International Nuclear Information System (INIS)
Lu Yanyun; Gu Shenjie; Lou Tianyang
2014-01-01
Background: As nuclear grade cable must endure harsh environment within design life, it is critical to predict cable thermal life accurately owing to thermal aging, which is one of dominant factors of aging mechanism. Purpose: Using time temperature superposition (TTS) method, the aim is to construct nuclear grade cable thermal life model, predict cable residual life and develop life model interactive interface under Matlab GUI. Methods: According to TTS, nuclear grade cable thermal life model can be constructed by shifting data groups at various temperatures to preset reference temperature with translation factor which is determined by non linear programming optimization. Interactive interface of cable thermal life model developed under Matlab GUI consists of superposition mode and standard mode which include features such as optimization of translation factor, calculation of activation energy, construction of thermal aging curve and analysis of aging mechanism., Results: With calculation result comparison between superposition and standard method, the result with TTS has better accuracy than that with standard method. Furthermore, confidence level of nuclear grade cable thermal life with TTS is higher than that with standard method. Conclusion: The results show that TTS methodology is applicable to thermal life prediction of nuclear grade cable. Interactive Interface under Matlab GUI achieves anticipated functionalities. (authors)
Directory of Open Access Journals (Sweden)
Samim Ali
2018-01-01
Full Text Available Complexation between anionic and cationic polyelectrolytes results in solid-like precipitates or liquid-like coacervate depending on the added salt in the aqueous medium. However, the boundary between these polymer-rich phases is quite broad and the associated changes in the polymer relaxation in the complexes across the transition regime are poorly understood. In this work, the relaxation dynamics of complexes across this transition is probed over a wide timescale by measuring viscoelastic spectra and zero-shear viscosities at varying temperatures and salt concentrations for two different salt types. We find that the complexes exhibit time-temperature superposition (TTS at all salt concentrations, while the range of overlapped-frequencies for time-temperature-salt superposition (TTSS strongly depends on the salt concentration (Cs and gradually shifts to higher frequencies as Cs is decreased. The sticky-Rouse model describes the relaxation behavior at all Cs. However, collective relaxation of polyelectrolyte complexes gradually approaches a rubbery regime and eventually exhibits a gel-like response as Cs is decreased and limits the validity of TTSS.
The general use of the time-temperature-pressure superposition principle
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz
This note is a supplement to Dynamic of Polymeric Liquids (DPL) section 3.6(a). DPL do only concern material functions and only the effect of the temperature on these. This is a short introduction to the general use of the time-temperature-pressure superposition principle.......This note is a supplement to Dynamic of Polymeric Liquids (DPL) section 3.6(a). DPL do only concern material functions and only the effect of the temperature on these. This is a short introduction to the general use of the time-temperature-pressure superposition principle....
Long-term creep modeling of wood using time temperature superposition principle
Gamalath, Sandhya Samarasinghe
1991-01-01
Long-term creep and recovery models (master curves) were developed from short-term data using the time temperature superposition principle (TTSP) for kiln-dried southern pine loaded in compression parallel-to-grain and exposed to constant environmental conditions (~70Â°F, ~9%EMC). Short-term accelerated creep (17 hour) and recovery (35 hour) data were collected for each specimen at a range of temperature (70Â°F-150Â°F) and constant moisture condition of 9%. The compressive stra...
Anand, Abhijeet; Banerjee, Poulami; Prusty, Rajesh Kumar; Ray, Bankin Chandra
2018-03-01
The incorporation of nano fillers in Fibre reinforced polymer (FRP) composites has been a source of experimentation for researchers. Addition of nano fillers has been found to improve mechanical, thermal as well as electrical properties of Glass fibre reinforced polymer (GFRP) composites. The in-plane mechanical properties of GFRP composite are mainly controlled by fibers and therefore exhibit good values. However, composite exhibits poor through-thickness properties, in which the matrix and interface are the dominant factors. Therefore, it is conducive to modify the matrix through dispersion of nano fillers. Creep is defined as the plastic deformation experienced by a material for a temperature at constant stress over a prolonged period of time. Determination of Master Curve using time-temperature superposition principle is conducive for predicting the lifetime of materials involved in naval and structural applications. This is because such materials remain in service for a prolonged time period before failure which is difficult to be kept marked. However, the failure analysis can be extrapolated from its behaviour in a shorter time at an elevated temperature as is done in master creep analysis. The present research work dealt with time-temperature analysis of 0.1% SiO2-based GFRP composites fabricated through hand-layup method. Composition of 0.1% for SiO2nano fillers with respect to the weight of the fibers was observed to provide optimized flexural properties. Time and temperature dependence of flexural properties of GFRP composites with and without nano SiO2 was determined by conducting 3-point bend flexural creep tests over a range of temperature. Stepwise isothermal creep tests from room temperature (30°C) to the glass transition temperature Tg (120°C) were performed with an alternative creep/relaxation period of 1 hour at each temperature. A constant stress of 40MPa was applied during the creep tests. The time-temperature superposition principle was
Energy Technology Data Exchange (ETDEWEB)
Maiti, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weisgraber, T. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Small, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lewicki, J. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Duoss, E. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spadaccini, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pearson, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chinn, S. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, T. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Maxwell, R. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-12-08
Cellular solids or foams are a very important class of materials with diverse applications ranging from thermal insulation and shock absorbing support cushions, to light-weight structural and floatation components, and constitute crucial components in a large number of industries including automotive, aerospace, electronics, marine, biomedical, packaging, and defense. In many of these applications the foam material is subjected to long periods of continuous stress, which can, over time, lead to a permanent change in structure and a degradation in performance. In this report we summarize our modeling efforts to date on polysiloxane foam materials that form an important component in our systems. Aging of the materials was characterized by two measured quantities, i.e., compression set and load retention. Results of accelerated aging experiments were analyzed by an automated time-temperaturesuperposition (TTS) approach, which creates a master curve that can be used for long-term predictions (over decades) under ambient conditions. When comparing such master curves for traditional (stochastic) foams with those for recently 3D-printed (i.e., additively manufactured, or AM) foams, it became clear that AM foams have superior aging behavior. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material.
Time-temperature superposition in viscous liquids
DEFF Research Database (Denmark)
Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil
2001-01-01
with a reduced time definition based on a recently proposed expression for the relaxation time, where G [infinity] reflects the fictive temperature. All parameters entering the reduced time were determined from independent measurements of the frequency-dependent shear modulus of the equilibrium liquid....
Chang, Li-Na; Luo, Shun-Long; Sun, Yuan
2017-11-01
The principle of superposition is universal and lies at the heart of quantum theory. Although ever since the inception of quantum mechanics a century ago, superposition has occupied a central and pivotal place, rigorous and systematic studies of the quantification issue have attracted significant interests only in recent years, and many related problems remain to be investigated. In this work we introduce a figure of merit which quantifies superposition from an intuitive and direct perspective, investigate its fundamental properties, connect it to some coherence measures, illustrate it through several examples, and apply it to analyze wave-particle duality. Supported by Science Challenge Project under Grant No. TZ2016002, Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing, Key Laboratory of Random Complex Structures and Data Science, Chinese Academy of Sciences, Grant under No. 2008DP173182
Enhacements to the TTS-502 time transfer system
Vandierendonck, A. J.; Hua, Q. D.
1985-04-01
Two years ago STI introduced an affordable, relatively compact time transfer system on the market -- the TTS-502, and described that system at the 1981 PTTI conference. Over the past few months, that system has been improved, and new features have been added. In addition, new options have been made available to further enhance the capabilities of the system. These enhancements include the addition of a positioning algorithm and new options providing a corrected 5 MHz output that is phase coherent with the 1 pps output, and providing an internal Rubidium Oscillator. The Positioning Algorithm was developed because not all time transfer users had the luxury of the Defense Mapping Agency's (DMA) services for determining their position in WGS-72 coordinates. The enhanced TTS-502 determines the GPS position anywhere in the world, independent of how many GPS satellites are concurrently visible. However, convergence time to a solution is inversely proportional to the number of satellites concurrently visible and the quality of frequency standard used in conjunction with the TTS-502. Real World solution results will be presented for a variety of cases and satellite scheduling scenarios. Typically, positioning accuracies were achieved better than 5 to 10 meters r.s.s. using the C/A code only at Sunnyvale, California.
Superposition and macroscopic observation
International Nuclear Information System (INIS)
Cartwright, N.D.
1976-01-01
The principle of superposition has long plagued the quantum mechanics of macroscopic bodies. In at least one well-known situation - that of measurement - quantum mechanics predicts a superposition. It is customary to try to reconcile macroscopic reality and quantum mechanics by reducing the superposition to a mixture. To establish consistency with quantum mechanics, values for the apparatus after a measurement are to be distributed in the way predicted by the superposition. The distributions observed, however, are those of the mixture. The statistical predictions of quantum mechanics, it appears, are not borne out by observation in macroscopic situations. It has been shown that, insofar as specific ergodic hypotheses apply to the apparatus after the interaction, the superposition which evolves is experimentally indistinguishable from the corresponding mixture. In this paper an idealized model of the measuring situation is presented in which this consistency can be demonstrated. It includes a simplified version of the measurement solution proposed by Daneri, Loinger, and Prosperi (1962). The model should make clear the kind of statistical evidence required to carry of this approach, and the role of the ergodic hypotheses assumed. (Auth.)
TTS-Polttopuu - cost calculation model for fuelwood
International Nuclear Information System (INIS)
Naett, H.; Ryynaenen, S.
1998-01-01
The TTS-Institutes's Forestry Department has developed a computer based costcalculation model, 'TTS-Polttopuu', for the calculation of unit costs and resource needs in the harvesting systems for wood chips and split firewood. The model enables to determine the productivity and device cost per operating hour by each working stage of the harvesting system. The calculation model also enables the user to find out how changes in the productivity and cost bases of different harvesting chains influence the unit cost of the whole system. The harvesting chain includes the cutting of delimbed and non-delimbed fuelwood, forest haulage, road transportation chipping and chopping of longwood at storage. This individually operating software was originally developed to serve research needs, but it also serves the needs of the forestry and agricultural education, training and extension as well as individual firewood producers. The system requirements for this cost calculation model are at least 486-level processor with the Windows 95/98 -operating system, 16 MB of memory (RAM) and 5 MB of available hard-disk. This development work was carried out in conjunction with the nation-wide BIOENERGY Research Programme. (orig.)
TTS-Polttopuu - cost calculation model for fuelwood
International Nuclear Information System (INIS)
Naett, H.; Ryynaenen, S.
1999-01-01
The TTS-Institutes's Forestry Department has developed a computer based cost-calculation model, 'TTS-Polttopuu', for the calculation of unit costs and resource needs in the harvesting systems for wood chips and split firewood. The model enables to determine the productivity and device cost per operating hour by each working stage of the harvesting system. The calculation model also enables the user to find out how changes in the productivity and cost bases of different harvesting chains influence the unit cost of the whole system. The harvesting chain includes the cutting of delimbed and non-delimbed fuelwood, forest haulage, road transportation, chipping and chopping of longwood at storage. This individually operating software was originally developed to serve research needs, but it also serves the needs of the forestry and agricultural education, training and extension as well as individual firewood producers. The system requirements for this cost calculation model are at least 486- level processor with the Windows 95/98 -operating system, 16 MB of memory (RAM) and 5 MB of available hard-disk. This development work was carried out in conjunction with the nation-wide BIOENERGY-research programme. (orig.)
Superposition Enhanced Nested Sampling
Directory of Open Access Journals (Sweden)
Stefano Martiniani
2014-08-01
Full Text Available The theoretical analysis of many problems in physics, astronomy, and applied mathematics requires an efficient numerical exploration of multimodal parameter spaces that exhibit broken ergodicity. Monte Carlo methods are widely used to deal with these classes of problems, but such simulations suffer from a ubiquitous sampling problem: The probability of sampling a particular state is proportional to its entropic weight. Devising an algorithm capable of sampling efficiently the full phase space is a long-standing problem. Here, we report a new hybrid method for the exploration of multimodal parameter spaces exhibiting broken ergodicity. Superposition enhanced nested sampling combines the strengths of global optimization with the unbiased or athermal sampling of nested sampling, greatly enhancing its efficiency with no additional parameters. We report extensive tests of this new approach for atomic clusters that are known to have energy landscapes for which conventional sampling schemes suffer from broken ergodicity. We also introduce a novel parallelization algorithm for nested sampling.
Network class superposition analyses.
Directory of Open Access Journals (Sweden)
Carl A B Pearson
Full Text Available Networks are often used to understand a whole system by modeling the interactions among its pieces. Examples include biomolecules in a cell interacting to provide some primary function, or species in an environment forming a stable community. However, these interactions are often unknown; instead, the pieces' dynamic states are known, and network structure must be inferred. Because observed function may be explained by many different networks (e.g., ≈ 10(30 for the yeast cell cycle process, considering dynamics beyond this primary function means picking a single network or suitable sample: measuring over all networks exhibiting the primary function is computationally infeasible. We circumvent that obstacle by calculating the network class ensemble. We represent the ensemble by a stochastic matrix T, which is a transition-by-transition superposition of the system dynamics for each member of the class. We present concrete results for T derived from boolean time series dynamics on networks obeying the Strong Inhibition rule, by applying T to several traditional questions about network dynamics. We show that the distribution of the number of point attractors can be accurately estimated with T. We show how to generate Derrida plots based on T. We show that T-based Shannon entropy outperforms other methods at selecting experiments to further narrow the network structure. We also outline an experimental test of predictions based on T. We motivate all of these results in terms of a popular molecular biology boolean network model for the yeast cell cycle, but the methods and analyses we introduce are general. We conclude with open questions for T, for example, application to other models, computational considerations when scaling up to larger systems, and other potential analyses.
Diacetylene time-temperature indicators
International Nuclear Information System (INIS)
Patel, G.N.; Yee, K.C.
1980-01-01
An improved recording device is described, useful for measuring the integrated time-temperature or integrated radiation-dosage history of an article, comprising a substrate onto which an acetylenic compound, containing at least two conjugated c*c groups, in an inactive form, is deposited. The inactive form is capable of being converted by melt or solvent recrystallization to an active form, which undergoes 1,4-addition polymerization resulting in an irreversible, progressive color change. The color change produced at any given point in time represents an integrated time-temperature history of thermal annealing or integrated radiation-dosage history of exposure to actinic radiation to which an article has been exposed. Also described is a process for producing an inactive form of the acetylenic compound. A film and a fiber, made from the inactive form of an acetylenic compound are also described
Application of new nuclear track microporous membrane in transdermal therapeutic system (TTS)
International Nuclear Information System (INIS)
Risheng Wu; Jian Zhou; Wei Ke
1993-01-01
Newly-developed Nuclear Track Microporous Membrane, which is formed by alpha particle irradiation with greatly reduced cost, is first used as the drug release rate controlling membrane for TTS patch. It shows good zero order release kinetics and its released quantity of drugs can be regulated conveniently by changing its porosity instead of changing the area of other control membrane used abroad. Its high benefit-cost ratio and improved TTS performances manifest the superiority and great potential of the newly developed Nuclear Track Microporous membrane. (Author)
A superposition principle in quantum logics
International Nuclear Information System (INIS)
Pulmannova, S.
1976-01-01
A new definition of the superposition principle in quantum logics is given which enables us to define the sectors. It is shown that the superposition principle holds only in the irreducible quantum logics. (orig.) [de
Superposition Attacks on Cryptographic Protocols
DEFF Research Database (Denmark)
Damgård, Ivan Bjerre; Funder, Jakob Løvstad; Nielsen, Jesper Buus
2011-01-01
of information. In this paper, we introduce a fundamentally new model of quantum attacks on classical cryptographic protocols, where the adversary is allowed to ask several classical queries in quantum superposition. This is a strictly stronger attack than the standard one, and we consider the security......Attacks on classical cryptographic protocols are usually modeled by allowing an adversary to ask queries from an oracle. Security is then defined by requiring that as long as the queries satisfy some constraint, there is some problem the adversary cannot solve, such as compute a certain piece...... of several primitives in this model. We show that a secret-sharing scheme that is secure with threshold $t$ in the standard model is secure against superposition attacks if and only if the threshold is lowered to $t/2$. We use this result to give zero-knowledge proofs for all of NP in the common reference...
TongueToSpeech (TTS): Wearable wireless assistive device for augmented speech.
Marjanovic, Nicholas; Piccinini, Giacomo; Kerr, Kevin; Esmailbeigi, Hananeh
2017-07-01
Speech is an important aspect of human communication; individuals with speech impairment are unable to communicate vocally in real time. Our team has developed the TongueToSpeech (TTS) device with the goal of augmenting speech communication for the vocally impaired. The proposed device is a wearable wireless assistive device that incorporates a capacitive touch keyboard interface embedded inside a discrete retainer. This device connects to a computer, tablet or a smartphone via Bluetooth connection. The developed TTS application converts text typed by the tongue into audible speech. Our studies have concluded that an 8-contact point configuration between the tongue and the TTS device would yield the best user precision and speed performance. On average using the TTS device inside the oral cavity takes 2.5 times longer than the pointer finger using a T9 (Text on 9 keys) keyboard configuration to type the same phrase. In conclusion, we have developed a discrete noninvasive wearable device that allows the vocally impaired individuals to communicate in real time.
The first Malay language storytelling text-to-speech (TTS) corpus for ...
African Journals Online (AJOL)
speech annotations are described in detail in accordance to baseline work. The stories were recorded in two speaking styles that are neutral and storytelling speaking style. The first. Malay language storytelling corpus is not only necessary for the development of a storytelling text-to-speech (TTS) synthesis. It is also ...
Development of TTS Engine for Indian Accent using Modified HMM Algorithm
Directory of Open Access Journals (Sweden)
Sasanko Sekhar Gantayat
2018-03-01
Full Text Available A text-to-speech (TTS system converts normal language text into speech. An intelligent text-to-speech program allows people with visual impairments or reading disabilities, to listen to written works on a home computer. Many computer operating systems and day to day software applications like Adobe Reader have included text-to-speech systems. This paper is presented to show that how HMM can be used as a tool to convert text to speech.
Time profiles and pulse structure of bright, long gamma-ray bursts using BATSE TTS data
International Nuclear Information System (INIS)
Lee, A.; Bloom, E.; Scargle, J.
1996-04-01
The time profiles of many gamma-ray bursts observed by BATSE consist of distinct pulses, which offer the possibility of characterizing the temporal structure of these bursts using a relatively small set of pulse-shape parameters. This pulse analysis has previously been performed on some bright, long bursts using binned data, and on some short bursts using BATSE Time-Tagged Event (TTE) data. The BATSE Time- to-Spill (TTS) burst data records the times required to accumulate a fixed number of photons, giving variable time resolution. The spill times recorded in the TTS data behave as a gamma distribution. We have developed an interactive pulse-fitting program using the pulse model of Norris et al. and a maximum-likelihood fitting algorithm to the gamma distribution of the spill times. We then used this program to analyze a number of bright, long bursts for which TTS data is available. We present statistical information on the attributes of pulses comprising these bursts
Linear superposition solutions to nonlinear wave equations
International Nuclear Information System (INIS)
Liu Yu
2012-01-01
The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed
Superposition as a logical glue
Directory of Open Access Journals (Sweden)
Andrea Asperti
2011-03-01
Full Text Available The typical mathematical language systematically exploits notational and logical abuses whose resolution requires not just the knowledge of domain specific notation and conventions, but not trivial skills in the given mathematical discipline. A large part of this background knowledge is expressed in form of equalities and isomorphisms, allowing mathematicians to freely move between different incarnations of the same entity without even mentioning the transformation. Providing ITP-systems with similar capabilities seems to be a major way to improve their intelligence, and to ease the communication between the user and the machine. The present paper discusses our experience of integration of a superposition calculus within the Matita interactive prover, providing in particular a very flexible, "smart" application tactic, and a simple, innovative approach to automation.
Le Prell, C. G.; Dell, S.; Hensley, B.; Hall, J. W.; Campbell, K. C. M.; Antonelli, P. J.; Green, G. E.; Miller, J. M.; Guire, K.
2012-01-01
Objectives One of the challenges for evaluating new otoprotective agents for potential benefit in human populations is availability of an established clinical paradigm with real world relevance. These studies were explicitly designed to develop a real-world digital music exposure that reliably induces temporary threshold shift (TTS) in normal hearing human subjects. Design Thirty-three subjects participated in studies that measured effects of digital music player use on hearing. Subjects selected either rock or pop music, which was then presented at 93–95 (n=10), 98–100 (n=11), or 100–102 (n=12) dBA in-ear exposure level for a period of four hours. Audiograms and distortion product otoacoustic emissions (DPOAEs) were measured prior to and after music exposure. Post-music tests were initiated 15 min, 1 hr 15 min, 2 hr 15 min, and 3 hr 15 min after the exposure ended. Additional tests were conducted the following day and one week later. Results Changes in thresholds after the lowest level exposure were difficult to distinguish from test-retest variability; however, TTS was reliably detected after higher levels of sound exposure. Changes in audiometric thresholds had a “notch” configuration, with the largest changes observed at 4 kHz (mean=6.3±3.9dB; range=0–13 dB). Recovery was largely complete within the first 4 hours post-exposure, and all subjects showed complete recovery of both thresholds and DPOAE measures when tested 1-week post-exposure. Conclusions These data provide insight into the variability of TTS induced by music player use in a healthy, normal-hearing, young adult population, with music playlist, level, and duration carefully controlled. These data confirm the likelihood of temporary changes in auditory function following digital music player use. Such data are essential for the development of a human clinical trial protocol that provides a highly powered design for evaluating novel therapeutics in human clinical trials. Care must be
TTS-Driven Synthetic Behaviour-Generation Model for Artificial Bodies
Directory of Open Access Journals (Sweden)
Izidor Mlakar
2013-10-01
Full Text Available Visual perception, speech perception and the understanding of perceived information are linked through complex mental processes. Gestures, as part of visual perception and synchronized with verbal information, are a key concept of human social interaction. Even when there is no physical contact (e.g., a phone conversation, humans still tend to express meaning through movement. Embodied conversational agents (ECAs, as well as humanoid robots, are visual recreations of humans and are thus expected to be able to perform similar behaviour in communication. The behaviour generation system proposed in this paper is able to specify expressive behaviour strongly resembling natural movement performed within social interaction. The system is TTS-driven and fused with the time-and-space efficient TTS-engine, called ‘PLATTOS’. Visual content and content presentation is formulated based on several linguistic features that are extrapolated from arbitrary input text sequences and prosodic features (e.g., pitch, intonation, stress, emphasis, etc., as predicted by several verbal modules in the system. According to the evaluation results, when using the proposed system the synchronized co-verbal behaviour can be recreated with a very high-degree of naturalness, either by ECAs or humanoid robots alike.
Decoherence of superposition states in trapped ions
CSIR Research Space (South Africa)
Uys, H
2010-09-01
Full Text Available This paper investigates the decoherence of superpositions of hyperfine states of 9Be+ ions due to spontaneous scattering of off-resonant light. It was found that, contrary to conventional wisdom, elastic Raleigh scattering can have major...
Engineering mesoscopic superpositions of superfluid flow
International Nuclear Information System (INIS)
Hallwood, D. W.; Brand, J.
2011-01-01
Modeling strongly correlated atoms demonstrates the possibility to prepare quantum superpositions that are robust against experimental imperfections and temperature. Such superpositions of vortex states are formed by adiabatic manipulation of interacting ultracold atoms confined to a one-dimensional ring trapping potential when stirred by a barrier. Here, we discuss the influence of nonideal experimental procedures and finite temperature. Adiabaticity conditions for changing the stirring rate reveal that superpositions of many atoms are most easily accessed in the strongly interacting, Tonks-Girardeau, regime, which is also the most robust at finite temperature. NOON-type superpositions of weakly interacting atoms are most easily created by adiabatically decreasing the interaction strength by means of a Feshbach resonance. The quantum dynamics of small numbers of particles is simulated and the size of the superpositions is calculated based on their ability to make precision measurements. The experimental creation of strongly correlated and NOON-type superpositions with about 100 atoms seems feasible in the near future.
Exclusion of identification by negative superposition
Directory of Open Access Journals (Sweden)
Takač Šandor
2012-01-01
Full Text Available The paper represents the first report of negative superposition in our country. Photo of randomly selected young, living woman was superimposed on the previously discovered female skull. Computer program Adobe Photoshop 7.0 was used in work. Digitilized photographs of the skull and face, after uploaded to computer, were superimposed on each other and displayed on the monitor in order to assess their possible similarities or differences. Special attention was payed to matching the same anthropometrical points of the skull and face, as well as following their contours. The process of fitting the skull and the photograph is usually started by setting eyes in correct position relative to the orbits. In this case, lower jaw gonions go beyond the face contour and gnathion is highly placed. By positioning the chin, mouth and nose their correct anatomical position cannot be achieved. All the difficulties associated with the superposition were recorded, with special emphasis on critical evaluation of work results in a negative superposition. Negative superposition has greater probative value (exclusion of identification than positive (possible identification. 100% negative superposition is easily achieved, but 100% positive - almost never. 'Each skull is unique and viewed from different perspectives is always a new challenge'. From this point of view, identification can be negative or of high probability.
Experimental superposition of orders of quantum gates
Procopio, Lorenzo M.; Moqanaki, Amir; Araújo, Mateus; Costa, Fabio; Alonso Calafell, Irati; Dowd, Emma G.; Hamel, Deny R.; Rozema, Lee A.; Brukner, Časlav; Walther, Philip
2015-01-01
Quantum computers achieve a speed-up by placing quantum bits (qubits) in superpositions of different states. However, it has recently been appreciated that quantum mechanics also allows one to ‘superimpose different operations'. Furthermore, it has been shown that using a qubit to coherently control the gate order allows one to accomplish a task—determining if two gates commute or anti-commute—with fewer gate uses than any known quantum algorithm. Here we experimentally demonstrate this advantage, in a photonic context, using a second qubit to control the order in which two gates are applied to a first qubit. We create the required superposition of gate orders by using additional degrees of freedom of the photons encoding our qubits. The new resource we exploit can be interpreted as a superposition of causal orders, and could allow quantum algorithms to be implemented with an efficiency unlikely to be achieved on a fixed-gate-order quantum computer. PMID:26250107
Lobarinas, Edward; Spankovich, Christopher; Le Prell, Colleen G
2017-06-01
In animals, noise exposures that produce robust temporary threshold shifts (TTS) can produce immediate damage to afferent synapses and long-term degeneration of low spontaneous rate auditory nerve fibers. This synaptopathic damage has been shown to correlate with reduced auditory brainstem response (ABR) wave-I amplitudes at suprathreshold levels. The perceptual consequences of this "synaptopathy" remain unknown but have been suggested to include compromised hearing performance in competing background noise. Here, we used a modified startle inhibition paradigm to evaluate whether noise exposures that produce robust TTS and ABR wave-I reduction but not permanent threshold shift (PTS) reduced hearing-in-noise performance. Animals exposed to 109 dB SPL octave band noise showed TTS >30 dB 24-h post noise and modest but persistent ABR wave-I reduction 2 weeks post noise despite full recovery of ABR thresholds. Hearing-in-noise performance was negatively affected by the noise exposure. However, the effect was observed only at the poorest signal to noise ratio and was frequency specific. Although TTS >30 dB 24-h post noise was a predictor of functional deficits, there was no relationship between the degree of ABR wave-I reduction and degree of functional impairment. Copyright © 2016 Elsevier B.V. All rights reserved.
The principle of superposition in human prehension.
Zatsiorsky, Vladimir M; Latash, Mark L; Gao, Fan; Shim, Jae Kun
2004-03-01
The experimental evidence supports the validity of the principle of superposition for multi-finger prehension in humans. Forces and moments of individual digits are defined by two independent commands: "Grasp the object stronger/weaker to prevent slipping" and "Maintain the rotational equilibrium of the object". The effects of the two commands are summed up.
Generation of picosecond pulsed coherent state superpositions
DEFF Research Database (Denmark)
Dong, Ruifang; Tipsmark, Anders; Laghaout, Amine
2014-01-01
We present the generation of approximated coherent state superpositions-referred to as Schrodinger cat states-by the process of subtracting single photons from picosecond pulsed squeezed states of light. The squeezed vacuum states are produced by spontaneous parametric down-conversion (SPDC...... which exhibit non-Gaussian behavior. (C) 2014 Optical Society of America...
Lin, Chin-Teng; Wu, Rui-Cheng; Chang, Jyh-Yeong; Liang, Sheng-Fu
2004-02-01
In this paper, a new technique for the Chinese text-to-speech (TTS) system is proposed. Our major effort focuses on the prosodic information generation. New methodologies for constructing fuzzy rules in a prosodic model simulating human's pronouncing rules are developed. The proposed Recurrent Fuzzy Neural Network (RFNN) is a multilayer recurrent neural network (RNN) which integrates a Self-cOnstructing Neural Fuzzy Inference Network (SONFIN) into a recurrent connectionist structure. The RFNN can be functionally divided into two parts. The first part adopts the SONFIN as a prosodic model to explore the relationship between high-level linguistic features and prosodic information based on fuzzy inference rules. As compared to conventional neural networks, the SONFIN can always construct itself with an economic network size in high learning speed. The second part employs a five-layer network to generate all prosodic parameters by directly using the prosodic fuzzy rules inferred from the first part as well as other important features of syllables. The TTS system combined with the proposed method can behave not only sandhi rules but also the other prosodic phenomena existing in the traditional TTS systems. Moreover, the proposed scheme can even find out some new rules about prosodic phrase structure. The performance of the proposed RFNN-based prosodic model is verified by imbedding it into a Chinese TTS system with a Chinese monosyllable database based on the time-domain pitch synchronous overlap add (TD-PSOLA) method. Our experimental results show that the proposed RFNN can generate proper prosodic parameters including pitch means, pitch shapes, maximum energy levels, syllable duration, and pause duration. Some synthetic sounds are online available for demonstration.
Time temperature indicators as devices intelligent packaging
Directory of Open Access Journals (Sweden)
Adriana Pavelková
2013-01-01
Full Text Available Food packaging is an important part of food production. Temperature is a one of crucial factor which affecting the quality and safety of food products during distribution, transport and storage. The one way of control of food quality and safety is the application of new packaging systems, which also include the intelligent or smart packaging. Intelligent packaging is a packaging system using different indicators for monitoring the conditions of production, but in particular the conditions during transport and storage. Among these indicators include the time-temperature indicators to monitor changes in temperature, which is exposed the product and to inform consumers about the potential risks associated with consumption of these products. Time temperature indicators are devices that show an irreversible change in a physical characteristic, usually color or shape, in response to temperature history. Some are designed to monitor the evolution of temperature with time along the distribution chain and others are designed to be used in the consumer packages.
On the superposition principle and its physics content
International Nuclear Information System (INIS)
Roos, M.
1984-01-01
What is commonly denoted the superposition principle is shown to consist of three different physical assumptions: conservation of probability, completeness, and some phase conditions. The latter conditions form the physical assumptions of the superposition principle. These phase conditions are exemplified by the Kobayashi-Maskawa matrix. Some suggestions for testing the superposition principle are given. (Auth.)
Projective measurement onto arbitrary superposition of weak coherent state bases
DEFF Research Database (Denmark)
Izumi, Shuro; Takeoka, Masahiro; Wakui, Kentaro
2018-01-01
One of the peculiar features in quantum mechanics is that a superposition of macroscopically distinct states can exist. In optical system, this is highlighted by a superposition of coherent states (SCS), i.e. a superposition of classical states. Recently this highly nontrivial quantum state and i...
Toward quantum superposition of living organisms
International Nuclear Information System (INIS)
Romero-Isart, Oriol; Cirac, J Ignacio; Juan, Mathieu L; Quidant, Romain
2010-01-01
The most striking feature of quantum mechanics is the existence of superposition states, where an object appears to be in different situations at the same time. The existence of such states has been previously tested with small objects, such as atoms, ions, electrons and photons (Zoller et al 2005 Eur. Phys. J. D 36 203-28), and even with molecules (Arndt et al 1999 Nature 401 680-2). More recently, it has been shown that it is possible to create superpositions of collections of photons (Deleglise et al 2008 Nature 455 510-14), atoms (Hammerer et al 2008 arXiv:0807.3358) or Cooper pairs (Friedman et al 2000 Nature 406 43-6). Very recent progress in optomechanical systems may soon allow us to create superpositions of even larger objects, such as micro-sized mirrors or cantilevers (Marshall et al 2003 Phys. Rev. Lett. 91 130401; Kippenberg and Vahala 2008 Science 321 1172-6; Marquardt and Girvin 2009 Physics 2 40; Favero and Karrai 2009 Nature Photon. 3 201-5), and thus to test quantum mechanical phenomena at larger scales. Here we propose a method to cool down and create quantum superpositions of the motion of sub-wavelength, arbitrarily shaped dielectric objects trapped inside a high-finesse cavity at a very low pressure. Our method is ideally suited for the smallest living organisms, such as viruses, which survive under low-vacuum pressures (Rothschild and Mancinelli 2001 Nature 406 1092-101) and optically behave as dielectric objects (Ashkin and Dziedzic 1987 Science 235 1517-20). This opens up the possibility of testing the quantum nature of living organisms by creating quantum superposition states in very much the same spirit as the original Schroedinger's cat 'gedanken' paradigm (Schroedinger 1935 Naturwissenschaften 23 807-12, 823-8, 844-9). We anticipate that our paper will be a starting point for experimentally addressing fundamental questions, such as the role of life and consciousness in quantum mechanics.
Toward quantum superposition of living organisms
Energy Technology Data Exchange (ETDEWEB)
Romero-Isart, Oriol; Cirac, J Ignacio [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748, Garching (Germany); Juan, Mathieu L; Quidant, Romain [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, Castelldefels, Barcelona 08860 (Spain)], E-mail: oriol.romero-isart@mpq.mpg.de
2010-03-15
The most striking feature of quantum mechanics is the existence of superposition states, where an object appears to be in different situations at the same time. The existence of such states has been previously tested with small objects, such as atoms, ions, electrons and photons (Zoller et al 2005 Eur. Phys. J. D 36 203-28), and even with molecules (Arndt et al 1999 Nature 401 680-2). More recently, it has been shown that it is possible to create superpositions of collections of photons (Deleglise et al 2008 Nature 455 510-14), atoms (Hammerer et al 2008 arXiv:0807.3358) or Cooper pairs (Friedman et al 2000 Nature 406 43-6). Very recent progress in optomechanical systems may soon allow us to create superpositions of even larger objects, such as micro-sized mirrors or cantilevers (Marshall et al 2003 Phys. Rev. Lett. 91 130401; Kippenberg and Vahala 2008 Science 321 1172-6; Marquardt and Girvin 2009 Physics 2 40; Favero and Karrai 2009 Nature Photon. 3 201-5), and thus to test quantum mechanical phenomena at larger scales. Here we propose a method to cool down and create quantum superpositions of the motion of sub-wavelength, arbitrarily shaped dielectric objects trapped inside a high-finesse cavity at a very low pressure. Our method is ideally suited for the smallest living organisms, such as viruses, which survive under low-vacuum pressures (Rothschild and Mancinelli 2001 Nature 406 1092-101) and optically behave as dielectric objects (Ashkin and Dziedzic 1987 Science 235 1517-20). This opens up the possibility of testing the quantum nature of living organisms by creating quantum superposition states in very much the same spirit as the original Schroedinger's cat 'gedanken' paradigm (Schroedinger 1935 Naturwissenschaften 23 807-12, 823-8, 844-9). We anticipate that our paper will be a starting point for experimentally addressing fundamental questions, such as the role of life and consciousness in quantum mechanics.
Time-temperature equivalence in Martensite tempering
Energy Technology Data Exchange (ETDEWEB)
Hackenberg, Robert E. [Los Alamos National Laboratory; Thomas, Grant A. [CSM; Speer, John G. [CSM; Matlock, David K. [CSM; Krauss, George [CSM
2008-06-16
The relationship between time and temperature is of great consequence in many materials-related processes including the tempering of martensite. In 1945, Hollomon and Jaffe quantified the 'degree of tempering' as a function of both tempering time, t, and tempering temperature, T, using the expression, T(log t + c). Here, c is thought to be a material constant and appears to decrease linearly with increasing carbon content. The Hollomon-Jaffe tempering parameter is frequently cited in the literature. This work reviews the original derivation of the tempering parameter concept, and presents the use of the characteristics diffusion distance as an alternative time-temperature relationship during martensite tempering. During the tempering of martensite, interstitial carbon atoms diffuse to form carbides. In addition, austenite decomposes, dislocations and grain boundaries rearrange, associated with iron self diffusion. Since these are all diffusional processes, it is reasonable to expect the degree of tempering to relate to the extent of diffusion.
Thermalization as an Invisibility Cloak for Fragile Quantum Superpositions
Hahn, Walter; Fine, Boris V.
2017-01-01
We propose a method for protecting fragile quantum superpositions in many-particle systems from dephasing by external classical noise. We call superpositions "fragile" if dephasing occurs particularly fast, because the noise couples very differently to the superposed states. The method consists of letting a quantum superposition evolve under the internal thermalization dynamics of the system, followed by a time reversal manipulation known as Loschmidt echo. The thermalization dynamics makes t...
On the superposition principle in interference experiments.
Sinha, Aninda; H Vijay, Aravind; Sinha, Urbasi
2015-05-14
The superposition principle is usually incorrectly applied in interference experiments. This has recently been investigated through numerics based on Finite Difference Time Domain (FDTD) methods as well as the Feynman path integral formalism. In the current work, we have derived an analytic formula for the Sorkin parameter which can be used to determine the deviation from the application of the principle. We have found excellent agreement between the analytic distribution and those that have been earlier estimated by numerical integration as well as resource intensive FDTD simulations. The analytic handle would be useful for comparing theory with future experiments. It is applicable both to physics based on classical wave equations as well as the non-relativistic Schrödinger equation.
Authentication Protocol using Quantum Superposition States
Energy Technology Data Exchange (ETDEWEB)
Kanamori, Yoshito [University of Alaska; Yoo, Seong-Moo [University of Alabama, Huntsville; Gregory, Don A. [University of Alabama, Huntsville; Sheldon, Frederick T [ORNL
2009-01-01
When it became known that quantum computers could break the RSA (named for its creators - Rivest, Shamir, and Adleman) encryption algorithm within a polynomial-time, quantum cryptography began to be actively studied. Other classical cryptographic algorithms are only secure when malicious users do not have sufficient computational power to break security within a practical amount of time. Recently, many quantum authentication protocols sharing quantum entangled particles between communicators have been proposed, providing unconditional security. An issue caused by sharing quantum entangled particles is that it may not be simple to apply these protocols to authenticate a specific user in a group of many users. An authentication protocol using quantum superposition states instead of quantum entangled particles is proposed. The random number shared between a sender and a receiver can be used for classical encryption after the authentication has succeeded. The proposed protocol can be implemented with the current technologies we introduce in this paper.
Statistics of particle time-temperature histories.
Energy Technology Data Exchange (ETDEWEB)
Hewson, John C.; Lignell, David O.; Sun, Guangyuan
2014-10-01
Particles in non - isothermal turbulent flow are subject to a stochastic environment tha t produces a distribution of particle time - temperature histories. This distribution is a function of the dispersion of the non - isothermal (continuous) gas phase and the distribution of particles relative to that gas phase. In this work we extend the one - dimensional turbulence (ODT) model to predict the joint dispersion of a dispersed particle phase and a continuous phase. The ODT model predicts the turbulent evolution of continuous scalar fields with a model for the cascade of fluctuations to smaller sc ales (the 'triplet map') at a rate that is a function of the fully resolved one - dimens ional velocity field . Stochastic triplet maps also drive Lagrangian particle dispersion with finite Stokes number s including inertial and eddy trajectory - crossing effect s included. Two distinct approaches to this coupling between triplet maps and particle dispersion are developed and implemented along with a hybrid approach. An 'instantaneous' particle displacement model matches the tracer particle limit and provide s an accurate description of particle dispersion. A 'continuous' particle displacement m odel translates triplet maps into a continuous velocity field to which particles respond. Particles can alter the turbulence, and modifications to the stochastic rate expr ession are developed for two - way coupling between particles and the continuous phase. Each aspect of model development is evaluated in canonical flows (homogeneous turbulence, free - shear flows and wall - bounded flows) for which quality measurements are ava ilable. ODT simulations of non - isothermal flows provide statistics for particle heating. These simulations show the significance of accurately predicting the joint statistics of particle and fluid dispersion . Inhomogeneous turbulence coupled with the in fluence of the mean flow fields on particles of varying properties
Generation of optical coherent state superpositions for quantum information processing
DEFF Research Database (Denmark)
Tipsmark, Anders
2012-01-01
I dette projektarbejde med titlen “Generation of optical coherent state superpositions for quantum information processing” har målet været at generere optiske kat-tilstande. Dette er en kvantemekanisk superpositions tilstand af to koherente tilstande med stor amplitude. Sådan en tilstand er...
Teleportation of Unknown Superpositions of Collective Atomic Coherent States
Institute of Scientific and Technical Information of China (English)
ZHENG ShiBiao
2001-01-01
We propose a scheme to teleport an unknown superposition of two atomic coherent states with different phases. Our scheme is based on resonant and dispersive atom-field interaction. Our scheme provides a possibility of teleporting macroscopic superposition states of many atoms first time.``
THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures.
Theobald, Douglas L; Wuttke, Deborah S
2006-09-01
THESEUS is a command line program for performing maximum likelihood (ML) superpositions and analysis of macromolecular structures. While conventional superpositioning methods use ordinary least-squares (LS) as the optimization criterion, ML superpositions provide substantially improved accuracy by down-weighting variable structural regions and by correcting for correlations among atoms. ML superpositioning is robust and insensitive to the specific atoms included in the analysis, and thus it does not require subjective pruning of selected variable atomic coordinates. Output includes both likelihood-based and frequentist statistics for accurate evaluation of the adequacy of a superposition and for reliable analysis of structural similarities and differences. THESEUS performs principal components analysis for analyzing the complex correlations found among atoms within a structural ensemble. ANSI C source code and selected binaries for various computing platforms are available under the GNU open source license from http://monkshood.colorado.edu/theseus/ or http://www.theseus3d.org.
Time-temperature-sensitization and time-temperature-precipitation behavior of alloy 625
International Nuclear Information System (INIS)
Koehler, M.; Heubner, U.
1996-01-01
Time-Temperature-Sensitization diagrams have been established for a low-carbon version of alloy 625 (UNS N06625). Sensitization in terms of a 50 microm (2 mils) intergranular penetration criterion starts after about 3 h aging time at 750 C (soft annealed condition) or after less than 1 h aging time at 800 C (solution annealed condition) when tested according to ASTM-G 28 method A. Grain boundary precipitation of carbides occurs during aging of both the soft annealed and the solution annealed material, but the soft annealed material exhibits a more pronounced general precipitation of Ni 3 (Nb,Mo) phase giving rise to more distinct loss of ductility. Sensitization of alloy 625 may be retarded by lowering its iron content
International Nuclear Information System (INIS)
Shin, Seong Soo; Choi, Eun Kyung; Huh, Seung Jae
2006-01-01
To evaluate the effectiveness and safety of fentanyl-TTS in the management of radiotherapy induced acute pain and cancer pain treated with radiotherapy. Our study was open labelled prospective phase IV multi-center study, the study population included patients with more 4 numeric rating scale (NRS) score pain although managed with other analgesics or more than 6 NRS score pain without analgesics. Patients divided into two groups: patients with radiotherapy induced pain (Group A) and patients with cancer pain treated with radiotherapy (Group B). All patients received 25 ug/hr of fentanyl transdermal patch. Primary end point was pain relief: second end points were change in patient quality of life, a degree of satisfaction for patients and clinician, side effects. Between March 2005 and June 2005, 312 patients from 26 participating institutes were registered, but 249 patients completed this study. Total number of patients in each group was 185 in Group A, 64 in Group B. Mean age was 60 years and male to female ratio was 76:24. Severe pain NRS score at 2 weeks after the application of fentanyl was decreased from 7.03 to 4.01, ρ = 0.003. There was a significant improvement in insomnia, social functioning, and quality of life. A degree of satisfaction for patients and clinician was very high. The most common reasons of patients' satisfactions was good pain control. Ninety six patients reported side effect. Nausea was the most common side effect. There was no serious side effect. Fentanyl-TTS was effective in both relieving pain with good tolerability and improving the quality of life for patients with radiotherapy induced acute pain and cancer pain treated with radiotherapy. The satisfaction of the patients and doctors was good. There wa no major side effect
Energy Technology Data Exchange (ETDEWEB)
Shin, Seong Soo; Choi, Eun Kyung [University of Ulsan College of Medicine, Seoul (Korea, Republic of); Huh, Seung Jae [Sungkyunkwan University College of Medicine, Seoul (Korea, Republic of)] (and others)
2006-12-15
To evaluate the effectiveness and safety of fentanyl-TTS in the management of radiotherapy induced acute pain and cancer pain treated with radiotherapy. Our study was open labelled prospective phase IV multi-center study, the study population included patients with more 4 numeric rating scale (NRS) score pain although managed with other analgesics or more than 6 NRS score pain without analgesics. Patients divided into two groups: patients with radiotherapy induced pain (Group A) and patients with cancer pain treated with radiotherapy (Group B). All patients received 25 ug/hr of fentanyl transdermal patch. Primary end point was pain relief: second end points were change in patient quality of life, a degree of satisfaction for patients and clinician, side effects. Between March 2005 and June 2005, 312 patients from 26 participating institutes were registered, but 249 patients completed this study. Total number of patients in each group was 185 in Group A, 64 in Group B. Mean age was 60 years and male to female ratio was 76:24. Severe pain NRS score at 2 weeks after the application of fentanyl was decreased from 7.03 to 4.01, {rho} = 0.003. There was a significant improvement in insomnia, social functioning, and quality of life. A degree of satisfaction for patients and clinician was very high. The most common reasons of patients' satisfactions was good pain control. Ninety six patients reported side effect. Nausea was the most common side effect. There was no serious side effect. Fentanyl-TTS was effective in both relieving pain with good tolerability and improving the quality of life for patients with radiotherapy induced acute pain and cancer pain treated with radiotherapy. The satisfaction of the patients and doctors was good. There wa no major side effect.
Optimal simultaneous superpositioning of multiple structures with missing data.
Theobald, Douglas L; Steindel, Phillip A
2012-08-01
Superpositioning is an essential technique in structural biology that facilitates the comparison and analysis of conformational differences among topologically similar structures. Performing a superposition requires a one-to-one correspondence, or alignment, of the point sets in the different structures. However, in practice, some points are usually 'missing' from several structures, for example, when the alignment contains gaps. Current superposition methods deal with missing data simply by superpositioning a subset of points that are shared among all the structures. This practice is inefficient, as it ignores important data, and it fails to satisfy the common least-squares criterion. In the extreme, disregarding missing positions prohibits the calculation of a superposition altogether. Here, we present a general solution for determining an optimal superposition when some of the data are missing. We use the expectation-maximization algorithm, a classic statistical technique for dealing with incomplete data, to find both maximum-likelihood solutions and the optimal least-squares solution as a special case. The methods presented here are implemented in THESEUS 2.0, a program for superpositioning macromolecular structures. ANSI C source code and selected compiled binaries for various computing platforms are freely available under the GNU open source license from http://www.theseus3d.org. dtheobald@brandeis.edu Supplementary data are available at Bioinformatics online.
Thermalization as an invisibility cloak for fragile quantum superpositions
Hahn, Walter; Fine, Boris V.
2017-07-01
We propose a method for protecting fragile quantum superpositions in many-particle systems from dephasing by external classical noise. We call superpositions "fragile" if dephasing occurs particularly fast, because the noise couples very differently to the superposed states. The method consists of letting a quantum superposition evolve under the internal thermalization dynamics of the system, followed by a time-reversal manipulation known as Loschmidt echo. The thermalization dynamics makes the superposed states almost indistinguishable during most of the above procedure. We validate the method by applying it to a cluster of spins ½.
Empirical Evaluation of Superposition Coded Multicasting for Scalable Video
Chun Pong Lau
2013-03-01
In this paper we investigate cross-layer superposition coded multicast (SCM). Previous studies have proven its effectiveness in exploiting better channel capacity and service granularities via both analytical and simulation approaches. However, it has never been practically implemented using a commercial 4G system. This paper demonstrates our prototype in achieving the SCM using a standard 802.16 based testbed for scalable video transmissions. In particular, to implement the superposition coded (SPC) modulation, we take advantage a novel software approach, namely logical SPC (L-SPC), which aims to mimic the physical layer superposition coded modulation. The emulation results show improved throughput comparing with generic multicast method.
Generating superpositions of higher order bessel beams [Conference paper
CSIR Research Space (South Africa)
Vasilyeu, R
2009-10-01
Full Text Available An experimental setup to generate a superposition of higher-order Bessel beams by means of a spatial light modulator and ring aperture is presented. The experimentally produced fields are in good agreement with those calculated theoretically....
Measurement-Induced Macroscopic Superposition States in Cavity Optomechanics
DEFF Research Database (Denmark)
Hoff, Ulrich Busk; Kollath-Bönig, Johann; Neergaard-Nielsen, Jonas Schou
2016-01-01
A novel protocol for generating quantum superpositions of macroscopically distinct states of a bulk mechanical oscillator is proposed, compatible with existing optomechanical devices operating in the bad-cavity limit. By combining a pulsed optomechanical quantum nondemolition (QND) interaction...
Testing the quantum superposition principle: matter waves and beyond
Ulbricht, Hendrik
2015-05-01
New technological developments allow to explore the quantum properties of very complex systems, bringing the question of whether also macroscopic systems share such features, within experimental reach. The interest in this question is increased by the fact that, on the theory side, many suggest that the quantum superposition principle is not exact, departures from it being the larger, the more macroscopic the system. Testing the superposition principle intrinsically also means to test suggested extensions of quantum theory, so-called collapse models. We will report on three new proposals to experimentally test the superposition principle with nanoparticle interferometry, optomechanical devices and by spectroscopic experiments in the frequency domain. We will also report on the status of optical levitation and cooling experiments with nanoparticles in our labs, towards an Earth bound matter-wave interferometer to test the superposition principle for a particle mass of one million amu (atomic mass unit).
Empirical Evaluation of Superposition Coded Multicasting for Scalable Video
Chun Pong Lau; Shihada, Basem; Pin-Han Ho
2013-01-01
In this paper we investigate cross-layer superposition coded multicast (SCM). Previous studies have proven its effectiveness in exploiting better channel capacity and service granularities via both analytical and simulation approaches. However
Quantum State Engineering Via Coherent-State Superpositions
Janszky, Jozsef; Adam, P.; Szabo, S.; Domokos, P.
1996-01-01
The quantum interference between the two parts of the optical Schrodinger-cat state makes possible to construct a wide class of quantum states via discrete superpositions of coherent states. Even a small number of coherent states can approximate the given quantum states at a high accuracy when the distance between the coherent states is optimized, e. g. nearly perfect Fock state can be constructed by discrete superpositions of n + 1 coherent states lying in the vicinity of the vacuum state.
Non-coaxial superposition of vector vortex beams.
Aadhi, A; Vaity, Pravin; Chithrabhanu, P; Reddy, Salla Gangi; Prabakar, Shashi; Singh, R P
2016-02-10
Vector vortex beams are classified into four types depending upon spatial variation in their polarization vector. We have generated all four of these types of vector vortex beams by using a modified polarization Sagnac interferometer with a vortex lens. Further, we have studied the non-coaxial superposition of two vector vortex beams. It is observed that the superposition of two vector vortex beams with same polarization singularity leads to a beam with another kind of polarization singularity in their interaction region. The results may be of importance in ultrahigh security of the polarization-encrypted data that utilizes vector vortex beams and multiple optical trapping with non-coaxial superposition of vector vortex beams. We verified our experimental results with theory.
Entanglement and quantum superposition induced by a single photon
Lü, Xin-You; Zhu, Gui-Lei; Zheng, Li-Li; Wu, Ying
2018-03-01
We predict the occurrence of single-photon-induced entanglement and quantum superposition in a hybrid quantum model, introducing an optomechanical coupling into the Rabi model. Originally, it comes from the photon-dependent quantum property of the ground state featured by the proposed hybrid model. It is associated with a single-photon-induced quantum phase transition, and is immune to the A2 term of the spin-field interaction. Moreover, the obtained quantum superposition state is actually a squeezed cat state, which can significantly enhance precision in quantum metrology. This work offers an approach to manipulate entanglement and quantum superposition with a single photon, which might have potential applications in the engineering of new single-photon quantum devices, and also fundamentally broaden the regime of cavity QED.
Robust mesoscopic superposition of strongly correlated ultracold atoms
International Nuclear Information System (INIS)
Hallwood, David W.; Ernst, Thomas; Brand, Joachim
2010-01-01
We propose a scheme to create coherent superpositions of annular flow of strongly interacting bosonic atoms in a one-dimensional ring trap. The nonrotating ground state is coupled to a vortex state with mesoscopic angular momentum by means of a narrow potential barrier and an applied phase that originates from either rotation or a synthetic magnetic field. We show that superposition states in the Tonks-Girardeau regime are robust against single-particle loss due to the effects of strong correlations. The coupling between the mesoscopically distinct states scales much more favorably with particle number than in schemes relying on weak interactions, thus making particle numbers of hundreds or thousands feasible. Coherent oscillations induced by time variation of parameters may serve as a 'smoking gun' signature for detecting superposition states.
Superposition of helical beams by using a Michelson interferometer.
Gao, Chunqing; Qi, Xiaoqing; Liu, Yidong; Weber, Horst
2010-01-04
Orbital angular momentum (OAM) of a helical beam is of great interests in the high density optical communication due to its infinite number of eigen-states. In this paper, an experimental setup is realized to the information encoding and decoding on the OAM eigen-states. A hologram designed by the iterative method is used to generate the helical beams, and a Michelson interferometer with two Porro prisms is used for the superposition of two helical beams. The experimental results of the collinear superposition of helical beams and their OAM eigen-states detection are presented.
Macroscopic superposition states and decoherence by quantum telegraph noise
Energy Technology Data Exchange (ETDEWEB)
Abel, Benjamin Simon
2008-12-19
In the first part of the present thesis we address the question about the size of superpositions of macroscopically distinct quantum states. We propose a measure for the ''size'' of a Schroedinger cat state, i.e. a quantum superposition of two many-body states with (supposedly) macroscopically distinct properties, by counting how many single-particle operations are needed to map one state onto the other. We apply our measure to a superconducting three-junction flux qubit put into a superposition of clockwise and counterclockwise circulating supercurrent states and find this Schroedinger cat to be surprisingly small. The unavoidable coupling of any quantum system to many environmental degrees of freedom leads to an irreversible loss of information about an initially prepared superposition of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is the subject of the second part of the thesis. We have studied the time evolution of the reduced density matrix of a two-level system (qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson charge qubits. We are able to derive an exact expression for the time evolution of the reduced density matrix. (orig.)
Linear Plasma Oscillation Described by Superposition of Normal Modes
DEFF Research Database (Denmark)
Pécseli, Hans
1974-01-01
The existence of steady‐state solutions to the linearized ion and electron Vlasov equation is demonstrated for longitudinal waves in an initially stable plasma. The evolution of an arbitrary initial perturbation can be described by superposition of these solutions. Some common approximations...
Macroscopic superposition states and decoherence by quantum telegraph noise
International Nuclear Information System (INIS)
Abel, Benjamin Simon
2008-01-01
In the first part of the present thesis we address the question about the size of superpositions of macroscopically distinct quantum states. We propose a measure for the ''size'' of a Schroedinger cat state, i.e. a quantum superposition of two many-body states with (supposedly) macroscopically distinct properties, by counting how many single-particle operations are needed to map one state onto the other. We apply our measure to a superconducting three-junction flux qubit put into a superposition of clockwise and counterclockwise circulating supercurrent states and find this Schroedinger cat to be surprisingly small. The unavoidable coupling of any quantum system to many environmental degrees of freedom leads to an irreversible loss of information about an initially prepared superposition of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is the subject of the second part of the thesis. We have studied the time evolution of the reduced density matrix of a two-level system (qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson charge qubits. We are able to derive an exact expression for the time evolution of the reduced density matrix. (orig.)
Generating superpositions of higher–order Bessel beams [Journal article
CSIR Research Space (South Africa)
Vasilyeu, R
2009-12-01
Full Text Available The authors report the first experimental generation of the superposition of higher-order Bessel beams, by means of a spatial light modulator (SLM) and a ring slit aperture. They present illuminating a ring slit aperture with light which has...
Spectral properties of superpositions of Ornstein-Uhlenbeck type processes
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Leonenko, N.N.
2005-01-01
Stationary processes with prescribed one-dimensional marginal laws and long-range dependence are constructed. The asymptotic properties of the spectral densities are studied. The possibility of Mittag-Leffler decay in the autocorrelation function of superpositions of Ornstein-Uhlenbeck type...... processes is proved....
On some properties of the superposition operator on topological manifolds
Directory of Open Access Journals (Sweden)
Janusz Dronka
2010-01-01
Full Text Available In this paper the superposition operator in the space of vector-valued, bounded and continuous functions on a topological manifold is considered. The acting conditions and criteria of continuity and compactness are established. As an application, an existence result for the nonlinear Hammerstein integral equation is obtained.
Time - Temperature Relationships of Test Head Fired and Backfires
Lawrence S. Davis; Robert E. Martin
1960-01-01
Time-temperature relations were measured during the course of a preliminary investigation of the thermal characteristics of forest fires. Observations on 5 head fires and 5 backfires in 8-year-old gallberry-palmetto roughs on the Alapaha Experimental Range near Tifton, Georgia, are the basis for this report.
Time-temperature-transformation kinetics in SRL waste glass
International Nuclear Information System (INIS)
Jantzen, C.M.; Bickford, D.F.; Karraker, D.G.
1983-01-01
Time-temperature-transformation (TTT) curves have been determined for SRL 165 waste glass. Extent and sequence of crystallization were determined by XRD and SEM. The incipient crystallization product, spinel, can be determined at one volume percent by magnetic susceptibility. The type and percentage of crystallization is correlated with waste glass durability. 20 references, 5 figures, 1 table
Transforming spatial point processes into Poisson processes using random superposition
DEFF Research Database (Denmark)
Møller, Jesper; Berthelsen, Kasper Klitgaaard
with a complementary spatial point process Y to obtain a Poisson process X∪Y with intensity function β. Underlying this is a bivariate spatial birth-death process (Xt,Yt) which converges towards the distribution of (X,Y). We study the joint distribution of X and Y, and their marginal and conditional distributions....... In particular, we introduce a fast and easy simulation procedure for Y conditional on X. This may be used for model checking: given a model for the Papangelou intensity of the original spatial point process, this model is used to generate the complementary process, and the resulting superposition is a Poisson...... process with intensity function β if and only if the true Papangelou intensity is used. Whether the superposition is actually such a Poisson process can easily be examined using well known results and fast simulation procedures for Poisson processes. We illustrate this approach to model checking...
Coherent inflation for large quantum superpositions of levitated microspheres
Romero-Isart, Oriol
2017-12-01
We show that coherent inflation (CI), namely quantum dynamics generated by inverted conservative potentials acting on the center of mass of a massive object, is an enabling tool to prepare large spatial quantum superpositions in a double-slit experiment. Combined with cryogenic, extreme high vacuum, and low-vibration environments, we argue that it is experimentally feasible to exploit CI to prepare the center of mass of a micrometer-sized object in a spatial quantum superposition comparable to its size. In such a hitherto unexplored parameter regime gravitationally-induced decoherence could be unambiguously falsified. We present a protocol to implement CI in a double-slit experiment by letting a levitated microsphere traverse a static potential landscape. Such a protocol could be experimentally implemented with an all-magnetic scheme using superconducting microspheres.
Improved superposition schemes for approximate multi-caloron configurations
International Nuclear Information System (INIS)
Gerhold, P.; Ilgenfritz, E.-M.; Mueller-Preussker, M.
2007-01-01
Two improved superposition schemes for the construction of approximate multi-caloron-anti-caloron configurations, using exact single (anti-)caloron gauge fields as underlying building blocks, are introduced in this paper. The first improvement deals with possible monopole-Dirac string interactions between different calorons with non-trivial holonomy. The second one, based on the ADHM formalism, improves the (anti-)selfduality in the case of small caloron separations. It conforms with Shuryak's well-known ratio-ansatz when applied to instantons. Both superposition techniques provide a higher degree of (anti-)selfduality than the widely used sum-ansatz, which simply adds the (anti)caloron vector potentials in an appropriate gauge. Furthermore, the improved configurations (when discretized onto a lattice) are characterized by a higher stability when they are exposed to lattice cooling techniques
Interplay of gravitation and linear superposition of different mass eigenstates
International Nuclear Information System (INIS)
Ahluwalia, D.V.
1998-01-01
The interplay of gravitation and the quantum-mechanical principle of linear superposition induces a new set of neutrino oscillation phases. These ensure that the flavor-oscillation clocks, inherent in the phenomenon of neutrino oscillations, redshift precisely as required by Einstein close-quote s theory of gravitation. The physical observability of these phases in the context of the solar neutrino anomaly, type-II supernova, and certain atomic systems is briefly discussed. copyright 1998 The American Physical Society
Single-Atom Gating of Quantum State Superpositions
Energy Technology Data Exchange (ETDEWEB)
Moon, Christopher
2010-04-28
The ultimate miniaturization of electronic devices will likely require local and coherent control of single electronic wavefunctions. Wavefunctions exist within both physical real space and an abstract state space with a simple geometric interpretation: this state space - or Hilbert space - is spanned by mutually orthogonal state vectors corresponding to the quantized degrees of freedom of the real-space system. Measurement of superpositions is akin to accessing the direction of a vector in Hilbert space, determining an angle of rotation equivalent to quantum phase. Here we show that an individual atom inside a designed quantum corral1 can control this angle, producing arbitrary coherent superpositions of spatial quantum states. Using scanning tunnelling microscopy and nanostructures assembled atom-by-atom we demonstrate how single spins and quantum mirages can be harnessed to image the superposition of two electronic states. We also present a straightforward method to determine the atom path enacting phase rotations between any desired state vectors. A single atom thus becomes a real-space handle for an abstract Hilbert space, providing a simple technique for coherent quantum state manipulation at the spatial limit of condensed matter.
Directory of Open Access Journals (Sweden)
Otero, E.
1996-04-01
Full Text Available This work presents a comparison of Temperature-Time-Sensitization TTS diagrams obtained by Huey and modified Strauss standard, for detecting susceptibility to intergranular attack. The difference between these tests is the use of a strong or a slightly smooth oxidizing electrolyte. The diagrams obtained are different and if a sample tested by modified Strauss is sensitized, then it will be sensitized in the Huey test, but the contrary is not always true. This difference is because a sensitized sample has to have a continuous band lacking in chromium along the grain boundary in order to be sensitized in the modified Strauss test. This condition is not necessary in the Huey test.
Se comparan los diagramas Temperatura-Tiempo-Sensibilización TTS, obtenidos mediante los ensayos normalizados de corrosión intergranular Huey y Strauss modificado, que, respectivamente, utilizan electrólitos fuerte y suavemente oxidantes, mostrándose que los diagramas obtenidos son diferentes. Si una muestra evaluada mediante el ensayo Strauss modificado se encuentra sensibilizada, entonces lo estará también en el ensayo Huey, pero no necesariamente ocurrirá lo contrario; esta diferencia se asocia a la necesidad de la existencia de una zona continua empobrecida en cromo a lo largo del límite de grano para que el material se sensibilice con respecto al ensayo Strauss modificado, condición innecesaria para el caso del ensayo Huey.
International Nuclear Information System (INIS)
Schlegel, R.
1975-01-01
With the interaction interpretation, the Lorentz transformation of a system arises with selection from a superposition of its states in an observation-interaction. Integration of momentum states of a mass over all possible velocities gives the rest-mass energy. Static electrical and magnetic fields are not found to form such a superposition and are to be taken as irreducible elements. The external superposition consists of those states that are reached only by change of state of motion, whereas the internal superposition contains all the states available to an observer in a single inertial coordinate system. The conjecture is advanced that states of superposition may only be those related by space-time transformations (Lorentz transformations plus space inversion and charge conjugation). The continuum of external and internal superpositions is examined for various masses, and an argument for the unity of the superpositions is presented
Quantum-mechanical Green's functions and nonlinear superposition law
International Nuclear Information System (INIS)
Nassar, A.B.; Bassalo, J.M.F.; Antunes Neto, H.S.; Alencar, P. de T.S.
1986-01-01
The quantum-mechanical Green's function is derived for the problem of a time-dependent variable mass particle subject to a time-dependent forced harmonic oscillator potential by taking direct recourse of the corresponding Schroedinger equation. Through the usage of the nonlinear superposition law of Ray and Reid, it is shown that such a Green's function can be obtained from that for the problem of a particle with unit (constant) mass subject to either a forced harmonic potential with constant frequency or only to a time-dependent linear field. (Author) [pt
Quantum-mechanical Green's function and nonlinear superposition law
International Nuclear Information System (INIS)
Nassar, A.B.; Bassalo, J.M.F.; Antunes Neto, H.S.; Alencar, P.T.S.
1986-01-01
It is derived the quantum-mechanical Green's function for the problem of a time-dependent variable mass particle subject to a time-dependent forced harmonic-oscillator potential by taking direct recourse of the corresponding Schroedinger equation. Through the usage of the nonlinear superposition law of Ray and Reid, it is shown that such a Green's function can be obtained from that for the problem of a particle with unit (constant) mass subject to either a forced harmonic potential with constant frequency or only to a time-dependent linear field
Efficient Power Allocation for Video over Superposition Coding
Lau, Chun Pong
2013-03-01
In this paper we consider a wireless multimedia system by mapping scalable video coded (SVC) bit stream upon superposition coded (SPC) signals, referred to as (SVC-SPC) architecture. Empirical experiments using a software-defined radio(SDR) emulator are conducted to gain a better understanding of its efficiency, specifically, the impact of the received signal due to different power allocation ratios. Our experimental results show that to maintain high video quality, the power allocated to the base layer should be approximately four times higher than the power allocated to the enhancement layer.
Quantum superposition of massive objects and collapse models
International Nuclear Information System (INIS)
Romero-Isart, Oriol
2011-01-01
We analyze the requirements to test some of the most paradigmatic collapse models with a protocol that prepares quantum superpositions of massive objects. This consists of coherently expanding the wave function of a ground-state-cooled mechanical resonator, performing a squared position measurement that acts as a double slit, and observing interference after further evolution. The analysis is performed in a general framework and takes into account only unavoidable sources of decoherence: blackbody radiation and scattering of environmental particles. We also discuss the limitations imposed by the experimental implementation of this protocol using cavity quantum optomechanics with levitating dielectric nanospheres.
Quantum superposition of massive objects and collapse models
Energy Technology Data Exchange (ETDEWEB)
Romero-Isart, Oriol [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany)
2011-11-15
We analyze the requirements to test some of the most paradigmatic collapse models with a protocol that prepares quantum superpositions of massive objects. This consists of coherently expanding the wave function of a ground-state-cooled mechanical resonator, performing a squared position measurement that acts as a double slit, and observing interference after further evolution. The analysis is performed in a general framework and takes into account only unavoidable sources of decoherence: blackbody radiation and scattering of environmental particles. We also discuss the limitations imposed by the experimental implementation of this protocol using cavity quantum optomechanics with levitating dielectric nanospheres.
On Kolmogorov's superpositions and Boolean functions
Energy Technology Data Exchange (ETDEWEB)
Beiu, V.
1998-12-31
The paper overviews results dealing with the approximation capabilities of neural networks, as well as bounds on the size of threshold gate circuits. Based on an explicit numerical (i.e., constructive) algorithm for Kolmogorov's superpositions they will show that for obtaining minimum size neutral networks for implementing any Boolean function, the activation function of the neurons is the identity function. Because classical AND-OR implementations, as well as threshold gate implementations require exponential size (in the worst case), it will follow that size-optimal solutions for implementing arbitrary Boolean functions require analog circuitry. Conclusions and several comments on the required precision are ending the paper.
Push-pull optical pumping of pure superposition states
International Nuclear Information System (INIS)
Jau, Y.-Y.; Miron, E.; Post, A.B.; Kuzma, N.N.; Happer, W.
2004-01-01
A new optical pumping method, 'push-pull pumping', can produce very nearly pure, coherent superposition states between the initial and the final sublevels of the important field-independent 0-0 clock resonance of alkali-metal atoms. The key requirement for push-pull pumping is the use of D1 resonant light which alternates between left and right circular polarization at the Bohr frequency of the state. The new pumping method works for a wide range of conditions, including atomic beams with almost no collisions, and atoms in buffer gases with pressures of many atmospheres
Energy Technology Data Exchange (ETDEWEB)
Espanol Villar, J.
2013-07-01
It is highly likely that the accumulation of sludge (deposits) on the tube sheet is clearly associated with the denting occurrence. More specifically, it is commonly believed that an aggressive crevice environment formed within the deposits or in the shallow tight tube sheet to tube crevice below the deposits is at the origin of the denting (tube deformation), and, when present, the consequent stress corrosion cracking (SCC). There are described a set of strategies that have been followed since the emergence of the TTS denting phenomenon on Steam Generator of the Nuclear Power Plants Asco I and II, influenced by the presence of hard sludge in the tube plate of Steam Generators, their results and the evolution of the phenomenon in relation to the various measures taken.
SUPERPOSITION OF STOCHASTIC PROCESSES AND THE RESULTING PARTICLE DISTRIBUTIONS
International Nuclear Information System (INIS)
Schwadron, N. A.; Dayeh, M. A.; Desai, M.; Fahr, H.; Jokipii, J. R.; Lee, M. A.
2010-01-01
Many observations of suprathermal and energetic particles in the solar wind and the inner heliosheath show that distribution functions scale approximately with the inverse of particle speed (v) to the fifth power. Although there are exceptions to this behavior, there is a growing need to understand why this type of distribution function appears so frequently. This paper develops the concept that a superposition of exponential and Gaussian distributions with different characteristic speeds and temperatures show power-law tails. The particular type of distribution function, f ∝ v -5 , appears in a number of different ways: (1) a series of Poisson-like processes where entropy is maximized with the rates of individual processes inversely proportional to the characteristic exponential speed, (2) a series of Gaussian distributions where the entropy is maximized with the rates of individual processes inversely proportional to temperature and the density of individual Gaussian distributions proportional to temperature, and (3) a series of different diffusively accelerated energetic particle spectra with individual spectra derived from observations (1997-2002) of a multiplicity of different shocks. Thus, we develop a proof-of-concept for the superposition of stochastic processes that give rise to power-law distribution functions.
Unveiling the curtain of superposition: Recent gedanken and laboratory experiments
Cohen, E.; Elitzur, A. C.
2017-08-01
What is the true meaning of quantum superposition? Can a particle genuinely reside in several places simultaneously? These questions lie at the heart of this paper which presents an updated survey of some important stages in the evolution of the three-boxes paradox, as well as novel conclusions drawn from it. We begin with the original thought experiment of Aharonov and Vaidman, and proceed to its non-counterfactual version. The latter was recently realized by Okamoto and Takeuchi using a quantum router. We then outline a dynamic version of this experiment, where a particle is shown to “disappear” and “re-appear” during the time evolution of the system. This surprising prediction based on self-cancellation of weak values is directly related to our notion of Quantum Oblivion. Finally, we present the non-counterfactual version of this disappearing-reappearing experiment. Within the near future, this last version of the experiment is likely to be realized in the lab, proving the existence of exotic hitherto unknown forms of superposition. With the aid of Bell’s theorem, we prove the inherent nonlocality and nontemporality underlying such pre- and post-selected systems, rendering anomalous weak values ontologically real.
Evolution of superpositions of quantum states through a level crossing
International Nuclear Information System (INIS)
Torosov, B. T.; Vitanov, N. V.
2011-01-01
The Landau-Zener-Stueckelberg-Majorana (LZSM) model is widely used for estimating transition probabilities in the presence of crossing energy levels in quantum physics. This model, however, makes the unphysical assumption of an infinitely long constant interaction, which introduces a divergent phase in the propagator. This divergence remains hidden when estimating output probabilities for a single input state insofar as the divergent phase cancels out. In this paper we show that, because of this divergent phase, the LZSM model is inadequate to describe the evolution of pure or mixed superposition states across a level crossing. The LZSM model can be used only if the system is initially in a single state or in a completely mixed superposition state. To this end, we show that the more realistic Demkov-Kunike model, which assumes a hyperbolic-tangent level crossing and a hyperbolic-secant interaction envelope, is free of divergences and is a much more adequate tool for describing the evolution through a level crossing for an arbitrary input state. For multiple crossing energies which are reducible to one or more effective two-state systems (e.g., by the Majorana and Morris-Shore decompositions), similar conclusions apply: the LZSM model does not produce definite values of the populations and the coherences, and one should use the Demkov-Kunike model instead.
Real-time temperature field measurement based on acoustic tomography
International Nuclear Information System (INIS)
Bao, Yong; Jia, Jiabin; Polydorides, Nick
2017-01-01
Acoustic tomography can be used to measure the temperature field from the time-of-flight (TOF). In order to capture real-time temperature field changes and accurately yield quantitative temperature images, two improvements to the conventional acoustic tomography system are studied: simultaneous acoustic transmission and TOF collection along multiple ray paths, and an offline iteration reconstruction algorithm. During system operation, all the acoustic transceivers send modulated and filtered wideband Kasami sequences simultaneously to facilitate fast and accurate TOF measurements using cross-correlation detection. For image reconstruction, the iteration process is separated and executed offline beforehand to shorten computation time for online temperature field reconstruction. The feasibility and effectiveness of the developed methods are validated in the simulation study. The simulation results demonstrate that the proposed method can reduce the processing time per frame from 160 ms to 20 ms, while the reconstruction error remains less than 5%. Hence, the proposed method has great potential in the measurement of rapid temperature change with good temporal and spatial resolution. (paper)
Capacity-Approaching Superposition Coding for Optical Fiber Links
DEFF Research Database (Denmark)
Estaran Tolosa, Jose Manuel; Zibar, Darko; Tafur Monroy, Idelfonso
2014-01-01
We report on the first experimental demonstration of superposition coded modulation (SCM) for polarization-multiplexed coherent-detection optical fiber links. The proposed coded modulation scheme is combined with phase-shifted bit-to-symbol mapping (PSM) in order to achieve geometric and passive......-SCM) is employed in the framework of bit-interleaved coded modulation with iterative decoding (BICM-ID) for forward error correction. The fiber transmission system is characterized in terms of signal-to-noise ratio for back-to-back case and correlated with simulated results for ideal transmission over additive...... white Gaussian noise channel. Thereafter, successful demodulation and decoding after dispersion-unmanaged transmission over 240-km standard single mode fiber of dual-polarization 6-Gbaud 16-, 32- and 64-ary SCM-PSM is experimentally demonstrated....
Superposition of Stress Fields in Diametrically Compressed Cylinders
Directory of Open Access Journals (Sweden)
João Augusto de Lima Rocha
Full Text Available Abstract The theoretical analysis for the Brazilian test is a classical plane stress problem of elasticity theory, where a vertical force is applied to a horizontal plane, the boundary of a semi-infinite medium. Hypothesizing a normal radial stress field, the results of that model are correct. Nevertheless, the superposition of three stress fields, with two being based on prior results and the third based on a hydrostatic stress field, is incorrect. Indeed, this work shows that the Cauchy vectors (tractions are non-vanishing in the parallel planes in which the two opposing vertical forces are applied. The aim of this work is to detail the process used in the construction of the theoretical model for the three stress fields used, with the objective being to demonstrate the inconsistency often stated in the literature.
Simulation Analysis of DC and Switching Impulse Superposition Circuit
Zhang, Chenmeng; Xie, Shijun; Zhang, Yu; Mao, Yuxiang
2018-03-01
Surge capacitors running between the natural bus and the ground are affected by DC and impulse superposition voltage during operation in the converter station. This paper analyses the simulation aging circuit of surge capacitors by PSCAD electromagnetic transient simulation software. This paper also analyses the effect of the DC voltage to the waveform of the impulse voltage generation. The effect of coupling capacitor to the test voltage waveform is also studied. Testing results prove that the DC voltage has little effect on the waveform of the output of the surge voltage generator, and the value of the coupling capacitor has little effect on the voltage waveform of the sample. Simulation results show that surge capacitor DC and impulse superimposed aging test is feasible.
Decoherence bypass of macroscopic superpositions in quantum measurement
International Nuclear Information System (INIS)
Spehner, Dominique; Haake, Fritz
2008-01-01
We study a class of quantum measurement models. A microscopic object is entangled with a macroscopic pointer such that a distinct pointer position is tied to each eigenvalue of the measured object observable. Those different pointer positions mutually decohere under the influence of an environment. Overcoming limitations of previous approaches we (i) cope with initial correlations between pointer and environment by considering them initially in a metastable local thermal equilibrium, (ii) allow for object-pointer entanglement and environment-induced decoherence of distinct pointer readouts to proceed simultaneously, such that mixtures of macroscopically distinct object-pointer product states arise without intervening macroscopic superpositions, and (iii) go beyond the Markovian treatment of decoherence. (fast track communication)
Adiabatic rotation, quantum search, and preparation of superposition states
International Nuclear Information System (INIS)
Siu, M. Stewart
2007-01-01
We introduce the idea of using adiabatic rotation to generate superpositions of a large class of quantum states. For quantum computing this is an interesting alternative to the well-studied 'straight line' adiabatic evolution. In ways that complement recent results, we show how to efficiently prepare three types of states: Kitaev's toric code state, the cluster state of the measurement-based computation model, and the history state used in the adiabatic simulation of a quantum circuit. We also show that the method, when adapted for quantum search, provides quadratic speedup as other optimal methods do with the advantages that the problem Hamiltonian is time independent and that the energy gap above the ground state is strictly nondecreasing with time. Likewise the method can be used for optimization as an alternative to the standard adiabatic algorithm
Polyphony: superposition independent methods for ensemble-based drug discovery.
Pitt, William R; Montalvão, Rinaldo W; Blundell, Tom L
2014-09-30
Structure-based drug design is an iterative process, following cycles of structural biology, computer-aided design, synthetic chemistry and bioassay. In favorable circumstances, this process can lead to the structures of hundreds of protein-ligand crystal structures. In addition, molecular dynamics simulations are increasingly being used to further explore the conformational landscape of these complexes. Currently, methods capable of the analysis of ensembles of crystal structures and MD trajectories are limited and usually rely upon least squares superposition of coordinates. Novel methodologies are described for the analysis of multiple structures of a protein. Statistical approaches that rely upon residue equivalence, but not superposition, are developed. Tasks that can be performed include the identification of hinge regions, allosteric conformational changes and transient binding sites. The approaches are tested on crystal structures of CDK2 and other CMGC protein kinases and a simulation of p38α. Known interaction - conformational change relationships are highlighted but also new ones are revealed. A transient but druggable allosteric pocket in CDK2 is predicted to occur under the CMGC insert. Furthermore, an evolutionarily-conserved conformational link from the location of this pocket, via the αEF-αF loop, to phosphorylation sites on the activation loop is discovered. New methodologies are described and validated for the superimposition independent conformational analysis of large collections of structures or simulation snapshots of the same protein. The methodologies are encoded in a Python package called Polyphony, which is released as open source to accompany this paper [http://wrpitt.bitbucket.org/polyphony/].
Macroscopicity of quantum superpositions on a one-parameter unitary path in Hilbert space
Volkoff, T. J.; Whaley, K. B.
2014-12-01
We analyze quantum states formed as superpositions of an initial pure product state and its image under local unitary evolution, using two measurement-based measures of superposition size: one based on the optimal quantum binary distinguishability of the branches of the superposition and another based on the ratio of the maximal quantum Fisher information of the superposition to that of its branches, i.e., the relative metrological usefulness of the superposition. A general formula for the effective sizes of these states according to the branch-distinguishability measure is obtained and applied to superposition states of N quantum harmonic oscillators composed of Gaussian branches. Considering optimal distinguishability of pure states on a time-evolution path leads naturally to a notion of distinguishability time that generalizes the well-known orthogonalization times of Mandelstam and Tamm and Margolus and Levitin. We further show that the distinguishability time provides a compact operational expression for the superposition size measure based on the relative quantum Fisher information. By restricting the maximization procedure in the definition of this measure to an appropriate algebra of observables, we show that the superposition size of, e.g., NOON states and hierarchical cat states, can scale linearly with the number of elementary particles comprising the superposition state, implying precision scaling inversely with the total number of photons when these states are employed as probes in quantum parameter estimation of a 1-local Hamiltonian in this algebra.
Point kernels and superposition methods for scatter dose calculations in brachytherapy
International Nuclear Information System (INIS)
Carlsson, A.K.
2000-01-01
Point kernels have been generated and applied for calculation of scatter dose distributions around monoenergetic point sources for photon energies ranging from 28 to 662 keV. Three different approaches for dose calculations have been compared: a single-kernel superposition method, a single-kernel superposition method where the point kernels are approximated as isotropic and a novel 'successive-scattering' superposition method for improved modelling of the dose from multiply scattered photons. An extended version of the EGS4 Monte Carlo code was used for generating the kernels and for benchmarking the absorbed dose distributions calculated with the superposition methods. It is shown that dose calculation by superposition at and below 100 keV can be simplified by using isotropic point kernels. Compared to the assumption of full in-scattering made by algorithms currently in clinical use, the single-kernel superposition method improves dose calculations in a half-phantom consisting of air and water. Further improvements are obtained using the successive-scattering superposition method, which reduces the overestimates of dose close to the phantom surface usually associated with kernel superposition methods at brachytherapy photon energies. It is also shown that scatter dose point kernels can be parametrized to biexponential functions, making them suitable for use with an effective implementation of the collapsed cone superposition algorithm. (author)
Time-Temperature Profiling of United Kingdom Consumers' Domestic Refrigerators.
Evans, Ellen W; Redmond, Elizabeth C
2016-12-01
Increased consumer demand for convenience and ready-to-eat food, along with changes to consumer food purchase and storage practices, have resulted in an increased reliance on refrigeration to maximize food safety. Previous research suggests that many domestic refrigerators operate at temperatures exceeding recommendations; however, the results of several studies were determined by means of one temperature data point, which, given temperature fluctuation, may not be a true indicator of actual continual operating temperatures. Data detailing actual operating temperatures and the effects of consumer practices on temperatures are limited. This study has collated the time-temperature profiles of domestic refrigerators in consumer kitchens (n = 43) over 6.5 days with concurrent self-reported refrigerator usage. Overall, the findings established a significant difference (P < 0.05) between one-off temperature (the recording of one temperature data point) and mean operating temperature. No refrigerator operated at ≤5.0°C for the entire duration of the study. Mean temperatures exceeding 5.0°C were recorded in the majority (91%) of refrigerators. No significant associations or differences were determined for temperature profiles and demographics, including household size, or refrigerator characteristics (age, type, loading, and location). A positive correlation (P < 0.05) between room temperature and refrigerator temperature was determined. Reported door opening frequency correlated with temperature fluctuation (P < 0.05). Thermometer usage was determined to be infrequent. Cumulatively, research findings have established that the majority of domestic refrigerators in consumer homes operate at potentially unsafe temperatures and that this is influenced by consumer usage. The findings from this study may be utilized to inform the development of shelf-life testing based on realistic domestic storage conditions. Furthermore, the data can inform the development of future
DEFF Research Database (Denmark)
Hecksher, Tina; Olsen, Niels Boye; Nelson, Keith Adam
2013-01-01
We present dynamic shear and bulk modulus measurements of supercooled tetraphenyl-tetramethyl-trisiloxane (DC704) and 5-phenyl-4-ether over a range of temperatures close to their glass transition. The data are analyzed and compared in terms of time-temperature superposition (TTS), the relaxation ...
Student Ability to Distinguish between Superposition States and Mixed States in Quantum Mechanics
Passante, Gina; Emigh, Paul J.; Shaffer, Peter S.
2015-01-01
Superposition gives rise to the probabilistic nature of quantum mechanics and is therefore one of the concepts at the heart of quantum mechanics. Although we have found that many students can successfully use the idea of superposition to calculate the probabilities of different measurement outcomes, they are often unable to identify the…
Intra-cavity generation of superpositions of Laguerre-Gaussian beams
CSIR Research Space (South Africa)
Naidoo, Darryl
2012-01-01
Full Text Available In this paper we demonstrate experimentally the intra-cavity generation of a coherent superposition of Laguerre–Gaussian modes of zero radial order but opposite azimuthal order. The superposition is created with a simple intra-cavity stop...
Energy Technology Data Exchange (ETDEWEB)
Alexeyev, Alexander A [Laboratory of Computer Physics and Mathematical Simulation, Research Division, Room 247, Faculty of Phys.-Math. and Natural Sciences, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya street, Moscow 117198 (Russian Federation) and Department of Mathematics 1, Faculty of Cybernetics, Moscow State Institute of Radio Engineering, Electronics and Automatics, 78 Vernadskogo Avenue, Moscow 117454 (Russian Federation)
2004-11-26
In the framework of a multidimensional superposition principle a series of computer experiments with integrable and nonintegrable models are carried out with the goal of verifying the existence of switching effect and superposition in soliton-perturbation interactions for a wide class of nonlinear PDEs. (letter to the editor)
TIME-TEMPERATURE-TRANSFORMATION (TTT) DIAGRAMS FOR FUTURE WASTE COMPOSITIONS
International Nuclear Information System (INIS)
Billings, A.; Edwards, T.
2010-01-01
As a part of the Waste Acceptance Product Specifications (WAPS) for Vitrified High-Level Waste Forms defined by the Department of Energy - Office of Environmental Management, the waste form stability must be determined for each of the projected high-level waste (HLW) types at the Savannah River Site (SRS). Specifically, WAPS 1.4.1 requires the glass transition temperature (T g ) to be defined and time-temperature-transformation (TTT) diagrams to be developed. The T g of a glass is an indicator of the approximate temperature where the supercooled liquid converts to a solid on cooling or conversely, where the solid begins to behave as a viscoelastic solid on heating. A TTT diagram identifies the crystalline phases that can form as a function of time and temperature for a given waste type or more specifically, the borosilicate glass waste form. In order to assess durability, the Product Consistency Test (PCT) was used and the durability results compared to the Environmental Assessment (EA) glass. The measurement of glass transition temperature and the development of TTT diagrams have already been performed for the seven Defense Waste Processing Facility (DWPF) projected compositions as defined in the Waste Form Compliance Plan (WCP) and in SRNL-STI-2009-00025. Additional phase transformation information exists for other projected compositions, but overall these compositions did not cover composition regions estimated for future waste processing. To develop TTT diagrams for future waste types, the Savannah River National Laboratory (SRNL) fabricated two caches of glass from reagent grade oxides to simulate glass compositions which would be likely processed with and without Al dissolution. These were used for glass transition temperature measurement and TTT diagram development. The glass transition temperatures of both glasses were measured using differential scanning calorimetry (DSC) and were recorded to be 448 C and 452 C. Using the previous TTT diagrams as guidance
Directory of Open Access Journals (Sweden)
Muhammad Ihsan Andi Dagong
2012-03-01
Full Text Available The quality of sheep carcass is mostly determined by the total lean meat production, meat distribution on the carcass and the quality of meat. Calpastatin gene (CAST is known to have an association with carcass and meat quality traits. The objective of this research was to identify the association between CAST polymorphisms and carcass characteristics in Thin Tail Sheep (TTS. Thirty three heads of sheep representing three genotypes of CAST (CAST-11, CAST-12 and CAST-22 were identified for carcass and meat characterisation. There was no significant difference between CAST polymorphisms with meat tenderness, pH, water holding capacity and cooking loss, neither with carcass weight and dressing percentage among genotypes. Shoulder proportion of CAST-11 genotype was larger than that of CAST-12 or CAST-22, but the lean meat proportion of CAST-22 genotype in shoulder, rack and loin were higher than those of CAST-11 but not different from CAST-12. The fat percentage of CAST-11 was the highest among the genotypes. CAST-22 genotype has higher lean meat percentage than the CAST-11. Variation in CAST gene could be used as marker assisted selection in sheep for higher lean meat proportion.
A convolution-superposition dose calculation engine for GPUs
Energy Technology Data Exchange (ETDEWEB)
Hissoiny, Sami; Ozell, Benoit; Despres, Philippe [Departement de genie informatique et genie logiciel, Ecole polytechnique de Montreal, 2500 Chemin de Polytechnique, Montreal, Quebec H3T 1J4 (Canada); Departement de radio-oncologie, CRCHUM-Centre hospitalier de l' Universite de Montreal, 1560 rue Sherbrooke Est, Montreal, Quebec H2L 4M1 (Canada)
2010-03-15
Purpose: Graphic processing units (GPUs) are increasingly used for scientific applications, where their parallel architecture and unprecedented computing power density can be exploited to accelerate calculations. In this paper, a new GPU implementation of a convolution/superposition (CS) algorithm is presented. Methods: This new GPU implementation has been designed from the ground-up to use the graphics card's strengths and to avoid its weaknesses. The CS GPU algorithm takes into account beam hardening, off-axis softening, kernel tilting, and relies heavily on raytracing through patient imaging data. Implementation details are reported as well as a multi-GPU solution. Results: An overall single-GPU acceleration factor of 908x was achieved when compared to a nonoptimized version of the CS algorithm implemented in PlanUNC in single threaded central processing unit (CPU) mode, resulting in approximatively 2.8 s per beam for a 3D dose computation on a 0.4 cm grid. A comparison to an established commercial system leads to an acceleration factor of approximately 29x or 0.58 versus 16.6 s per beam in single threaded mode. An acceleration factor of 46x has been obtained for the total energy released per mass (TERMA) calculation and a 943x acceleration factor for the CS calculation compared to PlanUNC. Dose distributions also have been obtained for a simple water-lung phantom to verify that the implementation gives accurate results. Conclusions: These results suggest that GPUs are an attractive solution for radiation therapy applications and that careful design, taking the GPU architecture into account, is critical in obtaining significant acceleration factors. These results potentially can have a significant impact on complex dose delivery techniques requiring intensive dose calculations such as intensity-modulated radiation therapy (IMRT) and arc therapy. They also are relevant for adaptive radiation therapy where dose results must be obtained rapidly.
The superposition of the states and the logic approach to quantum mechanics
International Nuclear Information System (INIS)
Zecca, A.
1981-01-01
An axiomatic approach to quantum mechanics is proposed in terms of a 'logic' scheme satisfying a suitable set of axioms. In this context the notion of pure, maximal, and characteristic state as well as the superposition relation and the superposition principle for the states are studied. The role the superposition relation plays in the reversible and in the irreversible dynamics is investigated and its connection with the tensor product is studied. Throughout the paper, the W*-algebra model, is used to exemplify results and properties of the general scheme. (author)
International Nuclear Information System (INIS)
Suzuki, Shigenari; Takeoka, Masahiro; Sasaki, Masahide; Andersen, Ulrik L.; Kannari, Fumihiko
2006-01-01
We present a simple protocol to purify a coherent-state superposition that has undergone a linear lossy channel. The scheme constitutes only a single beam splitter and a homodyne detector, and thus is experimentally feasible. In practice, a superposition of coherent states is transformed into a classical mixture of coherent states by linear loss, which is usually the dominant decoherence mechanism in optical systems. We also address the possibility of producing a larger amplitude superposition state from decohered states, and show that in most cases the decoherence of the states are amplified along with the amplitude
A cute and highly contrast-sensitive superposition eye : The diurnal owlfly Libelloides macaronius
Belušič, Gregor; Pirih, Primož; Stavenga, Doekele G.
The owlfly Libelloides macaronius (Insecta: Neuroptera) has large bipartite eyes of the superposition type. The spatial resolution and sensitivity of the photoreceptor array in the dorsofrontal eye part was studied with optical and electrophysiological methods. Using structured illumination
Czech Academy of Sciences Publication Activity Database
Červený, V.; Pšenčík, Ivan
2015-01-01
Roč. 25, - (2015), s. 109-155 ISSN 2336-3827 Institutional support: RVO:67985530 Keywords : integral superposition of paraxial Gaussian beams * inhomogeneous anisotropic media * S waves in weakly anisotropic media Subject RIV: DC - Siesmology, Volcanology, Earth Structure
Collapsing a perfect superposition to a chosen quantum state without measurement.
Directory of Open Access Journals (Sweden)
Ahmed Younes
Full Text Available Given a perfect superposition of [Formula: see text] states on a quantum system of [Formula: see text] qubits. We propose a fast quantum algorithm for collapsing the perfect superposition to a chosen quantum state [Formula: see text] without applying any measurements. The basic idea is to use a phase destruction mechanism. Two operators are used, the first operator applies a phase shift and a temporary entanglement to mark [Formula: see text] in the superposition, and the second operator applies selective phase shifts on the states in the superposition according to their Hamming distance with [Formula: see text]. The generated state can be used as an excellent input state for testing quantum memories and linear optics quantum computers. We make no assumptions about the used operators and applied quantum gates, but our result implies that for this purpose the number of qubits in the quantum register offers no advantage, in principle, over the obvious measurement-based feedback protocol.
On the L-characteristic of nonlinear superposition operators in lp-spaces
International Nuclear Information System (INIS)
Dedagic, F.
1995-04-01
In this paper we describe the L-characteristic of the nonlinear superposition operator F(x) f(s,x(s)) between two Banach spaces of functions x from N to R. It was shown that L-characteristic of the nonlinear superposition operator which acts between two Lebesgue spaces has so-called Σ-convexity property. In this paper we show that L-characteristic of the operator F (between two Banach spaces) has the convexity property. It means that the classical interpolation theorem of Reisz-Thorin for a linear operator holds for the nonlinear operator superposition which acts between two Banach spaces of sequences. Moreover, we consider the growth function of the operator superposition in mentioned spaces and we show that one has the logarithmically convexity property. (author). 7 refs
Experimental Demonstration of Capacity-Achieving Phase-Shifted Superposition Modulation
DEFF Research Database (Denmark)
Estaran Tolosa, Jose Manuel; Zibar, Darko; Caballero Jambrina, Antonio
2013-01-01
We report on the first experimental demonstration of phase-shifted superposition modulation (PSM) for optical links. Successful demodulation and decoding is obtained after 240 km transmission for 16-, 32- and 64-PSM.......We report on the first experimental demonstration of phase-shifted superposition modulation (PSM) for optical links. Successful demodulation and decoding is obtained after 240 km transmission for 16-, 32- and 64-PSM....
Efstratiadis, Stella; Baumrind, Sheldon; Shofer, Frances; Jacobsson-Hunt, Ulla; Laster, Larry; Ghafari, Joseph
2005-11-01
The aims of this study were (1) to evaluate cephalometric changes in subjects with Class II Division 1 malocclusion who were treated with headgear (HG) or Fränkel function regulator (FR) and (2) to compare findings from regional superpositions of cephalometric structures with those from conventional cephalometric measurements. Cephalographs were taken at baseline, after 1 year, and after 2 years of 65 children enrolled in a prospective randomized clinical trial. The spatial location of the landmarks derived from regional superpositions was evaluated in a coordinate system oriented on natural head position. The superpositions included the best anatomic fit of the anterior cranial base, maxillary base, and mandibular structures. Both the HG and the FR were effective in correcting the distoclusion, and they generated enhanced differential growth between the jaws. Differences between cranial and maxillary superpositions regarding mandibular displacement (Point B, pogonion, gnathion, menton) were noted: the HG had a more horizontal vector on maxillary superposition that was also greater (.0001 < P < .05) than the horizontal displacement observed with the FR. This discrepancy appeared to be related to (1) the clockwise (backward) rotation of the palatal and mandibular planes observed with the HG; the palatal plane's rotation, which was transferred through the occlusion to the mandibular plane, was factored out on maxillary superposition; and (2) the interaction between the inclination of the maxillary incisors and the forward movement of the mandible during growth. Findings from superpositions agreed with conventional angular and linear measurements regarding the basic conclusions for the primary effects of HG and FR. However, the results suggest that inferences of mandibular displacement are more reliable from maxillary than cranial superposition when evaluating occlusal changes during treatment.
International Nuclear Information System (INIS)
Spagnolo, Nicolo; Sciarrino, Fabio; De Martini, Francesco
2010-01-01
We show that the quantum states generated by universal optimal quantum cloning of a single photon represent a universal set of quantum superpositions resilient to decoherence. We adopt the Bures distance as a tool to investigate the persistence of quantum coherence of these quantum states. According to this analysis, the process of universal cloning realizes a class of quantum superpositions that exhibits a covariance property in lossy configuration over the complete set of polarization states in the Bloch sphere.
International Nuclear Information System (INIS)
Dubrovsky, V. G.; Topovsky, A. V.
2013-01-01
New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u (n) , n= 1, …, N are constructed via Zakharov and Manakov ∂-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u (n) and calculated by ∂-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schrödinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u (n) . It is shown that the sums u=u (k 1 ) +...+u (k m ) , 1 ⩽k 1 2 m ⩽N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schrödinger equation and can serve as model potentials for electrons in planar structures of modern electronics.
Energy Technology Data Exchange (ETDEWEB)
Dubrovsky, V. G.; Topovsky, A. V. [Novosibirsk State Technical University, Karl Marx prosp. 20, Novosibirsk 630092 (Russian Federation)
2013-03-15
New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u{sup (n)}, n= 1, Horizontal-Ellipsis , N are constructed via Zakharov and Manakov {partial_derivative}-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u{sup (n)} and calculated by {partial_derivative}-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schroedinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u{sup (n)}. It is shown that the sums u=u{sup (k{sub 1})}+...+u{sup (k{sub m})}, 1 Less-Than-Or-Slanted-Equal-To k{sub 1} < k{sub 2} < Horizontal-Ellipsis < k{sub m} Less-Than-Or-Slanted-Equal-To N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schroedinger equation and can serve as model potentials for electrons in planar structures of modern electronics.
Two new proofs of the test particle superposition principle of plasma kinetic theory
International Nuclear Information System (INIS)
Krommes, J.A.
1975-12-01
The test particle superposition principle of plasma kinetic theory is discussed in relation to the recent theory of two-time fluctuations in plasma given by Williams and Oberman. Both a new deductive and a new inductive proof of the principle are presented. The fundamental observation is that two-time expectations of one-body operators are determined completely in terms of the (x,v) phase space density autocorrelation, which to lowest order in the discreteness parameter obeys the linearized Vlasov equation with singular initial condition. For the deductive proof, this equation is solved formally using time-ordered operators, and the solution then rearranged into the superposition principle. The inductive proof is simpler than Rostoker's, although similar in some ways; it differs in that first order equations for pair correlation functions need not be invoked. It is pointed out that the superposition principle is also applicable to the short-time theory of neutral fluids
Towards quantum superposition of a levitated nanodiamond with a NV center
Li, Tongcang
2015-05-01
Creating large Schrödinger's cat states with massive objects is one of the most challenging goals in quantum mechanics. We have previously achieved an important step of this goal by cooling the center-of-mass motion of a levitated microsphere from room temperature to millikelvin temperatures with feedback cooling. To generate spatial quantum superposition states with an optical cavity, however, requires a very strong quadratic coupling that is difficult to achieve. We proposed to optically trap a nanodiamond with a nitrogen-vacancy (NV) center in vacuum, and generate large spatial superposition states using the NV spin-optomechanical coupling in a strong magnetic gradient field. The large spatial superposition states can be used to study objective collapse theories of quantum mechanics. We have optically trapped nanodiamonds in air and are working towards this goal.
Use of the modal superposition technique for piping system blowdown analyses
International Nuclear Information System (INIS)
Ware, A.G.; Macek, R.W.
1983-01-01
A standard method of solving for the seismic response of piping systems is the modal superposition technique. Only a limited number of structural modes are considered (typically those up to 33 Hz in the U.S.), since the effect on the calculated response due to higher modes is generally small, and the method can result in considerable computer cost savings over the direct integration method. The modal superposition technique has also been applied to piping response problems in which the forcing functions are due to fluid excitation. Application of the technique to this case is somewhat more difficult, because a well defined cutoff frequency for determining structural modes to be included has not been established. This paper outlines a method for higher mode corrections, and suggests methods to determine suitable cutoff frequencies for piping system blowdown analyses. A numerical example illustrates how uncorrected modal superposition results can produce erroneous stress results
Ijpma, G; Al-Jumaily, A M; Cairns, S P; Sieck, G C
2010-12-01
We present a systematic quantitative analysis of power-law force relaxation and investigate logarithmic superposition of force response in relaxed porcine airway smooth muscle (ASM) strips in vitro. The term logarithmic superposition describes linear superposition on a logarithmic scale, which is equivalent to multiplication on a linear scale. Additionally, we examine whether the dynamic response of contracted and relaxed muscles is dominated by cross-bridge cycling or passive dynamics. The study shows the following main findings. For relaxed ASM, the force response to length steps of varying amplitude (0.25-4% of reference length, both lengthening and shortening) are well-fitted with power-law functions over several decades of time (10⁻² to 10³ s), and the force response after consecutive length changes is more accurately fitted assuming logarithmic superposition rather than linear superposition. Furthermore, for sinusoidal length oscillations in contracted and relaxed muscles, increasing the oscillation amplitude induces greater hysteresivity and asymmetry of force-length relationships, whereas increasing the frequency dampens hysteresivity but increases asymmetry. We conclude that logarithmic superposition is an important feature of relaxed ASM, which may facilitate a more accurate prediction of force responses in the continuous dynamic environment of the respiratory system. In addition, the single power-function response to length changes shows that the dynamics of cross-bridge cycling can be ignored in relaxed muscle. The similarity in response between relaxed and contracted states implies that the investigated passive dynamics play an important role in both states and should be taken into account.
International Nuclear Information System (INIS)
Jack, B.; Leach, J.; Franke-Arnold, S.; Ireland, D. G.; Padgett, M. J.; Yao, A. M.; Barnett, S. M.; Romero, J.
2010-01-01
We use spatial light modulators (SLMs) to measure correlations between arbitrary superpositions of orbital angular momentum (OAM) states generated by spontaneous parametric down-conversion. Our technique allows us to fully access a two-dimensional OAM subspace described by a Bloch sphere, within the higher-dimensional OAM Hilbert space. We quantify the entanglement through violations of a Bell-type inequality for pairs of modal superpositions that lie on equatorial, polar, and arbitrary great circles of the Bloch sphere. Our work shows that SLMs can be used to measure arbitrary spatial states with a fidelity sufficient for appropriate quantum information processing systems.
Energy Technology Data Exchange (ETDEWEB)
Djenadic, Ruzica; Winterer, Markus, E-mail: markus.winterer@uni-due.de [Universität Duisburg-Essen, Nanoparticle Process Technology, Faculty of Engineering and CENIDE (Germany)
2017-02-15
The influence of the time-temperature history on the characteristics of nanoparticles such as size, degree of agglomeration, or crystallinity is investigated for chemical vapor synthesis (CVS). A simple reaction-coagulation-sintering model is used to describe the CVS process, and the results of the model are compared to experimental data. Nanocrystalline titania is used as model material. Titania nanoparticles are generated from titanium-tetraisopropoxide (TTIP) in a hot-wall reactor. Pure anatase particles and mixtures of anatase, rutile (up to 11 vol.%), and brookite (up to 29 vol.%) with primary particle sizes from 1.7 nm to 10.5 nm and agglomerate particle sizes from 24.3 nm to 55.6 nm are formed depending on the particle time-temperature history. An inductively heated furnace with variable inductor geometry is used as a novel system to control the time-temperature profile in the reactor externally covering a large wall temperature range from 873 K to 2023 K. An appropriate choice of inductor geometry, i.e. time-temperature profile, can significantly reduce the degree of agglomeration. Other particle characteristics such as crystallinity are also substantially influenced by the time-temperature profile.
GPU-Based Point Cloud Superpositioning for Structural Comparisons of Protein Binding Sites.
Leinweber, Matthias; Fober, Thomas; Freisleben, Bernd
2018-01-01
In this paper, we present a novel approach to solve the labeled point cloud superpositioning problem for performing structural comparisons of protein binding sites. The solution is based on a parallel evolution strategy that operates on large populations and runs on GPU hardware. The proposed evolution strategy reduces the likelihood of getting stuck in a local optimum of the multimodal real-valued optimization problem represented by labeled point cloud superpositioning. The performance of the GPU-based parallel evolution strategy is compared to a previously proposed CPU-based sequential approach for labeled point cloud superpositioning, indicating that the GPU-based parallel evolution strategy leads to qualitatively better results and significantly shorter runtimes, with speed improvements of up to a factor of 1,500 for large populations. Binary classification tests based on the ATP, NADH, and FAD protein subsets of CavBase, a database containing putative binding sites, show average classification rate improvements from about 92 percent (CPU) to 96 percent (GPU). Further experiments indicate that the proposed GPU-based labeled point cloud superpositioning approach can be superior to traditional protein comparison approaches based on sequence alignments.
Superpositions of higher-order bessel beams and nondiffracting speckle fields
CSIR Research Space (South Africa)
Dudley, Angela L
2009-08-01
Full Text Available speckle fields. The paper reports on illuminating a ring slit aperture with light which has an azimuthal phase dependence, such that the field produced is a superposition of two higher-order Bessel beams. In the case that the phase dependence of the light...
Chaos and Complexities Theories. Superposition and Standardized Testing: Are We Coming or Going?
Erwin, Susan
2005-01-01
The purpose of this paper is to explore the possibility of using the principle of "superposition of states" (commonly illustrated by Schrodinger's Cat experiment) to understand the process of using standardized testing to measure a student's learning. Comparisons from literature, neuroscience, and Schema Theory will be used to expound upon the…
Superposition of Planckian spectra and the distortions of the cosmic microwave background radiation
International Nuclear Information System (INIS)
Alexanian, M.
1982-01-01
A fit of the spectrum of the cosmic microwave background radiation (CMB) by means of a positive linear superposition of Planckian spectra implies an upper bound to the photon spectrum. The observed spectrum of the CMB gives a weighting function with a normalization greater than unity
Teleportation of a Superposition of Three Orthogonal States of an Atom via Photon Interference
Institute of Scientific and Technical Information of China (English)
ZHENG Shi-Biao
2006-01-01
We propose a scheme to teleport a superposition of three states of an atom trapped in a cavity to a second atom trapped in a remote cavity. The scheme is based on the detection of photons leaking from the cavities after the atom-cavity interaction.
On a computational method for modelling complex ecosystems by superposition procedure
International Nuclear Information System (INIS)
He Shanyu.
1986-12-01
In this paper, the Superposition Procedure is concisely described, and a computational method for modelling a complex ecosystem is proposed. With this method, the information contained in acceptable submodels and observed data can be utilized to maximal degree. (author). 1 ref
Using Musical Intervals to Demonstrate Superposition of Waves and Fourier Analysis
LoPresto, Michael C.
2013-01-01
What follows is a description of a demonstration of superposition of waves and Fourier analysis using a set of four tuning forks mounted on resonance boxes and oscilloscope software to create, capture and analyze the waveforms and Fourier spectra of musical intervals.
Superpositions of higher-order bessel beams and nondiffracting speckle fields - (SAIP 2009)
CSIR Research Space (South Africa)
Dudley, Angela L
2009-07-01
Full Text Available speckle fields. The paper reports on illuminating a ring slit aperture with light which has an azimuthal phase dependence, such that the field produced is a superposition of two higher-order Bessel beams. In the case that the phase dependence of the light...
Noise-based logic hyperspace with the superposition of 2N states in a single wire
International Nuclear Information System (INIS)
Kish, Laszlo B.; Khatri, Sunil; Sethuraman, Swaminathan
2009-01-01
In the introductory paper [L.B. Kish, Phys. Lett. A 373 (2009) 911], about noise-based logic, we showed how simple superpositions of single logic basis vectors can be achieved in a single wire. The superposition components were the N orthogonal logic basis vectors. Supposing that the different logic values have 'on/off' states only, the resultant discrete superposition state represents a single number with N bit accuracy in a single wire, where N is the number of orthogonal logic vectors in the base. In the present Letter, we show that the logic hyperspace (product) vectors defined in the introductory paper can be generalized to provide the discrete superposition of 2 N orthogonal system states. This is equivalent to a multi-valued logic system with 2 2 N logic values per wire. This is a similar situation to quantum informatics with N qubits, and hence we introduce the notion of noise-bit. This system has major differences compared to quantum informatics. The noise-based logic system is deterministic and each superposition element is instantly accessible with the high digital accuracy, via a real hardware parallelism, without decoherence and error correction, and without the requirement of repeating the logic operation many times to extract the probabilistic information. Moreover, the states in noise-based logic do not have to be normalized, and non-unitary operations can also be used. As an example, we introduce a string search algorithm which is O(√(M)) times faster than Grover's quantum algorithm (where M is the number of string entries), while it has the same hardware complexity class as the quantum algorithm.
Noise-based logic hyperspace with the superposition of 2 states in a single wire
Kish, Laszlo B.; Khatri, Sunil; Sethuraman, Swaminathan
2009-05-01
In the introductory paper [L.B. Kish, Phys. Lett. A 373 (2009) 911], about noise-based logic, we showed how simple superpositions of single logic basis vectors can be achieved in a single wire. The superposition components were the N orthogonal logic basis vectors. Supposing that the different logic values have “on/off” states only, the resultant discrete superposition state represents a single number with N bit accuracy in a single wire, where N is the number of orthogonal logic vectors in the base. In the present Letter, we show that the logic hyperspace (product) vectors defined in the introductory paper can be generalized to provide the discrete superposition of 2 orthogonal system states. This is equivalent to a multi-valued logic system with 2 logic values per wire. This is a similar situation to quantum informatics with N qubits, and hence we introduce the notion of noise-bit. This system has major differences compared to quantum informatics. The noise-based logic system is deterministic and each superposition element is instantly accessible with the high digital accuracy, via a real hardware parallelism, without decoherence and error correction, and without the requirement of repeating the logic operation many times to extract the probabilistic information. Moreover, the states in noise-based logic do not have to be normalized, and non-unitary operations can also be used. As an example, we introduce a string search algorithm which is O(√{M}) times faster than Grover's quantum algorithm (where M is the number of string entries), while it has the same hardware complexity class as the quantum algorithm.
Time-temperature-transformation diagram of Zr-based Zr-Al-Cu-Ni metallic glasses
International Nuclear Information System (INIS)
Goh, T.T.; Li, Y.; Ng, S.C.
1996-01-01
The critical cooling rates R c for glass formation in four Zr-based Zr-Al-Cu-Ni alloys were determined using techniques developed by Uhlmann based on theories of homogeneous nucleation, crystal growth and transformation kinetics. It involves the construction of a time-temperature-transformation curve which requires the knowledge of the viscosity-temperature curve of the alloys. Two types of viscosity-temperature expressions, namely Andrade expression and Doolittle expression, were used to model the viscosity of the Zr-based alloys and the choice of the viscosity-temperature expression which gives the best estimate of the calculated time-temperature-transformation curve is discussed. (author)
Design, fabrication and characterisation of a microfluidic time-temperature indicator
Schmitt, P.; Wedrich, K.; Müller, L.; Mehner, H.; Hoffmann, M.
2017-11-01
This paper describes a concept for a passive microfluidic time-temperature indicator (TTI) intended for intelligent food packaging. A microfluidic system is presented that makes use of the temperature-dependent flow of suitable food ingredients in a microcapillary. Based on the creeping distance inside the capillary, the time-temperature integral can be determined. A demonstrator of the microsystem has been designed, fabricated and characterised using liquid sugar alcohols as indicator fluids. To enable a first wireless read-out of the passive TTI, the sensor was read out using a commercial RFID equipment, and capacitive measurements have been carried out.
High day- and night-time temperatures affect grain growth dynamics in contrasting rice genotypes
Shi, Wanju; Yin, Xinyou; Struik, Paul C.; Solis, Celymar; Xie, Fangming; Schmidt, Ralf C.; Huang, Min; Zou, Yingbin; Ye, Changrong; Jagadish, S.V.K.
2017-01-01
Rice grain yield and quality are predicted to be highly vulnerable to global warming. Five genotypes including heat-tolerant and susceptible checks, a heat-tolerant near-isogenic line and two hybrids were exposed to control (31 °C/23 °C, day/night), high night-time temperature (HNT; 31 °C/30 °C),
International Nuclear Information System (INIS)
Goldhoff, R.M.
1975-01-01
Work devoted to establishment of recommended practices for correlating and extrapolating relevant data on creep-rupture properties of materials at high temperatures is described. An analysis of the time-temperature parameter is included along with descriptions of analysis and evaluation methods. Results of application of the methods are compared
Nonclassical thermal-state superpositions: Analytical evolution law and decoherence behavior
Meng, Xiang-guo; Goan, Hsi-Sheng; Wang, Ji-suo; Zhang, Ran
2018-03-01
Employing the integration technique within normal products of bosonic operators, we present normal product representations of thermal-state superpositions and investigate their nonclassical features, such as quadrature squeezing, sub-Poissonian distribution, and partial negativity of the Wigner function. We also analytically and numerically investigate their evolution law and decoherence characteristics in an amplitude-decay model via the variations of the probability distributions and the negative volumes of Wigner functions in phase space. The results indicate that the evolution formulas of two thermal component states for amplitude decay can be viewed as the same integral form as a displaced thermal state ρ(V , d) , but governed by the combined action of photon loss and thermal noise. In addition, the larger values of the displacement d and noise V lead to faster decoherence for thermal-state superpositions.
A numerical dressing method for the nonlinear superposition of solutions of the KdV equation
International Nuclear Information System (INIS)
Trogdon, Thomas; Deconinck, Bernard
2014-01-01
In this paper we present the unification of two existing numerical methods for the construction of solutions of the Korteweg–de Vries (KdV) equation. The first method is used to solve the Cauchy initial-value problem on the line for rapidly decaying initial data. The second method is used to compute finite-genus solutions of the KdV equation. The combination of these numerical methods allows for the computation of exact solutions that are asymptotically (quasi-)periodic finite-gap solutions and are a nonlinear superposition of dispersive, soliton and (quasi-)periodic solutions in the finite (x, t)-plane. Such solutions are referred to as superposition solutions. We compute these solutions accurately for all values of x and t. (paper)
Optical threshold secret sharing scheme based on basic vector operations and coherence superposition
Deng, Xiaopeng; Wen, Wei; Mi, Xianwu; Long, Xuewen
2015-04-01
We propose, to our knowledge for the first time, a simple optical algorithm for secret image sharing with the (2,n) threshold scheme based on basic vector operations and coherence superposition. The secret image to be shared is firstly divided into n shadow images by use of basic vector operations. In the reconstruction stage, the secret image can be retrieved by recording the intensity of the coherence superposition of any two shadow images. Compared with the published encryption techniques which focus narrowly on information encryption, the proposed method can realize information encryption as well as secret sharing, which further ensures the safety and integrality of the secret information and prevents power from being kept centralized and abused. The feasibility and effectiveness of the proposed method are demonstrated by numerical results.
Analysis of magnetic damping problem by the coupled mode superposition method
International Nuclear Information System (INIS)
Horie, Tomoyoshi; Niho, Tomoya
1997-01-01
In this paper we describe the coupled mode superposition method for the magnetic damping problem, which is produced by the coupled effect between the deformation and the induced eddy current of the structures for future fusion reactors and magnetically levitated vehicles. The formulation of the coupled mode superposition method is based on the matrix equation for the eddy current and the structure using the coupled mode vectors. Symmetric form of the coupled matrix equation is obtained. Coupled problems of a thin plate are solved to verify the formulation and the computer code. These problems are solved efficiently by this method using only a few coupled modes. Consideration of the coupled mode vectors shows that the coupled effects are included completely in each coupled mode. (author)
Guérin, Philippe Allard; Feix, Adrien; Araújo, Mateus; Brukner, Časlav
2016-09-01
In communication complexity, a number of distant parties have the task of calculating a distributed function of their inputs, while minimizing the amount of communication between them. It is known that with quantum resources, such as entanglement and quantum channels, one can obtain significant reductions in the communication complexity of some tasks. In this work, we study the role of the quantum superposition of the direction of communication as a resource for communication complexity. We present a tripartite communication task for which such a superposition allows for an exponential saving in communication, compared to one-way quantum (or classical) communication; the advantage also holds when we allow for protocols with bounded error probability.
Optical information encryption based on incoherent superposition with the help of the QR code
Qin, Yi; Gong, Qiong
2014-01-01
In this paper, a novel optical information encryption approach is proposed with the help of QR code. This method is based on the concept of incoherent superposition which we introduce for the first time. The information to be encrypted is first transformed into the corresponding QR code, and thereafter the QR code is further encrypted into two phase only masks analytically by use of the intensity superposition of two diffraction wave fields. The proposed method has several advantages over the previous interference-based method, such as a higher security level, a better robustness against noise attack, a more relaxed work condition, and so on. Numerical simulation results and actual smartphone collected results are shown to validate our proposal.
International Nuclear Information System (INIS)
Daoud, M.; Ahl Laamara, R.
2012-01-01
We give the explicit expressions of the pairwise quantum correlations present in superpositions of multipartite coherent states. A special attention is devoted to the evaluation of the geometric quantum discord. The dynamics of quantum correlations under a dephasing channel is analyzed. A comparison of geometric measure of quantum discord with that of concurrence shows that quantum discord in multipartite coherent states is more resilient to dissipative environments than is quantum entanglement. To illustrate our results, we consider some special superpositions of Weyl–Heisenberg, SU(2) and SU(1,1) coherent states which interpolate between Werner and Greenberger–Horne–Zeilinger states. -- Highlights: ► Pairwise quantum correlations multipartite coherent states. ► Explicit expression of geometric quantum discord. ► Entanglement sudden death and quantum discord robustness. ► Generalized coherent states interpolating between Werner and Greenberger–Horne–Zeilinger states
On Multiple Users Scheduling Using Superposition Coding over Rayleigh Fading Channels
Zafar, Ammar
2013-02-20
In this letter, numerical results are provided to analyze the gains of multiple users scheduling via superposition coding with successive interference cancellation in comparison with the conventional single user scheduling in Rayleigh blockfading broadcast channels. The information-theoretic optimal power, rate and decoding order allocation for the superposition coding scheme are considered and the corresponding histogram for the optimal number of scheduled users is evaluated. Results show that at optimality there is a high probability that only two or three users are scheduled per channel transmission block. Numerical results for the gains of multiple users scheduling in terms of the long term throughput under hard and proportional fairness as well as for fixed merit weights for the users are also provided. These results show that the performance gain of multiple users scheduling over single user scheduling increases when the total number of users in the network increases, and it can exceed 10% for high number of users
Energy Technology Data Exchange (ETDEWEB)
Daoud, M., E-mail: m_daoud@hotmail.com [Department of Physics, Faculty of Sciences, University Ibnou Zohr, Agadir (Morocco); Ahl Laamara, R., E-mail: ahllaamara@gmail.com [LPHE-Modeling and Simulation, Faculty of Sciences, University Mohammed V, Rabat (Morocco); Centre of Physics and Mathematics, CPM, CNESTEN, Rabat (Morocco)
2012-07-16
We give the explicit expressions of the pairwise quantum correlations present in superpositions of multipartite coherent states. A special attention is devoted to the evaluation of the geometric quantum discord. The dynamics of quantum correlations under a dephasing channel is analyzed. A comparison of geometric measure of quantum discord with that of concurrence shows that quantum discord in multipartite coherent states is more resilient to dissipative environments than is quantum entanglement. To illustrate our results, we consider some special superpositions of Weyl–Heisenberg, SU(2) and SU(1,1) coherent states which interpolate between Werner and Greenberger–Horne–Zeilinger states. -- Highlights: ► Pairwise quantum correlations multipartite coherent states. ► Explicit expression of geometric quantum discord. ► Entanglement sudden death and quantum discord robustness. ► Generalized coherent states interpolating between Werner and Greenberger–Horne–Zeilinger states.
Sanchez-Garcia, Manuel; Gardin, Isabelle; Lebtahi, Rachida; Dieudonné, Arnaud
2015-10-21
Two collapsed cone (CC) superposition algorithms have been implemented for radiopharmaceutical dosimetry of photon emitters. The straight CC (SCC) superposition method uses a water energy deposition kernel (EDKw) for each electron, positron and photon components, while the primary and scatter CC (PSCC) superposition method uses different EDKw for primary and once-scattered photons. PSCC was implemented only for photons originating from the nucleus, precluding its application to positron emitters. EDKw are linearly scaled by radiological distance, taking into account tissue density heterogeneities. The implementation was tested on 100, 300 and 600 keV mono-energetic photons and (18)F, (99m)Tc, (131)I and (177)Lu. The kernels were generated using the Monte Carlo codes MCNP and EGSnrc. The validation was performed on 6 phantoms representing interfaces between soft-tissues, lung and bone. The figures of merit were γ (3%, 3 mm) and γ (5%, 5 mm) criterions corresponding to the computation comparison on 80 absorbed doses (AD) points per phantom between Monte Carlo simulations and CC algorithms. PSCC gave better results than SCC for the lowest photon energy (100 keV). For the 3 isotopes computed with PSCC, the percentage of AD points satisfying the γ (5%, 5 mm) criterion was always over 99%. A still good but worse result was found with SCC, since at least 97% of AD-values verified the γ (5%, 5 mm) criterion, except a value of 57% for the (99m)Tc with the lung/bone interface. The CC superposition method for radiopharmaceutical dosimetry is a good alternative to Monte Carlo simulations while reducing computation complexity.
International Nuclear Information System (INIS)
Gajnutdinov, R.Kh.
1983-01-01
Possibility is studied to build the nonrelativistic scattering theory on the base of the general physical principles: causality, superposition, and unitarity, making no use of the Schroedinger formalism. The suggested approach is shown to be more general than the nonrelativistic scattering theory based on the Schroedinger equation. The approach is applied to build a model ofthe scattering theory for a system which consists of heavy nonrelativistic particles and a light relativistic particle
Sanchez-Garcia, Manuel; Gardin, Isabelle; Lebtahi, Rachida; Dieudonné, Arnaud
2015-10-01
Two collapsed cone (CC) superposition algorithms have been implemented for radiopharmaceutical dosimetry of photon emitters. The straight CC (SCC) superposition method uses a water energy deposition kernel (EDKw) for each electron, positron and photon components, while the primary and scatter CC (PSCC) superposition method uses different EDKw for primary and once-scattered photons. PSCC was implemented only for photons originating from the nucleus, precluding its application to positron emitters. EDKw are linearly scaled by radiological distance, taking into account tissue density heterogeneities. The implementation was tested on 100, 300 and 600 keV mono-energetic photons and 18F, 99mTc, 131I and 177Lu. The kernels were generated using the Monte Carlo codes MCNP and EGSnrc. The validation was performed on 6 phantoms representing interfaces between soft-tissues, lung and bone. The figures of merit were γ (3%, 3 mm) and γ (5%, 5 mm) criterions corresponding to the computation comparison on 80 absorbed doses (AD) points per phantom between Monte Carlo simulations and CC algorithms. PSCC gave better results than SCC for the lowest photon energy (100 keV). For the 3 isotopes computed with PSCC, the percentage of AD points satisfying the γ (5%, 5 mm) criterion was always over 99%. A still good but worse result was found with SCC, since at least 97% of AD-values verified the γ (5%, 5 mm) criterion, except a value of 57% for the 99mTc with the lung/bone interface. The CC superposition method for radiopharmaceutical dosimetry is a good alternative to Monte Carlo simulations while reducing computation complexity.
Seismic analysis of structures of nuclear power plants by Lanczos mode superposition method
International Nuclear Information System (INIS)
Coutinho, A.L.G.A.; Alves, J.L.D.; Landau, L.; Lima, E.C.P. de; Ebecken, N.F.F.
1986-01-01
The Lanczos Mode Superposition Method is applied in the seismic analysis of nuclear power plants. The coordinate transformation matrix is generated by the Lanczos algorithm. It is shown that, through a convenient choice of the starting vector of the algorithm, modes with participation factors are automatically selected. It is performed the Response Spectra analysis of a typical reactor building. The obtained results are compared with those determined by the classical aproach stressing the remarkable computer effectiveness of the proposed methodology. (Author) [pt
Wu, Kaifeng; Lim, Jaehoon; Klimov, Victor I
2017-08-22
Application of colloidal semiconductor quantum dots (QDs) in optical and optoelectronic devices is often complicated by unintentional generation of extra charges, which opens fast nonradiative Auger recombination pathways whereby the recombination energy of an exciton is quickly transferred to the extra carrier(s) and ultimately dissipated as heat. Previous studies of Auger recombination have primarily focused on neutral and, more recently, negatively charged multicarrier states. Auger dynamics of positively charged species remains more poorly explored due to difficulties in creating, stabilizing, and detecting excess holes in the QDs. Here we apply photochemical doping to prepare both negatively and positively charged CdSe/CdS QDs with two distinct core/shell interfacial profiles ("sharp" versus "smooth"). Using neutral and charged QD samples we evaluate Auger lifetimes of biexcitons, negative and positive trions (an exciton with an extra electron or a hole, respectively), and multiply negatively charged excitons. Using these measurements, we demonstrate that Auger decay of both neutral and charged multicarrier states can be presented as a superposition of independent elementary three-particle Auger events. As one of the manifestations of the superposition principle, we observe that the biexciton Auger decay rate can be presented as a sum of the Auger rates for independent negative and positive trion pathways. By comparing the measurements on the QDs with the "sharp" versus "smooth" interfaces, we also find that while affecting the absolute values of Auger lifetimes, manipulation of the shape of the confinement potential does not lead to violation of the superposition principle, which still allows us to accurately predict the biexciton Auger lifetimes based on the measured negative and positive trion dynamics. These findings indicate considerable robustness of the superposition principle as applied to Auger decay of charged and neutral multicarrier states
Energy Technology Data Exchange (ETDEWEB)
Surovtsev, A P; Golovanenko, S A; Sukhanov, V E; Kazantsev, V F
1983-12-01
Investigation results of kinetics and quality of carbon steel joints with the steel 12Kh18N10T, obtained by pressure welding with superposition of ultrasonic oscillations with the frequency 16.5-18.0 kHz are given. The effect of ultrasonic oscillations on the process of physical contact development of the surfaces welded, formation of microstructure and impact viscosity of the compound, is shown.
Two new proofs of the test particle superposition principle of plasma kinetic theory
International Nuclear Information System (INIS)
Krommes, J.A.
1976-01-01
The test particle superposition principle of plasma kinetic theory is discussed in relation to the recent theory of two-time fluctuations in plasma given by Williams and Oberman. Both a new deductive and a new inductive proof of the principle are presented; the deductive approach appears here for the first time in the literature. The fundamental observation is that two-time expectations of one-body operators are determined completely in terms of the (x,v) phase space density autocorrelation, which to lowest order in the discreteness parameter obeys the linearized Vlasov equation with singular initial condition. For the deductive proof, this equation is solved formally using time-ordered operators, and the solution is then re-arranged into the superposition principle. The inductive proof is simpler than Rostoker's although similar in some ways; it differs in that first-order equations for pair correlation functions need not be invoked. It is pointed out that the superposition principle is also applicable to the short-time theory of neutral fluids
Sagnac interferometry with coherent vortex superposition states in exciton-polariton condensates
Moxley, Frederick Ira; Dowling, Jonathan P.; Dai, Weizhong; Byrnes, Tim
2016-05-01
We investigate prospects of using counter-rotating vortex superposition states in nonequilibrium exciton-polariton Bose-Einstein condensates for the purposes of Sagnac interferometry. We first investigate the stability of vortex-antivortex superposition states, and show that they survive at steady state in a variety of configurations. Counter-rotating vortex superpositions are of potential interest to gyroscope and seismometer applications for detecting rotations. Methods of improving the sensitivity are investigated by targeting high momentum states via metastable condensation, and the application of periodic lattices. The sensitivity of the polariton gyroscope is compared to its optical and atomic counterparts. Due to the large interferometer areas in optical systems and small de Broglie wavelengths for atomic BECs, the sensitivity per detected photon is found to be considerably less for the polariton gyroscope than with competing methods. However, polariton gyroscopes have an advantage over atomic BECs in a high signal-to-noise ratio, and have other practical advantages such as room-temperature operation, area independence, and robust design. We estimate that the final sensitivities including signal-to-noise aspects are competitive with existing methods.
Superposition of configurations in semiempirical calculation of iron group ion spectra
International Nuclear Information System (INIS)
Kantseryavichyus, A.Yu.; Ramonas, A.A.
1976-01-01
The energy spectra of ions from the iron group in the dsup(N), dsup(N)s, dsup(N)p configurations are studied. A semiempirical method is used in which the effective hamiltonian contains configuration superposition. The sdsup(N+1), psup(4)dsup(N+2) quasidegenerated configurations, as well as configurations which differ by one electron are taken as correction configurations. It follows from the calculations that the most important role among the quasidegenerate configurations is played by the sdsup(N+1) correctional configuration. When it is taken into account, the introduction of the psup(4)dsup(N+2) correctional configuration practically does not affect the results. Account of the dsup(N-1)s configuration in the second order of the perturbation theory is equivalent to that of sdsup(N+1) in the sense that it results in the identical mean square deviation. As follows from the comparison of the results of the approximate and complete account of the configuration superposition, in many cases one can be satisfied with its approximate and complete account of the configuration superposition, in many cases one can be satisfied with its approximate version. The results are presented in the form of tables including the values of empirical parameters, radial integrals, mean square errors, etc
Impact of landfill liner time-temperature history on the service life of HDPE geomembranes.
Rowe, R Kerry; Islam, M Z
2009-10-01
The observed temperatures in different landfills are used to establish a number of idealized time-temperature histories for geomembrane liners in municipal solid waste (MSW) landfills. These are then used for estimating the service life of different HDPE geomembranes. The predicted antioxidant depletion times (Stage I) are between 7 and 750 years with the large variation depending on the specific HDPE geomembrane product, exposure conditions, and most importantly, the magnitude and duration of the peak liner temperature. The higher end of the range corresponds to data from geomembranes aged in simulated landfill liner tests and a maximum liner temperature of 37 degrees C. The lower end of the range corresponds to a testing condition where geomembranes were immersed in a synthetic leachate and a maximum liner temperature of 60 degrees C. The total service life of the geomembranes was estimated to be between 20 and 3300 years depending on the time-temperature history examined. The range illustrates the important role that time-temperature history could play in terms of geomembrane service life. The need for long-term monitoring of landfill liner temperature and for geomembrane ageing studies that will provide improved data for assessing the likely long-term performance of geomembranes in MSW landfills are highlighted.
Zaima, Kazunori; Sasaki, Koichi
2016-01-01
We investigated the transient phenomena in a premixed burner flame with the superposition of a pulsed dielectric barrier discharge (DBD). The length of the flame was shortened by the superposition of DBD, indicating the activation of combustion chemical reactions with the help of the plasma. In addition, we observed the modulation of the top position of the unburned gas region and the formations of local minimums in the axial distribution of the optical emission intensity of OH. These experim...
High day- and night-time temperatures affect grain growth dynamics in contrasting rice genotypes.
Shi, Wanju; Yin, Xinyou; Struik, Paul C; Solis, Celymar; Xie, Fangming; Schmidt, Ralf C; Huang, Min; Zou, Yingbin; Ye, Changrong; Jagadish, S V Krishna
2017-11-02
Rice grain yield and quality are predicted to be highly vulnerable to global warming. Five genotypes including heat-tolerant and susceptible checks, a heat-tolerant near-isogenic line and two hybrids were exposed to control (31 °C/23 °C, day/night), high night-time temperature (HNT; 31 °C/30 °C), high day-time temperature (HDT; 38 °C/23 °C) and high day- and night-time temperature (HNDT; 38 °C/30 °C) treatments for 20 consecutive days during the grain-filling stage. Grain-filling dynamics, starch metabolism enzymes, temporal starch accumulation patterns and the process of chalk formation were quantified. Compensation between the rate and duration of grain filling minimized the impact of HNT, but irreversible impacts on seed-set, grain filling and ultimately grain weight were recorded with HDT and HNDT. Scanning electron microscopy demonstrated irregular and smaller starch granule formation affecting amyloplast build-up with HDT and HNDT, while a quicker but normal amylopast build-up was recorded with HNT. Our findings revealed temporal variation in the starch metabolism enzymes in all three stress treatments. Changes in the enzymatic activity did not derail starch accumulation under HNT when assimilates were sufficiently available, while both sucrose supply and the conversion of sucrose into starch were affected by HDT and HNDT. The findings indicate differential mechanisms leading to high day and high night temperature stress-induced loss in yield and quality. Additional genetic improvement is needed to sustain rice productivity and quality under future climates. © Society for Experimental Biology 2017.
Nucleus-nucleus collision as superposition of nucleon-nucleus collisions
International Nuclear Information System (INIS)
Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.
1999-01-01
Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus. (orig.)
Constructing petal modes from the coherent superposition of Laguerre-Gaussian modes
Naidoo, Darryl; Forbes, Andrew; Ait-Ameur, Kamel; Brunel, Marc
2011-03-01
An experimental approach in generating Petal-like transverse modes, which are similar to what is seen in porro-prism resonators, has been successfully demonstrated. We hypothesize that the petal-like structures are generated from a coherent superposition of Laguerre-Gaussian modes of zero radial order and opposite azimuthal order. To verify this hypothesis, visually based comparisons such as petal peak to peak diameter and the angle between adjacent petals are drawn between experimental data and simulated data. The beam quality factor of the Petal-like transverse modes and an inner product interaction is also experimentally compared to numerical results.
Experimental generation and application of the superposition of higher-order Bessel beams
CSIR Research Space (South Africa)
Dudley, Angela L
2009-07-01
Full Text Available Academy of Sciences of Belarus 4 School of Physics, University of Stellenbosch Presented at the 2009 South African Institute of Physics Annual Conference University of KwaZulu-Natal Durban, South Africa 6-10 July 2009 Page 2 © CSIR 2008... www.csir.co.za Generation of Bessel Fields: • METHOD 1: Ring Slit Aperture • METHOD 2: Axicon Adaptation of method 1 to produce superpositions of higher-order Bessel beams: J. Durnin, J.J. Miceli and J.H. Eberly, Phys. Rev. Lett. 58 1499...
Strategies for reducing basis set superposition error (BSSE) in O/AU and O/Ni
Shuttleworth, I.G.
2015-01-01
© 2015 Elsevier Ltd. All rights reserved. The effect of basis set superposition error (BSSE) and effective strategies for the minimisation have been investigated using the SIESTA-LCAO DFT package. Variation of the energy shift parameter ΔEPAO has been shown to reduce BSSE for bulk Au and Ni and across their oxygenated surfaces. Alternative strategies based on either the expansion or contraction of the basis set have been shown to be ineffective in reducing BSSE. Comparison of the binding energies for the surface systems obtained using LCAO were compared with BSSE-free plane wave energies.
Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions
International Nuclear Information System (INIS)
Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.; Alexandrov, Y.A.; Andreeva, N.P.; Badyal, S.K.; Basova, E.S.; Bhalla, K.B.; Bhasin, A.; Bhatia, V.S.; Bradnova, V.; Bubnov, V.I.; Cai, X.; Chasnikov, I.Y.; Chen, G.M.; Chernova, L.P.; Chernyavsky, M.M.; Dhamija, S.; Chenawi, K.El; Felea, D.; Feng, S.Q.; Gaitinov, A.S.; Ganssauge, E.R.; Garpman, S.; Gerassimov, S.G.; Gheata, A.; Gheata, M.; Grote, J.; Gulamov, K.G.; Gupta, S.K.; Gupta, V.K.; Henjes, U.; Jakobsson, B.; Kanygina, E.K.; Karabova, M.; Kharlamov, S.P.; Kovalenko, A.D.; Krasnov, S.A.; Kumar, V.; Larionova, V.G.; Li, Y.X.; Liu, L.S.; Lokanathan, S.; Lord, J.J.; Lukicheva, N.S.; Lu, Y.; Luo, S.B.; Mangotra, L.K.; Manhas, I.; Mittra, I.S.; Musaeva, A.K.; Nasyrov, S.Z.; Navotny, V.S.; Nystrand, J.; Otterlund, I.; Peresadko, N.G.; Qian, W.Y.; Qin, Y.M.; Raniwala, R.; Rao, N.K.; Roeper, M.; Rusakova, V.V.; Saidkhanov, N.; Salmanova, N.A.; Seitimbetov, A.M.; Sethi, R.; Singh, B.; Skelding, D.; Soderstrem, K.; Stenlund, E.; Svechnikova, L.N.; Svensson, T.; Tawfik, A.M.; Tothova, M.; Tretyakova, M.I.; Trofimova, T.P.; Tuleeva, U.I.; Vashisht, Vani; Vokal, S.; Vrlakova, J.; Wang, H.Q.; Wang, X.R.; Weng, Z.Q.; Wilkes, R.J.; Yang, C.B.; Yin, Z.B.; Yu, L.Z.; Zhang, D.H.; Zheng, P.Y.; Zhokhova, S.I.; Zhou, D.C.
1999-01-01
Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus
Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions
Energy Technology Data Exchange (ETDEWEB)
Orlova, G I; Adamovich, M I; Aggarwal, M M; Alexandrov, Y A; Andreeva, N P; Badyal, S K; Basova, E S; Bhalla, K B; Bhasin, A; Bhatia, V S; Bradnova, V; Bubnov, V I; Cai, X; Chasnikov, I Y; Chen, G M; Chernova, L P; Chernyavsky, M M; Dhamija, S; Chenawi, K El; Felea, D; Feng, S Q; Gaitinov, A S; Ganssauge, E R; Garpman, S; Gerassimov, S G; Gheata, A; Gheata, M; Grote, J; Gulamov, K G; Gupta, S K; Gupta, V K; Henjes, U; Jakobsson, B; Kanygina, E K; Karabova, M; Kharlamov, S P; Kovalenko, A D; Krasnov, S A; Kumar, V; Larionova, V G; Li, Y X; Liu, L S; Lokanathan, S; Lord, J J; Lukicheva, N S; Lu, Y; Luo, S B; Mangotra, L K; Manhas, I; Mittra, I S; Musaeva, A K; Nasyrov, S Z; Navotny, V S; Nystrand, J; Otterlund, I; Peresadko, N G; Qian, W Y; Qin, Y M; Raniwala, R; Rao, N K; Roeper, M; Rusakova, V V; Saidkhanov, N; Salmanova, N A; Seitimbetov, A M; Sethi, R; Singh, B; Skelding, D; Soderstrem, K; Stenlund, E; Svechnikova, L N; Svensson, T; Tawfik, A M; Tothova, M; Tretyakova, M I; Trofimova, T P; Tuleeva, U I; Vashisht, Vani; Vokal, S; Vrlakova, J; Wang, H Q; Wang, X R; Weng, Z Q; Wilkes, R J; Yang, C B; Yin, Z B; Yu, L Z; Zhang, D H; Zheng, P Y; Zhokhova, S I; Zhou, D C
1999-03-01
Angular distributions of charged particles produced in {sup 16}O and {sup 32}S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b{sub NA}, that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus.
Double-contrast examination of the gastric antrum without Duodenal superposition
International Nuclear Information System (INIS)
Treugut, H.; Isper, J.
1980-01-01
By using a modified technique of double-contrast examination of the stomach it was possible in 75% to perform a study without superposition of the duodenum and jejunum on the distal stomach compared to 36% with the usual method. In this technique a small amount (50 ml) of Barium-suspension is given to the patient in left decubitus position by a straw or gastric tube after antiperistaltic medication. There was no difference in the quality of mucosa-coating compared to the technique using higher volumes of Barium. (orig.) [de
Teleportation of a Coherent Superposition State Via a nonmaximally Entangled Coherent Xhannel
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
@@ We investigate the problemm of teleportation of a superposition coherent state with nonmaximally entangled coherent channel. Two strategies are considered to complete the task. The first one uses entanglement concentration to purify the channel to a maximally entangled one. The second one teleports the state through the nonmaximally entangled coherent channel directly. We find that the probabilities of successful teleportations for the two strategies are depend on the amplitudes of the coherent states and the mean fidelity of teleportation using the first strategy is always less than that of the second strategy.
International Nuclear Information System (INIS)
Chernichenko, Yu.D.
2005-01-01
Within the relativistic quasipotential approach to quantum field theory, the relativistic inverse scattering problem is solved for the case where the total quasipotential describing the interaction of two relativistic spinless particles having different masses is a superposition of a nonlocal separable and a local quasipotential. It is assumed that the local component of the total quasipotential is known and that there exist bound states in this local component. It is shown that the nonlocal separable component of the total interaction can be reconstructed provided that the local component, an increment of the phase shift, and the energies of bound states are known
Strategies for reducing basis set superposition error (BSSE) in O/AU and O/Ni
Shuttleworth, I.G.
2015-11-01
© 2015 Elsevier Ltd. All rights reserved. The effect of basis set superposition error (BSSE) and effective strategies for the minimisation have been investigated using the SIESTA-LCAO DFT package. Variation of the energy shift parameter ΔEPAO has been shown to reduce BSSE for bulk Au and Ni and across their oxygenated surfaces. Alternative strategies based on either the expansion or contraction of the basis set have been shown to be ineffective in reducing BSSE. Comparison of the binding energies for the surface systems obtained using LCAO were compared with BSSE-free plane wave energies.
International Nuclear Information System (INIS)
Martini, F. de; Giuseppe, G. di
2001-01-01
A multiparticle quantum superposition state has been generated by a novel phase-selective parametric amplifier of an entangled two-photon state. This realization is expected to open a new field of investigations on the persistence of the validity of the standard quantum theory for systems of increasing complexity, in a quasi decoherence-free environment. Because of its nonlocal structure the new system is expected to play a relevant role in the modern endeavor on quantum information and in the basic physics of entanglement. (orig.)
Linear dynamic analysis of arbitrary thin shells modal superposition by using finite element method
International Nuclear Information System (INIS)
Goncalves Filho, O.J.A.
1978-11-01
The linear dynamic behaviour of arbitrary thin shells by the Finite Element Method is studied. Plane triangular elements with eighteen degrees of freedom each are used. The general equations of movement are obtained from the Hamilton Principle and solved by the Modal Superposition Method. The presence of a viscous type damping can be considered by means of percentages of the critical damping. An automatic computer program was developed to provide the vibratory properties and the dynamic response to several types of deterministic loadings, including temperature effects. The program was written in FORTRAN IV for the Burroughs B-6700 computer. (author)
Entanglement and discord of the superposition of Greenberger-Horne-Zeilinger states
International Nuclear Information System (INIS)
Parashar, Preeti; Rana, Swapan
2011-01-01
We calculate the analytic expression for geometric measure of entanglement for arbitrary superposition of two N-qubit canonical orthonormal Greenberger-Horne-Zeilinger (GHZ) states and the same for two W states. In the course of characterizing all kinds of nonclassical correlations, an explicit formula for quantum discord (via relative entropy) for the former class of states has been presented. Contrary to the GHZ state, the closest separable state to the W state is not classical. Therefore, in this case, the discord is different from the relative entropy of entanglement. We conjecture that the discord for the N-qubit W state is log 2 N.
International Nuclear Information System (INIS)
Streltsov, Alexej I.; Alon, Ofir E.; Cederbaum, Lorenz S.
2009-01-01
Scattering in one dimension of an attractive ultracold bosonic cloud from a barrier can lead to the formation of two nonoverlapping clouds. Once formed, the clouds travel with constant velocity, in general different in magnitude from that of the incoming cloud, and do not disperse. The phenomenon and its mechanism - transformation of kinetic energy to internal energy of the scattered cloud - are obtained by solving the time-dependent many-boson Schroedinger equation. The analysis of the wave function shows that the object formed corresponds to a quantum superposition state of two distinct wave packets traveling through real space.
International Nuclear Information System (INIS)
De Martini, Francesco; Sciarrino, Fabio; Spagnolo, Nicolo
2009-01-01
The high resilience to decoherence shown by a recently discovered macroscopic quantum superposition (MQS) generated by a quantum-injected optical parametric amplifier and involving a number of photons in excess of 5x10 4 motivates the present theoretical and numerical investigation. The results are analyzed in comparison with the properties of the MQS based on |α> and N-photon maximally entangled states (NOON), in the perspective of the comprehensive theory of the subject by Zurek. In that perspective the concepts of 'pointer state' and 'environment-induced superselection' are applied to the new scheme.
Automatic superposition of drug molecules based on their common receptor site
Kato, Yuichi; Inoue, Atsushi; Yamada, Miho; Tomioka, Nobuo; Itai, Akiko
1992-10-01
We have prevously developed a new rational method for superposing molecules in terms of submolecular physical and chemical properties, but not in terms of atom positions or chemical structures as has been done in the conventional methods. The program was originally developed for interactive use on a three-dimensional graphic display, providing goodness-of-fit indices on molecular shape, hydrogen bonds, electrostatic interactions and others. Here, we report a new unbiased searching method for the best superposition of molecules, covering all the superposing modes and conformational freedom, as an additional function of the program. The function is based on a novel least-squares method which superposes the expected positions and orientations of hydrogen bonding partners in the receptor that are deduced from both molecules. The method not only gives reliability and reproducibility to the result of the superposition, but also allows us to save labor and time. It is demonstrated that this method is very efficient for finding the correct superposing mode in such systems where hydrogen bonds play important roles.
The denoising of Monte Carlo dose distributions using convolution superposition calculations
International Nuclear Information System (INIS)
El Naqa, I; Cui, J; Lindsay, P; Olivera, G; Deasy, J O
2007-01-01
Monte Carlo (MC) dose calculations can be accurate but are also computationally intensive. In contrast, convolution superposition (CS) offers faster and smoother results but by making approximations. We investigated MC denoising techniques, which use available convolution superposition results and new noise filtering methods to guide and accelerate MC calculations. Two main approaches were developed to combine CS information with MC denoising. In the first approach, the denoising result is iteratively updated by adding the denoised residual difference between the result and the MC image. Multi-scale methods were used (wavelets or contourlets) for denoising the residual. The iterations are initialized by the CS data. In the second approach, we used a frequency splitting technique by quadrature filtering to combine low frequency components derived from MC simulations with high frequency components derived from CS components. The rationale is to take the scattering tails as well as dose levels in the high-dose region from the MC calculations, which presumably more accurately incorporates scatter; high-frequency details are taken from CS calculations. 3D Butterworth filters were used to design the quadrature filters. The methods were demonstrated using anonymized clinical lung and head and neck cases. The MC dose distributions were calculated by the open-source dose planning method MC code with varying noise levels. Our results indicate that the frequency-splitting technique for incorporating CS-guided MC denoising is promising in terms of computational efficiency and noise reduction. (note)
NOTE: The denoising of Monte Carlo dose distributions using convolution superposition calculations
El Naqa, I.; Cui, J.; Lindsay, P.; Olivera, G.; Deasy, J. O.
2007-09-01
Monte Carlo (MC) dose calculations can be accurate but are also computationally intensive. In contrast, convolution superposition (CS) offers faster and smoother results but by making approximations. We investigated MC denoising techniques, which use available convolution superposition results and new noise filtering methods to guide and accelerate MC calculations. Two main approaches were developed to combine CS information with MC denoising. In the first approach, the denoising result is iteratively updated by adding the denoised residual difference between the result and the MC image. Multi-scale methods were used (wavelets or contourlets) for denoising the residual. The iterations are initialized by the CS data. In the second approach, we used a frequency splitting technique by quadrature filtering to combine low frequency components derived from MC simulations with high frequency components derived from CS components. The rationale is to take the scattering tails as well as dose levels in the high-dose region from the MC calculations, which presumably more accurately incorporates scatter; high-frequency details are taken from CS calculations. 3D Butterworth filters were used to design the quadrature filters. The methods were demonstrated using anonymized clinical lung and head and neck cases. The MC dose distributions were calculated by the open-source dose planning method MC code with varying noise levels. Our results indicate that the frequency-splitting technique for incorporating CS-guided MC denoising is promising in terms of computational efficiency and noise reduction.
Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition of logic states
Energy Technology Data Exchange (ETDEWEB)
Kish, Laszlo B. [Texas A and M University, Department of Electrical and Computer Engineering, College Station, TX 77843-3128 (United States)], E-mail: laszlo.kish@ece.tamu.edu
2009-03-02
A new type of deterministic (non-probabilistic) computer logic system inspired by the stochasticity of brain signals is shown. The distinct values are represented by independent stochastic processes: independent voltage (or current) noises. The orthogonality of these processes provides a natural way to construct binary or multi-valued logic circuitry with arbitrary number N of logic values by using analog circuitry. Moreover, the logic values on a single wire can be made a (weighted) superposition of the N distinct logic values. Fuzzy logic is also naturally represented by a two-component superposition within the binary case (N=2). Error propagation and accumulation are suppressed. Other relevant advantages are reduced energy dissipation and leakage current problems, and robustness against circuit noise and background noises such as 1/f, Johnson, shot and crosstalk noise. Variability problems are also non-existent because the logic value is an AC signal. A similar logic system can be built with orthogonal sinusoidal signals (different frequency or orthogonal phase) however that has an extra 1/N type slowdown compared to the noise-based logic system with increasing number of N furthermore it is less robust against time delay effects than the noise-based counterpart.
Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition of logic states
International Nuclear Information System (INIS)
Kish, Laszlo B.
2009-01-01
A new type of deterministic (non-probabilistic) computer logic system inspired by the stochasticity of brain signals is shown. The distinct values are represented by independent stochastic processes: independent voltage (or current) noises. The orthogonality of these processes provides a natural way to construct binary or multi-valued logic circuitry with arbitrary number N of logic values by using analog circuitry. Moreover, the logic values on a single wire can be made a (weighted) superposition of the N distinct logic values. Fuzzy logic is also naturally represented by a two-component superposition within the binary case (N=2). Error propagation and accumulation are suppressed. Other relevant advantages are reduced energy dissipation and leakage current problems, and robustness against circuit noise and background noises such as 1/f, Johnson, shot and crosstalk noise. Variability problems are also non-existent because the logic value is an AC signal. A similar logic system can be built with orthogonal sinusoidal signals (different frequency or orthogonal phase) however that has an extra 1/N type slowdown compared to the noise-based logic system with increasing number of N furthermore it is less robust against time delay effects than the noise-based counterpart
Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition of logic states
Kish, Laszlo B.
2009-03-01
A new type of deterministic (non-probabilistic) computer logic system inspired by the stochasticity of brain signals is shown. The distinct values are represented by independent stochastic processes: independent voltage (or current) noises. The orthogonality of these processes provides a natural way to construct binary or multi-valued logic circuitry with arbitrary number N of logic values by using analog circuitry. Moreover, the logic values on a single wire can be made a (weighted) superposition of the N distinct logic values. Fuzzy logic is also naturally represented by a two-component superposition within the binary case ( N=2). Error propagation and accumulation are suppressed. Other relevant advantages are reduced energy dissipation and leakage current problems, and robustness against circuit noise and background noises such as 1/f, Johnson, shot and crosstalk noise. Variability problems are also non-existent because the logic value is an AC signal. A similar logic system can be built with orthogonal sinusoidal signals (different frequency or orthogonal phase) however that has an extra 1/N type slowdown compared to the noise-based logic system with increasing number of N furthermore it is less robust against time delay effects than the noise-based counterpart.
JaSTA-2: Second version of the Java Superposition T-matrix Application
Halder, Prithish; Das, Himadri Sekhar
2017-12-01
In this article, we announce the development of a new version of the Java Superposition T-matrix App (JaSTA-2), to study the light scattering properties of porous aggregate particles. It has been developed using Netbeans 7.1.2, which is a java integrated development environment (IDE). The JaSTA uses double precision superposition T-matrix codes for multi-sphere clusters in random orientation, developed by Mackowski and Mischenko (1996). The new version consists of two options as part of the input parameters: (i) single wavelength and (ii) multiple wavelengths. The first option (which retains the applicability of older version of JaSTA) calculates the light scattering properties of aggregates of spheres for a single wavelength at a given instant of time whereas the second option can execute the code for a multiple numbers of wavelengths in a single run. JaSTA-2 provides convenient and quicker data analysis which can be used in diverse fields like Planetary Science, Atmospheric Physics, Nanoscience, etc. This version of the software is developed for Linux platform only, and it can be operated over all the cores of a processor using the multi-threading option.
Directory of Open Access Journals (Sweden)
M. Saphiannikova
2012-06-01
Full Text Available The theoretical description of electrical properties of polymer melts, filled with attractively interacting conductive particles, represents a great challenge. Such filler particles tend to build a network-like structure which is very fragile and can be easily broken in a shear flow with shear rates of about 1 s–1. In this study, measured shear-induced changes in electrical conductivity of polymer composites are described using a superposition approach, in which the filler particles are separated into a highly conductive percolating and low conductive non-percolating phases. The latter is represented by separated well-dispersed filler particles. It is assumed that these phases determine the effective electrical properties of composites through a type of mixing rule involving the phase volume fractions. The conductivity of the percolating phase is described with the help of classical percolation theory, while the conductivity of non-percolating phase is given by the matrix conductivity enhanced by the presence of separate filler particles. The percolation theory is coupled with a kinetic equation for a scalar structural parameter which describes the current state of filler network under particular flow conditions. The superposition approach is applied to transient shear experiments carried out on polycarbonate composites filled with multi-wall carbon nanotubes.
International Nuclear Information System (INIS)
Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa
2005-01-01
The time-temperature transformation (TTT) diagrams for the onset of devitrification of the Ge-Ni-La and Cu-Hf-Ti glassy alloys were calculated from the isothermal differential calorimetry data using an Arrhenius equation. The continuous heating transformation (CHT) diagrams for the onset of devitrification of the glassy alloys were subsequently recalculated from TTT diagrams. The recalculation method used for conversion of the TTT into CHT diagrams produces reasonable results and is not sensitive to the type of the devitrification reaction (polymorphous or primary transformation). The diagrams allow to perform a comparison of the stabilities of glassy alloys on a long-term scale. The relationship between these diagrams is discussed
Creep behavior of bone cement: a method for time extrapolation using time-temperature equivalence.
Morgan, R L; Farrar, D F; Rose, J; Forster, H; Morgan, I
2003-04-01
The clinical lifetime of poly(methyl methacrylate) (PMMA) bone cement is considerably longer than the time over which it is convenient to perform creep testing. Consequently, it is desirable to be able to predict the long term creep behavior of bone cement from the results of short term testing. A simple method is described for prediction of long term creep using the principle of time-temperature equivalence in polymers. The use of the method is illustrated using a commercial acrylic bone cement. A creep strain of approximately 0.6% is predicted after 400 days under a constant flexural stress of 2 MPa. The temperature range and stress levels over which it is appropriate to perform testing are described. Finally, the effects of physical aging on the accuracy of the method are discussed and creep data from aged cement are reported.
Determination of new time-temperature-transformation diagrams for lead-calcium alloys
Energy Technology Data Exchange (ETDEWEB)
Rossi, F.; Lambertin, M. [Arts et Metiers Paristech, LaBoMaP, ENSAM, Rue porte de Paris, 71250 Cluny (France); Delfaut-Durut, L. [CEA, centre de Valduc [SEMP, LECM], 21120 Is-sur-Tille (France); Maitre, A. [SPCTS, UFR Sciences et techniques, 87060 Limoges (France); Vilasi, M. [LCSM, Universite Nancy I, 54506 Vandoeuvre les Nancy (France)
2008-12-01
The Pb-Ca is an age hardening alloy that allows for an increase in the hardness compared to pure lead. The hardening is obtained after different successive ageing transformations. In addition, this hardening is followed by an overageing which induces a softening. The ageing and overageing transformation mechanisms are now well identified in lead-calcium alloys. In this paper, we propose to represent the domain of stability of each transformation via time-temperature-transformation diagrams for a calcium concentration from 600 to 1280 ppm and in a range of temperatures from -20 to 180 C. These diagrams are constructed with the data obtained by in situ ageing with metallographic observations, hardness and electrical resistance measurements. The specificities of lead-calcium such as its fast ageing at ambient temperature and its overageing over time required the design of specific devices to be able to identify the characteristics of these alloys. (author)
Brizio, Ana Paula Dutra Resem; Prentice, Carlos
2015-06-01
This paper presents the development of a new smart time-temperature indicator (TTI) of pasteurization whose operating principle is based on the complexation reaction between starch and iodine, and the subsequent action of an amylase on this complex causing its discoloration at a rate dependent on time and temperature of the medium. Laboratory simulations and tests in a manufacturing plant evaluated different enzyme concentrations in the TTI prototypes when exposed to pasteurization conditions. The results showed that the color response of the indicators was visually interpreted as adaptive to measurement using appropriate equipment, with satisfactory reliability in all conditions studied. The TTI containing 6.5% amylase was one whose best results were suited for use in validating the cooking of hams. When attached to the primary packaging of the product, this TTI indicated the pasteurization process inexpensively, easily, accurately, and nondestructively. © 2015 Institute of Food Technologists®
Directory of Open Access Journals (Sweden)
José Luiz S. Carvalho Filho
Full Text Available Ocimum basilicum L. essential oil with high concentration of linalool is valuable in international business. O. basilicum essential oil is widely used as seasoning and in cosmetic industry. To assure proper essential oil yield and quality, it is crucial to determine which environmental and processing factors are affecting its composition. The goal of our work is to evaluate the effects of harvesting time, temperature, and drying period on the yield and chemical composition of O. basilicum essential oil. Harvestings were performed 40 and 93 days after seedling transplantation. Harvesting performed at 8:00 h and 12:00 h provided higher essential oil yield. After five days drying, the concentration of linalool raised from 45.18% to 86.80%. O. basilicum should be harvested during morning and the biomass dried at 40ºC for five days to obtain linalool rich essential oil.
Some kinematics and dynamics from a superposition of two axisymmetric stellar systems
International Nuclear Information System (INIS)
Cubarsi i Morera, R.
1990-01-01
Some kinematic and dynamic implications of a superposition of two stellar systems are studied. In the general case of a stellar system in nonsteady states, Chandrasekhar's axially symmetrical model has been adopted for each one of the subsystems. The solution obtained for the potential function provides some kinematical constraints between the subsystems. These relationships are derived using the partial centered moments of the velocity distribution and the subcentroid velocities in order to study the velocity distribution. These relationships are used to prove that, only in a stellar system where the potential function is assumed to be stationary, the relative movement of the local subcentroids (not only in rotation), the vertex deviation phenomenon, and the whole set of the second-order-centered moments may be explained. A qualitative verification with three stellar samples in the solar neighborhood is carried out. 41 refs
Yin, H-L; Cao, W-F; Fu, Y; Tang, Y-L; Liu, Y; Chen, T-Y; Chen, Z-B
2014-09-15
Measurement-device-independent quantum key distribution (MDI-QKD) with decoy-state method is believed to be securely applied to defeat various hacking attacks in practical quantum key distribution systems. Recently, the coherent-state superpositions (CSS) have emerged as an alternative to single-photon qubits for quantum information processing and metrology. Here, in this Letter, CSS are exploited as the source in MDI-QKD. We present an analytical method that gives two tight formulas to estimate the lower bound of yield and the upper bound of bit error rate. We exploit the standard statistical analysis and Chernoff bound to perform the parameter estimation. Chernoff bound can provide good bounds in the long-distance MDI-QKD. Our results show that with CSS, both the security transmission distance and secure key rate are significantly improved compared with those of the weak coherent states in the finite-data case.
Energy Technology Data Exchange (ETDEWEB)
Lee, Su-Yong; Kim, Ho-Joon [Department of Physics, Texas A and M University at Qatar, P.O. Box 23874, Doha (Qatar); Ji, Se-Wan [School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012 (Korea, Republic of); Nha, Hyunchul [Department of Physics, Texas A and M University at Qatar, P.O. Box 23874, Doha (Qatar); Institute fuer Quantenphysik, Universitaet Ulm, D-89069 Ulm (Germany)
2011-07-15
We investigate how the entanglement properties of a two-mode state can be improved by performing a coherent superposition operation ta+ra{sup {dagger}} of photon subtraction and addition, proposed by Lee and Nha [Phys. Rev. A 82, 053812 (2010)], on each mode. We show that the degree of entanglement, the Einstein-Podolsky-Rosen-type correlation, and the performance of quantum teleportation can be all enhanced for the output state when the coherent operation is applied to a two-mode squeezed state. The effects of the coherent operation are more prominent than those of the mere photon subtraction a and the addition a{sup {dagger}} particularly in the small-squeezing regime, whereas the optimal operation becomes the photon subtraction (case of r=0) in the large-squeezing regime.
International Nuclear Information System (INIS)
Faddegon, B.A.; Villarreal-Barajas, J.E.
2005-01-01
The Final Aperture Superposition Technique (FAST) is described and applied to accurate, near instantaneous calculation of the relative output factor (ROF) and central axis percentage depth dose curve (PDD) for clinical electron beams used in radiotherapy. FAST is based on precalculation of dose at select points for the two extreme situations of a fully open final aperture and a final aperture with no opening (fully shielded). This technique is different than conventional superposition of dose deposition kernels: The precalculated dose is differential in position of the electron or photon at the downstream surface of the insert. The calculation for a particular aperture (x-ray jaws or MLC, insert in electron applicator) is done with superposition of the precalculated dose data, using the open field data over the open part of the aperture and the fully shielded data over the remainder. The calculation takes explicit account of all interactions in the shielded region of the aperture except the collimator effect: Particles that pass from the open part into the shielded part, or visa versa. For the clinical demonstration, FAST was compared to full Monte Carlo simulation of 10x10,2.5x2.5, and 2x8 cm 2 inserts. Dose was calculated to 0.5% precision in 0.4x0.4x0.2 cm 3 voxels, spaced at 0.2 cm depth intervals along the central axis, using detailed Monte Carlo simulation of the treatment head of a commercial linear accelerator for six different electron beams with energies of 6-21 MeV. Each simulation took several hours on a personal computer with a 1.7 Mhz processor. The calculation for the individual inserts, done with superposition, was completed in under a second on the same PC. Since simulations for the pre calculation are only performed once, higher precision and resolution can be obtained without increasing the calculation time for individual inserts. Fully shielded contributions were largest for small fields and high beam energy, at the surface, reaching a maximum
A millimeter wave linear superposition oscillator in 0.18 μm CMOS technology
International Nuclear Information System (INIS)
Yan Dong; Mao Luhong; Su Qiujie; Xie Sheng; Zhang Shilin
2014-01-01
This paper presents a millimeter wave (mm-wave) oscillator that generates signal at 36.56 GHz. The mm-wave oscillator is realized in a UMC 0.18 μm CMOS process. The linear superposition (LS) technique breaks through the limit of cut-off frequency (f T ), and realizes a much higher oscillation than f T . Measurement results show that the LS oscillator produces a calibrated −37.17 dBm output power when biased at 1.8 V; the output power of fundamental signal is −10.85 dBm after calibration. The measured phase noise at 1 MHz frequency offset is −112.54 dBc/Hz at the frequency of 9.14 GHz. This circuit can be properly applied to mm-wave communication systems with advantages of low cost and high integration density. (semiconductor integrated circuits)
EPR, optical and superposition model study of Mn2+ doped L+ glutamic acid
Kripal, Ram; Singh, Manju
2015-12-01
Electron paramagnetic resonance (EPR) study of Mn2+ doped L+ glutamic acid single crystal is done at room temperature. Four interstitial sites are observed and the spin Hamiltonian parameters are calculated with the help of large number of resonant lines for various angular positions of external magnetic field. The optical absorption study is also done at room temperature. The energy values for different orbital levels are calculated, and observed bands are assigned as transitions from 6A1g(s) ground state to various excited states. With the help of these assigned bands, Racah inter-electronic repulsion parameters B = 869 cm-1, C = 2080 cm-1 and cubic crystal field splitting parameter Dq = 730 cm-1 are calculated. Zero field splitting (ZFS) parameters D and E are calculated by the perturbation formulae and crystal field parameters obtained using superposition model. The calculated values of ZFS parameters are in good agreement with the experimental values obtained by EPR.
Superposition of two optical vortices with opposite integer or non-integer orbital angular momentum
Directory of Open Access Journals (Sweden)
Carlos Fernando Díaz Meza
2016-01-01
Full Text Available This work develops a brief proposal to achieve the superposition of two opposite vortex beams, both with integer or non-integer mean value of the orbital angular momentum. The first part is about the generation of this kind of spatial light distributions through a modified Brown and Lohmann’s hologram. The inclusion of a simple mathematical expression into the pixelated grid’s transmittance function, based in Fourier domain properties, shifts the diffraction orders counterclockwise and clockwise to the same point and allows the addition of different modes. The strategy is theoretically and experimentally validated for the case of two opposite rotation helical wavefronts.
Proportional fair scheduling with superposition coding in a cellular cooperative relay system
DEFF Research Database (Denmark)
Kaneko, Megumi; Hayashi, Kazunori; Popovski, Petar
2013-01-01
Many works have tackled on the problem of throughput and fairness optimization in cellular cooperative relaying systems. Considering firstly a two-user relay broadcast channel, we design a scheme based on superposition coding (SC) which maximizes the achievable sum-rate under a proportional...... fairness constraint. Unlike most relaying schemes where users are allocated orthogonally, our scheme serves the two users simultaneously on the same time-frequency resource unit by superposing their messages into three SC layers. The optimal power allocation parameters of each SC layer are derived...... by analysis. Next, we consider the general multi-user case in a cellular relay system, for which we design resource allocation algorithms based on proportional fair scheduling exploiting the proposed SC-based scheme. Numerical results show that the proposed algorithms allowing simultaneous user allocation...
Yi, Xingwen; Chen, Xuemei; Sharma, Dinesh; Li, Chao; Luo, Ming; Yang, Qi; Li, Zhaohui; Qiu, Kun
2014-06-02
Digital coherent superposition (DCS) provides an approach to combat fiber nonlinearities by trading off the spectrum efficiency. In analogy, we extend the concept of DCS to the optical OFDM subcarrier pairs with Hermitian symmetry to combat the linear and nonlinear phase noise. At the transmitter, we simply use a real-valued OFDM signal to drive a Mach-Zehnder (MZ) intensity modulator biased at the null point and the so-generated OFDM signal is Hermitian in the frequency domain. At receiver, after the conventional OFDM signal processing, we conduct DCS of the optical OFDM subcarrier pairs, which requires only conjugation and summation. We show that the inter-carrier-interference (ICI) due to phase noise can be reduced because of the Hermitain symmetry. In a simulation, this method improves the tolerance to the laser phase noise. In a nonlinear WDM transmission experiment, this method also achieves better performance under the influence of cross phase modulation (XPM).
The study on the Sensorless PMSM Control using the Superposition Theory
Energy Technology Data Exchange (ETDEWEB)
Hong, Joung Pyo [Changwon National University, Changwon (Korea); Kwon, Soon Jae [Pukung National University, Seoul (Korea); Kim, Gyu Seob; Sohn, Mu Heon; Kim, Jong Dal [Dongmyung College, Pusan (Korea)
2002-07-01
This study presents a solution to control a Permanent Magnet Synchronous Motor without sensors. The control method is the presented superposition principle. This method of sensorless theory is very simple to compute estimated angle. Therefore computing time to estimate angle is shorter than other sensorless method. The use of this system yields enhanced operations, fewer system components, lower system cost, energy efficient control system design and increased deficiency. A practical solution is described and results are given in this Study. The performance of a Sensorless architecture allows an intelligent approach to reduce the complete system costs of digital motion control applications using cheaper electrical motors without sensors. This paper deals with an overview of sensorless solutions in PMSM control applications whereby the focus will be the new controller without sensors and its applications. (author). 6 refs., 16 figs., 1 tab.
Yeom, Jeong Seon; Chu, Eunmi; Jung, Bang Chul; Jin, Hu
2018-02-10
In this paper, we propose a novel low-complexity multi-user superposition transmission (MUST) technique for 5G downlink networks, which allows multiple cell-edge users to be multiplexed with a single cell-center user. We call the proposed technique diversity-controlled MUST technique since the cell-center user enjoys the frequency diversity effect via signal repetition over multiple orthogonal frequency division multiplexing (OFDM) sub-carriers. We assume that a base station is equipped with a single antenna but users are equipped with multiple antennas. In addition, we assume that the quadrature phase shift keying (QPSK) modulation is used for users. We mathematically analyze the bit error rate (BER) of both cell-edge users and cell-center users, which is the first theoretical result in the literature to the best of our knowledge. The mathematical analysis is validated through extensive link-level simulations.
Strong-field effects in Rabi oscillations between a single state and a superposition of states
International Nuclear Information System (INIS)
Zhdanovich, S.; Milner, V.; Hepburn, J. W.
2011-01-01
Rabi oscillations of quantum population are known to occur in two-level systems driven by spectrally narrow laser fields. In this work we study Rabi oscillations induced by shaped broadband femtosecond laser pulses. Due to the broad spectral width of the driving field, the oscillations are initiated between a ground state and a coherent superposition of excited states, or a ''wave packet,'' rather than a single excited state. Our experiments reveal an intricate dependence of the wave-packet phase on the intensity of the laser field. We confirm numerically that the effect is associated with the strong-field nature of the interaction and provide a qualitative picture by invoking a simple theoretical model.
Quantum tele-amplification with a continuous-variable superposition state
DEFF Research Database (Denmark)
Neergaard-Nielsen, Jonas S.; Eto, Yujiro; Lee, Chang-Woo
2013-01-01
-enhanced functions such as coherent-state quantum computing (CSQC), quantum metrology and a quantum repeater could be realized in the networks. Optical cat states are now routinely generated in laboratories. An important next challenge is to use them for implementing the aforementioned functions. Here, we......Optical coherent states are classical light fields with high purity, and are essential carriers of information in optical networks. If these states could be controlled in the quantum regime, allowing for their quantum superposition (referred to as a Schrödinger-cat state), then novel quantum...... demonstrate a basic CSQC protocol, where a cat state is used as an entanglement resource for teleporting a coherent state with an amplitude gain. We also show how this can be extended to a loss-tolerant quantum relay of multi-ary phase-shift keyed coherent states. These protocols could be useful in both...
International Nuclear Information System (INIS)
Oshtrakh, M. I.; Semionkin, V. A.
2004-01-01
Moessbauer spectra of hemoglobins have some features in the range of liquid nitrogen temperature: a non-Lorentzian asymmetric line shape for oxyhemoglobins and symmetric Lorentzian line shape for deoxyhemoglobins. A comparison of the approximation of the hemoglobin Moessbauer spectra by a superposition of two quadrupole doublets and by a distribution of the quadrupole splitting demonstrates that a superposition of two quadrupole doublets is more reliable and may reflect the non-equivalent iron electronic structure and the stereochemistry in the α- and β-subunits of hemoglobin tetramers.
Classification of high-resolution remote sensing images based on multi-scale superposition
Wang, Jinliang; Gao, Wenjie; Liu, Guangjie
2017-07-01
Landscape structures and process on different scale show different characteristics. In the study of specific target landmarks, the most appropriate scale for images can be attained by scale conversion, which improves the accuracy and efficiency of feature identification and classification. In this paper, the authors carried out experiments on multi-scale classification by taking the Shangri-la area in the north-western Yunnan province as the research area and the images from SPOT5 HRG and GF-1 Satellite as date sources. Firstly, the authors upscaled the two images by cubic convolution, and calculated the optimal scale for different objects on the earth shown in images by variation functions. Then the authors conducted multi-scale superposition classification on it by Maximum Likelyhood, and evaluated the classification accuracy. The results indicates that: (1) for most of the object on the earth, the optimal scale appears in the bigger scale instead of the original one. To be specific, water has the biggest optimal scale, i.e. around 25-30m; farmland, grassland, brushwood, roads, settlement places and woodland follows with 20-24m. The optimal scale for shades and flood land is basically as the same as the original one, i.e. 8m and 10m respectively. (2) Regarding the classification of the multi-scale superposed images, the overall accuracy of the ones from SPOT5 HRG and GF-1 Satellite is 12.84% and 14.76% higher than that of the original multi-spectral images, respectively, and Kappa coefficient is 0.1306 and 0.1419 higher, respectively. Hence, the multi-scale superposition classification which was applied in the research area can enhance the classification accuracy of remote sensing images .
A Real-Time Temperature Data Transmission Approach for Intelligent Cooling Control of Mass Concrete
Directory of Open Access Journals (Sweden)
Peng Lin
2014-01-01
Full Text Available The primary aim of the study presented in this paper is to propose a real-time temperature data transmission approach for intelligent cooling control of mass concrete. A mathematical description of a digital temperature control model is introduced in detail. Based on pipe mounted and electrically linked temperature sensors, together with postdata handling hardware and software, a stable, real-time, highly effective temperature data transmission solution technique is developed and utilized within the intelligent mass concrete cooling control system. Once the user has issued the relevant command, the proposed programmable logic controllers (PLC code performs all necessary steps without further interaction. The code can control the hardware, obtain, read, and perform calculations, and display the data accurately. Hardening concrete is an aggregate of complex physicochemical processes including the liberation of heat. The proposed control system prevented unwanted structural change within the massive concrete blocks caused by these exothermic processes based on an application case study analysis. In conclusion, the proposed temperature data transmission approach has proved very useful for the temperature monitoring of a high arch dam and is able to control thermal stresses in mass concrete for similar projects involving mass concrete.
Imaging technique for real-time temperature monitoring during cryotherapy of lesions
Petrova, Elena; Liopo, Anton; Nadvoretskiy, Vyacheslav; Ermilov, Sergey
2016-11-01
Noninvasive real-time temperature imaging during thermal therapies is able to significantly improve clinical outcomes. An optoacoustic (OA) temperature monitoring method is proposed for noninvasive real-time thermometry of vascularized tissue during cryotherapy. The universal temperature-dependent optoacoustic response (ThOR) of red blood cells (RBCs) is employed to convert reconstructed OA images to temperature maps. To obtain the temperature calibration curve for intensity-normalized OA images, we measured ThOR of 10 porcine blood samples in the range of temperatures from 40°C to -16°C and analyzed the data for single measurement variations. The nonlinearity (ΔTmax) and the temperature of zero OA response (T0) of the calibration curve were found equal to 11.4±0.1°C and -13.8±0.1°C, respectively. The morphology of RBCs was examined before and after the data collection confirming cellular integrity and intracellular compartmentalization of hemoglobin. For temperatures below 0°C, which are of particular interest for cryotherapy, the accuracy of a single temperature measurement was ±1°C, which is consistent with the clinical requirements. Validation of the proposed OA temperature imaging technique was performed for slow and fast cooling of blood samples embedded in tissue-mimicking phantoms.
Ullah, Rahat; Khan, Saranjam; Shah, Attaullah; Ali, Hina; Bilal, Muhammad
2018-05-01
The current study presents time dependent variations in the concentration of beta-carotene in carrot under different storage-temperature conditions using UV–VIS and Raman spectrophotometric techniques. The UV–VIS absorption spectra of beta-carotene extracted from carrot shows three distinct absorption peaks at 442, 467, and 500 nm with maximum absorption at 467 nm. These absorption peaks are very much reproducible and are assigned to β-carotene. Similarly, Raman spectra of carrot samples also confirmed the three main Raman peaks of beta-carotene at shift positions 1003, 1150, and 1515 cm‑1. An overall decrease in beta-carotene content has been observed for time-temperature conditions. These results depict a decrease of about 40% in the content of beta-carotene when carrot samples were stored in a refrigerator (4 °C) for the first 20 d, whereas a decrease of about 25% was observed when carrot samples were stored in a freezer (‑16 °C) for the same period. The objective of this study is to investigate the possible use of Raman spectroscopy and UV–VIS spectroscopy for quick and detailed analysis of changes (degradation) in beta-carotene content associated with time and temperature in storage (frozen foods) in order to promote quality foods for consumers. Future study with a greater focus on the concentration/content of beta-carotene in other fruits/vegetables is also desirable.
Optimizing residence time, temperature and speed to improve TMP pulp properties and reduce energy
Energy Technology Data Exchange (ETDEWEB)
Sabourin, M.; Xu, E.; Cort, B.; Boileau, I.; Waller, A.
1997-04-01
The concept of reducing energy consumption in pulp mills by increasing the disc speed of refining has been established using single disc and double disc refiners in both pilot plant and mill applications. The RTS study evaluated in this paper reviews the effect of high-speed single disc refining coupled with shortdwell-high pressure retention conditions. Coupling these variables permitted evaluation of an optimum residence time, temperature and speed (RTS) operational window. The objective of the RTS conditions to sufficiently soften the wood chips through high temperature such that the fibre is more receptive to initial defiberization at high intensity. The improved pulp from the primary refiner at high intensity could potentially demonstrate improvements in physical pulp properties at a reduced specific energy requirement. The spruce/fir RTS-TMP described here required significantly less specific energy and produced TMP with slightly improved strength properties and equivalent optical properties compared to conventional TMP pulp. Studies on the radiate pine furnish indicated that the physical pulp property/specific energy relationships could be adjusted by manipulating the residence time. 4 refs., 10 tabs., 10 figs.
International Nuclear Information System (INIS)
Hume, S.P.; Marigold, J.C.L.
1985-01-01
Thermal enhancement of radiation injury to the crypt compartment of mouse small intestinal mucosa has been measured as a function of heating time for temperatures in the range 41.0-44.0 0 C. All the hyperthermal treatments used were themselves subthreshold for gross tissue injury. With this limitation, thermoradiosensitisation increased linearly with duration of hyperthermia for temperatures in the range 42.3-44.0 0 C. Using temperatures below 42.0 0 C, there was a saturation in effect for treatments longer than approximately 40-90 min. For temperatures above the transition, a 1 0 C change was equivalent to a factor of 2.6 in heating time; below the transition, a 1 0 C change was equivalent to a factor of 5.4. Time-temperature relationships for thermoradiosensitisation in other rodent tissues are reviewed and compared with the general relationships for direct thermal injury, previously derived from experimental studies. The results are discussed with relevance to the interpretation of in vivo thermal enhancement of radiation injury. (Auth.)
Thermotolerance in preirradiated intestine and its influence on time-temperature relationships
International Nuclear Information System (INIS)
Hume, S.P.; Marigold, J.C.; Manjil, L.G.
1988-01-01
The crypt compartment of mouse jejunum showed a transient increase in thermal susceptibility approximately 10 days after moderate X-ray doses to the abdomen (9-10 Gy). The increase in response was manifest as an increase in slope of the crypt dose-response curve but was limited to temperatures below 43 0 C. As a result, the 43 0 C inflexion in the Arrhenius plot (the relationship between treatment time and temperature) for thermal sensitivity of crypts was eliminated in preirradiated tissue, and the curve became monophasic over the range 42.0-44.5 0 C. At temperatures below 42 0 C, the curve again deviated. At supranormal temperatures of 42 0 C and below, the durations of hyperthermia needed for measurable effect were sufficient to allow thermotolerance to be expressed within the heating period. Neither the threshold heating times nor this thermotolerance were affected by prior irradiation. In the temperature range 42-43 0 C, an earlier development of thermotolerance could be demonstrated in control tissue by challenging with an acute high-temperature heat treatment. This thermotolerance was eliminated in preirradiated tissue, resulting in the apparent increase in sensitivity. The findings support the view that the complex nature of the time-temperature relationship seen in normal tissue in vivo is a manifestation of the ability of the tissue to progressively acquire a thermotolerant state during treatment at temperatures below approximately 43 0 C, so that the intrinsic sensitivity is modulated while being assessed
Czech Academy of Sciences Publication Activity Database
Červený, V.; Pšenčík, Ivan
2016-01-01
Roč. 26 (2016), s. 131-153 ISSN 2336-3827 R&D Projects: GA ČR(CZ) GA16-05237S Institutional support: RVO:67985530 Keywords : elastodynamic Green function * inhomogeneous anisotropic media * integral superposition of Gaussian beams Subject RIV: DC - Siesmology, Volcanology, Earth Structure
Effects of time-temperature profiles on glow curves of germanium-doped optical fibre
Lam, S. E.; Alawiah, A.; Bradley, D. A.; Mohd Noor, N.
2017-08-01
The Germanium (Ge) doped silica optical fibres have demonstrated the great potential to be developed as a thermoluminescent (TL) dosimeter that can be used in various applications in radiotherapy, diagnostic radiology, UV dosimetry system and food irradiation industry. Different time-temperature profile (TTP) parameters of the TL reader have been employed by many researchers in various of TL studies. Nevertheless, none of those studies adequately addressed the effects of the reader's preheat temperature and heating rate on the kinetic parameters of the TL glow curve specifically, the Ge-doped silica optical fibres. This research addresses the issue of TTP parameters with special attention to the determination of the kinetic parameters of the glow curve. The glow curve responses were explored and the kinetic parameters were analyzed by the WinGCF software, to show the effect of the preheat temperature and heating rate of the reader on Ge-doped fibre irradiated with 18 Gy of 6 MV photons radiation. The effect of TTP parameters was discussed and compared against the commercial fibre and tailored made fibre of 6 mol% Ge-doped of flat and cylindrical shape. The deconvolution of glow peaks and the kinetic parameters were obtained by the WinGCF software. This enables to fit accurately (1.5%
Noise-based logic hyperspace with the superposition of 2{sup N} states in a single wire
Energy Technology Data Exchange (ETDEWEB)
Kish, Laszlo B. [Texas A and M University, Department of Electrical and Computer Engineering, College Station, TX 77843-3128 (United States)], E-mail: laszlo.kish@ece.tamu.edu; Khatri, Sunil; Sethuraman, Swaminathan [Texas A and M University, Department of Electrical and Computer Engineering, College Station, TX 77843-3128 (United States)
2009-05-11
In the introductory paper [L.B. Kish, Phys. Lett. A 373 (2009) 911], about noise-based logic, we showed how simple superpositions of single logic basis vectors can be achieved in a single wire. The superposition components were the N orthogonal logic basis vectors. Supposing that the different logic values have 'on/off' states only, the resultant discrete superposition state represents a single number with N bit accuracy in a single wire, where N is the number of orthogonal logic vectors in the base. In the present Letter, we show that the logic hyperspace (product) vectors defined in the introductory paper can be generalized to provide the discrete superposition of 2{sup N} orthogonal system states. This is equivalent to a multi-valued logic system with 2{sup 2{sup N}} logic values per wire. This is a similar situation to quantum informatics with N qubits, and hence we introduce the notion of noise-bit. This system has major differences compared to quantum informatics. The noise-based logic system is deterministic and each superposition element is instantly accessible with the high digital accuracy, via a real hardware parallelism, without decoherence and error correction, and without the requirement of repeating the logic operation many times to extract the probabilistic information. Moreover, the states in noise-based logic do not have to be normalized, and non-unitary operations can also be used. As an example, we introduce a string search algorithm which is O({radical}(M)) times faster than Grover's quantum algorithm (where M is the number of string entries), while it has the same hardware complexity class as the quantum algorithm.
Intonation model for TTS in Sepedi
CSIR Research Space (South Africa)
Van Niekerk, DR
2010-09-01
Full Text Available the size of the tone-marked corpus does not lend itself to a comprehensive statistical analysis of the comparison results, we have identified a number of characteristics consis- tently exhibited in the natural F0 contours not accounted for in the tone... in the tone-marked set was synthesised with excita- tion signals derived from the standard HMM-based models, the tone-based model and the linearly declining contours discussed above. Listeners were asked to rate each sample using integers ranging from 1...
Time Temperature-Precipitation Behavior in An Al-Cu-Li Alloy 2195
Chen, P. S.; Bhat, B. N.
1999-01-01
Al-Cu-Li alloy 2195, with its combination of good cryogenic properties, low density, and high modulus, has been selected by NASA to be the main structural alloy of the Super Light Weight Tank (SLWT) for the Space Shuttle. Alloy 2195 is strengthened by an aging treatment that precipitates a particular precipitate, labeled as T1(Al2CuLi). Other phases, such as GP zone, (theta)', (theta)", theta, (delta)', S' are also present in this alloy when artificially aged. Cryogenic strength and fracture toughness are critical to the -SLWT application, since the SLWT will house liquid oxygen and hydrogen. Motivation for the Time-Temperature-Precipitation (TTP) study at lower temperature (lower than 350 F) comes in part from a recent study by Chen, The study found that the cryogenic fracture toughness of alloy 2195 is greatly influenced by the phases present in the matrix and subgrain boundaries. Therefore, the understanding of TTP behavior can help develop a guideline to select appropriate heat treatment conditions for the desirable applications. The study of TTP behavior at higher temperature (400 to 1000 F) was prompted by the fact that the SLWT requires a welded construction. Heat conduction from the weld pool affects the microstructure in the heat-affected zone (HAZ), which leads to changes in the mechanical properties. Furthermore, the SLWT may need repair welding for more than one time and any additional thermal cycles will increase precipitate instability and promote phase transformation. As a result considerable changes in HAZ microstructure and mechanical properties are expected during the construction of the SLWT. Therefore, the TTP diagrams can serve to understand the thermal history of the alloy by analyzing the welded microstructure. In the case welding, the effects of thermal cycles on the microstructure and mechanical properties can be predicted with the aid of the TTP diagrams. The 2195 alloy (nominally Al + 4 pct Cu + 1 pct Li + 0.3 pct Ag + 0.3 pct Mg + 0
International Nuclear Information System (INIS)
Pozza, Nicola Dalla; Wiseman, Howard M; Huntington, Elanor H
2015-01-01
The preparation stage of optical qubits is an essential task in all the experimental setups employed for the test and demonstration of quantum optics principles. We consider a deterministic protocol for the preparation of qubits as a superposition of vacuum and one photon number states, which has the advantage to reduce the amount of resources required via phase-sensitive measurements using a local oscillator (‘dyne detection’). We investigate the performances of the protocol using different phase measurement schemes: homodyne, heterodyne, and adaptive dyne detection (involving a feedback loop). First, we define a suitable figure of merit for the prepared state and we obtain an analytical expression for that in terms of the phase measurement considered. Further, we study limitations that the phase measurement can exhibit, such as delay or limited resources in the feedback strategy. Finally, we evaluate the figure of merit of the protocol for different mode-shapes handily available in an experimental setup. We show that even in the presence of such limitations simple feedback algorithms can perform surprisingly well, outperforming the protocols when simple homodyne or heterodyne schemes are employed. (paper)
Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings
Krenn, Mario; Gu, Xuemei; Zeilinger, Anton
2017-12-01
We show a surprising link between experimental setups to realize high-dimensional multipartite quantum states and graph theory. In these setups, the paths of photons are identified such that the photon-source information is never created. We find that each of these setups corresponds to an undirected graph, and every undirected graph corresponds to an experimental setup. Every term in the emerging quantum superposition corresponds to a perfect matching in the graph. Calculating the final quantum state is in the #P-complete complexity class, thus it cannot be done efficiently. To strengthen the link further, theorems from graph theory—such as Hall's marriage problem—are rephrased in the language of pair creation in quantum experiments. We show explicitly how this link allows one to answer questions about quantum experiments (such as which classes of entangled states can be created) with graph theoretical methods, and how to potentially simulate properties of graphs and networks with quantum experiments (such as critical exponents and phase transitions).
A Bethe ansatz solvable model for superpositions of Cooper pairs and condensed molecular bosons
International Nuclear Information System (INIS)
Hibberd, K.E.; Dunning, C.; Links, J.
2006-01-01
We introduce a general Hamiltonian describing coherent superpositions of Cooper pairs and condensed molecular bosons. For particular choices of the coupling parameters, the model is integrable. One integrable manifold, as well as the Bethe ansatz solution, was found by Dukelsky et al. [J. Dukelsky, G.G. Dussel, C. Esebbag, S. Pittel, Phys. Rev. Lett. 93 (2004) 050403]. Here we show that there is a second integrable manifold, established using the boundary quantum inverse scattering method. In this manner we obtain the exact solution by means of the algebraic Bethe ansatz. In the case where the Cooper pair energies are degenerate we examine the relationship between the spectrum of these integrable Hamiltonians and the quasi-exactly solvable spectrum of particular Schrodinger operators. For the solution we derive here the potential of the Schrodinger operator is given in terms of hyperbolic functions. For the solution derived by Dukelsky et al., loc. cit. the potential is sextic and the wavefunctions obey PT-symmetric boundary conditions. This latter case provides a novel example of an integrable Hermitian Hamiltonian acting on a Fock space whose states map into a Hilbert space of PT-symmetric wavefunctions defined on a contour in the complex plane
Effect of the superposition of a dielectric barrier discharge onto a premixed gas burner flame
Zaima, Kazunori; Takada, Noriharu; Sasaki, Koichi
2011-10-01
We are investigating combustion control with the help of nonequilibrium plasma. In this work, we examined the effect of dielectric barrier discharge (DBD) on a premixed burner flame with CH4/O2/Ar gas mixture. The premixed burner flame was covered with a quartz tube. A copper electrode was attached on the outside of the quartz tube, and it was connected to a high-voltage power supply. DBD inside the quartz tube was obtained between the copper electrode and the grounded nozzle of the burner which was placed at the bottom of the quartz tube. We clearly observed that the flame length was shortened by superposing DBD onto the bottom part of the flame. The shortened flame length indicates the enhancement of the burning velocity. We measured the optical emission spectra from the bottom region of the flame. As a result, we observed clear line emissions from Ar, which were never observed from the flame without DBD. We evaluated the rotational temperatures of OH and CH radicals by spectral fitting. As a result, the rotational temperature of CH was not changed, and the rotational temperature of OH was decreased by the superposition of DBD. According to these results, it is considered that the enhancement of the burning velocity is not caused by gas heating. New reaction pathways are suggested.
Konakondla, Sanjay; Brimley, Cameron J; Sublett, Jesna Mathew; Stefanowicz, Edward; Flora, Sarah; Mongelluzzo, Gino; Schirmer, Clemens M
2017-09-29
Whole brain tractography using diffusion tensor imaging (DTI) sequences can be used to map cerebral connectivity; however, this can be time-consuming due to the manual component of image manipulation required, calling for the need for a standardized, automated, and accurate fiber tracking protocol with automatic whole brain tractography (AWBT). Interpreting conventional two-dimensional (2D) images, such as computed tomography (CT) and magnetic resonance imaging (MRI), as an intraoperative three-dimensional (3D) environment is a difficult task with recognized inter-operator variability. Three-dimensional printing in neurosurgery has gained significant traction in the past decade, and as software, equipment, and practices become more refined, trainee education, surgical skills, research endeavors, innovation, patient education, and outcomes via valued care is projected to improve. We describe a novel multimodality 3D superposition (MMTS) technique, which fuses multiple imaging sequences alongside cerebral tractography into one patient-specific 3D printed model. Inferences on cost and improved outcomes fueled by encouraging patient engagement are explored.
Level crossings and excess times due to a superposition of uncorrelated exponential pulses
Theodorsen, A.; Garcia, O. E.
2018-01-01
A well-known stochastic model for intermittent fluctuations in physical systems is investigated. The model is given by a superposition of uncorrelated exponential pulses, and the degree of pulse overlap is interpreted as an intermittency parameter. Expressions for excess time statistics, that is, the rate of level crossings above a given threshold and the average time spent above the threshold, are derived from the joint distribution of the process and its derivative. Limits of both high and low intermittency are investigated and compared to previously known results. In the case of a strongly intermittent process, the distribution of times spent above threshold is obtained analytically. This expression is verified numerically, and the distribution of times above threshold is explored for other intermittency regimes. The numerical simulations compare favorably to known results for the distribution of times above the mean threshold for an Ornstein-Uhlenbeck process. This contribution generalizes the excess time statistics for the stochastic model, which find applications in a wide diversity of natural and technological systems.
Superposition of elliptic functions as solutions for a large number of nonlinear equations
International Nuclear Information System (INIS)
Khare, Avinash; Saxena, Avadh
2014-01-01
For a large number of nonlinear equations, both discrete and continuum, we demonstrate a kind of linear superposition. We show that whenever a nonlinear equation admits solutions in terms of both Jacobi elliptic functions cn(x, m) and dn(x, m) with modulus m, then it also admits solutions in terms of their sum as well as difference. We have checked this in the case of several nonlinear equations such as the nonlinear Schrödinger equation, MKdV, a mixed KdV-MKdV system, a mixed quadratic-cubic nonlinear Schrödinger equation, the Ablowitz-Ladik equation, the saturable nonlinear Schrödinger equation, λϕ 4 , the discrete MKdV as well as for several coupled field equations. Further, for a large number of nonlinear equations, we show that whenever a nonlinear equation admits a periodic solution in terms of dn 2 (x, m), it also admits solutions in terms of dn 2 (x,m)±√(m) cn (x,m) dn (x,m), even though cn(x, m)dn(x, m) is not a solution of these nonlinear equations. Finally, we also obtain superposed solutions of various forms for several coupled nonlinear equations
Identification of distant drug off-targets by direct superposition of binding pocket surfaces.
Schumann, Marcel; Armen, Roger S
2013-01-01
Correctly predicting off-targets for a given molecular structure, which would have the ability to bind a large range of ligands, is both particularly difficult and important if they share no significant sequence or fold similarity with the respective molecular target ("distant off-targets"). A novel approach for identification of off-targets by direct superposition of protein binding pocket surfaces is presented and applied to a set of well-studied and highly relevant drug targets, including representative kinases and nuclear hormone receptors. The entire Protein Data Bank is searched for similar binding pockets and convincing distant off-target candidates were identified that share no significant sequence or fold similarity with the respective target structure. These putative target off-target pairs are further supported by the existence of compounds that bind strongly to both with high topological similarity, and in some cases, literature examples of individual compounds that bind to both. Also, our results clearly show that it is possible for binding pockets to exhibit a striking surface similarity, while the respective off-target shares neither significant sequence nor significant fold similarity with the respective molecular target ("distant off-target").
Deng, Bo; Shi, Yaoyao
2017-11-01
The tape winding technology is an effective way to fabricate rotationally composite materials. Nevertheless, some inevitable defects will seriously influence the performance of winding products. One of the crucial ways to identify the quality of fiber-reinforced composite material products is examining its void content. Significant improvement in products' mechanical properties can be achieved by minimizing the void defect. Two methods were applied in this study, finite element analysis and experimental testing, respectively, to investigate the mechanism of how void forming in composite tape winding processing. Based on the theories of interlayer intimate contact and Domain Superposition Technique (DST), a three-dimensional model of prepreg tape void with SolidWorks has been modeled in this paper. Whereafter, ABAQUS simulation software was used to simulate the void content change with pressure and temperature. Finally, a series of experiments were performed to determine the accuracy of the model-based predictions. The results showed that the model is effective for predicting the void content in the composite tape winding process.
Probing the conductance superposition law in single-molecule circuits with parallel paths.
Vazquez, H; Skouta, R; Schneebeli, S; Kamenetska, M; Breslow, R; Venkataraman, L; Hybertsen, M S
2012-10-01
According to Kirchhoff's circuit laws, the net conductance of two parallel components in an electronic circuit is the sum of the individual conductances. However, when the circuit dimensions are comparable to the electronic phase coherence length, quantum interference effects play a critical role, as exemplified by the Aharonov-Bohm effect in metal rings. At the molecular scale, interference effects dramatically reduce the electron transfer rate through a meta-connected benzene ring when compared with a para-connected benzene ring. For longer conjugated and cross-conjugated molecules, destructive interference effects have been observed in the tunnelling conductance through molecular junctions. Here, we investigate the conductance superposition law for parallel components in single-molecule circuits, particularly the role of interference. We synthesize a series of molecular systems that contain either one backbone or two backbones in parallel, bonded together cofacially by a common linker on each end. Single-molecule conductance measurements and transport calculations based on density functional theory show that the conductance of a double-backbone molecular junction can be more than twice that of a single-backbone junction, providing clear evidence for constructive interference.
International Nuclear Information System (INIS)
Suzuki, Hisashi; Isozaki, Yukio; Itaya, Tetsumaru.
1990-01-01
Weakly metamorphosed pre-Cenozoic accretionary complex in the northern part of the Chichibu Belt in Kamikatsu Town, eastern Shikoku, consists of two distinct geologic units; the Northern Unit and Southern Unit. The Northern Unit is composed mainly of phyllitic pelites and basic tuff with allochthonous blocks of chert and limestone, and possesses mineral paragenesis of the glaucophane schist facies. The Southern Unit is composed mainly of phyllitic pelites with allochthonous blocks of sandstone, limestone, massive green rocks, and chert, and possesses mineral paragenesis of the pumpellyite-actinolite facies. The Southern Unit tectonically overlies the Northern Univ by the south-dipping Jiganji Fault. K-Ar ages were dated for the recrystallized white micas from 11 samples of pelites and basic tuff in the Northern Unit, and from 6 samples of pelites in the Southern Unit. The K-Ar ages of the samples from the Northern Unit range in 129-112 Ma, and those from the Southern Unit in 225-194 Ma. In terms of metamorphic ages, the Northern Unit and Southern Unit are referred to the constituents of the Sanbagawa Metamorphic Belt, and to those of the Kurosegawa Terrane, respectively. Thus, tectonic superposition of these two units in the study area suggests that the Kurosegawa Terrane occurs in a higher structural position over the Sanbagawa Metamorphic Belt in eastern Shikoku. (author)
International Nuclear Information System (INIS)
Kim, Y. J.; Kim, W. T.; Lee, Y. S.
2006-01-01
Full text: Full text: Due to the potentiality of accidents, the transportation safety of radioactive material has become extremely important in these days. The most important means of accomplishing the safety in transportation for radioactive material is the integrity of cask. The cask for spent fuel consists of a cask body and two impact limiters generally. The impact limiters are attached at the upper and the lower of the cask body. The cask comprises general requirements and test requirements for normal transport conditions and hypothetical accident conditions in accordance with IAEA regulations. Among the test requirements for hypothetical accident conditions, the 9 m drop test of dropping the cask from 9 m height to unyielding surface to get maximum damage becomes very important requirement because it can affect the structural soundness of the cask. So far the impact response analysis for 9 m drop test has been obtained by finite element method with complex computational procedure. In this study, the empirical equations of the impact forces for 9 m drop test are formulated by dimensional analysis. And then using the empirical equations the characteristics of material used for impact limiters are analysed. Also the dynamic impact response of the cask body is analysed using the mode superposition method and the analysis method is proposed. The results are also validated by comparing with previous experimental results and finite element analysis results. The present method is simpler than finite element method and can be used to predict the impact response of the cask
Motion Estimation Using the Single-row Superposition-type Planar Compound-like Eye
Directory of Open Access Journals (Sweden)
Gwo-Long Lin
2007-06-01
Full Text Available How can the compound eye of insects capture the prey so accurately andquickly? This interesting issue is explored from the perspective of computer vision insteadof from the viewpoint of biology. The focus is on performance evaluation of noiseimmunity for motion recovery using the single-row superposition-type planar compound-like eye (SPCE. The SPCE owns a special symmetrical framework with tremendousamount of ommatidia inspired by compound eye of insects. The noise simulates possibleambiguity of image patterns caused by either environmental uncertainty or low resolutionof CCD devices. Results of extensive simulations indicate that this special visualconfiguration provides excellent motion estimation performance regardless of themagnitude of the noise. Even when the noise interference is serious, the SPCE is able todramatically reduce errors of motion recovery of the ego-translation without any type offilters. In other words, symmetrical, regular, and multiple vision sensing devices of thecompound-like eye have statistical averaging advantage to suppress possible noises. Thisdiscovery lays the basic foundation in terms of engineering approaches for the secret of thecompound eye of insects.
Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings.
Krenn, Mario; Gu, Xuemei; Zeilinger, Anton
2017-12-15
We show a surprising link between experimental setups to realize high-dimensional multipartite quantum states and graph theory. In these setups, the paths of photons are identified such that the photon-source information is never created. We find that each of these setups corresponds to an undirected graph, and every undirected graph corresponds to an experimental setup. Every term in the emerging quantum superposition corresponds to a perfect matching in the graph. Calculating the final quantum state is in the #P-complete complexity class, thus it cannot be done efficiently. To strengthen the link further, theorems from graph theory-such as Hall's marriage problem-are rephrased in the language of pair creation in quantum experiments. We show explicitly how this link allows one to answer questions about quantum experiments (such as which classes of entangled states can be created) with graph theoretical methods, and how to potentially simulate properties of graphs and networks with quantum experiments (such as critical exponents and phase transitions).
Ultrafast convolution/superposition using tabulated and exponential kernels on GPU
Energy Technology Data Exchange (ETDEWEB)
Chen Quan; Chen Mingli; Lu Weiguo [TomoTherapy Inc., 1240 Deming Way, Madison, Wisconsin 53717 (United States)
2011-03-15
Purpose: Collapsed-cone convolution/superposition (CCCS) dose calculation is the workhorse for IMRT dose calculation. The authors present a novel algorithm for computing CCCS dose on the modern graphic processing unit (GPU). Methods: The GPU algorithm includes a novel TERMA calculation that has no write-conflicts and has linear computation complexity. The CCCS algorithm uses either tabulated or exponential cumulative-cumulative kernels (CCKs) as reported in literature. The authors have demonstrated that the use of exponential kernels can reduce the computation complexity by order of a dimension and achieve excellent accuracy. Special attentions are paid to the unique architecture of GPU, especially the memory accessing pattern, which increases performance by more than tenfold. Results: As a result, the tabulated kernel implementation in GPU is two to three times faster than other GPU implementations reported in literature. The implementation of CCCS showed significant speedup on GPU over single core CPU. On tabulated CCK, speedups as high as 70 are observed; on exponential CCK, speedups as high as 90 are observed. Conclusions: Overall, the GPU algorithm using exponential CCK is 1000-3000 times faster over a highly optimized single-threaded CPU implementation using tabulated CCK, while the dose differences are within 0.5% and 0.5 mm. This ultrafast CCCS algorithm will allow many time-sensitive applications to use accurate dose calculation.
A study of radiative properties of fractal soot aggregates using the superposition T-matrix method
International Nuclear Information System (INIS)
Li Liu; Mishchenko, Michael I.; Patrick Arnott, W.
2008-01-01
We employ the numerically exact superposition T-matrix method to perform extensive computations of scattering and absorption properties of soot aggregates with varying state of compactness and size. The fractal dimension, D f , is used to quantify the geometrical mass dispersion of the clusters. The optical properties of soot aggregates for a given fractal dimension are complex functions of the refractive index of the material m, the number of monomers N S , and the monomer radius a. It is shown that for smaller values of a, the absorption cross section tends to be relatively constant when D f f >2. However, a systematic reduction in light absorption with D f is observed for clusters with sufficiently large N S , m, and a. The scattering cross section and single-scattering albedo increase monotonically as fractals evolve from chain-like to more densely packed morphologies, which is a strong manifestation of the increasing importance of scattering interaction among spherules. Overall, the results for soot fractals differ profoundly from those calculated for the respective volume-equivalent soot spheres as well as for the respective external mixtures of soot monomers under the assumption that there are no electromagnetic interactions between the monomers. The climate-research implications of our results are discussed
Hersch, Roger David; Crete, Frederique
2005-01-01
Dot gain is different when dots are printed alone, printed in superposition with one ink or printed in superposition with two inks. In addition, the dot gain may also differ depending on which solid ink the considered halftone layer is superposed. In a previous research project, we developed a model for computing the effective surface coverage of a dot according to its superposition conditions. In the present contribution, we improve the Yule-Nielsen modified Neugebauer model by integrating into it our effective dot surface coverage computation model. Calibration of the reproduction curves mapping nominal to effective surface coverages in every superposition condition is carried out by fitting effective dot surfaces which minimize the sum of square differences between the measured reflection density spectra and reflection density spectra predicted according to the Yule-Nielsen modified Neugebauer model. In order to predict the reflection spectrum of a patch, its known nominal surface coverage values are converted into effective coverage values by weighting the contributions from different reproduction curves according to the weights of the contributing superposition conditions. We analyze the colorimetric prediction improvement brought by our extended dot surface coverage model for clustered-dot offset prints, thermal transfer prints and ink-jet prints. The color differences induced by the differences between measured reflection spectra and reflection spectra predicted according to the new dot surface estimation model are quantified on 729 different cyan, magenta, yellow patches covering the full color gamut. As a reference, these differences are also computed for the classical Yule-Nielsen modified spectral Neugebauer model incorporating a single halftone reproduction curve for each ink. Taking into account dot surface coverages according to different superposition conditions considerably improves the predictions of the Yule-Nielsen modified Neugebauer model. In
Zaima, Kazunori; Sasaki, Koichi
2016-08-01
We investigated the transient phenomena in a premixed burner flame with the superposition of a pulsed dielectric barrier discharge (DBD). The length of the flame was shortened by the superposition of DBD, indicating the activation of combustion chemical reactions with the help of the plasma. In addition, we observed the modulation of the top position of the unburned gas region and the formations of local minimums in the axial distribution of the optical emission intensity of OH. These experimental results reveal the oscillation of the rates of combustion chemical reactions as a response to the activation by pulsed DBD. The cycle of the oscillation was 0.18-0.2 ms, which could be understood as the eigenfrequency of the plasma-assisted combustion reaction system.
Energy Technology Data Exchange (ETDEWEB)
Kinugawa, Tohru, E-mail: kinugawa@phoenix.kobe-u.ac.jp [Institute for Promotion of Higher Education, Kobe University, Kobe 657-8501 (Japan)
2014-02-15
This paper presents a simple but nontrivial generalization of Abel's mechanical problem, based on the extended isochronicity condition and the superposition principle. There are two primary aims. The first one is to reveal the linear relation between the transit-time T and the travel-length X hidden behind the isochronicity problem that is usually discussed in terms of the nonlinear equation of motion (d{sup 2}X)/(dt{sup 2}) +(dU)/(dX) =0 with U(X) being an unknown potential. Second, the isochronicity condition is extended for the possible Abel-transform approach to designing the isochronous trajectories of charged particles in spectrometers and/or accelerators for time-resolving experiments. Our approach is based on the integral formula for the oscillatory motion by Landau and Lifshitz [Mechanics (Pergamon, Oxford, 1976), pp. 27–29]. The same formula is used to treat the non-periodic motion that is driven by U(X). Specifically, this unknown potential is determined by the (linear) Abel transform X(U) ∝ A[T(E)], where X(U) is the inverse function of U(X), A=(1/√(π))∫{sub 0}{sup E}dU/√(E−U) is the so-called Abel operator, and T(E) is the prescribed transit-time for a particle with energy E to spend in the region of interest. Based on this Abel-transform approach, we have introduced the extended isochronicity condition: typically, τ = T{sub A}(E) + T{sub N}(E) where τ is a constant period, T{sub A}(E) is the transit-time in the Abel type [A-type] region spanning X > 0 and T{sub N}(E) is that in the Non-Abel type [N-type] region covering X < 0. As for the A-type region in X > 0, the unknown inverse function X{sub A}(U) is determined from T{sub A}(E) via the Abel-transform relation X{sub A}(U) ∝ A[T{sub A}(E)]. In contrast, the N-type region in X < 0 does not ensure this linear relation: the region is covered with a predetermined potential U{sub N}(X) of some arbitrary choice, not necessarily obeying the Abel-transform relation. In
Hamza, Doha R.
2015-02-13
We propose a three-message superposition coding scheme in a cognitive radio relay network exploiting active cooperation between primary and secondary users. The primary user is motivated to cooperate by substantial benefits it can reap from this access scenario. Specifically, the time resource is split into three transmission phases: The first two phases are dedicated to primary communication, while the third phase is for the secondary’s transmission. We formulate two throughput maximization problems for the secondary network subject to primary user rate constraints and per-node power constraints with respect to the time durations of primary transmission and the transmit power of the primary and the secondary users. The first throughput maximization problem assumes a partial power constraint such that the secondary power dedicated to primary cooperation, i.e. for the first two communication phases, is fixed apriori. In the second throughput maximization problem, a total power constraint is assumed over the three phases of communication. The two problems are difficult to solve analytically when the relaying channel gains are strictly greater than each other and strictly greater than the direct link channel gain. However, mathematically tractable lowerbound and upperbound solutions can be attained for the two problems. For both problems, by only using the lowerbound solution, we demonstrate significant throughput gains for both the primary and the secondary users through this active cooperation scheme. We find that most of the throughput gains come from minimizing the second phase transmission time since the secondary nodes assist the primary communication during this phase. Finally, we demonstrate the superiority of our proposed scheme compared to a number of reference schemes that include best relay selection, dual-hop routing, and an interference channel model.
Hamza, Doha R.; Park, Kihong; Alouini, Mohamed-Slim; Aissa, Sonia
2015-01-01
We propose a three-message superposition coding scheme in a cognitive radio relay network exploiting active cooperation between primary and secondary users. The primary user is motivated to cooperate by substantial benefits it can reap from this access scenario. Specifically, the time resource is split into three transmission phases: The first two phases are dedicated to primary communication, while the third phase is for the secondary’s transmission. We formulate two throughput maximization problems for the secondary network subject to primary user rate constraints and per-node power constraints with respect to the time durations of primary transmission and the transmit power of the primary and the secondary users. The first throughput maximization problem assumes a partial power constraint such that the secondary power dedicated to primary cooperation, i.e. for the first two communication phases, is fixed apriori. In the second throughput maximization problem, a total power constraint is assumed over the three phases of communication. The two problems are difficult to solve analytically when the relaying channel gains are strictly greater than each other and strictly greater than the direct link channel gain. However, mathematically tractable lowerbound and upperbound solutions can be attained for the two problems. For both problems, by only using the lowerbound solution, we demonstrate significant throughput gains for both the primary and the secondary users through this active cooperation scheme. We find that most of the throughput gains come from minimizing the second phase transmission time since the secondary nodes assist the primary communication during this phase. Finally, we demonstrate the superiority of our proposed scheme compared to a number of reference schemes that include best relay selection, dual-hop routing, and an interference channel model.
TIME-TEMPERATURE-TRANSFORMATION DIAGRAMS FOR THE SLUDGE BATCH 3 - FRIT 418 GLASS SYSTEM
International Nuclear Information System (INIS)
Billings, A.; Edwards, Tommy
2009-01-01
As a part of the Waste Acceptance Product Specifications (WAPS) for Vitrified High-Level Waste Forms defined by the Department of Energy - Office of Environmental Management, the phase stability must be determined for each of the projected high-level waste (HLW) types at the Savannah River Site (SRS). Specifically, WAPS 1.4.1 requires the glass transition temperature (Tg) to be defined and time-temperature-transformation (TTT) diagrams to be developed. The Tg of a glass is an indicator of the approximate temperature where the supercooled liquid converts to a solid on cooling or conversely, where the solid begins to behave as a viscoelastic solid on heating. A TTT diagram identifies the crystalline phases that can form as a function of time and temperature for a given waste type or more specifically, the borosilicate glass waste form. In order to assess durability, the Product Consistency Test (PCT) was used and the durability results compared to the Environmental Assessment (EA) glass. The measurement of glass transition temperature and the development of TTT diagrams have already been performed for the seven Defense Waste Processing Facility (DWPF) projected compositions as defined in the Waste Form Compliance Plan (WCP). These measurements were performed before DWPF start-up and the results were incorporated in Volume 7 of the Waste Form Qualification Report (WQR). Additional information exists for other projected compositions, but overall these compositions did not consider some of the processing scenarios now envisioned for DWPF to accelerate throughput. Changes in DWPF processing strategy have required this WAPS specification to be revisited to ensure that the resulting phases have been bounded. Frit 418 was primarily used to process HLW Sludge Batch 3 (SB3) at 38% waste loading (WL) through the DWPF. The Savannah River National Laboratory (SRNL) fabricated a cache of glass from reagent grade oxides to simulate the SB3-Frit 418 system at a 38 wt % WL for glass
Energy Technology Data Exchange (ETDEWEB)
Hubbard, C.R.; Babich, M.W.; Jacobson, R.A.
1977-01-01
A new system of three programs written in PL/1 can calculate symmetry and Patterson superposition maps for triclinic, monoclinic, and orthorhombic space groups as well as any space group reducible to one of these three. These programs are based on a system of FORTRAN programs developed at Ames Laboratory, but are more general and have expanded utility, especially with regard to large unit cells. The program PLIGEN calculates a direct access data set, SYMPL1 calculates a direct access symmetry map, and ALSPL1 calculates a superposition map using one or multiple superpositions. A detailed description of the use of these programs including symbolic program listings is included. 2 tables.
Winters, Andrew C.
Careful observational work has demonstrated that the tropopause is typically characterized by a three-step pole-to-equator structure, with each break between steps in the tropopause height associated with a jet stream. While the two jet streams, the polar and subtropical jets, typically occupy different latitude bands, their separation can occasionally vanish, resulting in a vertical superposition of the two jets. A cursory examination of a number of historical and recent high-impact weather events over North America and the North Atlantic indicates that superposed jets can be an important component of their evolution. Consequently, this dissertation examines two recent jet superposition cases, the 18--20 December 2009 Mid-Atlantic Blizzard and the 1--3 May 2010 Nashville Flood, in an effort (1) to determine the specific influence that a superposed jet can have on the development of a high-impact weather event and (2) to illuminate the processes that facilitated the production of a superposition in each case. An examination of these cases from a basic-state variable and PV inversion perspective demonstrates that elements of both the remote and local synoptic environment are important to consider while diagnosing the development of a jet superposition. Specifically, the process of jet superposition begins with the remote production of a cyclonic (anticyclonic) tropopause disturbance at high (low) latitudes. The cyclonic circulation typically originates at polar latitudes, while organized tropical convection can encourage the development of an anticyclonic circulation anomaly within the tropical upper-troposphere. The concurrent advection of both anomalies towards middle latitudes subsequently allows their individual circulations to laterally displace the location of the individual tropopause breaks. Once the two circulation anomalies position the polar and subtropical tropopause breaks in close proximity to one another, elements within the local environment, such as
Bulmău C; Cocârță D. M.; Reșetar-Deac A. M.
2013-01-01
It is already known that heavy metals pollution causes important concern to human and ecosystem health. Heavy metals in soils at the European level represents 37.3% between main contaminates affecting soils (EEA, 2007). This paper illustrates results obtained in the framework of laboratory experiments concerning the evaluation of integrated time-temperature effect in pyrolysis process applied to contaminated soil by two different ways: it is about heavy metals historically contaminated soil f...
International Nuclear Information System (INIS)
Muhamad Daud; Jamaliah Shariff.
1984-01-01
By using hot plate/magnetic stirrer and immersion technique, the steel corroded uniformly and their corrosion rates vary due to type of steel, time of immersion, temperature and rotation of water. Therefore the rate of general corrosion, or sealing, of steel alloys is influenced by a number of factors, those best established being the composition of the metal, time, temperature, velocity, cleanliness or roughness of the metal surface and direct contact with solutions of the other materials. (author)
International Nuclear Information System (INIS)
Wu, Vincent W.C.; Tse, Teddy K.H.; Ho, Cola L.M.; Yeung, Eric C.Y.
2013-01-01
Monte Carlo (MC) simulation is currently the most accurate dose calculation algorithm in radiotherapy planning but requires relatively long processing time. Faster model-based algorithms such as the anisotropic analytical algorithm (AAA) by the Eclipse treatment planning system and multigrid superposition (MGS) by the XiO treatment planning system are 2 commonly used algorithms. This study compared AAA and MGS against MC, as the gold standard, on brain, nasopharynx, lung, and prostate cancer patients. Computed tomography of 6 patients of each cancer type was used. The same hypothetical treatment plan using the same machine and treatment prescription was computed for each case by each planning system using their respective dose calculation algorithm. The doses at reference points including (1) soft tissues only, (2) bones only, (3) air cavities only, (4) soft tissue-bone boundary (Soft/Bone), (5) soft tissue-air boundary (Soft/Air), and (6) bone-air boundary (Bone/Air), were measured and compared using the mean absolute percentage error (MAPE), which was a function of the percentage dose deviations from MC. Besides, the computation time of each treatment plan was recorded and compared. The MAPEs of MGS were significantly lower than AAA in all types of cancers (p<0.001). With regards to body density combinations, the MAPE of AAA ranged from 1.8% (soft tissue) to 4.9% (Bone/Air), whereas that of MGS from 1.6% (air cavities) to 2.9% (Soft/Bone). The MAPEs of MGS (2.6%±2.1) were significantly lower than that of AAA (3.7%±2.5) in all tissue density combinations (p<0.001). The mean computation time of AAA for all treatment plans was significantly lower than that of the MGS (p<0.001). Both AAA and MGS algorithms demonstrated dose deviations of less than 4.0% in most clinical cases and their performance was better in homogeneous tissues than at tissue boundaries. In general, MGS demonstrated relatively smaller dose deviations than AAA but required longer computation time
Measuring the band structures of periodic beams using the wave superposition method
Junyi, L.; Ruffini, V.; Balint, D.
2016-11-01
Phononic crystals and elastic metamaterials are artificially engineered periodic structures that have several interesting properties, such as negative effective stiffness in certain frequency ranges. An interesting property of phononic crystals and elastic metamaterials is the presence of band gaps, which are bands of frequencies where elastic waves cannot propagate. The presence of band gaps gives this class of materials the potential to be used as vibration isolators. In many studies, the band structures were used to evaluate the band gaps. The presence of band gaps in a finite structure is commonly validated by measuring the frequency response as there are no direct methods of measuring the band structures. In this study, an experiment was conducted to determine the band structure of one dimension phononic crystals with two wave modes, such as a bi-material beam, using the frequency response at only 6 points to validate the wave superposition method (WSM) introduced in a previous study. A bi-material beam and an aluminium beam with varying geometry were studied. The experiment was performed by hanging the beams freely, exciting one end of the beams, and measuring the acceleration at consecutive unit cells. The measured transfer function of the beams agrees with the analytical solutions but minor discrepancies. The band structure was then determined using WSM and the band structure of one set of the waves was found to agree well with the analytical solutions. The measurements taken for the other set of waves, which are the evanescent waves in the bi-material beams, were inaccurate and noisy. The transfer functions at additional points of one of the beams were calculated from the measured band structure using WSM. The calculated transfer function agrees with the measured results except at the frequencies where the band structure was inaccurate. Lastly, a study of the potential sources of errors was also conducted using finite element modelling and the errors in
International Nuclear Information System (INIS)
Lu Weiguo; Olivera, Gustavo H; Chen Mingli; Reckwerdt, Paul J; Mackie, Thomas R
2005-01-01
Convolution/superposition (C/S) is regarded as the standard dose calculation method in most modern radiotherapy treatment planning systems. Different implementations of C/S could result in significantly different dose distributions. This paper addresses two major implementation issues associated with collapsed cone C/S: one is how to utilize the tabulated kernels instead of analytical parametrizations and the other is how to deal with voxel size effects. Three methods that utilize the tabulated kernels are presented in this paper. These methods differ in the effective kernels used: the differential kernel (DK), the cumulative kernel (CK) or the cumulative-cumulative kernel (CCK). They result in slightly different computation times but significantly different voxel size effects. Both simulated and real multi-resolution dose calculations are presented. For simulation tests, we use arbitrary kernels and various voxel sizes with a homogeneous phantom, and assume forward energy transportation only. Simulations with voxel size up to 1 cm show that the CCK algorithm has errors within 0.1% of the maximum gold standard dose. Real dose calculations use a heterogeneous slab phantom, both the 'broad' (5 x 5 cm 2 ) and the 'narrow' (1.2 x 1.2 cm 2 ) tomotherapy beams. Various voxel sizes (0.5 mm, 1 mm, 2 mm, 4 mm and 8 mm) are used for dose calculations. The results show that all three algorithms have negligible difference (0.1%) for the dose calculation in the fine resolution (0.5 mm voxels). But differences become significant when the voxel size increases. As for the DK or CK algorithm in the broad (narrow) beam dose calculation, the dose differences between the 0.5 mm voxels and the voxels up to 8 mm (4 mm) are around 10% (7%) of the maximum dose. As for the broad (narrow) beam dose calculation using the CCK algorithm, the dose differences between the 0.5 mm voxels and the voxels up to 8 mm (4 mm) are around 1% of the maximum dose. Among all three methods, the CCK algorithm
Palumbo, Giovanna; Tosi, Daniele; Schena, Emiliano; Massaroni, Carlo; Ippolito, Juliet; Verze, Paolo; Carlomagno, Nicola; Tammaro, Vincenzo; Iadicicco, Agostino; Campopiano, Stefania
2017-05-01
Fiber Bragg Grating (FBG) sensors applied to bio-medical procedures such as surgery and rehabilitation are a valid alternative to traditional sensing techniques due to their unique characteristics. Herein we propose the use of FBG sensor arrays for accurate real-time temperature measurements during multi-step RadioFrequency Ablation (RFA) based thermal tumor treatment. Real-time temperature monitoring in the RF-applied region represents a valid feedback for the success of the thermo-ablation procedure. In order to create a thermal multi-point map around the tumor area to be treated, a proper sensing configuration was developed. In particular, the RF probe of a commercial medical instrumentation, has been equipped with properly packaged FBGs sensors. Moreover, in order to discriminate the treatment areas to be ablated as precisely as possible, a second array 3.5 cm long, made by several FBGs was used. The results of the temperature measurements during the RFA experiments conducted on ex-vivo animal liver and kidney tissues are presented herein. The proposed FBGs based solution has proven to be capable of distinguish different and consecutive discharges and for each of them, to measure the temperature profile with a resolution of 0.1 °C and a minimum spatial resolution of 5mm. Based upon our experiments, it is possible to confirm that the temperature decreases with distance from a RF peak ablation, in accordance with RF theory. The proposed solution promises to be very useful for the surgeon because a real-time temperature feedback allows for the adaptation of RFA parameters during surgery and better delineates the area under treatment.
Energy Technology Data Exchange (ETDEWEB)
Priolisi, Ornella, E-mail: ornella.priolisi@depretto.gov.it [ITIS “De Pretto” (Italy); Fabrizi, Alberto, E-mail: fabrizi@gest.unipd.it [University of Padova, Department of Management and Engineering (Italy); Deon, Giovanna, E-mail: giovanna.deon@depretto-vi.it [ITIS “De Pretto” (Italy); Bonollo, Franco, E-mail: bonollo@gest.unipd.it [University of Padova, Department of Management and Engineering (Italy); Cattini, Stefano, E-mail: stefano.cattini@unimore.it [University of Modena and Reggio Emilia, Department of Engineering Enzo Ferrari (Italy)
2016-01-15
In this work the morphology evolution of Au nanoparticles (AuNPs), obtained by direct reduction, was studied as a function of time, temperature, and Au(III)/sodium ascorbate molar ratio. The NPs morphology was examined by transmission electron microscope with image analysis, while time evolution was investigated by visible and near-infrared absorption spectroscopy and dynamic light scattering. It is found that initially formed star-like NPs transform in more spheroidal particles and the evolution appears more rapid by increasing the temperature while a large amount of reducing agent prevents the remodeling of AuNPs. An explication of morphology evolution is proposed.
Berube-Lauziere, Yves
The measurement-based quantum feedback scheme developed and implemented by Haroche and collaborators to actively prepare and stabilize specific photon number states in cavity quantum electrodynamics (CQED) is a milestone achievement in the active protection of quantum states from decoherence. This feat was achieved by injecting, after each weak dispersive measurement of the cavity state via Rydberg atoms serving as cavity sensors, a low average number classical field (coherent state) to steer the cavity towards the targeted number state. This talk will present the generalization of the theory developed for targeting number states in order to prepare and stabilize desired superpositions of two cavity photon number states. Results from realistic simulations taking into account decoherence and imperfections in a CQED set-up will be presented. These demonstrate the validity of the generalized theory and points to the experimental feasibility of preparing and stabilizing such superpositions. This is a further step towards the active protection of more complex quantum states than number states. This work, cast in the context of CQED, is also almost readily applicable to circuit QED. YBL acknowledges financial support from the Institut Quantique through a Canada First Research Excellence Fund.
Karabelchtchikova, Olga; Rivero, Iris V.
2005-02-01
The distribution of residual stresses (RS) and surface integrity generated in heat treatment and subsequent multipass grinding was investigated in this experimental study to examine the source of variability and the nature of the interactions of the experimental factors. A nested experimental design was implemented to (a) compare the sources of the RS variability, (b) to examine RS distribution and tensile peak location due to experimental factors, and (c) to analyze the superposition relationship in the RS distribution due to multipass grinding technique. To characterize the material responses, several techniques were used, including microstructural analysis, hardness-toughness and roughness examinations, and retained austenite and RS measurements using x-ray diffraction. The causality of the RS was explained through the strong correlation of the surface integrity characteristics and RS patterns. The main sources of variation were the depth of the RS distribution and the multipass grinding technique. The grinding effect on the RS was statistically significant; however, it was mostly predetermined by the preexisting RS induced in heat treatment. Regardless of the preceding treatments, the effect of the multipass grinding technique exhibited similar RS patterns, which suggests the existence of the superposition relationship and orthogonal memory between the passes of the grinding operation.
International Nuclear Information System (INIS)
Deng, Li; Niu, Yueping; Jin, Luling; Gong, Shangqing
2010-01-01
The coherent superposition state of the lower two levels in non-degenerate three-level Λ atoms is investigated using the accumulative effects of non-resonant pulse trains when the repetition period is smaller than the decay time of the upper level. First, using a rectangular pulse train, the accumulative effects are re-examined in the non-resonant two-level atoms and the modified constructive accumulation equation is analytically given. The equation shows that the relative phase and the repetition period are important in the accumulative effect. Next, under the modified equation in the non-degenerate three-level Λ atoms, we show that besides the constructive accumulation effect, the use of the partial constructive accumulation effect can also achieve the steady state of the maximum coherent superposition state of the lower two levels and the latter condition is relatively easier to manipulate. The analysis is verified by numerical calculations. The influence of the external levels in such a case is also considered and we find that it can be avoided effectively. The above analysis is also applicable to pulse trains with arbitrary envelopes.
Directory of Open Access Journals (Sweden)
Gray G.T.
2012-08-01
Full Text Available Time-temperature equivalence is a widely recognized property of many time-dependent material systems, where there is a clear predictive link relating the deformation response at a nominal temperature and a high strain-rate to an equivalent response at a depressed temperature and nominal strain-rate. It has been found that high-density polyethylene (HDPE obeys a linear empirical formulation relating test temperature and strain-rate. This observation was extended to continuous stress-strain curves, such that material response measured in a load frame at large strains and low strain-rates (at depressed temperatures could be translated into a temperature-dependent response at high strain-rates and validated against Taylor impact results. Time-temperature equivalence was used in conjuction with jump-rate compression tests to investigate isothermal response at high strain-rate while exluding adiabatic heating. The validated constitutive response was then applied to the analysis of Dynamic-Tensile-Extrusion of HDPE, a tensile analog to Taylor impact developed at LANL. The Dyn-Ten-Ext test results and FEA found that HDPE deformed smoothly after exiting the die, and after substantial drawing appeared to undergo a pressure-dependent shear damage mechanism at intermediate velocities, while it fragmented at high velocities. Dynamic-Tensile-Extrusion, properly coupled with a validated constitutive model, can successfully probe extreme tensile deformation and damage of polymers.
Handlos, Zachary J.
Though considerable research attention has been devoted to examination of the Northern Hemispheric polar and subtropical jet streams, relatively little has been directed toward understanding the circumstances that conspire to produce the relatively rare vertical superposition of these usually separate features. This dissertation investigates the structure and evolution of large-scale environments associated with jet superposition events in the northwest Pacific. An objective identification scheme, using NCEP/NCAR Reanalysis 1 data, is employed to identify all jet superpositions in the west Pacific (30-40°N, 135-175°E) for boreal winters (DJF) between 1979/80 - 2009/10. The analysis reveals that environments conducive to west Pacific jet superposition share several large-scale features usually associated with East Asian Winter Monsoon (EAWM) northerly cold surges, including the presence of an enhanced Hadley Cell-like circulation within the jet entrance region. It is further demonstrated that several EAWM indices are statistically significantly correlated with jet superposition frequency in the west Pacific. The life cycle of EAWM cold surges promotes interaction between tropical convection and internal jet dynamics. Low potential vorticity (PV), high theta e tropical boundary layer air, exhausted by anomalous convection in the west Pacific lower latitudes, is advected poleward towards the equatorward side of the jet in upper tropospheric isentropic layers resulting in anomalous anticyclonic wind shear that accelerates the jet. This, along with geostrophic cold air advection in the left jet entrance region that drives the polar tropopause downward through the jet core, promotes the development of the deep, vertical PV wall characteristic of superposed jets. West Pacific jet superpositions preferentially form within an environment favoring the aforementioned characteristics regardless of EAWM seasonal strength. Post-superposition, it is shown that the west Pacific
International Nuclear Information System (INIS)
Everitt, M.J.; Clark, T.D.; Stiffell, P.B.; Prance, R.J.; Prance, H.; Vourdas, A.; Ralph, J.F.
2004-01-01
In this paper we explore the quantum behavior of a superconducting quantum-interference device (SQUID) ring which has a significant Josephson coupling energy. We show that the eigenfunctions of the Hamiltonian for the ring can be used to create macroscopic quantum superposition states of the ring. We also show that the ring potential may be utilized to squeeze coherent states. With the SQUID ring as a strong contender as a device for manipulating quantum information, such properties may be of great utility in the future. However, as with all candidate systems for quantum technologies, decoherence is a fundamental problem. In this paper we apply an open systems approach to model the effect of coupling a quantum-mechanical SQUID ring to a thermal bath. We use this model to demonstrate the manner in which decoherence affects the quantum states of the ring
Halder, P.; Chakraborty, A.; Deb Roy, P.; Das, H. S.
2014-09-01
In this paper, we report the development of a java application for the Superposition T-matrix code, JaSTA (Java Superposition T-matrix App), to study the light scattering properties of aggregate structures. It has been developed using Netbeans 7.1.2, which is a java integrated development environment (IDE). The JaSTA uses double precession superposition codes for multi-sphere clusters in random orientation developed by Mackowski and Mischenko (1996). It consists of a graphical user interface (GUI) in the front hand and a database of related data in the back hand. Both the interactive GUI and database package directly enable a user to model by self-monitoring respective input parameters (namely, wavelength, complex refractive indices, grain size, etc.) to study the related optical properties of cosmic dust (namely, extinction, polarization, etc.) instantly, i.e., with zero computational time. This increases the efficiency of the user. The database of JaSTA is now created for a few sets of input parameters with a plan to create a large database in future. This application also has an option where users can compile and run the scattering code directly for aggregates in GUI environment. The JaSTA aims to provide convenient and quicker data analysis of the optical properties which can be used in different fields like planetary science, atmospheric science, nano science, etc. The current version of this software is developed for the Linux and Windows platform to study the light scattering properties of small aggregates which will be extended for larger aggregates using parallel codes in future. Catalogue identifier: AETB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 571570 No. of bytes in distributed program
Quantum properties of a superposition of squeezed displaced two-mode vacuum and single-photon states
International Nuclear Information System (INIS)
El-Orany, Faisal A A; Obada, A-S F; M Asker, Zafer; Perina, J
2009-01-01
In this paper, we study some quantum properties of a superposition of displaced squeezed two-mode vacuum and single-photon states, such as the second-order correlation function, the Cauchy-Schwarz inequality, quadrature squeezing, quasiprobability distribution functions and purity. These type of states include two mechanisms, namely interference in phase space and entanglement. We show that these states can exhibit sub-Poissonian statistics, squeezing and deviate from the classical Cauchy-Schwarz inequality. Moreover, the amount of entanglement in the system can be increased by increasing the squeezing mechanism. In the framework of the quasiprobability distribution functions, we show that the single-mode state can tend to the thermal state based on the correlation mechanism. A generation scheme for such states is given.
International Nuclear Information System (INIS)
Song, Hyun-Jig; Chun, Byung-Joon; Lee, Kwang-Sik
2004-01-01
In order to improve ozone generation, we experimentally investigated the silent discharge plasma and ozone generation characteristics of a multi-discharge type ozonizer. Ozone in a multi-discharge type ozonizer is generated by superposition of a silent discharge plasma, which is simultaneously generated in separated discharge spaces. A multi-discharge type ozonizer is composed of three different kinds of superposed silent discharge type ozonizers, depending on the method of applying power to each electrode. We observed that the discharge period of the current pulse for a multi discharge type ozonizer can be longer than that of silent discharge type ozonizer with two electrodes and one gap. Hence, ozone generation is improved up to 17185 ppm and 783 g/kwh in the case of the superposed silent discharge type ozonizer for which an AC high voltages with a 180 .deg. phase difference were applied to the internal electrode and the external electrode, respectively, with the central electrode being grounded.
Energy Technology Data Exchange (ETDEWEB)
Kays, W M; Hossaini-Hashemi, F [Stanford Univ., Palo Alto, CA (USA). Dept. of Mechanical Engineering; Busch, J S [Kaiser Engineers, Oakland, CA (USA)
1982-02-01
A linearized transient thermal conduction model was developed to economically determine media temperatures in geologic repositories for nuclear wastes. Individual canisters containing either high-level waste or spent fuel assemblies are represented as finite-length line sources in a continuous medium. The combined effects of multiple canisters in a representative storage pattern can be established in the medium at selected point of interest by superposition of the temperature rises calculated for each canister. A mathematical solution of the calculation for each separate source is given in this article, permitting a slow hand calculation. The full report, ONWI-94, contains the details of the computer code FLLSSM and its use, yielding the total solution in one computer output.
Xu, Fengjuan; Ge, Lei; Li, Zhenxing; Lin, Hong; Mao, Xiangzhao
2017-10-01
Time-temperature indicators (TTIs) are convenient intuitive devices that are widely used to predict food quality. The aim of this study is to develop a new simple device which can be attached to food packages as a quality indicator for turbot sashimi. In this study, a solid TTI based on the reaction between tyrosinase and tyrosine was developed. The Arrhenius behavior of this enzymatic TTI was studied. The kinetics of the tyrosinase-based TTI was investigated in the form of color change from colorless to dark black induced by the enzymatic reaction. The mathematical formula for the color alterations as a function of time and temperature was established. The longest indication time for the developed TTI was 50 hours at 4°C. The activation energy of the tyrosinase-based TTI was 0.409 kJ mol-1. The suitability of the tyrosinase-based TTI was validated for turbot sashimi using total plate count. The feasibility of using this TTI as a quality indicator for turbot sashimi was assessed based on the activation energy and indication time. Therefore, the tyrosinasebased TTI system developed in this study could be used as an effective tool for monitoring the quality changes of turbot sashimi during the distribution and storage.
Study of the influence of the time temperature profile on the minimum detectable dose of TLD-100
Energy Technology Data Exchange (ETDEWEB)
Meireles, Leonardo S.; Lacerda, Marco Aurelio S.; Meira-Belo, Luiz C.; Ferreira, Hudson R., E-mail: meirelesls@cdtn.br, E-mail: masl@cdtn.br, E-mail: lcmb@cdtn.br, E-mail: hrf@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)
2013-07-01
Monitoring of workers and workplaces is an integral part of any radiation protection programme (RPP). It is essential to demonstrate compliance with regulations that limit the allowable dose to the public from manmade sources and to enable the responsible of the installations to verify compliance with the legal dose limits to the workers and ALARA goals. Thermoluminescent dosemeters (TLDs) are generally employed to assess the environmental and personnel doses. To completely characterize a TLD dosimetry system is fundamental to determine the Lowest Dose that the system is capable of measuring. As the amount of the light emitted by TLD material is a function of the time temperature profile (TTP), in the present study, the influence of the TTP on the Detection Threshold (MDD) of the LiF:Mg,Ti (TLD-100) detectors was evaluated. Eighteen different TTPs were tested for two different annealing processes: (I) utilization of the TTP itself and; (II) a microprocessor controlled oven annealing procedure. Results showed that TTP choice can influence significantly in the MDD values. The worst results were generally found for TLDs annealed by the TTP itself. The lack of pattern or the unexpected behavior to the influence of some parameters of the TTP on the calculated MDDs must be carefully investigated. Greater variations on the TTP parameters must be undertaken. Special attention must be also done on the methodology of calculating the MDDs. (author)
Directory of Open Access Journals (Sweden)
Bulmău C
2013-04-01
Full Text Available It is already known that heavy metals pollution causes important concern to human and ecosystem health. Heavy metals in soils at the European level represents 37.3% between main contaminates affecting soils (EEA, 2007. This paper illustrates results obtained in the framework of laboratory experiments concerning the evaluation of integrated time-temperature effect in pyrolysis process applied to contaminated soil by two different ways: it is about heavy metals historically contaminated soil from one of the most polluted areas within Romania, and artificially contaminated with PCB-containing transformer oil. In particular, the authors focused on a recent evaluation of pyrolysis efficiency on removing lead (Pb and cadmium (Cd from the contaminated soil. The experimental study evaluated two important parameters related to the studied remediation methodology: thermal process temperature and the retention time in reactor of the contaminated soils. The remediation treatments were performed in a rotary kiln reactor, taking into account three process temperatures (400°C, 600°C and 800°C and two retention times: 30 min. and 60 min. Completed analyses have focused on pyrolysis solids and gas products. Consequently, both ash and gas obtained after pyrolysis process were subjected to chemical analyses.
Directory of Open Access Journals (Sweden)
Noushin Rastkari
2017-01-01
Full Text Available Acidic liquids such as verjuice, lemon juice and vinegar are frequently consumed in Iran. Different kinds of acidic liquids are packaged in polyethylene terephthalate (PET and high-density polyethylene (HDPE bottles. There is evidence indicating that phthalates can leach from PET and HDPE bottles into their contents. In this work the effect of storage time, temperature and bottle type on the migration of phthalates from packaging materials into acidic liquids is studied by analyzing the samples stored under different conditions, before storage and after 2, 4 and 6 months of storage. The determined mean phthalate concentrations in μg/L were: <0.04 to 0.501 in verjuice, <0.04 to 0.231 in lemon juice and <0.04 to 0.586 in vinegar. The highest concentrations of diethyl phthalate (DEP and diethyl hexyl phthalate (DEHP were found in PET and HDPE bottles, respectively. Results of analyses before and after storage indicate that under some storage conditions, the concentrations of DEP, DEHP and dibutyl phthalate (DBP increased in acidic liquids. The possible migration of phthalic acid esters from plastic packaging materials into the contents was indicated by the results of the present study.
Directory of Open Access Journals (Sweden)
Benjamin Milkereit
2014-03-01
Full Text Available Time-temperature-precipitation (TTP diagrams deliver important material data, such as temperature and time ranges critical for precipitation during the quenching step of the age hardening procedure. Although the quenching step is continuous, isothermal TTP diagrams are often applied. Together with a so-called Quench Factor Analysis, they can be used to describe very different cooling paths. Typically, these diagrams are constructed based on mechanical properties or microstructures after an interrupted quenching, i.e., ex situ analyses. In recent years, an in situ calorimetric method to record continuous cooling precipitation diagrams of aluminum alloys has been developed to the application level by our group. This method has now been transferred to isothermal experiments, in which the whole heat treatment cycle was performed in a differential scanning calorimeter. The Al-Mg-Si-wrought alloy 6005A was investigated. Solution annealing at 540 °C and overcritical quenching to several temperatures between 450 °C and 250 °C were followed by isothermal soaking. Based on the heat flow curves during isothermal soaking, TTP diagrams were determined. An appropriate evaluation method has been developed. It was found that three different precipitation reactions in characteristic temperature intervals exist. Some of the low temperature reactions are not accessible in continuous cooling experiments and require isothermal studies.
Tonosaki, T.; Nakamura, N.; Goto, K.; Sato, T.; Watanabe, M.
2016-12-01
On land along shore line in an island all over the world, there are many huge boulders which seem that they had been broken and transported by errastic events (such as extreme waves). The presence of boulders on land provides geological evidence that the region had been suffered by ancient tsunami or storm waves, establishing the evaluation of risk-management policies for future disasters. In volcanic island of Hachijo, Japan, there are huge (>5000 kg) andesitic boulder (20 m altitude high), and basaltic boulders (4 m altitude high) which seem that they had been broken from an outcrop and emplaced from it. Because radiocarbon dating can not be applied to volcanic rocks, a magnetic viscous dating might be powerful tool to determine the rotation history of rocks. Tyson Smith and Vrosub (1994) succeeded in revealing the age of landslide basaltic rocks by geological evidence, using Pullaiah's time-temperature monogram by Neel's relaxation theory of single domain (SD) particles of magnetite (Pullaiah et al. 1975). However, our application of this monogram to igneous boulders fails to determine the age due to a different magnetic mineralogy including titanomagnetite. Therefore, by introducing a modified monogram for single domain particles of titanomagnetite, we tried to reveal a possible reworked age of the boulders. However, our boulders still fail to identify the reworked age. In this presentation, we will present our current situation of the problem and a working hypothesis to solve it.
International Nuclear Information System (INIS)
Jensen, C R; Cleveland, R O; Coussios, C C
2013-01-01
Passive acoustic mapping (PAM) has been recently demonstrated as a method of monitoring focused ultrasound therapy by reconstructing the emissions created by inertially cavitating bubbles (Jensen et al 2012 Radiology 262 252–61). The published method sums energy emitted by cavitation from the focal region within the tissue and uses a threshold to determine when sufficient energy has been delivered for ablation. The present work builds on this approach to provide a high-intensity focused ultrasound (HIFU) treatment monitoring software that displays both real-time temperature maps and a prediction of the ablated tissue region. This is achieved by determining heat deposition from two sources: (i) acoustic absorption of the primary HIFU beam which is calculated via a nonlinear model, and (ii) absorption of energy from bubble acoustic emissions which is estimated from measurements. The two sources of heat are used as inputs to the bioheat equation that gives an estimate of the temperature of the tissue as well as estimates of tissue ablation. The method has been applied to ex vivo ox liver samples and the estimated temperature is compared to the measured temperature and shows good agreement, capturing the effect of cavitation-enhanced heating on temperature evolution. In conclusion, it is demonstrated that by using PAM and predictions of heating it is possible to produce an evolving estimate of cell death during exposure in order to guide treatment for monitoring ablative HIFU therapy. (paper)
Study of the influence of the time temperature profile on the minimum detectable dose of TLD-100
International Nuclear Information System (INIS)
Meireles, Leonardo S.; Lacerda, Marco Aurelio S.; Meira-Belo, Luiz C.; Ferreira, Hudson R.
2013-01-01
Monitoring of workers and workplaces is an integral part of any radiation protection programme (RPP). It is essential to demonstrate compliance with regulations that limit the allowable dose to the public from manmade sources and to enable the responsible of the installations to verify compliance with the legal dose limits to the workers and ALARA goals. Thermoluminescent dosemeters (TLDs) are generally employed to assess the environmental and personnel doses. To completely characterize a TLD dosimetry system is fundamental to determine the Lowest Dose that the system is capable of measuring. As the amount of the light emitted by TLD material is a function of the time temperature profile (TTP), in the present study, the influence of the TTP on the Detection Threshold (MDD) of the LiF:Mg,Ti (TLD-100) detectors was evaluated. Eighteen different TTPs were tested for two different annealing processes: (I) utilization of the TTP itself and; (II) a microprocessor controlled oven annealing procedure. Results showed that TTP choice can influence significantly in the MDD values. The worst results were generally found for TLDs annealed by the TTP itself. The lack of pattern or the unexpected behavior to the influence of some parameters of the TTP on the calculated MDDs must be carefully investigated. Greater variations on the TTP parameters must be undertaken. Special attention must be also done on the methodology of calculating the MDDs. (author)
Energy Technology Data Exchange (ETDEWEB)
Johns, Jesse M., E-mail: jesse.johns@pnnl.gov; Burkes, Douglas, E-mail: douglas.burkes@pnnl.gov
2017-07-15
In this work, a multilayered perceptron (MLP) network is used to develop predictive isothermal time-temperature-transformation (TTT) models covering a range of U-Mo binary and ternary alloys. The selected ternary alloys for model development are U-Mo-Ru, U-Mo-Nb, U-Mo-Zr, U-Mo-Cr, and U-Mo-Re. These model's ability to predict 'novel' U-Mo alloys is shown quite well despite the discrepancies between literature sources for similar alloys which likely arise from different thermal-mechanical processing conditions. These models are developed with the primary purpose of informing experimental decisions. Additional experimental insight is necessary in order to reduce the number of experiments required to isolate ideal alloys. These models allow test planners to evaluate areas of experimental interest; once initial tests are conducted, the model can be updated and further improve follow-on testing decisions. The model also improves analysis capabilities by reducing the number of data points necessary from any particular test. For example, if one or two isotherms are measured during a test, the model can construct the rest of the TTT curve over a wide range of temperature and time. This modeling capability reduces the cost of experiments while also improving the value of the results from the tests. The reduced costs could result in improved material characterization and therefore improved fundamental understanding of TTT dynamics. As additional understanding of phenomena driving TTTs is acquired, this type of MLP model can be used to populate unknowns (such as material impurity and other thermal mechanical properties) from past literature sources.
Rahman, A T M Mijanur; Lee, Seung Ju; Jung, Seung Won
2015-12-28
A comparative study was conducted to evaluate precision and accuracy in controlling the temperature dependence of encapsulated microbial time-temperature integrators (TTIs) developed using two different emulsification techniques. Weissela cibaria CIFP 009 cells, immobilized within 2% Na-alginate gel microbeads using homogenization (5,000, 7,000, and 10,000 rpm) and Shirasu porous glass (SPG) membrane technologies (10 μm), were applied to microbial TTIs. The prepared micobeads were characterized with respect to their size, size distribution, shape and morphology, entrapment efficiency, and bead production yield. Additionally, fermentation process parameters including growth rate were investigated. The TTI responses (changes in pH and titratable acidity (TA)) were evaluated as a function of temperature (20°C, 25°C, and 30°C). In comparison with conventional methods, SPG membrane technology was able not only to produce highly uniform, small-sized beads with the narrowest size distribution, but also the bead production yield was found to be nearly 3.0 to 4.5 times higher. However, among the TTIs produced using the homogenization technique, poor linearity (R(2)) in terms of TA was observed for the 5,000 and 7,000 rpm treatments. Consequently, microbeads produced by the SPG membrane and by homogenization at 10,000 rpm were selected for adjusting the temperature dependence. The Ea values of TTIs containing 0.5, 1.0, and 1.5 g microbeads, prepared by SPG membrane and conventional methods, were estimated to be 86.0, 83.5, and 76.6 kJ/mol, and 85.5, 73.5, and 62.2 kJ/mol, respectively. Therefore, microbial TTIs developed using SPG membrane technology are much more efficient in controlling temperature dependence.
Directory of Open Access Journals (Sweden)
H.W. Goh
2015-07-01
Full Text Available Polyethylene terephthalate (PET bottle is one of the common plastic wastes existed in the municipal solid waste in Malaysia. One alternative to solve the abundant of PET wastes is chemical recycling of the wastes to produce a value added product. This technology not only can decrease the PET wastes in landfill sites but also can produce many useful recycled PET products. Bis(2-hydroxyethyl terephthalate (BHET obtained from glycolysis reaction of PET waste was purified using crystallization process. The hot distilled water was added to glycolysis product followed by cooling and filtration to extract BHET in white solid form from the product. The effect of three operating conditions namely crystallization time, crystallization temperatures and amount of distilled water used to the yield of crystallization process were investigated. The purity of crystallization products were analyzed using HPLC and DSC. The optimum conditions of 3 hours crystallization time, 2 °C crystallization temperature and 5:1 mass ratio of distilled water used to glycolize solid gave the highest yield and purity of the crystallization process. © 2015 BCREC UNDIP. All rights reservedReceived: 12nd August 2014; Revised: 4th February 2015; Accepted: 5th February 2015How to Cite: Goh, H.W., Salmiaton, A., Abdullah, N., Idris, A. (2015. Time, Temperature and Amount of Distilled Water Effects on the Purity and Yield of Bis(2-hydroxyethyl Terephthalate Purification System. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 143-154. (doi:10.9767/bcrec.10.2.7195.143-154 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.7195.143-154
Liu, Yang; Han, Guangjie; Shi, Sulong; Li, Zhengquan
2018-06-20
This study investigates the superiority of cooperative broadcast transmission over traditional orthogonal schemes when applied in a downlink relaying broadcast channel (RBC). Two proposed cooperative broadcast transmission protocols, one with an amplify-and-forward (AF) relay, and the other with a repetition-based decode-and-forward (DF) relay, are investigated. By utilizing superposition coding (SupC), the source and the relay transmit the private user messages simultaneously instead of sequentially as in traditional orthogonal schemes, which means the channel resources are reused and an increased channel degree of freedom is available to each user, hence the half-duplex penalty of relaying is alleviated. To facilitate a performance evaluation, theoretical outage probability expressions of the two broadcast transmission schemes are developed, based on which, we investigate the minimum total power consumption of each scheme for a given traffic requirement by numerical simulation. The results provide details on the overall system performance and fruitful insights on the essential characteristics of cooperative broadcast transmission in RBCs. It is observed that better overall outage performances and considerable power gains can be obtained by utilizing cooperative broadcast transmissions compared to traditional orthogonal schemes.
Lee, Young-Hyun; Kim, Jonghyeon; Yoo, Seungyeol
2016-09-01
The critical cell voltage drop in a stack can be followed by stack defect. A method of detecting defective cell is the cell voltage monitoring. The other methods are based on the nonlinear frequency response. In this paper, the superposition principle for the diagnosis of PEMFC stack is introduced. If critical cell voltage drops exist, the stack behaves as a nonlinear system. This nonlinearity can explicitly appear in the ohmic overpotential region of a voltage-current curve. To detect the critical cell voltage drop, a stack is excited by two input direct test-currents which have smaller amplitude than an operating stack current and have an equal distance value from the operating current. If the difference between one voltage excited by a test current and the voltage excited by a load current is not equal to the difference between the other voltage response and the voltage excited by the load current, the stack system acts as a nonlinear system. This means that there is a critical cell voltage drop. The deviation from the value zero of the difference reflects the grade of the system nonlinearity. A simulation model for the stack diagnosis is developed based on the SPP, and experimentally validated.
International Nuclear Information System (INIS)
Nakano, Masayoshi; Kishi, Ryohei; Ohta, Suguru; Takahashi, Hideaki; Furukawa, Shin-ichi; Yamaguchi, Kizashi
2005-01-01
We investigate the long-time dynamics of two-component dilute gas Bose-Einstein condensates with relatively different two-body interactions and Josephson couplings between the two components. Although in certain parameter regimes the quantum state of the system is known to evolve into macroscopic superposition, i.e., Schroedinger cat state, of two states with relative atom number differences between the two components, the Schroedinger cat state is also found to repeat the collapse and revival behavior in the long-time region. The dynamical behavior of the Pegg-Barnett phase difference between the two components is shown to be closely connected with the dynamics of the relative atom number difference for different parameters. The variation in the relative magnitude between the Josephson coupling and intra- and inter-component two-body interaction difference turns out to significantly change not only the size of the Schroedinger cat state but also its collapse-revival period, i.e., the lifetime of the Schroedinger cat state
International Nuclear Information System (INIS)
He, Cenlin; Takano, Yoshi; Liou, Kuo-Nan; Yang, Ping; Li, Qinbin; Mackowski, Daniel W.
2016-01-01
We perform a comprehensive intercomparison of the geometric-optics surface-wave (GOS) approach, the superposition T-matrix method, and laboratory measurements for optical properties of fresh and coated/aged black carbon (BC) particles with complex structures. GOS and T-matrix calculations capture the measured optical (i.e., extinction, absorption, and scattering) cross sections of fresh BC aggregates, with 5–20% differences depending on particle size. We find that the T-matrix results tend to be lower than the measurements, due to uncertainty in theoretical approximations of realistic BC structures, particle property measurements, and numerical computations in the method. On the contrary, the GOS results are higher than the measurements (hence the T-matrix results) for BC radii 100 nm. We find good agreement (differences 100 nm. We find small deviations (≤10%) in asymmetry factors computed from the two methods for most BC coating structures and sizes, but several complex structures have 10–30% differences. This study provides the foundation for downstream application of the GOS approach in radiative transfer and climate studies. - Highlights: • The GOS and T-matrix methods capture laboratory measurements of BC optical properties. • The GOS results are consistent with the T-matrix results for BC optical properties. • BC optical properties vary remarkably with coating structures and sizes during aging.
Energy Technology Data Exchange (ETDEWEB)
Jung, Jerome [Institut fuer Kernphysik, Goethe-Universitaet Frankfurt (Germany); Collaboration: ALICE-Collaboration
2015-07-01
The mean transverse momentum left angle p{sub T} right angle as a function of the charged-particle multiplicity N{sub ch} in pp, p-Pb and Pb-Pb collisions was recently published by ALICE. While in pp and in p-Pb collisions a strong increase of left angle p{sub T} right angle with N{sub ch} is observed, Pb-Pb collisions show a saturation at a much lower left angle p{sub T} right angle. Efforts of reproducing this behaviour in Pb-Pb with a superpositon of nucleon-nucleon interactions do not succeed. A superposition of p-Pb collisions seems to be more promising, since the p-Pb data shows characteristics of both pp and Pb-Pb collisions. The geometric distribution of the p-Pb impact parameters is based on the Woods-Saxon density distribution. Using the correlation of the impact parameter and the multiplicity N{sub ch} in p-Pb collisions a multiplicity-spectrum was generated. Combining this spectrum with experimental p-Pb data we present left angle p{sub T} right angle as a function of N{sub ch} in simulated Pb-Pb collisions and compare it to the correlation measured in Pb-Pb by ALICE.
Ikegawa, Shinichi; Horinouchi, Takeshi
2016-06-01
Accurate wind observation is a key to study atmospheric dynamics. A new automated cloud tracking method for the dayside of Venus is proposed and evaluated by using the ultraviolet images obtained by the Venus Monitoring Camera onboard the Venus Express orbiter. It uses multiple images obtained successively over a few hours. Cross-correlations are computed from the pair combinations of the images and are superposed to identify cloud advection. It is shown that the superposition improves the accuracy of velocity estimation and significantly reduces false pattern matches that cause large errors. Two methods to evaluate the accuracy of each of the obtained cloud motion vectors are proposed. One relies on the confidence bounds of cross-correlation with consideration of anisotropic cloud morphology. The other relies on the comparison of two independent estimations obtained by separating the successive images into two groups. The two evaluations can be combined to screen the results. It is shown that the accuracy of the screened vectors are very high to the equatorward of 30 degree, while it is relatively low at higher latitudes. Analysis of them supports the previously reported existence of day-to-day large-scale variability at the cloud deck of Venus, and it further suggests smaller-scale features. The product of this study is expected to advance the dynamics of venusian atmosphere.
Directory of Open Access Journals (Sweden)
Tamer Dawod
2015-01-01
Full Text Available Purpose: This work investigated the accuracy of prowess treatment planning system (TPS in dose calculation in a homogenous phantom for symmetric and asymmetric field sizes using collapse cone convolution / superposition algorithm (CCCS. Methods: The measurements were carried out at source-to-surface distance (SSD set to 100 cm for 6 and 10 MV photon beams. Data for a full set of measurements for symmetric fields and asymmetric fields, including inplane and crossplane profiles at various depths and percentage depth doses (PDDs were obtained during measurements on the linear accelerator.Results: The results showed that the asymmetric collimation dose lead to significant errors (up to approximately 7% in dose calculations if changes in primary beam intensity and beam quality. It is obvious that the most difference in the isodose curves was found in buildup and the penumbra regions. Conclusion: The results showed that the dose calculation using Prowess TPS based on CCCS algorithm is generally in excellent agreement with measurements.
International Nuclear Information System (INIS)
Pipiska, M.; Kociova, M.; Hornik, M.; Augustin, J.; Lesny, J.
2005-01-01
Caesium bioaccumulation experiments were carried out at 4 to 60 o C using natural samples of the lichen Hypogymnia physodes. Thalli were incubated in 2.5 μmol.l -1 CsCl solutions labelled with 137 CsCl for up to 24 h at pH values from 2 to 10. Bioaccumulation of Cs + ions in the first phase of the lichen-CsCl solution interaction is rapid, neither pH, nor temperature dependent within the range 4 to 60 o C and observed also with the lichen biomass thermally inactivated at 60 o C or chemically by formaldehyde. The second phase of 137 Cs bioaccumulation is time, temperature and pH dependent and is inhibited by formaldehyde and thermal inactivation. The process at the initial concentration C 0 = 2.5 μmol.l -1 CsCl and 20 o C reached equilibrium within 12 hours. It can be described by the first order reaction kinetics equation: log [C t ] = 1.89 - 0.00153 t, R = -0.950. Maximal values of Cs-bioaccumulation were observed at 20 o C with minimum at 4 o C and 40 o C and at pH 4-5 with minimum at pH 2 and pH 6. Low caesium efflux values from lichen thalli by water and 0.1 mol.l -1 neutral salts at 20 o C and 24 h equilibrium were observed. Efflux characterized by distribution coefficients D = [Cs] solution /[Cs] biomass at biomass/solution ratio 1:25 (w/v, wet wt.), decreases in the order: Li+ - 78 · 10 -3 > NH 4 + = K + - 15 · 10 -3 > Cs + = Na + - 11 · 10 -3 . Low extractability of caesium from lichen by water and salt solutions can explain long persistent times of radiocaesium contamination sorbed by lichens, observed by many authors in caesium contaminated forest and mountain regions. Hypothesis of the role of the lichen secondary metabolites as caesium binders is discussed. (author)
International Nuclear Information System (INIS)
Jin Shiqi; Gong Shangqing; Li Ruxin; Xu Zhizhan
2004-01-01
Coherent population transfer and superposition of atomic states via a technique of stimulated Raman adiabatic passage in an excited-doublet four-level atomic system have been analyzed. It is shown that the behavior of adiabatic passage in this system depends crucially on the detunings between the laser frequencies and the corresponding atomic transition frequencies. Particularly, if both the fields are tuned to the center of the two upper levels, the four-level system has two degenerate dark states, although one of them contains the contribution from the excited atomic states. The nonadiabatic coupling of the two degenerate dark states is intrinsic, it originates from the energy difference of the two upper levels. An arbitrary superposition of atomic states can be prepared due to such nonadiabatic coupling effect
Nonlinear superposition of monopoles
International Nuclear Information System (INIS)
Forgacs, P.; Horvath, Z.; Palla, L.
1981-04-01
With the aid of Baecklund transformations the authors construct exact multimonopole solutions of the axially and mirror-symmetric Bogomolny equations. The explicit form of the length of the Higgs field is given and is studied both analytically and numerically. The energy density for monopoles with charges 2,3,4,5 is also calculated. (author)
Directory of Open Access Journals (Sweden)
S. V. Shchelkunov
2006-01-01
Full Text Available We report results from an experiment that demonstrates the successful superposition of wakefields excited by 50 MeV bunches which travel ∼50 cm along the axis of a cylindrical waveguide which is lined with alumina. The bunches are prepared by splitting a single laser pulse prior to focusing it onto the cathode of an rf gun into two pulses and inserting an optical delay in the path of one of them. Wakefields from two short (5–6 psec 0.15–0.35 nC bunches are superimposed and the energy loss of each bunch is measured as the separation between the bunches is varied so as to encompass approximately one wakefield period (∼21 cm. A spectrum of ∼40 TM_{0m} eigenmodes is excited by the bunch. A substantial retarding wakefield (2.65 MV/m·nC for just the first bunch is developed because of the short bunch length and the narrow vacuum channel diameter (3 mm through which they move. The energy loss of the second bunch exhibits a narrow peak when the bunch spacing is varied by only 4 mm (13.5 psec. This experiment is compared with a related experiment reported by a group at the Argonne National Laboratory where the bunch spacing was not varied and a much weaker retarding wakefield (∼0.1 MV/m·nC for the first bunch comprising only about 10 eigenmodes was excited by a train of long (∼9 mm bunches.
International Nuclear Information System (INIS)
Sterpin, E.; Salvat, F.; Olivera, G.; Vynckier, S.
2009-01-01
The reliability of the convolution/superposition (C/S) algorithm of the Hi-Art tomotherapy system is evaluated by using the Monte Carlo model TomoPen, which has been already validated for homogeneous phantoms. The study was performed in three stages. First, measurements with EBT Gafchromic film for a 1.25x2.5 cm 2 field in a heterogeneous phantom consisting of two slabs of polystyrene separated with Styrofoam were compared to simulation results from TomoPen. The excellent agreement found in this comparison justifies the use of TomoPen as the reference for the remaining parts of this work. Second, to allow analysis and interpretation of the results in clinical cases, dose distributions calculated with TomoPen and C/S were compared for a similar phantom geometry, with multiple slabs of various densities. Even in conditions of lack of lateral electronic equilibrium, overall good agreement was obtained between C/S and TomoPen results, with deviations within 3%/2 mm, showing that the C/S algorithm accounts for modifications in secondary electron transport due to the presence of a low density medium. Finally, calculations were performed with TomoPen and C/S of dose distributions in various clinical cases, from large bilateral head and neck tumors to small lung tumors with diameter of <3 cm. To ensure a ''fair'' comparison, identical dose calculation grid and dose-volume histogram calculator were used. Very good agreement was obtained for most of the cases, with no significant differences between the DVHs obtained from both calculations. However, deviations of up to 4% for the dose received by 95% of the target volume were found for the small lung tumors. Therefore, the approximations in the C/S algorithm slightly influence the accuracy in small lung tumors even though the C/S algorithm of the tomotherapy system shows very good overall behavior.
Energy Technology Data Exchange (ETDEWEB)
Sterpin, E.; Salvat, F.; Olivera, G.; Vynckier, S. [Department of Radiotherapy, Saint-Luc University Hospital, Universite Catholique de Louvain, 10 Avenue Hippocrate, 1200 Brussels (Belgium); Facultat de Fisica (ECM), Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Tomotherapy Inc., 1240 Deming Way, Madison, Wisconsin 53717 and Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Department of Radiotherapy, Saint-Luc University Hospital, Universite Catholique de Louvain, 10 Avenue Hippocrate, 1200 Brussels (Belgium)
2009-05-15
The reliability of the convolution/superposition (C/S) algorithm of the Hi-Art tomotherapy system is evaluated by using the Monte Carlo model TomoPen, which has been already validated for homogeneous phantoms. The study was performed in three stages. First, measurements with EBT Gafchromic film for a 1.25x2.5 cm{sup 2} field in a heterogeneous phantom consisting of two slabs of polystyrene separated with Styrofoam were compared to simulation results from TomoPen. The excellent agreement found in this comparison justifies the use of TomoPen as the reference for the remaining parts of this work. Second, to allow analysis and interpretation of the results in clinical cases, dose distributions calculated with TomoPen and C/S were compared for a similar phantom geometry, with multiple slabs of various densities. Even in conditions of lack of lateral electronic equilibrium, overall good agreement was obtained between C/S and TomoPen results, with deviations within 3%/2 mm, showing that the C/S algorithm accounts for modifications in secondary electron transport due to the presence of a low density medium. Finally, calculations were performed with TomoPen and C/S of dose distributions in various clinical cases, from large bilateral head and neck tumors to small lung tumors with diameter of <3 cm. To ensure a ''fair'' comparison, identical dose calculation grid and dose-volume histogram calculator were used. Very good agreement was obtained for most of the cases, with no significant differences between the DVHs obtained from both calculations. However, deviations of up to 4% for the dose received by 95% of the target volume were found for the small lung tumors. Therefore, the approximations in the C/S algorithm slightly influence the accuracy in small lung tumors even though the C/S algorithm of the tomotherapy system shows very good overall behavior.
Directory of Open Access Journals (Sweden)
Shuang Liu
2018-01-01
Full Text Available In this paper, the eigenmode linear superposition (ELS method based on the regularization is used to discuss the distributions of all eigenmodes and the role of their instability to the intensity and structure change in TC-like vortex. Results show that the regularization approach can overcome the ill-posed problem occurring in solving mode weight coefficients as the ELS method are applied to analyze the impacts of dynamic instability on the intensity and structure change of TC-like vortex. The Generalized Cross-validation (GCV method and the L curve method are used to determine the regularization parameters, and the results of the two approaches are compared. It is found that the results based on the GCV method are closer to the given initial condition in the solution of the inverse problem of the vortex system. Then, the instability characteristic of the hollow vortex as the basic state are examined based on the linear barotropic shallow water equations. It is shown that the wavenumber distribution of system instability obtained from the ELS method is well consistent with that of the numerical analysis based on the norm mode. On the other hand, the evolution of the hollow vortex are discussed using the product of each eigenmode and its corresponding weight coefficient. Results show that the intensity and structure change of the system are mainly affected by the dynamic instability in the early stage of disturbance development, and the most unstable mode has a dominant role in the growth rate and the horizontal distribution of intense disturbance in the near-core region. Moreover, the wave structure of the most unstable mode possesses typical characteristics of mixed vortex Rossby-inertio-gravity waves (VRIGWs.
Brandenburg, Jan Gerit; Alessio, Maristella; Civalleri, Bartolomeo; Peintinger, Michael F; Bredow, Thomas; Grimme, Stefan
2013-09-26
We extend the previously developed geometrical correction for the inter- and intramolecular basis set superposition error (gCP) to periodic density functional theory (DFT) calculations. We report gCP results compared to those from the standard Boys-Bernardi counterpoise correction scheme and large basis set calculations. The applicability of the method to molecular crystals as the main target is tested for the benchmark set X23. It consists of 23 noncovalently bound crystals as introduced by Johnson et al. (J. Chem. Phys. 2012, 137, 054103) and refined by Tkatchenko et al. (J. Chem. Phys. 2013, 139, 024705). In order to accurately describe long-range electron correlation effects, we use the standard atom-pairwise dispersion correction scheme DFT-D3. We show that a combination of DFT energies with small atom-centered basis sets, the D3 dispersion correction, and the gCP correction can accurately describe van der Waals and hydrogen-bonded crystals. Mean absolute deviations of the X23 sublimation energies can be reduced by more than 70% and 80% for the standard functionals PBE and B3LYP, respectively, to small residual mean absolute deviations of about 2 kcal/mol (corresponding to 13% of the average sublimation energy). As a further test, we compute the interlayer interaction of graphite for varying distances and obtain a good equilibrium distance and interaction energy of 6.75 Å and -43.0 meV/atom at the PBE-D3-gCP/SVP level. We fit the gCP scheme for a recently developed pob-TZVP solid-state basis set and obtain reasonable results for the X23 benchmark set and the potential energy curve for water adsorption on a nickel (110) surface.
Badalyan, O. G.; Obridko, V. N.
2017-07-01
Context. Since the occurrence of north-south asymmetry (NSA) of alternating sign may be determined by different mechanisms, the frequency and amplitude characteristics of this phenomenon should be considered separately. Aims: We propose a new approach to the description of the NSA of solar activity. Methods: The asymmetry defined as A = (N-S)/(N + S) (where N and S are, respectively, the indices of activity of the northern and southern hemispheres) is treated as a superposition of two functions: the sign of asymmetry (signature) and its absolute value (modulus). This approach is applied to the analysis of the NSA of sunspot group areas for the period 1874-2013. Results: We show that the sign of asymmetry provides information on the behavior of the asymmetry. In particular, it displays quasi-periodic variation with a period of 12 yr and quasi-biennial oscillations as the asymmetry itself. The statistics of the so-called monochrome intervals (long periods of positive or negative asymmetry) are considered and it is shown that the distribution of these intervals is described by the random distribution law. This means that the dynamo mechanisms governing the cyclic variation of solar activity must involve random processes. At the same time, the asymmetry modulus has completely different statistical properties and is probably associated with processes that determine the amplitude of the cycle. One can reliably isolate an 11-yr cycle in the behavior of the asymmetry absolute value shifted by half a period with respect to the Wolf numbers. It is shown that the asymmetry modulus has a significant prognostic value: the higher the maximum of the asymmetry modulus, the lower the following Wolf number maximum. Conclusions: A fundamental nature of this concept of NSA is discussed in the context of the general methodology of cognizing the world. It is supposed that the proposed description of the NSA will help clarify the nature of this phenomenon.
International Nuclear Information System (INIS)
Otero, E.; Pardo, A.; Hernaez, J.; Hierro, P.
1990-01-01
Corrosion rate data obtained by the polarization resistance method in nickel-base superalloys in contact with Na 2 SO 4 -V 2 O 5 molten mixtures are presented. The instrumental technique is also described. Time-temperature influence on the corrosion kinetics in the described conditions is discussed (Author)
Directory of Open Access Journals (Sweden)
Vladimir I. Volchikhin
2017-12-01
Full Text Available Introduction: The aim of the study is to accelerate the solution of neural network biometrics inverse problem on an ordinary desktop computer. Materials and Methods: To speed up the calculations, the artificial neural network is introduced into the dynamic mode of “jittering” of the states of all 256 output bits. At the same time, too many output states of the neural network are logarithmically folded by transitioning to the Hamming distance space between the code of the image “Own” and the codes of the images “Alien”. From the database of images of “Alien” 2.5 % of the most similar images are selected. In the next generation, 97.5 % of the discarded images are restored with GOST R 52633.2-2010 procedures by crossing parent images and obtaining descendant images from them. Results: Over a period of about 10 minutes, 60 generations of directed search for the solution of the inverse problem can be realized that allows inversing matrices of neural network functionals of dimension 416 inputs to 256 outputs with restoration of up to 97 % information on unknown biometric parameters of the image “Own”. Discussion and Conclusions: Supporting for 10 minutes of computer time the 256 qubit quantum superposition allows on a conventional computer to bypass the actual infinity of analyzed states in 5050 (50 to 50 times more than the same computer could process realizing the usual calculations. The increase in the length of the supported quantum superposition by 40 qubits is equivalent to increasing the processor clock speed by about a billion times. It is for this reason that it is more profitable to increase the number of quantum superpositions supported by the software emulator in comparison with the creation of a more powerful processor.
Shi, Ai-Min; Wang, Li-Jun; Li, Dong; Adhikari, Benu
2013-07-25
Starch films were successfully produced by incorporating spray dried and vacuum-freeze dried starch nanoparticles. The frequency sweep, creep-recovery behavior and time-temperature superposition (TTS) on these films were studied. All these films exhibited dominant elastic behavior (than viscous behavior) over the entire frequency range (0.1-100 rad/s). The incorporation of both types of starch nanoparticles increased the storage and loss modulus, tanδ, creep strain, creep compliance and creep rate at long time frame and reduced the recovery rate of films while the effect of different kinds of starch nanoparticles on these parameters was similar both in magnitude and trend. TTS method was successfully used to predict long time (over 20 days) creep behavior through the master curves. The addition of these nanoparticles could increase the activation energy parameter used in TTS master curves. Power law and Burger's models were capable of fitting storage and loss modulus (R(2)>0.79) and creep data (R(2)>0.96), respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rule-Based Storytelling Text-to-Speech (TTS Synthesis
Directory of Open Access Journals (Sweden)
Ramli Izzad
2016-01-01
Full Text Available In recent years, various real life applications such as talking books, gadgets and humanoid robots have drawn the attention to pursue research in the area of expressive speech synthesis. Speech synthesis is widely used in various applications. However, there is a growing need for an expressive speech synthesis especially for communication and robotic. In this paper, global and local rule are developed to convert neutral to storytelling style speech for the Malay language. In order to generate rules, modification of prosodic parameters such as pitch, intensity, duration, tempo and pauses are considered. Modification of prosodic parameters is examined by performing prosodic analysis on a story collected from an experienced female and male storyteller. The global and local rule is applied in sentence level and synthesized using HNM. Subjective tests are conducted to evaluate the synthesized storytelling speech quality of both rules based on naturalness, intelligibility, and similarity to the original storytelling speech. The results showed that global rule give a better result than local rule
Emotional style conversion in the TTS system with cepstral description
Czech Academy of Sciences Publication Activity Database
Přibil, Jiří; Přibilová, Anna
Vol. 4775, - (2007), s. 65-73 ISSN 0302-9743. [COST Action 2102 International Workshop. Vietri sul Mare, 29.03.2007-31.03.2007] R&D Projects: GA AV ČR 1QS108040569 Grant - others:MŠk(SK) 4/0012/07; MŠk(SK) 1/3107/06 Institutional research plan: CEZ:AV0Z20670512 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje Keywords : speech synthesis * speech processing * speech recognition Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.302, year: 2005
International Nuclear Information System (INIS)
Uribe-Patarroyo, Nestor; Alvarez-Herrero, Alberto; Belenguer, Tomas
2010-01-01
We propose the use of a phase-diversity technique to estimate the orbital angular momentum (OAM) superposition state of an ensemble of photons that passes through an optical system, proceeding from an extended object. The phase-diversity technique permits the estimation of the optical transfer function (OTF) of an imaging optical system. As the OTF is derived directly from the wave-front characteristics of the observed light, we redefine the phase-diversity technique in terms of a superposition of OAM states. We test this new technique experimentally and find coherent results among different tests, which gives us confidence in the estimation of the photon ensemble state. We find that this technique not only allows us to estimate the square of the amplitude of each OAM state, but also the relative phases among all states, thus providing complete information about the quantum state of the photons. This technique could be used to measure the OAM spectrum of extended objects in astronomy or in an optical communication scheme using OAM states. In this sense, the use of extended images could lead to new techniques in which the communication is further multiplexed along the field.
Yi, Xingwen; Xu, Bo; Zhang, Jing; Lin, Yun; Qiu, Kun
2014-12-15
Digital coherent superposition (DCS) of optical OFDM subcarrier pairs with Hermitian symmetry can reduce the inter-carrier-interference (ICI) noise resulted from phase noise. In this paper, we show two different implementations of DCS-OFDM that have the same performance in the presence of laser phase noise. We complete the theoretical calculation on ICI reduction by using the model of pure Wiener phase noise. By Taylor expansion of the ICI, we show that the ICI power is cancelled to the second order by DCS. The fourth order term is further derived out and only decided by the ratio of laser linewidth to OFDM subcarrier symbol rate, which can greatly simplify the system design. Finally, we verify our theoretical calculations in simulations and use the analytical results to predict the system performance. DCS-OFDM is expected to be beneficial to certain optical fiber transmissions.
Rastkari, Noushin; Zare Jeddi, Maryam; Yunesian, Masud; Ahmadkhaniha, Reza
2017-12-01
Acidic liquids such as verjuice, lemon juice and vinegar are frequently consumed in Iran. Different kinds of acidic liquids are packaged in polyethylene terephthalate (PET) and high-density polyethylene (HDPE) bottles. There is evidence indicating that phthalates can leach from PET and HDPE bottles into their contents. In this work the effect of storage time, temperature and bottle type on the migration of phthalates from packaging materials into acidic liquids is studied by analyzing the samples stored under different conditions, before storage and after 2, 4 and 6 months of storage. The determined mean phthalate concentrations in µg/L were: liquids. The possible migration of phthalic acid esters from plastic packaging materials into the contents was indicated by the results of the present study.
DEFF Research Database (Denmark)
Paci, B.; Rossi-Albertini, V.; Sikorski, M.
2005-01-01
An energy dispersive X-ray diffraction method to observe phase transitions is applied to follow the crystallization of an amorphous alloy (La6Ni5Al89) in isothermal conditions. In this way, the diffraction-based configurational entropy (DCE) of the system undergoing the phase transformations...... was measured and the curves describing the transitions, qualitatively equivalent to a differential scanning calorimetry (DSC) thermogram, could be drawn. Finally, the analysis of such curves allowed calculation of some points of the alloy pressure-time-temperature transformation (PTTT) diagram. More...... importantly, the present work shows that the DCE method can be successfully applied even when DSC can no longer be used. As a consequence, regions of the phase diagram that could not be reached up to now become accessible, opening the way to the study of transition phenomena under extreme conditions....
Energy Technology Data Exchange (ETDEWEB)
Sahlaoui, H.; Makhlouf, K.; Sidhom, H.; Philibert, J
2004-05-15
Chromium carbides and intermetallic phases which form in industrial AISI 316L stainless steel during ageing for up to 80 000 h between 550 and 650 deg. C were identified by combining transmission electron microscopy (TEM) thin foil imaging and electron diffraction and used to establish the time-temperature-precipitation (TTP) diagram. Following the precipitation phenomena, the chemical changes in the grain boundary region were determined by energy-dispersive X-ray microprobe analysis using a scanning transmission electron microscope (STEM). From the experimentally determined chromium profiles the chromium depleted zones were quantified. The interactions between carbide precipitation involving chromium depletion and intergranular corrosion (IGC) were clearly visible from superposition of TTP diagrams and time-temperature-sensitization (TTS) diagrams obtained from ASTM standardized tests. In addition, an experimental criterion to sensitization-desensitization phenomenon was established. Moreover, an analytical model has been developed in this study and successfully validated to predict the profiles of chromium depleted zones. This model coupled with the previously described criterion provides TTS diagrams in good agreement with experimental results.
International Nuclear Information System (INIS)
Mihaylov, I. B.; Siebers, J. V.
2008-01-01
The purpose of this study is to evaluate dose prediction errors (DPEs) and optimization convergence errors (OCEs) resulting from use of a superposition/convolution dose calculation algorithm in deliverable intensity-modulated radiation therapy (IMRT) optimization for head-and-neck (HN) patients. Thirteen HN IMRT patient plans were retrospectively reoptimized. The IMRT optimization was performed in three sequential steps: (1) fast optimization in which an initial nondeliverable IMRT solution was achieved and then converted to multileaf collimator (MLC) leaf sequences; (2) mixed deliverable optimization that used a Monte Carlo (MC) algorithm to account for the incident photon fluence modulation by the MLC, whereas a superposition/convolution (SC) dose calculation algorithm was utilized for the patient dose calculations; and (3) MC deliverable-based optimization in which both fluence and patient dose calculations were performed with a MC algorithm. DPEs of the mixed method were quantified by evaluating the differences between the mixed optimization SC dose result and a MC dose recalculation of the mixed optimization solution. OCEs of the mixed method were quantified by evaluating the differences between the MC recalculation of the mixed optimization solution and the final MC optimization solution. The results were analyzed through dose volume indices derived from the cumulative dose-volume histograms for selected anatomic structures. Statistical equivalence tests were used to determine the significance of the DPEs and the OCEs. Furthermore, a correlation analysis between DPEs and OCEs was performed. The evaluated DPEs were within ±2.8% while the OCEs were within 5.5%, indicating that OCEs can be clinically significant even when DPEs are clinically insignificant. The full MC-dose-based optimization reduced normal tissue dose by as much as 8.5% compared with the mixed-method optimization results. The DPEs and the OCEs in the targets had correlation coefficients greater
Wang, Lijun; Zhang, Chun; Gong, Wei; Ji, Yubi; Qin, Shuhao; He, Li
2018-01-01
3D cross-linking networks are generated through chemical reactions between thermosetting epoxy resin and hardener during curing. The curing degree of epoxy material can be increased by increasing curing temperature and/or time. The epoxy material must then be fully cured through a postcuring process to optimize its material characteristics. Here, a limited-foaming method is introduced for the preparation of microcellular epoxy foams (Lim-foams) with improved cell morphology, high thermal expansion coefficient, and good compressive properties. Lim-foams exhibit a lower glass transition temperature (T g ) and curing degree than epoxy foams fabricated through free-foaming process (Fre-foams). Surprisingly, however, the T g of Lim-foams is unaffected by postcuring temperature and time. This phenomenon, which is related to high gas pressure in the bubbles, contradicts that indicated by the time-temperature-transformation cure diagram. High bubble pressure promotes the movement of molecular chains under heating at low temperature and simultaneously suppresses the etherification cross-linking reaction during post-curing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bullock, John D; Elder, B Laurel; Khamis, Harry J; Warwar, Ronald E
2011-02-01
To demonstrate the effects of time, temperature, and container properties on the ability of ReNu with MoistureLoc (ReNuML; contains the antimicrobial agent alexidine) to inhibit growth of Fusarium species. ReNu with MoistureLoc was stored in its Bausch & Lomb (Rochester, New York) plastic or similarly sized glass containers for 1 and 4 weeks at room temperature, 42°C, and 56°C, and then tested for its ability to inhibit growth of 7 Fusarium isolates. ReNu with MoistureLoc stored in glass containers for 1 or 4 weeks at all 3 temperatures demonstrated no significant fungistatic deterioration. However, ReNuML stored at 56°C in its Bausch & Lomb plastic container demonstrated a statistically significant fungistatic deterioration compared with room temperature storage in its original plastic container or with glass container storage at any temperature. When exposed to elevated storage temperature, it appears that an interaction between ReNuML and its Bausch & Lomb plastic container adversely affects the fungistatic properties of ReNuML, which could have contributed to the Fusarium keratitis epidemic of 2004 through 2006.
Roy, Dipankar; Marianski, Mateusz; Maitra, Neepa T.; Dannenberg, J. J.
2012-10-01
We compare dispersion and induction interactions for noble gas dimers and for Ne, methane, and 2-butyne with HF and LiF using a variety of functionals (including some specifically parameterized to evaluate dispersion interactions) with ab initio methods including CCSD(T) and MP2. We see that inductive interactions tend to enhance dispersion and may be accompanied by charge-transfer. We show that the functionals do not generally follow the expected trends in interaction energies, basis set superposition errors (BSSE), and interaction distances as a function of basis set size. The functionals parameterized to treat dispersion interactions often overestimate these interactions, sometimes by quite a lot, when compared to higher level calculations. Which functionals work best depends upon the examples chosen. The B3LYP and X3LYP functionals, which do not describe pure dispersion interactions, appear to describe dispersion mixed with induction about as accurately as those parametrized to treat dispersion. We observed significant differences in high-level wavefunction calculations in a basis set larger than those used to generate the structures in many of the databases. We discuss the implications for highly parameterized functionals based on these databases, as well as the use of simple potential energy for fitting the parameters rather than experimentally determinable thermodynamic state functions that involve consideration of vibrational states.
Sevryuk, Mikhail B.
2014-11-01
V. I. Arnold (12 June 1937-3 June 2010) published several papers where he described, in the form of recollections, his two earliest research problems (superpositions of continuous functions and quasi-periodic motions in dynamical systems), the main results and their interrelations: [A1], then [A2] (reprinted as [A4, A6]), and [A3] (translated into English by the author as [A5]). The first exposition [A1] has never been translated into English; however, it contains many details absent in the subsequent articles. It seems therefore that publishing the English translation of the paper [A1] would not be superfluous. What follows is this translation. In many cases, the translator gives complete bibliographic descriptions of various papers mentioned briefly in the original Russian text. The English translations of papers in Russian are also pointed out where possible. A related material is contained also in Arnold's recollections "On A.N. Kolmogorov". Slightly different versions of these reminiscences were published several times in Russian and English [A7-A12]. The early history of KAM theory is also discussed in detail in the recent brilliant semi-popular book [A13].
Karlovets, Dmitry V; Serbo, Valeriy G
2017-10-27
Within a plane-wave approximation in scattering, an incoming wave packet's Wigner function stays positive everywhere, which obscures such purely quantum phenomena as nonlocality and entanglement. With the advent of the electron microscopes with subnanometer-sized beams, one can enter a genuinely quantum regime where the latter effects become only moderately attenuated. Here we show how to probe negative values of the Wigner function in scattering of a coherent superposition of two Gaussian packets with a nonvanishing impact parameter between them (a Schrödinger's cat state) by atomic targets. For hydrogen in the ground 1s state, a small parameter of the problem, a ratio a/σ_{⊥} of the Bohr radius a to the beam width σ_{⊥}, is no longer vanishing. We predict an azimuthal asymmetry of the scattered electrons, which is found to be up to 10%, and argue that it can be reliably detected. The production of beams with the not-everywhere-positive Wigner functions and the probing of such quantum effects can open new perspectives for noninvasive electron microscopy, quantum tomography, particle physics, and so forth.
Energy Technology Data Exchange (ETDEWEB)
DeGeorge, V., E-mail: vdegeorge@cmu.edu; Zoghlin, E.; Keylin, V.; McHenry, M. [Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)
2015-05-07
Secondary crystallization is the subject of much investigation in magnetic amorphous and nanocomposites (MANCs) as it limits the long term and thermal stability of their operation in device applications, including power electronics, sensors, and electric motors. Secondary crystal products [Blazquez et al., Philos. Mag. Lett. 82(7), 409–417 (2002); Ohodnicki et al., Phys. Rev. B 78, 144414 (2008); Willard et al., Metall. Mater. Trans. A 38, 725 (2007)], nanostructure and crystallization kinetics [Hsiao et al., IEEE Trans. Magn. 38(5), 3039 (2002); McHenry et al., Scr. Mater. 48(7), 881 (2003)], and onset temperatures and activation energies [Ohodnicki et al., Acta. Mater. 57, 87 (2009); Long et al., J. Appl. Phys. 101, 09N114 (2007)] at constant heating have been reported for similar alloys. However, a time-temperature-transformation (TTT) diagram for isothermal crystallization, more typical of application environments, has not been reported in literature. Here, a TTT diagram for the Co based, Co-Fe-Si-Nb-B-Mn MANC system is presented, along with a method for determining such. The method accounts for the presence of primary crystal phases and yields crystal fraction of secondary phase(s) by using a novel four stage heating profile. The diagram, affirmed by Kissinger activation energy analysis, reports thermal stability of the MANC for millennia at conventional device operating temperatures, and stability limits less than a minute at elevated temperatures. Both extremes are necessary to be able to avoid secondary crystalline products and establish operating limits for this mechanically attractive, high induction soft magnetic nanocomposite.
Grant, Irene R; Williams, Alan G; Rowe, Michael T; Muir, D Donald
2005-06-01
The effect of various pasteurization time-temperature conditions with and without homogenization on the viability of Mycobacterium avium subsp. paratuberculosis was investigated using a pilot-scale commercial high-temperature, short-time (HTST) pasteurizer and raw milk spiked with 10(1) to 10(5) M. avium subsp. paratuberculosis cells/ml. Viable M. avium subsp. paratuberculosis was cultured from 27 (3.3%) of 816 pasteurized milk samples overall, 5 on Herrold's egg yolk medium and 22 by BACTEC culture. Therefore, in 96.7% of samples, M. avium subsp. paratuberculosis had been completely inactivated by HTST pasteurization, alone or in combination with homogenization. Heat treatments incorporating homogenization at 2,500 lb/in2, applied upstream (as a separate process) or in hold (at the start of a holding section), resulted in significantly fewer culture-positive samples than pasteurization treatments without homogenization (P HTST pasteurization with or without homogenization was estimated to be 4.0 to 5.2 log10. The impact of homogenization on clump size distribution in M. avium subsp. paratuberculosis broth suspensions was subsequently assessed using a Mastersizer X spectrometer. These experiments demonstrated that large clumps of M. avium subsp. paratuberculosis cells were reduced to single-cell or "miniclump" status by homogenization at 2,500 lb/in2. Consequently, when HTST pasteurization was being applied to homogenized milk, the M. avium subsp. paratuberculosis cells would have been present as predominantly declumped cells, which may possibly explain the greater inactivation achieved by the combination of pasteurization and homogenization.
Grant, Irene R.; Williams, Alan G.; Rowe, Michael T.; Muir, D. Donald
2005-01-01
The effect of various pasteurization time-temperature conditions with and without homogenization on the viability of Mycobacterium avium subsp. paratuberculosis was investigated using a pilot-scale commercial high-temperature, short-time (HTST) pasteurizer and raw milk spiked with 101 to 105 M. avium subsp. paratuberculosis cells/ml. Viable M. avium subsp. paratuberculosis was cultured from 27 (3.3%) of 816 pasteurized milk samples overall, 5 on Herrold's egg yolk medium and 22 by BACTEC culture. Therefore, in 96.7% of samples, M. avium subsp. paratuberculosis had been completely inactivated by HTST pasteurization, alone or in combination with homogenization. Heat treatments incorporating homogenization at 2,500 lb/in2, applied upstream (as a separate process) or in hold (at the start of a holding section), resulted in significantly fewer culture-positive samples than pasteurization treatments without homogenization (P pasteurization with or without homogenization was estimated to be 4.0 to 5.2 log10. The impact of homogenization on clump size distribution in M. avium subsp. paratuberculosis broth suspensions was subsequently assessed using a Mastersizer X spectrometer. These experiments demonstrated that large clumps of M. avium subsp. paratuberculosis cells were reduced to single-cell or “miniclump” status by homogenization at 2,500 lb/in2. Consequently, when HTST pasteurization was being applied to homogenized milk, the M. avium subsp. paratuberculosis cells would have been present as predominantly declumped cells, which may possibly explain the greater inactivation achieved by the combination of pasteurization and homogenization. PMID:15932977
Flexural creep behaviour of jute polypropylene composites
Chandekar, Harichandra; Chaudhari, Vikas
2016-09-01
Present study is about the flexural creep behaviour of jute fabric reinforced polypropylene (Jute-PP) composites. The PP sheet and alkali treated jute fabric is stacked alternately and hot pressed in compression molding machine to get Jute-PP composite laminate. The flexural creep study is carried out on dynamic mechanical analyzer. The creep behaviour of the composite is modeled using four-parameter Burgers model. Short-term accelerated creep testing is conducted which is later used to predict long term creep behaviour. The feasibility of the construction of a master curve using the time-temperature superposition (TTS) principle to predict long term creep behavior of unreinforced PP and Jute-PP composite is investigated.
International Nuclear Information System (INIS)
Ramani, R; Alam, S
2015-01-01
High performance polymer blend of poly(ether ether ketone) (PEEK) and poly(ether imide) (PEI) was examined for their free volume behaviour using positron annihilation lifetime spectroscopy and dynamic mechanical thermal analysis methods. The fractional free volume obtained from PALS shows a negative deviation from linear additivity rule implying good miscibility between PEEK and PEI. The dynamic modulus and loss tangent were obtained for the blends at three different frequencies 1, 10 and 100 Hz at temperatures close to and above their glass transition temperature. Applying Time-Temperature-Superposition (TTS) principle to the DMTA results, master curves were obtained at a reference temperature T o and the WLF coefficients c 0 1 and c 0 2 were evaluated. Both the methods give similar results for the dependence of fractional free volume on PEI content in this blend. The results reveal that free volume plays an important role in determining the visco-elastic properties in miscible polymer blends. (paper)
Directory of Open Access Journals (Sweden)
David A. Wood
2018-03-01
Full Text Available Thermal maturity indices and modelling based on Arrhenius-equation reaction kinetics have played an important role in oil and gas exploration and provided petroleum generation insight for many kerogen-rich source rocks. Debate continues concerning how best to integrate the Arrhenius equation and which activation energies (E and frequency factors (A values to apply. A case is made for the strong theoretical basis and practical advantages of the time-temperature index (∑TTIARR method, first published in 1998, using a single, carefully selected E-A set (E = 218 kJ/mol (52.1 kcal/mol; A = 5.45E+26/my from the well-established A-E trend for published kerogen kinetics. An updated correlation between ∑TTIARR and vitrinite reflectance (Ro is provided in which the ∑TTIARR scale spans some 18 orders of magnitude. The method is readily calculated in spreadsheets and can be further enhanced by visual basic for application code to provide optimization. Optimization is useful for identifying possible geothermal gradients and erosion intervals covering multiple burial intervals that can match calculated thermal maturities with measured Ro data. A memetic optimizer with firefly and dynamic local search memes is described that flexibly conducts exploration and exploitation of the feasible, multi-dimensional, thermal history solution space to find high-performing solutions to complex burial and thermal histories. A complex deep burial history example, with several periods of uplift and erosion and fluctuating heat flow is used to demonstrate what can be achieved with the memetic optimizer. By carefully layering in constraints to the models specific insights to episodes in their thermal history can be exposed, leading to better characterization of the timing of petroleum generation. The objective function found to be most effective for this type of optimization is the mean square error (MSE of multiple burial intervals for the difference between
Energy Technology Data Exchange (ETDEWEB)
Rudowicz, Czesław, E-mail: crudowicz@zut.edu.pl [Faculty of Chemistry, A. Mickiewicz University, 61-614 Poznań (Poland); Institute of Physics, West Pomeranian University of Technology, Szczecin (Poland); Açıkgöz, Muhammed [Department of Chemistry, Rutgers University, Newark, New Jersey 07102 (United States); Gnutek, Paweł [Institute of Physics, West Pomeranian University of Technology, Szczecin (Poland)
2017-07-15
Graphical abstract: Using crystal structure data for [Ni(Me{sub 6}tren)Cl](ClO{sub 4}) and [Ni(Me{sub 6}tren)Br](Br) as well as taking into account the Jahn-Teller distortions of five-fold coordinated Ni-complexes revealed by DFT geometry optimization, the ZFSPs are predicted for several structural models and wide ranges of model parameters. - Highlights: • Semiempirical study of potential SMM [Ni(Me{sub 6}tren)Cl](ClO{sub 4}) and [Ni(Me{sub 6}tren)Br](Br). • Superposition model analysis of zero field splitting (ZFS) parameters carried out. • Jahn-Teller distortions revealed by DFT geometry optimization considered. • SPM predicts D(ZFS) of observed magnitudes with positive or negative signs. • Results corroborate giant ZFS, which shall not be equated with magnetic anisotropy. - Abstract: Potential single-ion magnet Ni{sup 2+} systems: [Ni(Me{sub 6}tren)Cl](ClO{sub 4}) and [Ni(Me{sub 6}tren)Br](Br) reveal unusually high zero field splitting (ZFS). The ZFS parameter (ZFSP) D{sub expt} = −120 to −180 cm{sup −1} was determined indirectly by high-magnetic field, high-frequency electron magnetic resonance (HMF-EMR). Modeling ZFSPs using the density functional theory (DFT) codes predicts D values: −100 to −200 cm{sup −1}. Such ZFSP values may seem controversial in view of the D values usually not exceeding several tens of cm{sup −1} for Ni{sup 2+} ions. To corroborate or otherwise these results and elucidate the origin of the huge ZFS (named inappropriately as ‘giant uniaxial magnetic anisotropy’) and respective wavefunctions, we have undertaken semiempirical modeling based on the crystal field (CF) and spin Hamiltonians (SH) theory. In this paper, a feasibility study is carried out to ascertain if superposition model (SPM) calculations may yield such huge D values for these Ni{sup 2+} systems. Using crystal structure data for [Ni(Me{sub 6}tren)Cl](ClO{sub 4}) and [Ni(Me{sub 6}tren)Br](Br) as well as taking into account the Jahn
Spatial superpositions of Gaussian beams
CSIR Research Space (South Africa)
Naidoo, Darryl
2014-02-01
Full Text Available . At the plane of the lens we obtain a multi-ringed beam with a central intensity maximum which develops into a multi-ringed beam with a central null at the focal plane of the lens. The interesting feature of this beam is that it possesses two focal spots...
Energy Technology Data Exchange (ETDEWEB)
Lee, K; Leung, R; Law, G; Wong, M; Lee, V; Tung, S; Cheung, S; Chan, M [Tuen Mun Hospital, Hong Kong (Hong Kong)
2016-06-15
Background: Commercial treatment planning system Pinnacle3 (Philips, Fitchburg, WI, USA) employs a convolution-superposition algorithm for volumetric-modulated arc radiotherapy (VMAT) optimization and dose calculation. Study of Monte Carlo (MC) dose recalculation of VMAT plans for advanced-stage nasopharyngeal cancers (NPC) is currently limited. Methods: Twenty-nine VMAT prescribed 70Gy, 60Gy, and 54Gy to the planning target volumes (PTVs) were included. These clinical plans achieved with a CS dose engine on Pinnacle3 v9.0 were recalculated by the Monaco TPS v5.0 (Elekta, Maryland Heights, MO, USA) with a XVMC-based MC dose engine. The MC virtual source model was built using the same measurement beam dataset as for the Pinnacle beam model. All MC recalculation were based on absorbed dose to medium in medium (Dm,m). Differences in dose constraint parameters per our institution protocol (Supplementary Table 1) were analyzed. Results: Only differences in maximum dose to left brachial plexus, left temporal lobe and PTV54Gy were found to be statistically insignificant (p> 0.05). Dosimetric differences of other tumor targets and normal organs are found in supplementary Table 1. Generally, doses outside the PTV in the normal organs are lower with MC than with CS. This is also true in the PTV54-70Gy doses but higher dose in the nasal cavity near the bone interfaces is consistently predicted by MC, possibly due to the increased backscattering of short-range scattered photons and the secondary electrons that is not properly modeled by the CS. The straight shoulders of the PTV dose volume histograms (DVH) initially resulted from the CS optimization are merely preserved after MC recalculation. Conclusion: Significant dosimetric differences in VMAT NPC plans were observed between CS and MC calculations. Adjustments of the planning dose constraints to incorporate the physics differences from conventional CS algorithm should be made when VMAT optimization is carried out directly
Yoshida, Tatsusada; Hayashi, Takahisa; Mashima, Akira; Chuman, Hiroshi
2015-10-01
One of the most challenging problems in computer-aided drug discovery is the accurate prediction of the binding energy between a ligand and a protein. For accurate estimation of net binding energy ΔEbind in the framework of the Hartree-Fock (HF) theory, it is necessary to estimate two additional energy terms; the dispersion interaction energy (Edisp) and the basis set superposition error (BSSE). We previously reported a simple and efficient dispersion correction, Edisp, to the Hartree-Fock theory (HF-Dtq). In the present study, an approximation procedure for estimating BSSE proposed by Kruse and Grimme, a geometrical counterpoise correction (gCP), was incorporated into HF-Dtq (HF-Dtq-gCP). The relative weights of the Edisp (Dtq) and BSSE (gCP) terms were determined to reproduce ΔEbind calculated with CCSD(T)/CBS or /aug-cc-pVTZ (HF-Dtq-gCP (scaled)). The performance of HF-Dtq-gCP (scaled) was compared with that of B3LYP-D3(BJ)-bCP (dispersion corrected B3LYP with the Boys and Bernadi counterpoise correction (bCP)), by taking ΔEbind (CCSD(T)-bCP) of small non-covalent complexes as 'a golden standard'. As a critical test, HF-Dtq-gCP (scaled)/6-31G(d) and B3LYP-D3(BJ)-bCP/6-31G(d) were applied to the complex model for HIV-1 protease and its potent inhibitor, KNI-10033. The present results demonstrate that HF-Dtq-gCP (scaled) is a useful and powerful remedy for accurately and promptly predicting ΔEbind between a ligand and a protein, albeit it is a simple correction procedure. Copyright © 2015 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Webb, S.; Oldham, M.
1996-01-01
Highly conformal dose distributions can be created by the superposition of many radiation fields from different directions, each with its intensity spatially modulated by the method known as tomotherapy. At the planning stage, the intensity of radiation of each beam element (or bixel) is determined by working out the effect of superposing the radiation through all bixels with the elemental dose distribution specified as that from a single bixel with all its neighbours closed (the 'independent-vane' (IV) model). However, at treatment-delivery stage, neighbouring bixels may not be closed. Instead the slit beam is delivered with parts of the beam closed for different periods of time to create the intensity modulation. As a result, the 3D dose distribution actually delivered will differ from that determined at the planning stage if the elemental beams do not obey the superposition principle. The purpose of this paper is to present a method to investigate and quantify the relation between planned and delivered 3D dose distributions. Two modes of inverse planning have been performed: (i) with a fit to the measured elemental dose distribution and (ii) with a 'stretched fit' obeying the superposition principle as in the PEACOCK 3D planning system. The actual delivery has been modelled as a series of component deliveries (CDs). The algorithm for determining the component intensities and the appropriate collimation conditions is specified. The elemental beam from the NOMOS MIMiC collimator is too narrow to obey the superposition principle although it can be 'stretched' and fitted to a superposition function. Hence there are differences between the IV plans made using modes (i) and (ii) and the raw and the stretched elemental beam, and also differences with CD delivery. This study shows that the differences between IV and CD dose distributions are smaller for mode (ii) inverse planning than for mode (i), somewhat justifying the way planning is done within PEACOCK. Using a
Huebner, W. P.; Leigh, R. J.; Seidman, S. H.; Thomas, C. W.; Billian, C.; DiScenna, A. O.; Dell'Osso, L. F.
1992-01-01
1. We used a modeling approach to test the hypothesis that, in humans, the smooth pursuit (SP) system provides the primary signal for cancelling the vestibuloocular reflex (VOR) during combined eye-head tracking (CEHT) of a target moving smoothly in the horizontal plane. Separate models for SP and the VOR were developed. The optimal values of parameters of the two models were calculated using measured responses of four subjects to trials of SP and the visually enhanced VOR. After optimal parameter values were specified, each model generated waveforms that accurately reflected the subjects' responses to SP and vestibular stimuli. The models were then combined into a CEHT model wherein the final eye movement command signal was generated as the linear summation of the signals from the SP and VOR pathways. 2. The SP-VOR superposition hypothesis was tested using two types of CEHT stimuli, both of which involved passive rotation of subjects in a vestibular chair. The first stimulus consisted of a "chair brake" or sudden stop of the subject's head during CEHT; the visual target continued to move. The second stimulus consisted of a sudden change from the visually enhanced VOR to CEHT ("delayed target onset" paradigm); as the vestibular chair rotated past the angular position of the stationary visual stimulus, the latter started to move in synchrony with the chair. Data collected during experiments that employed these stimuli were compared quantitatively with predictions made by the CEHT model. 3. During CEHT, when the chair was suddenly and unexpectedly stopped, the eye promptly began to move in the orbit to track the moving target. Initially, gaze velocity did not completely match target velocity, however; this finally occurred approximately 100 ms after the brake onset. The model did predict the prompt onset of eye-in-orbit motion after the brake, but it did not predict that gaze velocity would initially be only approximately 70% of target velocity. One possible
Creep behavior of starch-based nanocomposite films with cellulose nanofibrils.
Li, Meng; Li, Dong; Wang, Li-jun; Adhikari, Benu
2015-03-06
Nanocomposite films were successfully prepared by incorporating cellulose nanofibrils (CNFs) from sugar beet pulp into plasticized starch (PS) at CNFs concentration of 5-20%. The storage (G') and loss (G″) moduli, creep and creep-recovery behavior of these films were studied. The creep behavior of these films at long time frame was studied using time-temperature superposition (TTS). The CNFs were uniformly distributed within these films up to 15% of CNFs. The PS-only and the PS/CNFs nanocomposite films exhibited dominant elastic behavior. The incorporation of CNFs increased both the G' and G″. The CNFs improved the creep resistance and reduced the creep recovery rate of the PS/CNFs nanocomposite films. TTS method was successfully used to predict the creep behavior of these films at longer time frame. Power law and Burgers model were capable (R(2)>0.98) of fitting experimental G' versus angular frequency and creep strain versus time data, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kruse, Holger; Grimme, Stefan
2012-04-21
A semi-empirical counterpoise-type correction for basis set superposition error (BSSE) in molecular systems is presented. An atom pair-wise potential corrects for the inter- and intra-molecular BSSE in supermolecular Hartree-Fock (HF) or density functional theory (DFT) calculations. This geometrical counterpoise (gCP) denoted scheme depends only on the molecular geometry, i.e., no input from the electronic wave-function is required and hence is applicable to molecules with ten thousands of atoms. The four necessary parameters have been determined by a fit to standard Boys and Bernadi counterpoise corrections for Hobza's S66×8 set of non-covalently bound complexes (528 data points). The method's target are small basis sets (e.g., minimal, split-valence, 6-31G*), but reliable results are also obtained for larger triple-ζ sets. The intermolecular BSSE is calculated by gCP within a typical error of 10%-30% that proves sufficient in many practical applications. The approach is suggested as a quantitative correction in production work and can also be routinely applied to estimate the magnitude of the BSSE beforehand. The applicability for biomolecules as the primary target is tested for the crambin protein, where gCP removes intramolecular BSSE effectively and yields conformational energies comparable to def2-TZVP basis results. Good mutual agreement is also found with Jensen's ACP(4) scheme, estimating the intramolecular BSSE in the phenylalanine-glycine-phenylalanine tripeptide, for which also a relaxed rotational energy profile is presented. A variety of minimal and double-ζ basis sets combined with gCP and the dispersion corrections DFT-D3 and DFT-NL are successfully benchmarked on the S22 and S66 sets of non-covalent interactions. Outstanding performance with a mean absolute deviation (MAD) of 0.51 kcal/mol (0.38 kcal/mol after D3-refit) is obtained at the gCP-corrected HF-D3/(minimal basis) level for the S66 benchmark. The gCP-corrected B3LYP-D3/6-31G* model
Kruse, Holger; Grimme, Stefan
2012-04-01
A semi-empirical counterpoise-type correction for basis set superposition error (BSSE) in molecular systems is presented. An atom pair-wise potential corrects for the inter- and intra-molecular BSSE in supermolecular Hartree-Fock (HF) or density functional theory (DFT) calculations. This geometrical counterpoise (gCP) denoted scheme depends only on the molecular geometry, i.e., no input from the electronic wave-function is required and hence is applicable to molecules with ten thousands of atoms. The four necessary parameters have been determined by a fit to standard Boys and Bernadi counterpoise corrections for Hobza's S66×8 set of non-covalently bound complexes (528 data points). The method's target are small basis sets (e.g., minimal, split-valence, 6-31G*), but reliable results are also obtained for larger triple-ζ sets. The intermolecular BSSE is calculated by gCP within a typical error of 10%-30% that proves sufficient in many practical applications. The approach is suggested as a quantitative correction in production work and can also be routinely applied to estimate the magnitude of the BSSE beforehand. The applicability for biomolecules as the primary target is tested for the crambin protein, where gCP removes intramolecular BSSE effectively and yields conformational energies comparable to def2-TZVP basis results. Good mutual agreement is also found with Jensen's ACP(4) scheme, estimating the intramolecular BSSE in the phenylalanine-glycine-phenylalanine tripeptide, for which also a relaxed rotational energy profile is presented. A variety of minimal and double-ζ basis sets combined with gCP and the dispersion corrections DFT-D3 and DFT-NL are successfully benchmarked on the S22 and S66 sets of non-covalent interactions. Outstanding performance with a mean absolute deviation (MAD) of 0.51 kcal/mol (0.38 kcal/mol after D3-refit) is obtained at the gCP-corrected HF-D3/(minimal basis) level for the S66 benchmark. The gCP-corrected B3LYP-D3/6-31G* model
International Nuclear Information System (INIS)
Papp, E.; Micu, C.; Racolta, D.
2013-01-01
In this paper one deals with the theoretical derivation of energy bands and of related wavefunctions characterizing quasi 1D semiconductor heterostructures, such as InAs quantum wire models. Such models get characterized this time by equal coupling strength superpositions of Rashba and Dresselhaus spin-orbit interactions of dimensionless magnitude a under the influence of in-plane magnetic fields of magnitude B. We found that the orientations of the field can be selected by virtue of symmetry requirements. For this purpose one resorts to spin conservations, but alternative conditions providing sensible simplifications of the energy-band formula can be reasonably accounted for. Besides the wavenumber k relying on the 1D electron, one deals with the spin-like s=±1 factors in the front of the square root term of the energy. Having obtained the spinorial wavefunction, opens the way to the derivation of spin precession effects. For this purpose one resorts to the projections of the wavenumber operator on complementary spin states. Such projections are responsible for related displacements proceeding along the Ox-axis. This results in a 2D rotation matrix providing both the precession angle as well as the precession axis
Directory of Open Access Journals (Sweden)
Teng-Chun Yang
2017-03-01
Full Text Available This study investigated the effectiveness of heat-treated wood particles for improving the physico-mechanical properties and creep performance of wood/recycled-HDPE composites. The results reveal that the composites with heat-treated wood particles had significantly decreased moisture content, water absorption, and thickness swelling, while no improvements of the flexural properties or the wood screw holding strength were observed, except for the internal bond strength. Additionally, creep tests were conducted at a series of elevated temperatures using the time–temperature superposition principle (TTSP, and the TTSP-predicted creep compliance curves fit well with the experimental data. The creep resistance values of composites with heat-treated wood particles were greater than those having untreated wood particles due to the hydrophobic character of the treated wood particles and improved interfacial compatibility between the wood particles and polymer matrix. At a reference temperature of 20 °C, the improvement of creep resistance (ICR of composites with heat-treated wood particles reached approximately 30% over a 30-year period, and it increased significantly with increasing reference temperature.
Yang, Teng-Chun; Chien, Yi-Chi; Wu, Tung-Lin; Hung, Ke-Chang; Wu, Jyh-Horng
2017-01-01
This study investigated the effectiveness of heat-treated wood particles for improving the physico-mechanical properties and creep performance of wood/recycled-HDPE composites. The results reveal that the composites with heat-treated wood particles had significantly decreased moisture content, water absorption, and thickness swelling, while no improvements of the flexural properties or the wood screw holding strength were observed, except for the internal bond strength. Additionally, creep tests were conducted at a series of elevated temperatures using the time–temperature superposition principle (TTSP), and the TTSP-predicted creep compliance curves fit well with the experimental data. The creep resistance values of composites with heat-treated wood particles were greater than those having untreated wood particles due to the hydrophobic character of the treated wood particles and improved interfacial compatibility between the wood particles and polymer matrix. At a reference temperature of 20 °C, the improvement of creep resistance (ICR) of composites with heat-treated wood particles reached approximately 30% over a 30-year period, and it increased significantly with increasing reference temperature. PMID:28772726
International Nuclear Information System (INIS)
Yasui, K; Tarui, Y; Itoh, M
2006-01-01
The idealized magnetic shielded vessel can be realized by making use of a high-critical temperature superconductor (HTS). It is difficult for practical applications, however, to fabricate a shielding vessel that has a high value of the maximum shielded magnetic flux density B s0 . The present authors have improved the value of B s0 for the Bi-Pb-Sr-Ca-Cu-O (BPSCCO) cylinder used as the shielding vessel, by the superposition of a four-layered softiron cylinder over the BPSCCO cylinder, termed the four-layered superimposed cylinder. The B s4 value of 610 x 10 -4 T for the four-layered superimposed cylinder, is found to be about 4 times larger than that of a single-BPSCCO cylinder, and is theoretically analyzed by use of a new analysis method. The experimental values of the maximum shielded magnetic flux density B sn of n-layered superimposed cylinders are found to agree well with those of the theoretical analysis. Experimental results revealed several characteristics of the magnetic shielding within the n-layered superimposed cylinders. Also discussed is the new analysis method for the relationship between the n and B sn
2016-12-01
male I’a nui hahai TYH WEN MUK, NOC female HF Jacobs and Hall, 1972 Kastelein et al., 2002** Kastelein, Hoek, de Jong, and Wensveen...Ridgway, S. H., D. A. Carder, T. Kamolnick, R. R. Smith, C. E. Schlundt, and W. R. Elsberry. 2001. “Hearing and Whistling in the Deep Sea: Depth
Experiments in rapid development of accurate phonetic alignments for TTS in Afrikaans
CSIR Research Space (South Africa)
Van Niekerk, DR
2011-11-01
Full Text Available and Piloting of a Voice-based Information Service.? in WWW 2011. IW3C2, 2011, pp. 433?442. [5] J. Kominek and A. Black, ?The CMU arctic speech databases,? in The 5th ISCA Speech Synthesis Workshop, 2004, pp. 223?224. [6] J. P. Van Santen and A. L. Buchsbaum.... Povey, V. Veltchev, and P. Woodland, The HTK Book (for HTK Version 3.3). http://htk.eng.cam.ac.uk/: Cambridge University Engineering Department, 2005. [10] J. Kominek, T. Schultz, and A. Black, ?Synthesizer Voice Quality of New Languages Calibrated...
Application of expressive speech in the TTS system with cepstral description
Czech Academy of Sciences Publication Activity Database
Přibil, Jiří; Přibilová, Anna
-, č. 5042 (2008), s. 200-212 ISSN 0302-9743 R&D Projects: GA AV ČR 1QS108040569 Grant - others:MŠk(SK) 1/3107/06 Institutional research plan: CEZ:AV0Z20670512 Keywords : speech synthesis * speech processing Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering
Ourjoumtsev, A.
In this thesis, we develop new methods to generate and analyse non-classical states of the light for quantum information processing. We show that the tools of discrete variables, where light is described in terms of photons, can be combined with a continuous approach, where one considers the quadratures of the electromagnetic field, to efficiently create, transform and analyze complex quantum states. Using ultrashort light pulses, we prepared optical “Schrödinger cats”, defined as quantum superpositions of coherent states. In this case the Wigner function, describing the quantum statistics of the electromagnetic field, differs from a classical probability distribution and takes negative values. Time-resolved homodyne tomography allowed us to realize the first experimental observation of this negativity for small free-propagating “Schrödinger kittens”. Furthermore, we developped and experimentally demonstrated a protocol to prepare arbitrarily large “Schrödinger cat” states, opening a way towards numerous quantum information processing protocols. We have shown experimentally that contitional photon subtraction allows one to increase the entanglement of gaussian states. We used this method to entangle two initially independent distant light pulses, using a low-transmission quantum channel. This approach allows one to prepare strongly entangled states with negative Wigner functions between distant sites, as required for entanglement distillation and long-distance quantum communications. Cette thèse porte sur la manipulation d'états non-classiques de la lumière, et leurs applications à l'information quantique. Nous montrons que les outils propres à une description discrète, oÃ¹ la lumière est considérée comme un ensemble de photons, peuvent être efficacement combinés avec une approche continue, oÃ¹ l'on s'intéresse aux quadratures de l'onde électromagnétique, pour créer, transformer et analyser des états quantiques complexes. Nous
Topological superposition of abstractions of stochastic processes
Bujorianu, L.M.; Bujorianu, M.C.
2008-01-01
In this paper, we present a sound integration mechanism for Markov processes that are abstractions of stochastic hybrid systems (SHS). In a previous work, we have defined a very general model of SHS and we proved that the realization of an SHS is a Markov process. Moreover, we have developed a
Harmonic superpositions of M-branes
International Nuclear Information System (INIS)
Tseytlin, A.A.
1996-01-01
We present solutions describing supersymmetric configurations of 2 or 3 orthogonally intersecting 2-branes and 5-branes of D=11 supergravity. The configurations which preserve 1/4 or 1/8 of maximal supersymmetry are 2 perpendicular to 2, 5 perpendicular to 5, 2 perpendicular to 5, 2 perpendicular to 2 perpendicular to 2, 5 perpendicular to 5 perpendicular to 5, 2 perpendicular to 2 perpendicular to 5 and 2 perpendicular to 5 perpendicular to 5 (2 perpendicular to 2 stands for orthogonal intersection of two 2-branes over a point, etc.; p-branes of the same type intersect over (p-2)-branes). There exists a simple rule which governs the construction of composite supersymmetric p-brane solutions in D=10 and 11 with a separate harmonic function assigned to each constituent 1/2-supersymmetric p-brane. The resulting picture of intersecting p-brane solutions complements their D-brane interpretation in D=10 and seems to support possible existence of a D=11 analogue of D-brane description. The D=11 solution describing intersecting 2-brane and 5-brane reduces in D=10 to a type II string solution corresponding to a fundamental string lying within a solitonic 5-brane (which further reduces to an extremal D=5 black hole). We also discuss a particular D=11 embedding of the extremal D=4 dyonic black hole solution with finite area of horizon. (orig.)
Model and prediction of stress relaxation of polyurethane fiber
You, Gexin; Wang, Chunyan; Mei, Shuqin; Yang, Bo; Zhou, Xiuwen
2018-03-01
In this study, the effect of small strain (less than 10%) on hydrogen bond (H-bond) and crystallinity of dry-spun polyurethane fiber was investigated with fourier transform infrared spectroscopy and x-ray diffractometer, respectively. The results showed that the H-bond of hard segments hardly broke and its degree of crystallinity scarcely varied below strain of 10%. The fiber stress relaxation behavior at 25 °C under small strain was researched using dynamic mechanical analyzer. The stress relaxation modulus constitutive equation was obtained by transforming the non-linear relationship between stress and time into the linear relationship between stress and strain. The stress relaxation modulus master curve at 25 °C was established in terms of short-term stress relaxation tests at elevated temperatures (35 °C, 45 °C, 65 °C and 75 °C) according to time-temperature superposition principle (TTS) to predict long-term behavior within 353 year.
Jangu, Chainika; Schultz, Alison R; Wall, Candace E; Esker, Alan R; Long, Timothy E
2016-07-01
Conventional free radical polymerization and post-alkylation of 4-diphenylphosphino styrene (DPPS) generate a new class of high-molecular-weight phosphonium-containing homopolymers with tunable thermal, viscoelastic, and wetting properties. Post-alkylation and subsequent anion exchange provide an effective method for tuning Tg values and thermal stability as a function of alkyl chain length and counteranion selection (X(-) , BF4 (-) , TfO(-) , and Tf2 N(-) ). Rheological characterization facilitates the generation of time-temperature-superposition (TTS) pseudomaster curves and subsequent analysis of frequency sweeps at various temperatures reveals two relaxation modes corresponding to long-range segmental motion and the onset of viscous flow. Contact angle measurements reveal the influence of counteranion selection on wetting properties, revealing increased contact angles for homopolymers containing nucleophilic counteranions. These investigations provide fundamental insight into phosphonium-containing polymers, aiming to guide future research and applications involving electro-active polymeric devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ahmed, Jasim; Hiremath, Nikhil; Jacob, Harsha
2016-02-01
Polylactide (PLA) is the most mature biobased and biodegradable polymer. Due to its inherent brittleness, the polymer cannot be used as a packaging material without plasticizer. An attempt was made to develop antimicrobial plasticized PLA film by incorporating polyethylene glycol (PEG) and 3 essential oils (EO), namely cinnamon, garlic, and clove by solvent casting method. Physical, thermal, and rheological properties of those films were evaluated for practical applications whereas the antimicrobial properties were tested against Staphylococcus aureus and Campylobacter jejuni-pathogens related to poultry industry. Both PEG and EOs led to the formation of flexible PLA/PEG/EO films with significant drop in the glass transition temperature (Tg ), and mechanical property. Time-temperature superposition (TTS) principle was employed to melt rheology of EO-based films at selected temperature, and rheological moduli superimposed well in an extended frequency range. Among EOs, cinnamon and clove oil-based films (PLA/PEG/CIN and PLA/PEG/CLO) exhibited a complete zone of inhibition against C. jejuni at the maximum concentration (1.6 mL per 2 g PLA/PEG blend) whereas the garlic oil-based film (PLA/PEG/GAR) had the lowest activity. © 2016 Institute of Food Technologists®
Energy Technology Data Exchange (ETDEWEB)
Small, Ward [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pearson, Mark A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Maiti, Amitesh [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Metz, Thomas R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Duoss, Eric B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, Thomas S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-11-13
Dow Corning SE 1700 (reinforced polydimethylsiloxane) porous structures were made by direct ink writing (DIW). The specimens (~50% porosity) were subjected to various compressive strains (15, 30, 45%) and temperatures (room temperature, 35, 50, 70°C) in a nitrogen atmosphere (active purge) for 1 year. Compression set and load retention of the aged specimens were measured periodically during the study. Compression set increased with strain and temperature. After 1 year, specimens aged at room temperature, 35, and 50°C showed ~10% compression set (relative to the applied compressive deflection), while those aged at 70°C showed 20-40%. Due to the increasing compression set, load retention decreased with temperature, ranging from ~90% at room temperature to ~60-80% at 70°C. Long-term compression set and load retention at room temperature were predicted by applying time-temperature superposition (TTS). The predictions show compression set relative to the compressive deflection will be ~10-15% with ~70-90% load retention after 50 years at 15-45% strain, suggesting the material will continue to be mechanically functional. Comparison of the results to previously acquired data for cellular (M97*, M9760, M9763) and RTV (S5370) silicone foams suggests that the SE 1700 DIW porous specimens are on par with, or outperform, the legacy foams.
Directory of Open Access Journals (Sweden)
Hassan S. OTUOZE
2015-12-01
Full Text Available Traditional asphalt tests like Hveem and Marshall tests are at best mere characterization than effective test of pavement field performance because of complex viscoelastic behavior of asphalt. Mechanical properties otherwise called simple performance tests (SPT are performance criteria of asphalt. Dynamic modulus among other SPT’s like permanent deformation, fatigue cracking, thermal cracking, moisture susceptibility, shear and friction properties; determines stress-strain to time-temperature relationships that imparts on strength, service life and durability. The test followed the recommendations of NCHRP 1-37a (2004 and mixes were prepared using 0, 0.5, 1.0 and 1.5% HDPP contents. The parameters tested for dynamic modulus, /E*/, are stiffness, recoverable strain (ε, and phase angle (ξ. Time – temperature superposition (TTS called master curve was fitted using sigmoidal curve to interpolate the parameters beyond measured data set so as to observe the viscoelastic behavior outside the physical properties. The performance of 0.5% HDPP asphalt is better enhanced than the conventional asphalt to improve upon strength, service and durability.
An elapsed time-temperature monitor for blood storage.
Harris, G E; Cloud, S; Myhre, B A
1977-01-01
Blood should not be allowed to exceed 10 C while being stored or transported. However, one cannot test the internal temperature of a unit of blood without contaminating it. Most blood banks have established an arbitrary time limit beyond which a blood unit cannot be kept out of the refrigerator. This method is ineffective if blood is stored in a satellite refrigerator, since the blood may be moved in and out of the refrigerator and the blood bank personnel will be unaware of it. An elapsed time indicator is described which employs a small condenser (E-Cell-Plessey Electronics) charged with a known amount of electricity. If the device is removed from the refrigerator, it begins to discharge at a known rate. The amount of time subsequently can be determined by the loss of charge. The prototype of this instrument has been found to be quite accurate and small (2 inches X 2 inches X 1 inch). It would be rather inexpensive if made in considerable numbers.
"Deflategate": Time, Temperature, and Moisture Effects on Football Pressure
Blumenthal, Jack; Beljak, Lauren; Macatangay, Dahlia-Marie; Helmuth-Malone, Lilly; McWilliams, Catharina; Raptis, Sofia
2016-01-01
In a recent paper in "The Physics Teacher (TPT)", DiLisi and Rarick used the National Football League "Deflategate" controversy to introduce to physics students the physics of a bouncing ball. In this paper, we measure and analyze the environmental effects of time, ambient temperature, and moisture on the internal pressure of…
Energy Technology Data Exchange (ETDEWEB)
Otero, E.; Pardo, A.; Hernaez, J.; Hierro, P. (Universidad Complutense de Madrid (Spain) Dept. Ciencias de Materiales)
1990-01-01
Corrosion rate data obtained by the polarization resistance method in nickel-base superalloys in contact with Na{sub 2}SO{sub 4}-V{sub 2}O{sub 5} molten mixtures are presented. The instrumental technique is also described. Time-temperature influence on the corrosion kinetics in the described conditions is discussed (Author)
Ennih, N.; Laduron, D.; Greiling, R. O.; Errami, E.; de Wall, H.; Boutaleb, M.
2001-05-01
The Zenaga Inlier shows a comprehensive record of the Eburnian and Pan-African Orogenies. The Eburnian is characterised by high-temperature regional metamorphism and complex magmatism. The early (Azguemerzi) granodiorite has an isotopic mantle signature and was emplaced diapirically during the Eburnian Orogeny causing local thermal metamorphism. The foliation observed in this granitoid is a result of the interference between its primary syn-emplacement foliation and the regional foliation under amphibolite-facies conditions. The northern part of Zenaga has been intruded by the leucocratic granites of Tazenakht. These granites are cut by mylonites and phyllonites, corresponding to the Pan-African shear zones and accompanied with sub-greenschist-facies metamorphism during the Pan-African Orogeny. The deformation was the result of a regional sinistral transpressive event. This study in the northern part of the West African Craton shows the superposition of the Pan-African on the Eburnian Orogeny and the presence of a major fault in the Anti-Atlas.
Amiri, Ali
In recent years there has been a resurgence of interest in the usage of natural fiber reinforced composites in more advanced structural applications. Consequently, the need for improving their mechanical properties as well as service life and long-term behavior modeling and predictions has arisen. In a step towards further development of these materials, in this study, two newly developed biobased resins, derived from soybean oil, methacrylated epoxidized sucrose soyate and double methacrylated epoxidized sucrose soyate are combined with untreated and alkaline treated flax fiber to produce novel biocomposites. Vinyl ester reinforced with flax fiber is used as control in addition to comparing properties of biobased composites against commercial pultruded composites. Effects of alkaline treatment of flax fiber as well as addition of 1% acrylic resin to vinyl ester and the two mentioned biobased resins on mechanical properties are studied. Properties are evaluated in short-term and also, after being exposed to accelerated weathering (i.e. UV and moisture). Moreover, long-term creep of these novel biobased composites and effect of fiber and matrix treatment on viscoelastic behavior is investigated using Time-temperature superposition (TTS) principle. Based on the results of this study, the TTS provides an accelerated method for evaluation of mechanical properties of biobased composites, and satisfactory master curves are achieved by use of this principle. Also, fiber and matrix treatments were effective in increasing mechanical properties of biobased composites in short-term, and treatments delayed the creep response and slowed the process of creep in composites under study in the steady state region. Overall, results of this study reveal the successful production of biocomposites having properties that meet or exceed those of conventional pultruded members while maintaining high biocontent. Composites using treated flax fiber and newly developed resins showed less
Atomic quantum superposition state generation via optical probing
DEFF Research Database (Denmark)
Nielsen, Anne E. B.; Poulsen, Uffe Vestergaard; Negretti, Antonio
2009-01-01
investigate cavity enhanced probing with continuous beams of both coherent and squeezed light. The stochastic master equations used in the analysis are expressed in terms of the Hamiltonian of the probed system and the interaction between the probed system and the probe field and are thus quite generally...
False Paradoxes of Superposition in Electric and Acoustic Waves.
Levine, Richard C.
1980-01-01
Corrected are several misconceptions concerning the apparently "missing" energy that results when acoustic or electromagnetic waves cancel by destructive interference and the wave impedance reflected to the sources of the wave energy changes so that the input power is reduced. (Author/CS)
Starting SCF Calculations by Superposition of Atomic Densities
van Lenthe, J.H.; Zwaans, R.; van Dam, H.J.J.; Guest, M.F.
2006-01-01
We describe the procedure to start an SCF calculation of the general type from a sum of atomic electron densities, as implemented in GAMESS-UK. Although the procedure is well-known for closed-shell calculations and was already suggested when the Direct SCF procedure was proposed, the general
Quantum teleportation of an arbitrary superposition of atomic states
Institute of Scientific and Technical Information of China (English)
Chen Qiong; Fang Xi-Ming
2008-01-01
This paper proposes a scheme to teleport an arbitrary multi-particle two-level atomic state between two parties or an arbitrary zero- and one-photon entangled state of multi-mode between two high-Q cavities in cavity QED.This scheme is based on the resonant interaction between atom and cavity and does not involve Bell-state measurement.It investigates the fidelity of this scheme and find out the case of this unity fidelity of this teleportation.Considering the practical case of the cavity decay,this paper finds that the condition of the unity fidelity is also valid and obtains the effect of the decay of the cavity on the successful probability of the teleportation.
Approximate eigensolutions of Dirac equation for the superposition ...
Indian Academy of Sciences (India)
2014-07-02
Jul 2, 2014 ... tion [5], superdeformation [6], identical bands [7] and magnetic moment [8]. ... angular momentum ˜l is nothing but the orbital angular momentum of the lower compo- ... However, the dependence of the quality of PSS on the relativistic effect has not been ... symmetries in the framework of the NU method.
Spatial properties of coaxial superposition of two coherent Gaussian beams
CSIR Research Space (South Africa)
Boubaha, B
2013-08-01
Full Text Available that of the first focal point owing to its larger diameter, and subsequently decreases as K increases. 3. Interferometric Beam Shaping An interesting feature of the CGB is when the param- eter K is reduced, one observes that the number of rings shown in Fig. 1... for K . It is remarkable to notice that the beam shaping properties displayed in Fig. 5 are obtained from the interference of two coherent GBs, which are coaxially superposed by resorting to a two-wave interferom- eter or by generating the modulating...
Superpositions of light fields carrying orbital angular momentum
CSIR Research Space (South Africa)
Dudley, Angela L
2012-01-01
Full Text Available -Zehnder interferometer to mimic an amplitude damping channel for OAM states in chapter 3. Our device is useful in modelling a ?lossy? environment for OAM states. In chapter 4 we develop a new technique for the generation of superimposed Bessel beams through the use... modulators.....................................................................................25 2.4. Spiral holograms................................................................................................29 2.4.1. Off-axis spiral holograms...
Parameter-free resolution of the superposition of stochastic signals
Energy Technology Data Exchange (ETDEWEB)
Scholz, Teresa, E-mail: tascholz@fc.ul.pt [Center for Theoretical and Computational Physics, University of Lisbon (Portugal); Raischel, Frank [Center for Geophysics, IDL, University of Lisbon (Portugal); Closer Consulting, Av. Eng. Duarte Pacheco Torre 1 15" 0, 1070-101 Lisboa (Portugal); Lopes, Vitor V. [DEIO-CIO, University of Lisbon (Portugal); UTEC–Universidad de Ingeniería y Tecnología, Lima (Peru); Lehle, Bernd; Wächter, Matthias; Peinke, Joachim [Institute of Physics and ForWind, Carl-von-Ossietzky University of Oldenburg, Oldenburg (Germany); Lind, Pedro G. [Institute of Physics and ForWind, Carl-von-Ossietzky University of Oldenburg, Oldenburg (Germany); Institute of Physics, University of Osnabrück, Osnabrück (Germany)
2017-01-30
This paper presents a direct method to obtain the deterministic and stochastic contribution of the sum of two independent stochastic processes, one of which is an Ornstein–Uhlenbeck process and the other a general (non-linear) Langevin process. The method is able to distinguish between the stochastic processes, retrieving their corresponding stochastic evolution equations. This framework is based on a recent approach for the analysis of multidimensional Langevin-type stochastic processes in the presence of strong measurement (or observational) noise, which is here extended to impose neither constraints nor parameters and extract all coefficients directly from the empirical data sets. Using synthetic data, it is shown that the method yields satisfactory results.
Efficient Power Allocation for Video over Superposition Coding
Lau, Chun Pong; Jamshaid, K.; Shihada, Basem
2013-01-01
are conducted to gain a better understanding of its efficiency, specifically, the impact of the received signal due to different power allocation ratios. Our experimental results show that to maintain high video quality, the power allocated to the base layer
On the superposition of bedforms in a tidal channel
DEFF Research Database (Denmark)
Winter, C; Vittori, G.; Ernstsen, V.B.
2008-01-01
High resolution bathymetric measurements reveal the super-imposition of bedforms in the Grådyb tidal inlet in the Danish Wadden Sea. Preliminary results of numerical model simulations are discussed: A linear stability model was tested to explain the large bedforms as being caused by tidal system ...
Anonymous,
1999-01-01
Labour is still important as one of the main production factors in agriculture. It plays not only an important role due to the high share of the production costs, but also do the human behaviour factors play an important and even increasing role on many farms. One may think of the quality of work to
National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Data Records (CDR) for Channel 7 contains Radio Occulation (RO) calibrated brightness temperatures from AMSU-A channel 7 measurements at 54.9 GHz from...
Peanuts in North America and Europe are primarily consumed after dry roasting. Standard industry practice is to roast peanuts to a specific surface color (Hunter L-value) for a given application; however, equivalent surface colors can be attained using different roast temperature/time combinations,...
Apple detection using infrared thermal image, 3: Real-time temperature measurement of apple tree
International Nuclear Information System (INIS)
Zhang, S.H.; Takahashi, T.; Fukuchi, H.; Sun, M.; Terao, H.
1998-01-01
In Part 1, we reported the thermal distribution characteristics and the identification methods of apples, leaves and branches by using the infrared thermal image at the specific time. This paper reports the temperature changing characteristics and the relationships among apples, leaves and air temperature based on the information measured by the infrared thermal image equipment in the real-time for 24 hours. As a result, it was confirmed that the average temperature of apples was 1 degree C or more higher than the one of the leaves, and the average temperature of the leaves was almost same as the air temperature within daytime and about 3 hours period after sunset. It was also clarified for a remarkable temperature difference not to exist for midnight and the early morning between the apples and the leaves, and both became almost as well as the air temperature. Moreover, a binary image was easily obtained and the apples could be detected by using this temperature difference informat
Time-temperature characteristics of the various heat-affected zones in HT-9 weldments
International Nuclear Information System (INIS)
Foulds, J.R.
1984-01-01
Temperatures at different distances from the fusion boundary were measured during GTA weld depositing MTS-4 filler wire on 9.52-mm (3/8 in.) thick HT-9 plate. Peak temperature measurements indicate each of the heat-affected regions to be austenitized. An exponential expression has been used to describe the cooling curves as a function of peak temperature (or distance) from the fusion boundary
Steinberg, Idan; Tamir, Gil; Gannot, Israel
2017-02-01
Systemic hyperthermia therapy exploits the fact that cancer cells are more sensitive to elevated temperatures than healthy tissue. Systemic application of hyperthermia externally usually leads to low efficiency treatment. Recently, our group and others have proposed an antibody conjugated magnetic nanoparticles (MNPs) approach to overcome the limitation of systemic hyperthermia. MNPs can bind specifically to the tumor sites, thus delivering internal highly effective targeted hyperthermia. However, such internal mechanism requires more complicated controls and monitoring. This current work presents a deep tissue temperature monitoring method to control hyperthermia effectiveness and minimize collateral damage to surrounding tissues. A low-frequency narrowband modulation of the RF field used for MNP heating leads to the generation of diffused thermal waves which propagate to the tissue surface and captured by a thermal camera. A Fourier domain, analytical heat transfer model is used for temperature monitoring algorithm. The ill-posed thermal inverse problem is solved efficiently by iterating over the source power until both the amplitude and phase match the recorded thermal image sequence. The narrow bandwidth thermal stimulation enables acquiring deep signals with high SNR. We show that thermal transverse resolution improves as the stimulation frequency increases even slightly above DC, enabling better heat source transverse separation and margin identification in the case of distributed tumors. These results can be used as a part of an overall image and treat system for efficient detection of tumors, manipulation of MNPs and monitoring MNP based hyperthermia.
Czech Academy of Sciences Publication Activity Database
Zablotskyy, Vitaliy A.; Lunov, O.; Gómez-Polo, C.
2010-01-01
Roč. 10, č. 2 (2010), 690-695 ISSN 1533-4880 Institutional research plan: CEZ:AV0Z10100520 Keywords : interstitial hyperthermia * thermometry * magnetic nanoparticles * radiotherapy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.351, year: 2010
In-Situ Real-Time Temperature Monitoring of Thermal Protection Systems, Phase I
National Aeronautics and Space Administration — This program addresses the need for interfacial and in-depth temperature monitoring of thermal protection systems (TPS). Novel, linear drive, eddy current methods...
Energy Technology Data Exchange (ETDEWEB)
Brown, H A
1976-04-01
A field and laboratory study on temperature-related embryonic development of Ambystoma gracile was made on a population from northwestern Washington. Natural spawning began in the beaver pond during early March, and the duration of embryonic development (stages 1 to 46) was about 62 days. Average water temperature in the pond during embryonic development was 8.5/sup 0/C (range, 4.4 to 14.3/sup 0/C). The laboratory data of embryonic development at constant temperatures show that the limits of temperature tolerance are about 5 to 22.5/sup 0/C. Rate of development was measured by determining time required to develop from first cleavage (stage 2) to gill circulation (stage 37); representative rates are 12.7 days at 20/sup 0/C, 27 days at 12/sup 0/C, and 89 days at 7/sup 0/C. Embryos of A. gracile have the slowest rate of development when compared with embryos of four other species of Ambystoma (maculatum, mexicanum, tigrinum, and jeffersonianum) and with embryos of three Pacific Northwest frogs (Ascaphus truei, Rana aurora, and Hyla regilla).
Thermal Skin Damage During Reirradiation and Hyperthermia Is Time-Temperature Dependent
Energy Technology Data Exchange (ETDEWEB)
Bakker, Akke, E-mail: akke.bakker@amc.uva.nl [Department of Radiation Oncology, Academic Medical Center (AMC), Amsterdam (Netherlands); Kolff, M. Willemijn [Department of Radiation Oncology, Academic Medical Center (AMC), Amsterdam (Netherlands); Holman, Rebecca [Clinical Research Unit, Academic Medical Center (AMC), Amsterdam (Netherlands); Leeuwen, Caspar M. van; Korshuize-van Straten, Linda; Kroon-Oldenhof, Rianne de; Rasch, Coen R.N.; Tienhoven, Geertjan van; Crezee, Hans [Department of Radiation Oncology, Academic Medical Center (AMC), Amsterdam (Netherlands)
2017-06-01
Purpose: To investigate the relationship of thermal skin damage (TSD) to time–temperature isoeffect levels for patients with breast cancer recurrence treated with reirradiation plus hyperthermia (reRT + HT), and to investigate whether the treatment history of previous treatments (scar tissue) is a risk factor for TSD. Methods and Materials: In this observational study, temperature characteristics of hyperthermia sessions were analyzed in 262 patients with recurrent breast cancer treated in the AMC between 2010 and 2014 with reirradiation and weekly hyperthermia for 1 hour. Skin temperature was measured using a median of 42 (range, 29-82) measurement points per hyperthermia session. Results: Sixty-eight patients (26%) developed 79 sites of TSD, after the first (n=26), second (n=17), third (n=27), and fourth (n=9) hyperthermia session. Seventy percent of TSD occurred on or near scar tissue. Scar tissue reached higher temperatures than other skin tissue (0.4°C, P<.001). A total of 102 measurement points corresponded to actual TSD sites in 35 of 79 sessions in which TSD developed. Thermal skin damage sites had much higher maximum temperatures than non-TSD sites (2.8°C, P<.001). Generalized linear mixed models showed that the probability of TSD is related to temperature and thermal dose values (P<.001) and that scar tissue is more at risk (odds ratio 0.4, P<.001). Limiting the maximum temperature of a measurement point to 43.7°C would mean that the probability of observing TSD was at most 5%. Conclusion: Thermal skin damage during reRT + HT for recurrent breast cancer was related to higher local temperatures and time–temperature isoeffect levels. Scar tissue reached higher temperatures than other skin tissue, and TSD occurred at lower temperatures and thermal dose values in scar tissue compared with other skin tissue. Indeed, TSD developed often on and around scar tissue from previous surgical procedures.
Doughnut laser beam as an incoherent superposition of two petal beams
CSIR Research Space (South Africa)
Litvin, IA
2014-02-01
Full Text Available Laguerre–Gaussian beams with a nonzero azimuthal index are known to carry orbital angular momentum (OAM), and are routinely created external to laser cavities. The few reports of obtaining such beams from laser cavities suffer from inconclusive...
Poynting vector and orbital angular momentum density of superpositions of Bessel beams
CSIR Research Space (South Africa)
Litvin, IA
2011-08-01
Full Text Available ?bal, and M. L. Calvo, ?Microparticle movements in optical funnels and pods,? Opt. Express 19(6), 5232?5243 (2011). 36. S. H. Tao, X. C. Yuan, J. Lin, and R. E. Burge, ?Residue orbital angular momentum in interferenced double vortex beams with unequal... ???? ?? ??? ? ??? ? ???? ? ??? ? + +??? ? ??? ? + ? ??? ? ??? ? +??? ? ??? ? + ? +?? ? ? ? ?? ? ? ? + = ? (13) where we assume both fields are modulated by the same Gaussian beam of width w0, resulting in a Gaussian Rayleigh range of zr, and for brevity we have collapsed the phase terms related to the piston and Gouy phase shifts into the function ?(z...
Quantum Properties of the Superposition of Two Nearly Identical Coherent States
Othman, Anas; Yevick, David
2018-04-01
In this paper, we examine the properties of the state obtained when two nearly identical coherent states are superimposed. We found that this state exhibits many nonclassical properties such as sub-Poissonian statistics, squeezing and a partially negative Wigner function. These and other properties indicate that such states, here termed near coherent states, are significantly closer to coherent states more than the generalized Schrördinger cat states. We finally provide an experimental procedure for generating the near coherent states.
The Cognitive Toolkit of Programming--Algorithmic Abstraction, Decomposition-Superposition
Szlávi,Péter; Zsakó, László
2017-01-01
As a programmer when solving a problem, a number of conscious and unconscious cognitive operations are being performed. Problem-solving is a gradual and cyclic activity; as the mind is adjusting the problem to its schemas formed by its previous experiences, the programmer gets closer and closer to understanding and defining the problem. The…
Bosser, A.; Tsiligiannis, G.; Ferraro, R.; Frost, C.; Javanainen, A.; Puchner, H.; Rossi, M.; Saigne, F.; Virtanen, A.; Wrobel, F.; Zadeh, A.; Dilillo, L.
2015-01-01
A methodology is proposed for the statistical analysis of memory radiation test data, with the aim of identifying trends in the single-even upset (SEU) distribution. The treated case study is a 65nm SRAM irradiated with neutrons, protons and heavy-ions.
2011-08-01
Research Council Centre of Excellence, School of Physics, University of Sydney, NSW 2006, Australia, 3IFN-CNR, Dipartimento di Fisica , Politecnico di...Cristian Manzoni, 1,* Jeffrey Moses, 2 Franz X. Kärtner, 2,3 and Giulio Cerullo 1 1IFN-CNR, Dipartimento di Fisica , Politecnico di Milano, Piazza L...Cerullo1 1 IFN-CNR, Dipartimento di Fisica , Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy 2 Department of Electrical
On the accuracy of mode-superposition analysis of linear systems under stochastic agencies
International Nuclear Information System (INIS)
Bellomo, M.; Di Paola, M.; La Mendola, L.; Muscolino, G.
1987-01-01
This paper deals with the response of linear structures using modal reduction. The MAM (mode acceleration method) correction is extended to stochastic analysis in the stationary case. In this framework the response of the given structure must be described in a probabilistic sense and the spectral moments of the nodal response must be computed in order to obtain a full description of the vibratory stochastic phenomenon. In the deterministic analysis the response is substantially made up of two terms, one of which accounts for the dynamic response due to the lower modes while the second accounts for the contribution due to the higher modes. In stochastic analysis the nodal spectral moments are made up of three terms; the first accounts for the spectral moments of the dynamic response due to the lower modes, the second accounts for the spectral moments of input and the third accounts for the cross-spectral moments between the input and the nodal output. The analysis is applied to a 35-storey building subjected to wind multivariate environments. (orig./HP)
gWEGA: GPU-accelerated WEGA for molecular superposition and shape comparison.
Yan, Xin; Li, Jiabo; Gu, Qiong; Xu, Jun
2014-06-05
Virtual screening of a large chemical library for drug lead identification requires searching/superimposing a large number of three-dimensional (3D) chemical structures. This article reports a graphic processing unit (GPU)-accelerated weighted Gaussian algorithm (gWEGA) that expedites shape or shape-feature similarity score-based virtual screening. With 86 GPU nodes (each node has one GPU card), gWEGA can screen 110 million conformations derived from an entire ZINC drug-like database with diverse antidiabetic agents as query structures within 2 s (i.e., screening more than 55 million conformations per second). The rapid screening speed was accomplished through the massive parallelization on multiple GPU nodes and rapid prescreening of 3D structures (based on their shape descriptors and pharmacophore feature compositions). Copyright © 2014 Wiley Periodicals, Inc.
Measuring the orbital angular momentum density for a superposition of Bessel beams
CSIR Research Space (South Africa)
Dudley, Angela L
2012-01-01
Full Text Available and amplitude gratings,? Opt. Commun. 284(1), 48?51 (2011). [8] Mair, A., Vaziri, A., Weihs, G., and Zeilinger, A., ?Entanglement of the orbital angular momentum states of photons,? Nature 412(6844), 313?316 (2001). [9] Gibson, G., Courtial, J., Padgett, M...
DC-pass filter design with notch filters superposition for CPW rectenna at low power level
Rivière, J.; Douyère, A.; Alicalapa, F.; Luk, J.-D. Lan Sun
2016-03-01
In this paper the challenging coplanar waveguide direct current (DC) pass filter is designed, analysed, fabricated and measured. As the ground plane and the conductive line are etched on the same plane, this technology allows the connection of series and shunt elements to the active devices without via holes through the substrate. Indeed, this study presents the first step in the optimization of a complete rectenna in coplanar waveguide (CPW) technology: key element of a radio frequency (RF) energy harvesting system. The measurement of the proposed filter shows good performance in the rejection of F0=2.45 GHz and F1=4.9 GHz. Additionally, a harmonic balance (HB) simulation of the complete rectenna is performed and shows a maximum RF-to-DC conversion efficiency of 37% with the studied DC-pass filter for an input power of 10 µW at 2.45 GHz.
Attempt to model the edge turbulence of a tokamak as a random superposition of eddies
Energy Technology Data Exchange (ETDEWEB)
Endler, M; Theimer, G; Weinlich, M; Carlson, A; Giannone, L.; Niedermeyer, H; Rudyj, A [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)
1993-12-31
Turbulence is considered to be the most likely origin of the anomalous transport in tokamaks. Although the main interest is focussed on the bulk plasma, transport in the scrape-off layer is very important for reactor design. For this reason extensive experimental investigations of the edge turbulence were performed on the ASDEX divertor tokamak. Langmuir probe arrays were used in the floating potential mode and in the ion saturation mode to measure the poloidal distribution of density and plasma potential fluctuations neglecting temperature fluctuations. Density fluctuations integrated radially over the boundary layer were derived from H{sub {alpha}}-measurements. Data from up to 16 channels were sampled with a frequency of 1 MHz during time windows of 1 s. Often one parameter like the plasma density or the radial probe position were scanned during this interval. It is impossible to derive physical mechanisms directly from these statistical observations. We draw general conclusions about the physics involved from the entity of observations and propose a set of basic effects to include in a theoretical model. Being still unable to solve the complex nonlinear problem of the fully developed turbulence exactly we attempt to describe the turbulence with a simple non-self-consistent statistical model. This allows to derive plausible physical interpretations of several features of the statistical functions and may be used as a guide-line for the development of a manageable theoretical model. (author) 6 refs., 3 figs.
Constructing “petal” modes from the coherent superposition of Laguerre-Gaussian modes
CSIR Research Space (South Africa)
Naidoo, Darryl
2011-01-01
Full Text Available An experimental approach in generating Petal-like transverse modes, which are similar to what is seen in porro-prism resonators, has been successfully demonstrated. We hypothesize that the petal-like structures are generated from a coherent...
Shepherd, G. G.; Cho, Y.-M.
2017-07-01
Longitudinal variations of airglow emission rate are prominent in all midlatitude nighttime O(1S) lower thermospheric data obtained with the Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite (UARS). The pattern generally appears as a combination of zonal waves 1, 2, 3, and 4 whose phases propagate at different rates. Sudden localized enhancements of 2 to 4 days duration are sometimes evident, reaching vertically integrated emission rates of 400 R, a factor of 10 higher than minimum values for the same day. These are found to occur when the four wave components come into the same phase at one longitude. It is shown that these highly localized longitudinal maxima are consistent with the historical phenomena known as "bright nights" in which the surroundings of human dark night observers were seen to be illuminated by this enhanced airglow.Plain Language SummaryFor centuries, going back to the Roman era, people have recorded experiences of brightened skies during the night, called "bright nights." Currently, scientists study airglow, an emission of light from the high atmosphere, 100 km above us. Satellite observations of a green airglow have shown that it consists of waves 1, 2, 3, and 4 around the earth. It happens that when the peaks of the different waves coincide there is an airglow brightening, and this article demonstrates that this event produces a bright night. The modern data are shown to be entirely consistent with the historical observations.
A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures
Energy Technology Data Exchange (ETDEWEB)
Neylon, J., E-mail: jneylon@mednet.ucla.edu; Sheng, K.; Yu, V.; Low, D. A.; Kupelian, P.; Santhanam, A. [Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, California 90095 (United States); Chen, Q. [Department of Radiation Oncology, University of Virginia, 1300 Jefferson Park Avenue, Charlottesville, California 22908 (United States)
2014-10-15
Purpose: Real-time adaptive planning and treatment has been infeasible due in part to its high computational complexity. There have been many recent efforts to utilize graphics processing units (GPUs) to accelerate the computational performance and dose accuracy in radiation therapy. Data structure and memory access patterns are the key GPU factors that determine the computational performance and accuracy. In this paper, the authors present a nonvoxel-based (NVB) approach to maximize computational and memory access efficiency and throughput on the GPU. Methods: The proposed algorithm employs a ray-tracing mechanism to restructure the 3D data sets computed from the CT anatomy into a nonvoxel-based framework. In a process that takes only a few milliseconds of computing time, the algorithm restructured the data sets by ray-tracing through precalculated CT volumes to realign the coordinate system along the convolution direction, as defined by zenithal and azimuthal angles. During the ray-tracing step, the data were resampled according to radial sampling and parallel ray-spacing parameters making the algorithm independent of the original CT resolution. The nonvoxel-based algorithm presented in this paper also demonstrated a trade-off in computational performance and dose accuracy for different coordinate system configurations. In order to find the best balance between the computed speedup and the accuracy, the authors employed an exhaustive parameter search on all sampling parameters that defined the coordinate system configuration: zenithal, azimuthal, and radial sampling of the convolution algorithm, as well as the parallel ray spacing during ray tracing. The angular sampling parameters were varied between 4 and 48 discrete angles, while both radial sampling and parallel ray spacing were varied from 0.5 to 10 mm. The gamma distribution analysis method (γ) was used to compare the dose distributions using 2% and 2 mm dose difference and distance-to-agreement criteria, respectively. Accuracy was investigated using three distinct phantoms with varied geometries and heterogeneities and on a series of 14 segmented lung CT data sets. Performance gains were calculated using three 256 mm cube homogenous water phantoms, with isotropic voxel dimensions of 1, 2, and 4 mm. Results: The nonvoxel-based GPU algorithm was independent of the data size and provided significant computational gains over the CPU algorithm for large CT data sizes. The parameter search analysis also showed that the ray combination of 8 zenithal and 8 azimuthal angles along with 1 mm radial sampling and 2 mm parallel ray spacing maintained dose accuracy with greater than 99% of voxels passing the γ test. Combining the acceleration obtained from GPU parallelization with the sampling optimization, the authors achieved a total performance improvement factor of >175 000 when compared to our voxel-based ground truth CPU benchmark and a factor of 20 compared with a voxel-based GPU dose convolution method. Conclusions: The nonvoxel-based convolution method yielded substantial performance improvements over a generic GPU implementation, while maintaining accuracy as compared to a CPU computed ground truth dose distribution. Such an algorithm can be a key contribution toward developing tools for adaptive radiation therapy systems.
Many-Body Energy Decomposition with Basis Set Superposition Error Corrections.
Mayer, István; Bakó, Imre
2017-05-09
The problem of performing many-body decompositions of energy is considered in the case when BSSE corrections are also performed. It is discussed that the two different schemes that have been proposed go back to the two different interpretations of the original Boys-Bernardi counterpoise correction scheme. It is argued that from the physical point of view the "hierarchical" scheme of Valiron and Mayer should be preferred and not the scheme recently discussed by Ouyang and Bettens, because it permits the energy of the individual monomers and all the two-body, three-body, etc. energy components to be free of unphysical dependence on the arrangement (basis functions) of other subsystems in the cluster.
Generation of a superposition of odd photon number states for quantum information networks
DEFF Research Database (Denmark)
Neergaard-Nielsen, Jonas Schou; Nielsen, B.; Hettich, C.
2006-01-01
Quantum information networks, quantum memories, quantum repeaters, linear optics quantum computers Udgivelsesdato: 25 August......Quantum information networks, quantum memories, quantum repeaters, linear optics quantum computers Udgivelsesdato: 25 August...
Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations
International Nuclear Information System (INIS)
Queyreau, Sylvain; Monnet, Ghiath; Devincre, Benoit
2010-01-01
Rule of mixtures are an essential feature of the modeling of plastic deformation in complex materials in which more than one strain-hardening mechanism is involved. In this work, use is made of dislocation dynamics simulations to characterize the individual and the superposed contributions of two major mechanisms of crystal plasticity, i.e. Orowan strengthening and forest hardening. Based on a formal description of each hardening mechanism, evidence is presented to show that a quadratic rule of mixtures has the ability to predict quantitatively the flow stress of complex materials such as reactor pressure vessel steel.
More twists on optical twisters: of helico-conical beams, superpositions and combinations
DEFF Research Database (Denmark)
Glückstad, Jesper; Palima, Darwin
We have previously demonstrated so-called optical twisters that can steer microparticles along spiral trajectories during optical micromanipulation. These optical twisters may be created using Fourier holograms ofthe helicoconical form, exp[ i l 8 (K- r/r0)], which is characterized by non...
International Nuclear Information System (INIS)
Eichert, Andre; Fuerste, Jens P.; Ulrich, Alexander; Betzel, Christian; Erdmann, Volker A.; Foerster, Charlotte
2010-01-01
We solved the X-ray structures of two Escherichia coli tRNA Ser acceptor stem microhelices. As both tRNAs are aminoacylated by the same seryl-tRNA-synthetase, we performed a comparative structure analysis of both duplexes to investigate the helical conformation, the hydration patterns and magnesium binding sites. It is well accepted, that the hydration of RNA plays an important role in RNA-protein interactions and that the extensive solvent content of the minor groove has a special function in RNA. The detailed comparison of both tRNA Ser microhelices provides insights into the structural arrangement of the isoacceptor tRNA aminoacyl stems with respect to the surrounding water molecules and may eventually help us to understand their biological function at atomic resolution.
Martínez-Martos, Manuel; Galindo-Zaldivar, Jesús; Martínez-Moreno, Francisco José; Calvo-Rayo, Raquel; Sanz de Galdeano, Carlos
2017-10-01
The relief of the Betic Cordillera was formed since the late Serravallian inducing the development of intramontane basins. The Alhabia basin, situated in the central part of the Internal Zones, is located at the intersection of the Alpujarran Corridor, the Tabernas basin, both trending E-W, and the NW-SE oriented Gádor-Almería basin. The geometry of the basin has been constrained by new gravity data. The basin is limited to the North by the Sierra de Filabres and Sierra Nevada antiforms that started to develop in Serravallian times under N-S shortening and to the south by Sierra Alhamilla and Sierra de Gádor antiforms. Plate convergence in the region rotated counter-clockwise in Tortonian times favouring the formation of E-W dextral faults. In this setting, NE-SW extension, orthogonal to the shortening direction, was accommodated by normal faults on the SW edge of Sierra Alhamilla. The Alhabia basin shows a cross-shaped depocentre in the zone of synform and fault intersection. This field example serves to constrain recent counter-clockwise stress rotation during the latest stages of Neogene-Quaternary basin evolution in the Betic Cordillera Internal Zones and underlines the importance of studying the basins' deep structure and its relation with the tectonic structures interactions.
Suspension-like hardening behavior of HDPE and time-hardening superposition
Roozemond, P.C.; Janssens, V.; Puyvelde, van P.C.J.; Peters, G.W.M.
2012-01-01
The rheology of solidifying high-density polyethylene (HDPE) is investigated. Experiments on an HDPE were performed with a novel RheoDSC device. Results agree quantitatively with simulations for a suspension of elastic spheres in a viscoelastic matrix except for very low values of space filling
Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops
Directory of Open Access Journals (Sweden)
Fei Sun
2015-09-01
Full Text Available A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.
Explaining electric conductivity using the particle-in-a-box model: quantum superposition is the key
Sivanesan, Umaseh; Tsang, Kin; Izmaylov, Artur F.
2017-12-01
Most of the textbooks explaining electric conductivity in the context of quantum mechanics provide either incomplete or semi-classical explanations that are not connected with the elementary concepts of quantum mechanics. We illustrate the conduction phenomena using the simplest model system in quantum dynamics, a particle in a box (PIB). To induce the particle dynamics, a linear potential tilting the bottom of the box is introduced, which is equivalent to imposing a constant electric field for a charged particle. Although the PIB model represents a closed system that cannot have a flow of electrons through the system, we consider the oscillatory dynamics of the particle probability density as the analogue of the electric current. Relating the amplitude and other parameters of the particle oscillatory dynamics with the gap between the ground and excited states of the PIB model allows us to demonstrate one of the most basic dependencies of electric conductivity on the valence-conduction band gap of the material.
Superposition of number and squeezed states of the quantized light field
International Nuclear Information System (INIS)
De Brito, A.L.; Marques, G.A.; Baseia, B.; Dias, H.
1998-01-01
A recent paper in the literature (Mod. Phys. Lett. B, 9 (1995) 1673) introduced the Intermediate Number Squeezed State (INSS) of the quantized radiation field interpolating between the number state (n) and the squeezed-coherent state (z, α), exhibiting various nonclassical properties. Here, it's introduced an alternative state, interpolating between those limiting states and show that nonclassical effects in this new intermediate state can be greater than those exhibited by the INSS, depending on the values of the interpolating parameters. Although constituting an application of a general approach (Nuovo Cimento D, 18 (1996) 425), it concludes another case in the literature (Phys. Scr., 55 (1997) 179) as a particularisation of this
Directory of Open Access Journals (Sweden)
Frederic Danion
Full Text Available When moving grasped objects, people automatically modulate grip force (GF with movement-dependent load force (LF in order to prevent object slip. However, GF can also be modulated voluntarily as when squeezing an object. Here we investigated possible interactions between automatic and voluntary GF control. Participants were asked to generate horizontal cyclic movements (between 0.6 and 2.0 Hz of a hand-held object that was restrained by an elastic band such that the load force (LF reached a peak once per movement cycle, and to simultaneously squeeze the object at each movement reversal (i.e., twice per cycle. Participants also performed two control tasks in which they either only moved (between 0.6 and 2.0 Hz or squeezed (between 1.2 and 4.0 Hz the object. The extent to which GF modulation in the simultaneous task could be predicted from the two control tasks was assessed using power spectral analyses. At all frequencies, the GF power spectra from the simultaneous task exhibited two prominent components that occurred at the cycle frequency (ƒ and at twice this frequency (2ƒ, whereas the spectra from the movement and squeeze control task exhibited only single peaks at ƒ and 2ƒ, respectively. At lower frequencies, the magnitudes of both frequency components in the simultaneous task were similar to the magnitudes of the corresponding components in the control tasks. However, as frequency increased, the magnitudes of both components in the simultaneous task were greater than the magnitudes of the corresponding control task components. Moreover, the phase relationship between the ƒ components of GF and LF began to drift from the value observed in the movement control task. Overall these results suggest that, at lower movement frequencies, voluntary and automatic GF control processes operate at different hierarchical levels. Several mechanisms are discussed to account for interaction effects observed at higher movement frequencies.
A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures
International Nuclear Information System (INIS)
Neylon, J.; Sheng, K.; Yu, V.; Low, D. A.; Kupelian, P.; Santhanam, A.; Chen, Q.
2014-01-01
Purpose: Real-time adaptive planning and treatment has been infeasible due in part to its high computational complexity. There have been many recent efforts to utilize graphics processing units (GPUs) to accelerate the computational performance and dose accuracy in radiation therapy. Data structure and memory access patterns are the key GPU factors that determine the computational performance and accuracy. In this paper, the authors present a nonvoxel-based (NVB) approach to maximize computational and memory access efficiency and throughput on the GPU. Methods: The proposed algorithm employs a ray-tracing mechanism to restructure the 3D data sets computed from the CT anatomy into a nonvoxel-based framework. In a process that takes only a few milliseconds of computing time, the algorithm restructured the data sets by ray-tracing through precalculated CT volumes to realign the coordinate system along the convolution direction, as defined by zenithal and azimuthal angles. During the ray-tracing step, the data were resampled according to radial sampling and parallel ray-spacing parameters making the algorithm independent of the original CT resolution. The nonvoxel-based algorithm presented in this paper also demonstrated a trade-off in computational performance and dose accuracy for different coordinate system configurations. In order to find the best balance between the computed speedup and the accuracy, the authors employed an exhaustive parameter search on all sampling parameters that defined the coordinate system configuration: zenithal, azimuthal, and radial sampling of the convolution algorithm, as well as the parallel ray spacing during ray tracing. The angular sampling parameters were varied between 4 and 48 discrete angles, while both radial sampling and parallel ray spacing were varied from 0.5 to 10 mm. The gamma distribution analysis method (γ) was used to compare the dose distributions using 2% and 2 mm dose difference and distance-to-agreement criteria, respectively. Accuracy was investigated using three distinct phantoms with varied geometries and heterogeneities and on a series of 14 segmented lung CT data sets. Performance gains were calculated using three 256 mm cube homogenous water phantoms, with isotropic voxel dimensions of 1, 2, and 4 mm. Results: The nonvoxel-based GPU algorithm was independent of the data size and provided significant computational gains over the CPU algorithm for large CT data sizes. The parameter search analysis also showed that the ray combination of 8 zenithal and 8 azimuthal angles along with 1 mm radial sampling and 2 mm parallel ray spacing maintained dose accuracy with greater than 99% of voxels passing the γ test. Combining the acceleration obtained from GPU parallelization with the sampling optimization, the authors achieved a total performance improvement factor of >175 000 when compared to our voxel-based ground truth CPU benchmark and a factor of 20 compared with a voxel-based GPU dose convolution method. Conclusions: The nonvoxel-based convolution method yielded substantial performance improvements over a generic GPU implementation, while maintaining accuracy as compared to a CPU computed ground truth dose distribution. Such an algorithm can be a key contribution toward developing tools for adaptive radiation therapy systems
Sukhanov, D. Ya.; Zav'yalova, K. V.
2018-03-01
The paper represents induced currents in an electrically conductive object as a totality of elementary eddy currents. The proposed scanning method includes measurements of only one component of the secondary magnetic field. Reconstruction of the current distribution is performed by deconvolution with regularization. Numerical modeling supported by the field experiments show that this approach is of direct practical relevance.
Realistic limits on the nonlocality of an N-partite single-photon superposition
DEFF Research Database (Denmark)
Laghaout, Amine; Andersen, Ulrik Lund; Björk, Gunnar
2011-01-01
the nonlocal behavior previously thought to be exclusive to the more complex class of Greenberger-Horne-Zeilinger states. We show that in practice, however, the slightest decoherence or inefficiency of the Bell measurements on W states will degrade any violation margin gained by scaling to higher N...
Realistic limits on the nonlocality of an N-partite single-photon superposition
Energy Technology Data Exchange (ETDEWEB)
Laghaout, Amine [Department of Physics, Technical University of Denmark, Building 309, DK-2800 Lyngby (Denmark); Bjoerk, Gunnar [Department of Applied Physics, Royal Institute of Technology (KTH), AlbaNova University Center, SE-106 91 Stockholm (Sweden); NORDITA, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Andersen, Ulrik L. [Department of Physics, Technical University of Denmark, Building 309, DK-2800 Lyngby (Denmark); NORDITA, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden)
2011-12-15
A recent paper [L. Heaney, A. Cabello, M. F. Santos, and V. Vedral, New J. Phys. 13, 053054 (2011)] revealed that a single quantum symmetrically delocalized over N modes, namely a W state, effectively allows for all-versus-nothing proofs of nonlocality in the limit of large N. Ideally, this finding opens up the possibility of using the robustness of the W states while realizing the nonlocal behavior previously thought to be exclusive to the more complex class of Greenberger-Horne-Zeilinger states. We show that in practice, however, the slightest decoherence or inefficiency of the Bell measurements on W states will degrade any violation margin gained by scaling to higher N. The nonstatistical demonstration of nonlocality is thus proved to be impossible in any realistic experiment.
Rapid automated superposition of shapes and macromolecular models using spherical harmonics.
Konarev, Petr V; Petoukhov, Maxim V; Svergun, Dmitri I
2016-06-01
A rapid algorithm to superimpose macromolecular models in Fourier space is proposed and implemented ( SUPALM ). The method uses a normalized integrated cross-term of the scattering amplitudes as a proximity measure between two three-dimensional objects. The reciprocal-space algorithm allows for direct matching of heterogeneous objects including high- and low-resolution models represented by atomic coordinates, beads or dummy residue chains as well as electron microscopy density maps and inhomogeneous multi-phase models ( e.g. of protein-nucleic acid complexes). Using spherical harmonics for the computation of the amplitudes, the method is up to an order of magnitude faster than the real-space algorithm implemented in SUPCOMB by Kozin & Svergun [ J. Appl. Cryst. (2001 ▸), 34 , 33-41]. The utility of the new method is demonstrated in a number of test cases and compared with the results of SUPCOMB . The spherical harmonics algorithm is best suited for low-resolution shape models, e.g . those provided by solution scattering experiments, but also facilitates a rapid cross-validation against structural models obtained by other methods.
Tensile creep of thermoplastics: time-strain superposition of non-iso free-volume data
Czech Academy of Sciences Publication Activity Database
Kolařík, Jan
2003-01-01
Roč. 41, č. 7 (2003), s. 736-748 ISSN 0887-6266 R&D Projects: GA ČR GA106/00/1307 Institutional research plan: CEZ:AV0Z4050913 Keywords : creep * thermoplastics * viscoelastic properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.369, year: 2003
Falk-Lundgren, Fredrik; Johnselius, Max
2011-01-01
This study examines how professional social workers relate to problematic computer and video gaming as an addiction. It is a qualitative interview study aimed to describe and analyze how professional social workers, who in some way work with problematic computer gaming, relate to the player’s problems in terms of a concept of dependency. The theoretical approach is based on social constructivist theories of discourses, normality, the definition of dependency and diagnoses. The study was condu...
International Nuclear Information System (INIS)
Tserkovnikov, Yu.A.
2001-01-01
The regular method for deriving the equations for the Green functions in the tasks on the molecular hydrodynamics and kinetics, making it possible to account consequently the contribution into the generalized kinetics coefficients, conditioned by interaction of two, three and more hydrodynamic modes. In contrast to the general theory of perturbations by the interaction constant the consequent approximations are accomplished by the degree of accounting for the higher correlations, described by the irreducible functions [ru
A kinetic model to simulate the effect of cooking time-temperature on the gastric digestion of meat
Kondjoyan, Alain; Daudin, Jean-Dominique; Portanguen, Stéphane; Aubry, Laurent; Sante-Lhoutellier, Veronique
2014-01-01
A kinetic model was developed to predict the effect of cooking time and temperature on the digestibility of myofibrillar proteins. The predictions were confronted to the measurement of the in vitro digestibility of myofibrillar proteins coming from either slices of beef meat heated in water bath or from a piece of meat roasted in a domestic oven. The model was able to simulate the in vitro measurements for the meat pieces of different sizes cooked under different condi...
Blanco, J.M.; Long, J.A.; Gee, G.; Donoghue, A.M.; Wildt, D.E.
2008-01-01
Potential factors influencing sperm survival under hypertonic conditions were evaluated in the Sandhill crane (Grus canadensis) and turkey (Meleagridis gallopavo). Sperm osmotolerance (300-3000 mOsm/kg) was evaluated after: (1) equilibration times of 2, 10, 45 and 60 min at 4 ?C versus 21 ?C; (2) pre-equilibrating with dimethylacetamide (DMA) or dimethylsulfoxide (Me2SO) at either 4 ?C or 21 ?C; and (3) inhibition of the Na+/K+ and the Na+/H+ antiporter membrane ionic pumps. Sperm viability was assessed using the eosin-nigrosin live/dead stain. Species-specific differences occurred in response to hypertonic conditions with crane sperm remaining viable under extreme hypertonicity (3000 mOsm/kg), whereas turkey sperm viability was compromised with only slightly hypertonic (500 mOsm/kg) conditions. The timing of spermolysis under hypertonic conditions was also species-specific, with a shorter interval for turkey (2 min) than crane (10 min) sperm. Turkey sperm osmotolerance was slightly improved by lowering the incubation temperature from 21 to 4 ?C. Pre-equilibrating sperm with DMA reduced the incidence of hypertonic spermolysis only in the crane, at both room and refrigeration temperature. Inhibiting the Na+/K+ and the Na+/H+ antiporter membrane ion pumps did not impair resistance of crane and turkey spermatozoa to hypertonic stress; pump inhibition actually increased turkey sperm survival compared to control sperm. Results demonstrate marked species specificity in osmotolerance between crane and turkey sperm, as well as in the way temperature and time of exposure affect sperm survival under hypertonic conditions. Differences are independent of the role of osmotic pumps in these species.
Dakhane, Akash; Madavarapu, Sateesh Babu; Marzke, Robert; Neithalath, Narayanan
2017-08-01
The use of waste/by-product materials, such as slag or fly ash, activated using alkaline agents to create binding materials for construction applications (in lieu of portland cement) is on the rise. The influence of activation parameters (SiO 2 to Na 2 O ratio or M s of the activator, Na 2 O to slag ratio or n, cation type K + or Na + ) on the process and extent of alkali activation of slag under ambient and elevated temperature curing, evaluated through spectroscopic techniques, is reported in this paper. Fourier transform infrared spectroscopy along with a Fourier self-deconvolution method is used. The major spectral band of interest lies in the wavenumber range of ∼950 cm -1 , corresponding to the antisymmetric stretching vibration of Si-O-T (T = Si or Al) bonds. The variation in the spectra with time from 6 h to 28 days is attributed to the incorporation of Al in the gel structure and the enhancement in degree of polymerization of the gel. 29 Si nuclear magnetic resonance spectroscopy is used to quantify the Al incorporation with time, which is found to be higher when Na silicate is used as the activator. The Si-O-T bond wavenumbers are also generally lower for the Na silicate activated systems.
Li, Yanyan; Schrade, John P; Su, Haiyan; Specchio, John J
2014-08-01
Data are lacking on the temperature changes of food during transport without the use of refrigerated trucks. The purpose of this study was to evaluate the ability of several insulated and noninsulated containers with or without frozen gel packs to keep perishable and refrigerated foods within the temperature safe zone in relationship to duration of transport. The study was designed to duplicate the practices exhibited by customers purchasing perishable food products from a cash-and-carry business. Approximately 40 perishable food items were evaluated. Four types of containers were tested: a mylar foil bag, a commercial insulated bag, a generic insulated bag, and a commercial insulated blanket. Mixed foods were placed into these containers with or without frozen gel packs, transported in unrefrigerated vehicles, and monitored for 4 h for temperature changes. Two environmental temperatures, room temperature of 21.1°C and a stress temperature of 37.8°C, were evaluated. The internal temperature and surface temperature of the food products in these containers increased slowly but remained well below the U.S. Food and Drug Administration Food Code requirements. The various containers were similar in their ability to retain coolness. The presence of frozen gel packs dramatically enhanced the cold-holding capacity of the containers. The temperature of foods increased more rapidly when stressed in a heated environment. The containers tested used with the frozen gel packs can keep the surface and internal temperatures of various perishable foods (starting at 4.4°C or less) within the Food Code recommendation of under 21.1°C for 4 h. Cash-and-carry businesses should strongly encourage their retail customers to utilize these containers with frozen gel packs to safely transport perishable foods.
On the Time-Temperature-Transformation Behavior of a New Dual-Superlattice Nickel-Based Superalloy
Mignanelli, P. M.; Jones, N. G.; Hardy, M. C.; Stone, H. J.
2018-03-01
Recent research has identified compositions of nickel-based superalloys with microstructures containing appreciable and comparable volume fractions of γ' and γ″ precipitates. In this work, an alloy capable of forming such a dual-superlattice microstructure was subjected to a range of thermal exposures between 873 K and 1173 K (600 °C and 900 °C) for durations of 1 to 1000 hours. The microstructures and nature of the precipitating phases were characterized using synchrotron X-ray diffraction and electron microscopy. These data have enabled the construction of a T-T-T diagram for the precipitating phases. Hardness measurements following each thermal exposure have identified the age-hardening behavior of this alloy and allowed preliminary mechanical properties to be assessed.
Energy Technology Data Exchange (ETDEWEB)
Lee, Sung Yong; Jang, Hun; Lim, Jea Young; Kim, Dae Il; Kim, Yoon Ho; Mok, Yong Kyoon [KEPCO Nuclear Fuel Co. Ltd., Daejeon (Korea, Republic of)
2016-10-15
According to 10CFR50.46c, two analytical time and temperature limits for breakaway oxidation and postquench ductility (PQD) should be determined by approved experimental procedure as described in NRC Regulatory Guide (RG) 1.222 and 1.223. According to RG 1.222 and 1.223, rigorous qualification requirements for test system are required, such as thermal and weight gain benchmarks. In order to meet these requirements, KEPCO NF has developed the new special facility to evaluate LOCA performance of zirconium alloy cladding. In this paper, qualification results for test facility and HT oxidation model for HANA-6 are summarized. The results of thermal benchmark tests of LOCA HT oxidation tester is summarized as follows. 1. The best estimate HT oxidation model of HANA- 6 was developed for the vender proprietary HT oxidation model. 2. In accordance with the RG 1.222 and 1.223, Benchmark tests were performed by using LOCA HT oxidation tester 3. The maximum axial and circumferential temperature difference are ± 9 .deg. C and ± 2 .deg. C at 1200 .deg. C, respectively. At the other temperature conditions, temperature difference is less than 1200 .deg. C result. Thermal benchmark test results meet the requirements of NRC RG 1.222 and 1.223.
Ogieglo, Wojciech; Upadhyaya, L.; Wessling, Matthias; Nijmeijer, Arian; Benes, Nieck Edwin
2014-01-01
In-situ spectroscopic ellipsometry is used for the dynamic study of thermally perturbed thin polystyrene films, swollen with n-octane or n-decane. The thermal evolution of the swollen films reveals pronounced changes both in equilibrium and kinetic properties. Upon vitrification, a kinetically
Energy Technology Data Exchange (ETDEWEB)
Quinn, Nigel W.T.
2004-12-20
The San Joaquin River Riparian Habitat Restoration Program (SJRRP) has recognized the potential importance of real-time monitoring and management to the success of the San Joaquin River (SJR) restoration endeavor. The first step to realizing making real-time management a reality on the middle San Joaquin River between Friant Dam and the Merced River will be the installation and operation of a network of permanent telemetered gauging stations that will allow optimization of reservoir releases made specifically for fish water temperature management. Given the limited reservoir storage volume available to the SJJRP, this functionality will allow the development of an adaptive management program, similar in concept to the VAMP though with different objectives. The virtue of this approach is that as management of the middle SJR becomes more routine, additional sensors can be added to the sensor network, initially deployed, to continue to improve conditions for anadromous fish.
DEFF Research Database (Denmark)
Andersen, Allan T.; Nielsen, Bo Friis
1997-01-01
We present a modelling framework and a fitting method for modelling second order self-similar behaviour with the Markovian arrival process (MAP). The fitting method is based on fitting to the autocorrelation function of counts a second order self-similar process. It is shown that with this fittin...
DEFF Research Database (Denmark)
Branlard, Emmanuel Simon Pierre; Gaunaa, Mac
2015-01-01
coefficient obtained with this model for the constant circulation rotor is assessed and compared with that of existing solutions. Results from prescribed thrust distributions are compared with that of actuator disk simulations. Steady simulations are performed to compare with the BEM algorithm. The model......Joukowski introduced in 1912 a helical vortex model to represent the vorticity of a rotor and its wake. For an infinite number of blades but finite tip-speed ratio, the model consists of a vortex cylinder of longitudinal and tangential vorticity, a root vortex and a bound vortex disk...... is also applied to compute the velocity field in the entire domain and perform unsteady simulations. Results for an unsteady simulation corresponding to a pitch change of the rotor is used to compare the model with measurements and a BEM code with a dynamic inflow model. Copyright © 2015 John Wiley & Sons...
Czech Academy of Sciences Publication Activity Database
Červený, V.; Pšenčík, Ivan
2017-01-01
Roč. 210, č. 2 (2017), s. 561-569 ISSN 0956-540X R&D Projects: GA ČR(CZ) GA16-05237S Institutional support: RVO:67985530 Keywords : body waves * seismic anisotropy * theoretical seismology * wave propagation Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 2.414, year: 2016
Nagata, Takeshi; Iwata, Suehiro
2004-02-22
The locally projected self-consistent field molecular orbital method for molecular interaction (LP SCF MI) is reformulated for multifragment systems. For the perturbation expansion, two types of the local excited orbitals are defined; one is fully local in the basis set on a fragment, and the other has to be partially delocalized to the basis sets on the other fragments. The perturbation expansion calculations only within single excitations (LP SE MP2) are tested for water dimer, hydrogen fluoride dimer, and colinear symmetric ArM+ Ar (M = Na and K). The calculated binding energies of LP SE MP2 are all close to the corresponding counterpoise corrected SCF binding energy. By adding the single excitations, the deficiency in LP SCF MI is thus removed. The results suggest that the exclusion of the charge-transfer effects in LP SCF MI might indeed be the cause of the underestimation for the binding energy. (c) 2004 American Institute of Physics.
Super-Positioning of Voltage Sources for Fast Assessment of Wide-Area Thévenin Equivalents
DEFF Research Database (Denmark)
Møller, Jakob Glarbo; Jóhannsson, Hjörtur; Østergaard, Jacob
2017-01-01
and parallelized for shared memory multiprocessing. The proposed algorithm is tested on a collection of large test systems and performance is found to be significantly better than the reference method. The algorithm will thereby facilitate a speed-up of methods relying on Thévenin equivalent representation...
Ferguson, J. B.; Schultz, Benjamin F.; Venugopalan, Dev; Lopez, Hugo F.; Rohatgi, Pradeep K.; Cho, Kyu; Kim, Chang-Soo
2014-03-01
Yield strength improvement in dispersion strengthened alloys and nano particle-reinforced composites by well-known strengthening mechanisms such as solid solution, grain refinement, coherent and incoherent dispersed particles, and increased dislocation density resulting from work-hardening can all be described individually. However, there is no agreed upon description of how these mechanisms combine to determine the yield strength. In this work, we propose an analytical yield strength prediction model combining arithmetic and quadratic addition approaches based on the consideration of two types of yielding mechanisms; stress-activated and energy-activated. Using data available in the literature for materials of differing grain sizes, we consider the cases of solid solutions and coherent precipitates to show that they follow stress-activated behavior. Then, we applied our model with some empirical parameters to precipitationhardenable materials of various grain sizes in both coherent and incoherent precipitate conditions, which demonstrated that grain boundary and Orowan-strengthening can be treated as energy-activated mechanisms.
International Nuclear Information System (INIS)
Teh, R.
1993-06-01
We pointed out that there exists a critical frequency of oscillation for the vortex-like solution above which the system switches to the fields of an alternating current inside a solenoid. We also show the existence a non-abelian gauge for which the fields can alternate periodically in space between the abelian fields and another abelian (or non-abelian) field pointing in a different isospin space direction. The solution discussed here are real, zero-action Minkowski space configurations. (author). 18 refs
Superposition of the luminescence spectra of free and bound excitons in ZnP2-D48
International Nuclear Information System (INIS)
Stamov, Ion; Nemerenco, Lucretia; Ivanenco, Iurii; Syrbu, Nicolae
2011-01-01
The luminescence spectra of ZnP 2 tetragonal crystals doped Mn, Sn, Cd, Sb at 10 K emission lines of bound excitons is detected. In the spectra non-phonon emission lines of bound and free excitons and their phonon replicas is isolated. The emission lines by the levels of the axial center are described. The composition of the luminescence of free and bound excitons at the axial center is investigated. In the region of phonon replicas of free excitons observed enhancement of lines due to forbidden transitions involving the recombination of excitons. A model of optic recombination transitions of the axial centre is proposed
SU-F-T-620: Development of a Convolution/Superposition Dose Engine for CyberKnife System
Energy Technology Data Exchange (ETDEWEB)
Li, Y; Liu, B; Liang, B; Xu, X; Guo, B; Wei, R; Zhou, F [Beihang University, Beijing, Beijing (China); Song, T [Southern Medical University, Guangzhou, Guangdong (China); Xu, S [PLA General Hospital, Beijing, Beijing (China); Piao, J [302 Military Hospital, Beijing, Beijing (China)
2016-06-15
Purpose: Current CyberKnife treatment planning system (TPS) provided two dose calculation algorithms: Ray-tracing and Monte Carlo. Ray-tracing algorithm is fast, but less accurate, and also can’t handle irregular fields since a multi-leaf collimator system was recently introduced to CyberKnife M6 system. Monte Carlo method has well-known accuracy, but the current version still takes a long time to finish dose calculations. The purpose of this paper is to develop a GPU-based fast C/S dose engine for CyberKnife system to achieve both accuracy and efficiency. Methods: The TERMA distribution from a poly-energetic source was calculated based on beam’s eye view coordinate system, which is GPU friendly and has linear complexity. The dose distribution was then computed by inversely collecting the energy depositions from all TERMA points along 192 collapsed-cone directions. EGSnrc user code was used to pre-calculate energy deposition kernels (EDKs) for a series of mono-energy photons The energy spectrum was reconstructed based on measured tissue maximum ratio (TMR) curve, the TERMA averaged cumulative kernels was then calculated. Beam hardening parameters and intensity profiles were optimized based on measurement data from CyberKnife system. Results: The difference between measured and calculated TMR are less than 1% for all collimators except in the build-up regions. The calculated profiles also showed good agreements with the measured doses within 1% except in the penumbra regions. The developed C/S dose engine was also used to evaluate four clinical CyberKnife treatment plans, the results showed a better dose calculation accuracy than Ray-tracing algorithm compared with Monte Carlo method for heterogeneous cases. For the dose calculation time, it takes about several seconds for one beam depends on collimator size and dose calculation grids. Conclusion: A GPU-based C/S dose engine has been developed for CyberKnife system, which was proven to be efficient and accurate for clinical purpose, and can be easily implemented in TPS.
Directory of Open Access Journals (Sweden)
Vladimir I. Volchikhin
2017-06-01
Full Text Available Introduction: The study promotes to decrease a number of errors of calculating the correlation coefficient in small test samples. Materials and Methods: We used simulation tool for the distribution functions of the density values of the correlation coefficient in small samples. A method for quantization of the data, allows obtaining a discrete spectrum states of one of the varieties of correlation functional. This allows us to consider the proposed structure as a mathematical correlation molecule, described by some analogue continuous-quantum Schrödinger equation. Results: The chi-squared Pearson’s molecule on small samples allows enhancing power of classical chi-squared test to 20 times. A mathematical correlation molecule described in the article has similar properties. It allows in the future reducing calculation errors of the classical correlation coefficients in small samples. Discussion and Conclusions: The authors suggest that there are infinitely many mathematical molecules are similar in their properties to the actual physical molecules. Schrödinger equations are not unique, their analogues can be constructed for each mathematical molecule. You can expect a mathematical synthesis of molecules for a large number of known statistical tests and statistical moments. All this should make it possible to reduce calculation errors due to quantum effects that occur in small test samples.
Czech Academy of Sciences Publication Activity Database
Dorigato, A.; Pegoretti, A.; Kolařík, Jan
2010-01-01
Roč. 31, č. 11 (2010), s. 1947-1955 ISSN 0272-8397 R&D Projects: GA ČR GA106/09/1348 Institutional research plan: CEZ:AV0Z40500505 Keywords : heterogeneous polymer blends * free-volume theory * copolymer blends Subject RIV: JI - Composite Materials Impact factor: 0.998, year: 2010
Energy Technology Data Exchange (ETDEWEB)
Parvathavarthini, N.; Dayal, R.K.; Gnanamoorthy, J.B. (Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Programme); Seshadri, S.K. (Indian Inst. of Tech., Madras (India). Dept. of Metallurgical Engineering)
This paper presents the results of investigations carried out to study the sensitization behaviour of AISI Types 316 SS and 304 SS with various degrees of cold work ranging from 0 to 25%. Initially Time-Temperature-Sensitization (TTS) diagrams were established using ASTM standard A262 Practice A and E tests. From these diagrams it was found that the rate of sensitization and overall susceptibility to intergranular corrosion increases up to 15% cold work and above that starts decreasing. Desensitization was observed to be faster for higher levels of cold work, especially in the higher sensitization temperature range. From the TTS diagrams, the critical linear cooling rate below which sensitization occurs was calculated. From these data, Continuous Cooling Sensitization (CCS) diagrams were established. The results show that as the degree of cold work increases up to 15%, time needed for sensitization decreases and hence faster cooling rates must be used in order to avoid sensitization. At temperatures sufficiently below the nose temperature of the TTS diagram, log t versus 1/T plots follow a linear relationship where t is the time needed for the onset of sensitization at temperature T. From the slope, the apparent activation energy for sensitization was estimated. The validity of extrapolating these linear plots to lower temperatures (725 to 775 K) (which lie in the operating temperature regime of fast reactors) has been verified by experiment. The effect of heat treatment and microstructure on the Low Temperature Sensitization (LTS) behaviour was investigated. The results indicate that carbides of optimum size and distribution are the essential pre-requisites for LTS and cold work enhances susceptibility of stainless steels to LTS. (orig.).
Sidhom, H.; Amadou, T.; Sahlaoui, H.; Braham, C.
2007-06-01
The evaluation of the degree of sensitization (DOS) to intergranular corrosion (IGC) of a commercial AISI 316L austenitic stainless steel aged at temperatures ranging from 550 °C to 800 °C during 100 to 80,000 hours was carried out using three different assessment methods. (1) The microstructural method coupled with the Strauss standard test (ASTM A262). This method establishes the kinetics of the precipitation phenomenon under different aging conditions, by transmission electronic microscope (TEM) examination of thin foils and electron diffraction. The subsequent chromium-depleted zones are characterized by X-ray microanalysis using scanning transmission electronic microscope (STEM). The superimposition of microstructural time-temperature-precipitation (TTP) and ASTM A262 time-temperature-sensitization (TTS) diagrams provides the relationship between aged microstructure and IGC. Moreover, by considering the chromium-depleted zone characteristics, sensitization and desensitization criteria could be established. (2) The electrochemical method involving the double loop-electrochemical potentiokinetic reactivation (DL-EPR) test. The operating conditions of this test were initially optimized using the experimental design method on the bases of the reliability, the selectivity, and the reproducibility of test responses for both annealed and sensitized steels. The TTS diagram of the AISI 316L stainless steel was established using this method. This diagram offers a quantitative assessment of the DOS and a possibility to appreciate the time-temperature equivalence of the IGC sensitization and desensitization. (3) The analytical method based on the chromium diffusion models. Using the IGC sensitization and desensitization criteria established by the microstructural method, numerical solving of the chromium diffusion equations leads to a calculated AISI 316L TTS diagram. Comparison of these three methods gives a clear advantage to the nondestructive DL-EPR test when it is
International Nuclear Information System (INIS)
Parvathavarthini, N.; Dayal, R.K.; Khatak, H.S.; Shankar, V.; Shanmugam, V.
2006-01-01
Sensitization behaviour of austenitic stainless steel weld metals prepared using indigenously developed modified 316N (C = 0.05%; N = 0.12%) and 316L (C = 0.02%; N = 0.07%) electrodes was studied. Detailed optical and scanning electron microscopic examination was carried out to understand the microstructural changes occurring in the weld metal during isothermal exposure at various temperatures ranging from 500 deg. C to 850 deg. C (773-1123 K). Based on these studies the mechanism of sensitization in the austenite-ferrite weld metal has been explained. Time-temperature-sensitization (TTS) diagrams were established using ASTM A262 Practice E test. From the TTS diagrams, critical cooling rate (CCR) above which there is no risk of sensitization was calculated for both materials. The heating/cooling rates to be followed for avoiding sensitization during heat treatment cycles consisting of solution-annealing and stress-relieving in fabrication of welded components of AISI 316LN stainless steel (SS) were estimated taking into account the soaking time and the number of times the component undergoes thermal excursions in the sensitization regime. The results were validated by performing controlled heating and cooling heat treatment trials on welded specimens
Influence of prior deformation on the sensitization of AISI Type 316LN stainless steel
Energy Technology Data Exchange (ETDEWEB)
Parvathavarthini, N. (Metallurgy Div., Indira Gandhi Centre for Atomic Research, Tamilnadu (India)); Dayal, R.K. (Metallurgy Div., Indira Gandhi Centre for Atomic Research, Tamilnadu (India)); Gnanamoorthy, J.B. (Metallurgy Div., Indira Gandhi Centre for Atomic Research, Tamilnadu (India))
1994-02-01
The sensitization behaviour of a nuclear grade AISI 316LN stainless steel (SS) was studied for various cold-work levels ranging from 0% (mill-annealed) to 25% reduction in thickness. ASTM standard A262 Practices A and E were adopted to detect the susceptibility to intergranular corrosion. The results obtained in these tests were used to construct time-temperature-sensitization (TTS) diagrams. Using these data, the critical linear cooling rate was calculated, above which there is no risk of sensitization. In order to predict the sensitization behaviour during practical cooling conditions, Continuous-cooling-sensitization (CCS) diagrams were established utilising the TTS diagrams by a mathematical method. The influences of prior deformation and nitrogen in the alloy on the sensitization kinetics are discussed. It was found that nitrogen addition retards the sensitization kinetics and that t[sub min] (minimum time required for sensitization at nose temperature) increases by two orders of magnitude in Type 316LN SS compared to that of Type 316 SS at the different prior deformation levels. Cold-working up to 15% accelerates the onset of carbide precipitation and on further cold working there is not much difference in the kinetics. Desensitization is faster in highly cold-worked material, especially at high temperatures. (orig.)
Temperature-dependent microindentation data of an epoxy composition in the glassy region
Czech Academy of Sciences Publication Activity Database
Minster, Jiří; Králík, V.
2015-01-01
Roč. 19, č. 1 (2015), s. 75-85 ISSN 1385-2000 R&D Projects: GA ČR(CZ) GAP105/12/0824 Institutional support: RVO:68378297 Keywords : mechanical properties * viscoelasticity * glass transition * microindentation * time-temperature superposition Subject RIV: JI - Composite Materials Impact factor: 1.120, year: 2015 http://link.springer.com/article/10.1007/s11043-014-9252-6
International Nuclear Information System (INIS)
Lee, Gyoeng Geun; Kwon, Jun Hyun
2010-11-01
The surveillance test data in Korean LWRs were analyzed from a viewpoint of materials science. TTS change with the neutron irradiation were compared to the model values of the RG1.99/2 and NUREG/CR-6551. The model values of TTS were higher than the actual values of TTS. It was impossible to find a relationship between TTS and neutron fluence in weld data. The correlation of the increase in YS (yield strength) and TTS with neutron irradiation was also investigated. Like the result of TTS change, the YS/TTS showed the correlations in plate/forgings metals, however no correlation in weld metals. The data were similar to Odette's result about US surveillance tests. From the empirical relationships, the TTS curve change could be predicted using the CVN test result of the unirradiated specimen and the change in YS with neutron irradiation of the specimen
Central Nervous System (CNS Disease Triggering Takotsubo Syndrome
Directory of Open Access Journals (Sweden)
Josef Finsterer
2016-01-01
Full Text Available Takotsubo syndrome (TTS is usually triggered by psychological or physical stress. One of the many physical sources of stress are central nervous system (CNS disorders. CNS disorders most frequently triggering TTS include subarachnoid bleeding, epilepsy, ischemic stroke, migraine, and intracerebral bleeding. More rare CNS-triggers of TTS include posterior reversible encephalopathy syndrome (PRES, amyotrophic lateral sclerosis, encephalitis, or traumatic brain or spinal cord injury. TTS triggered by any of the CNS disorders needs to be recognized since adequate treatment of TTS may improve the general outcome from the CNS disorder as well. Neurologists need to be aware of TTS as a complication of specific CNS disorders but TTS may be triggered also by CNS disorders so far not recognised as causes of TTS.
Using Text-to-Speech Reading Support for an Adult with Mild Aphasia and Cognitive Impairment
Harvey, Judy; Hux, Karen; Snell, Jeffry
2013-01-01
This single case study served to examine text-to-speech (TTS) effects on reading rate and comprehension in an individual with mild aphasia and cognitive impairment. Findings showed faster reading, given TTS presented at a normal speaking rate, but no significant comprehension changes. TTS may support reading in people with aphasia when time…
Bailey, T.A.; Bradford, K.; Bland, C.E.
1990-01-01
Because the infective stage of most mycoses of aquatic organisms is the zoospore, we attempted to establish optimum conditions under which zoospores could be produced for use in antifungal testing. Optimum sporulation time, incubation time, inoculum size, and growth temperature were determined for each oftwo saprolegniaceous fungi, Achlya flagellata Coker and Saprolegnia hypogyna (Pringsheim) de Bary. Both species produced the largest number of zoospores after 18 hours (51.7 spores/ml for A. jlagellata and 848.0 spores/ml for S. hypogyna), and yielded maximum growth after 48 hours at 22 'C. The recommended test inoculum size for S. hypogyna (5,600 spores/ml was nearly three times that for A. flagellata (2,000 spores/ml),
International Nuclear Information System (INIS)
Brown, L.; Bui, V.T.; Bonin, H.W.
2004-01-01
'Full text:' The mechanical performance of materials used for the fabrication of materials used for the fabrication of a storage container for radioactive waste is dependent on the environment to which the container will be exposed over its lifetime. There exists a complex relationship between the many variables affecting the properties of the polymer and potentially decreasing the mechanical performance properties of the container. To further complicate the system, the degradation processes are often time dependant. Experimental results for Nylon 6,6, Semi-Aromatic Nylon, and Polycarbonate have been used as a basis for the development of a model, which represents the performance of a polymeric container used for the storage of radioactive waste over time. The experimental work aimed at providing information on the materials performance in a variety of environmental conditions, as well as a function of time. This included exposing the polymeric material samples to a mixed field of radiation in the SLOWPOKE-2 nuclear reactor. A series of dilution viscometry experiments have been used to relate the changes in mechanical performance to changes in the physical characteristics of the polymer molecules. This provided a valuable tool in the extrapolation of the model to other polymeric materials, and allowed for use of the model based on theoretical predictions of a polymer molecules reaction to various environmental conditions. (author)
Energy Technology Data Exchange (ETDEWEB)
Brown, L.; Bui, V.T.; Bonin, H.W. [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)]. E-mail: Laura-lee.Brown@rmc.ca; bui-v@rmc.ca; bonin-h@rmc.ca
2004-07-01
'Full text:' The mechanical performance of materials used for the fabrication of materials used for the fabrication of a storage container for radioactive waste is dependent on the environment to which the container will be exposed over its lifetime. There exists a complex relationship between the many variables affecting the properties of the polymer and potentially decreasing the mechanical performance properties of the container. To further complicate the system, the degradation processes are often time dependant. Experimental results for Nylon 6,6, Semi-Aromatic Nylon, and Polycarbonate have been used as a basis for the development of a model, which represents the performance of a polymeric container used for the storage of radioactive waste over time. The experimental work aimed at providing information on the materials performance in a variety of environmental conditions, as well as a function of time. This included exposing the polymeric material samples to a mixed field of radiation in the SLOWPOKE-2 nuclear reactor. A series of dilution viscometry experiments have been used to relate the changes in mechanical performance to changes in the physical characteristics of the polymer molecules. This provided a valuable tool in the extrapolation of the model to other polymeric materials, and allowed for use of the model based on theoretical predictions of a polymer molecules reaction to various environmental conditions. (author)
Energy Technology Data Exchange (ETDEWEB)
Couey, H.M.; Uota, M.
1961-12-01
When spores of Botrytis cinerea are exposed to SO/sub 2/ gas, the subsequent reduction in spore germination is quantitatively proportional to the SO/sub 2/ concentration and the exposure time. The toxicity of SO/sub 2/ increases with increasing relative humidity. In an atmosphere of 96% RH, SO/sub 2/ is more than 20 times as effective as at 75% RH. The toxicity also increases about 1.5 times for each 10/sup 0/C rise in temperature between 0/sup 0/ and 30/sup 0/C. 8 references, 4 figures, 1 table.
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, current, meteorological, and other data were collected from XBT casts, buoys, and other instruments from a World-Wide distribution. Data were collected...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, current, meteorological, and other data were collected from XBT casts, buoys, and other instruments from a World-Wide distribution. Data were collected...
International Nuclear Information System (INIS)
Farhoodi, M.; Emam-Djomeh, Z.; Ehsani, Mohammad Reza; Oromiehie, A.
2008-01-01
Polyethylene terephthalate (PET) is one of the materials that are widely used for packaging of beverages and edible oils. In this study, the migration of di (2-ethylhexyl) phthalate (DEHP) from PET bottles into the Iranian yogurt drink was investigated. According to European Commission regulations, acetic acid (3% w/v) was chosen as stimulant. The acetic acid samples were stored at 4C, 25C and 45Cfor four months and analyzed periodically by gas chromatography. Differential Scanning Calorimetry (DSC) was used to investigate if contact with the food stimulant could affect the PET material. It was concluded that the storage temperature had a large effect on the migration of DEHP. Also, increasing storage time resulted in higher concentrations of migrating DEHP. The concentrations of migrating substance did not exceed its specific migration limit (Economic European Community (EEC) regulations). Determination of glass transition (Tg) and crystallinity percent of PET bottles using DSC method showed that the variations in the amount of migration at different storage condition did not induce any change in the PET material in contact with 3% acetic acid. (author)
National Oceanic and Atmospheric Administration, Department of Commerce — Physical data were collected from XBT casts from the Indian Ocean. Data were collected from 01 January 2001 to 31 December 2001. Data were submitted by the...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, current, meteorological, and other data were collected from XBT casts, buoys, and other instruments from a World-Wide distribution. Data were collected...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical data were collected from XBT casts from the Indian Ocean. Data were collected from 01 January 2000 to 31 December 2000. Data were submitted by the...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical data were collected from XBT casts from the Indian Ocean. Data were collected from 31 December 1993 to 07 January 1994. Data were submitted by the...
Directory of Open Access Journals (Sweden)
H.C.A. Kato
2016-02-01
Full Text Available The goal of this study was to evaluate sous vide fish and assess the influence of time and temperature on the pasteurization process through quality parameters. The raw material (tambaqui fillets and the sous vide underwent physical, physicochemical, and microbiological analyses. A sauce was prepared containing soy sauce, water, horseradish and garlic flakes. The product's pasteurization parameters of time and temperature were defined according to a 22 central composite rotatable design (CCRD, and the dependent variables were water holding capacity (WHC and instrumental texture aiming at obtaining high WHC values for the product to maintain the desired juiciness. The microbiological analysis required by legislation have indicated that the fish fillets and sous vide were within de standard. The values of total coliforms found in the samples (fillets and sous vide analyzed were below the critical level of 10² CFU/g. The counts of sulphite-reducing clostridia and psychrotrophic and mesophilic bacteria on plates in the samples were <1x10 CFU/g. In conclusion, temperature was the most important factor in the pasteurization process, significantly contributing to the quality of the final product. The mathematical models proposed were considered predictive for each response.
International Nuclear Information System (INIS)
Friedman, G.M.; Sanders, J.E.
1982-01-01
Specimens of coalified plant debris in Tully-correlative strata of the Gilboa Formation (uppermost Middle Devonian) within the eastern Catskill Mountains of New York State have been converted to anthracite having a vitrinite reflectance of 2.5%. This implies a level of organic metamorphism (LOM) of 16. The specimens are about 350 m.y. old; if 200 m.y. is taken as the duration of the time of exposure to the maximum geothermal temperature, then the LOM of 16 and other thermal indicators imply a maximum temperature of 190 0 C. Using a geothermal gradient of 26 0 C.km -1 (17 0 F.1,000 ft -1 ), a former depth of burial of 6.5 km is implied. Such former deep burial is not usually inferred for the Catskills, but it is consistent with the idea that the thick (about 6.4 km or 21,000 ft) Carboniferous strata of northeastern Pennsylvania formerly extended northeast far enough to bury the Catskills. The lack of metamorphism of the Paleozoic strata lying about 4.5 km beneath the Tully-correlative rocks and exposed in the adjacent Hudson Valley places low limits on the former geothermal gradient; this supports the concept of great depth of former burial of the Catskills. For example, 6.5 km of former burial and a geothermal gradient of 26 0 C.km -1 imply a temperature of 307 0 C for the base of the Paleozoic. By contrast, only 1 km of former burial requires a geothermal gradient of 170 0 C.km -1 , which would have subjected the base of the Paleozoic to a temperature of 955 0 GAMMA, which is far higher than the 600 to 650 0 C recently inferred for the Acadian-age metamorphism of the Taconic allochthon in southwestern Massachusetts and adjoining areas
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, current, meteorological, and other data were collected from XBT casts, buoys, and other instruments from a World-Wide distribution. Data were collected...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical data were collected from XBT casts from the Indian Ocean. Data were collected from 31 July 1991 to 20 August 1991. Data were submitted by the Commonwealth...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical data were collected from XBT casts from the Indian Ocean. Data were collected from 31 December 1989 to 31 July 1990. Data were submitted by the Commonwealth...
Directory of Open Access Journals (Sweden)
Zulkarnain Zainal
2011-09-01
Full Text Available Nanocrystalline SnOx (x = 1–2 thin films were prepared on glass substrates by a simple chemical bath deposition method. Triethanolamine was used as complexing agent to decrease time and temperature of deposition and shift the pH of the solution to the noncorrosive region. The films were characterized for composition, surface morphology, structure and optical properties. X-ray diffraction analysis confirms that SnOx thin films consist of a polycrystalline structure with an average grain size of 36 nm. Atomic force microscopy studies show a uniform grain distribution without pinholes. The elemental composition was evaluated by energy dispersive X-ray spectroscopy. The average O/Sn atomic percentage ratio is 1.72. Band gap energy and optical transition were determined from optical absorbance data. The film was found to exhibit direct and indirect transitions in the visible spectrum with band gap values of about 3.9 and 3.7 eV, respectively. The optical transmittance in the visible region is 82%. The SnOx nanocrystals exhibit an ultraviolet emission band centered at 392 nm in the vicinity of the band edge, which is attributed to the well-known exciton transition in SnOx. Photosensitivity was detected in the positive region under illumination with white light.
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, current, meteorological, and other data were collected from XBT casts, buoys, and other instruments from a World-Wide distribution. Data were collected...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical data were collected from XBT casts from the Indian Ocean. Data were collected from 01 January 2002 to 31 December 2002. Data were submitted by the...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical data were collected from XBT casts from the Indian Ocean. Data were collected from 28 September 1998 to 02 October 1998. Data were submitted by the Atlantic...
National Oceanic and Atmospheric Administration, Department of Commerce — Physical, current, meteorological, and other data were collected from XBT casts, buoys, and other instruments from a World-Wide distribution. Data were collected...
Directory of Open Access Journals (Sweden)
Víctor Vásquez V
2010-03-01
Full Text Available It was predicted via Artificial Neural Networks (ANN important physicochemical characteristics of molasses vinegar: pH, density, total acidity, ethanol, total aldehydes and furfural, obtained by flash evaporation operations and flash distillation clarification. Alcoholic and acetic fermented molasses were fed to a flash evaporator at four temperatures (61, 66, 71 and 76 ° C and in three times (25, 35 and 45 min. The prediction was made with two networks: ANN and ANN-A-B, both with good performance. The ANN-A was of the feedforward (FF type with Backpropagation (BP training algorithms and set of Levenberg-Marquardt (LM weights adjustment, topology: 6 inputs (operations data of flash evaporation-distillation, 7 linear outputs (physicochemical characteristics, 9 tangent sigmoidal neurons in 1 hidden layer, 0.5 moment coefficient, 0.01 learning rate, 0.0001 error goal and 20 training stages. The ANN-A showed better performance than a statistical model of first order. The ANN-B also FF, BP and LM algorithms, topology: 2 inputs (data from flash evaporation, 7 linear outputs (physical and chemical characteristics, 84 logarithm sigmoid neurons in 1 hidden layer, 0.5 moment coefficient, 0.01 learning rate, 0.0001 error goal and 300 training stages. The ANN-B showed the same predictive capacity as a statistical model of the first-order with interaction of terms.
van Rhoon, Gerard C.; Aleman, Andre; Kelfkens, Gert; Kromhout, Hans; Van Leeuwen, Flora E.; Savelkoul, Huub F. J.; Wadman, Wytse J.; Van De Weerdt, Rik D. H. J.; Zwamborn, A. Peter M.; Van Rongen, Eric
2011-01-01
During the workshop on Thermal Aspects of Radio Frequency Exposure on 11--12 January 2010 in Gaithersburg, Maryland, USA, the question was raised whether there would be a practical advantage in shifting from expressing the exposure limits in SAR to expressing them in terms of a maximum allowable
van Rhoon, G.C.; Aleman, A.; Kelfkens, G.; Kromhout, H.; van Leeuwen, F.E.; Savelkoul, H.F.; Wadman, W.J.; van de Weerdt, R.D.; Zwamborn, A.P.M.; van Rongen, E.
2011-01-01
The Health Council of the Netherlands (HCN) and other organisations hold the basic assumption that induced electric current and the generation and absorption of heat in biological material caused by radiofrequency electromagnetic fields are the only causal effects with possible adverse consequences
Rhoon, van G.C.; Aleman, A.; Kelfkens, G.; Kromhout, H.; Leeuwen, van F.E.; Savelkoul, H.F.J.
2011-01-01
The Health Council of the Netherlands (HCN) and other organisations hold the basic assumption that induced electric current and the generation and absorption of heat in biological material caused by radiofrequency electromagnetic fields are the only causal effects with possible adverse consequences
International Nuclear Information System (INIS)
Farhoodi, Mehdi; Djomeh, Zahra Emam; Ehsani, Mohammad Reza; Oromiehie, Abdolrasul
2008-01-01
Polyethylene terephthalate (PET) is one of the materials that are widely used for packaging of beverages and edible oils. In this study, the migration of di(2-ethylhexyl)phthalate (DEHP) from PET bottles into the Iranian yogurt drink was investigated. According to European Commission regulations, acetic acid (3% w/v) was chosen as simulant. The acetic acid samples were stored at 4 degree C, 25 degree C, and 45 degree C for four months and analyzed periodically by gas chromatography. Differential Scanning Calorimetry (DSC) was used to investigate if contact with the food simulant could affect the PET material. It was concluded that the storage temperature had a large effect on the migration of DEHP. Also, increasing storage time resulted in higher concentrations of migrating DEHP. The concentrations of migrating substance did not exceed its specific migration limit (Economic European Community (EEC) regulations). Determination of glass transition (Tg) and crystallinity percent of PET bottles using DSC method showed that the variations in the amount of migration at different storage condition did not induce any change in the PET material in contact with 3% acetic acid. (author)
2011-09-01
life benefits of the cold-worked process. A simple empirically -derived scale factor would accomplish the objectives 2 Approved for public release...Correlation of Retro-dictions to Measured Fatigue Lives, Naturally Occurring Cracks resK .001402.0 inca == 69 Approved for public release; distribution...allow significant variations in the cold work level from 3 to 5% for a nominal 4% cold worked hole). The direct use of empirically -derived scale
Zeegers, J.C.H.; Zeegers, Jos; van den Ende, Henricus T.M.; Blom, C.; Altena, E.G.; Beukema, Gerrit J.; Beukema, G.J.; Mellema, J.
1995-01-01
A new instrument to carry out complex viscosity measurements in equilibrium and in a steady shear flow has been developed. A small amplitude harmonic excitation is superimposed orthogonally to the steady shear rate component. It is realized by a thin-walled cylinder, which oscillates in the axial
Ermishkin, V. V.; Kolesnikov, V. A.; Lukoshkova, E. V.; Sonina, R. S.
2013-04-01
The impedance cardiography (ICG) is widely used for beat-to-beat noninvasive evaluation of the left ventricular stroke volume and contractility. It implies the correct determination of the ejection start and end points and the amplitudes of certain peaks in the differentiated impedance cardiogram. An accurate identification of ejection onset by ICG is often problematic, especially in the cardiologic patients, due to peculiar waveforms. Using a simple theoretical model, we tested the hypothesis that two major processes are responsible for the formation of impedance systolic wave: (1) the changes in the heart geometry and surrounding vessels produced by ventricular contraction, which occur during the isovolumic phase and precede ejection, and (2) expansion of aorta and adjacent arteries during the ejection phase. The former process initiates the preejection wave WpE and the latter triggers the ejection wave WEj. The model predicts a potential mechanism of generating the abnormal shapes of dZ/dt due to the presence of preejection waves and explains the related errors in ICG time and amplitude parameters. An appropriate decomposition method is a promising way to avoid the masking effects of these waves and a further step to correct determination of the onset of ejection and the corresponding peak amplitudes from 'pathologically shaped' ICG signals.
International Nuclear Information System (INIS)
Doroudi, A.; Emampour, M.; Emampour, M.
2012-01-01
In this paper a combination of the method of multiple scales and the method of Lindstedt-Poincare which is a perturbative technique is used for calculation of axial secular frequencies of a nonlinear ion trap in the presence of second ,third, fourth and fifth order nonlinear terms of the potential distribution within the trap. The frequencies are calculated. The calculated frequencies are compared with the results of multiple scales method and the exact results.
Dumont, Thierry; Schwartz, Stéphane; Matthews, Steve; Malusa, Marco; Jouvent, Marine
2017-04-01
The tectonic contact separating continental and oceanic units is preserved at outcrop in many locations within the Western Alps. The contact has experienced prolonged and progressive deformation during Oligocene collision and subsequent 'extrusive' contraction which is approximately westerly-directed (Dumont et al., 2012). Despite variable metamorphic grade, this tectonic contact displays a relative consistency of tectonostratigraphic and structural characteristics. Removal of the Oligocene and younger deformation is a critical requirement to allow assessment of the kinematic evolution during the Eocene continental subduction phase. The best preserved relationships are observed near the base of the Helminthoid Flysch nappes, in the footwall of the Penninic thrust, or in the external part of the Briançonnais zone. Here, the oceanic units are composed of detached Cretaceous sediments, but they are underlain locally by an olistostrome containing basaltic clasts. Further to the east, the internal boundary of the Briançonnais zone s.l. (including the 'Prepiedmont units'), is frequently marked by breccia or megabreccia, but is strongly affected by blueschist-facies metamorphism and by approximately easterly directed backfolding and backthrusting. At one locality, there is compelling evidence that the oceanic and continental units were already tectonically stacked and metamorphosed (together) 32Ma ago. Some megabreccias of mixed continental/oceanic provenance can be interpreted as a metamorphic equivalent of the external olistostrome, products of the initial pulses of tectonic stacking. The overlying units are composed dominantly of metasediments, containing distributed ophiolitic megaboudins (Tricart & Schwartz, 2006). Further east again, the tectonic contact separates the Dora-Maira continental basement from the Mt. Viso units which are predominantly composed of oceanic lithosphere. Both the Dora-Maira and Mt. Viso units are eclogitic, but the HP peak is apparently older in the oceanic rocks (Malusà et al. 2015). Finally, further SE, the Voltri massif shows a huge volume of serpentinized mantle which locally overlies continental basement (strongly metamorphosed), and is interpreted as an exhumed remnant of the subduction channel (Federico et al., 2007). In all these localities the transport directions during initial pulses of stacking were consistently oriented generally towards the NW to N, taking into account the subsequent Oligocene and younger collision-related deformation (complex folds, thrusts, backfolds and backthrusts, and block-rotations). It is thus possible to attempt reconstructing an early stage continental subduction wedge involving these different elements from the subduction channel to the most frontal part of the accretionary complex. However, this early Alpine orogen which was active throughout the Eocene is interpreted to have propagated generally towards the NW to N, prior to subsequent pulses of more westerly directed deformation from the Oligocene onwards within the southern part of the Western Alps arc. It is therefore essential to continually improve high-resolution 3D geophysical imaging to facilitate a better understanding of the complex western termination of the Alpine orogen. References: Dumont T., Schwartz S., Guillot S., Simon-Labric S., Tricart P. & Jourdan S. (2012), Structural and sedimentary record of the Oligocene revolution in the Western Alpine arc. Jour. Geodynamics, doi:10.1016/j.jog.2011.11.006 Federico L., Crispini L., Scambelluri M. & Capponi G. (2007), Ophiolite mélange zone records exhumation in a fossil subduction channel. Geology, 35, p. 499-502 Malusà M.G., Faccenna C., Baldwin S.L., Fitzgerald P.G., Rossetti F., Balestrieri M.L., Danišík M., Ellero A., Ottria G. & Piromallo C. (2015), Contrasting styles of (U)HP rock exhumation along the Cenozoic Adria-Europe plate boundary (Western Alps, Calabria, Corsica). Geochem. Geophys. Geosyst. ,16, p. 1786-1824 Tricart P. & Schwartz S. (2006), A north-south section across the Queyras Schistes Lustrés (Piedmont zone, western Alps): Syn-collision refolding of a subduction wedge. Eclogae Geol. Helv., 99, 3, p. 429-442
Plumley, Joshua A; Dannenberg, J J
2011-06-01
We evaluate the performance of ten functionals (B3LYP, M05, M05-2X, M06, M06-2X, B2PLYP, B2PLYPD, X3LYP, B97D, and MPWB1K) in combination with 16 basis sets ranging in complexity from 6-31G(d) to aug-cc-pV5Z for the calculation of the H-bonded water dimer with the goal of defining which combinations of functionals and basis sets provide a combination of economy and accuracy for H-bonded systems. We have compared the results to the best non-density functional theory (non-DFT) molecular orbital (MO) calculations and to experimental results. Several of the smaller basis sets lead to qualitatively incorrect geometries when optimized on a normal potential energy surface (PES). This problem disappears when the optimization is performed on a counterpoise (CP) corrected PES. The calculated interaction energies (ΔEs) with the largest basis sets vary from -4.42 (B97D) to -5.19 (B2PLYPD) kcal/mol for the different functionals. Small basis sets generally predict stronger interactions than the large ones. We found that, because of error compensation, the smaller basis sets gave the best results (in comparison to experimental and high-level non-DFT MO calculations) when combined with a functional that predicts a weak interaction with the largest basis set. As many applications are complex systems and require economical calculations, we suggest the following functional/basis set combinations in order of increasing complexity and cost: (1) D95(d,p) with B3LYP, B97D, M06, or MPWB1k; (2) 6-311G(d,p) with B3LYP; (3) D95++(d,p) with B3LYP, B97D, or MPWB1K; (4) 6-311++G(d,p) with B3LYP or B97D; and (5) aug-cc-pVDZ with M05-2X, M06-2X, or X3LYP. Copyright © 2011 Wiley Periodicals, Inc.
Plumley, Joshua A.; Dannenberg, J. J.
2011-01-01
We evaluate the performance of nine functionals (B3LYP, M05, M05-2X, M06, M06-2X, B2PLYP, B2PLYPD, X3LYP, B97D and MPWB1K) in combination with 16 basis sets ranging in complexity from 6-31G(d) to aug-cc-pV5Z for the calculation of the H-bonded water dimer with the goal of defining which combinations of functionals and basis sets provide a combination of economy and accuracy for H-bonded systems. We have compared the results to the best non-DFT molecular orbital calculations and to experimenta...
Energy Technology Data Exchange (ETDEWEB)
Stathakis, Sotirios [Department of Radiation Oncology, University of Texas Health Science Center San Antonio, 7979 Wurzbach Rd, San Antonio, TX 78229 (United States)], E-mail: stathakis@uthscsa.edu; Esquivel, Carlos; Gutierrez, Alonso N.; Shi, ChengYu; Papanikolaou, Niko [Department of Radiation Oncology, University of Texas Health Science Center San Antonio, 7979 Wurzbach Rd, San Antonio, TX 78229 (United States)
2009-10-15
Purpose: In this paper, we present an alternative to the originally proposed technique for the delivery of spatially fractionated radiation therapy (GRID) using multi-leaf collimator (MLC) shaped fields. We employ the MLC to deliver various pattern GRID treatments to large solid tumors and dosimetrically characterize the GRID fields. Methods and materials: The GRID fields were created with different open to blocked area ratios and with variable separation between the openings using a MLC. GRID designs were introduced into the Pinnacle{sup 3} treatment planning system, and the dose was calculated in a water phantom. Ionization chamber and film measurements using both Kodak EDR2 and Gafchromic EBT film were performed in a SolidWater phantom to determine the relative output of each GRID design as well as its spatial dosimetric characteristics. Results: Agreement within 5.0% was observed between the Pinnacle{sup 3} predicted dose distributions and the measurements for the majority of experiments performed. A higher magnitude of discrepancy (15%) was observed using a high photon beam energy (18 MV) and small GRID opening. Skin dose at the GRID openings was higher than the corresponding open field by a factor as high as three for both photon energies and was found to be independent of the open-to-blocked area ratio. Conclusion: In summary, we reaffirm that the MLC can be used to deliver spatially fractionated GRID therapy and show that various GRID patterns may be generated. The Pinnacle{sup 3} TPS can accurately calculate the dose of the different GRID patterns in our study to within 5% for the majority of the cases based on film and ion chamber measurements. Disadvantages of MLC-based GRID therapy are longer treatment times and higher surface doses.
Dielectric response and ac conductivity analysis of hafnium oxide nanopowder
International Nuclear Information System (INIS)
Karahaliou, P K; Xanthopoulos, N; Krontiras, C A; Georga, S N
2012-01-01
The dielectric response of hafnium oxide nanopowder was studied in the frequency range of 10 -2 -10 6 MHz and in the temperature range of 20-180 °C. Broadband dielectric spectroscopy was applied and the experimental results were analyzed and discussed using the electric modulus (M*) and alternating current (ac) conductivity formalisms. The analyses of the dc conductivity and electric modulus data revealed the presence of mechanisms which are thermally activated, both with almost the same activation energy of 1.01 eV. A fitting procedure involving the superposition of the thermally activated dc conductivity, the universal dielectric responce and the near constant loss terms has been used to describe the frequency evolution of the real part of the specific electrical conductivity. The conductivity master curve was obtained, suggesting that the time-temperature superposition principle applies for the studied system, thus implying that the conductivity mechanisms are temperature independent.
Chemical stress relaxation of ethylene-propylene copolymer rubber by heat and radiation
International Nuclear Information System (INIS)
Ito, M.; Okada, S.; Kuriyama, I.
1980-01-01
An attempt was made to shorten the evaluation time for the deterioration under various conditions caused by chemical reactions by extending the time-temperature superposition principle for the stress relaxation of rubber. In the case of deterioration by radiation instead of by heat, a time-dose rate reduction is proposed and the master curves obtained for chemical-stress relaxation of rubber. A new method which contains a numerical analysis of stress decay curves is proposed to obtain the rate of crosslinking and scission under irradiation for already crosslinked samples. (author)
Hopping models for ion conduction in noncrystals
DEFF Research Database (Denmark)
Dyre, Jeppe; Schrøder, Thomas
2007-01-01
semiconductors). These universalities are subject of much current interest, for instance interpreted in the context of simple hopping models. In the present paper we first discuss the temperature dependence of the dc conductivity in hopping models and the importance of the percolation phenomenon. Next......, the experimental (quasi)universality of the ac conductivity is discussed. It is shown that hopping models are able to reproduce the experimental finding that the response obeys time-temperature superposition, while at the same time a broad range of activation energies is involved in the conduction process. Again...
Transport Properties Of PbI2 Doped Silver Oxysalt Based Amorphous Solid Electrolytes
Shrisanjaykumar Jayswal, Manishkumar
with that a detailed review on fast ion conducting glasses is included. At the end of the chapter, the aim of the present work has been given. Chapter 2: A discussion about various theoretical models to explain fast ion conduction mechanism in superionic conductors in general and superionic conducting glasses in particular is given. In addition to that, impedance spectroscopy and its various formalisms are discussed. Chapter 3: This chapter describes the method of preparation of the glass samples and various characterizations and techniques to study their various properties. Chapter 4: Physical properties of the prepared glass samples are studied and discussed in this chapter. The glass samples are found to be fully amorphous as exhibited by x-ray diffraction studies. The density of the prepared samples is increasing consistently with increasing PbI 2 content in the glass. For glass series (a), the molar volume also increases with PbI2 content. However, for glass series (b) and (c), molar volume is reducing with increasing PbI2 content, showing that glass is getting compacted with increasing PbI2 content. Chapter 5: Transport properties of the prepared glass samples have been investigated using impedance spectroscopy and its various formalisms. The chapter discusses DC conductivity, AC conductivity, dielectric permittivity and modulus analysis of the obtained impedance spectra. The sigma' spectra were scaled using Summerfield scaling law using sigmaDCT as the scaling factor for frequency axis and a well defined Time-Temperature Superposition (TTS) is observed as a function of temperature. The dielectric spectra show the presence of a dielectric relaxation in all glass samples. The dielectric permittivity, epsilon', spectra were scaled using the scaling law given by Sidebottom. The modulus spectra exhibit non-Debye relaxation of Ag+ ions and could be explained using KWW (Kohlrausch-Williams-Watts) decay function. Scaling analysis of the modulus spectra as a function of
Constitutive modelling of creep in a long fiber random glass mat thermoplastic composite
Dasappa, Prasad
The primary objective of this proposed research is to characterize and model the creep behaviour of Glass Mat Thermoplastic (GMT) composites under thermo-mechanical loads. In addition, tensile testing has been performed to study the variability in mechanical properties. The thermo-physical properties of the polypropylene matrix including crystallinity level, transitions and the variation of the stiffness with temperature have also been determined. In this work, the creep of a long fibre GMT composite has been investigated for a relatively wide range of stresses from 5 to 80 MPa and temperatures from 25 to 90°C. The higher limit for stress is approximately 90% of the nominal tensile strength of the material. A Design of Experiments (ANOVA) statistical method was applied to determine the effects of stress and temperature in the random mat material which is known for wild experimental scatter. Two sets of creep tests were conducted. First, preliminary short-term creep tests consisting of 30 minutes creep followed by recovery were carried out over a wide range of stresses and temperatures. These tests were carried out to determine the linear viscoelastic region of the material. From these tests, the material was found to be linear viscoelastic up-to 20 MPa at room temperature and considerable non-linearities were observed with both stress and temperature. Using Time-Temperature superposition (TTS) a long term master curve for creep compliance for up-to 185 years at room temperature has been obtained. Further, viscoplastic strains were developed in these tests indicating the need for a non-linear viscoelastic viscoplastic constitutive model. The second set of creep tests was performed to develop a general non-linear viscoelastic viscoplastic constitutive model. Long term creep-recovery tests consisting of 1 day creep followed by recovery has been conducted over the stress range between 20 and 70 MPa at four temperatures: 25°C, 40°C, 60°C and 80°C. Findley's model
Aging predictions in nuclear power plants: Crosslinked polyolefin and EPR cable insulation materials
International Nuclear Information System (INIS)
Gillen, K.T.; Clough, R.L.
1991-06-01
In two earlier reports, we derived a time-temperature-dose rate superposition methodology, which, when applicable, can be used to predict cable degradation versus dose rate, temperature and exposure time. This methodology results in long-term predictive capabilities at the low dose rates appropriate to ambient nuclear power plant aging environments. The methodology was successfully applied to numerous important cable materials used in nuclear applications and the extrapolated predictions were verified by comparisons with long-term (7 to 12 year) results for similar or identical materials aged in nuclear environments. In this report, we test the methodology on three crosslinked polyolefin (CLPO) and two ethylene propylene rubber (EPR) cable insulation materials. The methodology applies to one of the CLPO materials and one of the EPR materials, allowing predictions to be made for these materials under low dose-rate, low temperature conditions. For the other materials, it is determined that, at low temperatures, a decrease in temperature at a constant radiation dose rate leads to an increase in the degradation rate for the mechanical properties. Since these results contradict the fundamental assumption underlying time-temperature-dose rate superposition, this methodology cannot be applied to such data. As indicated in the earlier reports, such anomalous results might be expected when attempting to model data taken across the crystalline melting region of semicrystalline materials. Nonetheless, the existing experimental evidence suggests that these CLPO and EPR materials have substantial aging endurance for typical reactor conditions. 28 refs., 26 figs., 3 tabs
Determination of the Nonlinearity Parameter in the TNM Model of Structural Recovery
Bari, Rozana; Simon, Sindee
Structural recovery of non-equilibrium glassy materials takes place by evolution of volume and enthalpy as the glass attempts to reach to equilibrium. Structural recovery is nonlinear, nonexponential, and depends on thermal history and the process can be described by phenomenological models of structural recovery, such as the Tool-Narayanaswamy-Moynihan (TNM) and the Kovacs-Aklonis-Hutchinson-Ramos (KAHR) models. The goal of the present work is to analyze methods to determine the nonlinearity parameter x and activation energy Δh/R. The methods to determine x includes the inflectional analysis, time-temperature superposition, and two-step temperature jump methods. The activation energy Δh/R can also be obtained by the first two methods. The TNM model is used to simulate structural recovery data, which are then used to test the accuracy of the methods to determine x and Δh/R, with a particular interest in data obtained after cooling at high rates as can be obtained in the Flash DSC. The nonlinearity parameter x by the inflectional analysis and two-step temperature methods are accurate for exponential recovery. However, for real systems with nonexponential relaxation, methods to determine x are not reliable. The activation energy is well estimated by both the time-temperature superposition and inflectional analysis methods, with the former being slightly better.
International Nuclear Information System (INIS)
Larbi, S.; Berradj, M.; Djebbar, A.; Bilek, A.
2011-01-01
We present in this study a creep behavior in flexure of a hybrid composite consisting of a polyester matrix containing methyl methacrylate reinforced by two bidirectional fabrics. The first one is made with E-glass fibers and the second one is made of a knitted polyamide 66. The mass fractions are 13% for the glass fabric and 9% for the polyamide fabric. The specimens, of dimensions (L = 60, l = 15 and h = 2.3 mm) containing 06 alternating layers (2P/2V/2P) were fabricated by using the vacuum bag molding method. Bending tests performed at different temperatures allowed us first to determine the load levels for the creep tests. Creep tests at different loads (5 to 43 MPa) and different temperatures (23'deg' to 80'deg' C) show a noticeable increase of creep deformation for both tests under the same load and different temperatures just as those carried out at different loads under the same temperature. The initial deformation varies significantly with the load but very little with temperature. The application of the Findley model shows good correlation with experimental results. Model parameters were identified. Creep deformation satisfies the principle of superposition time-temperature-stress (TTSSP). Findley's model has subsequently been coupled with the principle of superposition of time-temperature-stress to plot master curves at different stresses and temperatures; this enables prediction of creep deformation in the long term. (author)
Hui Pan; Chung-Yun Hse; Todd F. Shupe
2009-01-01
Creosote- and chromated copper arsenate (CCA)-treated wood waste and untreated southern pine wood were liquefied with phenol and sulfuric acid. The effects of sulfuric acid content, liquefaction time, liquefaction temperature, and phenol to wood ratio on liquefaction rate (i.e., wood residue content) were investigated and analyzed by analysis of variance (...
Diakite, Mahamadou; Odéen, Henrik; Todd, Nick; Payne, Allison; Parker, Dennis L
2014-07-01
To present a three-dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance frequency shift temperature of aqueous tissue and the longitudinal relaxation time (T1 ) of fat during thermal ablation. The hybrid sequence was implemented by combining a 3D segmented flyback EPI sequence, the extended two-point Dixon fat and water separation, and the double flip angle T1 mapping techniques. High-intensity focused ultrasound (HIFU) heating experiments were performed at three different acoustic powers on excised human breast fat embedded in ex vivo porcine muscle. Furthermore, T1 calibrations with temperature in four different excised breast fat samples were performed, yielding an estimate of the average and variation of dT1 /dT across subjects. The water only images were used to mask the complex original data before computing the proton resonance frequency shift. T1 values were calculated from the fat-only images. The relative temperature coefficients were found in five fat tissue samples from different patients and ranged from 1.2% to 2.6%/°C. The results demonstrate the capability of real-time simultaneous temperature mapping in aqueous tissue and T1 mapping in fat during HIFU ablation, providing a potential tool for treatment monitoring in organs with large fat content, such as the breast. Copyright © 2013 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Seo, Moo Hong; Chun, Byong Sun; Oh, Yong Jun; Ryu, Woo Seog; Hong, Jun Hwa
1998-01-01
The precipitation and sensitization behavior of nitrogen added type 316L Stainless Steels (SS) were investigated by using specimens cold worked for 0∼40%. The alloys had a variation in nitrogen content from 0.04 to 0.15%. To quantify the degree of sensitization, Double-Loop Electrochemical Potentiokinetic Reactivation (DL-EPR) test was performed in a 0.1M H 2 SO 4 + 0.01M KSCN solution at 30 .deg. C. The addition of nitrogen increased sensitization resistance by retarding the onset of M 23 C 6 precipitation and shifted Time-Temperature-Sensitization(TTS) curve to higher temperature and longer time range. Cold work accelerated the M 23 C 6 precipitation and sensitization kinetic due to the increase in dislocation density. However, the acceleration of sensitization was found to depend on the added nitrogen content in the alloys. The alloys with high nitrogen(>0.1%N) content exhibited higher acceleration of the sensitization as a function of the cold work than that with low nitrogen content. From the microstructural analysis, this was found to be attributed to the development of intensive slip bands during cold work and retardation of dislocation annihilation during subsequent aging in the alloys with high nitrogen content
International Nuclear Information System (INIS)
Hyun, Youngmin; Kim, Heesan
2013-01-01
Ti-stabilized 11 wt% Cr ferritic stainless steels (FSSs) for automotive exhaust systems have been experienced intergranular corrosion (IC) in some heat-affected zone (HAZ). The effects of sensitizing heat-treatment and silicon on IC were studied. Time-Temperature-Sensitization (TTS) curves showed that sensitization to IC was observed at the steels heat-treated at the temperature lower than 650 .deg. C and that silicon improved IC resistance. The sensitization was explained by chromium depletion theory, where chromium is depleted by precipitation of chromium carbide during sensitizing heat-treatment. It was confirmed with the results from the analysis of precipitates as well as the thermodynamical prediction of stable phases. In addition, the role of silicon on IC was explained with the stabilization of grain boundary. In other words, silicon promoted the formation of the grain boundaries with low energy where precipitation was suppressed and consequently, the formation of Cr-depleted zone was retarded. The effect of silicon on the formation of grain boundaries with low energy was proved by the analysis of coincidence site lattice (CSL) grain boundary, which is a typical grain boundary with low energy
Energy Technology Data Exchange (ETDEWEB)
Hyun, Youngmin; Kim, Heesan [Hongik Univ., Sejong (Korea, Republic of)
2013-06-15
Ti-stabilized 11 wt% Cr ferritic stainless steels (FSSs) for automotive exhaust systems have been experienced intergranular corrosion (IC) in some heat-affected zone (HAZ). The effects of sensitizing heat-treatment and silicon on IC were studied. Time-Temperature-Sensitization (TTS) curves showed that sensitization to IC was observed at the steels heat-treated at the temperature lower than 650 .deg. C and that silicon improved IC resistance. The sensitization was explained by chromium depletion theory, where chromium is depleted by precipitation of chromium carbide during sensitizing heat-treatment. It was confirmed with the results from the analysis of precipitates as well as the thermodynamical prediction of stable phases. In addition, the role of silicon on IC was explained with the stabilization of grain boundary. In other words, silicon promoted the formation of the grain boundaries with low energy where precipitation was suppressed and consequently, the formation of Cr-depleted zone was retarded. The effect of silicon on the formation of grain boundaries with low energy was proved by the analysis of coincidence site lattice (CSL) grain boundary, which is a typical grain boundary with low energy.
International Nuclear Information System (INIS)
Pardo, A.; Merino, M.C.; Coy, A.E.; Viejo, F.; Carboneras, M.; Arrabal, R.
2007-01-01
Intergranular corrosion behaviour of 316Ti and 321 austenitic stainless steels has been evaluated in relation to the influence exerted by modification of Ti, C and N concentrations. For this evaluation, electrochemical measurements - double loop electrochemical potentiokinetic reactivation (DL-EPR) - were performed to produce time-temperature-sensitization (TTS) diagrams for tested materials. Transmission (TEM) and scanning electron microscopy (SEM) were used to determine the composition and nature of precipitates. The addition of Ti promotes better intergranular corrosion resistance in stainless steels. The precipitation of titanium carbides reduces the formation of chromium-rich carbides, which occurs at lower concentrations. Also, the reduction of carbon content to below 0.03 wt.% improves sensitization resistance more than does Ti content. The presence of Mo in AISI 316Ti stainless steel reduces chromium-rich carbide precipitation; the reason is that Mo increases the stability of titanium carbides and tends to replace chromium in the formation of carbides and intermetallic compounds, thus reducing the risks of chromium-depletion
Sodergren, Samantha C.; Copson, Ellen; White, Alice; Efficace, Fabio; Sprangers, Mirjam; Fitzsimmons, Deborah; Bottomley, Andrew; Johnson, Colin D.
2016-01-01
Targeted therapies (TTs), notably trastuzumab, have improved outcomes for breast cancer characterised by overexpression of human epidermal growth factor receptors including HER2. Compared with chemotherapy treatments, TTs are more specific in their targets and are delivered over longer periods of
Part-of-speech effects on text-to-speech synthesis
CSIR Research Space (South Africa)
Schlunz, GI
2010-11-01
Full Text Available One of the goals of text-to-speech (TTS) systems is to produce natural-sounding synthesised speech. Towards this end various natural language processing (NLP) tasks are performed to model the prosodic aspects of the TTS voice. One of the fundamental...
Morimoto, Daijiro; Isu, Toyohiko; Shimoda, Yuusuke; Hamauchi, Shuuji; Sasamori, Tooru; Sugawara, Atsushi; Kim, Kyongsong; Matsumoto, Ryouji; Isobe, Masanori
2009-09-01
Sacroiliac joint (SIJ) dysfunction, piriformis syndrome (PFS) and tarsal tunnel syndrome (TTS) produce symptoms similar to lumbar degenerative disease (LDD). Patients who have these diseases plus LDD sometimes experience residual symptoms after surgery for LDD. We therefore assessed the results of treatment of SIJ dysfunction, PFS and TTS associated with LDD. We assessed 25 patients who underwent surgery for LDD and were affected with SIJ dysfunction (12 patients), PFS (7 patients) or TTS (6 patients). SIJ dysfunction was treated with rest, drugs, pelvic band and sacroiliac joint block. PFS was treated with rest, drugs, physical exercise, injection of local anesthetic into the piriformis muscle, and surgical resection of the piriformis muscle. TTS was treated with drugs and tarsal tunnel opening. We analyzed the improvement score and recovery rate (JOA score) for both LDD surgery and the treatment of SIJ dysfunction, PFS and TTS. Symptom improvement was observed in all patients with SIJ dysfunction and PFS and in 4 patients with TTS. The improvement score and recovery rate of treatments for SIJ dysfunction, PFS and TTS were lower than those of surgery for LDD. The improvement score and recovery rate of treatment for SIJ dysfunction, PFS and TTS were not as high as those for LDD. To enhance patient satisfaction, it is important to consider these complicating diseases when designing treatments for LDD.
Structure of Spa15, a type III secretion chaperone from Shigella flexneri with broad specificity
Eerde, André van; Hamiaux, Cyril; Pérez, Javier; Parsot, Claude; Dijkstra, Bauke W.
2004-01-01
Type III secretion (TTS) systems are used by many Gram-negative pathogens to inject virulence proteins into the cells of their hosts. Several of these virulence effectors require TTS chaperones that maintain them in a secretion-competent state. Whereas most chaperones bind only one effector, Spa15
Evaluation of supra-threshold hearing following an event of recreational acoustic exposure
DEFF Research Database (Denmark)
Smits, Bertrand; Holtegaard, Pernille; Jeong, Cheol-Ho
2018-01-01
Studies with small rodents have exhibited physiological evidence of noise-induced cochlear synaptopathy prior to outer-hair-cell loss following noise-induced large temporary threshold shifts (TTS). The auditory system may thus not fully recover after a TTS. If this noise-induced damage also occurs...
Transient left atrial dysfunction is a feature of Takotsubo syndrome
DEFF Research Database (Denmark)
Stiermaier, Thomas; Graf, Tobias; Möller, Christian
2017-01-01
BACKGROUND: Takotsubo syndrome (TTS) is characterized by a transient left and/or right ventricular dysfunction as a consequence of a distinctive pattern of regional wall motion abnormalities. However, a systematic evaluation of the left atrial (LA) function in patients with TTS is lacking. The ai...
DEFF Research Database (Denmark)
Kjaerskov, Mette Wanscher; Bygum, Anette
2009-01-01
Trigeminal trophic syndrome (TTS) is a rare but well-described syndrome consisting of the triad: paraesthesia, anaesthesia and crescent-shaped ulceration of the ala nasi. We report a case of a 62-year-old woman presenting with TTS after operative excision of an acusticus neurinoma. She attended s...
Sueki, Kenta; Niino, Hiroshi
2016-12-01
The characteristics of typhoons that spawned tornadoes (tornadic typhoons: TTs) in Japan from 1991 to 2013 were investigated by composite analysis using the Japanese 55 year Reanalysis and compared with those of typhoons that did not spawn tornadoes (nontornadic typhoons: NTs). We found that convective available potential energy (CAPE), which considers the effects of entrainment (entraining CAPE: E-CAPE), and storm-relative environmental helicity (SREH) are significantly large in the northeast quadrant of TTs where tornadoes frequently occur and that E-CAPE and SREH in that quadrant for TTs are larger than those for NTs. On the other hand, ordinary CAPE without entrainment does not account for the spatial distribution of tornado occurrences nor does it distinguish TTs from NTs. E-CAPE is sensitive to humidity in the midtroposphere; thus, it is effective for detecting a conditionally unstable layer up to about 550 hPa, which is distinctive of TTs.
Temporary threshold shift after exposure to pop music.
Axelsson, A; Lindgren, F
1978-01-01
Temporary threshold shift (TTS) was studied in pop musicians as well as in listeners. It appears that TTS is less pronounced in pop musicians than in listeners. This can only in part be explained by slightly inferior hearing threshold levels than in the audience before exposure. Further, male listeners showed more TTS than female listeners. After 2 hours of exposure to live pop music a TTS2 appears in pop musicians after an exposure to 98 dB(A) as opposed to listeners where TTS2 appears at 92 dB(A). When the present results are related to the CHABA risk criteria it seems that exposure to live pop music at 100 dB(A) for 2 hours is a limit which should not be exceeded if the risk of permanent hearing loss is to be avoided.
Energy Technology Data Exchange (ETDEWEB)
Forney, M.; Ramaley, D. [Westinghouse Electric Company, Cranberry Township, PA (United States); Bryant, W. [Luminant Energy, Comanche Peak Nuclear Power Plant, Dallas, TX (United States)
2015-07-01
Advance Scale Conditioning Agent (ASCA) technology has been applied more than forty times worldwide since its inception in 2000. This technology has continually grown in popularity since its development due to the combination of several process benefits and minimal outage impacts. Comanche Peak Unit 2 applied a Top of Tubesheet (TTS) ASCA in 2014 for partial dissolution and softening of consolidated TTS collars. In addition to the ASCA application, a Consolidated Deposit Extraction (CODE) step was applied to the TTS. CODE is a chemical treatment technology that effectively targets and dissolves 'binding species' such as those containing aluminum and silicon from steam generator deposits. Since magnetite dissolution technologies are not wholly effective in removing consolidated TTS 'collars' CODE technology was developed to address this need in the industry. This paper will discuss both the Westinghouse and utility perspective on TTS ASCA/CODE application planning, site execution, and process results. (author)
von Blotzheim, Leonardo Glutz; Christen, Stefan; Wieser, Stephan; Ulrich, Silvia; Huber, Lars C
2015-01-01
We investigated the prevalence of bronchial asthma in patients with Tako-Tsubo Syndrome (TTS). This retrospective case-series study was conducted in a primary care hospital in Zurich, Switzerland. Data of all patients with newly diagnosed TTS (2002 - 2012) were assessed electronically by the use of ICD-10. Asthma prevalence was compared to published epidemiologic data. Bronchial asthma is characterized by airway inflammation and, during attack, release of endogenous catecholamines. Sympathomimetic drugs are the mainstay of treatment for asthma patients. Likewise, catecholamine mediated diffuse microvascular myocardial dysfunction seems to be of critical importance for the development of TTS. 20 cases of TTS were identified. 90% were female, showed a median age of 70±13y [25y - 90y], an apical and/or midventricular ballooning pattern with preserved basal function and a median initial LVEF of 34±9% [25% - 55%]. 65% of patients underwent coronary angiography to rule out significant coronary artery disease. Hypertension was present in 45% of patients, 35% were smokers, none was suffering from diabetes. Prevalence of asthma in patients with TTS was significantly higher compared to the normal population (25% vs. 7%, p=0.012). In 30% of the TTS patients an iatrogenic cause for development of TTS was identified. Prevalence of asthma was significantly higher in patients with TTS compared to epidemiologic data from an age-matched population. Phenotypes of patients developing obstructive ventilatory disease and TTS might share common pathogenic mechanisms beyond the use of bronchodilatators. In addition, we identified other iatrogenic etiologies in patients with TTS.
Chen, Xue; Wang, Zhi-Gang; Wang, Xi; Kuo, James B.
2018-04-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 61404110) and the National Higher-education Institution General Research and Development Project, China (Grant No. 2682014CX097).
International Nuclear Information System (INIS)
Joosten, Andreas; Matzinger, Oscar; Jeanneret-Sozzi, Wendy; Bochud, François; Moeckli, Raphaël
2013-01-01
Background and purpose: To make a comprehensive evaluation of organ-specific out-of-field doses using Monte Carlo (MC) simulations for different breast cancer irradiation techniques and to compare results with a commercial treatment planning system (TPS). Materials and methods: Three breast radiotherapy techniques using 6MV tangential photon beams were compared: (a) 2DRT (open rectangular fields), (b) 3DCRT (conformal wedged fields), and (c) hybrid IMRT (open conformal + modulated fields). Over 35 organs were contoured in a whole-body CT scan and organ-specific dose distributions were determined with MC and the TPS. Results: Large differences in out-of-field doses were observed between MC and TPS calculations, even for organs close to the target volume such as the heart, the lungs and the contralateral breast (up to 70% difference). MC simulations showed that a large fraction of the out-of-field dose comes from the out-of-field head scatter fluence (>40%) which is not adequately modeled by the TPS. Based on MC simulations, the 3DCRT technique using external wedges yielded significantly higher doses (up to a factor 4–5 in the pelvis) than the 2DRT and the hybrid IMRT techniques which yielded similar out-of-field doses. Conclusions: In sharp contrast to popular belief, the IMRT technique investigated here does not increase the out-of-field dose compared to conventional techniques and may offer the most optimal plan. The 3DCRT technique with external wedges yields the largest out-of-field doses. For accurate out-of-field dose assessment, a commercial TPS should not be used, even for organs near the target volume (contralateral breast, lungs, heart)
3G 带宽叠加技术在河口管理中的应用%Application of Technology of 3G Bandwidth-Superposition on Estuary Management
Institute of Scientific and Technical Information of China (English)
何宗涛
2015-01-01
On the basis of the public network, the practical speed of 3G network among the Zhangwei river south bayou area is about 400kbit/s. However, the traditional monitoring system that based upon the public 3G network is not able to afford transmission of high-definition (D1 and higher resolutions) videos. For the need of normative law enforcement for the water administration and supervision, it is necessary to uses 3G bandwidth fusion technology, combining the classic 3G network video structural frame. It expounds the working principle and realizes image collection and transmission of high-definition images.%受公网覆盖的影响，在漳卫南河口管理区域的3G实际速率在400 kbit/s左右，传统的基于3G网络的监控系统无法传输高清晰度（D1及以上分辨率）的视频。为满足河口水政监察规范执法的需要，结合典型的3G网络视频架构，采用了3G带宽叠加技术，阐述其工作原理，实现高清晰度的图像采集和传输。
da Motta, Rafael Gonçalves; Moraes, Renato
2017-10-01
The Southern Brasília Orogen is a Neoproterozoic belt that occurs along the southernmost border of the São Francisco Craton where the Andrelândia Nappe System represents the subducted sedimentary domain and is divided into three allochthonous groups, of which the ages and P-T conditions of metamorphism are studied here. The basal unit, the Andrelândia Nappe, exhibits an inverted metamorphic pattern. The base of the structure, composed of staurolite, garnet, biotite, kyanite, quartz, and muscovite, marks the metamorphic peak, whereas at the top, the association of the metamorphic peak does not contain staurolite. The Liberdade Nappe, the middle unit, presents a normal metamorphic pattern; its base, close to the Andrelândia Nappe, shows paragneiss with evidence of in situ partial melting, and towards the top, coarse-grained staurolite schist is found. The staurolite-out and melt-in isograds are coincident and parallel to the main foliation. Thus, the shear zone that limits the nappes is syn-metamorphic, reheating the underlying Andrelândia Nappe and influencing the establishment of metamorphic inversion. This suggestion is supported by the monazite chemical ages, which indicates that the Andrelândia Nappe metamorphic peak (586 ± 15 Ma) is younger than that of the Liberdade Nappe (622.3 ± 7.6 Ma). The upper unit, the Serra da Natureza Klippe, bears a typical high-pressure granulite mineral assemblage that is composed of kyanite, garnet, K-feldspar, rutile, and leucosome, as well as a metamorphic peak at 604.5 ± 6.1 Ma. This tectonic assembly, with inverted and non-inverted metamorphic patterns and generation of klippen structures, is consistent with exhumation models and a strong indentor located in the lower continental crust.
Keijzers, Gerben B; Campbell, Don; Hooper, Jeffrey; Bost, Nerolie; Crilly, Julia; Steele, Michael Craig; Del Mar, Chris; Geeraedts, Leo M G
2014-01-01
This study prospectively evaluated in-hospital and postdischarge missed injury rates in admitted trauma patients, before and after the formalisation of a trauma tertiary survey (TTS) procedure. Prospective before-and-after cohort study. TTS were formalised in a single regional level II trauma hospital in November 2009. All multitrauma patients admitted between March-October 2009 (preformalisation of TTS) and December 2009-September 2010 (post-) were assessed for missed injury, classified into three types: Type I, in-hospital, (injury missed at initial assessment, detected within 24 h); Type II, in-hospital (detected in hospital after 24 h, missed at initial assessment and by TTS); Type III, postdischarge (detected after hospital discharge). Secondary outcome measures included TTS performance rates and functional outcomes at 1 and 6 months. A total of 487 trauma patients were included (pre-: n = 235; post-: n = 252). In-hospital missed injury rate (Types I and II combined) was similar for both groups (3.8 vs. 4.8 %, P = 0.61), as were postdischarge missed injury rates (Type III) at 1 month (13.7 vs. 11.5 %, P = 0.43), and 6 months (3.8 vs. 3.3 %, P = 0.84) after discharge. TTS performance was substantially higher in the post-group (27 vs. 42 %, P cumulative missed injury rates >15 %. Some of these injuries were clinically relevant. Although TTS performance was significantly improved by formalising the process (from 27 to 42 %), this did not decrease missed injury rates.
Quantifying the Economic and Cultural Biases of Social Media through Trending Topics.
Carrascosa, Juan Miguel; Cuevas, Ruben; Gonzalez, Roberto; Azcorra, Arturo; Garcia, David
2015-01-01
Online social media has recently irrupted as the last major venue for the propagation of news and cultural content, competing with traditional mass media and allowing citizens to access new sources of information. In this paper, we study collectively filtered news and popular content in Twitter, known as Trending Topics (TTs), to quantify the extent to which they show similar biases known for mass media. We use two datasets collected in 2013 and 2014, including more than 300.000 TTs from 62 countries. The existing patterns of leader-follower relationships among countries reveal systemic biases known for mass media: Countries concentrate their attention to small groups of other countries, generating a pattern of centralization in which TTs follow the gradient of wealth across countries. At the same time, we find subjective biases within language communities linked to the cultural similarity of countries, in which countries with closer cultures and shared languages tend to follow each other's TTs. Moreover, using a novel methodology based on the Google News service, we study the influence of mass media in TTs for four countries. We find that roughly half of the TTs in Twitter overlap with news reported by mass media, and that the rest of TTs are more likely to spread internationally within Twitter. Our results confirm that online social media have the power to independently spread content beyond mass media, but at the same time social media content follows economic incentives and is subject to cultural factors and language barriers.
Local Mechanisms for Loud Sound-Enhanced Aminoglycoside Entry into Outer Hair Cells
Directory of Open Access Journals (Sweden)
Hongzhe eLi
2015-04-01
Full Text Available Loud sound exposure exacerbates aminoglycoside ototoxicity, increasing the risk of permanent hearing loss and degrading the quality of life in affected individuals. We previously reported that loud sound exposure induces temporary threshold shifts (TTS and enhances uptake of aminoglycosides, like gentamicin, by cochlear outer hair cells (OHCs. Here, we explore mechanisms by which loud sound exposure and TTS could increase aminoglycoside uptake by OHCs that may underlie this form of ototoxic synergy.Mice were exposed to loud sound levels to induce TTS, and received fluorescently-tagged gentamicin (GTTR for 30 minutes prior to fixation. The degree of TTS was assessed by comparing auditory brainstem responses before and after loud sound exposure. The number of tip links, which gate the GTTR-permeant mechanoelectrical transducer (MET channels, was determined in OHC bundles, with or without exposure to loud sound, using scanning electron microscopy.We found wide-band noise (WBN levels that induce TTS also enhance OHC uptake of GTTR compared to OHCs in control cochleae. In cochlear regions with TTS, the increase in OHC uptake of GTTR was significantly greater than in adjacent pillar cells. In control mice, we identified stereociliary tip links at ~50% of potential positions in OHC bundles. However, the number of OHC tip links was significantly reduced in mice that received WBN at levels capable of inducing TTS.These data suggest that GTTR uptake by OHCs during TTS occurs by increased permeation of surviving, mechanically-gated MET channels, and/or non-MET aminoglycoside-permeant channels activated following loud sound exposure. Loss of tip links would hyperpolarize hair cells and potentially increase drug uptake via aminoglycoside-permeant channels expressed by hair cells. The effect of TTS on aminoglycoside-permeant channel kinetics will shed new light on the mechanisms of loud sound-enhanced aminoglycoside uptake, and consequently on ototoxic
DETERMINATION OF THE STABILITY OF A LOCAL ANESTHETIC BROMOKAIN TRANSDERMAL THERAPEUTIC SYSTEM
Directory of Open Access Journals (Sweden)
V. A. Ryzhikova
2014-01-01
Full Text Available Aim. To study the stability of biocompatible microemulsion composition-based bromokain transdermal therapeutic systems (TTS in order to confi rm the original shelf life and to identify the most appropriate TTS composition for storage.Materials and methods. The stability test using accelerated aging method was performed on the samples of TTS containing 50 and 100 mg of bromokain. Physicochemical properties of TTS were analyzed at the end of the 1st, 2nd, 3rd, and 6th month of storage. The physical confi guration of the dosage form, the content of bromokain in TTS, and drug release were evaluated at each stage of the study. The content of bromokain in the samples was recorded using high performance liquid chromatography (HPLC. As a control for each method, the newly manufactured TTS forms were used.Results. Unlike the samples containing 50 mg of bromokain, TTS with 100 mg of the anesthetic demonstrated changes in the physical confi guration and deterioration of the functional properties after the 6th month of storage. The quantitative content of the substance in TTS containing 50 and 100 mg of bromokain met the requirements of regulatory documentation (RD at allphases of the experiment and was within 50,0 ± 5,0 mg and 100,0 ± 10,0 mg, respectively. The release profi le of TTS with 50 mg of bromokain has remained unchanged during storage and complies with the RD. TTS with 100 mg of bromokain after the 3rd month of storage had a deviation from the release profi le indicated in the RD.Conclusion. The shelf life of 2 years at t = 25 °C preset by us for samples of TTS containing 50 mg of bromokain has been confi rmed. According to the test results, samples of TTS with the content of bromokain of 100 mg were declared unstable and unfi t for storage under the selected storage conditions.
Directory of Open Access Journals (Sweden)
Parimalam Kumar
2014-01-01
Full Text Available Trigeminal trophic syndrome (TTS is a rare cause of facial ulceration, consequent to damage to the trigeminal nerve or its central sensory connections. We reporta case of TTS in a 48-year-old woman with Bell′s palsy following herpes zoster infection. The patient was treated and counseled. There hasnot been any recurrence for 1 year and the patient is being followed-up. The diagnosis of TTS should be suspected when there is unilateral facial ulceration, especially involving the ala nasi associated with sensory impairment.
Quality of synthetic speech perceptual dimensions, influencing factors, and instrumental assessment
Hinterleitner, Florian
2017-01-01
This book reviews research towards perceptual quality dimensions of synthetic speech, compares these findings with the state of the art, and derives a set of five universal perceptual quality dimensions for TTS signals. They are: (i) naturalness of voice, (ii) prosodic quality, (iii) fluency and intelligibility, (iv) absence of disturbances, and (v) calmness. Moreover, a test protocol for the efficient indentification of those dimensions in a listening test is introduced. Furthermore, several factors influencing these dimensions are examined. In addition, different techniques for the instrumental quality assessment of TTS signals are introduced, reviewed and tested. Finally, the requirements for the integration of an instrumental quality measure into a concatenative TTS system are examined.
Cell type-specific termination of transcription by transposable element sequences.
Conley, Andrew B; Jordan, I King
2012-09-30
Transposable elements (TEs) encode sequences necessary for their own transposition, including signals required for the termination of transcription. TE sequences within the introns of human genes show an antisense orientation bias, which has been proposed to reflect selection against TE sequences in the sense orientation owing to their ability to terminate the transcription of host gene transcripts. While there is evidence in support of this model for some elements, the extent to which TE sequences actually terminate transcription of human gene across the genome remains an open question. Using high-throughput sequencing data, we have characterized over 9,000 distinct TE-derived sequences that provide transcription termination sites for 5,747 human genes across eight different cell types. Rarefaction curve analysis suggests that there may be twice as many TE-derived termination sites (TE-TTS) genome-wide among all human cell types. The local chromatin environment for these TE-TTS is similar to that seen for 3' UTR canonical TTS and distinct from the chromatin environment of other intragenic TE sequences. However, those TE-TTS located within the introns of human genes were found to be far more cell type-specific than the canonical TTS. TE-TTS were much more likely to be found in the sense orientation than other intragenic TE sequences of the same TE family and TE-TTS in the sense orientation terminate transcription more efficiently than those found in the antisense orientation. Alu sequences were found to provide a large number of relatively weak TTS, whereas LTR elements provided a smaller number of much stronger TTS. TE sequences provide numerous termination sites to human genes, and TE-derived TTS are particularly cell type-specific. Thus, TE sequences provide a powerful mechanism for the diversification of transcriptional profiles between cell types and among evolutionary lineages, since most TE-TTS are evolutionarily young. The extent of transcription
Cell type-specific termination of transcription by transposable element sequences
Directory of Open Access Journals (Sweden)
Conley Andrew B
2012-09-01
Full Text Available Abstract Background Transposable elements (TEs encode sequences necessary for their own transposition, including signals required for the termination of transcription. TE sequences within the introns of human genes show an antisense orientation bias, which has been proposed to reflect selection against TE sequences in the sense orientation owing to their ability to terminate the transcription of host gene transcripts. While there is evidence in support of this model for some elements, the extent to which TE sequences actually terminate transcription of human gene across the genome remains an open question. Results Using high-throughput sequencing data, we have characterized over 9,000 distinct TE-derived sequences that provide transcription termination sites for 5,747 human genes across eight different cell types. Rarefaction curve analysis suggests that there may be twice as many TE-derived termination sites (TE-TTS genome-wide among all human cell types. The local chromatin environment for these TE-TTS is similar to that seen for 3′ UTR canonical TTS and distinct from the chromatin environment of other intragenic TE sequences. However, those TE-TTS located within the introns of human genes were found to be far more cell type-specific than the canonical TTS. TE-TTS were much more likely to be found in the sense orientation than other intragenic TE sequences of the same TE family and TE-TTS in the sense orientation terminate transcription more efficiently than those found in the antisense orientation. Alu sequences were found to provide a large number of relatively weak TTS, whereas LTR elements provided a smaller number of much stronger TTS. Conclusions TE sequences provide numerous termination sites to human genes, and TE-derived TTS are particularly cell type-specific. Thus, TE sequences provide a powerful mechanism for the diversification of transcriptional profiles between cell types and among evolutionary lineages, since most TE-TTS are
International Nuclear Information System (INIS)
Venkatraman, B.; Saravanan, T.; Jayakumar, T.; Kalyanasundaram, P.; Raj, B.
2004-01-01
The tube to tubesheet (TTS) welds of steam generator of Prototype Fast Breeder Reactor (PFBR) are quite critical. Sodium flows on shell side and water on tube side. Any failure would thus be catastrophic. Apart from defects such as porosities, wall thinning due to concavity is endemic in such joints and needs to be detected. This paper presents the methodologies developed for quantitative evaluation of defects including wall thinning due to concavity in the TTS welds by micro focal radiography. The method has been successfully adopted in the shop floor for the evaluation of TTS welds of steam generator and evaporator. (author)
Cruz, Madalena; Freitas, Filomena; Torres, Cristiana A V; Reis, Maria A M; Alves, Vítor D
2011-05-01
The effect of temperature on the rheology of a new fucose-containing extracellular polysaccharide (EPS) was evaluated. The steady state data revealed a shear-thinning behavior, with the viscosity being immediately recovered when the shear rate was decreased. The mechanical spectra indicated viscous solutions with entangled polymer molecules in the range of temperatures studied (from 15 °C to 65 °C). In addition, the Time-Temperature Superposition principle was successfully applied and the Cox-Merz rule was valid, reinforcing the idea of a thermorheologically simple behavior for the EPS in aqueous solution. Furthermore, the viscous and viscoelastic properties at 25 °C were maintained after consecutive heating and cooling cycles, indicating a good thermal stability under temperature fluctuations. Copyright © 2011 Elsevier B.V. All rights reserved.
Tensile properties of latex paint films with TiO2 pigment
Hagan, Eric W. S.; Charalambides, Maria N.; Young, Christina T.; Learner, Thomas J. S.; Hackney, Stephen
2009-05-01
The tensile properties of latex paint films containing TiO2 pigment were studied with respect to temperature, strain-rate and moisture content. The purpose of performing these experiments was to assist museums in defining safe conditions for modern paintings held in collections. The glass transition temperature of latex paint binders is in close proximity to ambient temperature, resulting in high strain-rate dependence in typical exposure environments. Time dependence of modulus and failure strain is discussed in the context of time-temperature superposition, which was used to extend the experimental time scale. Nonlinear viscoelastic material models are also presented, which incorporate a Prony series with the Ogden or Neo-Hookean hyperelastic function for different TiO2 concentrations.
Dynamic studies of poly(di-n-alkyl itaconate)s
Arrighi, V; Gagliardi, S; McEwen, I J; Telling, M T F
2002-01-01
We report a preliminary dynamic study of poly(di-n-alkyl itaconate)s with varying side chain length n. QENS measurements were carried out on two backscattering spectrometers, IRIS at ISIS and IN10 at the ILL in the temperature range of 4 to 350 K. We show that molecular motion can be detected well below the polymer glass transition for all samples. It is possible to distinguish different dynamic processes. The temperature range over which these are observed is dependent on the length of the side chain, n. The intermediate scattering function, I(Q,t), was determined from the IRIS and found to obey time-temperature superposition. We show that the I(Q,t) data at different temperatures can be overlapped using the same time-scale shift factors, indicating that the relaxation process is common to all the polymers investigated. (orig.)
Analysis of Hydroperoxides in Solid Polyethylene by MAS (13)C NMR and EPR
International Nuclear Information System (INIS)
ASSINK, ROGER A.; CELINA, MATHIAS C.; DUNBAR, TIMOTHY D.; ALAM, TODD M.; CLOUGH, ROGER LEE; GILLEN, KENNETH T.
1999-01-01
13 C-enriched polyethylene was subjected to γ-irradiation in the presence of air at 25 and 80 C for total doses ranging from 71 to 355 kGy. Significant quantities of hydroperoxides were detected in the 25 C irradiated sample by 13 C magic angle spinning NMR spectroscopy. This method of detection was performed on the solid polymer and required no chemical derivatization or addition of solvent. The chemical stability and subsequent products of the hydroperoxide species were studied by annealing the irradiated samples in air at temperatures ranging from 22 to 110 C. A time-temperature superposition analysis provided an activation energy of 108 kJ/mol for the hydroperoxide decomposition process. The primary products of hydroperoxide decomposition were ketones and secondary alcohols with lesser amounts of acids and esters. EPR measurements suggest that the reactive hydroperoxide species reside in the amorphous phase of polyethylene, consistent with degradation occurring in the amorphous phase
Dynamics of associating networks
Tang, Shengchang; Habicht, Axel; Wang, Muzhou; Li, Shuaili; Seiffert, Sebastian; Olsen, Bradley
Associating polymers offer important technological solutions to renewable and self-healing materials, conducting electrolytes for energy storage and transport, and vehicles for cell and protein deliveries. The interplay between polymer topologies and association chemistries warrants new interesting physics from associating networks, yet poses significant challenges to study these systems over a wide range of time and length scales. In a series of studies, we explored self-diffusion mechanisms of associating polymers above the percolation threshold, by combining experimental measurements using forced Rayleigh scattering and analytical insights from a two-state model. Despite the differences in molecular structures, a universal super-diffusion phenomenon is observed when diffusion of molecular species is hindered by dissociation kinetics. The molecular dissociation rate can be used to renormalize shear rheology data, which yields an unprecedented time-temperature-concentration superposition. The obtained shear rheology master curves provide experimental evidence of the relaxation hierarchy in associating networks.
The viscoelastic behavior of a composite in a thermal environment
Morris, D. H.; Brinson, H. F.; Griffith, W. I.; Yeow, Y. T.
1979-01-01
A proposed method for the accelerated predictions of modulus and life times for time dependent polymer matrix composite laminates is presented. The method, based on the time temperature superposition principle and lamination theory, is described in detail. Unidirectional reciprocal of compliance master curves and the shift functions needed are presented and discussed. Master curves for arbitrarily oriented unidirectional laminates are predicted and compared with experimantal results obtained from master curves generated from 15 minute tests and with 25 hour tests. Good agreement is shown. Predicted 30 deg and 60 deg unidirectional strength master curves are presented and compared to results of creep rupture tests. Reasonable agreement is demonstrated. In addition, creep rupture results for a (90 deg + or - 60 deg/90 deg) sub 2s laminate are presented.
Creep rupture behavior of unidirectional advanced composites
Yeow, Y. T.
1980-01-01
A 'material modeling' methodology for predicting the creep rupture behavior of unidirectional advanced composites is proposed. In this approach the parameters (obtained from short-term tests) required to make the predictions are the three principal creep compliance master curves and their corresponding quasi-static strengths tested at room temperature (22 C). Using these parameters in conjunction with a failure criterion, creep rupture envelopes can be generated for any combination of in-plane loading conditions and ambient temperature. The analysis was validated experimentally for one composite system, the T300/934 graphite-epoxy system. This was done by performing short-term creep tests (to generate the principal creep compliance master curves with the time-temperature superposition principle) and relatively long-term creep rupture tensile tests of off-axis specimens at 180 C. Good to reasonable agreement between experimental and analytical results is observed.
International Nuclear Information System (INIS)
Arrieta, J S; Diani, J; Gilormini, P
2014-01-01
Shape memory polymer composites (SMPCs) have become an important way to leverage improvements in the development of applications featuring shape memory polymers (SMPs). In this study, an amorphous SMP matrix has been filled with different types of reinforcements. An experimental set of results is presented and then compared to three-dimensional (3D) finite-element simulations. Thermomechanical shape memory cycles were performed in uniaxial tension. The fillers effect was studied in stress-free and constrained-strain recoveries. Experimental observations indicate complete shape recovery and put in evidence the increased sensitivity of constrained length stress recoveries to the heating ramp on the tested composites. The simulations reproduced a simplified periodic reinforced composite and used a model for the matrix material that has been previously tested on regular SMPs. The latter combines viscoelasticity at finite strain and time-temperature superposition. The simulations easily allow representation of the recovery properties of a reinforced SMP. (paper)
Miranda Guedes, Rui
2018-02-01
Long-term creep of viscoelastic materials is experimentally inferred through accelerating techniques based on the time-temperature superposition principle (TTSP) or on the time-stress superposition principle (TSSP). According to these principles, a given property measured for short times at a higher temperature or higher stress level remains the same as that obtained for longer times at a lower temperature or lower stress level, except that the curves are shifted parallel to the horizontal axis, matching a master curve. These procedures enable the construction of creep master curves with short-term experimental tests. The Stepped Isostress Method (SSM) is an evolution of the classical TSSP method. Higher reduction of the required number of test specimens to obtain the master curve is achieved by the SSM technique, since only one specimen is necessary. The classical approach, using creep tests, demands at least one specimen per each stress level to produce a set of creep curves upon which TSSP is applied to obtain the master curve. This work proposes an analytical method to process the SSM raw data. The method is validated using numerical simulations to reproduce the SSM tests based on two different viscoelastic models. One model represents the viscoelastic behavior of a graphite/epoxy laminate and the other represents an adhesive based on epoxy resin.
National Aeronautics and Space Administration — In the previous year, we have performed three separate experiments. At NASA JSC, the tilt-translation sled (TTS) was used to study the effect of our advanced...
Omission and other sins: Tracking the quality of online machine ...
African Journals Online (AJOL)
Since the Centre renders a translation service, among others, questions regarding ... TTs translated by humans), and (ii) language models of the target language, ... [SMT] is based; [they] also obscure the labour of the computer scientists who ...
National Oceanic and Atmospheric Administration, Department of Commerce — The Temperatures of Troposphere / Stratosphere (TTS) (AMSU channel 7 and MSU channel 3) CDR is generated by using National Oceanic and Atmospheric Administration...
Voice user interface design for emerging multilingual markets
CSIR Research Space (South Africa)
Van Huyssteen, G
2012-10-01
Full Text Available Multilingual emerging markets hold many opportunities for the application of spoken language technologies, such as automatic speech recognition (ASR) or test-to-speech (TTS) technologies in interactive voice response (IVR) systems. However...
Acoustic cues identifying phonetic transitions for speech segmentation
CSIR Research Space (South Africa)
Van Niekerk, DR
2008-11-01
Full Text Available The quality of corpus-based text-to-speech (TTS) systems depends strongly on the consistency of boundary placements during phonetic alignments. Expert human transcribers use visually represented acoustic cues in order to consistently place...
Talking books in reading instruction and student behavior
DEFF Research Database (Denmark)
Gissel, Stig Toke
2014-01-01
at their frustration level. Basing the intervention on connectionist theory of reading and Share’s self-teaching hypothesis, students were instructed to try to read the words before activating the TTS-function. Only five students out of 17 used the software in ways that could promote selfteaching, but underused...... the support. Five other students very quickly refrained from trying to decode, instead clicking the full page TTS. Another five students did not at any point try to decode words independently. These results suggest that by using TTS and talking books in reading instruction without measures to fine tune......In grade 1, Danish students used a talking book with TTS (text-to-speech) and participated in a learning design with emphasis on decoding and reading for meaning in written text. The students all read the same unfamiliar text, which for many of the students would traditionally be considered being...
76 FR 52670 - 2011 Technology Transfer Summit North America Conference
2011-08-23
... conference will be further enhanced by the TTS Initiative Business Social Network, an online business... leading universities and research institutes together with biotech & pharma licensing & business... relating to partnering, licensing & business development. Conference speakers for the 2011 include: --Kathy...
National Research Council Canada - National Science Library
Ridgway, Sam
1997-01-01
...) as a means of evaluating impacts of those emissions. Existing Navy methods published in the Journal of the Acoustical Society of America were applied to investigate TTS in the hearing sensitivity of bottlenose dolphins (Tursiops truncatus...
Characterization of PhPRP1, a histidine domain arabinogalactan protein from Petunia hybrida pistils.
Twomey, Megan C; Brooks, Jenna K; Corey, Jillaine M; Singh-Cundy, Anu
2013-10-15
An arabinogalactan protein, PhPRP1, was purified from Petunia hybrida pistils and shown to be orthologous to TTS-1 and TTS-2 from Nicotiana tabacum and NaTTS from Nicotiana alata. Sequence comparisons among these proteins, and CaPRP1 from Capsicum annuum, reveal a conserved histidine-rich domain and two hypervariable domains. Immunoblots show that TTS-1 and PhPRP1 are also expressed in vegetative tissues of tobacco and petunia respectively. In contrast to the molecular mass heterogeneity displayed by the pistil proteins, the different isoforms found in seedlings, roots, and leaves each has a discrete size (37, 80, 160, and 200 kDa) on SDS-PAGE gels. On the basis of their chemistry, distinctive domain architecture, and the unique pattern of expression, we have named this group of proteins HD-AGPs (histidine domain-arabinogalactan proteins). Copyright © 2013 Elsevier GmbH. All rights reserved.