment Times Vary between Different Tick-Pathogen Systems?

    Directory of Open Access Journals (Sweden)

    Stephanie L. Richards

    2017-05-01

    Full Text Available Improvements to risk assessments are needed to enhance our understanding of tick-borne disease epidemiology. We review tick vectors and duration of tick attachment required for pathogen transmission for the following pathogens/toxins and diseases: (1 Anaplasma phagocytophilum (anaplasmosis; (2 Babesia microti (babesiosis; (3 Borrelia burgdorferi (Lyme disease; (4 Southern tick-associated rash illness; (5 Borrelia hermsii (tick-borne relapsing fever; (6 Borrelia parkeri (tick-borne relapsing fever; (7 Borrelia turicatae (tick-borne relapsing fever; (8 Borrelia mayonii; (9 Borrelia miyamotoi; (10 Coxiella burnetii (Query fever; (11 Ehrlichia chaffeensis (ehrlichiosis; (12 Ehrlichia ewingii (ehrlichiosis; (13 Ehrlichia muris; (14 Francisella tularensis (tularemia; (15 Rickettsia 364D; (16 Rickettsia montanensis; (17 Rickettsia parkeri (American boutonneuse fever, American tick bite fever; (18 Rickettsia ricketsii (Rocky Mountain spotted fever; (19 Colorado tick fever virus (Colorado tick fever; (20 Heartland virus; (21 Powassan virus (Powassan disease; (22 tick paralysis neurotoxin; and (23 Galactose-α-1,3-galactose (Mammalian Meat Allergy-alpha-gal syndrome. Published studies for 12 of the 23 pathogens/diseases showed tick attachment times. Reported tick attachment times varied (<1 h to seven days between pathogen/toxin type and tick vector. Not all studies were designed to detect the duration of attachment required for transmission. Knowledge of this important aspect of vector competence is lacking and impairs risk assessment for some tick-borne pathogens.

  18. State space model extraction of thermohydraulic systems – Part I: A linear graph approach

    International Nuclear Information System (INIS)

    Uren, K.R.; Schoor, G. van

    2013-01-01

    Thermohydraulic simulation codes are increasingly making use of graphical design interfaces. The user can quickly and easily design a thermohydraulic system by placing symbols on the screen resembling system components. These components can then be connected to form a system representation. Such system models may then be used to obtain detailed simulations of the physical system. Usually this kind of simulation models are too complex and not ideal for control system design. Therefore, a need exists for automated techniques to extract lumped parameter models useful for control system design. The goal of this first paper, in a two part series, is to propose a method that utilises a graphical representation of a thermohydraulic system, and a lumped parameter modelling approach, to extract state space models. In this methodology each physical domain of the thermohydraulic system is represented by a linear graph. These linear graphs capture the interaction between all components within and across energy domains – hydraulic, thermal and mechanical. These linear graphs are analysed using a graph-theoretic approach to derive reduced order state space models. These models capture the dominant dynamics of the thermohydraulic system and are ideal for control system design purposes. The proposed state space model extraction method is demonstrated by considering a U-tube system. A non-linear state space model is extracted representing both the hydraulic and thermal domain dynamics of the system. The simulated state space model is compared with a Flownex ® model of the U-tube. Flownex ® is a validated systems thermal-fluid simulation software package. - Highlights: • A state space model extraction methodology based on graph-theoretic concepts. • An energy-based approach to consider multi-domain systems in a common framework. • Allow extraction of transparent (white-box) state space models automatically. • Reduced order models containing only independent state

  19. Stability analysis of switched linear systems defined by graphs

    OpenAIRE

    Athanasopoulos, Nikolaos; Lazar, Mircea

    2015-01-01

    We present necessary and sufficient conditions for global exponential stability for switched discrete-time linear systems, under arbitrary switching, which is constrained within a set of admissible transitions. The class of systems studied includes the family of systems under arbitrary switching, periodic systems, and systems with minimum and maximum dwell time specifications. To reach the result, we describe the set of rules that define the admissible transitions with a weighted directed gra...

  20. Testing for time-varying loadings in dynamic factor models

    DEFF Research Database (Denmark)

    Mikkelsen, Jakob Guldbæk

    Abstract: In this paper we develop a test for time-varying factor loadings in factor models. The test is simple to compute and is constructed from estimated factors and residuals using the principal components estimator. The hypothesis is tested by regressing the squared residuals on the squared...... there is evidence of time-varying loadings on the risk factors underlying portfolio returns for around 80% of the portfolios....

  1. A comparison between linear and toroidal Extrap systems

    International Nuclear Information System (INIS)

    Lehnert, B.

    1988-09-01

    The Extrap scheme consists of a Z-pinch immersed in an octupole field generated by currents in a set of external conductors. A comparison between linear and toroidal Extrap geometry is made in this paper. As compared to toroidal systems, linear geometry has the advantages of relative simplicity and of a current drive by means of electrodes. Linear devices are convenient for basic studies of Extrap, at moderately high pinch currents and plasma temperatures. Within the parameter ranges of experiments at high pinch currents and plasma temperatures, linear systems have on the other hand some substantial disadvantages, on account of the plasma interaction with the end regions. This results in a limitation of the energy confinement time, and leads in the case of an ohmically heated plasma to excessively high plasma densities and small pinch radii which also complicate the introduction of the external conductors. (author)

  2. Control-focused, nonlinear and time-varying modelling of dielectric elastomer actuators with frequency response analysis

    International Nuclear Information System (INIS)

    Jacobs, William R; Dodd, Tony J; Anderson, Sean R; Wilson, Emma D; Porrill, John; Assaf, Tareq; Rossiter, Jonathan

    2015-01-01

    Current models of dielectric elastomer actuators (DEAs) are mostly constrained to first principal descriptions that are not well suited to the application of control design due to their computational complexity. In this work we describe an integrated framework for the identification of control focused, data driven and time-varying DEA models that allow advanced analysis of nonlinear system dynamics in the frequency-domain. Experimentally generated input–output data (voltage-displacement) was used to identify control-focused, nonlinear and time-varying dynamic models of a set of film-type DEAs. The model description used was the nonlinear autoregressive with exogenous input structure. Frequency response analysis of the DEA dynamics was performed using generalized frequency response functions, providing insight and a comparison into the time-varying dynamics across a set of DEA actuators. The results demonstrated that models identified within the presented framework provide a compact and accurate description of the system dynamics. The frequency response analysis revealed variation in the time-varying dynamic behaviour of DEAs fabricated to the same specifications. These results suggest that the modelling and analysis framework presented here is a potentially useful tool for future work in guiding DEA actuator design and fabrication for application domains such as soft robotics. (paper)

  3. Fault detection for discrete-time LPV systems using interval observers

    Science.gov (United States)

    Zhang, Zhi-Hui; Yang, Guang-Hong

    2017-10-01

    This paper is concerned with the fault detection (FD) problem for discrete-time linear parameter-varying systems subject to bounded disturbances. A parameter-dependent FD interval observer is designed based on parameter-dependent Lyapunov and slack matrices. The design method is presented by translating the parameter-dependent linear matrix inequalities (LMIs) into finite ones. In contrast to the existing results based on parameter-independent and diagonal Lyapunov matrices, the derived disturbance attenuation, fault sensitivity and nonnegative conditions lead to less conservative LMI characterisations. Furthermore, without the need to design the residual evaluation functions and thresholds, the residual intervals generated by the interval observers are used directly for FD decision. Finally, simulation results are presented for showing the effectiveness and superiority of the proposed method.

  4. Time-Varying Periodicity in Intraday Volatility

    DEFF Research Database (Denmark)

    Andersen, Torben Gustav; Thyrsgaard, Martin; Todorov, Viktor

    We develop a nonparametric test for deciding whether return volatility exhibits time-varying intraday periodicity using a long time-series of high-frequency data. Our null hypothesis, commonly adopted in work on volatility modeling, is that volatility follows a stationary process combined...... with a constant time-of-day periodic component. We first construct time-of-day volatility estimates and studentize the high-frequency returns with these periodic components. If the intraday volatility periodicity is invariant over time, then the distribution of the studentized returns should be identical across...... with estimating volatility moments through their sample counterparts. Critical values are computed via easy-to-implement simulation. In an empirical application to S&P 500 index returns, we find strong evidence for variation in the intraday volatility pattern driven in part by the current level of volatility...

  5. Neural network-based robust actuator fault diagnosis for a non-linear multi-tank system.

    Science.gov (United States)

    Mrugalski, Marcin; Luzar, Marcel; Pazera, Marcin; Witczak, Marcin; Aubrun, Christophe

    2016-03-01

    The paper is devoted to the problem of the robust actuator fault diagnosis of the dynamic non-linear systems. In the proposed method, it is assumed that the diagnosed system can be modelled by the recurrent neural network, which can be transformed into the linear parameter varying form. Such a system description allows developing the designing scheme of the robust unknown input observer within H∞ framework for a class of non-linear systems. The proposed approach is designed in such a way that a prescribed disturbance attenuation level is achieved with respect to the actuator fault estimation error, while guaranteeing the convergence of the observer. The application of the robust unknown input observer enables actuator fault estimation, which allows applying the developed approach to the fault tolerant control tasks. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Applications, dosimetry and biological interactions of static and time-varying magnetic fields

    International Nuclear Information System (INIS)

    Tenforde, T.S.

    1988-08-01

    The primary topics of this presentation include: (1) the applications of magnetic fields in research, industry, and medical technologies; (2) mechanisms of interaction of static and time-varying magnetic fields with living systems; (3) human health effects of exposure to static and time-varying magnetic fields in occupational, medical, and residential settings; and (4) recent advances in the dosimetry of extremely-low-frequency electromagnetic fields. The discussion of these topics is centered about two issues of considerable contemporary interest: (1) potential health effects of the fields used in magnetic resonance imaging and in vivo spectroscopy, and (2) the controversial issue of whether exposure to extremely-low-frequency (ELF) electromagnetic fields in the home and workplace leads to an elevated risk of cancer. 11 refs

  7. Soil non-linearity and its effect on the dynamic behaviour of offshore platform foundations

    Energy Technology Data Exchange (ETDEWEB)

    Madshus, Christian

    1997-07-01

    in the laboratory tests. It was also found that models where the hysteretic non-linearity is approximated by any type of viscous or complex stiffness effect will severely overpredict the soil damping of the superimposed load component. The resonant response of dynamic systems with cyclically time-varying stiffness has been studied through numerical simulations and analytical derivations. The responses of these systems have been compared to numerically simulated responses of systems with real hysteretic non-linearity and comparable loading. It has been concluded that the time-varying systems reasonably well reproduce the resonant response of the non-linear systems for most situations. The time-varying system approach is proposed as a candidate method for linearization of dynamic platform foundation response analyses. The thesis recommends investigations for further validation of the findings made in the thesis before the approach may be utilized in platform design. Recommendations are also given on improved methods for platform foundation monitoring systems and for improving elasto-plastic constitutive soil models.

  8. Linear discrete-time state space realization of a modified quadruple tank system with state estimation using Kalman filter

    DEFF Research Database (Denmark)

    Mohd. Azam, Sazuan Nazrah

    2017-01-01

    In this paper, we used the modified quadruple tank system that represents a multi-input-multi-output (MIMO) system as an example to present the realization of a linear discrete-time state space model and to obtain the state estimation using Kalman filter in a methodical mannered. First, an existing...... part of the Kalman filter is used to estimates the current state, based on the model and the measurements. The static and dynamic Kalman filter is compared and all results is demonstrated through simulations....

  9. Two-dimensional statistical linear discriminant analysis for real-time robust vehicle-type recognition

    Science.gov (United States)

    Zafar, I.; Edirisinghe, E. A.; Acar, S.; Bez, H. E.

    2007-02-01

    Automatic vehicle Make and Model Recognition (MMR) systems provide useful performance enhancements to vehicle recognitions systems that are solely based on Automatic License Plate Recognition (ALPR) systems. Several car MMR systems have been proposed in literature. However these approaches are based on feature detection algorithms that can perform sub-optimally under adverse lighting and/or occlusion conditions. In this paper we propose a real time, appearance based, car MMR approach using Two Dimensional Linear Discriminant Analysis that is capable of addressing this limitation. We provide experimental results to analyse the proposed algorithm's robustness under varying illumination and occlusions conditions. We have shown that the best performance with the proposed 2D-LDA based car MMR approach is obtained when the eigenvectors of lower significance are ignored. For the given database of 200 car images of 25 different make-model classifications, a best accuracy of 91% was obtained with the 2D-LDA approach. We use a direct Principle Component Analysis (PCA) based approach as a benchmark to compare and contrast the performance of the proposed 2D-LDA approach to car MMR. We conclude that in general the 2D-LDA based algorithm supersedes the performance of the PCA based approach.

  10. Modeling information diffusion in time-varying community networks

    Science.gov (United States)

    Cui, Xuelian; Zhao, Narisa

    2017-12-01

    Social networks are rarely static, and they typically have time-varying network topologies. A great number of studies have modeled temporal networks and explored social contagion processes within these models; however, few of these studies have considered community structure variations. In this paper, we present a study of how the time-varying property of a modular structure influences the information dissemination. First, we propose a continuous-time Markov model of information diffusion where two parameters, mobility rate and community attractiveness, are introduced to address the time-varying nature of the community structure. The basic reproduction number is derived, and the accuracy of this model is evaluated by comparing the simulation and theoretical results. Furthermore, numerical results illustrate that generally both the mobility rate and community attractiveness significantly promote the information diffusion process, especially in the initial outbreak stage. Moreover, the strength of this promotion effect is much stronger when the modularity is higher. Counterintuitively, it is found that when all communities have the same attractiveness, social mobility no longer accelerates the diffusion process. In addition, we show that the local spreading in the advantage group has been greatly enhanced due to the agglomeration effect caused by the social mobility and community attractiveness difference, which thus increases the global spreading.

  11. Do Time-Varying Covariances, Volatility Comovement and Spillover Matter?

    OpenAIRE

    Lakshmi Balasubramanyan

    2005-01-01

    Financial markets and their respective assets are so intertwined; analyzing any single market in isolation ignores important information. We investigate whether time varying volatility comovement and spillover impact the true variance-covariance matrix under a time-varying correlation set up. Statistically significant volatility spillover and comovement between US, UK and Japan is found. To demonstrate the importance of modelling volatility comovement and spillover, we look at a simple portfo...

  12. Time-dependent density functional theory of open quantum systems in the linear-response regime.

    Science.gov (United States)

    Tempel, David G; Watson, Mark A; Olivares-Amaya, Roberto; Aspuru-Guzik, Alán

    2011-02-21

    Time-dependent density functional theory (TDDFT) has recently been extended to describe many-body open quantum systems evolving under nonunitary dynamics according to a quantum master equation. In the master equation approach, electronic excitation spectra are broadened and shifted due to relaxation and dephasing of the electronic degrees of freedom by the surrounding environment. In this paper, we develop a formulation of TDDFT linear-response theory (LR-TDDFT) for many-body electronic systems evolving under a master equation, yielding broadened excitation spectra. This is done by mapping an interacting open quantum system onto a noninteracting open Kohn-Sham system yielding the correct nonequilibrium density evolution. A pseudoeigenvalue equation analogous to the Casida equations of the usual LR-TDDFT is derived for the Redfield master equation, yielding complex energies and Lamb shifts. As a simple demonstration, we calculate the spectrum of a C(2 +) atom including natural linewidths, by treating the electromagnetic field vacuum as a photon bath. The performance of an adiabatic exchange-correlation kernel is analyzed and a first-order frequency-dependent correction to the bare Kohn-Sham linewidth based on the Görling-Levy perturbation theory is calculated.

  13. Newtonian cosmology with a time-varying constant of gravitation

    International Nuclear Information System (INIS)

    McVittie, G.C.

    1978-01-01

    Newtonian cosmology is based on the Eulerian equations of fluid mechanics combined with Poisson's equation modified by the introduction of a time-varying G. Spherically symmetric model universes are worked out with instantaneously uniform densities. They are indeterminate unless instantaneous uniformity of the pressure is imposed. When G varies as an inverse power of the time, the models can in some cases be shown to depend on the solution of a second-order differential equation which also occurs in the Friedmann models of general relativity. In Section 3, a method for 'passing through' a singularity of this equation is proposed which entails making four arbitrary mathematical assumptions. When G varies as (time) -1 , models with initially cycloidal motion are possible, each cycle becoming longer as time progresses. Finally, gravitation becomes so weak that the model expands to infinity. Kinetic and potential energies for the whole model are derived from the basic equations; their sum is not constant. (author)

  14. Novel criteria for exponential synchronization of inner time-varying complex networks with coupling delay

    International Nuclear Information System (INIS)

    Zhang Qun-Jiao; Zhao Jun-Chan

    2012-01-01

    This paper mainly investigates the exponential synchronization of an inner time-varying complex network with coupling delay. Firstly, the synchronization of complex networks is decoupled into the stability of the corresponding dynamical systems. Based on the Lyapunov function theory, some sufficient conditions to guarantee its stability with any given convergence rate are derived, thus the synchronization of the networks is achieved. Finally, the results are illustrated by a simple time-varying network model with a coupling delay. All involved numerical simulations verify the correctness of the theoretical analysis. (general)

  15. Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis

    Science.gov (United States)

    Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés and, Luis G.; García Beltrán, Carlos Daniel

    2013-01-01

    This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results. PMID:23447007

  16. Synchronization of nonidentical chaotic neural networks with leakage delay and mixed time-varying delays

    Directory of Open Access Journals (Sweden)

    Cao Jinde

    2011-01-01

    Full Text Available Abstract In this paper, an integral sliding mode control approach is presented to investigate synchronization of nonidentical chaotic neural networks with discrete and distributed time-varying delays as well as leakage delay. By considering a proper sliding surface and constructing Lyapunov-Krasovskii functional, as well as employing a combination of the free-weighting matrix method, Newton-Leibniz formulation and inequality technique, a sliding mode controller is designed to achieve the asymptotical synchronization of the addressed nonidentical neural networks. Moreover, a sliding mode control law is also synthesized to guarantee the reachability of the specified sliding surface. The provided conditions are expressed in terms of linear matrix inequalities, and are dependent on the discrete and distributed time delays as well as leakage delay. A simulation example is given to verify the theoretical results.

  17. Modeling of Electricity Demand for Azerbaijan: Time-Varying Coefficient Cointegration Approach

    Directory of Open Access Journals (Sweden)

    Jeyhun I. Mikayilov

    2017-11-01

    Full Text Available Recent literature has shown that electricity demand elasticities may not be constant over time and this has investigated using time-varying estimation methods. As accurate modeling of electricity demand is very important in Azerbaijan, which is a transitional country facing significant change in its economic outlook, we analyze whether the response of electricity demand to income and price is varying over time in this economy. We employed the Time-Varying Coefficient cointegration approach, a cutting-edge time-varying estimation method. We find evidence that income elasticity demonstrates sizeable variation for the period of investigation ranging from 0.48% to 0.56%. The study has some useful policy implications related to the income and price aspects of the electricity consumption in Azerbaijan.

  18. 一类含非线性扰动的区间变时滞系统鲁棒稳定性判据%Robust Stability Criteria for Systems with Interval Time-varying Delay and Nonlinear Perturbations

    Institute of Scientific and Technical Information of China (English)

    惠俊军; 张合新; 周鑫; 孟飞; 张金生

    2014-01-01

    Interval time delay is an important delay type in practical systems. In such sys-tems, the delay may vary in a range for which the lower bound is not restricted to being zero. In this paper, we consider the robust stability for a class of linear systems with interval time-varying delay and nonlinear perturbations. Based on the delay decomposition approach, both the lower and upper bounds of the interval time-varying delay are proposed. By applying a new Lyapunov-Krasovskii (L-K) functional, and free-weighing matrix approach, a less conservative delay-dependent stability criteria are obtained, which are established in the forms of linear matrix inequalities (LMIs). The main advantage of the method is that more information of the interval delay is employed, and hence yields less conservative. Finally, numerical examples indicate the effectiveness and superiority of the proposed method.%区间时滞是在实际应用当中一类重要的时滞类型。在这类系统当中,时滞往往处于一个变化的区间之内,而时滞的下界不一定为零。本文讨论一类含非线性扰动的区间变时滞系统的稳定性问题。基于时滞分解法,把时滞下界分成两个相等的子区间,通过构造包含时滞区间下界和上界新Lyapunov-Krasovskii (L-K)泛函,结合改进的自由权矩阵技术,建立了线性矩阵不等式(LMI)形式的时滞相关稳定性判据。该方法充分利用了系统的时滞信息,因而具有更低的保守性。数值算例说明了该方法的有效性和优越性。

  19. Delay-dependent exponential stability for neural networks with discrete and distributed time-varying delays

    International Nuclear Information System (INIS)

    Zhu Xunlin; Wang Youyi

    2009-01-01

    This Letter studies the exponential stability for a class of neural networks (NNs) with both discrete and distributed time-varying delays. Under weaker assumptions on the activation functions, by defining a more general type of Lyapunov functionals and developing a new convex combination technique, new less conservative and less complex stability criteria are established to guarantee the global exponential stability of the discussed NNs. The obtained conditions are dependent on both discrete and distributed delays, are expressed in terms of linear matrix inequalities (LMIs), and contain fewer decision variables. Numerical examples are given to illustrate the effectiveness and the less conservatism of the proposed conditions.

  20. Time evolution of linearized gauge field fluctuations on a real-time lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, A. [CERN, Theoretical Physics Department, Geneva (Switzerland); University of Stavanger, Faculty of Science and Technology, Stavanger (Norway); Lappi, T. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, Jyvaeskylae (Finland); University of Helsinki, Helsinki Institute of Physics, P.O. Box 64, Helsinki (Finland); Peuron, J. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, Jyvaeskylae (Finland)

    2016-12-15

    Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Due to instabilities, small quantum fluctuations on top of the classical background may significantly affect the dynamics of the system. In this paper we argue for the need for a numerical calculation of a system of classical gauge fields and small linearized fluctuations in a way that keeps the separation between the two manifest. We derive and test an explicit algorithm to solve these equations on the lattice, maintaining gauge invariance and Gauss' law. (orig.)

  1. Time evolution of linearized gauge field fluctuations on a real-time lattice

    CERN Document Server

    Kurkela, Aleksi; Peuron, Jarkko

    2016-01-01

    Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Due to instabilities, small quantum fluctuations on top of the classical background may significantly affect the dynamics of the system. In this paper we argue for the need for a numerical calculation of a system of classical gauge fields and small linearized fluctuations in a way that keeps the separation between the two manifest. We derive and test an explicit algorithm to solve these equations on the lattice, maintaining gauge invariance and Gauss's law.

  2. Feedback systems for linear colliders

    CERN Document Server

    Hendrickson, L; Himel, Thomas M; Minty, Michiko G; Phinney, N; Raimondi, Pantaleo; Raubenheimer, T O; Shoaee, H; Tenenbaum, P G

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an intregal part of the design. Feedback requiremetns for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at hi...

  3. Linear filters as a method of real-time prediction of geomagnetic activity

    International Nuclear Information System (INIS)

    McPherron, R.L.; Baker, D.N.; Bargatze, L.F.

    1985-01-01

    Important factors controlling geomagnetic activity include the solar wind velocity, the strength of the interplanetary magnetic field (IMF), and the field orientation. Because these quantities change so much in transit through the solar wind, real-time monitoring immediately upstream of the earth provides the best input for any technique of real-time prediction. One such technique is linear prediction filtering which utilizes past histories of the input and output of a linear system to create a time-invariant filter characterizing the system. Problems of nonlinearity or temporal changes of the system can be handled by appropriate choice of input parameters and piecewise approximation in various ranges of the input. We have created prediction filters for all the standard magnetic indices and tested their efficiency. The filters show that the initial response of the magnetosphere to a southward turning of the IMF peaks in 20 minutes and then again in 55 minutes. After a northward turning, auroral zone indices and the midlatitude ASYM index return to background within 2 hours, while Dst decays exponentially with a time constant of about 8 hours. This paper describes a simple, real-time system utilizing these filters which could predict a substantial fraction of the variation in magnetic activity indices 20 to 50 minutes in advance

  4. Time-varying correlation and common structures in volatility

    NARCIS (Netherlands)

    Liu, Yang

    2016-01-01

    This thesis studies time series properties of the covariance structure of multivariate asset returns. First, the time-varying feature of correlation is investigated at the intraday level with a new correlation model incorporating the intraday correlation dynamics. Second, the thesis develops a

  5. Applicability of Time-Averaged Holography for Micro-Electro-Mechanical System Performing Non-Linear Oscillations

    Directory of Open Access Journals (Sweden)

    Paulius Palevicius

    2014-01-01

    Full Text Available Optical investigation of movable microsystem components using time-averaged holography is investigated in this paper. It is shown that even a harmonic excitation of a non-linear microsystem may result in an unpredictable chaotic motion. Analytical results between parameters of the chaotic oscillations and the formation of time-averaged fringes provide a deeper insight into computational and experimental interpretation of time-averaged MEMS holograms.

  6. Applicability of Time-Averaged Holography for Micro-Electro-Mechanical System Performing Non-Linear Oscillations

    Science.gov (United States)

    Palevicius, Paulius; Ragulskis, Minvydas; Palevicius, Arvydas; Ostasevicius, Vytautas

    2014-01-01

    Optical investigation of movable microsystem components using time-averaged holography is investigated in this paper. It is shown that even a harmonic excitation of a non-linear microsystem may result in an unpredictable chaotic motion. Analytical results between parameters of the chaotic oscillations and the formation of time-averaged fringes provide a deeper insight into computational and experimental interpretation of time-averaged MEMS holograms. PMID:24451467

  7. Applicability of time-averaged holography for micro-electro-mechanical system performing non-linear oscillations.

    Science.gov (United States)

    Palevicius, Paulius; Ragulskis, Minvydas; Palevicius, Arvydas; Ostasevicius, Vytautas

    2014-01-21

    Optical investigation of movable microsystem components using time-averaged holography is investigated in this paper. It is shown that even a harmonic excitation of a non-linear microsystem may result in an unpredictable chaotic motion. Analytical results between parameters of the chaotic oscillations and the formation of time-averaged fringes provide a deeper insight into computational and experimental interpretation of time-averaged MEMS holograms.

  8. Time series linear regression of half-hourly radon levels in a residence

    International Nuclear Information System (INIS)

    Hull, D.A.

    1990-01-01

    This paper uses time series linear regression modelling to assess the impact of temperature and pressure differences on the radon measured in the basement and in the basement drain of a research house in the Princeton area of New Jersey. The models examine half-hour averages of several climate and house parameters for several periods of up to 11 days. The drain radon concentrations follow a strong diurnal pattern that shifts 12 hours in phase between the summer and the fall seasons. This shift can be linked both to the change in temperature differences between seasons and to an experiment which involved sealing the connection between the drain and the basement. We have found that both the basement and the drain radon concentrations are correlated to basement-outdoor and soil-outdoor temperature differences (the coefficient of determination varies between 0.6 and 0.8). The statistical models for the summer periods clearly describe a physical system where the basement drain pumps radon in during the night and sucks radon out during the day

  9. Feedback Systems for Linear Colliders

    International Nuclear Information System (INIS)

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an integral part of the design. Feedback requirements for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at high bandwidth and fast response. To correct for the motion of individual bunches within a train, both feedforward and feedback systems are planned. SLC experience has shown that feedback systems are an invaluable operational tool for decoupling systems, allowing precision tuning, and providing pulse-to-pulse diagnostics. Feedback systems for the NLC will incorporate the key SLC features and the benefits of advancing technologies

  10. Consys Linear Control System Design Software Package

    International Nuclear Information System (INIS)

    Diamantidis, Z.

    1987-01-01

    This package is created in order to help engineers, researchers, students and all who work on linear control systems. The software includes all time and frequency domain analysises, spectral analysises and networks, active filters and regulators design aids. The programmes are written on Hewlett Packard computer in Basic 4.0

  11. Magnetization Switching of a Co /Pt Multilayered Perpendicular Nanomagnet Assisted by a Microwave Field with Time-Varying Frequency

    Science.gov (United States)

    Suto, Hirofumi; Kanao, Taro; Nagasawa, Tazumi; Mizushima, Koichi; Sato, Rie

    2018-05-01

    Microwave-assisted magnetization switching (MAS) is attracting attention as a method for reversing nanomagnets with a high magnetic anisotropy by using a small-amplitude magnetic field. We experimentally study MAS of a perpendicularly magnetized nanomagnet by applying a microwave magnetic field with a time-varying frequency. Because the microwave field frequency can follow the nonlinear decrease of the resonance frequency, larger magnetization excitation than that in a constant-frequency microwave field is induced, which enhances the MAS effect. The switching field decreases almost linearly as the start value of the time-varying microwave field frequency increases, and it becomes smaller than the minimum switching field in a constant-frequency microwave field. To obtain this enhancement of the MAS effect, the end value of the time-varying microwave field frequency needs to be almost the same as or lower than the critical frequency for MAS in a constant-frequency microwave field. In addition, the frequency change typically needs to take 1 ns or longer to make the rate of change slow enough for the magnetization to follow the frequency change. This switching behavior is qualitatively explained by the theory based on the macrospin model.

  12. Standard diffusive systems are well-posed linear systems

    NARCIS (Netherlands)

    Matignon, Denis; Zwart, Heiko J.

    2004-01-01

    The class of well-posed linear systems as introduced by Salamon has become a well-understood class of systems, see e.g. the work of Weiss and the book of Staffans. Many partial partial differential equations with boundary control and point observation can be formulated as a well-posed linear system.

  13. Time-varying causal network of the Korean financial system based on firm-specific risk premiums

    Science.gov (United States)

    Song, Jae Wook; Ko, Bonggyun; Cho, Poongjin; Chang, Woojin

    2016-09-01

    The aim of this paper is to investigate the Korean financial system based on time-varying causal network. We discover many stylized facts by utilizing the firm-specific risk premiums for measuring the causality direction from a firm to firm. At first, we discover that the interconnectedness of causal network is affected by the outbreak of financial events; the co-movement of firm-specific risk premium is strengthened after each positive event, and vice versa. Secondly, we find that the major sector of the Korean financial system is the Depositories, and the financial reform in June-2011 achieves its purpose by weakening the power of risk-spillovers of Broker-Dealers. Thirdly, we identify that the causal network is a small-world network with scale-free topology where the power-law exponents of out-Degree and negative event are more significant than those of in-Degree and positive event. Lastly, we discuss that the current aspects of causal network are closely related to the long-term future scenario of the KOSPI Composite index where the direction and stability are significantly affected by the power of risk-spillovers and the power-law exponents of degree distributions, respectively.

  14. Global synchronization criteria with channel time-delay for chaotic time-delay system

    International Nuclear Information System (INIS)

    Sun Jitao

    2004-01-01

    Based on the Lyapunov stabilization theory, matrix measure, and linear matrix inequality (LMIs), this paper studies the chaos synchronization of time-delay system using the unidirectional linear error feedback coupling with time-delay. Some generic conditions of chaos synchronization with time-delay in the transmission channel is established. The chaotic Chua's circuit is used for illustration, where the coupling parameters are determined according to the criteria under which the global chaos synchronization of the time-delay coupled systems is achieved

  15. Compressive System Identification in the Linear Time-Invariant framework

    KAUST Repository

    Toth, Roland

    2011-12-01

    Selection of an efficient model parametrization (model order, delay, etc.) has crucial importance in parametric system identification. It navigates a trade-off between representation capabilities of the model (structural bias) and effects of over-parametrization (variance increase of the estimates). There exists many approaches to this widely studied problem in terms of statistical regularization methods and information criteria. In this paper, an alternative ℓ 1 regularization scheme is proposed for estimation of sparse linear-regression models based on recent results in compressive sensing. It is shown that the proposed scheme provides consistent estimation of sparse models in terms of the so-called oracle property, it is computationally attractive for large-scale over-parameterized models and it is applicable in case of small data sets, i.e., underdetermined estimation problems. The performance of the approach w.r.t. other regularization schemes is demonstrated in an extensive Monte Carlo study. © 2011 IEEE.

  16. Is the local linearity of space-time inherited from the linearity of probabilities?

    Science.gov (United States)

    Müller, Markus P.; Carrozza, Sylvain; Höhn, Philipp A.

    2017-02-01

    The appearance of linear spaces, describing physical quantities by vectors and tensors, is ubiquitous in all of physics, from classical mechanics to the modern notion of local Lorentz invariance. However, as natural as this seems to the physicist, most computer scientists would argue that something like a ‘local linear tangent space’ is not very typical and in fact a quite surprising property of any conceivable world or algorithm. In this paper, we take the perspective of the computer scientist seriously, and ask whether there could be any inherently information-theoretic reason to expect this notion of linearity to appear in physics. We give a series of simple arguments, spanning quantum information theory, group representation theory, and renormalization in quantum gravity, that supports a surprising thesis: namely, that the local linearity of space-time might ultimately be a consequence of the linearity of probabilities. While our arguments involve a fair amount of speculation, they have the virtue of being independent of any detailed assumptions on quantum gravity, and they are in harmony with several independent recent ideas on emergent space-time in high-energy physics.

  17. Is the local linearity of space-time inherited from the linearity of probabilities?

    International Nuclear Information System (INIS)

    Müller, Markus P; Carrozza, Sylvain; Höhn, Philipp A

    2017-01-01

    The appearance of linear spaces, describing physical quantities by vectors and tensors, is ubiquitous in all of physics, from classical mechanics to the modern notion of local Lorentz invariance. However, as natural as this seems to the physicist, most computer scientists would argue that something like a ‘local linear tangent space’ is not very typical and in fact a quite surprising property of any conceivable world or algorithm. In this paper, we take the perspective of the computer scientist seriously, and ask whether there could be any inherently information-theoretic reason to expect this notion of linearity to appear in physics. We give a series of simple arguments, spanning quantum information theory, group representation theory, and renormalization in quantum gravity, that supports a surprising thesis: namely, that the local linearity of space-time might ultimately be a consequence of the linearity of probabilities. While our arguments involve a fair amount of speculation, they have the virtue of being independent of any detailed assumptions on quantum gravity, and they are in harmony with several independent recent ideas on emergent space-time in high-energy physics. (paper)

  18. Linear dynamical quantum systems analysis, synthesis, and control

    CERN Document Server

    Nurdin, Hendra I

    2017-01-01

    This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics ...

  19. Guaranteed Cost Finite-Time Control of Discrete-Time Positive Impulsive Switched Systems

    Directory of Open Access Journals (Sweden)

    Leipo Liu

    2018-01-01

    Full Text Available This paper considers the guaranteed cost finite-time boundedness of discrete-time positive impulsive switched systems. Firstly, the definition of guaranteed cost finite-time boundedness is introduced. By using the multiple linear copositive Lyapunov function (MLCLF and average dwell time (ADT approach, a state feedback controller is designed and sufficient conditions are obtained to guarantee that the corresponding closed-loop system is guaranteed cost finite-time boundedness (GCFTB. Such conditions can be solved by linear programming. Finally, a numerical example is provided to show the effectiveness of the proposed method.

  20. Multimodal Pilot Behavior in Multi-Axis Tracking Tasks with Time-Varying Motion Cueing Gains

    Science.gov (United States)

    Zaal, P. M. T; Pool, D. M.

    2014-01-01

    In a large number of motion-base simulators, adaptive motion filters are utilized to maximize the use of the available motion envelope of the motion system. However, not much is known about how the time-varying characteristics of such adaptive filters affect pilots when performing manual aircraft control. This paper presents the results of a study investigating the effects of time-varying motion filter gains on pilot control behavior and performance. An experiment was performed in a motion-base simulator where participants performed a simultaneous roll and pitch tracking task, while the roll and/or pitch motion filter gains changed over time. Results indicate that performance increases over time with increasing motion gains. This increase is a result of a time-varying adaptation of pilots' equalization dynamics, characterized by increased visual and motion response gains and decreased visual lead time constants. Opposite trends are found for decreasing motion filter gains. Even though the trends in both controlled axes are found to be largely the same, effects are less significant in roll. In addition, results indicate minor cross-coupling effects between pitch and roll, where a cueing variation in one axis affects the behavior adopted in the other axis.

  1. Non-linear time series analysis on flow instability of natural circulation under rolling motion condition

    International Nuclear Information System (INIS)

    Zhang, Wenchao; Tan, Sichao; Gao, Puzhen; Wang, Zhanwei; Zhang, Liansheng; Zhang, Hong

    2014-01-01

    Highlights: • Natural circulation flow instabilities in rolling motion are studied. • The method of non-linear time series analysis is used. • Non-linear evolution characteristic of flow instability is analyzed. • Irregular complex flow oscillations are chaotic oscillations. • The effect of rolling parameter on the threshold of chaotic oscillation is studied. - Abstract: Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions were studied by the method of non-linear time series analysis. Experimental flow time series of different dimensionless power and rolling parameters were analyzed based on phase space reconstruction theory. Attractors which were reconstructed in phase space and the geometric invariants, including correlation dimension, Kolmogorov entropy and largest Lyapunov exponent, were determined. Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions was studied based on the results of the geometric invariant analysis. The results indicated that the values of the geometric invariants first increase and then decrease as dimensionless power increases which indicated the non-linear characteristics of the system first enhance and then weaken. The irregular complex flow oscillation is typical chaotic oscillation because the value of geometric invariants is at maximum. The threshold of chaotic oscillation becomes larger as the rolling frequency or rolling amplitude becomes big. The main influencing factors that influence the non-linear characteristics of the natural circulation system under rolling motion are thermal driving force, flow resistance and the additional forces caused by rolling motion. The non-linear characteristics of the natural circulation system under rolling motion changes caused by the change of the feedback and coupling degree among these influencing factors when the dimensionless power or rolling parameters changes

  2. Linear time relational prototype based learning.

    Science.gov (United States)

    Gisbrecht, Andrej; Mokbel, Bassam; Schleif, Frank-Michael; Zhu, Xibin; Hammer, Barbara

    2012-10-01

    Prototype based learning offers an intuitive interface to inspect large quantities of electronic data in supervised or unsupervised settings. Recently, many techniques have been extended to data described by general dissimilarities rather than Euclidean vectors, so-called relational data settings. Unlike the Euclidean counterparts, the techniques have quadratic time complexity due to the underlying quadratic dissimilarity matrix. Thus, they are infeasible already for medium sized data sets. The contribution of this article is twofold: On the one hand we propose a novel supervised prototype based classification technique for dissimilarity data based on popular learning vector quantization (LVQ), on the other hand we transfer a linear time approximation technique, the Nyström approximation, to this algorithm and an unsupervised counterpart, the relational generative topographic mapping (GTM). This way, linear time and space methods result. We evaluate the techniques on three examples from the biomedical domain.

  3. Investigating Time-Varying Drivers of Grid Project Emissions Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Emily L.; Thayer, Brandon L.; Pal, Seemita; Studarus, Karen E.

    2017-11-15

    The emissions consequences of smart grid technologies depend heavily on their context and vary not only by geographical location, but by time of year. The same technology operated to meet the same objective may increase the emissions associated with energy generation for part of the year and decrease emissions during other times. The Grid Project Impact Quantification (GridPIQ) tool provides the ability to estimate these seasonal variations and garner insight into the time-varying drivers of grid project emissions impacts. This work leverages GridPIQ to examine the emissions implications across years and seasons of adding energy storage technology to reduce daily peak demand in California and New York.

  4. Sparse Linear Solver for Power System Analysis Using FPGA

    National Research Council Canada - National Science Library

    Johnson, J. R; Nagvajara, P; Nwankpa, C

    2005-01-01

    .... Numerical solution to load flow equations are typically computed using Newton-Raphson iteration, and the most time consuming component of the computation is the solution of a sparse linear system...

  5. Novel criteria for global exponential periodicity and stability of recurrent neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Song Qiankun

    2008-01-01

    In this paper, the global exponential periodicity and stability of recurrent neural networks with time-varying delays are investigated by applying the idea of vector Lyapunov function, M-matrix theory and inequality technique. We assume neither the global Lipschitz conditions on these activation functions nor the differentiability on these time-varying delays, which were needed in other papers. Several novel criteria are found to ascertain the existence, uniqueness and global exponential stability of periodic solution for recurrent neural network with time-varying delays. Moreover, the exponential convergence rate index is estimated, which depends on the system parameters. Some previous results are improved and generalized, and an example is given to show the effectiveness of our method

  6. FAST Modularization Framework for Wind Turbine Simulation: Full-System Linearization: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, Jason; Jonkman, Bonnie

    2016-11-01

    The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well-established methods and tools for analyzing linear systems. This paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.

  7. Asymptotic theory of time varying networks with burstiness and heterogeneous activation patterns

    Science.gov (United States)

    Burioni, Raffaella; Ubaldi, Enrico; Vezzani, Alessandro

    2017-05-01

    The recent availability of large-scale, time-resolved and high quality digital datasets has allowed for a deeper understanding of the structure and properties of many real-world networks. The empirical evidence of a temporal dimension prompted the switch of paradigm from a static representation of networks to a time varying one. In this work we briefly review the framework of time-varying-networks in real world social systems, especially focusing on the activity-driven paradigm. We develop a framework that allows for the encoding of three generative mechanisms that seem to play a central role in the social networks’ evolution: the individual’s propensity to engage in social interactions, its strategy in allocate these interactions among its alters and the burstiness of interactions amongst social actors. The functional forms and probability distributions encoding these mechanisms are typically data driven. A natural question arises if different classes of strategies and burstiness distributions, with different local scale behavior and analogous asymptotics can lead to the same long time and large scale structure of the evolving networks. We consider the problem in its full generality, by investigating and solving the system dynamics in the asymptotic limit, for general classes of ties allocation mechanisms and waiting time probability distributions. We show that the asymptotic network evolution is driven by a few characteristics of these functional forms, that can be extracted from direct measurements on large datasets.

  8. Non-linear shape functions over time in the space-time finite element method

    Directory of Open Access Journals (Sweden)

    Kacprzyk Zbigniew

    2017-01-01

    Full Text Available This work presents a generalisation of the space-time finite element method proposed by Kączkowski in his seminal of 1970’s and early 1980’s works. Kączkowski used linear shape functions in time. The recurrence formula obtained by Kączkowski was conditionally stable. In this paper, non-linear shape functions in time are proposed.

  9. Linear electric field time-of-flight ion mass spectrometer

    Science.gov (United States)

    Funsten, Herbert O [Los Alamos, NM; Feldman, William C [Los Alamos, NM

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  10. Effects of linear and nonlinear time-delayed feedback on the noise-enhanced stability phenomenon in a periodically driven bistable system

    International Nuclear Information System (INIS)

    Jia, Zheng-Lin; Mei, Dong-Cheng

    2011-01-01

    We investigate numerically the effects of time delay on the phenomenon of noise-enhanced stability (NES) in a periodically modulated bistable system. Three types of time-delayed feedback, including linear delayed feedback, nonlinear delayed feedback and global delayed feedback, are considered. We find a non-monotonic behaviour of the mean first-passage time (MFPT) as a function of the delay time τ, with a maximum in the case of linear delayed feedback and with a minimum in the case of nonlinear delayed feedback. There are two peculiar values of τ around which the NES phenomenon is enhanced or weakened. For the case of global delayed feedback, the increase of τ always weakens the NES phenomenon. Moreover, we also show that the amplitude A and the frequency Ω of the periodic forcing play an opposite role in the NES phenomenon, i.e. the increase of A weakens the NES effect while the increase of Ω enhances it. These observations demonstrate that the time-delayed feedback can be used as a feasible control scheme for the NES phenomenon

  11. Inferring time-varying network topologies from gene expression data.

    Science.gov (United States)

    Rao, Arvind; Hero, Alfred O; States, David J; Engel, James Douglas

    2007-01-01

    Most current methods for gene regulatory network identification lead to the inference of steady-state networks, that is, networks prevalent over all times, a hypothesis which has been challenged. There has been a need to infer and represent networks in a dynamic, that is, time-varying fashion, in order to account for different cellular states affecting the interactions amongst genes. In this work, we present an approach, regime-SSM, to understand gene regulatory networks within such a dynamic setting. The approach uses a clustering method based on these underlying dynamics, followed by system identification using a state-space model for each learnt cluster--to infer a network adjacency matrix. We finally indicate our results on the mouse embryonic kidney dataset as well as the T-cell activation-based expression dataset and demonstrate conformity with reported experimental evidence.

  12. Event-Triggered Output-Feedback Control for Disturbed Linear Systems

    Directory of Open Access Journals (Sweden)

    Hao Jiang

    2018-01-01

    Full Text Available In the last few decades, event-triggered control received considerable attention, because of advantages in reducing the resource utilization, such as communication load and processor. In this paper, we propose an event-triggered output-feedback controller for disturbed linear systems, in order to achieve both better resource utilization and disturbance attenuation properties at the same time. Based on our prior work on state-feedback H∞ control for disturbed systems, we propose an approach to design an output-feedback H∞ controller for the system whose states are not completely observable, and a sufficient condition guaranteeing the asymptotic stability and robustness of the system is given in the form of LMIs (Linear Matrix Inequalities.

  13. Novel global robust stability criteria for interval neural networks with multiple time-varying delays

    International Nuclear Information System (INIS)

    Xu Shengyuan; Lam, James; Ho, Daniel W.C.

    2005-01-01

    This Letter is concerned with the problem of robust stability analysis for interval neural networks with multiple time-varying delays and parameter uncertainties. The parameter uncertainties are assumed to be bounded in given compact sets and the activation functions are supposed to be bounded and globally Lipschitz continuous. A sufficient condition is obtained by means of Lyapunov functionals, which guarantees the existence, uniqueness and global asymptotic stability of the delayed neural network for all admissible uncertainties. This condition is in terms of a linear matrix inequality (LMI), which can be easily checked by using recently developed algorithms in solving LMIs. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed method

  14. Dynamic linearization system for a radiation gauge

    International Nuclear Information System (INIS)

    Panarello, J.A.

    1977-01-01

    The linearization system and process converts a high resolution non-linear analog input signal, representative of the thickness of an object, into a high resolution linear analog output signal suitable for use in driving a variety of output devices. The system requires only a small amount of memory for storing pre-calculated non-linear correction coefficients. The system channels the input signal to separate circuit paths so that it may be used directly to; locate an appropriate correction coefficient; develop a correction term after an appropriate correction coefficient is located; and develop a linearized signal having the same high resolution inherent in the input signal. The system processes the linearized signal to compensate for the possible errors introduced by radiation source noise. The processed linearized signal is the high resolution linear analog output signal which accurately represents the thickness of the object being gauged

  15. Linear time algorithms to construct populations fitting multiple constraint distributions at genomic scales.

    Science.gov (United States)

    Siragusa, Enrico; Haiminen, Niina; Utro, Filippo; Parida, Laxmi

    2017-10-09

    Computer simulations can be used to study population genetic methods, models and parameters, as well as to predict potential outcomes. For example, in plant populations, predicting the outcome of breeding operations can be studied using simulations. In-silico construction of populations with pre-specified characteristics is an important task in breeding optimization and other population genetic studies. We present two linear time Simulation using Best-fit Algorithms (SimBA) for two classes of problems where each co-fits two distributions: SimBA-LD fits linkage disequilibrium and minimum allele frequency distributions, while SimBA-hap fits founder-haplotype and polyploid allele dosage distributions. An incremental gap-filling version of previously introduced SimBA-LD is here demonstrated to accurately fit the target distributions, allowing efficient large scale simulations. SimBA-hap accuracy and efficiency is demonstrated by simulating tetraploid populations with varying numbers of founder haplotypes, we evaluate both a linear time greedy algoritm and an optimal solution based on mixed-integer programming. SimBA is available on http://researcher.watson.ibm.com/project/5669.

  16. Modeling of Volatility with Non-linear Time Series Model

    OpenAIRE

    Kim Song Yon; Kim Mun Chol

    2013-01-01

    In this paper, non-linear time series models are used to describe volatility in financial time series data. To describe volatility, two of the non-linear time series are combined into form TAR (Threshold Auto-Regressive Model) with AARCH (Asymmetric Auto-Regressive Conditional Heteroskedasticity) error term and its parameter estimation is studied.

  17. Switched periodic systems in discrete time: stability and input-output norms

    Science.gov (United States)

    Bolzern, Paolo; Colaneri, Patrizio

    2013-07-01

    This paper deals with the analysis of stability and the characterisation of input-output norms for discrete-time periodic switched linear systems. Such systems consist of a network of time-periodic linear subsystems sharing the same state vector and an exogenous switching signal that triggers the jumps between the subsystems. The overall system exhibits a complex dynamic behaviour due to the interplay between the time periodicity of the subsystem parameters and the switching signal. Both arbitrary switching signals and signals satisfying a dwell-time constraint are considered. Linear matrix inequality conditions for stability and guaranteed H2 and H∞ performances are provided. The results heavily rely on the merge of the theory of linear periodic systems and recent developments on switched linear time-invariant systems.

  18. Clinical time series prediction: Toward a hierarchical dynamical system framework.

    Science.gov (United States)

    Liu, Zitao; Hauskrecht, Milos

    2015-09-01

    Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. We tested our framework by first learning the time series model from data for the patients in the training set, and then using it to predict future time series values for the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Clinical time series prediction: towards a hierarchical dynamical system framework

    Science.gov (United States)

    Liu, Zitao; Hauskrecht, Milos

    2014-01-01

    Objective Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Materials and methods Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. Results We tested our framework by first learning the time series model from data for the patient in the training set, and then applying the model in order to predict future time series values on the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. Conclusion A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive

  20. Long Memory of Financial Time Series and Hidden Markov Models with Time-Varying Parameters

    DEFF Research Database (Denmark)

    Nystrup, Peter; Madsen, Henrik; Lindström, Erik

    2016-01-01

    Hidden Markov models are often used to model daily returns and to infer the hidden state of financial markets. Previous studies have found that the estimated models change over time, but the implications of the time-varying behavior have not been thoroughly examined. This paper presents an adaptive...... to reproduce with a hidden Markov model. Capturing the time-varying behavior of the parameters also leads to improved one-step density forecasts. Finally, it is shown that the forecasting performance of the estimated models can be further improved using local smoothing to forecast the parameter variations....

  1. Reliable gain-scheduled control of discrete-time systems and its application to CSTR model

    Science.gov (United States)

    Sakthivel, R.; Selvi, S.; Mathiyalagan, K.; Shi, Y.

    2016-10-01

    This paper is focused on reliable gain-scheduled controller design for a class of discrete-time systems with randomly occurring nonlinearities and actuator fault. Further, the nonlinearity in the system model is assumed to occur randomly according to a Bernoulli distribution with measurable time-varying probability in real time. The main purpose of this paper is to design a gain-scheduled controller by implementing a probability-dependent Lyapunov function and linear matrix inequality (LMI) approach such that the closed-loop discrete-time system is stochastically stable for all admissible randomly occurring nonlinearities. The existence conditions for the reliable controller is formulated in terms of LMI constraints. Finally, the proposed reliable gain-scheduled control scheme is applied on continuously stirred tank reactor model to demonstrate the effectiveness and applicability of the proposed design technique.

  2. A representation theorem for linear discrete-space systems

    Directory of Open Access Journals (Sweden)

    Sandberg Irwin W.

    1998-01-01

    Full Text Available The cornerstone of the theory of discrete-time single-input single-output linear systems is the idea that every such system has an input–output map H that can be represented by a convolution or the familiar generalization of a convolution. This thinking involves an oversight which is corrected in this note by adding an additional term to the representation.

  3. Bit-level plane image encryption based on coupled map lattice with time-varying delay

    Science.gov (United States)

    Lv, Xiupin; Liao, Xiaofeng; Yang, Bo

    2018-04-01

    Most of the existing image encryption algorithms had two basic properties: confusion and diffusion in a pixel-level plane based on various chaotic systems. Actually, permutation in a pixel-level plane could not change the statistical characteristics of an image, and many of the existing color image encryption schemes utilized the same method to encrypt R, G and B components, which means that the three color components of a color image are processed three times independently. Additionally, dynamical performance of a single chaotic system degrades greatly with finite precisions in computer simulations. In this paper, a novel coupled map lattice with time-varying delay therefore is applied in color images bit-level plane encryption to solve the above issues. Spatiotemporal chaotic system with both much longer period in digitalization and much excellent performances in cryptography is recommended. Time-varying delay embedded in coupled map lattice enhances dynamical behaviors of the system. Bit-level plane image encryption algorithm has greatly reduced the statistical characteristics of an image through the scrambling processing. The R, G and B components cross and mix with one another, which reduces the correlation among the three components. Finally, simulations are carried out and all the experimental results illustrate that the proposed image encryption algorithm is highly secure, and at the same time, also demonstrates superior performance.

  4. Lyapunov Functions to Caputo Fractional Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Ravi Agarwal

    2018-05-01

    Full Text Available One of the main properties of solutions of nonlinear Caputo fractional neural networks is stability and often the direct Lyapunov method is used to study stability properties (usually these Lyapunov functions do not depend on the time variable. In connection with the Lyapunov fractional method we present a brief overview of the most popular fractional order derivatives of Lyapunov functions among Caputo fractional delay differential equations. These derivatives are applied to various types of neural networks with variable coefficients and time-varying delays. We show that quadratic Lyapunov functions and their Caputo fractional derivatives are not applicable in some cases when one studies stability properties. Some sufficient conditions for stability of equilibrium of nonlinear Caputo fractional neural networks with time dependent transmission delays, time varying self-regulating parameters of all units and time varying functions of the connection between two neurons in the network are obtained. The cases of time varying Lipschitz coefficients as well as nonLipschitz activation functions are studied. We illustrate our theory on particular nonlinear Caputo fractional neural networks.

  5. ORACLS- OPTIMAL REGULATOR ALGORITHMS FOR THE CONTROL OF LINEAR SYSTEMS (CDC VERSION)

    Science.gov (United States)

    Armstrong, E. S.

    1994-01-01

    This control theory design package, called Optimal Regulator Algorithms for the Control of Linear Systems (ORACLS), was developed to aid in the design of controllers and optimal filters for systems which can be modeled by linear, time-invariant differential and difference equations. Optimal linear quadratic regulator theory, currently referred to as the Linear-Quadratic-Gaussian (LQG) problem, has become the most widely accepted method of determining optimal control policy. Within this theory, the infinite duration time-invariant problems, which lead to constant gain feedback control laws and constant Kalman-Bucy filter gains for reconstruction of the system state, exhibit high tractability and potential ease of implementation. A variety of new and efficient methods in the field of numerical linear algebra have been combined into the ORACLS program, which provides for the solution to time-invariant continuous or discrete LQG problems. The ORACLS package is particularly attractive to the control system designer because it provides a rigorous tool for dealing with multi-input and multi-output dynamic systems in both continuous and discrete form. The ORACLS programming system is a collection of subroutines which can be used to formulate, manipulate, and solve various LQG design problems. The ORACLS program is constructed in a manner which permits the user to maintain considerable flexibility at each operational state. This flexibility is accomplished by providing primary operations, analysis of linear time-invariant systems, and control synthesis based on LQG methodology. The input-output routines handle the reading and writing of numerical matrices, printing heading information, and accumulating output information. The basic vector-matrix operations include addition, subtraction, multiplication, equation, norm construction, tracing, transposition, scaling, juxtaposition, and construction of null and identity matrices. The analysis routines provide for the following

  6. Neural Network Based Finite-Time Stabilization for Discrete-Time Markov Jump Nonlinear Systems with Time Delays

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2013-01-01

    Full Text Available This paper deals with the finite-time stabilization problem for discrete-time Markov jump nonlinear systems with time delays and norm-bounded exogenous disturbance. The nonlinearities in different jump modes are parameterized by neural networks. Subsequently, a linear difference inclusion state space representation for a class of neural networks is established. Based on this, sufficient conditions are derived in terms of linear matrix inequalities to guarantee stochastic finite-time boundedness and stochastic finite-time stabilization of the closed-loop system. A numerical example is illustrated to verify the efficiency of the proposed technique.

  7. Response-only modal identification using random decrement algorithm with time-varying threshold level

    International Nuclear Information System (INIS)

    Lin, Chang Sheng; Tseng, Tse Chuan

    2014-01-01

    Modal Identification from response data only is studied for structural systems under nonstationary ambient vibration. The topic of this paper is the estimation of modal parameters from nonstationary ambient vibration data by applying the random decrement algorithm with time-varying threshold level. In the conventional random decrement algorithm, the threshold level for evaluating random dec signatures is defined as the standard deviation value of response data of the reference channel. The distortion of random dec signatures may be, however, induced by the error involved in noise from the original response data in practice. To improve the accuracy of identification, a modification of the sampling procedure in random decrement algorithm is proposed for modal-parameter identification from the nonstationary ambient response data. The time-varying threshold level is presented for the acquisition of available sample time history to perform averaging analysis, and defined as the temporal root-mean-square function of structural response, which can appropriately describe a wide variety of nonstationary behaviors in reality, such as the time-varying amplitude (variance) of a nonstationary process in a seismic record. Numerical simulations confirm the validity and robustness of the proposed modal-identification method from nonstationary ambient response data under noisy conditions.

  8. Indirect synthesis of multi-degree of freedom transient systems. [linear programming for a kinematically linear system

    Science.gov (United States)

    Pilkey, W. D.; Chen, Y. H.

    1974-01-01

    An indirect synthesis method is used in the efficient optimal design of multi-degree of freedom, multi-design element, nonlinear, transient systems. A limiting performance analysis which requires linear programming for a kinematically linear system is presented. The system is selected using system identification methods such that the designed system responds as closely as possible to the limiting performance. The efficiency is a result of the method avoiding the repetitive systems analyses accompanying other numerical optimization methods.

  9. Global exponential synchronization of inertial memristive neural networks with time-varying delay via nonlinear controller.

    Science.gov (United States)

    Gong, Shuqing; Yang, Shaofu; Guo, Zhenyuan; Huang, Tingwen

    2018-06-01

    The paper is concerned with the synchronization problem of inertial memristive neural networks with time-varying delay. First, by choosing a proper variable substitution, inertial memristive neural networks described by second-order differential equations can be transformed into first-order differential equations. Then, a novel controller with a linear diffusive term and discontinuous sign term is designed. By using the controller, the sufficient conditions for assuring the global exponential synchronization of the derive and response neural networks are derived based on Lyapunov stability theory and some inequality techniques. Finally, several numerical simulations are provided to substantiate the effectiveness of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Time-Dependent-Asymmetric-Linear-Parsimonious Ancestral State Reconstruction.

    Science.gov (United States)

    Didier, Gilles

    2017-10-01

    The time-dependent-asymmetric-linear parsimony is an ancestral state reconstruction method which extends the standard linear parsimony (a.k.a. Wagner parsimony) approach by taking into account both branch lengths and asymmetric evolutionary costs for reconstructing quantitative characters (asymmetric costs amount to assuming an evolutionary trend toward the direction with the lowest cost). A formal study of the influence of the asymmetry parameter shows that the time-dependent-asymmetric-linear parsimony infers states which are all taken among the known states, except for some degenerate cases corresponding to special values of the asymmetry parameter. This remarkable property holds in particular for the Wagner parsimony. This study leads to a polynomial algorithm which determines, and provides a compact representation of, the parametric reconstruction of a phylogenetic tree, that is for all the unknown nodes, the set of all the possible reconstructed states associated with the asymmetry parameters leading to them. The time-dependent-asymmetric-linear parsimony is finally illustrated with the parametric reconstruction of the body size of cetaceans.

  11. Application of alternating decision trees in selecting sparse linear solvers

    KAUST Repository

    Bhowmick, Sanjukta; Eijkhout, Victor; Freund, Yoav; Fuentes, Erika; Keyes, David E.

    2010-01-01

    The solution of sparse linear systems, a fundamental and resource-intensive task in scientific computing, can be approached through multiple algorithms. Using an algorithm well adapted to characteristics of the task can significantly enhance the performance, such as reducing the time required for the operation, without compromising the quality of the result. However, the best solution method can vary even across linear systems generated in course of the same PDE-based simulation, thereby making solver selection a very challenging problem. In this paper, we use a machine learning technique, Alternating Decision Trees (ADT), to select efficient solvers based on the properties of sparse linear systems and runtime-dependent features, such as the stages of simulation. We demonstrate the effectiveness of this method through empirical results over linear systems drawn from computational fluid dynamics and magnetohydrodynamics applications. The results also demonstrate that using ADT can resolve the problem of over-fitting, which occurs when limited amount of data is available. © 2010 Springer Science+Business Media LLC.

  12. Dynamical systems and linear algebra

    OpenAIRE

    Colonius, Fritz (Prof.)

    2007-01-01

    Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)

  13. Stabilization of discrete-time LTI positive systems

    Directory of Open Access Journals (Sweden)

    Krokavec Dušan

    2017-12-01

    Full Text Available The paper mitigates the existing conditions reported in the previous literature for control design of discrete-time linear positive systems. Incorporating an associated structure of linear matrix inequalities, combined with the Lyapunov inequality guaranteing asymptotic stability of discrete-time positive system structures, new conditions are presented with which the state-feedback controllers and the system state observers can be designed. Associated solutions of the proposed design conditions are illustrated by numerical illustrative examples.

  14. Robust self-triggered MPC for constrained linear systems

    NARCIS (Netherlands)

    Brunner, F.D.; Heemels, W.P.M.H.; Allgöwer, F.

    2014-01-01

    In this paper we propose a robust self-triggered model predictive control algorithm for linear systems with additive bounded disturbances and hard constraints on the inputs and state. In self-triggered control, at every sampling instant the time until the next sampling instant is computed online

  15. Fluctuating interaction network and time-varying stability of a natural fish community

    Science.gov (United States)

    Ushio, Masayuki; Hsieh, Chih-Hao; Masuda, Reiji; Deyle, Ethan R.; Ye, Hao; Chang, Chun-Wei; Sugihara, George; Kondoh, Michio

    2018-02-01

    Ecological theory suggests that large-scale patterns such as community stability can be influenced by changes in interspecific interactions that arise from the behavioural and/or physiological responses of individual species varying over time. Although this theory has experimental support, evidence from natural ecosystems is lacking owing to the challenges of tracking rapid changes in interspecific interactions (known to occur on timescales much shorter than a generation time) and then identifying the effect of such changes on large-scale community dynamics. Here, using tools for analysing nonlinear time series and a 12-year-long dataset of fortnightly collected observations on a natural marine fish community in Maizuru Bay, Japan, we show that short-term changes in interaction networks influence overall community dynamics. Among the 15 dominant species, we identify 14 interspecific interactions to construct a dynamic interaction network. We show that the strengths, and even types, of interactions change with time; we also develop a time-varying stability measure based on local Lyapunov stability for attractor dynamics in non-equilibrium nonlinear systems. We use this dynamic stability measure to examine the link between the time-varying interaction network and community stability. We find seasonal patterns in dynamic stability for this fish community that broadly support expectations of current ecological theory. Specifically, the dominance of weak interactions and higher species diversity during summer months are associated with higher dynamic stability and smaller population fluctuations. We suggest that interspecific interactions, community network structure and community stability are dynamic properties, and that linking fluctuating interaction networks to community-level dynamic properties is key to understanding the maintenance of ecological communities in nature.

  16. Solution methods for large systems of linear equations in BACCHUS

    International Nuclear Information System (INIS)

    Homann, C.; Dorr, B.

    1993-05-01

    The computer programme BACCHUS is used to describe steady state and transient thermal-hydraulic behaviour of a coolant in a fuel element with intact geometry in a fast breeder reactor. In such computer programmes generally large systems of linear equations with sparse matrices of coefficients, resulting from discretization of coolant conservation equations, must be solved thousands of times giving rise to large demands of main storage and CPU time. Direct and iterative solution methods of the systems of linear equations, available in BACCHUS, are described, giving theoretical details and experience with their use in the programme. Besides use of a method of lines, a Runge-Kutta-method, for solution of the partial differential equation is outlined. (orig.) [de

  17. Time-response shaping using output to input saturation transformation

    Science.gov (United States)

    Chambon, E.; Burlion, L.; Apkarian, P.

    2018-03-01

    For linear systems, the control law design is often performed so that the resulting closed loop meets specific frequency-domain requirements. However, in many cases, it may be observed that the obtained controller does not enforce time-domain requirements amongst which the objective of keeping a scalar output variable in a given interval. In this article, a transformation is proposed to convert prescribed bounds on an output variable into time-varying saturations on the synthesised linear scalar control law. This transformation uses some well-chosen time-varying coefficients so that the resulting time-varying saturation bounds do not overlap in the presence of disturbances. Using an anti-windup approach, it is obtained that the origin of the resulting closed loop is globally asymptotically stable and that the constrained output variable satisfies the time-domain constraints in the presence of an unknown finite-energy-bounded disturbance. An application to a linear ball and beam model is presented.

  18. Final focus systems for linear colliders

    International Nuclear Information System (INIS)

    Erickson, R.A.

    1987-11-01

    The final focus system of a linear collider must perform two primary functions, it must focus the two opposing beams so that their transverse dimensions at the interaction point are small enough to yield acceptable luminosity, and it must steer the beams together to maintain collisions. In addition, the final focus system must transport the outgoing beams to a location where they can be recycled or safely dumped. Elementary optical considerations for linear collider final focus systems are discussed, followed by chromatic aberrations. The design of the final focus system of the SLAC Linear Collider (SLC) is described. Tuning and diagnostics and steering to collision are discussed. Most of the examples illustrating the concepts covered are drawn from the SLC, but the principles and conclusions are said to be generally applicable to other linear collider designs as well. 26 refs., 17 figs

  19. Time-Varying Networks of Inter-Ictal Discharging Reveal Epileptogenic Zone.

    Science.gov (United States)

    Zhang, Luyan; Liang, Yi; Li, Fali; Sun, Hongbin; Peng, Wenjing; Du, Peishan; Si, Yajing; Song, Limeng; Yu, Liang; Xu, Peng

    2017-01-01

    The neuronal synchronous discharging may cause an epileptic seizure. Currently, most of the studies conducted to investigate the mechanism of epilepsy are based on EEGs or functional magnetic resonance imaging (fMRI) recorded during the ictal discharging or the resting-state, and few studies have probed into the dynamic patterns during the inter-ictal discharging that are much easier to record in clinical applications. Here, we propose a time-varying network analysis based on adaptive directed transfer function to uncover the dynamic brain network patterns during the inter-ictal discharging. In addition, an algorithm based on the time-varying outflow of information derived from the network analysis is developed to detect the epileptogenic zone. The analysis performed revealed the time-varying network patterns during different stages of inter-ictal discharging; the epileptogenic zone was activated prior to the discharge onset then worked as the source to propagate the activity to other brain regions. Consistence between the epileptogenic zones detected by our proposed approach and the actual epileptogenic zones proved that time-varying network analysis could not only reveal the underlying neural mechanism of epilepsy, but also function as a useful tool in detecting the epileptogenic zone based on the EEGs in the inter-ictal discharging.

  20. Pinning synchronization of memristor-based neural networks with time-varying delays.

    Science.gov (United States)

    Yang, Zhanyu; Luo, Biao; Liu, Derong; Li, Yueheng

    2017-09-01

    In this paper, the synchronization of memristor-based neural networks with time-varying delays via pinning control is investigated. A novel pinning method is introduced to synchronize two memristor-based neural networks which denote drive system and response system, respectively. The dynamics are studied by theories of differential inclusions and nonsmooth analysis. In addition, some sufficient conditions are derived to guarantee asymptotic synchronization and exponential synchronization of memristor-based neural networks via the presented pinning control. Furthermore, some improvements about the proposed control method are also discussed in this paper. Finally, the effectiveness of the obtained results is demonstrated by numerical simulations. Copyright © 2017 Elsevier Ltd. All rights reserved.