WorldWideScience

Sample records for time-temperature superposition analysis

  1. The general use of the time-temperature-pressure superposition principle

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    This note is a supplement to Dynamic of Polymeric Liquids (DPL) section 3.6(a). DPL do only concern material functions and only the effect of the temperature on these. This is a short introduction to the general use of the time-temperature-pressure superposition principle.......This note is a supplement to Dynamic of Polymeric Liquids (DPL) section 3.6(a). DPL do only concern material functions and only the effect of the temperature on these. This is a short introduction to the general use of the time-temperature-pressure superposition principle....

  2. Nuclear grade cable thermal life model by time temperature superposition algorithm based on Matlab GUI

    International Nuclear Information System (INIS)

    Lu Yanyun; Gu Shenjie; Lou Tianyang

    2014-01-01

    Background: As nuclear grade cable must endure harsh environment within design life, it is critical to predict cable thermal life accurately owing to thermal aging, which is one of dominant factors of aging mechanism. Purpose: Using time temperature superposition (TTS) method, the aim is to construct nuclear grade cable thermal life model, predict cable residual life and develop life model interactive interface under Matlab GUI. Methods: According to TTS, nuclear grade cable thermal life model can be constructed by shifting data groups at various temperatures to preset reference temperature with translation factor which is determined by non linear programming optimization. Interactive interface of cable thermal life model developed under Matlab GUI consists of superposition mode and standard mode which include features such as optimization of translation factor, calculation of activation energy, construction of thermal aging curve and analysis of aging mechanism., Results: With calculation result comparison between superposition and standard method, the result with TTS has better accuracy than that with standard method. Furthermore, confidence level of nuclear grade cable thermal life with TTS is higher than that with standard method. Conclusion: The results show that TTS methodology is applicable to thermal life prediction of nuclear grade cable. Interactive Interface under Matlab GUI achieves anticipated functionalities. (authors)

  3. Lifetime Prediction of Nano-Silica based Glass Fibre/Epoxy composite by Time Temperature Superposition Principle

    Science.gov (United States)

    Anand, Abhijeet; Banerjee, Poulami; Prusty, Rajesh Kumar; Ray, Bankin Chandra

    2018-03-01

    The incorporation of nano fillers in Fibre reinforced polymer (FRP) composites has been a source of experimentation for researchers. Addition of nano fillers has been found to improve mechanical, thermal as well as electrical properties of Glass fibre reinforced polymer (GFRP) composites. The in-plane mechanical properties of GFRP composite are mainly controlled by fibers and therefore exhibit good values. However, composite exhibits poor through-thickness properties, in which the matrix and interface are the dominant factors. Therefore, it is conducive to modify the matrix through dispersion of nano fillers. Creep is defined as the plastic deformation experienced by a material for a temperature at constant stress over a prolonged period of time. Determination of Master Curve using time-temperature superposition principle is conducive for predicting the lifetime of materials involved in naval and structural applications. This is because such materials remain in service for a prolonged time period before failure which is difficult to be kept marked. However, the failure analysis can be extrapolated from its behaviour in a shorter time at an elevated temperature as is done in master creep analysis. The present research work dealt with time-temperature analysis of 0.1% SiO2-based GFRP composites fabricated through hand-layup method. Composition of 0.1% for SiO2nano fillers with respect to the weight of the fibers was observed to provide optimized flexural properties. Time and temperature dependence of flexural properties of GFRP composites with and without nano SiO2 was determined by conducting 3-point bend flexural creep tests over a range of temperature. Stepwise isothermal creep tests from room temperature (30°C) to the glass transition temperature Tg (120°C) were performed with an alternative creep/relaxation period of 1 hour at each temperature. A constant stress of 40MPa was applied during the creep tests. The time-temperature superposition principle was

  4. Long-term creep modeling of wood using time temperature superposition principle

    OpenAIRE

    Gamalath, Sandhya Samarasinghe

    1991-01-01

    Long-term creep and recovery models (master curves) were developed from short-term data using the time temperature superposition principle (TTSP) for kiln-dried southern pine loaded in compression parallel-to-grain and exposed to constant environmental conditions (~70°F, ~9%EMC). Short-term accelerated creep (17 hour) and recovery (35 hour) data were collected for each specimen at a range of temperature (70°F-150°F) and constant moisture condition of 9%. The compressive stra...

  5. Relaxation Behavior by Time-Salt and Time-Temperature Superpositions of Polyelectrolyte Complexes from Coacervate to Precipitate

    Directory of Open Access Journals (Sweden)

    Samim Ali

    2018-01-01

    Full Text Available Complexation between anionic and cationic polyelectrolytes results in solid-like precipitates or liquid-like coacervate depending on the added salt in the aqueous medium. However, the boundary between these polymer-rich phases is quite broad and the associated changes in the polymer relaxation in the complexes across the transition regime are poorly understood. In this work, the relaxation dynamics of complexes across this transition is probed over a wide timescale by measuring viscoelastic spectra and zero-shear viscosities at varying temperatures and salt concentrations for two different salt types. We find that the complexes exhibit time-temperature superposition (TTS at all salt concentrations, while the range of overlapped-frequencies for time-temperature-salt superposition (TTSS strongly depends on the salt concentration (Cs and gradually shifts to higher frequencies as Cs is decreased. The sticky-Rouse model describes the relaxation behavior at all Cs. However, collective relaxation of polyelectrolyte complexes gradually approaches a rubbery regime and eventually exhibits a gel-like response as Cs is decreased and limits the validity of TTSS.

  6. Time-temperature superposition in viscous liquids

    DEFF Research Database (Denmark)

    Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil

    2001-01-01

    with a reduced time definition based on a recently proposed expression for the relaxation time, where G [infinity] reflects the fictive temperature. All parameters entering the reduced time were determined from independent measurements of the frequency-dependent shear modulus of the equilibrium liquid....

  7. THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures.

    Science.gov (United States)

    Theobald, Douglas L; Wuttke, Deborah S

    2006-09-01

    THESEUS is a command line program for performing maximum likelihood (ML) superpositions and analysis of macromolecular structures. While conventional superpositioning methods use ordinary least-squares (LS) as the optimization criterion, ML superpositions provide substantially improved accuracy by down-weighting variable structural regions and by correcting for correlations among atoms. ML superpositioning is robust and insensitive to the specific atoms included in the analysis, and thus it does not require subjective pruning of selected variable atomic coordinates. Output includes both likelihood-based and frequentist statistics for accurate evaluation of the adequacy of a superposition and for reliable analysis of structural similarities and differences. THESEUS performs principal components analysis for analyzing the complex correlations found among atoms within a structural ensemble. ANSI C source code and selected binaries for various computing platforms are available under the GNU open source license from http://monkshood.colorado.edu/theseus/ or http://www.theseus3d.org.

  8. Engineering mesoscopic superpositions of superfluid flow

    International Nuclear Information System (INIS)

    Hallwood, D. W.; Brand, J.

    2011-01-01

    Modeling strongly correlated atoms demonstrates the possibility to prepare quantum superpositions that are robust against experimental imperfections and temperature. Such superpositions of vortex states are formed by adiabatic manipulation of interacting ultracold atoms confined to a one-dimensional ring trapping potential when stirred by a barrier. Here, we discuss the influence of nonideal experimental procedures and finite temperature. Adiabaticity conditions for changing the stirring rate reveal that superpositions of many atoms are most easily accessed in the strongly interacting, Tonks-Girardeau, regime, which is also the most robust at finite temperature. NOON-type superpositions of weakly interacting atoms are most easily created by adiabatically decreasing the interaction strength by means of a Feshbach resonance. The quantum dynamics of small numbers of particles is simulated and the size of the superpositions is calculated based on their ability to make precision measurements. The experimental creation of strongly correlated and NOON-type superpositions with about 100 atoms seems feasible in the near future.

  9. Using Musical Intervals to Demonstrate Superposition of Waves and Fourier Analysis

    Science.gov (United States)

    LoPresto, Michael C.

    2013-01-01

    What follows is a description of a demonstration of superposition of waves and Fourier analysis using a set of four tuning forks mounted on resonance boxes and oscilloscope software to create, capture and analyze the waveforms and Fourier spectra of musical intervals.

  10. Towards quantum superposition of a levitated nanodiamond with a NV center

    Science.gov (United States)

    Li, Tongcang

    2015-05-01

    Creating large Schrödinger's cat states with massive objects is one of the most challenging goals in quantum mechanics. We have previously achieved an important step of this goal by cooling the center-of-mass motion of a levitated microsphere from room temperature to millikelvin temperatures with feedback cooling. To generate spatial quantum superposition states with an optical cavity, however, requires a very strong quadratic coupling that is difficult to achieve. We proposed to optically trap a nanodiamond with a nitrogen-vacancy (NV) center in vacuum, and generate large spatial superposition states using the NV spin-optomechanical coupling in a strong magnetic gradient field. The large spatial superposition states can be used to study objective collapse theories of quantum mechanics. We have optically trapped nanodiamonds in air and are working towards this goal.

  11. Superposition Quantification

    Science.gov (United States)

    Chang, Li-Na; Luo, Shun-Long; Sun, Yuan

    2017-11-01

    The principle of superposition is universal and lies at the heart of quantum theory. Although ever since the inception of quantum mechanics a century ago, superposition has occupied a central and pivotal place, rigorous and systematic studies of the quantification issue have attracted significant interests only in recent years, and many related problems remain to be investigated. In this work we introduce a figure of merit which quantifies superposition from an intuitive and direct perspective, investigate its fundamental properties, connect it to some coherence measures, illustrate it through several examples, and apply it to analyze wave-particle duality. Supported by Science Challenge Project under Grant No. TZ2016002, Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing, Key Laboratory of Random Complex Structures and Data Science, Chinese Academy of Sciences, Grant under No. 2008DP173182

  12. Thermalization as an Invisibility Cloak for Fragile Quantum Superpositions

    OpenAIRE

    Hahn, Walter; Fine, Boris V.

    2017-01-01

    We propose a method for protecting fragile quantum superpositions in many-particle systems from dephasing by external classical noise. We call superpositions "fragile" if dephasing occurs particularly fast, because the noise couples very differently to the superposed states. The method consists of letting a quantum superposition evolve under the internal thermalization dynamics of the system, followed by a time reversal manipulation known as Loschmidt echo. The thermalization dynamics makes t...

  13. Teleportation of Unknown Superpositions of Collective Atomic Coherent States

    Institute of Scientific and Technical Information of China (English)

    ZHENG ShiBiao

    2001-01-01

    We propose a scheme to teleport an unknown superposition of two atomic coherent states with different phases. Our scheme is based on resonant and dispersive atom-field interaction. Our scheme provides a possibility of teleporting macroscopic superposition states of many atoms first time.``

  14. Macroscopicity of quantum superpositions on a one-parameter unitary path in Hilbert space

    Science.gov (United States)

    Volkoff, T. J.; Whaley, K. B.

    2014-12-01

    We analyze quantum states formed as superpositions of an initial pure product state and its image under local unitary evolution, using two measurement-based measures of superposition size: one based on the optimal quantum binary distinguishability of the branches of the superposition and another based on the ratio of the maximal quantum Fisher information of the superposition to that of its branches, i.e., the relative metrological usefulness of the superposition. A general formula for the effective sizes of these states according to the branch-distinguishability measure is obtained and applied to superposition states of N quantum harmonic oscillators composed of Gaussian branches. Considering optimal distinguishability of pure states on a time-evolution path leads naturally to a notion of distinguishability time that generalizes the well-known orthogonalization times of Mandelstam and Tamm and Margolus and Levitin. We further show that the distinguishability time provides a compact operational expression for the superposition size measure based on the relative quantum Fisher information. By restricting the maximization procedure in the definition of this measure to an appropriate algebra of observables, we show that the superposition size of, e.g., NOON states and hierarchical cat states, can scale linearly with the number of elementary particles comprising the superposition state, implying precision scaling inversely with the total number of photons when these states are employed as probes in quantum parameter estimation of a 1-local Hamiltonian in this algebra.

  15. Optimal simultaneous superpositioning of multiple structures with missing data.

    Science.gov (United States)

    Theobald, Douglas L; Steindel, Phillip A

    2012-08-01

    Superpositioning is an essential technique in structural biology that facilitates the comparison and analysis of conformational differences among topologically similar structures. Performing a superposition requires a one-to-one correspondence, or alignment, of the point sets in the different structures. However, in practice, some points are usually 'missing' from several structures, for example, when the alignment contains gaps. Current superposition methods deal with missing data simply by superpositioning a subset of points that are shared among all the structures. This practice is inefficient, as it ignores important data, and it fails to satisfy the common least-squares criterion. In the extreme, disregarding missing positions prohibits the calculation of a superposition altogether. Here, we present a general solution for determining an optimal superposition when some of the data are missing. We use the expectation-maximization algorithm, a classic statistical technique for dealing with incomplete data, to find both maximum-likelihood solutions and the optimal least-squares solution as a special case. The methods presented here are implemented in THESEUS 2.0, a program for superpositioning macromolecular structures. ANSI C source code and selected compiled binaries for various computing platforms are freely available under the GNU open source license from http://www.theseus3d.org. dtheobald@brandeis.edu Supplementary data are available at Bioinformatics online.

  16. Superposition and macroscopic observation

    International Nuclear Information System (INIS)

    Cartwright, N.D.

    1976-01-01

    The principle of superposition has long plagued the quantum mechanics of macroscopic bodies. In at least one well-known situation - that of measurement - quantum mechanics predicts a superposition. It is customary to try to reconcile macroscopic reality and quantum mechanics by reducing the superposition to a mixture. To establish consistency with quantum mechanics, values for the apparatus after a measurement are to be distributed in the way predicted by the superposition. The distributions observed, however, are those of the mixture. The statistical predictions of quantum mechanics, it appears, are not borne out by observation in macroscopic situations. It has been shown that, insofar as specific ergodic hypotheses apply to the apparatus after the interaction, the superposition which evolves is experimentally indistinguishable from the corresponding mixture. In this paper an idealized model of the measuring situation is presented in which this consistency can be demonstrated. It includes a simplified version of the measurement solution proposed by Daneri, Loinger, and Prosperi (1962). The model should make clear the kind of statistical evidence required to carry of this approach, and the role of the ergodic hypotheses assumed. (Auth.)

  17. Thermalization as an invisibility cloak for fragile quantum superpositions

    Science.gov (United States)

    Hahn, Walter; Fine, Boris V.

    2017-07-01

    We propose a method for protecting fragile quantum superpositions in many-particle systems from dephasing by external classical noise. We call superpositions "fragile" if dephasing occurs particularly fast, because the noise couples very differently to the superposed states. The method consists of letting a quantum superposition evolve under the internal thermalization dynamics of the system, followed by a time-reversal manipulation known as Loschmidt echo. The thermalization dynamics makes the superposed states almost indistinguishable during most of the above procedure. We validate the method by applying it to a cluster of spins ½.

  18. Macroscopic superposition states and decoherence by quantum telegraph noise

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Benjamin Simon

    2008-12-19

    In the first part of the present thesis we address the question about the size of superpositions of macroscopically distinct quantum states. We propose a measure for the ''size'' of a Schroedinger cat state, i.e. a quantum superposition of two many-body states with (supposedly) macroscopically distinct properties, by counting how many single-particle operations are needed to map one state onto the other. We apply our measure to a superconducting three-junction flux qubit put into a superposition of clockwise and counterclockwise circulating supercurrent states and find this Schroedinger cat to be surprisingly small. The unavoidable coupling of any quantum system to many environmental degrees of freedom leads to an irreversible loss of information about an initially prepared superposition of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is the subject of the second part of the thesis. We have studied the time evolution of the reduced density matrix of a two-level system (qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson charge qubits. We are able to derive an exact expression for the time evolution of the reduced density matrix. (orig.)

  19. Macroscopic superposition states and decoherence by quantum telegraph noise

    International Nuclear Information System (INIS)

    Abel, Benjamin Simon

    2008-01-01

    In the first part of the present thesis we address the question about the size of superpositions of macroscopically distinct quantum states. We propose a measure for the ''size'' of a Schroedinger cat state, i.e. a quantum superposition of two many-body states with (supposedly) macroscopically distinct properties, by counting how many single-particle operations are needed to map one state onto the other. We apply our measure to a superconducting three-junction flux qubit put into a superposition of clockwise and counterclockwise circulating supercurrent states and find this Schroedinger cat to be surprisingly small. The unavoidable coupling of any quantum system to many environmental degrees of freedom leads to an irreversible loss of information about an initially prepared superposition of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is the subject of the second part of the thesis. We have studied the time evolution of the reduced density matrix of a two-level system (qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson charge qubits. We are able to derive an exact expression for the time evolution of the reduced density matrix. (orig.)

  20. Robust mesoscopic superposition of strongly correlated ultracold atoms

    International Nuclear Information System (INIS)

    Hallwood, David W.; Ernst, Thomas; Brand, Joachim

    2010-01-01

    We propose a scheme to create coherent superpositions of annular flow of strongly interacting bosonic atoms in a one-dimensional ring trap. The nonrotating ground state is coupled to a vortex state with mesoscopic angular momentum by means of a narrow potential barrier and an applied phase that originates from either rotation or a synthetic magnetic field. We show that superposition states in the Tonks-Girardeau regime are robust against single-particle loss due to the effects of strong correlations. The coupling between the mesoscopically distinct states scales much more favorably with particle number than in schemes relying on weak interactions, thus making particle numbers of hundreds or thousands feasible. Coherent oscillations induced by time variation of parameters may serve as a 'smoking gun' signature for detecting superposition states.

  1. Seismic analysis of structures of nuclear power plants by Lanczos mode superposition method

    International Nuclear Information System (INIS)

    Coutinho, A.L.G.A.; Alves, J.L.D.; Landau, L.; Lima, E.C.P. de; Ebecken, N.F.F.

    1986-01-01

    The Lanczos Mode Superposition Method is applied in the seismic analysis of nuclear power plants. The coordinate transformation matrix is generated by the Lanczos algorithm. It is shown that, through a convenient choice of the starting vector of the algorithm, modes with participation factors are automatically selected. It is performed the Response Spectra analysis of a typical reactor building. The obtained results are compared with those determined by the classical aproach stressing the remarkable computer effectiveness of the proposed methodology. (Author) [pt

  2. Linear superposition solutions to nonlinear wave equations

    International Nuclear Information System (INIS)

    Liu Yu

    2012-01-01

    The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed

  3. SUPERPOSITION OF STOCHASTIC PROCESSES AND THE RESULTING PARTICLE DISTRIBUTIONS

    International Nuclear Information System (INIS)

    Schwadron, N. A.; Dayeh, M. A.; Desai, M.; Fahr, H.; Jokipii, J. R.; Lee, M. A.

    2010-01-01

    Many observations of suprathermal and energetic particles in the solar wind and the inner heliosheath show that distribution functions scale approximately with the inverse of particle speed (v) to the fifth power. Although there are exceptions to this behavior, there is a growing need to understand why this type of distribution function appears so frequently. This paper develops the concept that a superposition of exponential and Gaussian distributions with different characteristic speeds and temperatures show power-law tails. The particular type of distribution function, f ∝ v -5 , appears in a number of different ways: (1) a series of Poisson-like processes where entropy is maximized with the rates of individual processes inversely proportional to the characteristic exponential speed, (2) a series of Gaussian distributions where the entropy is maximized with the rates of individual processes inversely proportional to temperature and the density of individual Gaussian distributions proportional to temperature, and (3) a series of different diffusively accelerated energetic particle spectra with individual spectra derived from observations (1997-2002) of a multiplicity of different shocks. Thus, we develop a proof-of-concept for the superposition of stochastic processes that give rise to power-law distribution functions.

  4. Calculation of media temperatures for nuclear sources in geologic depositories by a finite-length line source superposition model (FLLSSM)

    Energy Technology Data Exchange (ETDEWEB)

    Kays, W M; Hossaini-Hashemi, F [Stanford Univ., Palo Alto, CA (USA). Dept. of Mechanical Engineering; Busch, J S [Kaiser Engineers, Oakland, CA (USA)

    1982-02-01

    A linearized transient thermal conduction model was developed to economically determine media temperatures in geologic repositories for nuclear wastes. Individual canisters containing either high-level waste or spent fuel assemblies are represented as finite-length line sources in a continuous medium. The combined effects of multiple canisters in a representative storage pattern can be established in the medium at selected point of interest by superposition of the temperature rises calculated for each canister. A mathematical solution of the calculation for each separate source is given in this article, permitting a slow hand calculation. The full report, ONWI-94, contains the details of the computer code FLLSSM and its use, yielding the total solution in one computer output.

  5. Superposition in quantum and relativity physics: an interaction interpretation of special relativity theory. III

    International Nuclear Information System (INIS)

    Schlegel, R.

    1975-01-01

    With the interaction interpretation, the Lorentz transformation of a system arises with selection from a superposition of its states in an observation-interaction. Integration of momentum states of a mass over all possible velocities gives the rest-mass energy. Static electrical and magnetic fields are not found to form such a superposition and are to be taken as irreducible elements. The external superposition consists of those states that are reached only by change of state of motion, whereas the internal superposition contains all the states available to an observer in a single inertial coordinate system. The conjecture is advanced that states of superposition may only be those related by space-time transformations (Lorentz transformations plus space inversion and charge conjugation). The continuum of external and internal superpositions is examined for various masses, and an argument for the unity of the superpositions is presented

  6. Toward quantum superposition of living organisms

    International Nuclear Information System (INIS)

    Romero-Isart, Oriol; Cirac, J Ignacio; Juan, Mathieu L; Quidant, Romain

    2010-01-01

    The most striking feature of quantum mechanics is the existence of superposition states, where an object appears to be in different situations at the same time. The existence of such states has been previously tested with small objects, such as atoms, ions, electrons and photons (Zoller et al 2005 Eur. Phys. J. D 36 203-28), and even with molecules (Arndt et al 1999 Nature 401 680-2). More recently, it has been shown that it is possible to create superpositions of collections of photons (Deleglise et al 2008 Nature 455 510-14), atoms (Hammerer et al 2008 arXiv:0807.3358) or Cooper pairs (Friedman et al 2000 Nature 406 43-6). Very recent progress in optomechanical systems may soon allow us to create superpositions of even larger objects, such as micro-sized mirrors or cantilevers (Marshall et al 2003 Phys. Rev. Lett. 91 130401; Kippenberg and Vahala 2008 Science 321 1172-6; Marquardt and Girvin 2009 Physics 2 40; Favero and Karrai 2009 Nature Photon. 3 201-5), and thus to test quantum mechanical phenomena at larger scales. Here we propose a method to cool down and create quantum superpositions of the motion of sub-wavelength, arbitrarily shaped dielectric objects trapped inside a high-finesse cavity at a very low pressure. Our method is ideally suited for the smallest living organisms, such as viruses, which survive under low-vacuum pressures (Rothschild and Mancinelli 2001 Nature 406 1092-101) and optically behave as dielectric objects (Ashkin and Dziedzic 1987 Science 235 1517-20). This opens up the possibility of testing the quantum nature of living organisms by creating quantum superposition states in very much the same spirit as the original Schroedinger's cat 'gedanken' paradigm (Schroedinger 1935 Naturwissenschaften 23 807-12, 823-8, 844-9). We anticipate that our paper will be a starting point for experimentally addressing fundamental questions, such as the role of life and consciousness in quantum mechanics.

  7. Toward quantum superposition of living organisms

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Isart, Oriol; Cirac, J Ignacio [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748, Garching (Germany); Juan, Mathieu L; Quidant, Romain [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, Castelldefels, Barcelona 08860 (Spain)], E-mail: oriol.romero-isart@mpq.mpg.de

    2010-03-15

    The most striking feature of quantum mechanics is the existence of superposition states, where an object appears to be in different situations at the same time. The existence of such states has been previously tested with small objects, such as atoms, ions, electrons and photons (Zoller et al 2005 Eur. Phys. J. D 36 203-28), and even with molecules (Arndt et al 1999 Nature 401 680-2). More recently, it has been shown that it is possible to create superpositions of collections of photons (Deleglise et al 2008 Nature 455 510-14), atoms (Hammerer et al 2008 arXiv:0807.3358) or Cooper pairs (Friedman et al 2000 Nature 406 43-6). Very recent progress in optomechanical systems may soon allow us to create superpositions of even larger objects, such as micro-sized mirrors or cantilevers (Marshall et al 2003 Phys. Rev. Lett. 91 130401; Kippenberg and Vahala 2008 Science 321 1172-6; Marquardt and Girvin 2009 Physics 2 40; Favero and Karrai 2009 Nature Photon. 3 201-5), and thus to test quantum mechanical phenomena at larger scales. Here we propose a method to cool down and create quantum superpositions of the motion of sub-wavelength, arbitrarily shaped dielectric objects trapped inside a high-finesse cavity at a very low pressure. Our method is ideally suited for the smallest living organisms, such as viruses, which survive under low-vacuum pressures (Rothschild and Mancinelli 2001 Nature 406 1092-101) and optically behave as dielectric objects (Ashkin and Dziedzic 1987 Science 235 1517-20). This opens up the possibility of testing the quantum nature of living organisms by creating quantum superposition states in very much the same spirit as the original Schroedinger's cat 'gedanken' paradigm (Schroedinger 1935 Naturwissenschaften 23 807-12, 823-8, 844-9). We anticipate that our paper will be a starting point for experimentally addressing fundamental questions, such as the role of life and consciousness in quantum mechanics.

  8. Towards the standardization of time--temperature parameter usage in elevated temperature data analysis

    International Nuclear Information System (INIS)

    Goldhoff, R.M.

    1975-01-01

    Work devoted to establishment of recommended practices for correlating and extrapolating relevant data on creep-rupture properties of materials at high temperatures is described. An analysis of the time-temperature parameter is included along with descriptions of analysis and evaluation methods. Results of application of the methods are compared

  9. A superposition principle in quantum logics

    International Nuclear Information System (INIS)

    Pulmannova, S.

    1976-01-01

    A new definition of the superposition principle in quantum logics is given which enables us to define the sectors. It is shown that the superposition principle holds only in the irreducible quantum logics. (orig.) [de

  10. Linear dynamic analysis of arbitrary thin shells modal superposition by using finite element method

    International Nuclear Information System (INIS)

    Goncalves Filho, O.J.A.

    1978-11-01

    The linear dynamic behaviour of arbitrary thin shells by the Finite Element Method is studied. Plane triangular elements with eighteen degrees of freedom each are used. The general equations of movement are obtained from the Hamilton Principle and solved by the Modal Superposition Method. The presence of a viscous type damping can be considered by means of percentages of the critical damping. An automatic computer program was developed to provide the vibratory properties and the dynamic response to several types of deterministic loadings, including temperature effects. The program was written in FORTRAN IV for the Burroughs B-6700 computer. (author)

  11. Level crossings and excess times due to a superposition of uncorrelated exponential pulses

    Science.gov (United States)

    Theodorsen, A.; Garcia, O. E.

    2018-01-01

    A well-known stochastic model for intermittent fluctuations in physical systems is investigated. The model is given by a superposition of uncorrelated exponential pulses, and the degree of pulse overlap is interpreted as an intermittency parameter. Expressions for excess time statistics, that is, the rate of level crossings above a given threshold and the average time spent above the threshold, are derived from the joint distribution of the process and its derivative. Limits of both high and low intermittency are investigated and compared to previously known results. In the case of a strongly intermittent process, the distribution of times spent above threshold is obtained analytically. This expression is verified numerically, and the distribution of times above threshold is explored for other intermittency regimes. The numerical simulations compare favorably to known results for the distribution of times above the mean threshold for an Ornstein-Uhlenbeck process. This contribution generalizes the excess time statistics for the stochastic model, which find applications in a wide diversity of natural and technological systems.

  12. Logarithmic superposition of force response with rapid length changes in relaxed porcine airway smooth muscle.

    Science.gov (United States)

    Ijpma, G; Al-Jumaily, A M; Cairns, S P; Sieck, G C

    2010-12-01

    We present a systematic quantitative analysis of power-law force relaxation and investigate logarithmic superposition of force response in relaxed porcine airway smooth muscle (ASM) strips in vitro. The term logarithmic superposition describes linear superposition on a logarithmic scale, which is equivalent to multiplication on a linear scale. Additionally, we examine whether the dynamic response of contracted and relaxed muscles is dominated by cross-bridge cycling or passive dynamics. The study shows the following main findings. For relaxed ASM, the force response to length steps of varying amplitude (0.25-4% of reference length, both lengthening and shortening) are well-fitted with power-law functions over several decades of time (10⁻² to 10³ s), and the force response after consecutive length changes is more accurately fitted assuming logarithmic superposition rather than linear superposition. Furthermore, for sinusoidal length oscillations in contracted and relaxed muscles, increasing the oscillation amplitude induces greater hysteresivity and asymmetry of force-length relationships, whereas increasing the frequency dampens hysteresivity but increases asymmetry. We conclude that logarithmic superposition is an important feature of relaxed ASM, which may facilitate a more accurate prediction of force responses in the continuous dynamic environment of the respiratory system. In addition, the single power-function response to length changes shows that the dynamics of cross-bridge cycling can be ignored in relaxed muscle. The similarity in response between relaxed and contracted states implies that the investigated passive dynamics play an important role in both states and should be taken into account.

  13. Analysis of magnetic damping problem by the coupled mode superposition method

    International Nuclear Information System (INIS)

    Horie, Tomoyoshi; Niho, Tomoya

    1997-01-01

    In this paper we describe the coupled mode superposition method for the magnetic damping problem, which is produced by the coupled effect between the deformation and the induced eddy current of the structures for future fusion reactors and magnetically levitated vehicles. The formulation of the coupled mode superposition method is based on the matrix equation for the eddy current and the structure using the coupled mode vectors. Symmetric form of the coupled matrix equation is obtained. Coupled problems of a thin plate are solved to verify the formulation and the computer code. These problems are solved efficiently by this method using only a few coupled modes. Consideration of the coupled mode vectors shows that the coupled effects are included completely in each coupled mode. (author)

  14. On the superposition principle and its physics content

    International Nuclear Information System (INIS)

    Roos, M.

    1984-01-01

    What is commonly denoted the superposition principle is shown to consist of three different physical assumptions: conservation of probability, completeness, and some phase conditions. The latter conditions form the physical assumptions of the superposition principle. These phase conditions are exemplified by the Kobayashi-Maskawa matrix. Some suggestions for testing the superposition principle are given. (Auth.)

  15. Exclusion of identification by negative superposition

    Directory of Open Access Journals (Sweden)

    Takač Šandor

    2012-01-01

    Full Text Available The paper represents the first report of negative superposition in our country. Photo of randomly selected young, living woman was superimposed on the previously discovered female skull. Computer program Adobe Photoshop 7.0 was used in work. Digitilized photographs of the skull and face, after uploaded to computer, were superimposed on each other and displayed on the monitor in order to assess their possible similarities or differences. Special attention was payed to matching the same anthropometrical points of the skull and face, as well as following their contours. The process of fitting the skull and the photograph is usually started by setting eyes in correct position relative to the orbits. In this case, lower jaw gonions go beyond the face contour and gnathion is highly placed. By positioning the chin, mouth and nose their correct anatomical position cannot be achieved. All the difficulties associated with the superposition were recorded, with special emphasis on critical evaluation of work results in a negative superposition. Negative superposition has greater probative value (exclusion of identification than positive (possible identification. 100% negative superposition is easily achieved, but 100% positive - almost never. 'Each skull is unique and viewed from different perspectives is always a new challenge'. From this point of view, identification can be negative or of high probability.

  16. Sagnac interferometry with coherent vortex superposition states in exciton-polariton condensates

    Science.gov (United States)

    Moxley, Frederick Ira; Dowling, Jonathan P.; Dai, Weizhong; Byrnes, Tim

    2016-05-01

    We investigate prospects of using counter-rotating vortex superposition states in nonequilibrium exciton-polariton Bose-Einstein condensates for the purposes of Sagnac interferometry. We first investigate the stability of vortex-antivortex superposition states, and show that they survive at steady state in a variety of configurations. Counter-rotating vortex superpositions are of potential interest to gyroscope and seismometer applications for detecting rotations. Methods of improving the sensitivity are investigated by targeting high momentum states via metastable condensation, and the application of periodic lattices. The sensitivity of the polariton gyroscope is compared to its optical and atomic counterparts. Due to the large interferometer areas in optical systems and small de Broglie wavelengths for atomic BECs, the sensitivity per detected photon is found to be considerably less for the polariton gyroscope than with competing methods. However, polariton gyroscopes have an advantage over atomic BECs in a high signal-to-noise ratio, and have other practical advantages such as room-temperature operation, area independence, and robust design. We estimate that the final sensitivities including signal-to-noise aspects are competitive with existing methods.

  17. Two new proofs of the test particle superposition principle of plasma kinetic theory

    International Nuclear Information System (INIS)

    Krommes, J.A.

    1976-01-01

    The test particle superposition principle of plasma kinetic theory is discussed in relation to the recent theory of two-time fluctuations in plasma given by Williams and Oberman. Both a new deductive and a new inductive proof of the principle are presented; the deductive approach appears here for the first time in the literature. The fundamental observation is that two-time expectations of one-body operators are determined completely in terms of the (x,v) phase space density autocorrelation, which to lowest order in the discreteness parameter obeys the linearized Vlasov equation with singular initial condition. For the deductive proof, this equation is solved formally using time-ordered operators, and the solution is then re-arranged into the superposition principle. The inductive proof is simpler than Rostoker's although similar in some ways; it differs in that first-order equations for pair correlation functions need not be invoked. It is pointed out that the superposition principle is also applicable to the short-time theory of neutral fluids

  18. Two new proofs of the test particle superposition principle of plasma kinetic theory

    International Nuclear Information System (INIS)

    Krommes, J.A.

    1975-12-01

    The test particle superposition principle of plasma kinetic theory is discussed in relation to the recent theory of two-time fluctuations in plasma given by Williams and Oberman. Both a new deductive and a new inductive proof of the principle are presented. The fundamental observation is that two-time expectations of one-body operators are determined completely in terms of the (x,v) phase space density autocorrelation, which to lowest order in the discreteness parameter obeys the linearized Vlasov equation with singular initial condition. For the deductive proof, this equation is solved formally using time-ordered operators, and the solution then rearranged into the superposition principle. The inductive proof is simpler than Rostoker's, although similar in some ways; it differs in that first order equations for pair correlation functions need not be invoked. It is pointed out that the superposition principle is also applicable to the short-time theory of neutral fluids

  19. Study on Real-Time Simulation Analysis and Inverse Analysis System for Temperature and Stress of Concrete Dam

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2015-01-01

    Full Text Available In the concrete dam construction, it is very necessary to strengthen the real-time monitoring and scientific management of concrete temperature control. This paper constructs the analysis and inverse analysis system of temperature stress simulation, which is based on various useful data collected in real time in the process of concrete construction. The system can produce automatically data file of temperature and stress calculation and then achieve the remote real-time simulation calculation of temperature stress by using high performance computing techniques, so the inverse analysis can be carried out based on a basis of monitoring data in the database; it fulfills the automatic feedback calculation according to the error requirement and generates the corresponding curve and chart after the automatic processing and analysis of corresponding results. The system realizes the automation and intellectualization of complex data analysis and preparation work in simulation process and complex data adjustment in the inverse analysis process, which can facilitate the real-time tracking simulation and feedback analysis of concrete temperature stress in construction process and enable you to discover problems timely, take measures timely, and adjust construction scheme and can well instruct you how to ensure project quality.

  20. Mapping air temperature using time series analysis of LST : The SINTESI approach

    NARCIS (Netherlands)

    Alfieri, S.M.; De Lorenzi, F.; Menenti, M.

    2013-01-01

    This paper presents a new procedure to map time series of air temperature (Ta) at fine spatial resolution using time series analysis of satellite-derived land surface temperature (LST) observations. The method assumes that air temperature is known at a single (reference) location such as in gridded

  1. Non-coaxial superposition of vector vortex beams.

    Science.gov (United States)

    Aadhi, A; Vaity, Pravin; Chithrabhanu, P; Reddy, Salla Gangi; Prabakar, Shashi; Singh, R P

    2016-02-10

    Vector vortex beams are classified into four types depending upon spatial variation in their polarization vector. We have generated all four of these types of vector vortex beams by using a modified polarization Sagnac interferometer with a vortex lens. Further, we have studied the non-coaxial superposition of two vector vortex beams. It is observed that the superposition of two vector vortex beams with same polarization singularity leads to a beam with another kind of polarization singularity in their interaction region. The results may be of importance in ultrahigh security of the polarization-encrypted data that utilizes vector vortex beams and multiple optical trapping with non-coaxial superposition of vector vortex beams. We verified our experimental results with theory.

  2. Point kernels and superposition methods for scatter dose calculations in brachytherapy

    International Nuclear Information System (INIS)

    Carlsson, A.K.

    2000-01-01

    Point kernels have been generated and applied for calculation of scatter dose distributions around monoenergetic point sources for photon energies ranging from 28 to 662 keV. Three different approaches for dose calculations have been compared: a single-kernel superposition method, a single-kernel superposition method where the point kernels are approximated as isotropic and a novel 'successive-scattering' superposition method for improved modelling of the dose from multiply scattered photons. An extended version of the EGS4 Monte Carlo code was used for generating the kernels and for benchmarking the absorbed dose distributions calculated with the superposition methods. It is shown that dose calculation by superposition at and below 100 keV can be simplified by using isotropic point kernels. Compared to the assumption of full in-scattering made by algorithms currently in clinical use, the single-kernel superposition method improves dose calculations in a half-phantom consisting of air and water. Further improvements are obtained using the successive-scattering superposition method, which reduces the overestimates of dose close to the phantom surface usually associated with kernel superposition methods at brachytherapy photon energies. It is also shown that scatter dose point kernels can be parametrized to biexponential functions, making them suitable for use with an effective implementation of the collapsed cone superposition algorithm. (author)

  3. Projective measurement onto arbitrary superposition of weak coherent state bases

    DEFF Research Database (Denmark)

    Izumi, Shuro; Takeoka, Masahiro; Wakui, Kentaro

    2018-01-01

    One of the peculiar features in quantum mechanics is that a superposition of macroscopically distinct states can exist. In optical system, this is highlighted by a superposition of coherent states (SCS), i.e. a superposition of classical states. Recently this highly nontrivial quantum state and i...

  4. Quantum-mechanical Green's functions and nonlinear superposition law

    International Nuclear Information System (INIS)

    Nassar, A.B.; Bassalo, J.M.F.; Antunes Neto, H.S.; Alencar, P. de T.S.

    1986-01-01

    The quantum-mechanical Green's function is derived for the problem of a time-dependent variable mass particle subject to a time-dependent forced harmonic oscillator potential by taking direct recourse of the corresponding Schroedinger equation. Through the usage of the nonlinear superposition law of Ray and Reid, it is shown that such a Green's function can be obtained from that for the problem of a particle with unit (constant) mass subject to either a forced harmonic potential with constant frequency or only to a time-dependent linear field. (Author) [pt

  5. Quantum-mechanical Green's function and nonlinear superposition law

    International Nuclear Information System (INIS)

    Nassar, A.B.; Bassalo, J.M.F.; Antunes Neto, H.S.; Alencar, P.T.S.

    1986-01-01

    It is derived the quantum-mechanical Green's function for the problem of a time-dependent variable mass particle subject to a time-dependent forced harmonic-oscillator potential by taking direct recourse of the corresponding Schroedinger equation. Through the usage of the nonlinear superposition law of Ray and Reid, it is shown that such a Green's function can be obtained from that for the problem of a particle with unit (constant) mass subject to either a forced harmonic potential with constant frequency or only to a time-dependent linear field

  6. Thermal aging of traditional and additively manufactured foams: analysis by time-temperature-superposition, constitutive, and finite-element models

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weisgraber, T. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Small, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lewicki, J. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Duoss, E. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spadaccini, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pearson, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chinn, S. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, T. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Maxwell, R. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-08

    Cellular solids or foams are a very important class of materials with diverse applications ranging from thermal insulation and shock absorbing support cushions, to light-weight structural and floatation components, and constitute crucial components in a large number of industries including automotive, aerospace, electronics, marine, biomedical, packaging, and defense. In many of these applications the foam material is subjected to long periods of continuous stress, which can, over time, lead to a permanent change in structure and a degradation in performance. In this report we summarize our modeling efforts to date on polysiloxane foam materials that form an important component in our systems. Aging of the materials was characterized by two measured quantities, i.e., compression set and load retention. Results of accelerated aging experiments were analyzed by an automated time-temperaturesuperposition (TTS) approach, which creates a master curve that can be used for long-term predictions (over decades) under ambient conditions. When comparing such master curves for traditional (stochastic) foams with those for recently 3D-printed (i.e., additively manufactured, or AM) foams, it became clear that AM foams have superior aging behavior. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material.

  7. Intra-cavity generation of superpositions of Laguerre-Gaussian beams

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2012-01-01

    Full Text Available In this paper we demonstrate experimentally the intra-cavity generation of a coherent superposition of Laguerre–Gaussian modes of zero radial order but opposite azimuthal order. The superposition is created with a simple intra-cavity stop...

  8. The Features of Moessbauer Spectra of Hemoglobins: Approximation by Superposition of Quadrupole Doublets or by Quadrupole Splitting Distribution?

    International Nuclear Information System (INIS)

    Oshtrakh, M. I.; Semionkin, V. A.

    2004-01-01

    Moessbauer spectra of hemoglobins have some features in the range of liquid nitrogen temperature: a non-Lorentzian asymmetric line shape for oxyhemoglobins and symmetric Lorentzian line shape for deoxyhemoglobins. A comparison of the approximation of the hemoglobin Moessbauer spectra by a superposition of two quadrupole doublets and by a distribution of the quadrupole splitting demonstrates that a superposition of two quadrupole doublets is more reliable and may reflect the non-equivalent iron electronic structure and the stereochemistry in the α- and β-subunits of hemoglobin tetramers.

  9. Testing the quantum superposition principle: matter waves and beyond

    Science.gov (United States)

    Ulbricht, Hendrik

    2015-05-01

    New technological developments allow to explore the quantum properties of very complex systems, bringing the question of whether also macroscopic systems share such features, within experimental reach. The interest in this question is increased by the fact that, on the theory side, many suggest that the quantum superposition principle is not exact, departures from it being the larger, the more macroscopic the system. Testing the superposition principle intrinsically also means to test suggested extensions of quantum theory, so-called collapse models. We will report on three new proposals to experimentally test the superposition principle with nanoparticle interferometry, optomechanical devices and by spectroscopic experiments in the frequency domain. We will also report on the status of optical levitation and cooling experiments with nanoparticles in our labs, towards an Earth bound matter-wave interferometer to test the superposition principle for a particle mass of one million amu (atomic mass unit).

  10. Quantum State Engineering Via Coherent-State Superpositions

    Science.gov (United States)

    Janszky, Jozsef; Adam, P.; Szabo, S.; Domokos, P.

    1996-01-01

    The quantum interference between the two parts of the optical Schrodinger-cat state makes possible to construct a wide class of quantum states via discrete superpositions of coherent states. Even a small number of coherent states can approximate the given quantum states at a high accuracy when the distance between the coherent states is optimized, e. g. nearly perfect Fock state can be constructed by discrete superpositions of n + 1 coherent states lying in the vicinity of the vacuum state.

  11. Experimental superposition of orders of quantum gates

    Science.gov (United States)

    Procopio, Lorenzo M.; Moqanaki, Amir; Araújo, Mateus; Costa, Fabio; Alonso Calafell, Irati; Dowd, Emma G.; Hamel, Deny R.; Rozema, Lee A.; Brukner, Časlav; Walther, Philip

    2015-01-01

    Quantum computers achieve a speed-up by placing quantum bits (qubits) in superpositions of different states. However, it has recently been appreciated that quantum mechanics also allows one to ‘superimpose different operations'. Furthermore, it has been shown that using a qubit to coherently control the gate order allows one to accomplish a task—determining if two gates commute or anti-commute—with fewer gate uses than any known quantum algorithm. Here we experimentally demonstrate this advantage, in a photonic context, using a second qubit to control the order in which two gates are applied to a first qubit. We create the required superposition of gate orders by using additional degrees of freedom of the photons encoding our qubits. The new resource we exploit can be interpreted as a superposition of causal orders, and could allow quantum algorithms to be implemented with an efficiency unlikely to be achieved on a fixed-gate-order quantum computer. PMID:26250107

  12. Noise-based logic hyperspace with the superposition of 2 states in a single wire

    Science.gov (United States)

    Kish, Laszlo B.; Khatri, Sunil; Sethuraman, Swaminathan

    2009-05-01

    In the introductory paper [L.B. Kish, Phys. Lett. A 373 (2009) 911], about noise-based logic, we showed how simple superpositions of single logic basis vectors can be achieved in a single wire. The superposition components were the N orthogonal logic basis vectors. Supposing that the different logic values have “on/off” states only, the resultant discrete superposition state represents a single number with N bit accuracy in a single wire, where N is the number of orthogonal logic vectors in the base. In the present Letter, we show that the logic hyperspace (product) vectors defined in the introductory paper can be generalized to provide the discrete superposition of 2 orthogonal system states. This is equivalent to a multi-valued logic system with 2 logic values per wire. This is a similar situation to quantum informatics with N qubits, and hence we introduce the notion of noise-bit. This system has major differences compared to quantum informatics. The noise-based logic system is deterministic and each superposition element is instantly accessible with the high digital accuracy, via a real hardware parallelism, without decoherence and error correction, and without the requirement of repeating the logic operation many times to extract the probabilistic information. Moreover, the states in noise-based logic do not have to be normalized, and non-unitary operations can also be used. As an example, we introduce a string search algorithm which is O(√{M}) times faster than Grover's quantum algorithm (where M is the number of string entries), while it has the same hardware complexity class as the quantum algorithm.

  13. JaSTA-2: Second version of the Java Superposition T-matrix Application

    Science.gov (United States)

    Halder, Prithish; Das, Himadri Sekhar

    2017-12-01

    In this article, we announce the development of a new version of the Java Superposition T-matrix App (JaSTA-2), to study the light scattering properties of porous aggregate particles. It has been developed using Netbeans 7.1.2, which is a java integrated development environment (IDE). The JaSTA uses double precision superposition T-matrix codes for multi-sphere clusters in random orientation, developed by Mackowski and Mischenko (1996). The new version consists of two options as part of the input parameters: (i) single wavelength and (ii) multiple wavelengths. The first option (which retains the applicability of older version of JaSTA) calculates the light scattering properties of aggregates of spheres for a single wavelength at a given instant of time whereas the second option can execute the code for a multiple numbers of wavelengths in a single run. JaSTA-2 provides convenient and quicker data analysis which can be used in diverse fields like Planetary Science, Atmospheric Physics, Nanoscience, etc. This version of the software is developed for Linux platform only, and it can be operated over all the cores of a processor using the multi-threading option.

  14. Empirical Evaluation of Superposition Coded Multicasting for Scalable Video

    KAUST Repository

    Chun Pong Lau

    2013-03-01

    In this paper we investigate cross-layer superposition coded multicast (SCM). Previous studies have proven its effectiveness in exploiting better channel capacity and service granularities via both analytical and simulation approaches. However, it has never been practically implemented using a commercial 4G system. This paper demonstrates our prototype in achieving the SCM using a standard 802.16 based testbed for scalable video transmissions. In particular, to implement the superposition coded (SPC) modulation, we take advantage a novel software approach, namely logical SPC (L-SPC), which aims to mimic the physical layer superposition coded modulation. The emulation results show improved throughput comparing with generic multicast method.

  15. Resilience to decoherence of the macroscopic quantum superpositions generated by universally covariant optimal quantum cloning

    International Nuclear Information System (INIS)

    Spagnolo, Nicolo; Sciarrino, Fabio; De Martini, Francesco

    2010-01-01

    We show that the quantum states generated by universal optimal quantum cloning of a single photon represent a universal set of quantum superpositions resilient to decoherence. We adopt the Bures distance as a tool to investigate the persistence of quantum coherence of these quantum states. According to this analysis, the process of universal cloning realizes a class of quantum superpositions that exhibits a covariance property in lossy configuration over the complete set of polarization states in the Bloch sphere.

  16. Superposition Attacks on Cryptographic Protocols

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Funder, Jakob Løvstad; Nielsen, Jesper Buus

    2011-01-01

    of information. In this paper, we introduce a fundamentally new model of quantum attacks on classical cryptographic protocols, where the adversary is allowed to ask several classical queries in quantum superposition. This is a strictly stronger attack than the standard one, and we consider the security......Attacks on classical cryptographic protocols are usually modeled by allowing an adversary to ask queries from an oracle. Security is then defined by requiring that as long as the queries satisfy some constraint, there is some problem the adversary cannot solve, such as compute a certain piece...... of several primitives in this model. We show that a secret-sharing scheme that is secure with threshold $t$ in the standard model is secure against superposition attacks if and only if the threshold is lowered to $t/2$. We use this result to give zero-knowledge proofs for all of NP in the common reference...

  17. Relationship between the Arctic oscillation and surface air temperature in multi-decadal time-scale

    Science.gov (United States)

    Tanaka, Hiroshi L.; Tamura, Mina

    2016-09-01

    In this study, a simple energy balance model (EBM) was integrated in time, considering a hypothetical long-term variability in ice-albedo feedback mimicking the observed multi-decadal temperature variability. A natural variability was superimposed on a linear warming trend due to the increasing radiative forcing of CO2. The result demonstrates that the superposition of the natural variability and the background linear trend can offset with each other to show the warming hiatus for some period. It is also stressed that the rapid warming during 1970-2000 can be explained by the superposition of the natural variability and the background linear trend at least within the simple model. The key process of the fluctuating planetary albedo in multi-decadal time scale is investigated using the JRA-55 reanalysis data. It is found that the planetary albedo increased for 1958-1970, decreased for 1970-2000, and increased for 2000-2012, as expected by the simple EBM experiments. The multi-decadal variability in the planetary albedo is compared with the time series of the AO mode and Barents Sea mode of surface air temperature. It is shown that the recent AO negative pattern showing warm Arctic and cold mid-latitudes is in good agreement with planetary albedo change indicating negative anomaly in high latitudes and positive anomaly in mid-latitudes. Moreover, the Barents Sea mode with the warm Barents Sea and cold mid-latitudes shows long-term variability similar to planetary albedo change. Although further studies are needed, the natural variabilities of both the AO mode and Barents Sea mode indicate some possible link to the planetary albedo as suggested by the simple EBM to cause the warming hiatus in recent years.

  18. Simulation Analysis of DC and Switching Impulse Superposition Circuit

    Science.gov (United States)

    Zhang, Chenmeng; Xie, Shijun; Zhang, Yu; Mao, Yuxiang

    2018-03-01

    Surge capacitors running between the natural bus and the ground are affected by DC and impulse superposition voltage during operation in the converter station. This paper analyses the simulation aging circuit of surge capacitors by PSCAD electromagnetic transient simulation software. This paper also analyses the effect of the DC voltage to the waveform of the impulse voltage generation. The effect of coupling capacitor to the test voltage waveform is also studied. Testing results prove that the DC voltage has little effect on the waveform of the output of the surge voltage generator, and the value of the coupling capacitor has little effect on the voltage waveform of the sample. Simulation results show that surge capacitor DC and impulse superimposed aging test is feasible.

  19. Noise-based logic hyperspace with the superposition of 2N states in a single wire

    International Nuclear Information System (INIS)

    Kish, Laszlo B.; Khatri, Sunil; Sethuraman, Swaminathan

    2009-01-01

    In the introductory paper [L.B. Kish, Phys. Lett. A 373 (2009) 911], about noise-based logic, we showed how simple superpositions of single logic basis vectors can be achieved in a single wire. The superposition components were the N orthogonal logic basis vectors. Supposing that the different logic values have 'on/off' states only, the resultant discrete superposition state represents a single number with N bit accuracy in a single wire, where N is the number of orthogonal logic vectors in the base. In the present Letter, we show that the logic hyperspace (product) vectors defined in the introductory paper can be generalized to provide the discrete superposition of 2 N orthogonal system states. This is equivalent to a multi-valued logic system with 2 2 N logic values per wire. This is a similar situation to quantum informatics with N qubits, and hence we introduce the notion of noise-bit. This system has major differences compared to quantum informatics. The noise-based logic system is deterministic and each superposition element is instantly accessible with the high digital accuracy, via a real hardware parallelism, without decoherence and error correction, and without the requirement of repeating the logic operation many times to extract the probabilistic information. Moreover, the states in noise-based logic do not have to be normalized, and non-unitary operations can also be used. As an example, we introduce a string search algorithm which is O(√(M)) times faster than Grover's quantum algorithm (where M is the number of string entries), while it has the same hardware complexity class as the quantum algorithm.

  20. On the L-characteristic of nonlinear superposition operators in lp-spaces

    International Nuclear Information System (INIS)

    Dedagic, F.

    1995-04-01

    In this paper we describe the L-characteristic of the nonlinear superposition operator F(x) f(s,x(s)) between two Banach spaces of functions x from N to R. It was shown that L-characteristic of the nonlinear superposition operator which acts between two Lebesgue spaces has so-called Σ-convexity property. In this paper we show that L-characteristic of the operator F (between two Banach spaces) has the convexity property. It means that the classical interpolation theorem of Reisz-Thorin for a linear operator holds for the nonlinear operator superposition which acts between two Banach spaces of sequences. Moreover, we consider the growth function of the operator superposition in mentioned spaces and we show that one has the logarithmically convexity property. (author). 7 refs

  1. Maximum coherent superposition state achievement using a non-resonant pulse train in non-degenerate three-level atoms

    International Nuclear Information System (INIS)

    Deng, Li; Niu, Yueping; Jin, Luling; Gong, Shangqing

    2010-01-01

    The coherent superposition state of the lower two levels in non-degenerate three-level Λ atoms is investigated using the accumulative effects of non-resonant pulse trains when the repetition period is smaller than the decay time of the upper level. First, using a rectangular pulse train, the accumulative effects are re-examined in the non-resonant two-level atoms and the modified constructive accumulation equation is analytically given. The equation shows that the relative phase and the repetition period are important in the accumulative effect. Next, under the modified equation in the non-degenerate three-level Λ atoms, we show that besides the constructive accumulation effect, the use of the partial constructive accumulation effect can also achieve the steady state of the maximum coherent superposition state of the lower two levels and the latter condition is relatively easier to manipulate. The analysis is verified by numerical calculations. The influence of the external levels in such a case is also considered and we find that it can be avoided effectively. The above analysis is also applicable to pulse trains with arbitrary envelopes.

  2. Entanglement and quantum superposition induced by a single photon

    Science.gov (United States)

    Lü, Xin-You; Zhu, Gui-Lei; Zheng, Li-Li; Wu, Ying

    2018-03-01

    We predict the occurrence of single-photon-induced entanglement and quantum superposition in a hybrid quantum model, introducing an optomechanical coupling into the Rabi model. Originally, it comes from the photon-dependent quantum property of the ground state featured by the proposed hybrid model. It is associated with a single-photon-induced quantum phase transition, and is immune to the A2 term of the spin-field interaction. Moreover, the obtained quantum superposition state is actually a squeezed cat state, which can significantly enhance precision in quantum metrology. This work offers an approach to manipulate entanglement and quantum superposition with a single photon, which might have potential applications in the engineering of new single-photon quantum devices, and also fundamentally broaden the regime of cavity QED.

  3. Generation of optical coherent state superpositions for quantum information processing

    DEFF Research Database (Denmark)

    Tipsmark, Anders

    2012-01-01

    I dette projektarbejde med titlen “Generation of optical coherent state superpositions for quantum information processing” har målet været at generere optiske kat-tilstande. Dette er en kvantemekanisk superpositions tilstand af to koherente tilstande med stor amplitude. Sådan en tilstand er...

  4. Superposition Enhanced Nested Sampling

    Directory of Open Access Journals (Sweden)

    Stefano Martiniani

    2014-08-01

    Full Text Available The theoretical analysis of many problems in physics, astronomy, and applied mathematics requires an efficient numerical exploration of multimodal parameter spaces that exhibit broken ergodicity. Monte Carlo methods are widely used to deal with these classes of problems, but such simulations suffer from a ubiquitous sampling problem: The probability of sampling a particular state is proportional to its entropic weight. Devising an algorithm capable of sampling efficiently the full phase space is a long-standing problem. Here, we report a new hybrid method for the exploration of multimodal parameter spaces exhibiting broken ergodicity. Superposition enhanced nested sampling combines the strengths of global optimization with the unbiased or athermal sampling of nested sampling, greatly enhancing its efficiency with no additional parameters. We report extensive tests of this new approach for atomic clusters that are known to have energy landscapes for which conventional sampling schemes suffer from broken ergodicity. We also introduce a novel parallelization algorithm for nested sampling.

  5. Evaluation of Class II treatment by cephalometric regional superpositions versus conventional measurements.

    Science.gov (United States)

    Efstratiadis, Stella; Baumrind, Sheldon; Shofer, Frances; Jacobsson-Hunt, Ulla; Laster, Larry; Ghafari, Joseph

    2005-11-01

    The aims of this study were (1) to evaluate cephalometric changes in subjects with Class II Division 1 malocclusion who were treated with headgear (HG) or Fränkel function regulator (FR) and (2) to compare findings from regional superpositions of cephalometric structures with those from conventional cephalometric measurements. Cephalographs were taken at baseline, after 1 year, and after 2 years of 65 children enrolled in a prospective randomized clinical trial. The spatial location of the landmarks derived from regional superpositions was evaluated in a coordinate system oriented on natural head position. The superpositions included the best anatomic fit of the anterior cranial base, maxillary base, and mandibular structures. Both the HG and the FR were effective in correcting the distoclusion, and they generated enhanced differential growth between the jaws. Differences between cranial and maxillary superpositions regarding mandibular displacement (Point B, pogonion, gnathion, menton) were noted: the HG had a more horizontal vector on maxillary superposition that was also greater (.0001 < P < .05) than the horizontal displacement observed with the FR. This discrepancy appeared to be related to (1) the clockwise (backward) rotation of the palatal and mandibular planes observed with the HG; the palatal plane's rotation, which was transferred through the occlusion to the mandibular plane, was factored out on maxillary superposition; and (2) the interaction between the inclination of the maxillary incisors and the forward movement of the mandible during growth. Findings from superpositions agreed with conventional angular and linear measurements regarding the basic conclusions for the primary effects of HG and FR. However, the results suggest that inferences of mandibular displacement are more reliable from maxillary than cranial superposition when evaluating occlusal changes during treatment.

  6. Single-Atom Gating of Quantum State Superpositions

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Christopher

    2010-04-28

    The ultimate miniaturization of electronic devices will likely require local and coherent control of single electronic wavefunctions. Wavefunctions exist within both physical real space and an abstract state space with a simple geometric interpretation: this state space - or Hilbert space - is spanned by mutually orthogonal state vectors corresponding to the quantized degrees of freedom of the real-space system. Measurement of superpositions is akin to accessing the direction of a vector in Hilbert space, determining an angle of rotation equivalent to quantum phase. Here we show that an individual atom inside a designed quantum corral1 can control this angle, producing arbitrary coherent superpositions of spatial quantum states. Using scanning tunnelling microscopy and nanostructures assembled atom-by-atom we demonstrate how single spins and quantum mirages can be harnessed to image the superposition of two electronic states. We also present a straightforward method to determine the atom path enacting phase rotations between any desired state vectors. A single atom thus becomes a real-space handle for an abstract Hilbert space, providing a simple technique for coherent quantum state manipulation at the spatial limit of condensed matter.

  7. Experimental Demonstration of Capacity-Achieving Phase-Shifted Superposition Modulation

    DEFF Research Database (Denmark)

    Estaran Tolosa, Jose Manuel; Zibar, Darko; Caballero Jambrina, Antonio

    2013-01-01

    We report on the first experimental demonstration of phase-shifted superposition modulation (PSM) for optical links. Successful demodulation and decoding is obtained after 240 km transmission for 16-, 32- and 64-PSM.......We report on the first experimental demonstration of phase-shifted superposition modulation (PSM) for optical links. Successful demodulation and decoding is obtained after 240 km transmission for 16-, 32- and 64-PSM....

  8. Noise-based logic hyperspace with the superposition of 2{sup N} states in a single wire

    Energy Technology Data Exchange (ETDEWEB)

    Kish, Laszlo B. [Texas A and M University, Department of Electrical and Computer Engineering, College Station, TX 77843-3128 (United States)], E-mail: laszlo.kish@ece.tamu.edu; Khatri, Sunil; Sethuraman, Swaminathan [Texas A and M University, Department of Electrical and Computer Engineering, College Station, TX 77843-3128 (United States)

    2009-05-11

    In the introductory paper [L.B. Kish, Phys. Lett. A 373 (2009) 911], about noise-based logic, we showed how simple superpositions of single logic basis vectors can be achieved in a single wire. The superposition components were the N orthogonal logic basis vectors. Supposing that the different logic values have 'on/off' states only, the resultant discrete superposition state represents a single number with N bit accuracy in a single wire, where N is the number of orthogonal logic vectors in the base. In the present Letter, we show that the logic hyperspace (product) vectors defined in the introductory paper can be generalized to provide the discrete superposition of 2{sup N} orthogonal system states. This is equivalent to a multi-valued logic system with 2{sup 2{sup N}} logic values per wire. This is a similar situation to quantum informatics with N qubits, and hence we introduce the notion of noise-bit. This system has major differences compared to quantum informatics. The noise-based logic system is deterministic and each superposition element is instantly accessible with the high digital accuracy, via a real hardware parallelism, without decoherence and error correction, and without the requirement of repeating the logic operation many times to extract the probabilistic information. Moreover, the states in noise-based logic do not have to be normalized, and non-unitary operations can also be used. As an example, we introduce a string search algorithm which is O({radical}(M)) times faster than Grover's quantum algorithm (where M is the number of string entries), while it has the same hardware complexity class as the quantum algorithm.

  9. Efficient Power Allocation for Video over Superposition Coding

    KAUST Repository

    Lau, Chun Pong

    2013-03-01

    In this paper we consider a wireless multimedia system by mapping scalable video coded (SVC) bit stream upon superposition coded (SPC) signals, referred to as (SVC-SPC) architecture. Empirical experiments using a software-defined radio(SDR) emulator are conducted to gain a better understanding of its efficiency, specifically, the impact of the received signal due to different power allocation ratios. Our experimental results show that to maintain high video quality, the power allocated to the base layer should be approximately four times higher than the power allocated to the enhancement layer.

  10. Impact response analysis of cask for spent fuel by dimensional analysis and mode superposition method

    International Nuclear Information System (INIS)

    Kim, Y. J.; Kim, W. T.; Lee, Y. S.

    2006-01-01

    Full text: Full text: Due to the potentiality of accidents, the transportation safety of radioactive material has become extremely important in these days. The most important means of accomplishing the safety in transportation for radioactive material is the integrity of cask. The cask for spent fuel consists of a cask body and two impact limiters generally. The impact limiters are attached at the upper and the lower of the cask body. The cask comprises general requirements and test requirements for normal transport conditions and hypothetical accident conditions in accordance with IAEA regulations. Among the test requirements for hypothetical accident conditions, the 9 m drop test of dropping the cask from 9 m height to unyielding surface to get maximum damage becomes very important requirement because it can affect the structural soundness of the cask. So far the impact response analysis for 9 m drop test has been obtained by finite element method with complex computational procedure. In this study, the empirical equations of the impact forces for 9 m drop test are formulated by dimensional analysis. And then using the empirical equations the characteristics of material used for impact limiters are analysed. Also the dynamic impact response of the cask body is analysed using the mode superposition method and the analysis method is proposed. The results are also validated by comparing with previous experimental results and finite element analysis results. The present method is simpler than finite element method and can be used to predict the impact response of the cask

  11. Performance Analysis of Diversity-Controlled Multi-User Superposition Transmission for 5G Wireless Networks.

    Science.gov (United States)

    Yeom, Jeong Seon; Chu, Eunmi; Jung, Bang Chul; Jin, Hu

    2018-02-10

    In this paper, we propose a novel low-complexity multi-user superposition transmission (MUST) technique for 5G downlink networks, which allows multiple cell-edge users to be multiplexed with a single cell-center user. We call the proposed technique diversity-controlled MUST technique since the cell-center user enjoys the frequency diversity effect via signal repetition over multiple orthogonal frequency division multiplexing (OFDM) sub-carriers. We assume that a base station is equipped with a single antenna but users are equipped with multiple antennas. In addition, we assume that the quadrature phase shift keying (QPSK) modulation is used for users. We mathematically analyze the bit error rate (BER) of both cell-edge users and cell-center users, which is the first theoretical result in the literature to the best of our knowledge. The mathematical analysis is validated through extensive link-level simulations.

  12. Collapsing a perfect superposition to a chosen quantum state without measurement.

    Directory of Open Access Journals (Sweden)

    Ahmed Younes

    Full Text Available Given a perfect superposition of [Formula: see text] states on a quantum system of [Formula: see text] qubits. We propose a fast quantum algorithm for collapsing the perfect superposition to a chosen quantum state [Formula: see text] without applying any measurements. The basic idea is to use a phase destruction mechanism. Two operators are used, the first operator applies a phase shift and a temporary entanglement to mark [Formula: see text] in the superposition, and the second operator applies selective phase shifts on the states in the superposition according to their Hamming distance with [Formula: see text]. The generated state can be used as an excellent input state for testing quantum memories and linear optics quantum computers. We make no assumptions about the used operators and applied quantum gates, but our result implies that for this purpose the number of qubits in the quantum register offers no advantage, in principle, over the obvious measurement-based feedback protocol.

  13. Polyphony: superposition independent methods for ensemble-based drug discovery.

    Science.gov (United States)

    Pitt, William R; Montalvão, Rinaldo W; Blundell, Tom L

    2014-09-30

    Structure-based drug design is an iterative process, following cycles of structural biology, computer-aided design, synthetic chemistry and bioassay. In favorable circumstances, this process can lead to the structures of hundreds of protein-ligand crystal structures. In addition, molecular dynamics simulations are increasingly being used to further explore the conformational landscape of these complexes. Currently, methods capable of the analysis of ensembles of crystal structures and MD trajectories are limited and usually rely upon least squares superposition of coordinates. Novel methodologies are described for the analysis of multiple structures of a protein. Statistical approaches that rely upon residue equivalence, but not superposition, are developed. Tasks that can be performed include the identification of hinge regions, allosteric conformational changes and transient binding sites. The approaches are tested on crystal structures of CDK2 and other CMGC protein kinases and a simulation of p38α. Known interaction - conformational change relationships are highlighted but also new ones are revealed. A transient but druggable allosteric pocket in CDK2 is predicted to occur under the CMGC insert. Furthermore, an evolutionarily-conserved conformational link from the location of this pocket, via the αEF-αF loop, to phosphorylation sites on the activation loop is discovered. New methodologies are described and validated for the superimposition independent conformational analysis of large collections of structures or simulation snapshots of the same protein. The methodologies are encoded in a Python package called Polyphony, which is released as open source to accompany this paper [http://wrpitt.bitbucket.org/polyphony/].

  14. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time–Temperature Superposition Principle

    Directory of Open Access Journals (Sweden)

    Teng-Chun Yang

    2017-03-01

    Full Text Available This study investigated the effectiveness of heat-treated wood particles for improving the physico-mechanical properties and creep performance of wood/recycled-HDPE composites. The results reveal that the composites with heat-treated wood particles had significantly decreased moisture content, water absorption, and thickness swelling, while no improvements of the flexural properties or the wood screw holding strength were observed, except for the internal bond strength. Additionally, creep tests were conducted at a series of elevated temperatures using the time–temperature superposition principle (TTSP, and the TTSP-predicted creep compliance curves fit well with the experimental data. The creep resistance values of composites with heat-treated wood particles were greater than those having untreated wood particles due to the hydrophobic character of the treated wood particles and improved interfacial compatibility between the wood particles and polymer matrix. At a reference temperature of 20 °C, the improvement of creep resistance (ICR of composites with heat-treated wood particles reached approximately 30% over a 30-year period, and it increased significantly with increasing reference temperature.

  15. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time–Temperature Superposition Principle

    Science.gov (United States)

    Yang, Teng-Chun; Chien, Yi-Chi; Wu, Tung-Lin; Hung, Ke-Chang; Wu, Jyh-Horng

    2017-01-01

    This study investigated the effectiveness of heat-treated wood particles for improving the physico-mechanical properties and creep performance of wood/recycled-HDPE composites. The results reveal that the composites with heat-treated wood particles had significantly decreased moisture content, water absorption, and thickness swelling, while no improvements of the flexural properties or the wood screw holding strength were observed, except for the internal bond strength. Additionally, creep tests were conducted at a series of elevated temperatures using the time–temperature superposition principle (TTSP), and the TTSP-predicted creep compliance curves fit well with the experimental data. The creep resistance values of composites with heat-treated wood particles were greater than those having untreated wood particles due to the hydrophobic character of the treated wood particles and improved interfacial compatibility between the wood particles and polymer matrix. At a reference temperature of 20 °C, the improvement of creep resistance (ICR) of composites with heat-treated wood particles reached approximately 30% over a 30-year period, and it increased significantly with increasing reference temperature. PMID:28772726

  16. Quantum superposition of massive objects and collapse models

    International Nuclear Information System (INIS)

    Romero-Isart, Oriol

    2011-01-01

    We analyze the requirements to test some of the most paradigmatic collapse models with a protocol that prepares quantum superpositions of massive objects. This consists of coherently expanding the wave function of a ground-state-cooled mechanical resonator, performing a squared position measurement that acts as a double slit, and observing interference after further evolution. The analysis is performed in a general framework and takes into account only unavoidable sources of decoherence: blackbody radiation and scattering of environmental particles. We also discuss the limitations imposed by the experimental implementation of this protocol using cavity quantum optomechanics with levitating dielectric nanospheres.

  17. Quantum superposition of massive objects and collapse models

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Isart, Oriol [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany)

    2011-11-15

    We analyze the requirements to test some of the most paradigmatic collapse models with a protocol that prepares quantum superpositions of massive objects. This consists of coherently expanding the wave function of a ground-state-cooled mechanical resonator, performing a squared position measurement that acts as a double slit, and observing interference after further evolution. The analysis is performed in a general framework and takes into account only unavoidable sources of decoherence: blackbody radiation and scattering of environmental particles. We also discuss the limitations imposed by the experimental implementation of this protocol using cavity quantum optomechanics with levitating dielectric nanospheres.

  18. Authentication Protocol using Quantum Superposition States

    Energy Technology Data Exchange (ETDEWEB)

    Kanamori, Yoshito [University of Alaska; Yoo, Seong-Moo [University of Alabama, Huntsville; Gregory, Don A. [University of Alabama, Huntsville; Sheldon, Frederick T [ORNL

    2009-01-01

    When it became known that quantum computers could break the RSA (named for its creators - Rivest, Shamir, and Adleman) encryption algorithm within a polynomial-time, quantum cryptography began to be actively studied. Other classical cryptographic algorithms are only secure when malicious users do not have sufficient computational power to break security within a practical amount of time. Recently, many quantum authentication protocols sharing quantum entangled particles between communicators have been proposed, providing unconditional security. An issue caused by sharing quantum entangled particles is that it may not be simple to apply these protocols to authenticate a specific user in a group of many users. An authentication protocol using quantum superposition states instead of quantum entangled particles is proposed. The random number shared between a sender and a receiver can be used for classical encryption after the authentication has succeeded. The proposed protocol can be implemented with the current technologies we introduce in this paper.

  19. The superposition of the states and the logic approach to quantum mechanics

    International Nuclear Information System (INIS)

    Zecca, A.

    1981-01-01

    An axiomatic approach to quantum mechanics is proposed in terms of a 'logic' scheme satisfying a suitable set of axioms. In this context the notion of pure, maximal, and characteristic state as well as the superposition relation and the superposition principle for the states are studied. The role the superposition relation plays in the reversible and in the irreversible dynamics is investigated and its connection with the tensor product is studied. Throughout the paper, the W*-algebra model, is used to exemplify results and properties of the general scheme. (author)

  20. Scattering of an attractive Bose-Einstein condensate from a barrier: Formation of quantum superposition states

    International Nuclear Information System (INIS)

    Streltsov, Alexej I.; Alon, Ofir E.; Cederbaum, Lorenz S.

    2009-01-01

    Scattering in one dimension of an attractive ultracold bosonic cloud from a barrier can lead to the formation of two nonoverlapping clouds. Once formed, the clouds travel with constant velocity, in general different in magnitude from that of the incoming cloud, and do not disperse. The phenomenon and its mechanism - transformation of kinetic energy to internal energy of the scattered cloud - are obtained by solving the time-dependent many-boson Schroedinger equation. The analysis of the wave function shows that the object formed corresponds to a quantum superposition state of two distinct wave packets traveling through real space.

  1. Optical information encryption based on incoherent superposition with the help of the QR code

    Science.gov (United States)

    Qin, Yi; Gong, Qiong

    2014-01-01

    In this paper, a novel optical information encryption approach is proposed with the help of QR code. This method is based on the concept of incoherent superposition which we introduce for the first time. The information to be encrypted is first transformed into the corresponding QR code, and thereafter the QR code is further encrypted into two phase only masks analytically by use of the intensity superposition of two diffraction wave fields. The proposed method has several advantages over the previous interference-based method, such as a higher security level, a better robustness against noise attack, a more relaxed work condition, and so on. Numerical simulation results and actual smartphone collected results are shown to validate our proposal.

  2. Superposition of helical beams by using a Michelson interferometer.

    Science.gov (United States)

    Gao, Chunqing; Qi, Xiaoqing; Liu, Yidong; Weber, Horst

    2010-01-04

    Orbital angular momentum (OAM) of a helical beam is of great interests in the high density optical communication due to its infinite number of eigen-states. In this paper, an experimental setup is realized to the information encoding and decoding on the OAM eigen-states. A hologram designed by the iterative method is used to generate the helical beams, and a Michelson interferometer with two Porro prisms is used for the superposition of two helical beams. The experimental results of the collinear superposition of helical beams and their OAM eigen-states detection are presented.

  3. A Delay Time Measurement of ULTRAS (Ultra-high Temperature Ultrasonic Response Analysis System) for a High Temperature Experiment

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kim, Sang Baik

    2010-01-01

    The temperature measurement of very high temperature core melt is of importance in a high temperature as the molten pool experiment in which gap formation between core melt and the reactor lower head, and the effect of the gap on thermal behavior are to be measured. The existing temperature measurement techniques have some problems, which the thermocouple, one of the contact methods, is restricted to under 2000 .deg. C, and the infrared thermometry, one of the non-contact methods, is unable to measure an internal temperature and very sensitive to the interference from reacted gases. In order to solve these problems, the delay time technique of ultrasonic wavelets due to high temperature has two sorts of stage. As a first stage, a delay time measurement of ULTRAS (Ultra-high Temperature Ultrasonic Response Analysis System) is suggested. As a second stage, a molten material temperature was measured up to 2300 .deg. C. Also, the optimization design of the UTS (ultrasonic temperature sensor) with persistence at the high temperature was suggested in this paper. And the utilization of the theory suggested in this paper and the efficiency of the developed system are performed by special equipment and some experiments supported by KRISS (Korea Research Institute of Standard and Science)

  4. Practical purification scheme for decohered coherent-state superpositions via partial homodyne detection

    International Nuclear Information System (INIS)

    Suzuki, Shigenari; Takeoka, Masahiro; Sasaki, Masahide; Andersen, Ulrik L.; Kannari, Fumihiko

    2006-01-01

    We present a simple protocol to purify a coherent-state superposition that has undergone a linear lossy channel. The scheme constitutes only a single beam splitter and a homodyne detector, and thus is experimentally feasible. In practice, a superposition of coherent states is transformed into a classical mixture of coherent states by linear loss, which is usually the dominant decoherence mechanism in optical systems. We also address the possibility of producing a larger amplitude superposition state from decohered states, and show that in most cases the decoherence of the states are amplified along with the amplitude

  5. Optical threshold secret sharing scheme based on basic vector operations and coherence superposition

    Science.gov (United States)

    Deng, Xiaopeng; Wen, Wei; Mi, Xianwu; Long, Xuewen

    2015-04-01

    We propose, to our knowledge for the first time, a simple optical algorithm for secret image sharing with the (2,n) threshold scheme based on basic vector operations and coherence superposition. The secret image to be shared is firstly divided into n shadow images by use of basic vector operations. In the reconstruction stage, the secret image can be retrieved by recording the intensity of the coherence superposition of any two shadow images. Compared with the published encryption techniques which focus narrowly on information encryption, the proposed method can realize information encryption as well as secret sharing, which further ensures the safety and integrality of the secret information and prevents power from being kept centralized and abused. The feasibility and effectiveness of the proposed method are demonstrated by numerical results.

  6. Decoherence of superposition states in trapped ions

    CSIR Research Space (South Africa)

    Uys, H

    2010-09-01

    Full Text Available This paper investigates the decoherence of superpositions of hyperfine states of 9Be+ ions due to spontaneous scattering of off-resonant light. It was found that, contrary to conventional wisdom, elastic Raleigh scattering can have major...

  7. Proportional fair scheduling with superposition coding in a cellular cooperative relay system

    DEFF Research Database (Denmark)

    Kaneko, Megumi; Hayashi, Kazunori; Popovski, Petar

    2013-01-01

    Many works have tackled on the problem of throughput and fairness optimization in cellular cooperative relaying systems. Considering firstly a two-user relay broadcast channel, we design a scheme based on superposition coding (SC) which maximizes the achievable sum-rate under a proportional...... fairness constraint. Unlike most relaying schemes where users are allocated orthogonally, our scheme serves the two users simultaneously on the same time-frequency resource unit by superposing their messages into three SC layers. The optimal power allocation parameters of each SC layer are derived...... by analysis. Next, we consider the general multi-user case in a cellular relay system, for which we design resource allocation algorithms based on proportional fair scheduling exploiting the proposed SC-based scheme. Numerical results show that the proposed algorithms allowing simultaneous user allocation...

  8. On the superposition principle in interference experiments.

    Science.gov (United States)

    Sinha, Aninda; H Vijay, Aravind; Sinha, Urbasi

    2015-05-14

    The superposition principle is usually incorrectly applied in interference experiments. This has recently been investigated through numerics based on Finite Difference Time Domain (FDTD) methods as well as the Feynman path integral formalism. In the current work, we have derived an analytic formula for the Sorkin parameter which can be used to determine the deviation from the application of the principle. We have found excellent agreement between the analytic distribution and those that have been earlier estimated by numerical integration as well as resource intensive FDTD simulations. The analytic handle would be useful for comparing theory with future experiments. It is applicable both to physics based on classical wave equations as well as the non-relativistic Schrödinger equation.

  9. Unveiling the curtain of superposition: Recent gedanken and laboratory experiments

    Science.gov (United States)

    Cohen, E.; Elitzur, A. C.

    2017-08-01

    What is the true meaning of quantum superposition? Can a particle genuinely reside in several places simultaneously? These questions lie at the heart of this paper which presents an updated survey of some important stages in the evolution of the three-boxes paradox, as well as novel conclusions drawn from it. We begin with the original thought experiment of Aharonov and Vaidman, and proceed to its non-counterfactual version. The latter was recently realized by Okamoto and Takeuchi using a quantum router. We then outline a dynamic version of this experiment, where a particle is shown to “disappear” and “re-appear” during the time evolution of the system. This surprising prediction based on self-cancellation of weak values is directly related to our notion of Quantum Oblivion. Finally, we present the non-counterfactual version of this disappearing-reappearing experiment. Within the near future, this last version of the experiment is likely to be realized in the lab, proving the existence of exotic hitherto unknown forms of superposition. With the aid of Bell’s theorem, we prove the inherent nonlocality and nontemporality underlying such pre- and post-selected systems, rendering anomalous weak values ontologically real.

  10. Time Series Data Analysis of Wireless Sensor Network Measurements of Temperature.

    Science.gov (United States)

    Bhandari, Siddhartha; Bergmann, Neil; Jurdak, Raja; Kusy, Branislav

    2017-05-26

    Wireless sensor networks have gained significant traction in environmental signal monitoring and analysis. The cost or lifetime of the system typically depends on the frequency at which environmental phenomena are monitored. If sampling rates are reduced, energy is saved. Using empirical datasets collected from environmental monitoring sensor networks, this work performs time series analyses of measured temperature time series. Unlike previous works which have concentrated on suppressing the transmission of some data samples by time-series analysis but still maintaining high sampling rates, this work investigates reducing the sampling rate (and sensor wake up rate) and looks at the effects on accuracy. Results show that the sampling period of the sensor can be increased up to one hour while still allowing intermediate and future states to be estimated with interpolation RMSE less than 0.2 °C and forecasting RMSE less than 1 °C.

  11. Automatic superposition of drug molecules based on their common receptor site

    Science.gov (United States)

    Kato, Yuichi; Inoue, Atsushi; Yamada, Miho; Tomioka, Nobuo; Itai, Akiko

    1992-10-01

    We have prevously developed a new rational method for superposing molecules in terms of submolecular physical and chemical properties, but not in terms of atom positions or chemical structures as has been done in the conventional methods. The program was originally developed for interactive use on a three-dimensional graphic display, providing goodness-of-fit indices on molecular shape, hydrogen bonds, electrostatic interactions and others. Here, we report a new unbiased searching method for the best superposition of molecules, covering all the superposing modes and conformational freedom, as an additional function of the program. The function is based on a novel least-squares method which superposes the expected positions and orientations of hydrogen bonding partners in the receptor that are deduced from both molecules. The method not only gives reliability and reproducibility to the result of the superposition, but also allows us to save labor and time. It is demonstrated that this method is very efficient for finding the correct superposing mode in such systems where hydrogen bonds play important roles.

  12. Improved superposition schemes for approximate multi-caloron configurations

    International Nuclear Information System (INIS)

    Gerhold, P.; Ilgenfritz, E.-M.; Mueller-Preussker, M.

    2007-01-01

    Two improved superposition schemes for the construction of approximate multi-caloron-anti-caloron configurations, using exact single (anti-)caloron gauge fields as underlying building blocks, are introduced in this paper. The first improvement deals with possible monopole-Dirac string interactions between different calorons with non-trivial holonomy. The second one, based on the ADHM formalism, improves the (anti-)selfduality in the case of small caloron separations. It conforms with Shuryak's well-known ratio-ansatz when applied to instantons. Both superposition techniques provide a higher degree of (anti-)selfduality than the widely used sum-ansatz, which simply adds the (anti)caloron vector potentials in an appropriate gauge. Furthermore, the improved configurations (when discretized onto a lattice) are characterized by a higher stability when they are exposed to lattice cooling techniques

  13. A multidimensional superposition principle and wave switching in integrable and nonintegrable soliton models

    Energy Technology Data Exchange (ETDEWEB)

    Alexeyev, Alexander A [Laboratory of Computer Physics and Mathematical Simulation, Research Division, Room 247, Faculty of Phys.-Math. and Natural Sciences, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya street, Moscow 117198 (Russian Federation) and Department of Mathematics 1, Faculty of Cybernetics, Moscow State Institute of Radio Engineering, Electronics and Automatics, 78 Vernadskogo Avenue, Moscow 117454 (Russian Federation)

    2004-11-26

    In the framework of a multidimensional superposition principle a series of computer experiments with integrable and nonintegrable models are carried out with the goal of verifying the existence of switching effect and superposition in soliton-perturbation interactions for a wide class of nonlinear PDEs. (letter to the editor)

  14. Use of the modal superposition technique for piping system blowdown analyses

    International Nuclear Information System (INIS)

    Ware, A.G.; Macek, R.W.

    1983-01-01

    A standard method of solving for the seismic response of piping systems is the modal superposition technique. Only a limited number of structural modes are considered (typically those up to 33 Hz in the U.S.), since the effect on the calculated response due to higher modes is generally small, and the method can result in considerable computer cost savings over the direct integration method. The modal superposition technique has also been applied to piping response problems in which the forcing functions are due to fluid excitation. Application of the technique to this case is somewhat more difficult, because a well defined cutoff frequency for determining structural modes to be included has not been established. This paper outlines a method for higher mode corrections, and suggests methods to determine suitable cutoff frequencies for piping system blowdown analyses. A numerical example illustrates how uncorrected modal superposition results can produce erroneous stress results

  15. GPU-Based Point Cloud Superpositioning for Structural Comparisons of Protein Binding Sites.

    Science.gov (United States)

    Leinweber, Matthias; Fober, Thomas; Freisleben, Bernd

    2018-01-01

    In this paper, we present a novel approach to solve the labeled point cloud superpositioning problem for performing structural comparisons of protein binding sites. The solution is based on a parallel evolution strategy that operates on large populations and runs on GPU hardware. The proposed evolution strategy reduces the likelihood of getting stuck in a local optimum of the multimodal real-valued optimization problem represented by labeled point cloud superpositioning. The performance of the GPU-based parallel evolution strategy is compared to a previously proposed CPU-based sequential approach for labeled point cloud superpositioning, indicating that the GPU-based parallel evolution strategy leads to qualitatively better results and significantly shorter runtimes, with speed improvements of up to a factor of 1,500 for large populations. Binary classification tests based on the ATP, NADH, and FAD protein subsets of CavBase, a database containing putative binding sites, show average classification rate improvements from about 92 percent (CPU) to 96 percent (GPU). Further experiments indicate that the proposed GPU-based labeled point cloud superpositioning approach can be superior to traditional protein comparison approaches based on sequence alignments.

  16. About simple nonlinear and linear superpositions of special exact solutions of Veselov-Novikov equation

    International Nuclear Information System (INIS)

    Dubrovsky, V. G.; Topovsky, A. V.

    2013-01-01

    New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u (n) , n= 1, …, N are constructed via Zakharov and Manakov ∂-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u (n) and calculated by ∂-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schrödinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u (n) . It is shown that the sums u=u (k 1 ) +...+u (k m ) , 1 ⩽k 1 2 m ⩽N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schrödinger equation and can serve as model potentials for electrons in planar structures of modern electronics.

  17. Measurement-Induced Macroscopic Superposition States in Cavity Optomechanics

    DEFF Research Database (Denmark)

    Hoff, Ulrich Busk; Kollath-Bönig, Johann; Neergaard-Nielsen, Jonas Schou

    2016-01-01

    A novel protocol for generating quantum superpositions of macroscopically distinct states of a bulk mechanical oscillator is proposed, compatible with existing optomechanical devices operating in the bad-cavity limit. By combining a pulsed optomechanical quantum nondemolition (QND) interaction...

  18. Generation of picosecond pulsed coherent state superpositions

    DEFF Research Database (Denmark)

    Dong, Ruifang; Tipsmark, Anders; Laghaout, Amine

    2014-01-01

    We present the generation of approximated coherent state superpositions-referred to as Schrodinger cat states-by the process of subtracting single photons from picosecond pulsed squeezed states of light. The squeezed vacuum states are produced by spontaneous parametric down-conversion (SPDC...... which exhibit non-Gaussian behavior. (C) 2014 Optical Society of America...

  19. Student Ability to Distinguish between Superposition States and Mixed States in Quantum Mechanics

    Science.gov (United States)

    Passante, Gina; Emigh, Paul J.; Shaffer, Peter S.

    2015-01-01

    Superposition gives rise to the probabilistic nature of quantum mechanics and is therefore one of the concepts at the heart of quantum mechanics. Although we have found that many students can successfully use the idea of superposition to calculate the probabilities of different measurement outcomes, they are often unable to identify the…

  20. Composite and case study analyses of the large-scale environments associated with West Pacific Polar and subtropical vertical jet superposition events

    Science.gov (United States)

    Handlos, Zachary J.

    Though considerable research attention has been devoted to examination of the Northern Hemispheric polar and subtropical jet streams, relatively little has been directed toward understanding the circumstances that conspire to produce the relatively rare vertical superposition of these usually separate features. This dissertation investigates the structure and evolution of large-scale environments associated with jet superposition events in the northwest Pacific. An objective identification scheme, using NCEP/NCAR Reanalysis 1 data, is employed to identify all jet superpositions in the west Pacific (30-40°N, 135-175°E) for boreal winters (DJF) between 1979/80 - 2009/10. The analysis reveals that environments conducive to west Pacific jet superposition share several large-scale features usually associated with East Asian Winter Monsoon (EAWM) northerly cold surges, including the presence of an enhanced Hadley Cell-like circulation within the jet entrance region. It is further demonstrated that several EAWM indices are statistically significantly correlated with jet superposition frequency in the west Pacific. The life cycle of EAWM cold surges promotes interaction between tropical convection and internal jet dynamics. Low potential vorticity (PV), high theta e tropical boundary layer air, exhausted by anomalous convection in the west Pacific lower latitudes, is advected poleward towards the equatorward side of the jet in upper tropospheric isentropic layers resulting in anomalous anticyclonic wind shear that accelerates the jet. This, along with geostrophic cold air advection in the left jet entrance region that drives the polar tropopause downward through the jet core, promotes the development of the deep, vertical PV wall characteristic of superposed jets. West Pacific jet superpositions preferentially form within an environment favoring the aforementioned characteristics regardless of EAWM seasonal strength. Post-superposition, it is shown that the west Pacific

  1. The principle of superposition in human prehension.

    Science.gov (United States)

    Zatsiorsky, Vladimir M; Latash, Mark L; Gao, Fan; Shim, Jae Kun

    2004-03-01

    The experimental evidence supports the validity of the principle of superposition for multi-finger prehension in humans. Forces and moments of individual digits are defined by two independent commands: "Grasp the object stronger/weaker to prevent slipping" and "Maintain the rotational equilibrium of the object". The effects of the two commands are summed up.

  2. Adiabatic rotation, quantum search, and preparation of superposition states

    International Nuclear Information System (INIS)

    Siu, M. Stewart

    2007-01-01

    We introduce the idea of using adiabatic rotation to generate superpositions of a large class of quantum states. For quantum computing this is an interesting alternative to the well-studied 'straight line' adiabatic evolution. In ways that complement recent results, we show how to efficiently prepare three types of states: Kitaev's toric code state, the cluster state of the measurement-based computation model, and the history state used in the adiabatic simulation of a quantum circuit. We also show that the method, when adapted for quantum search, provides quadratic speedup as other optimal methods do with the advantages that the problem Hamiltonian is time independent and that the energy gap above the ground state is strictly nondecreasing with time. Likewise the method can be used for optimization as an alternative to the standard adiabatic algorithm

  3. Discrimination of Temperature and Strain in Brillouin Optical Time Domain Analysis Using a Multicore Optical Fiber.

    Science.gov (United States)

    Zaghloul, Mohamed A S; Wang, Mohan; Milione, Giovanni; Li, Ming-Jun; Li, Shenping; Huang, Yue-Kai; Wang, Ting; Chen, Kevin P

    2018-04-12

    Brillouin optical time domain analysis is the sensing of temperature and strain changes along an optical fiber by measuring the frequency shift changes of Brillouin backscattering. Because frequency shift changes are a linear combination of temperature and strain changes, their discrimination is a challenge. Here, a multicore optical fiber that has two cores is fabricated. The differences between the cores' temperature and strain coefficients are such that temperature (strain) changes can be discriminated with error amplification factors of 4.57 °C/MHz (69.11 μ ϵ /MHz), which is 2.63 (3.67) times lower than previously demonstrated. As proof of principle, using the multicore optical fiber and a commercial Brillouin optical time domain analyzer, the temperature (strain) changes of a thermally expanding metal cylinder are discriminated with an error of 0.24% (3.7%).

  4. Discrimination of Temperature and Strain in Brillouin Optical Time Domain Analysis Using a Multicore Optical Fiber

    Directory of Open Access Journals (Sweden)

    Mohamed A. S. Zaghloul

    2018-04-01

    Full Text Available Brillouin optical time domain analysis is the sensing of temperature and strain changes along an optical fiber by measuring the frequency shift changes of Brillouin backscattering. Because frequency shift changes are a linear combination of temperature and strain changes, their discrimination is a challenge. Here, a multicore optical fiber that has two cores is fabricated. The differences between the cores’ temperature and strain coefficients are such that temperature (strain changes can be discriminated with error amplification factors of 4.57 °C/MHz (69.11 μ ϵ /MHz, which is 2.63 (3.67 times lower than previously demonstrated. As proof of principle, using the multicore optical fiber and a commercial Brillouin optical time domain analyzer, the temperature (strain changes of a thermally expanding metal cylinder are discriminated with an error of 0.24% (3.7%.

  5. Empirical Evaluation of Superposition Coded Multicasting for Scalable Video

    KAUST Repository

    Chun Pong Lau; Shihada, Basem; Pin-Han Ho

    2013-01-01

    In this paper we investigate cross-layer superposition coded multicast (SCM). Previous studies have proven its effectiveness in exploiting better channel capacity and service granularities via both analytical and simulation approaches. However

  6. Modeling and Simulation of Voids in Composite Tape Winding Process Based on Domain Superposition Technique

    Science.gov (United States)

    Deng, Bo; Shi, Yaoyao

    2017-11-01

    The tape winding technology is an effective way to fabricate rotationally composite materials. Nevertheless, some inevitable defects will seriously influence the performance of winding products. One of the crucial ways to identify the quality of fiber-reinforced composite material products is examining its void content. Significant improvement in products' mechanical properties can be achieved by minimizing the void defect. Two methods were applied in this study, finite element analysis and experimental testing, respectively, to investigate the mechanism of how void forming in composite tape winding processing. Based on the theories of interlayer intimate contact and Domain Superposition Technique (DST), a three-dimensional model of prepreg tape void with SolidWorks has been modeled in this paper. Whereafter, ABAQUS simulation software was used to simulate the void content change with pressure and temperature. Finally, a series of experiments were performed to determine the accuracy of the model-based predictions. The results showed that the model is effective for predicting the void content in the composite tape winding process.

  7. Coherent inflation for large quantum superpositions of levitated microspheres

    Science.gov (United States)

    Romero-Isart, Oriol

    2017-12-01

    We show that coherent inflation (CI), namely quantum dynamics generated by inverted conservative potentials acting on the center of mass of a massive object, is an enabling tool to prepare large spatial quantum superpositions in a double-slit experiment. Combined with cryogenic, extreme high vacuum, and low-vibration environments, we argue that it is experimentally feasible to exploit CI to prepare the center of mass of a micrometer-sized object in a spatial quantum superposition comparable to its size. In such a hitherto unexplored parameter regime gravitationally-induced decoherence could be unambiguously falsified. We present a protocol to implement CI in a double-slit experiment by letting a levitated microsphere traverse a static potential landscape. Such a protocol could be experimentally implemented with an all-magnetic scheme using superconducting microspheres.

  8. Analysis of Temperature and Wind Measurements from the TIMED Mission: Comparison with UARS Data

    Science.gov (United States)

    Huang, Frank; Mayr, Hans; Killeen, Tim; Russell, Jim; Reber, Skip

    2004-01-01

    We report on an analysis of temperature and wind data based respectively on measurements with the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and TIDI (TIMED Doppler Interferometer) instruments on the TIMED (Thermosphere-Ionosphere-Mesosphere-Energetics and Dynamics) mission. Comparisons are made with corresponding results obtained from the HRDI (High Resolution Doppler Imager), MLS (Microwave Limb Sounder) and CLAES (Cryogenic Limb Array Etalon Spectrometer) instruments on the UARS (Upper Atmosphere Research Satellite) spacecraft. The TIMED and UARS instruments have important common and uncommon properties in their sampling of the data as a function local solar time. For comparison between the data from the two satellite missions, we present the derived diurnal tidal and zonal-mean variations of temperature and winds, obtained as functions of season, latitude, and altitude. The observations are also compared with results from the Numerical Spectral Model (NSM).

  9. About simple nonlinear and linear superpositions of special exact solutions of Veselov-Novikov equation

    Energy Technology Data Exchange (ETDEWEB)

    Dubrovsky, V. G.; Topovsky, A. V. [Novosibirsk State Technical University, Karl Marx prosp. 20, Novosibirsk 630092 (Russian Federation)

    2013-03-15

    New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u{sup (n)}, n= 1, Horizontal-Ellipsis , N are constructed via Zakharov and Manakov {partial_derivative}-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u{sup (n)} and calculated by {partial_derivative}-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schroedinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u{sup (n)}. It is shown that the sums u=u{sup (k{sub 1})}+...+u{sup (k{sub m})}, 1 Less-Than-Or-Slanted-Equal-To k{sub 1} < k{sub 2} < Horizontal-Ellipsis < k{sub m} Less-Than-Or-Slanted-Equal-To N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schroedinger equation and can serve as model potentials for electrons in planar structures of modern electronics.

  10. "Soft"or "hard" ionisation? Investigation of metastable gas temperature effect on direct analysis in real-time analysis of Voriconazole.

    Science.gov (United States)

    Lapthorn, Cris; Pullen, Frank

    2009-01-01

    The performance of the direct analysis in real-time (DART) technique was evaluated across a range of metastable gas temperatures for a pharmaceutical compound, Voriconazole, in order to investigate the effect of metastable gas temperature on molecular ion intensity and fragmentation. The DART source has been used to analyse a range of analytes and from a range of matrices including drugs in solid tablet form and preparations, active ingredients in ointment, naturally occurring plant alkaloids, flavours and fragrances, from thin layer chromatography (TLC) plates, melting point tubes and biological matrices including hair, urine and blood. The advantages of this technique include rapid analysis time (as little as 5 s), a reduction in sample preparation requirements, elimination of mobile phase requirement and analysis of samples not typically amenable to atmospheric pressure ionisation (API) techniques. This technology has therefore been proposed as an everyday tool for identification of components in crude organic reaction mixtures.

  11. Generating superpositions of higher order bessel beams [Conference paper

    CSIR Research Space (South Africa)

    Vasilyeu, R

    2009-10-01

    Full Text Available An experimental setup to generate a superposition of higher-order Bessel beams by means of a spatial light modulator and ring aperture is presented. The experimentally produced fields are in good agreement with those calculated theoretically....

  12. Superposition of Stress Fields in Diametrically Compressed Cylinders

    Directory of Open Access Journals (Sweden)

    João Augusto de Lima Rocha

    Full Text Available Abstract The theoretical analysis for the Brazilian test is a classical plane stress problem of elasticity theory, where a vertical force is applied to a horizontal plane, the boundary of a semi-infinite medium. Hypothesizing a normal radial stress field, the results of that model are correct. Nevertheless, the superposition of three stress fields, with two being based on prior results and the third based on a hydrostatic stress field, is incorrect. Indeed, this work shows that the Cauchy vectors (tractions are non-vanishing in the parallel planes in which the two opposing vertical forces are applied. The aim of this work is to detail the process used in the construction of the theoretical model for the three stress fields used, with the objective being to demonstrate the inconsistency often stated in the literature.

  13. On the constitutive relation for thermoirradiation induced creep with application to stress analysis of a fuel rod

    International Nuclear Information System (INIS)

    Huang, S.

    1979-01-01

    Employing an analogy between thermally induced and irradiation induced creep, physical arguments are used first to deduce a one-dimensional constitutive relation for metals under stress in a high temperature and high neutron flux field. This constitutive relation contains modified superposition integrals in which the temperature and flux dependence of the material parameters is included via the use of two reduced time scales; linear elastic, thermal expansion and swelling terms are also included. A systematic development based on thermodynamics, with the stress, temperature increment and defect density increment as independent variables in the Gibbs free energy, is then employed to obtain general three-dimensional memory integrals for strain; the entropy and coupled energy equation are also obtained. Modified superposition integrals similar to those previously obtained by physical argument are then obtained by substituting special functions into the results of the thermodynamic analysis, and the special case of an isotropic stress power law is examined in detail

  14. Linear Plasma Oscillation Described by Superposition of Normal Modes

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1974-01-01

    The existence of steady‐state solutions to the linearized ion and electron Vlasov equation is demonstrated for longitudinal waves in an initially stable plasma. The evolution of an arbitrary initial perturbation can be described by superposition of these solutions. Some common approximations...

  15. Generating superpositions of higher–order Bessel beams [Journal article

    CSIR Research Space (South Africa)

    Vasilyeu, R

    2009-12-01

    Full Text Available The authors report the first experimental generation of the superposition of higher-order Bessel beams, by means of a spatial light modulator (SLM) and a ring slit aperture. They present illuminating a ring slit aperture with light which has...

  16. Spectral properties of superpositions of Ornstein-Uhlenbeck type processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Leonenko, N.N.

    2005-01-01

    Stationary processes with prescribed one-dimensional marginal laws and long-range dependence are constructed. The asymptotic properties of the spectral densities are studied. The possibility of Mittag-Leffler decay in the autocorrelation function of superpositions of Ornstein-Uhlenbeck type...... processes is proved....

  17. Temperature analysis with voltage-current time differential operation of electrochemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay; Wang, Gangqiang; Henderson, Brett Tamatea; Lourdhusamy, Anthoniraj; Steppan, James John; Allmendinger, Klaus Karl

    2018-01-02

    A method for temperature analysis of a gas stream. The method includes identifying a temperature parameter of an affected waveform signal. The method also includes calculating a change in the temperature parameter by comparing the affected waveform signal with an original waveform signal. The method also includes generating a value from the calculated change which corresponds to the temperature of the gas stream.

  18. EPR, optical and superposition model study of Mn2+ doped L+ glutamic acid

    Science.gov (United States)

    Kripal, Ram; Singh, Manju

    2015-12-01

    Electron paramagnetic resonance (EPR) study of Mn2+ doped L+ glutamic acid single crystal is done at room temperature. Four interstitial sites are observed and the spin Hamiltonian parameters are calculated with the help of large number of resonant lines for various angular positions of external magnetic field. The optical absorption study is also done at room temperature. The energy values for different orbital levels are calculated, and observed bands are assigned as transitions from 6A1g(s) ground state to various excited states. With the help of these assigned bands, Racah inter-electronic repulsion parameters B = 869 cm-1, C = 2080 cm-1 and cubic crystal field splitting parameter Dq = 730 cm-1 are calculated. Zero field splitting (ZFS) parameters D and E are calculated by the perturbation formulae and crystal field parameters obtained using superposition model. The calculated values of ZFS parameters are in good agreement with the experimental values obtained by EPR.

  19. Nonclassical thermal-state superpositions: Analytical evolution law and decoherence behavior

    Science.gov (United States)

    Meng, Xiang-guo; Goan, Hsi-Sheng; Wang, Ji-suo; Zhang, Ran

    2018-03-01

    Employing the integration technique within normal products of bosonic operators, we present normal product representations of thermal-state superpositions and investigate their nonclassical features, such as quadrature squeezing, sub-Poissonian distribution, and partial negativity of the Wigner function. We also analytically and numerically investigate their evolution law and decoherence characteristics in an amplitude-decay model via the variations of the probability distributions and the negative volumes of Wigner functions in phase space. The results indicate that the evolution formulas of two thermal component states for amplitude decay can be viewed as the same integral form as a displaced thermal state ρ(V , d) , but governed by the combined action of photon loss and thermal noise. In addition, the larger values of the displacement d and noise V lead to faster decoherence for thermal-state superpositions.

  20. Superposition of configurations in semiempirical calculation of iron group ion spectra

    International Nuclear Information System (INIS)

    Kantseryavichyus, A.Yu.; Ramonas, A.A.

    1976-01-01

    The energy spectra of ions from the iron group in the dsup(N), dsup(N)s, dsup(N)p configurations are studied. A semiempirical method is used in which the effective hamiltonian contains configuration superposition. The sdsup(N+1), psup(4)dsup(N+2) quasidegenerated configurations, as well as configurations which differ by one electron are taken as correction configurations. It follows from the calculations that the most important role among the quasidegenerate configurations is played by the sdsup(N+1) correctional configuration. When it is taken into account, the introduction of the psup(4)dsup(N+2) correctional configuration practically does not affect the results. Account of the dsup(N-1)s configuration in the second order of the perturbation theory is equivalent to that of sdsup(N+1) in the sense that it results in the identical mean square deviation. As follows from the comparison of the results of the approximate and complete account of the configuration superposition, in many cases one can be satisfied with its approximate and complete account of the configuration superposition, in many cases one can be satisfied with its approximate version. The results are presented in the form of tables including the values of empirical parameters, radial integrals, mean square errors, etc

  1. Spatially variable stage-driven groundwater-surface water interaction inferred from time-frequency analysis of distributed temperature sensing data

    Science.gov (United States)

    Mwakanyamale, Kisa; Slater, Lee; Day-Lewis, Frederick D.; Elwaseif, Mehrez; Johnson, Carole D.

    2012-01-01

    Characterization of groundwater-surface water exchange is essential for improving understanding of contaminant transport between aquifers and rivers. Fiber-optic distributed temperature sensing (FODTS) provides rich spatiotemporal datasets for quantitative and qualitative analysis of groundwater-surface water exchange. We demonstrate how time-frequency analysis of FODTS and synchronous river stage time series from the Columbia River adjacent to the Hanford 300-Area, Richland, Washington, provides spatial information on the strength of stage-driven exchange of uranium contaminated groundwater in response to subsurface heterogeneity. Although used in previous studies, the stage-temperature correlation coefficient proved an unreliable indicator of the stage-driven forcing on groundwater discharge in the presence of other factors influencing river water temperature. In contrast, S-transform analysis of the stage and FODTS data definitively identifies the spatial distribution of discharge zones and provided information on the dominant forcing periods (≥2 d) of the complex dam operations driving stage fluctuations and hence groundwater-surface water exchange at the 300-Area.

  2. Optimizing headspace sampling temperature and time for analysis of volatile oxidation products in fish oil

    DEFF Research Database (Denmark)

    Rørbæk, Karen; Jensen, Benny

    1997-01-01

    Headspace-gas chromatography (HS-GC), based on adsorption to Tenax GR(R), thermal desorption and GC, has been used for analysis of volatiles in fish oil. To optimize sam sampling conditions, the effect of heating the fish oil at various temperatures and times was evaluated from anisidine values (AV...

  3. Superposition as a logical glue

    Directory of Open Access Journals (Sweden)

    Andrea Asperti

    2011-03-01

    Full Text Available The typical mathematical language systematically exploits notational and logical abuses whose resolution requires not just the knowledge of domain specific notation and conventions, but not trivial skills in the given mathematical discipline. A large part of this background knowledge is expressed in form of equalities and isomorphisms, allowing mathematicians to freely move between different incarnations of the same entity without even mentioning the transformation. Providing ITP-systems with similar capabilities seems to be a major way to improve their intelligence, and to ease the communication between the user and the machine. The present paper discusses our experience of integration of a superposition calculus within the Matita interactive prover, providing in particular a very flexible, "smart" application tactic, and a simple, innovative approach to automation.

  4. Exponential Communication Complexity Advantage from Quantum Superposition of the Direction of Communication

    Science.gov (United States)

    Guérin, Philippe Allard; Feix, Adrien; Araújo, Mateus; Brukner, Časlav

    2016-09-01

    In communication complexity, a number of distant parties have the task of calculating a distributed function of their inputs, while minimizing the amount of communication between them. It is known that with quantum resources, such as entanglement and quantum channels, one can obtain significant reductions in the communication complexity of some tasks. In this work, we study the role of the quantum superposition of the direction of communication as a resource for communication complexity. We present a tripartite communication task for which such a superposition allows for an exponential saving in communication, compared to one-way quantum (or classical) communication; the advantage also holds when we allow for protocols with bounded error probability.

  5. Temperature-dependent microindentation data of an epoxy composition in the glassy region

    Czech Academy of Sciences Publication Activity Database

    Minster, Jiří; Králík, V.

    2015-01-01

    Roč. 19, č. 1 (2015), s. 75-85 ISSN 1385-2000 R&D Projects: GA ČR(CZ) GAP105/12/0824 Institutional support: RVO:68378297 Keywords : mechanical properties * viscoelasticity * glass transition * microindentation * time-temperature superposition Subject RIV: JI - Composite Materials Impact factor: 1.120, year: 2015 http://link.springer.com/article/10.1007/s11043-014-9252-6

  6. Superpositions of higher-order bessel beams and nondiffracting speckle fields

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2009-08-01

    Full Text Available speckle fields. The paper reports on illuminating a ring slit aperture with light which has an azimuthal phase dependence, such that the field produced is a superposition of two higher-order Bessel beams. In the case that the phase dependence of the light...

  7. Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition of logic states

    Energy Technology Data Exchange (ETDEWEB)

    Kish, Laszlo B. [Texas A and M University, Department of Electrical and Computer Engineering, College Station, TX 77843-3128 (United States)], E-mail: laszlo.kish@ece.tamu.edu

    2009-03-02

    A new type of deterministic (non-probabilistic) computer logic system inspired by the stochasticity of brain signals is shown. The distinct values are represented by independent stochastic processes: independent voltage (or current) noises. The orthogonality of these processes provides a natural way to construct binary or multi-valued logic circuitry with arbitrary number N of logic values by using analog circuitry. Moreover, the logic values on a single wire can be made a (weighted) superposition of the N distinct logic values. Fuzzy logic is also naturally represented by a two-component superposition within the binary case (N=2). Error propagation and accumulation are suppressed. Other relevant advantages are reduced energy dissipation and leakage current problems, and robustness against circuit noise and background noises such as 1/f, Johnson, shot and crosstalk noise. Variability problems are also non-existent because the logic value is an AC signal. A similar logic system can be built with orthogonal sinusoidal signals (different frequency or orthogonal phase) however that has an extra 1/N type slowdown compared to the noise-based logic system with increasing number of N furthermore it is less robust against time delay effects than the noise-based counterpart.

  8. Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition of logic states

    International Nuclear Information System (INIS)

    Kish, Laszlo B.

    2009-01-01

    A new type of deterministic (non-probabilistic) computer logic system inspired by the stochasticity of brain signals is shown. The distinct values are represented by independent stochastic processes: independent voltage (or current) noises. The orthogonality of these processes provides a natural way to construct binary or multi-valued logic circuitry with arbitrary number N of logic values by using analog circuitry. Moreover, the logic values on a single wire can be made a (weighted) superposition of the N distinct logic values. Fuzzy logic is also naturally represented by a two-component superposition within the binary case (N=2). Error propagation and accumulation are suppressed. Other relevant advantages are reduced energy dissipation and leakage current problems, and robustness against circuit noise and background noises such as 1/f, Johnson, shot and crosstalk noise. Variability problems are also non-existent because the logic value is an AC signal. A similar logic system can be built with orthogonal sinusoidal signals (different frequency or orthogonal phase) however that has an extra 1/N type slowdown compared to the noise-based logic system with increasing number of N furthermore it is less robust against time delay effects than the noise-based counterpart

  9. Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition of logic states

    Science.gov (United States)

    Kish, Laszlo B.

    2009-03-01

    A new type of deterministic (non-probabilistic) computer logic system inspired by the stochasticity of brain signals is shown. The distinct values are represented by independent stochastic processes: independent voltage (or current) noises. The orthogonality of these processes provides a natural way to construct binary or multi-valued logic circuitry with arbitrary number N of logic values by using analog circuitry. Moreover, the logic values on a single wire can be made a (weighted) superposition of the N distinct logic values. Fuzzy logic is also naturally represented by a two-component superposition within the binary case ( N=2). Error propagation and accumulation are suppressed. Other relevant advantages are reduced energy dissipation and leakage current problems, and robustness against circuit noise and background noises such as 1/f, Johnson, shot and crosstalk noise. Variability problems are also non-existent because the logic value is an AC signal. A similar logic system can be built with orthogonal sinusoidal signals (different frequency or orthogonal phase) however that has an extra 1/N type slowdown compared to the noise-based logic system with increasing number of N furthermore it is less robust against time delay effects than the noise-based counterpart.

  10. Transforming spatial point processes into Poisson processes using random superposition

    DEFF Research Database (Denmark)

    Møller, Jesper; Berthelsen, Kasper Klitgaaard

    with a complementary spatial point process Y  to obtain a Poisson process X∪Y  with intensity function β. Underlying this is a bivariate spatial birth-death process (Xt,Yt) which converges towards the distribution of (X,Y). We study the joint distribution of X and Y, and their marginal and conditional distributions....... In particular, we introduce a fast and easy simulation procedure for Y conditional on X. This may be used for model checking: given a model for the Papangelou intensity of the original spatial point process, this model is used to generate the complementary process, and the resulting superposition is a Poisson...... process with intensity function β if and only if the true Papangelou intensity is used. Whether the superposition is actually such a Poisson process can easily be examined using well known results and fast simulation procedures for Poisson processes. We illustrate this approach to model checking...

  11. The role and production of polar/subtropical jet superpositions in two high-impact weather events over North America

    Science.gov (United States)

    Winters, Andrew C.

    Careful observational work has demonstrated that the tropopause is typically characterized by a three-step pole-to-equator structure, with each break between steps in the tropopause height associated with a jet stream. While the two jet streams, the polar and subtropical jets, typically occupy different latitude bands, their separation can occasionally vanish, resulting in a vertical superposition of the two jets. A cursory examination of a number of historical and recent high-impact weather events over North America and the North Atlantic indicates that superposed jets can be an important component of their evolution. Consequently, this dissertation examines two recent jet superposition cases, the 18--20 December 2009 Mid-Atlantic Blizzard and the 1--3 May 2010 Nashville Flood, in an effort (1) to determine the specific influence that a superposed jet can have on the development of a high-impact weather event and (2) to illuminate the processes that facilitated the production of a superposition in each case. An examination of these cases from a basic-state variable and PV inversion perspective demonstrates that elements of both the remote and local synoptic environment are important to consider while diagnosing the development of a jet superposition. Specifically, the process of jet superposition begins with the remote production of a cyclonic (anticyclonic) tropopause disturbance at high (low) latitudes. The cyclonic circulation typically originates at polar latitudes, while organized tropical convection can encourage the development of an anticyclonic circulation anomaly within the tropical upper-troposphere. The concurrent advection of both anomalies towards middle latitudes subsequently allows their individual circulations to laterally displace the location of the individual tropopause breaks. Once the two circulation anomalies position the polar and subtropical tropopause breaks in close proximity to one another, elements within the local environment, such as

  12. Implementation and validation of collapsed cone superposition for radiopharmaceutical dosimetry of photon emitters

    Science.gov (United States)

    Sanchez-Garcia, Manuel; Gardin, Isabelle; Lebtahi, Rachida; Dieudonné, Arnaud

    2015-10-01

    Two collapsed cone (CC) superposition algorithms have been implemented for radiopharmaceutical dosimetry of photon emitters. The straight CC (SCC) superposition method uses a water energy deposition kernel (EDKw) for each electron, positron and photon components, while the primary and scatter CC (PSCC) superposition method uses different EDKw for primary and once-scattered photons. PSCC was implemented only for photons originating from the nucleus, precluding its application to positron emitters. EDKw are linearly scaled by radiological distance, taking into account tissue density heterogeneities. The implementation was tested on 100, 300 and 600 keV mono-energetic photons and 18F, 99mTc, 131I and 177Lu. The kernels were generated using the Monte Carlo codes MCNP and EGSnrc. The validation was performed on 6 phantoms representing interfaces between soft-tissues, lung and bone. The figures of merit were γ (3%, 3 mm) and γ (5%, 5 mm) criterions corresponding to the computation comparison on 80 absorbed doses (AD) points per phantom between Monte Carlo simulations and CC algorithms. PSCC gave better results than SCC for the lowest photon energy (100 keV). For the 3 isotopes computed with PSCC, the percentage of AD points satisfying the γ (5%, 5 mm) criterion was always over 99%. A still good but worse result was found with SCC, since at least 97% of AD-values verified the γ (5%, 5 mm) criterion, except a value of 57% for the 99mTc with the lung/bone interface. The CC superposition method for radiopharmaceutical dosimetry is a good alternative to Monte Carlo simulations while reducing computation complexity.

  13. Implementation and validation of collapsed cone superposition for radiopharmaceutical dosimetry of photon emitters.

    Science.gov (United States)

    Sanchez-Garcia, Manuel; Gardin, Isabelle; Lebtahi, Rachida; Dieudonné, Arnaud

    2015-10-21

    Two collapsed cone (CC) superposition algorithms have been implemented for radiopharmaceutical dosimetry of photon emitters. The straight CC (SCC) superposition method uses a water energy deposition kernel (EDKw) for each electron, positron and photon components, while the primary and scatter CC (PSCC) superposition method uses different EDKw for primary and once-scattered photons. PSCC was implemented only for photons originating from the nucleus, precluding its application to positron emitters. EDKw are linearly scaled by radiological distance, taking into account tissue density heterogeneities. The implementation was tested on 100, 300 and 600 keV mono-energetic photons and (18)F, (99m)Tc, (131)I and (177)Lu. The kernels were generated using the Monte Carlo codes MCNP and EGSnrc. The validation was performed on 6 phantoms representing interfaces between soft-tissues, lung and bone. The figures of merit were γ (3%, 3 mm) and γ (5%, 5 mm) criterions corresponding to the computation comparison on 80 absorbed doses (AD) points per phantom between Monte Carlo simulations and CC algorithms. PSCC gave better results than SCC for the lowest photon energy (100 keV). For the 3 isotopes computed with PSCC, the percentage of AD points satisfying the γ (5%, 5 mm) criterion was always over 99%. A still good but worse result was found with SCC, since at least 97% of AD-values verified the γ (5%, 5 mm) criterion, except a value of 57% for the (99m)Tc with the lung/bone interface. The CC superposition method for radiopharmaceutical dosimetry is a good alternative to Monte Carlo simulations while reducing computation complexity.

  14. On some properties of the superposition operator on topological manifolds

    Directory of Open Access Journals (Sweden)

    Janusz Dronka

    2010-01-01

    Full Text Available In this paper the superposition operator in the space of vector-valued, bounded and continuous functions on a topological manifold is considered. The acting conditions and criteria of continuity and compactness are established. As an application, an existence result for the nonlinear Hammerstein integral equation is obtained.

  15. On a computational method for modelling complex ecosystems by superposition procedure

    International Nuclear Information System (INIS)

    He Shanyu.

    1986-12-01

    In this paper, the Superposition Procedure is concisely described, and a computational method for modelling a complex ecosystem is proposed. With this method, the information contained in acceptable submodels and observed data can be utilized to maximal degree. (author). 1 ref

  16. Improvement of the Magnetic Shielding Effects by the Superposition of a Multi-Layered Ferromagnetic Cylinder over an HTS Cylinder: Relationship Between the Shielding Effects and the Layer Number of the Ferromagnetic Cylinder

    International Nuclear Information System (INIS)

    Yasui, K; Tarui, Y; Itoh, M

    2006-01-01

    The idealized magnetic shielded vessel can be realized by making use of a high-critical temperature superconductor (HTS). It is difficult for practical applications, however, to fabricate a shielding vessel that has a high value of the maximum shielded magnetic flux density B s0 . The present authors have improved the value of B s0 for the Bi-Pb-Sr-Ca-Cu-O (BPSCCO) cylinder used as the shielding vessel, by the superposition of a four-layered softiron cylinder over the BPSCCO cylinder, termed the four-layered superimposed cylinder. The B s4 value of 610 x 10 -4 T for the four-layered superimposed cylinder, is found to be about 4 times larger than that of a single-BPSCCO cylinder, and is theoretically analyzed by use of a new analysis method. The experimental values of the maximum shielded magnetic flux density B sn of n-layered superimposed cylinders are found to agree well with those of the theoretical analysis. Experimental results revealed several characteristics of the magnetic shielding within the n-layered superimposed cylinders. Also discussed is the new analysis method for the relationship between the n and B sn

  17. Network class superposition analyses.

    Directory of Open Access Journals (Sweden)

    Carl A B Pearson

    Full Text Available Networks are often used to understand a whole system by modeling the interactions among its pieces. Examples include biomolecules in a cell interacting to provide some primary function, or species in an environment forming a stable community. However, these interactions are often unknown; instead, the pieces' dynamic states are known, and network structure must be inferred. Because observed function may be explained by many different networks (e.g., ≈ 10(30 for the yeast cell cycle process, considering dynamics beyond this primary function means picking a single network or suitable sample: measuring over all networks exhibiting the primary function is computationally infeasible. We circumvent that obstacle by calculating the network class ensemble. We represent the ensemble by a stochastic matrix T, which is a transition-by-transition superposition of the system dynamics for each member of the class. We present concrete results for T derived from boolean time series dynamics on networks obeying the Strong Inhibition rule, by applying T to several traditional questions about network dynamics. We show that the distribution of the number of point attractors can be accurately estimated with T. We show how to generate Derrida plots based on T. We show that T-based Shannon entropy outperforms other methods at selecting experiments to further narrow the network structure. We also outline an experimental test of predictions based on T. We motivate all of these results in terms of a popular molecular biology boolean network model for the yeast cell cycle, but the methods and analyses we introduce are general. We conclude with open questions for T, for example, application to other models, computational considerations when scaling up to larger systems, and other potential analyses.

  18. Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces

    International Nuclear Information System (INIS)

    Jack, B.; Leach, J.; Franke-Arnold, S.; Ireland, D. G.; Padgett, M. J.; Yao, A. M.; Barnett, S. M.; Romero, J.

    2010-01-01

    We use spatial light modulators (SLMs) to measure correlations between arbitrary superpositions of orbital angular momentum (OAM) states generated by spontaneous parametric down-conversion. Our technique allows us to fully access a two-dimensional OAM subspace described by a Bloch sphere, within the higher-dimensional OAM Hilbert space. We quantify the entanglement through violations of a Bell-type inequality for pairs of modal superpositions that lie on equatorial, polar, and arbitrary great circles of the Bloch sphere. Our work shows that SLMs can be used to measure arbitrary spatial states with a fidelity sufficient for appropriate quantum information processing systems.

  19. Temperature-dependency analysis and correction methods of in-situ power-loss estimation for crystalline silicon modules undergoing potential-induced degradation stress testing

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2015-01-01

    We propose a method of in-situ characterization of the photovoltaic module power at standard test conditions using superposition of the dark current-voltage (I-V) curve measured at elevated stress temperature during potential-induced degradation (PID) testing. PID chamber studies were performed o...

  20. On Multiple Users Scheduling Using Superposition Coding over Rayleigh Fading Channels

    KAUST Repository

    Zafar, Ammar

    2013-02-20

    In this letter, numerical results are provided to analyze the gains of multiple users scheduling via superposition coding with successive interference cancellation in comparison with the conventional single user scheduling in Rayleigh blockfading broadcast channels. The information-theoretic optimal power, rate and decoding order allocation for the superposition coding scheme are considered and the corresponding histogram for the optimal number of scheduled users is evaluated. Results show that at optimality there is a high probability that only two or three users are scheduled per channel transmission block. Numerical results for the gains of multiple users scheduling in terms of the long term throughput under hard and proportional fairness as well as for fixed merit weights for the users are also provided. These results show that the performance gain of multiple users scheduling over single user scheduling increases when the total number of users in the network increases, and it can exceed 10% for high number of users

  1. OSL at elevated temperatures: Towards the simultaneous thermal and optical stimulation

    International Nuclear Information System (INIS)

    Polymeris, George S.

    2015-01-01

    In routine OSL dating measurements, a preheat procedure at high temperatures is used to empty the shallow traps. Thus no contribution from shallow traps was expected as each OSL measurement is subsequently performed at moderately high temperatures, around 110–125 °C. The present work attempts to consider the OSL measurements performed at elevated temperatures without any previous preheat as a case of simultaneous thermal and optical stimulation of the same trap. Towards this direction, a set of proposed equations is derived for all three different cases of optical stimulation modes, namely CW-OSL, LM-OSL as well as PS-LM-OSL. According to these equations, indicative features of thermally activated OSL processes are expected, such as the steepening of CW-OSL decay curves as either stimulation temperature or intensity increases, as well as the shifting of the stimulation time of the maximum intensity for both LM-OSL and PS-LM-OSL curves towards shorter times with increasing temperatures. Experimentally, specific measurement sequences after varying stimulation temperature and/or intensity were applied in order to estimate the values of associated trap parameters, such as activation energy and photo-ionization cross-section. Experimental OSL data from a milky natural quartz sample stand in good agreement of these theoretical considerations in the case of 110 °C TL peak and the intense OSL component C 2 monitored at RT. - Highlights: • OSL at elevated temperatures without preheat results from two simultaneous stimulation modes. • Equations were derived assuming of linear superposition of two stimulation modes. • Data for 110 °C TL peak and OSL C 2 at RT stand in agreement with these equations. • Results verify the linear superposition of the two stimulation modes

  2. Java application for the superposition T-matrix code to study the optical properties of cosmic dust aggregates

    Science.gov (United States)

    Halder, P.; Chakraborty, A.; Deb Roy, P.; Das, H. S.

    2014-09-01

    In this paper, we report the development of a java application for the Superposition T-matrix code, JaSTA (Java Superposition T-matrix App), to study the light scattering properties of aggregate structures. It has been developed using Netbeans 7.1.2, which is a java integrated development environment (IDE). The JaSTA uses double precession superposition codes for multi-sphere clusters in random orientation developed by Mackowski and Mischenko (1996). It consists of a graphical user interface (GUI) in the front hand and a database of related data in the back hand. Both the interactive GUI and database package directly enable a user to model by self-monitoring respective input parameters (namely, wavelength, complex refractive indices, grain size, etc.) to study the related optical properties of cosmic dust (namely, extinction, polarization, etc.) instantly, i.e., with zero computational time. This increases the efficiency of the user. The database of JaSTA is now created for a few sets of input parameters with a plan to create a large database in future. This application also has an option where users can compile and run the scattering code directly for aggregates in GUI environment. The JaSTA aims to provide convenient and quicker data analysis of the optical properties which can be used in different fields like planetary science, atmospheric science, nano science, etc. The current version of this software is developed for the Linux and Windows platform to study the light scattering properties of small aggregates which will be extended for larger aggregates using parallel codes in future. Catalogue identifier: AETB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 571570 No. of bytes in distributed program

  3. Temperature field due to time-dependent heat sources in a large rectangular grid - Derivation of analytical solution

    International Nuclear Information System (INIS)

    Claesson, J.; Probert, T.

    1996-01-01

    The temperature field in rock due to a large rectangular grid of heat releasing canisters containing nuclear waste is studied. The solution is by superposition divided into different parts. There is a global temperature field due to the large rectangular canister area, while a local field accounts for the remaining heat source problem. The global field is reduced to a single integral. The local field is also solved analytically using solutions for a finite line heat source and for an infinite grid of point sources. The local solution is reduced to three parts, each of which depends on two spatial coordinates only. The temperatures at the envelope of a canister are given by a single thermal resistance, which is given by an explicit formula. The results are illustrated by a few numerical examples dealing with the KBS-3 concept for storage of nuclear waste. 8 refs

  4. Push-pull optical pumping of pure superposition states

    International Nuclear Information System (INIS)

    Jau, Y.-Y.; Miron, E.; Post, A.B.; Kuzma, N.N.; Happer, W.

    2004-01-01

    A new optical pumping method, 'push-pull pumping', can produce very nearly pure, coherent superposition states between the initial and the final sublevels of the important field-independent 0-0 clock resonance of alkali-metal atoms. The key requirement for push-pull pumping is the use of D1 resonant light which alternates between left and right circular polarization at the Bohr frequency of the state. The new pumping method works for a wide range of conditions, including atomic beams with almost no collisions, and atoms in buffer gases with pressures of many atmospheres

  5. Dielectric response and ac conductivity analysis of hafnium oxide nanopowder

    International Nuclear Information System (INIS)

    Karahaliou, P K; Xanthopoulos, N; Krontiras, C A; Georga, S N

    2012-01-01

    The dielectric response of hafnium oxide nanopowder was studied in the frequency range of 10 -2 -10 6 MHz and in the temperature range of 20-180 °C. Broadband dielectric spectroscopy was applied and the experimental results were analyzed and discussed using the electric modulus (M*) and alternating current (ac) conductivity formalisms. The analyses of the dc conductivity and electric modulus data revealed the presence of mechanisms which are thermally activated, both with almost the same activation energy of 1.01 eV. A fitting procedure involving the superposition of the thermally activated dc conductivity, the universal dielectric responce and the near constant loss terms has been used to describe the frequency evolution of the real part of the specific electrical conductivity. The conductivity master curve was obtained, suggesting that the time-temperature superposition principle applies for the studied system, thus implying that the conductivity mechanisms are temperature independent.

  6. Statistics of particle time-temperature histories.

    Energy Technology Data Exchange (ETDEWEB)

    Hewson, John C.; Lignell, David O.; Sun, Guangyuan

    2014-10-01

    alter s particle dispersion. The joint particle - temperature dispersion leads to a distribution of temperature histories predicted by the ODT . Predictions are shown for the lower moments an d the full distributions of the particle positions, particle - observed gas temperatures and particle temperatures. An analysis of the time scales affecting particle - temperature interactions covers Lagrangian integral time scales based on temperature autoco rrelations, rates of temperature change associated with particle motion relative to the temperature field and rates of diffusional change of temperatures. These latter two time scales have not been investigated previously; they are shown to be strongly in termittent having peaked distributions with long tails. The logarithm of the absolute value of these time scales exhibits a distribution closer to normal. A cknowledgements This work is supported by the Defense Threat Reduction Agency (DTRA) under their Counter - Weapons of Mass Destruction Basic Research Program in the area of Chemical and Biological Agent Defeat under award number HDTRA1 - 11 - 4503I to Sandia National Laboratories. The authors would like to express their appreciation for the guidance provi ded by Dr. Suhithi Peiris to this project and to the Science to Defeat Weapons of Mass Destruction program.

  7. Transient change in the shape of premixed burner flame with the superposition of pulsed dielectric barrier discharge

    OpenAIRE

    Zaima, Kazunori; Sasaki, Koichi

    2016-01-01

    We investigated the transient phenomena in a premixed burner flame with the superposition of a pulsed dielectric barrier discharge (DBD). The length of the flame was shortened by the superposition of DBD, indicating the activation of combustion chemical reactions with the help of the plasma. In addition, we observed the modulation of the top position of the unburned gas region and the formations of local minimums in the axial distribution of the optical emission intensity of OH. These experim...

  8. Elasticity moduli, thermal expansion coefficients and Debye temperature of titanium alloys

    International Nuclear Information System (INIS)

    Beletskij, V.M.; Glej, V.A.; Maksimyuk, P.A.; Tabachnik, V.I.; Opanasenko, V.F.

    1979-01-01

    Studied are the characteristics of titanium alloys which reflect best the bonding forces for atoms in a crystal lattice: elastic modules, their temperature dependences, thermal expansion coefficient and Debye temperatures. For the increase of the accuracy of measuring modules and especially their changes with temperature an ultrasonic echo-impulse method of superposition has been used. The temperature dependences of Young modulus of the VT1-0, VT16 and VT22 titanium alloys are plotted. The Young module and its change with temperature depend on the content of alloying elements. The Young module decrease with temperature may be explained within the framework of the inharmonic effect theory. The analysis of the results obtained permits to suppose that alloying of titanium alloys with aluminium results in an interatomic interaction increase that may be one of the reasons of their strength increase

  9. Temperature dependence of Brewster's angle.

    Science.gov (United States)

    Guo, Wei

    2018-01-01

    In this work, a dielectric at a finite temperature is modeled as an ensemble of identical atoms moving randomly around where they are trapped. Light reflection from the dielectric is then discussed in terms of atomic radiation. Specific calculation demonstrates that because of the atoms' thermal motion, Brewster's angle is, in principle, temperature-dependent, and the dependence is weak in the low-temperature limit. What is also found is that the Brewster's angle is nothing but a result of destructive superposition of electromagnetic radiation from the atoms.

  10. The study on the Sensorless PMSM Control using the Superposition Theory

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Joung Pyo [Changwon National University, Changwon (Korea); Kwon, Soon Jae [Pukung National University, Seoul (Korea); Kim, Gyu Seob; Sohn, Mu Heon; Kim, Jong Dal [Dongmyung College, Pusan (Korea)

    2002-07-01

    This study presents a solution to control a Permanent Magnet Synchronous Motor without sensors. The control method is the presented superposition principle. This method of sensorless theory is very simple to compute estimated angle. Therefore computing time to estimate angle is shorter than other sensorless method. The use of this system yields enhanced operations, fewer system components, lower system cost, energy efficient control system design and increased deficiency. A practical solution is described and results are given in this Study. The performance of a Sensorless architecture allows an intelligent approach to reduce the complete system costs of digital motion control applications using cheaper electrical motors without sensors. This paper deals with an overview of sensorless solutions in PMSM control applications whereby the focus will be the new controller without sensors and its applications. (author). 6 refs., 16 figs., 1 tab.

  11. Superpositions of higher-order bessel beams and nondiffracting speckle fields - (SAIP 2009)

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2009-07-01

    Full Text Available speckle fields. The paper reports on illuminating a ring slit aperture with light which has an azimuthal phase dependence, such that the field produced is a superposition of two higher-order Bessel beams. In the case that the phase dependence of the light...

  12. A cute and highly contrast-sensitive superposition eye : The diurnal owlfly Libelloides macaronius

    NARCIS (Netherlands)

    Belušič, Gregor; Pirih, Primož; Stavenga, Doekele G.

    The owlfly Libelloides macaronius (Insecta: Neuroptera) has large bipartite eyes of the superposition type. The spatial resolution and sensitivity of the photoreceptor array in the dorsofrontal eye part was studied with optical and electrophysiological methods. Using structured illumination

  13. Geometric measure of pairwise quantum discord for superpositions of multipartite generalized coherent states

    International Nuclear Information System (INIS)

    Daoud, M.; Ahl Laamara, R.

    2012-01-01

    We give the explicit expressions of the pairwise quantum correlations present in superpositions of multipartite coherent states. A special attention is devoted to the evaluation of the geometric quantum discord. The dynamics of quantum correlations under a dephasing channel is analyzed. A comparison of geometric measure of quantum discord with that of concurrence shows that quantum discord in multipartite coherent states is more resilient to dissipative environments than is quantum entanglement. To illustrate our results, we consider some special superpositions of Weyl–Heisenberg, SU(2) and SU(1,1) coherent states which interpolate between Werner and Greenberger–Horne–Zeilinger states. -- Highlights: ► Pairwise quantum correlations multipartite coherent states. ► Explicit expression of geometric quantum discord. ► Entanglement sudden death and quantum discord robustness. ► Generalized coherent states interpolating between Werner and Greenberger–Horne–Zeilinger states

  14. Geometric measure of pairwise quantum discord for superpositions of multipartite generalized coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Daoud, M., E-mail: m_daoud@hotmail.com [Department of Physics, Faculty of Sciences, University Ibnou Zohr, Agadir (Morocco); Ahl Laamara, R., E-mail: ahllaamara@gmail.com [LPHE-Modeling and Simulation, Faculty of Sciences, University Mohammed V, Rabat (Morocco); Centre of Physics and Mathematics, CPM, CNESTEN, Rabat (Morocco)

    2012-07-16

    We give the explicit expressions of the pairwise quantum correlations present in superpositions of multipartite coherent states. A special attention is devoted to the evaluation of the geometric quantum discord. The dynamics of quantum correlations under a dephasing channel is analyzed. A comparison of geometric measure of quantum discord with that of concurrence shows that quantum discord in multipartite coherent states is more resilient to dissipative environments than is quantum entanglement. To illustrate our results, we consider some special superpositions of Weyl–Heisenberg, SU(2) and SU(1,1) coherent states which interpolate between Werner and Greenberger–Horne–Zeilinger states. -- Highlights: ► Pairwise quantum correlations multipartite coherent states. ► Explicit expression of geometric quantum discord. ► Entanglement sudden death and quantum discord robustness. ► Generalized coherent states interpolating between Werner and Greenberger–Horne–Zeilinger states.

  15. Variability of residual stresses and superposition effect in multipass grinding of high-carbon high-chromium steel

    Science.gov (United States)

    Karabelchtchikova, Olga; Rivero, Iris V.

    2005-02-01

    The distribution of residual stresses (RS) and surface integrity generated in heat treatment and subsequent multipass grinding was investigated in this experimental study to examine the source of variability and the nature of the interactions of the experimental factors. A nested experimental design was implemented to (a) compare the sources of the RS variability, (b) to examine RS distribution and tensile peak location due to experimental factors, and (c) to analyze the superposition relationship in the RS distribution due to multipass grinding technique. To characterize the material responses, several techniques were used, including microstructural analysis, hardness-toughness and roughness examinations, and retained austenite and RS measurements using x-ray diffraction. The causality of the RS was explained through the strong correlation of the surface integrity characteristics and RS patterns. The main sources of variation were the depth of the RS distribution and the multipass grinding technique. The grinding effect on the RS was statistically significant; however, it was mostly predetermined by the preexisting RS induced in heat treatment. Regardless of the preceding treatments, the effect of the multipass grinding technique exhibited similar RS patterns, which suggests the existence of the superposition relationship and orthogonal memory between the passes of the grinding operation.

  16. Analysis of rainfall and temperature time series to detect long-term climatic trends and variability over semi-arid Botswana

    Science.gov (United States)

    Byakatonda, Jimmy; Parida, B. P.; Kenabatho, Piet K.; Moalafhi, D. B.

    2018-03-01

    Arid and semi-arid environments have been identified with locations prone to impacts of climate variability and change. Investigating long-term trends is one way of tracing climate change impacts. This study investigates variability through annual and seasonal meteorological time series. Possible inhomogeneities and years of intervention are analysed using four absolute homogeneity tests. Trends in the climatic variables were determined using Mann-Kendall and Sen's Slope estimator statistics. Association of El Niño Southern Oscillation (ENSO) with local climate is also investigated through multivariate analysis. Results from the study show that rainfall time series are fully homogeneous with 78.6 and 50% of the stations for maximum and minimum temperature, respectively, showing homogeneity. Trends also indicate a general decrease of 5.8, 7.4 and 18.1% in annual, summer and winter rainfall, respectively. Warming trends are observed in annual and winter temperature at 0.3 and 1.5% for maximum temperature and 1.7 and 6.5% for minimum temperature, respectively. Rainfall reported a positive correlation with Southern Oscillation Index (SOI) and at the same time negative association with Sea Surface Temperatures (SSTs). Strong relationships between SSTs and maximum temperature are observed during the El Niño and La Niña years. These study findings could facilitate planning and management of agricultural and water resources in Botswana.

  17. Trend analysis of air temperature and precipitation time series over Greece: 1955-2010

    Science.gov (United States)

    Marougianni, G.; Melas, D.; Kioutsioukis, I.; Feidas, H.; Zanis, P.; Anandranistakis, E.

    2012-04-01

    In this study, a database of air temperature and precipitation time series from the network of Hellenic National Meteorological Service has been developed in the framework of the project GEOCLIMA, co-financed by the European Union and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the Research Funding Program COOPERATION 2009. Initially, a quality test was applied to the raw data and then missing observations have been imputed with a regularized, spatial-temporal expectation - maximization algorithm to complete the climatic record. Next, a quantile - matching algorithm was applied in order to verify the homogeneity of the data. The processed time series were used for the calculation of temporal annual and seasonal trends of air temperature and precipitation. Monthly maximum and minimum surface air temperature and precipitation means at all available stations in Greece were analyzed for temporal trends and spatial variation patterns for the longest common time period of homogenous data (1955 - 2010), applying the Mann-Kendall test. The majority of the examined stations showed a significant increase in the summer maximum and minimum temperatures; this could be possibly physically linked to the Etesian winds, because of the less frequent expansion of the low over the southeastern Mediterranean. Summer minimum temperatures have been increasing at a faster rate than that of summer maximum temperatures, reflecting an asymmetric change of extreme temperature distributions. Total annual precipitation has been significantly decreased at the stations located in western Greece, as well as in the southeast, while the remaining areas exhibit a non-significant negative trend. This reduction is very likely linked to the positive phase of the NAO that resulted in an increase in the frequency and persistence of anticyclones over the Mediterranean.

  18. Superposition Principle in Auger Recombination of Charged and Neutral Multicarrier States in Semiconductor Quantum Dots.

    Science.gov (United States)

    Wu, Kaifeng; Lim, Jaehoon; Klimov, Victor I

    2017-08-22

    Application of colloidal semiconductor quantum dots (QDs) in optical and optoelectronic devices is often complicated by unintentional generation of extra charges, which opens fast nonradiative Auger recombination pathways whereby the recombination energy of an exciton is quickly transferred to the extra carrier(s) and ultimately dissipated as heat. Previous studies of Auger recombination have primarily focused on neutral and, more recently, negatively charged multicarrier states. Auger dynamics of positively charged species remains more poorly explored due to difficulties in creating, stabilizing, and detecting excess holes in the QDs. Here we apply photochemical doping to prepare both negatively and positively charged CdSe/CdS QDs with two distinct core/shell interfacial profiles ("sharp" versus "smooth"). Using neutral and charged QD samples we evaluate Auger lifetimes of biexcitons, negative and positive trions (an exciton with an extra electron or a hole, respectively), and multiply negatively charged excitons. Using these measurements, we demonstrate that Auger decay of both neutral and charged multicarrier states can be presented as a superposition of independent elementary three-particle Auger events. As one of the manifestations of the superposition principle, we observe that the biexciton Auger decay rate can be presented as a sum of the Auger rates for independent negative and positive trion pathways. By comparing the measurements on the QDs with the "sharp" versus "smooth" interfaces, we also find that while affecting the absolute values of Auger lifetimes, manipulation of the shape of the confinement potential does not lead to violation of the superposition principle, which still allows us to accurately predict the biexciton Auger lifetimes based on the measured negative and positive trion dynamics. These findings indicate considerable robustness of the superposition principle as applied to Auger decay of charged and neutral multicarrier states

  19. The modified relaxation time function: A novel analysis technique for relaxation processes. Application to high-temperature molybdenum internal friction peaks

    International Nuclear Information System (INIS)

    Matteo, C.L.; Lambri, O.A.; Zelada-Lambri, G.I.; Sorichetti, P.A.; Garcia, J.A.

    2008-01-01

    The modified relaxation time (MRT) function, which is based on a general linear viscoelastic formalism, has several important mathematical properties that greatly simplify the analysis of relaxation processes. In this work, the MRT is applied to the study of the relaxation damping peaks in deformed molybdenum at high temperatures. The dependence of experimental data from these relaxation processes with temperature are adequately described by a Havriliak-Negami (HN) function, and the MRT makes it possible to find a relation between the parameters of the HN function and the activation energy of the process. The analysis reveals that for the relaxation peak appearing at temperatures below 900 K, the physical mechanism is related to a vacancy-diffusion-controlled movement of dislocations. In contrast, when the peak appears at temperatures higher than 900 K, the damping is controlled by a mechanism of diffusion in the low-temperature tail of the peak, and in the high-temperature tail of the peak the creation plus diffusion of vacancies at the dislocation line occurs

  20. Intermittent electron density and temperature fluctuations and associated fluxes in the Alcator C-Mod scrape-off layer

    Science.gov (United States)

    Kube, R.; Garcia, O. E.; Theodorsen, A.; Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.

    2018-06-01

    The Alcator C-Mod mirror Langmuir probe system has been used to sample data time series of fluctuating plasma parameters in the outboard mid-plane far scrape-off layer. We present a statistical analysis of one second long time series of electron density, temperature, radial electric drift velocity and the corresponding particle and electron heat fluxes. These are sampled during stationary plasma conditions in an ohmically heated, lower single null diverted discharge. The electron density and temperature are strongly correlated and feature fluctuation statistics similar to the ion saturation current. Both electron density and temperature time series are dominated by intermittent, large-amplitude burst with an exponential distribution of both burst amplitudes and waiting times between them. The characteristic time scale of the large-amplitude bursts is approximately 15 μ {{s}}. Large-amplitude velocity fluctuations feature a slightly faster characteristic time scale and appear at a faster rate than electron density and temperature fluctuations. Describing these time series as a superposition of uncorrelated exponential pulses, we find that probability distribution functions, power spectral densities as well as auto-correlation functions of the data time series agree well with predictions from the stochastic model. The electron particle and heat fluxes present large-amplitude fluctuations. For this low-density plasma, the radial electron heat flux is dominated by convection, that is, correlations of fluctuations in the electron density and radial velocity. Hot and dense blobs contribute only a minute fraction of the total fluctuation driven heat flux.

  1. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Seong W. Lee

    2003-09-01

    During this reporting period, the literature survey including the gasifier temperature measurement literature, the ultrasonic application and its background study in cleaning application, and spray coating process are completed. The gasifier simulator (cold model) testing has been successfully conducted. Four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. The Analysis of Variance (ANOVA) was applied to analyze the test data. The analysis shows that all four factors are significant to the temperature measurements in the gasifier simulator (cold model). The regression analysis for the case with the normalized room temperature shows that linear model fits the temperature data with 82% accuracy (18% error). The regression analysis for the case without the normalized room temperature shows 72.5% accuracy (27.5% error). The nonlinear regression analysis indicates a better fit than that of the linear regression. The nonlinear regression model's accuracy is 88.7% (11.3% error) for normalized room temperature case, which is better than the linear regression analysis. The hot model thermocouple sleeve design and fabrication are completed. The gasifier simulator (hot model) design and the fabrication are completed. The system tests of the gasifier simulator (hot model) have been conducted and some modifications have been made. Based on the system tests and results analysis, the gasifier simulator (hot model) has met the proposed design requirement and the ready for system test. The ultrasonic cleaning method is under evaluation and will be further studied for the gasifier simulator (hot model) application. The progress of this project has been on schedule.

  2. On Kolmogorov's superpositions and Boolean functions

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-31

    The paper overviews results dealing with the approximation capabilities of neural networks, as well as bounds on the size of threshold gate circuits. Based on an explicit numerical (i.e., constructive) algorithm for Kolmogorov's superpositions they will show that for obtaining minimum size neutral networks for implementing any Boolean function, the activation function of the neurons is the identity function. Because classical AND-OR implementations, as well as threshold gate implementations require exponential size (in the worst case), it will follow that size-optimal solutions for implementing arbitrary Boolean functions require analog circuitry. Conclusions and several comments on the required precision are ending the paper.

  3. A study of the diffusional behavior of a two-phase metal matrix composite exposed to a high temperature environment

    Science.gov (United States)

    Tenney, D. R.

    1974-01-01

    The progress of diffusion-controlled filament-matrix interaction in a metal matrix composite where the filaments and matrix comprise a two-phase binary alloy system was studied by mathematically modeling compositional changes resulting from prolonged elevated temperature exposure. The analysis treats a finite, diffusion-controlled, two-phase moving-interface problem by means of a variable-grid finite-difference technique. The Ni-W system was selected as an example system. Modeling was carried out for the 1000 to 1200 C temperature range for unidirectional composites containing from 6 to 40 volume percent tungsten filaments in a Ni matrix. The results are displayed to show both the change in filament diameter and matrix composition as a function of exposure time. Compositional profiles produced between first and second nearest neighbor filaments were calculated by superposition of finite-difference solutions of the diffusion equations.

  4. Interplay of gravitation and linear superposition of different mass eigenstates

    International Nuclear Information System (INIS)

    Ahluwalia, D.V.

    1998-01-01

    The interplay of gravitation and the quantum-mechanical principle of linear superposition induces a new set of neutrino oscillation phases. These ensure that the flavor-oscillation clocks, inherent in the phenomenon of neutrino oscillations, redshift precisely as required by Einstein close-quote s theory of gravitation. The physical observability of these phases in the context of the solar neutrino anomaly, type-II supernova, and certain atomic systems is briefly discussed. copyright 1998 The American Physical Society

  5. Ultrafast convolution/superposition using tabulated and exponential kernels on GPU

    Energy Technology Data Exchange (ETDEWEB)

    Chen Quan; Chen Mingli; Lu Weiguo [TomoTherapy Inc., 1240 Deming Way, Madison, Wisconsin 53717 (United States)

    2011-03-15

    Purpose: Collapsed-cone convolution/superposition (CCCS) dose calculation is the workhorse for IMRT dose calculation. The authors present a novel algorithm for computing CCCS dose on the modern graphic processing unit (GPU). Methods: The GPU algorithm includes a novel TERMA calculation that has no write-conflicts and has linear computation complexity. The CCCS algorithm uses either tabulated or exponential cumulative-cumulative kernels (CCKs) as reported in literature. The authors have demonstrated that the use of exponential kernels can reduce the computation complexity by order of a dimension and achieve excellent accuracy. Special attentions are paid to the unique architecture of GPU, especially the memory accessing pattern, which increases performance by more than tenfold. Results: As a result, the tabulated kernel implementation in GPU is two to three times faster than other GPU implementations reported in literature. The implementation of CCCS showed significant speedup on GPU over single core CPU. On tabulated CCK, speedups as high as 70 are observed; on exponential CCK, speedups as high as 90 are observed. Conclusions: Overall, the GPU algorithm using exponential CCK is 1000-3000 times faster over a highly optimized single-threaded CPU implementation using tabulated CCK, while the dose differences are within 0.5% and 0.5 mm. This ultrafast CCCS algorithm will allow many time-sensitive applications to use accurate dose calculation.

  6. Effect of the superposition of a dielectric barrier discharge onto a premixed gas burner flame

    Science.gov (United States)

    Zaima, Kazunori; Takada, Noriharu; Sasaki, Koichi

    2011-10-01

    We are investigating combustion control with the help of nonequilibrium plasma. In this work, we examined the effect of dielectric barrier discharge (DBD) on a premixed burner flame with CH4/O2/Ar gas mixture. The premixed burner flame was covered with a quartz tube. A copper electrode was attached on the outside of the quartz tube, and it was connected to a high-voltage power supply. DBD inside the quartz tube was obtained between the copper electrode and the grounded nozzle of the burner which was placed at the bottom of the quartz tube. We clearly observed that the flame length was shortened by superposing DBD onto the bottom part of the flame. The shortened flame length indicates the enhancement of the burning velocity. We measured the optical emission spectra from the bottom region of the flame. As a result, we observed clear line emissions from Ar, which were never observed from the flame without DBD. We evaluated the rotational temperatures of OH and CH radicals by spectral fitting. As a result, the rotational temperature of CH was not changed, and the rotational temperature of OH was decreased by the superposition of DBD. According to these results, it is considered that the enhancement of the burning velocity is not caused by gas heating. New reaction pathways are suggested.

  7. Neural Network Molecule: a Solution of the Inverse Biometry Problem through Software Support of Quantum Superposition on Outputs of the Network of Artificial Neurons

    Directory of Open Access Journals (Sweden)

    Vladimir I. Volchikhin

    2017-12-01

    Full Text Available Introduction: The aim of the study is to accelerate the solution of neural network biometrics inverse problem on an ordinary desktop computer. Materials and Methods: To speed up the calculations, the artificial neural network is introduced into the dynamic mode of “jittering” of the states of all 256 output bits. At the same time, too many output states of the neural network are logarithmically folded by transitioning to the Hamming distance space between the code of the image “Own” and the codes of the images “Alien”. From the database of images of “Alien” 2.5 % of the most similar images are selected. In the next generation, 97.5 % of the discarded images are restored with GOST R 52633.2-2010 procedures by crossing parent images and obtaining descendant images from them. Results: Over a period of about 10 minutes, 60 generations of directed search for the solution of the inverse problem can be realized that allows inversing matrices of neural network functionals of dimension 416 inputs to 256 outputs with restoration of up to 97 % information on unknown biometric parameters of the image “Own”. Discussion and Conclusions: Supporting for 10 minutes of computer time the 256 qubit quantum superposition allows on a conventional computer to bypass the actual infinity of analyzed states in 5050 (50 to 50 times more than the same computer could process realizing the usual calculations. The increase in the length of the supported quantum superposition by 40 qubits is equivalent to increasing the processor clock speed by about a billion times. It is for this reason that it is more profitable to increase the number of quantum superpositions supported by the software emulator in comparison with the creation of a more powerful processor.

  8. Integral superposition of paraxial Gaussian beams in inhomogeneous anisotropic layered structures in Cartesian coordinates

    Czech Academy of Sciences Publication Activity Database

    Červený, V.; Pšenčík, Ivan

    2015-01-01

    Roč. 25, - (2015), s. 109-155 ISSN 2336-3827 Institutional support: RVO:67985530 Keywords : integral superposition of paraxial Gaussian beams * inhomogeneous anisotropic media * S waves in weakly anisotropic media Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  9. Evolution of superpositions of quantum states through a level crossing

    International Nuclear Information System (INIS)

    Torosov, B. T.; Vitanov, N. V.

    2011-01-01

    The Landau-Zener-Stueckelberg-Majorana (LZSM) model is widely used for estimating transition probabilities in the presence of crossing energy levels in quantum physics. This model, however, makes the unphysical assumption of an infinitely long constant interaction, which introduces a divergent phase in the propagator. This divergence remains hidden when estimating output probabilities for a single input state insofar as the divergent phase cancels out. In this paper we show that, because of this divergent phase, the LZSM model is inadequate to describe the evolution of pure or mixed superposition states across a level crossing. The LZSM model can be used only if the system is initially in a single state or in a completely mixed superposition state. To this end, we show that the more realistic Demkov-Kunike model, which assumes a hyperbolic-tangent level crossing and a hyperbolic-secant interaction envelope, is free of divergences and is a much more adequate tool for describing the evolution through a level crossing for an arbitrary input state. For multiple crossing energies which are reducible to one or more effective two-state systems (e.g., by the Majorana and Morris-Shore decompositions), similar conclusions apply: the LZSM model does not produce definite values of the populations and the coherences, and one should use the Demkov-Kunike model instead.

  10. Superposition of Planckian spectra and the distortions of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Alexanian, M.

    1982-01-01

    A fit of the spectrum of the cosmic microwave background radiation (CMB) by means of a positive linear superposition of Planckian spectra implies an upper bound to the photon spectrum. The observed spectrum of the CMB gives a weighting function with a normalization greater than unity

  11. A model for quantification of temperature profiles via germination times

    DEFF Research Database (Denmark)

    Pipper, Christian Bressen; Adolf, Verena Isabelle; Jacobsen, Sven-Erik

    2013-01-01

    Current methodology to quantify temperature characteristics in germination of seeds is predominantly based on analysis of the time to reach a given germination fraction, that is, the quantiles in the distribution of the germination time of a seed. In practice interpolation between observed...... time and a specific type of accelerated failure time models is provided. As a consequence the observed number of germinated seeds at given monitoring times may be analysed directly by a grouped time-to-event model from which characteristics of the temperature profile may be identified and estimated...... germination fractions at given monitoring times is used to obtain the time to reach a given germination fraction. As a consequence the obtained value will be highly dependent on the actual monitoring scheme used in the experiment. In this paper a link between currently used quantile models for the germination...

  12. A numerical dressing method for the nonlinear superposition of solutions of the KdV equation

    International Nuclear Information System (INIS)

    Trogdon, Thomas; Deconinck, Bernard

    2014-01-01

    In this paper we present the unification of two existing numerical methods for the construction of solutions of the Korteweg–de Vries (KdV) equation. The first method is used to solve the Cauchy initial-value problem on the line for rapidly decaying initial data. The second method is used to compute finite-genus solutions of the KdV equation. The combination of these numerical methods allows for the computation of exact solutions that are asymptotically (quasi-)periodic finite-gap solutions and are a nonlinear superposition of dispersive, soliton and (quasi-)periodic solutions in the finite (x, t)-plane. Such solutions are referred to as superposition solutions. We compute these solutions accurately for all values of x and t. (paper)

  13. Hybrid analysis for indicating patients with breast cancer using temperature time series.

    Science.gov (United States)

    Silva, Lincoln F; Santos, Alair Augusto S M D; Bravo, Renato S; Silva, Aristófanes C; Muchaluat-Saade, Débora C; Conci, Aura

    2016-07-01

    Breast cancer is the most common cancer among women worldwide. Diagnosis and treatment in early stages increase cure chances. The temperature of cancerous tissue is generally higher than that of healthy surrounding tissues, making thermography an option to be considered in screening strategies of this cancer type. This paper proposes a hybrid methodology for analyzing dynamic infrared thermography in order to indicate patients with risk of breast cancer, using unsupervised and supervised machine learning techniques, which characterizes the methodology as hybrid. The dynamic infrared thermography monitors or quantitatively measures temperature changes on the examined surface, after a thermal stress. In the dynamic infrared thermography execution, a sequence of breast thermograms is generated. In the proposed methodology, this sequence is processed and analyzed by several techniques. First, the region of the breasts is segmented and the thermograms of the sequence are registered. Then, temperature time series are built and the k-means algorithm is applied on these series using various values of k. Clustering formed by k-means algorithm, for each k value, is evaluated using clustering validation indices, generating values treated as features in the classification model construction step. A data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem in classification tasks. Besides the classification algorithm recommended by the data mining tool, classifiers based on Bayesian networks, neural networks, decision rules and decision tree were executed on the data set used for evaluation. Test results support that the proposed analysis methodology is able to indicate patients with breast cancer. Among 39 tested classification algorithms, K-Star and Bayes Net presented 100% classification accuracy. Furthermore, among the Bayes Net, multi-layer perceptron, decision table and random forest classification algorithms, an

  14. Decoherence bypass of macroscopic superpositions in quantum measurement

    International Nuclear Information System (INIS)

    Spehner, Dominique; Haake, Fritz

    2008-01-01

    We study a class of quantum measurement models. A microscopic object is entangled with a macroscopic pointer such that a distinct pointer position is tied to each eigenvalue of the measured object observable. Those different pointer positions mutually decohere under the influence of an environment. Overcoming limitations of previous approaches we (i) cope with initial correlations between pointer and environment by considering them initially in a metastable local thermal equilibrium, (ii) allow for object-pointer entanglement and environment-induced decoherence of distinct pointer readouts to proceed simultaneously, such that mixtures of macroscopically distinct object-pointer product states arise without intervening macroscopic superpositions, and (iii) go beyond the Markovian treatment of decoherence. (fast track communication)

  15. Improving the Yule-Nielsen modified Neugebauer model by dot surface coverages depending on the ink superposition conditions

    Science.gov (United States)

    Hersch, Roger David; Crete, Frederique

    2005-01-01

    Dot gain is different when dots are printed alone, printed in superposition with one ink or printed in superposition with two inks. In addition, the dot gain may also differ depending on which solid ink the considered halftone layer is superposed. In a previous research project, we developed a model for computing the effective surface coverage of a dot according to its superposition conditions. In the present contribution, we improve the Yule-Nielsen modified Neugebauer model by integrating into it our effective dot surface coverage computation model. Calibration of the reproduction curves mapping nominal to effective surface coverages in every superposition condition is carried out by fitting effective dot surfaces which minimize the sum of square differences between the measured reflection density spectra and reflection density spectra predicted according to the Yule-Nielsen modified Neugebauer model. In order to predict the reflection spectrum of a patch, its known nominal surface coverage values are converted into effective coverage values by weighting the contributions from different reproduction curves according to the weights of the contributing superposition conditions. We analyze the colorimetric prediction improvement brought by our extended dot surface coverage model for clustered-dot offset prints, thermal transfer prints and ink-jet prints. The color differences induced by the differences between measured reflection spectra and reflection spectra predicted according to the new dot surface estimation model are quantified on 729 different cyan, magenta, yellow patches covering the full color gamut. As a reference, these differences are also computed for the classical Yule-Nielsen modified spectral Neugebauer model incorporating a single halftone reproduction curve for each ink. Taking into account dot surface coverages according to different superposition conditions considerably improves the predictions of the Yule-Nielsen modified Neugebauer model. In

  16. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    International Nuclear Information System (INIS)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.; Alexandrov, Y.A.; Andreeva, N.P.; Badyal, S.K.; Basova, E.S.; Bhalla, K.B.; Bhasin, A.; Bhatia, V.S.; Bradnova, V.; Bubnov, V.I.; Cai, X.; Chasnikov, I.Y.; Chen, G.M.; Chernova, L.P.; Chernyavsky, M.M.; Dhamija, S.; Chenawi, K.El; Felea, D.; Feng, S.Q.; Gaitinov, A.S.; Ganssauge, E.R.; Garpman, S.; Gerassimov, S.G.; Gheata, A.; Gheata, M.; Grote, J.; Gulamov, K.G.; Gupta, S.K.; Gupta, V.K.; Henjes, U.; Jakobsson, B.; Kanygina, E.K.; Karabova, M.; Kharlamov, S.P.; Kovalenko, A.D.; Krasnov, S.A.; Kumar, V.; Larionova, V.G.; Li, Y.X.; Liu, L.S.; Lokanathan, S.; Lord, J.J.; Lukicheva, N.S.; Lu, Y.; Luo, S.B.; Mangotra, L.K.; Manhas, I.; Mittra, I.S.; Musaeva, A.K.; Nasyrov, S.Z.; Navotny, V.S.; Nystrand, J.; Otterlund, I.; Peresadko, N.G.; Qian, W.Y.; Qin, Y.M.; Raniwala, R.; Rao, N.K.; Roeper, M.; Rusakova, V.V.; Saidkhanov, N.; Salmanova, N.A.; Seitimbetov, A.M.; Sethi, R.; Singh, B.; Skelding, D.; Soderstrem, K.; Stenlund, E.; Svechnikova, L.N.; Svensson, T.; Tawfik, A.M.; Tothova, M.; Tretyakova, M.I.; Trofimova, T.P.; Tuleeva, U.I.; Vashisht, Vani; Vokal, S.; Vrlakova, J.; Wang, H.Q.; Wang, X.R.; Weng, Z.Q.; Wilkes, R.J.; Yang, C.B.; Yin, Z.B.; Yu, L.Z.; Zhang, D.H.; Zheng, P.Y.; Zhokhova, S.I.; Zhou, D.C.

    1999-01-01

    Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus

  17. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, G I; Adamovich, M I; Aggarwal, M M; Alexandrov, Y A; Andreeva, N P; Badyal, S K; Basova, E S; Bhalla, K B; Bhasin, A; Bhatia, V S; Bradnova, V; Bubnov, V I; Cai, X; Chasnikov, I Y; Chen, G M; Chernova, L P; Chernyavsky, M M; Dhamija, S; Chenawi, K El; Felea, D; Feng, S Q; Gaitinov, A S; Ganssauge, E R; Garpman, S; Gerassimov, S G; Gheata, A; Gheata, M; Grote, J; Gulamov, K G; Gupta, S K; Gupta, V K; Henjes, U; Jakobsson, B; Kanygina, E K; Karabova, M; Kharlamov, S P; Kovalenko, A D; Krasnov, S A; Kumar, V; Larionova, V G; Li, Y X; Liu, L S; Lokanathan, S; Lord, J J; Lukicheva, N S; Lu, Y; Luo, S B; Mangotra, L K; Manhas, I; Mittra, I S; Musaeva, A K; Nasyrov, S Z; Navotny, V S; Nystrand, J; Otterlund, I; Peresadko, N G; Qian, W Y; Qin, Y M; Raniwala, R; Rao, N K; Roeper, M; Rusakova, V V; Saidkhanov, N; Salmanova, N A; Seitimbetov, A M; Sethi, R; Singh, B; Skelding, D; Soderstrem, K; Stenlund, E; Svechnikova, L N; Svensson, T; Tawfik, A M; Tothova, M; Tretyakova, M I; Trofimova, T P; Tuleeva, U I; Vashisht, Vani; Vokal, S; Vrlakova, J; Wang, H Q; Wang, X R; Weng, Z Q; Wilkes, R J; Yang, C B; Yin, Z B; Yu, L Z; Zhang, D H; Zheng, P Y; Zhokhova, S I; Zhou, D C

    1999-03-01

    Angular distributions of charged particles produced in {sup 16}O and {sup 32}S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b{sub NA}, that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus.

  18. Nucleus-nucleus collision as superposition of nucleon-nucleus collisions

    International Nuclear Information System (INIS)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.

    1999-01-01

    Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus. (orig.)

  19. The effect of melting temperature and time on the TiC particles

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Kun [Key Laboratory of Materials Liquid Structure and Heredity, Ministry of Education, Shandong University, Ji' nan 250061 (China); Liu Xiangfa, E-mail: xfliu@sdu.edu.c [Key Laboratory of Materials Liquid Structure and Heredity, Ministry of Education, Shandong University, Ji' nan 250061 (China)

    2009-09-18

    In the present work, the microstructure formation process and particle size distribution of TiC in Al-Ti-C master alloys are investigated by particle size analysis, which is based on the morphology characterizing from scanning electron microscopy (SEM). The TiC particle size distributions at different melting temperatures and during different melting times are researched. It is demonstrated that the TiC particle sizes increase with melting temperature and melting time elapsed. The micro size particles appear when the melting temperature is high enough.

  20. The effect of melting temperature and time on the TiC particles

    International Nuclear Information System (INIS)

    Jiang Kun; Liu Xiangfa

    2009-01-01

    In the present work, the microstructure formation process and particle size distribution of TiC in Al-Ti-C master alloys are investigated by particle size analysis, which is based on the morphology characterizing from scanning electron microscopy (SEM). The TiC particle size distributions at different melting temperatures and during different melting times are researched. It is demonstrated that the TiC particle sizes increase with melting temperature and melting time elapsed. The micro size particles appear when the melting temperature is high enough.

  1. Long-distance measurement-device-independent quantum key distribution with coherent-state superpositions.

    Science.gov (United States)

    Yin, H-L; Cao, W-F; Fu, Y; Tang, Y-L; Liu, Y; Chen, T-Y; Chen, Z-B

    2014-09-15

    Measurement-device-independent quantum key distribution (MDI-QKD) with decoy-state method is believed to be securely applied to defeat various hacking attacks in practical quantum key distribution systems. Recently, the coherent-state superpositions (CSS) have emerged as an alternative to single-photon qubits for quantum information processing and metrology. Here, in this Letter, CSS are exploited as the source in MDI-QKD. We present an analytical method that gives two tight formulas to estimate the lower bound of yield and the upper bound of bit error rate. We exploit the standard statistical analysis and Chernoff bound to perform the parameter estimation. Chernoff bound can provide good bounds in the long-distance MDI-QKD. Our results show that with CSS, both the security transmission distance and secure key rate are significantly improved compared with those of the weak coherent states in the finite-data case.

  2. Diacetylene time-temperature indicators

    International Nuclear Information System (INIS)

    Patel, G.N.; Yee, K.C.

    1980-01-01

    An improved recording device is described, useful for measuring the integrated time-temperature or integrated radiation-dosage history of an article, comprising a substrate onto which an acetylenic compound, containing at least two conjugated c*c groups, in an inactive form, is deposited. The inactive form is capable of being converted by melt or solvent recrystallization to an active form, which undergoes 1,4-addition polymerization resulting in an irreversible, progressive color change. The color change produced at any given point in time represents an integrated time-temperature history of thermal annealing or integrated radiation-dosage history of exposure to actinic radiation to which an article has been exposed. Also described is a process for producing an inactive form of the acetylenic compound. A film and a fiber, made from the inactive form of an acetylenic compound are also described

  3. Chaos and Complexities Theories. Superposition and Standardized Testing: Are We Coming or Going?

    Science.gov (United States)

    Erwin, Susan

    2005-01-01

    The purpose of this paper is to explore the possibility of using the principle of "superposition of states" (commonly illustrated by Schrodinger's Cat experiment) to understand the process of using standardized testing to measure a student's learning. Comparisons from literature, neuroscience, and Schema Theory will be used to expound upon the…

  4. Temperature-dependent release of volatile organic compounds of eucalypts by direct analysis in real time (DART) mass spectrometry.

    Science.gov (United States)

    Maleknia, Simin D; Vail, Teresa M; Cody, Robert B; Sparkman, David O; Bell, Tina L; Adams, Mark A

    2009-08-01

    A method is described for the rapid identification of biogenic, volatile organic compounds (VOCs) emitted by plants, including the analysis of the temperature dependence of those emissions. Direct analysis in real time (DART) enabled ionization of VOCs from stem and leaf of several eucalyptus species including E. cinerea, E. citriodora, E. nicholii and E. sideroxylon. Plant tissues were placed directly in the gap between the DART ionization source skimmer and the capillary inlet of the time-of-flight (TOF) mass spectrometer. Temperature-dependent emission of VOCs was achieved by adjusting the temperature of the helium gas into the DART ionization source at 50, 100, 200 and 300 degrees C, which enabled direct evaporation of compounds, up to the onset of pyrolysis of plant fibres (i.e. cellulose and lignin). Accurate mass measurements facilitated by TOF mass spectrometry provided elemental compositions for the VOCs. A wide range of compounds was detected from simple organic compounds (i.e. methanol and acetone) to a series of monoterpenes (i.e. pinene, camphene, cymene, eucalyptol) common to many plant species, as well as several less abundant sesquiterpenes and flavonoids (i.e. naringenin, spathulenol, eucalyptin) with antioxidant and antimicrobial properties. The leaf and stem tissues for all four eucalypt species showed similar compounds. The relative abundances of methanol and ethanol were greater in stem wood than in leaf tissue suggesting that DART could be used to investigate the tissue-specific transport and emissions of VOCs. Copyright (c) 2009 John Wiley & Sons, Ltd.

  5. Inverse analysis of inner surface temperature history from outer surface temperature measurement of a pipe

    International Nuclear Information System (INIS)

    Kubo, S; Ioka, S; Onchi, S; Matsumoto, Y

    2010-01-01

    When slug flow runs through a pipe, nonuniform and time-varying thermal stresses develop and there is a possibility that thermal fatigue occurs. Therefore it is necessary to know the temperature distributions and the stress distributions in the pipe for the integrity assessment of the pipe. It is, however, difficult to measure the inner surface temperature directly. Therefore establishment of the estimation method of the temperature history on inner surface of pipe is needed. As a basic study on the estimation method of the temperature history on the inner surface of a pipe with slug flow, this paper presents an estimation method of the temperature on the inner surface of a plate from the temperature on the outer surface. The relationship between the temperature history on the outer surface and the inner surface is obtained analytically. Using the results of the mathematical analysis, the inverse analysis method of the inner surface temperature history estimation from the outer surface temperature history is proposed. It is found that the inner surface temperature history can be estimated from the outer surface temperature history by applying the inverse analysis method, even when it is expressed by the multiple frequency components.

  6. Teleportation of a Superposition of Three Orthogonal States of an Atom via Photon Interference

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shi-Biao

    2006-01-01

    We propose a scheme to teleport a superposition of three states of an atom trapped in a cavity to a second atom trapped in a remote cavity. The scheme is based on the detection of photons leaking from the cavities after the atom-cavity interaction.

  7. Capacity-Approaching Superposition Coding for Optical Fiber Links

    DEFF Research Database (Denmark)

    Estaran Tolosa, Jose Manuel; Zibar, Darko; Tafur Monroy, Idelfonso

    2014-01-01

    We report on the first experimental demonstration of superposition coded modulation (SCM) for polarization-multiplexed coherent-detection optical fiber links. The proposed coded modulation scheme is combined with phase-shifted bit-to-symbol mapping (PSM) in order to achieve geometric and passive......-SCM) is employed in the framework of bit-interleaved coded modulation with iterative decoding (BICM-ID) for forward error correction. The fiber transmission system is characterized in terms of signal-to-noise ratio for back-to-back case and correlated with simulated results for ideal transmission over additive...... white Gaussian noise channel. Thereafter, successful demodulation and decoding after dispersion-unmanaged transmission over 240-km standard single mode fiber of dual-polarization 6-Gbaud 16-, 32- and 64-ary SCM-PSM is experimentally demonstrated....

  8. Temperature and magnetic field dependence of magnetic correlations in the heavy fermion compound CeCu6

    International Nuclear Information System (INIS)

    Regnault, L.P.; Rossat-Mignod, J.; Jacoud, J.L.; Erkelens, W.A.C.; Rijksuniversiteit Leiden

    1988-01-01

    Inelastic neutron scattering experiments have been performed on the heavy fermion compound CeCu 6 at very low temperatures (T > 20 mK) and under magnetic fields up to 50 kOe. The analysis of the data shows that the magnetic scattering is the superposition of a single site contribution of Lorentzian type and of a broadened inelastic contribution associated with AF correlations. These correlations saturate below 1.5 - 2 K and are completely destroyed above 40 kOe

  9. Double-contrast examination of the gastric antrum without Duodenal superposition

    International Nuclear Information System (INIS)

    Treugut, H.; Isper, J.

    1980-01-01

    By using a modified technique of double-contrast examination of the stomach it was possible in 75% to perform a study without superposition of the duodenum and jejunum on the distal stomach compared to 36% with the usual method. In this technique a small amount (50 ml) of Barium-suspension is given to the patient in left decubitus position by a straw or gastric tube after antiperistaltic medication. There was no difference in the quality of mucosa-coating compared to the technique using higher volumes of Barium. (orig.) [de

  10. Influence of temperature on the rheological behavior of a new fucose-containing bacterial exopolysaccharide.

    Science.gov (United States)

    Cruz, Madalena; Freitas, Filomena; Torres, Cristiana A V; Reis, Maria A M; Alves, Vítor D

    2011-05-01

    The effect of temperature on the rheology of a new fucose-containing extracellular polysaccharide (EPS) was evaluated. The steady state data revealed a shear-thinning behavior, with the viscosity being immediately recovered when the shear rate was decreased. The mechanical spectra indicated viscous solutions with entangled polymer molecules in the range of temperatures studied (from 15 °C to 65 °C). In addition, the Time-Temperature Superposition principle was successfully applied and the Cox-Merz rule was valid, reinforcing the idea of a thermorheologically simple behavior for the EPS in aqueous solution. Furthermore, the viscous and viscoelastic properties at 25 °C were maintained after consecutive heating and cooling cycles, indicating a good thermal stability under temperature fluctuations. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Prospects of real-time ion temperature and rotation profiles based on neural-network charge exchange analysis

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, R W.T.; Von Hellermann, M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Svensson, J [Royal Inst. of Tech., Stockholm (Sweden)

    1994-07-01

    A back-propagation neural network technique is used at JET to extract plasma parameters like ion temperature, rotation velocities or spectral line intensities from charge exchange (CX) spectra. It is shown that in the case of the C VI CX spectra, neural networks can give a good estimation (better than +-20% accuracy) for the main plasma parameters (Ti, V{sub rot}). Since the neural network approach involves no iterations or initial guesses the speed with which a spectrum is processed is so high (0.2 ms/spectrum) that real time analysis will be achieved in the near future. 4 refs., 8 figs.

  12. Prospects of real-time ion temperature and rotation profiles based on neural-network charge exchange analysis

    International Nuclear Information System (INIS)

    Koenig, R.W.T.; Von Hellermann, M.

    1994-01-01

    A back-propagation neural network technique is used at JET to extract plasma parameters like ion temperature, rotation velocities or spectral line intensities from charge exchange (CX) spectra. It is shown that in the case of the C VI CX spectra, neural networks can give a good estimation (better than +-20% accuracy) for the main plasma parameters (Ti, V rot ). Since the neural network approach involves no iterations or initial guesses the speed with which a spectrum is processed is so high (0.2 ms/spectrum) that real time analysis will be achieved in the near future. 4 refs., 8 figs

  13. Analysis of biological tissues by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Bonkova, I.; Bujdos, M.; Miglierini, M.

    2016-01-01

    The aim of this work was to analyze of biological tissues by Moessbauer spectroscopy in terms of demonstration of the magnetic properties of iron and its structural positions. Lyophilized samples of the human brain, human and equine spleen were used for the analysis. The samples were measured with 57 Fe Moessbauer spectroscopy in transmission arrangement at room temperature (∼ 300 K) and at a temperature of liquid helium (4.2 K). The resulting Moessbauer spectra measured at room temperature had doublet character, which confirms the presence of non-magnetic particles. On the contrary, low-temperature measurements are a superposition of several sextet and one duplicate. Hyperfine parameters obtained are similar to those reported hematite, ferrihydrite or magnetite. (authors)

  14. Real-time optoacoustic monitoring of temperature in tissues

    International Nuclear Information System (INIS)

    Larina, Irina V; Larin, Kirill V; Esenaliev, Rinat O

    2005-01-01

    To improve the safety and efficacy of thermal therapy, it is necessary to map tissue temperature in real time with submillimetre spatial resolution. Accurate temperature maps may provide the necessary control of the boundaries of the heated regions and minimize thermal damage to surrounding normal tissues. Current imaging modalities fail to monitor tissue temperature in real time with high resolution and accuracy. We investigated a non-invasive optoacoustic method for accurate, real-time monitoring of tissue temperature during thermotherapy. In this study, we induced temperature gradients in tissue and tissue-like samples and monitored the temperature distribution using the optoacoustic technique. The fundamental harmonic of a Q-switched Nd : YAG laser (λ = 1064 nm) was used for optoacoustic wave generation and probing of tissue temperature. The tissue temperature was also monitored with a multi-sensor temperature probe inserted in the samples. Good agreement between optoacoustically measured and actual tissue temperatures was obtained. The accuracy of temperature monitoring was better than 1 0 C, while the spatial resolution was about 1 mm. These data suggest that the optoacoustic technique has the potential to be used for non-invasive, real-time temperature monitoring during thermotherapy

  15. Microstructural effects on the yield strength and its temperature dependence in a bainitic precipitation hardened Cr-Mo-V steel

    International Nuclear Information System (INIS)

    Toerroenen, K.; Kotilainen, H.; Nenonen, P.

    1980-03-01

    The plastic deformation behaviour of a precipitation hardened bainitic Cr-Mo-V steel is analyzed at ambient and low temperatures. The temperature dependent component of the yield strength is composed of the Peierls-Nabarro force and also partly of the strengthening contribution of the lath- and cell boundaries or the solid solution hardening. The temperature dependence below 230 K is in accordance with the models presented by Yanoshevich and Ryvkina as well as Dorn and Rajnak. The temperature independent component can be calculated merely from the dislocation density, which is stabilized by the vanadium-rich carbides. The linear additivity cannot be used for the superposition of the strengthening effects of various strengthening parameters, By using the phenomenological approach starting from the dislocation movement mechanisms upon yielding the laws for the superposition are discussed. (author)

  16. Sensor response time monitoring using noise analysis

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Thie, J.A.; Upadhyaya, B.R.; Holbert, K.E.

    1988-01-01

    Random noise techniques in nuclear power plants have been developed for system surveillance and for analysis of reactor core dynamics. The noise signals also contain information about sensor dynamics, and this can be extracted using frequency, amplitude and time domain analyses. Even though noise analysis has been used for sensor response time testing in some nuclear power plants, an adequate validation of this method has never been carried out. This paper presents the results of limited work recently performed to examine the validity of the noise analysis for sensor response time testing in nuclear power plants. The conclusion is that noise analysis has the potential for detecting gross changes in sensor response but it cannot be used for reliable measurement of response time until more laboratory and field experience is accumulated. The method is more advantageous for testing pressure sensors than it is for temperature sensors. This is because: 1) for temperature sensors, a method called Loop Current Step Response test is available which is quantitatively more exact than noise analysis, 2) no method currently exists for on-line testing of pressure transmitters other than the Power-Interrupt test which is applicable only to force balance pressure transmitters, and 3) pressure sensor response time is affected by sensing line degradation which is inherently taken into account by testing with noise analysis. (author)

  17. PL-1 program system for generalized Patterson superpositions. [PL1GEN, SYMPL1, and ALSPL1, in PL/1 for IBM 360/65 computer

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, C.R.; Babich, M.W.; Jacobson, R.A.

    1977-01-01

    A new system of three programs written in PL/1 can calculate symmetry and Patterson superposition maps for triclinic, monoclinic, and orthorhombic space groups as well as any space group reducible to one of these three. These programs are based on a system of FORTRAN programs developed at Ames Laboratory, but are more general and have expanded utility, especially with regard to large unit cells. The program PLIGEN calculates a direct access data set, SYMPL1 calculates a direct access symmetry map, and ALSPL1 calculates a superposition map using one or multiple superpositions. A detailed description of the use of these programs including symbolic program listings is included. 2 tables.

  18. Superposition approach for description of electrical conductivity in sheared MWNT/polycarbonate melts

    Directory of Open Access Journals (Sweden)

    M. Saphiannikova

    2012-06-01

    Full Text Available The theoretical description of electrical properties of polymer melts, filled with attractively interacting conductive particles, represents a great challenge. Such filler particles tend to build a network-like structure which is very fragile and can be easily broken in a shear flow with shear rates of about 1 s–1. In this study, measured shear-induced changes in electrical conductivity of polymer composites are described using a superposition approach, in which the filler particles are separated into a highly conductive percolating and low conductive non-percolating phases. The latter is represented by separated well-dispersed filler particles. It is assumed that these phases determine the effective electrical properties of composites through a type of mixing rule involving the phase volume fractions. The conductivity of the percolating phase is described with the help of classical percolation theory, while the conductivity of non-percolating phase is given by the matrix conductivity enhanced by the presence of separate filler particles. The percolation theory is coupled with a kinetic equation for a scalar structural parameter which describes the current state of filler network under particular flow conditions. The superposition approach is applied to transient shear experiments carried out on polycarbonate composites filled with multi-wall carbon nanotubes.

  19. Time temperature indicators as devices intelligent packaging

    Directory of Open Access Journals (Sweden)

    Adriana Pavelková

    2013-01-01

    Full Text Available Food packaging is an important part of food production. Temperature is a one of crucial factor which affecting the quality and safety of food products during distribution, transport and storage. The one way of control of food quality and safety is the application of new packaging systems, which also include the intelligent or smart packaging. Intelligent packaging is a packaging system using different indicators for monitoring the conditions of production, but in particular the conditions during transport and storage. Among these indicators include the time-temperature indicators to monitor changes in temperature, which is exposed the product and to inform consumers about the potential risks associated with consumption of these products. Time temperature indicators are devices that show an irreversible change in a physical characteristic, usually color or shape, in response to temperature history. Some are designed to monitor the evolution of temperature with time along the distribution chain and others are designed to be used in the consumer packages.

  20. The Threshold Temperature and Lag Effects on Daily Excess Mortality in Harbin, China: A Time Series Analysis

    Directory of Open Access Journals (Sweden)

    Hanlu Gao

    2017-04-01

    Full Text Available Background: A large number of studies have reported the relationship between ambient temperature and mortality. However, few studies have focused on the effects of high temperatures on cardio-cerebrovascular diseases mortality (CCVDM and their acute events (ACCVDM. Objective: To assess the threshold temperature and time lag effects on daily excess mortality in Harbin, China. Methods: A generalized additive model (GAM with a Poisson distribution was used to investigate the relative risk of mortality for each 1 °C increase above the threshold temperature and their time lag effects in Harbin, China. Results: High temperature threshold was 26 °C in Harbin. Heat effects were immediate and lasted for 0–6 and 0–4 days for CCVDM and ACCVDM, respectively. The acute cardiovascular disease mortality (ACVDM seemed to be more sensitive to temperature than cardiovascular disease mortality (CVDM with higher death risk and shorter time lag effects. The lag effects lasted longer for cerebrovascular disease mortality (CBDM than CVDM; so did ACBDM compared to ACVDM. Conclusion: Hot temperatures increased CCVDM and ACCVDM in Harbin, China. Public health intervention strategies for hot temperatures adaptation should be concerned.

  1. Time-temperature-sensitization and time-temperature-precipitation behavior of alloy 625

    International Nuclear Information System (INIS)

    Koehler, M.; Heubner, U.

    1996-01-01

    Time-Temperature-Sensitization diagrams have been established for a low-carbon version of alloy 625 (UNS N06625). Sensitization in terms of a 50 microm (2 mils) intergranular penetration criterion starts after about 3 h aging time at 750 C (soft annealed condition) or after less than 1 h aging time at 800 C (solution annealed condition) when tested according to ASTM-G 28 method A. Grain boundary precipitation of carbides occurs during aging of both the soft annealed and the solution annealed material, but the soft annealed material exhibits a more pronounced general precipitation of Ni 3 (Nb,Mo) phase giving rise to more distinct loss of ductility. Sensitization of alloy 625 may be retarded by lowering its iron content

  2. Transient change in the shape of premixed burner flame with the superposition of pulsed dielectric barrier discharge

    Science.gov (United States)

    Zaima, Kazunori; Sasaki, Koichi

    2016-08-01

    We investigated the transient phenomena in a premixed burner flame with the superposition of a pulsed dielectric barrier discharge (DBD). The length of the flame was shortened by the superposition of DBD, indicating the activation of combustion chemical reactions with the help of the plasma. In addition, we observed the modulation of the top position of the unburned gas region and the formations of local minimums in the axial distribution of the optical emission intensity of OH. These experimental results reveal the oscillation of the rates of combustion chemical reactions as a response to the activation by pulsed DBD. The cycle of the oscillation was 0.18-0.2 ms, which could be understood as the eigenfrequency of the plasma-assisted combustion reaction system.

  3. Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Seong W. Lee

    2006-09-30

    The project entitled, ''Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification'', was successfully completed by the Principal Investigator, Dr. S. Lee and his research team in the Center for Advanced Energy Systems and Environmental Control Technologies at Morgan State University. The major results and outcomes were presented in semi-annual progress reports and annual project review meetings/presentations. Specifically, the literature survey including the gasifier temperature measurement, the ultrasonic application in cleaning application, and spray coating process and the gasifier simulator (cold model) testing has been successfully conducted during the first year. The results show that four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. Then the gasifier simulator (hot model) design and the fabrication as well as the systematic tests on hot model were completed to test the significant factors on temperature measurement in the second year. The advanced Industrial analytic methods such as statistics-based experimental design, analysis of variance (ANOVA) and regression methods were applied in the hot model tests. The results show that operational parameters (i.e. air flow rate, water flow rate, fine dust particle amount, ammonia addition) presented significant impact on the temperature measurement inside the gasifier simulator. The experimental design and ANOVA are very efficient way to design and analyze the experiments. The results show that the air flow rate and fine dust particle amount are statistically significant to the temperature measurement. The regression model provided the functional relation between the temperature and these factors with substantial accuracy. In the last year of the project period, the ultrasonic and subsonic cleaning methods and coating

  4. The denoising of Monte Carlo dose distributions using convolution superposition calculations

    International Nuclear Information System (INIS)

    El Naqa, I; Cui, J; Lindsay, P; Olivera, G; Deasy, J O

    2007-01-01

    Monte Carlo (MC) dose calculations can be accurate but are also computationally intensive. In contrast, convolution superposition (CS) offers faster and smoother results but by making approximations. We investigated MC denoising techniques, which use available convolution superposition results and new noise filtering methods to guide and accelerate MC calculations. Two main approaches were developed to combine CS information with MC denoising. In the first approach, the denoising result is iteratively updated by adding the denoised residual difference between the result and the MC image. Multi-scale methods were used (wavelets or contourlets) for denoising the residual. The iterations are initialized by the CS data. In the second approach, we used a frequency splitting technique by quadrature filtering to combine low frequency components derived from MC simulations with high frequency components derived from CS components. The rationale is to take the scattering tails as well as dose levels in the high-dose region from the MC calculations, which presumably more accurately incorporates scatter; high-frequency details are taken from CS calculations. 3D Butterworth filters were used to design the quadrature filters. The methods were demonstrated using anonymized clinical lung and head and neck cases. The MC dose distributions were calculated by the open-source dose planning method MC code with varying noise levels. Our results indicate that the frequency-splitting technique for incorporating CS-guided MC denoising is promising in terms of computational efficiency and noise reduction. (note)

  5. Joint formation of dissimilar steels in pressure welding with superposition of ultrasonic oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Surovtsev, A P; Golovanenko, S A; Sukhanov, V E; Kazantsev, V F

    1983-12-01

    Investigation results of kinetics and quality of carbon steel joints with the steel 12Kh18N10T, obtained by pressure welding with superposition of ultrasonic oscillations with the frequency 16.5-18.0 kHz are given. The effect of ultrasonic oscillations on the process of physical contact development of the surfaces welded, formation of microstructure and impact viscosity of the compound, is shown.

  6. Analysis of temperature data at the Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Sedighi, M.; Bennett, D.; Masum, S.; Thomas, H. [Cardiff Univ. (United Kingdom); Johansson, E. [Saanio and Riekkola Oy, Helsinki (Finland)

    2014-03-15

    As part of the rock mechanics monitoring programme 2012 at Olkiluoto, temperature data have been recorded. Temperature data have been measured, collected and monitored at the Olkiluoto site and in ONKALO in various locations, by different methods and in conjunction with other investigations carried out at the site. This report provides a detailed description of the investigation and analysis carried out on temperature datasets. This report aims to provide a better understanding of the in-situ temperature of the rock and soil at the site. Three categories of datasets have been analysed and studied from the Posiva thermal monitoring programme. These consist of: (i) data collected from the various drillholes during geophysical logging and Posiva Flow Log (PFL) measurements, (ii) measurements in the ONKALO ramp, the investigation niche located at elevation -140 m and a technical room located at 437 m below the surface, and (iii) surface temperature measurements from four weather stations and four measurement ditches. Time-series data obtained from the groundwater temperature measurements during the 'Posiva Flow Log' (PFL) tests in drillholes OL-KR1 to KR55 at different depths and years have been analysed. Temperature at a depth of 400 m was found to be in the range of 10 to 11 deg C. The geothermal gradient obtained from the PFL data without pumping was found to be approximately 1.4 deg C/100m with relatively uniform temporal and spatial patterns at the repository depth, i.e. at 400 m.The geothermal gradient obtained from the results of the PFL measurements and geophysical loggings indicate similar temperature values at the repository depths, i.e. 400 m. The characteristics of the time series data related to the ONKALO measurements, have been obtained through a series of Non-uniform Discrete Fourier Transform analysis Datasets related to the various chainages and investigation niche at ONKALO have been studied. The largest variation in the temperature

  7. Analysis of temperature data at the Olkiluoto

    International Nuclear Information System (INIS)

    Sedighi, M.; Bennett, D.; Masum, S.; Thomas, H.; Johansson, E.

    2014-03-01

    As part of the rock mechanics monitoring programme 2012 at Olkiluoto, temperature data have been recorded. Temperature data have been measured, collected and monitored at the Olkiluoto site and in ONKALO in various locations, by different methods and in conjunction with other investigations carried out at the site. This report provides a detailed description of the investigation and analysis carried out on temperature datasets. This report aims to provide a better understanding of the in-situ temperature of the rock and soil at the site. Three categories of datasets have been analysed and studied from the Posiva thermal monitoring programme. These consist of: (i) data collected from the various drillholes during geophysical logging and Posiva Flow Log (PFL) measurements, (ii) measurements in the ONKALO ramp, the investigation niche located at elevation -140 m and a technical room located at 437 m below the surface, and (iii) surface temperature measurements from four weather stations and four measurement ditches. Time-series data obtained from the groundwater temperature measurements during the 'Posiva Flow Log' (PFL) tests in drillholes OL-KR1 to KR55 at different depths and years have been analysed. Temperature at a depth of 400 m was found to be in the range of 10 to 11 deg C. The geothermal gradient obtained from the PFL data without pumping was found to be approximately 1.4 deg C/100m with relatively uniform temporal and spatial patterns at the repository depth, i.e. at 400 m.The geothermal gradient obtained from the results of the PFL measurements and geophysical loggings indicate similar temperature values at the repository depths, i.e. 400 m. The characteristics of the time series data related to the ONKALO measurements, have been obtained through a series of Non-uniform Discrete Fourier Transform analysis Datasets related to the various chainages and investigation niche at ONKALO have been studied. The largest variation in the temperature amplitude of data

  8. Final Aperture Superposition Technique applied to fast calculation of electron output factors and depth dose curves

    International Nuclear Information System (INIS)

    Faddegon, B.A.; Villarreal-Barajas, J.E.

    2005-01-01

    The Final Aperture Superposition Technique (FAST) is described and applied to accurate, near instantaneous calculation of the relative output factor (ROF) and central axis percentage depth dose curve (PDD) for clinical electron beams used in radiotherapy. FAST is based on precalculation of dose at select points for the two extreme situations of a fully open final aperture and a final aperture with no opening (fully shielded). This technique is different than conventional superposition of dose deposition kernels: The precalculated dose is differential in position of the electron or photon at the downstream surface of the insert. The calculation for a particular aperture (x-ray jaws or MLC, insert in electron applicator) is done with superposition of the precalculated dose data, using the open field data over the open part of the aperture and the fully shielded data over the remainder. The calculation takes explicit account of all interactions in the shielded region of the aperture except the collimator effect: Particles that pass from the open part into the shielded part, or visa versa. For the clinical demonstration, FAST was compared to full Monte Carlo simulation of 10x10,2.5x2.5, and 2x8 cm 2 inserts. Dose was calculated to 0.5% precision in 0.4x0.4x0.2 cm 3 voxels, spaced at 0.2 cm depth intervals along the central axis, using detailed Monte Carlo simulation of the treatment head of a commercial linear accelerator for six different electron beams with energies of 6-21 MeV. Each simulation took several hours on a personal computer with a 1.7 Mhz processor. The calculation for the individual inserts, done with superposition, was completed in under a second on the same PC. Since simulations for the pre calculation are only performed once, higher precision and resolution can be obtained without increasing the calculation time for individual inserts. Fully shielded contributions were largest for small fields and high beam energy, at the surface, reaching a maximum

  9. Quantum-phase dynamics of two-component Bose-Einstein condensates: Collapse-revival of macroscopic superposition states

    International Nuclear Information System (INIS)

    Nakano, Masayoshi; Kishi, Ryohei; Ohta, Suguru; Takahashi, Hideaki; Furukawa, Shin-ichi; Yamaguchi, Kizashi

    2005-01-01

    We investigate the long-time dynamics of two-component dilute gas Bose-Einstein condensates with relatively different two-body interactions and Josephson couplings between the two components. Although in certain parameter regimes the quantum state of the system is known to evolve into macroscopic superposition, i.e., Schroedinger cat state, of two states with relative atom number differences between the two components, the Schroedinger cat state is also found to repeat the collapse and revival behavior in the long-time region. The dynamical behavior of the Pegg-Barnett phase difference between the two components is shown to be closely connected with the dynamics of the relative atom number difference for different parameters. The variation in the relative magnitude between the Josephson coupling and intra- and inter-component two-body interaction difference turns out to significantly change not only the size of the Schroedinger cat state but also its collapse-revival period, i.e., the lifetime of the Schroedinger cat state

  10. Performance of a Predictive Model for Calculating Ascent Time to a Target Temperature

    Directory of Open Access Journals (Sweden)

    Jin Woo Moon

    2016-12-01

    Full Text Available The aim of this study was to develop an artificial neural network (ANN prediction model for controlling building heating systems. This model was used to calculate the ascent time of indoor temperature from the setback period (when a building was not occupied to a target setpoint temperature (when a building was occupied. The calculated ascent time was applied to determine the proper moment to start increasing the temperature from the setback temperature to reach the target temperature at an appropriate time. Three major steps were conducted: (1 model development; (2 model optimization; and (3 performance evaluation. Two software programs—Matrix Laboratory (MATLAB and Transient Systems Simulation (TRNSYS—were used for model development, performance tests, and numerical simulation methods. Correlation analysis between input variables and the output variable of the ANN model revealed that two input variables (current indoor air temperature and temperature difference from the target setpoint temperature, presented relatively strong relationships with the ascent time to the target setpoint temperature. These two variables were used as input neurons. Analyzing the difference between the simulated and predicted values from the ANN model provided the optimal number of hidden neurons (9, hidden layers (3, moment (0.9, and learning rate (0.9. At the study’s conclusion, the optimized model proved its prediction accuracy with acceptable errors.

  11. Managing Perishables with Time and temperature History

    NARCIS (Netherlands)

    Ketzenberg, M.; Bloemhof, J.M.; Gaukler, G.

    2015-01-01

    We address the use and value of time and temperature information to manage perishables in the contextof a retailer that sells a random lifetime product subject to stochastic demand and lost sales. The product’s lifetime is largely determined by the temperature history and the flow time through the

  12. Time-temperature equivalence in Martensite tempering

    Energy Technology Data Exchange (ETDEWEB)

    Hackenberg, Robert E. [Los Alamos National Laboratory; Thomas, Grant A. [CSM; Speer, John G. [CSM; Matlock, David K. [CSM; Krauss, George [CSM

    2008-06-16

    The relationship between time and temperature is of great consequence in many materials-related processes including the tempering of martensite. In 1945, Hollomon and Jaffe quantified the 'degree of tempering' as a function of both tempering time, t, and tempering temperature, T, using the expression, T(log t + c). Here, c is thought to be a material constant and appears to decrease linearly with increasing carbon content. The Hollomon-Jaffe tempering parameter is frequently cited in the literature. This work reviews the original derivation of the tempering parameter concept, and presents the use of the characteristics diffusion distance as an alternative time-temperature relationship during martensite tempering. During the tempering of martensite, interstitial carbon atoms diffuse to form carbides. In addition, austenite decomposes, dislocations and grain boundaries rearrange, associated with iron self diffusion. Since these are all diffusional processes, it is reasonable to expect the degree of tempering to relate to the extent of diffusion.

  13. Effect of temperature and time of pasteurization on the milk quality during storage

    Directory of Open Access Journals (Sweden)

    Abubakar

    2001-03-01

    Full Text Available A study on the effect of temperature and time of pasteurization on the milk quality during storage was carried out using fresh milk. The aim of the experiment was to asses the storage time of pasteurized milk for consumption without nutrient losses. A completely randomized factorial design, 2 x 8 was used, with pasteurization temperature (T, consisted of 2 levels, the low temperature long time (LTLT, i.e. fresh milk was warmed at 65oC for 30 minutes (T1 and the high temperature short time (HTST, i.e. fresh milk was warmed at 71oC for 15 seconds (T2; and storage time (S, consisted of 8 levels, i.e. 0, 3, 6, 9, 12, 15, 18, and 21 hours respectively, as the factors, with 3 replicates. Parameters measured were alcohol test, water, fat, and protein concentrations, and microbial population of pasteurized milk during storage. Data were analyzed using analysis of variance and simple linear regression. The result showed that water and fat concentrations and microbial population was not significantly different (P>0.05 in pasteurization temperature treatment, but was significantly different (P<0.05 due to storage time treatment. Meanwhile, the protein concentration was significantly different (P<0.05 either in pasteurization temperature or storage time. It was concluded that pasteurized milk was still suitable for consumption at 15-21 hours storage, while protein concentration tended to be better when was pasteurized at 65oC.

  14. Low temperature behaviour of elastomers in seals; Tieftemperaturverhalten von Elastomeren im Dichtungseinsatz

    Energy Technology Data Exchange (ETDEWEB)

    Jaunich, Matthias

    2012-04-25

    Elastomeric seals are of high importance as machine parts and construction elements, but in spite of this the low temperature limit for the use of a seal was not fully understood. Hence, the required safety relevant evaluation of the lowest acceptable operating seal temperature is difficult. Therefore the presented work was aimed to understand the temperature dependent material behaviour of representative elastomers and to conclude from this knowledge the low temperature limit down to which such seals could safely fulfil the desired requirements. Starting with the published statement that a seal can safely work below its glass transition temperature the influence of the glass-rubber-transition was investigated. At first the glass-rubber-transition temperatures of the selected elastomers were determined applying several techniques to allow a comparison with the behaviour of the seals during component tests. Furthermore a new method to characterise the low temperature behaviour of elastomers was developed that emulates the key features of the standardised compression set test used for seal materials. In comparison to the standardized test this new method allows a much faster measurement that can be automatically performed. Using a model based data analysis an extrapolation of the results to different temperatures can be performed and therefore the necessary measuring expenditure can be additionally reduced. For the temperature dependent characterisation of the failure process of real seals a measurement setup was designed and the materials behaviour was investigated. By use of the results of all applied characterisation techniques the observed dependence of the failure temperature on the degree of compression could be explained for the investigated seals under static load. Additionally information about the behaviour of such seals under dynamic load could be gained from the time dependent material behaviour by use of the time temperature superposition relationship

  15. Climate Prediction Center (CPC) Global Temperature Time Series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global temperature time series provides time series charts using station based observations of daily temperature. These charts provide information about the...

  16. SHOVAV-JUEL. A one dimensional space-time kinetic code for pebble-bed high-temperature reactors with temperature and Xenon feedback

    International Nuclear Information System (INIS)

    Nabbi, R.; Meister, G.; Finken, R.; Haben, M.

    1982-09-01

    The present report describes the modelling basis and the structure of the neutron kinetics-code SHOVAV-Juel. Information for users is given regarding the application of the code and the generation of the input data. SHOVAV-Juel is a one-dimensional space-time-code based on a multigroup diffusion approach for four energy groups and six groups of delayed neutrons. It has been developed for the analysis of the transient behaviour of high temperature reactors with pebble-bed core. The reactor core is modelled by horizontal segments to which different materials compositions can be assigned. The temperature dependence of the reactivity is taken into account by using temperature dependent neutron cross sections. For the simulation of transients in an extended time range the time dependence of the reactivity absorption by Xenon-135 is taken into account. (orig./RW)

  17. Constructing petal modes from the coherent superposition of Laguerre-Gaussian modes

    Science.gov (United States)

    Naidoo, Darryl; Forbes, Andrew; Ait-Ameur, Kamel; Brunel, Marc

    2011-03-01

    An experimental approach in generating Petal-like transverse modes, which are similar to what is seen in porro-prism resonators, has been successfully demonstrated. We hypothesize that the petal-like structures are generated from a coherent superposition of Laguerre-Gaussian modes of zero radial order and opposite azimuthal order. To verify this hypothesis, visually based comparisons such as petal peak to peak diameter and the angle between adjacent petals are drawn between experimental data and simulated data. The beam quality factor of the Petal-like transverse modes and an inner product interaction is also experimentally compared to numerical results.

  18. Temperature dependence of creep compliance of highly cross-linked epoxy: A molecular simulation study

    International Nuclear Information System (INIS)

    Khabaz, Fardin; Khare, Ketan S.; Khare, Rajesh

    2014-01-01

    We have used molecular dynamics (MD) simulations to study the effect of temperature on the creep compliance of neat cross-linked epoxy. Experimental studies of mechanical behavior of cross-linked epoxy in literature commonly report creep compliance values, whereas molecular simulations of these systems have primarily focused on the Young’s modulus. In this work, in order to obtain a more direct comparison between experiments and simulations, atomistically detailed models of the cross-linked epoxy are used to study their creep compliance as a function of temperature using MD simulations. The creep tests are performed by applying a constant tensile stress and monitoring the resulting strain in the system. Our results show that simulated values of creep compliance increase with an increase in both time and temperature. We believe that such calculations of the creep compliance, along with the use of time temperature superposition, hold great promise in connecting the molecular insight obtained from molecular simulation at small length- and time-scales with the experimental behavior of such materials. To the best of our knowledge, this work is the first reported effort that investigates the creep compliance behavior of cross-linked epoxy using MD simulations

  19. Experimental generation and application of the superposition of higher-order Bessel beams

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2009-07-01

    Full Text Available Academy of Sciences of Belarus 4 School of Physics, University of Stellenbosch Presented at the 2009 South African Institute of Physics Annual Conference University of KwaZulu-Natal Durban, South Africa 6-10 July 2009 Page 2 © CSIR 2008... www.csir.co.za Generation of Bessel Fields: • METHOD 1: Ring Slit Aperture • METHOD 2: Axicon Adaptation of method 1 to produce superpositions of higher-order Bessel beams: J. Durnin, J.J. Miceli and J.H. Eberly, Phys. Rev. Lett. 58 1499...

  20. On-line and real-time diagnosis method for proton membrane fuel cell (PEMFC) stack by the superposition principle

    Science.gov (United States)

    Lee, Young-Hyun; Kim, Jonghyeon; Yoo, Seungyeol

    2016-09-01

    The critical cell voltage drop in a stack can be followed by stack defect. A method of detecting defective cell is the cell voltage monitoring. The other methods are based on the nonlinear frequency response. In this paper, the superposition principle for the diagnosis of PEMFC stack is introduced. If critical cell voltage drops exist, the stack behaves as a nonlinear system. This nonlinearity can explicitly appear in the ohmic overpotential region of a voltage-current curve. To detect the critical cell voltage drop, a stack is excited by two input direct test-currents which have smaller amplitude than an operating stack current and have an equal distance value from the operating current. If the difference between one voltage excited by a test current and the voltage excited by a load current is not equal to the difference between the other voltage response and the voltage excited by the load current, the stack system acts as a nonlinear system. This means that there is a critical cell voltage drop. The deviation from the value zero of the difference reflects the grade of the system nonlinearity. A simulation model for the stack diagnosis is developed based on the SPP, and experimentally validated.

  1. Free volume study on the miscibility of PEEK/PEI blend using positron annihilation and dynamic mechanical thermal analysis

    International Nuclear Information System (INIS)

    Ramani, R; Alam, S

    2015-01-01

    High performance polymer blend of poly(ether ether ketone) (PEEK) and poly(ether imide) (PEI) was examined for their free volume behaviour using positron annihilation lifetime spectroscopy and dynamic mechanical thermal analysis methods. The fractional free volume obtained from PALS shows a negative deviation from linear additivity rule implying good miscibility between PEEK and PEI. The dynamic modulus and loss tangent were obtained for the blends at three different frequencies 1, 10 and 100 Hz at temperatures close to and above their glass transition temperature. Applying Time-Temperature-Superposition (TTS) principle to the DMTA results, master curves were obtained at a reference temperature T o and the WLF coefficients c 0 1 and c 0 2 were evaluated. Both the methods give similar results for the dependence of fractional free volume on PEI content in this blend. The results reveal that free volume plays an important role in determining the visco-elastic properties in miscible polymer blends. (paper)

  2. An operational analysis of Lake Surface Water Temperature

    Directory of Open Access Journals (Sweden)

    Emma K. Fiedler

    2014-07-01

    Full Text Available Operational analyses of Lake Surface Water Temperature (LSWT have many potential uses including improvement of numerical weather prediction (NWP models on regional scales. In November 2011, LSWT was included in the Met Office Operational Sea Surface Temperature and Ice Analysis (OSTIA product, for 248 lakes globally. The OSTIA analysis procedure, which has been optimised for oceans, has also been used for the lakes in this first version of the product. Infra-red satellite observations of lakes and in situ measurements are assimilated. The satellite observations are based on retrievals optimised for Sea Surface Temperature (SST which, although they may introduce inaccuracies into the LSWT data, are currently the only near-real-time information available. The LSWT analysis has a global root mean square difference of 1.31 K and a mean difference of 0.65 K (including a cool skin effect of 0.2 K compared to independent data from the ESA ARC-Lake project for a 3-month period (June to August 2009. It is demonstrated that the OSTIA LSWT is an improvement over the use of climatology to capture the day-to-day variation in global lake surface temperatures.

  3. The effect of loading time on flexible pavement dynamic response: a finite element analysis

    Science.gov (United States)

    Yin, Hao; Solaimanian, Mansour; Kumar, Tanmay; Stoffels, Shelley

    2007-12-01

    Dynamic response of asphalt concrete (AC) pavements under moving load is a key component for accurate prediction of flexible pavement performance. The time and temperature dependency of AC materials calls for utilizing advanced material characterization and mechanistic theories, such as viscoelasticity and stress/strain analysis. In layered elastic analysis, as implemented in the new Mechanistic-Empirical Pavement Design Guide (MEPDG), the time dependency is accounted for by calculating the loading times at different AC layer depths. In this study, the time effect on pavement response was evaluated by means of the concept of “pseudo temperature.” With the pavement temperature measured from instrumented thermocouples, the time and temperature dependency of AC materials was integrated into one single factor, termed “effective temperature.” Via this effective temperature, pavement responses under a transient load were predicted through finite element analysis. In the finite element model, viscoelastic behavior of AC materials was characterized through relaxation moduli, while the layers with unbound granular material were assumed to be in an elastic mode. The analysis was conducted for two different AC mixtures in a simplified flexible pavement structure at two different seasons. Finite element analysis results reveal that the loading time has a more pronounced impact on pavement response in the summer for both asphalt types. The results indicate that for reasonable prediction of dynamic response in flexible pavements, the effect of the depth-dependent loading time on pavement temperature should be considered.

  4. NOTE: The denoising of Monte Carlo dose distributions using convolution superposition calculations

    Science.gov (United States)

    El Naqa, I.; Cui, J.; Lindsay, P.; Olivera, G.; Deasy, J. O.

    2007-09-01

    Monte Carlo (MC) dose calculations can be accurate but are also computationally intensive. In contrast, convolution superposition (CS) offers faster and smoother results but by making approximations. We investigated MC denoising techniques, which use available convolution superposition results and new noise filtering methods to guide and accelerate MC calculations. Two main approaches were developed to combine CS information with MC denoising. In the first approach, the denoising result is iteratively updated by adding the denoised residual difference between the result and the MC image. Multi-scale methods were used (wavelets or contourlets) for denoising the residual. The iterations are initialized by the CS data. In the second approach, we used a frequency splitting technique by quadrature filtering to combine low frequency components derived from MC simulations with high frequency components derived from CS components. The rationale is to take the scattering tails as well as dose levels in the high-dose region from the MC calculations, which presumably more accurately incorporates scatter; high-frequency details are taken from CS calculations. 3D Butterworth filters were used to design the quadrature filters. The methods were demonstrated using anonymized clinical lung and head and neck cases. The MC dose distributions were calculated by the open-source dose planning method MC code with varying noise levels. Our results indicate that the frequency-splitting technique for incorporating CS-guided MC denoising is promising in terms of computational efficiency and noise reduction.

  5. A method to study the characteristics of 3D dose distributions created by superposition of many intensity-modulated beams delivered via a slit aperture with multiple absorbing vanes

    International Nuclear Information System (INIS)

    Webb, S.; Oldham, M.

    1996-01-01

    Highly conformal dose distributions can be created by the superposition of many radiation fields from different directions, each with its intensity spatially modulated by the method known as tomotherapy. At the planning stage, the intensity of radiation of each beam element (or bixel) is determined by working out the effect of superposing the radiation through all bixels with the elemental dose distribution specified as that from a single bixel with all its neighbours closed (the 'independent-vane' (IV) model). However, at treatment-delivery stage, neighbouring bixels may not be closed. Instead the slit beam is delivered with parts of the beam closed for different periods of time to create the intensity modulation. As a result, the 3D dose distribution actually delivered will differ from that determined at the planning stage if the elemental beams do not obey the superposition principle. The purpose of this paper is to present a method to investigate and quantify the relation between planned and delivered 3D dose distributions. Two modes of inverse planning have been performed: (i) with a fit to the measured elemental dose distribution and (ii) with a 'stretched fit' obeying the superposition principle as in the PEACOCK 3D planning system. The actual delivery has been modelled as a series of component deliveries (CDs). The algorithm for determining the component intensities and the appropriate collimation conditions is specified. The elemental beam from the NOMOS MIMiC collimator is too narrow to obey the superposition principle although it can be 'stretched' and fitted to a superposition function. Hence there are differences between the IV plans made using modes (i) and (ii) and the raw and the stretched elemental beam, and also differences with CD delivery. This study shows that the differences between IV and CD dose distributions are smaller for mode (ii) inverse planning than for mode (i), somewhat justifying the way planning is done within PEACOCK. Using a

  6. Temperature and curing time affect composite sorption and solubility

    Directory of Open Access Journals (Sweden)

    Fabrício Luscino Alves de Castro

    2013-04-01

    Full Text Available Objective: This study evaluated the effect of temperature and curing time on composite sorption and solubility. Material and Methods: Seventy five specimens (8×2 mm were prepared using a commercial composite resin (ICE, SDI. Three temperatures (10°C, 25°C and 60°C and five curing times (5 s, 10 s, 20 s, 40 s and 60 s were evaluated. The specimens were weighed on an analytical balance three times: A: before storage (M1; B: 7 days after storage (M2; C: 7 days after storage plus 1 day of drying (M3. The storage solution consisted of 75% alcohol/25% water. Sorption and solubility were calculated using these three weights and specimen dimensions. The data were analyzed using the Kruskal-Wallis and Mann-Whitney U Tests (α=5%. Results: The results showed that time, temperature and their interaction influenced the sorption and solubility of the composite (p0.05. The 60°C composite temperature led to lower values of sorption for all curing times when compared with the 10°C temperature (p0.05. Solubility was similar at 40 s and 60 s for all temperatures (p>0.05, but was higher at 10°C than at 60°C for all curing times (p0.05. Conclusions: In conclusion, higher temperatures or longer curing times led to lower sorption and solubility values for the composite tested; however, this trend was only significant in specific combinations of temperature and curing times.

  7. Teleportation of a Coherent Superposition State Via a nonmaximally Entangled Coherent Xhannel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ We investigate the problemm of teleportation of a superposition coherent state with nonmaximally entangled coherent channel. Two strategies are considered to complete the task. The first one uses entanglement concentration to purify the channel to a maximally entangled one. The second one teleports the state through the nonmaximally entangled coherent channel directly. We find that the probabilities of successful teleportations for the two strategies are depend on the amplitudes of the coherent states and the mean fidelity of teleportation using the first strategy is always less than that of the second strategy.

  8. An Analysis of Dynamic Instability on TC-Like Vortex Using the Regularization-Based Eigenmode Linear Superposition Method

    Directory of Open Access Journals (Sweden)

    Shuang Liu

    2018-01-01

    Full Text Available In this paper, the eigenmode linear superposition (ELS method based on the regularization is used to discuss the distributions of all eigenmodes and the role of their instability to the intensity and structure change in TC-like vortex. Results show that the regularization approach can overcome the ill-posed problem occurring in solving mode weight coefficients as the ELS method are applied to analyze the impacts of dynamic instability on the intensity and structure change of TC-like vortex. The Generalized Cross-validation (GCV method and the L curve method are used to determine the regularization parameters, and the results of the two approaches are compared. It is found that the results based on the GCV method are closer to the given initial condition in the solution of the inverse problem of the vortex system. Then, the instability characteristic of the hollow vortex as the basic state are examined based on the linear barotropic shallow water equations. It is shown that the wavenumber distribution of system instability obtained from the ELS method is well consistent with that of the numerical analysis based on the norm mode. On the other hand, the evolution of the hollow vortex are discussed using the product of each eigenmode and its corresponding weight coefficient. Results show that the intensity and structure change of the system are mainly affected by the dynamic instability in the early stage of disturbance development, and the most unstable mode has a dominant role in the growth rate and the horizontal distribution of intense disturbance in the near-core region. Moreover, the wave structure of the most unstable mode possesses typical characteristics of mixed vortex Rossby-inertio-gravity waves (VRIGWs.

  9. Elevated temperature inelastic analysis of metallic media under time varying loads using state variable theories

    International Nuclear Information System (INIS)

    Kumar, V.; Mukherjee, S.

    1977-01-01

    In the present paper a general time-dependent inelastic analysis procedure for three-dimensional bodies subjected to arbitrary time varying mechanical and thermal loads using these state variable theories is presented. For the purpose of illustrations, the problems of hollow spheres, cylinders and solid circular shafts subjected to various combinations of internal and external pressures, axial force (or constraint) and torque are analyzed using the proposed solution procedure. Various cyclic thermal and mechanical loading histories with rectangular or sawtooth type waves with or without hold-time are considered. Numerical results for these geometrical shapes for various such loading histories are presented using Hart's theory (Journal of Engineering Materials and Technology 1976). The calculations are performed for nickel in the temperature range of 25 0 C to 400 0 C. For integrating forward in time, a method of solving a stiff system of ordinary differential equations is employed which corrects the step size and order of the method automatically. The limit loads for hollow spheres and cylinders are calculated using the proposed method and Hart's theory, and comparisons are made against the known theoretical results. The numerical results for other loading histories are discussed in the context of Hart's state variable type constitutive relations. The significance of phenomena such as strain rate sensitivity, Bauschinger's effect, crep recovery, history dependence and material softening with regard to these multiaxial problems are discussed in the context of Hart's theory

  10. Entanglement and discord of the superposition of Greenberger-Horne-Zeilinger states

    International Nuclear Information System (INIS)

    Parashar, Preeti; Rana, Swapan

    2011-01-01

    We calculate the analytic expression for geometric measure of entanglement for arbitrary superposition of two N-qubit canonical orthonormal Greenberger-Horne-Zeilinger (GHZ) states and the same for two W states. In the course of characterizing all kinds of nonclassical correlations, an explicit formula for quantum discord (via relative entropy) for the former class of states has been presented. Contrary to the GHZ state, the closest separable state to the W state is not classical. Therefore, in this case, the discord is different from the relative entropy of entanglement. We conjecture that the discord for the N-qubit W state is log 2 N.

  11. Green function as an integral superposition of Gaussian beams in inhomogeneous anisotropic layered structures in Cartesian coordinates

    Czech Academy of Sciences Publication Activity Database

    Červený, V.; Pšenčík, Ivan

    2016-01-01

    Roč. 26 (2016), s. 131-153 ISSN 2336-3827 R&D Projects: GA ČR(CZ) GA16-05237S Institutional support: RVO:67985530 Keywords : elastodynamic Green function * inhomogeneous anisotropic media * integral superposition of Gaussian beams Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  12. Multi-Scale Entropy Analysis as a Method for Time-Series Analysis of Climate Data

    Directory of Open Access Journals (Sweden)

    Heiko Balzter

    2015-03-01

    Full Text Available Evidence is mounting that the temporal dynamics of the climate system are changing at the same time as the average global temperature is increasing due to multiple climate forcings. A large number of extreme weather events such as prolonged cold spells, heatwaves, droughts and floods have been recorded around the world in the past 10 years. Such changes in the temporal scaling behaviour of climate time-series data can be difficult to detect. While there are easy and direct ways of analysing climate data by calculating the means and variances for different levels of temporal aggregation, these methods can miss more subtle changes in their dynamics. This paper describes multi-scale entropy (MSE analysis as a tool to study climate time-series data and to identify temporal scales of variability and their change over time in climate time-series. MSE estimates the sample entropy of the time-series after coarse-graining at different temporal scales. An application of MSE to Central European, variance-adjusted, mean monthly air temperature anomalies (CRUTEM4v is provided. The results show that the temporal scales of the current climate (1960–2014 are different from the long-term average (1850–1960. For temporal scale factors longer than 12 months, the sample entropy increased markedly compared to the long-term record. Such an increase can be explained by systems theory with greater complexity in the regional temperature data. From 1961 the patterns of monthly air temperatures are less regular at time-scales greater than 12 months than in the earlier time period. This finding suggests that, at these inter-annual time scales, the temperature variability has become less predictable than in the past. It is possible that climate system feedbacks are expressed in altered temporal scales of the European temperature time-series data. A comparison with the variance and Shannon entropy shows that MSE analysis can provide additional information on the

  13. The association of season and temperature with adverse pregnancy outcome in two German states, a time-series analysis.

    Directory of Open Access Journals (Sweden)

    Jennyfer Wolf

    Full Text Available A seasonality of low birth weight (LBW and preterm birth (PTB has been described for most regions and there is evidence that this pattern is caused by ambient outdoor temperature. However, the association as such, the direction of effect and the critical time of exposure remain controversial.Logistic, time-series regression was performed on nearly 300,000 births from two German states to study the association between season and daily mean temperature and changes in daily proportions of term LBW (tLBW or PTB. Analyses were adjusted for time-varying factors. Temperature exposures were examined during different periods of pregnancy.Weak evidence for an association between season of conception, season of birth or ambient outdoor temperature and tLBW or PTB was found. Results of analyses of temperature were not consistent between the two states. Different sources of bias which would have artificially led to stronger findings were detected and are described.No clear evidence for an association between season of conception, season of birth or temperature and tLBW or PTB was found. In the study of pregnancy outcome different sources of bias can be identified which can potentially explain heterogeneous findings of the past.

  14. Spatial-temporal analysis of building surface temperatures in Hung Hom

    Science.gov (United States)

    Zeng, Ying; Shen, Yueqian

    2015-12-01

    This thesis presents a study on spatial-temporal analysis of building surface temperatures in Hung Hom. Observations were collected from Aug 2013 to Oct 2013 at a 30-min interval, using iButton sensors (N=20) covering twelve locations in Hung Hom. And thermal images were captured in PolyU from 05 Aug 2013 to 06 Aug 2013. A linear regression model of iButton and thermal records is established to calibrate temperature data. A 3D modeling system is developed based on Visual Studio 2010 development platform, using ArcEngine10.0 component, Microsoft Access 2010 database and C# programming language. The system realizes processing data, spatial analysis, compound query and 3D face temperature rendering and so on. After statistical analyses, building face azimuths are found to have a statistically significant relationship with sun azimuths at peak time. And seasonal building temperature changing also corresponds to the sun angle and sun azimuth variations. Building materials are found to have a significant effect on building surface temperatures. Buildings with lower albedo materials tend to have higher temperatures and larger thermal conductivity material have significant diurnal variations. For the geographical locations, the peripheral faces of campus have higher temperatures than the inner faces during day time and buildings located at the southeast are cooler than the western. Furthermore, human activity is found to have a strong relationship with building surface temperatures through weekday and weekend comparison.

  15. Time-dependent analysis of visible helium line-ratios for electron temperature and density diagnostic using synthetic simulations on NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz Burgos, J. M., E-mail: jmunozbu@pppl.gov; Stutman, D.; Tritz, K. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Barbui, T.; Schmitz, O. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-11-15

    Helium line-ratios for electron temperature (T{sub e}) and density (n{sub e}) plasma diagnostic in the Scrape-Off-Layer (SOL) and edge regions of tokamaks are widely used. Due to their intensities and proximity of wavelengths, the singlet, 667.8 and 728.1 nm, and triplet, 706.5 nm, visible lines have been typically preferred. Time-dependency of the triplet line (706.5 nm) has been previously analyzed in detail by including transient effects on line-ratios during gas-puff diagnostic applications. In this work, several line-ratio combinations within each of the two spin systems are analyzed with the purpose of eliminating transient effects to extend the application of this powerful diagnostic to high temporal resolution characterization of plasmas. The analysis is done using synthetic emission modeling and diagnostic for low electron density NSTX SOL plasma conditions by several visible lines. Quasi-static equilibrium and time-dependent models are employed to evaluate transient effects of the atomic population levels that may affect the derived electron temperatures and densities as the helium gas-puff penetrates the plasma. The analysis of a wider range of spectral lines will help to extend this powerful diagnostic to experiments where the wavelength range of the measured spectra may be constrained either by limitations of the spectrometer or by other conflicting lines from different ions.

  16. Quantum tele-amplification with a continuous-variable superposition state

    DEFF Research Database (Denmark)

    Neergaard-Nielsen, Jonas S.; Eto, Yujiro; Lee, Chang-Woo

    2013-01-01

    -enhanced functions such as coherent-state quantum computing (CSQC), quantum metrology and a quantum repeater could be realized in the networks. Optical cat states are now routinely generated in laboratories. An important next challenge is to use them for implementing the aforementioned functions. Here, we......Optical coherent states are classical light fields with high purity, and are essential carriers of information in optical networks. If these states could be controlled in the quantum regime, allowing for their quantum superposition (referred to as a Schrödinger-cat state), then novel quantum...... demonstrate a basic CSQC protocol, where a cat state is used as an entanglement resource for teleporting a coherent state with an amplitude gain. We also show how this can be extended to a loss-tolerant quantum relay of multi-ary phase-shift keyed coherent states. These protocols could be useful in both...

  17. Equivalent network for resistance and temperature coefficient of resistance versus temperature and composition of thick resistive films

    International Nuclear Information System (INIS)

    Kusy, A.

    1987-01-01

    Two types of elementary resistances in thick resistive films have been considered: (i) constriction resistance R/sub C/ determined by the bulk properties of conducting material and by the geometry of constriction, and (ii) barrier resistance R/sub B/ determined by the parameters of a thermally activated type of tunneling process and by the geometry of the metal-insulator-metal unit. On this basis a resistance network composed of a large number of the two types of resistances has been defined. The network has been considered as being equivalent to thick resistive film (TRF) from the point of view of the resistance and temperature coefficient of resistance (TCR). The parameters of this network have been evaluated by the computer-aided approximation of the experimental data found for RuO 2 -based TRFs. On the basis of the equations derived for the network as well as the results of the approximation process, it can be concluded that the small values of the network TCR result from the superposition of the TCR of the conducting component β/sub C/ and of the temperature coefficient of barrier resistance α/sub B/. In this superposition β/sub C/ is attenuated (by 1--2 orders of magnitude), while α/sub B/ is attenuated by only few percentages. The network has been found to be strongly barrier dominated

  18. Multiparticle quantum superposition and stimulated entanglement by parity selective amplification of entangled states

    International Nuclear Information System (INIS)

    Martini, F. de; Giuseppe, G. di

    2001-01-01

    A multiparticle quantum superposition state has been generated by a novel phase-selective parametric amplifier of an entangled two-photon state. This realization is expected to open a new field of investigations on the persistence of the validity of the standard quantum theory for systems of increasing complexity, in a quasi decoherence-free environment. Because of its nonlocal structure the new system is expected to play a relevant role in the modern endeavor on quantum information and in the basic physics of entanglement. (orig.)

  19. Temperature field due to time-dependent heat sources in a large rectangular grid. Application for the KBS-3 repository

    International Nuclear Information System (INIS)

    Probert, T.; Claesson, Johan

    1997-04-01

    In the KBS-3 concept canisters containing nuclear waste are deposited along parallel tunnels over a large rectangular area deep below the ground surface. The temperature field in rock due to such a rectangular grid of heat-releasing canisters is studied. An analytical solution for this problem for any heat source has been presented in a preceding paper. The complete solution is summarized in this paper. The solution is by superposition divided into two main parts. There is a global temperature field due to the large rectangular canister area, while a local field accounts for the remaining heat source problem. In this sequel to the first report, the local solution is discussed in detail. The local solution consists of three parts corresponding to line heat sources along tunnels, point heat sources along a tunnel and a line heat source along a canister. Each part depends on two special variables only. These parts are illustrated in dimensionless form. Inside the repository the local temperature field is periodic in the horizontal directions and has a short extent in the vertical direction. This allows us to look at the solution in a parallelepiped around a canister. The solution in the parallelepiped is valid for all canisters that are not too close to the repository edges. The total temperature field is calculated for the KBS-3 case. The temperature field is calculated using a heat release that is valid for the first 10 000 years after deposition. The temperature field is shown in 23 figures in order to illustrate different aspects of the complex thermal process

  20. Effects of temperature on bleeding time and clotting time in normal male and female volunteers.

    Science.gov (United States)

    Valeri, C R; MacGregor, H; Cassidy, G; Tinney, R; Pompei, F

    1995-04-01

    This study was done to assess the effects of temperature on bleeding time and clotting time in normal male and female volunteers. Open study utilizing normal volunteers. University research laboratory. Fifty-four healthy male and female volunteers, ranging in age from 19 to 35 yrs, who were not receiving medications. The study was done and the samples of venous blood and shed blood collected at the template bleeding time site were obtained at a convenient time for each volunteer. Skin temperature was changed from +20 degrees to +38 degrees C and blood samples were obtained from the antecubital vein of each volunteer. The effect of local skin temperature ranging from +20 degrees to +38 degrees C on bleeding time was evaluated in 38 normal volunteers (19 male and 19 female). Skin temperature was maintained at +20 degrees to +38 degrees C by cooling or warming the forearm. At each temperature, measurements were made of complete blood count, bleeding time, and thromboxane B2 concentrations in shed blood collected at the template bleeding time site and in serum and plasma isolated from blood collected from the antecubital vein. Clotting time studies were measured in 16 normal volunteers (eight male and eight female) at temperatures ranging from +22 degrees to +37 degrees C. At +32 degrees C, the bleeding time was longer and hematocrit was lower in female than in male volunteers. However, at local skin temperatures of < +32 degrees C, both the males and females exhibited significantly increased bleeding times, which were associated with a reduction in shed blood thromboxane B2. Each 1 degree C decrease in temperature was associated with a 15% decrease in the shed blood thromboxane B2 concentration. Clotting times were three times longer at +22 degrees C than at +37 degrees C. Each 1 degree C reduction in the temperature of the clotted blood was associated with a 15% reduction in the serum thromboxane B2 concentration. Our data indicate that during surgical procedures, it

  1. Classicalization times of parametrically amplified 'Schroedinger cat' states coupled to phase-sensitive reservoirs

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Valverde, C.; Souza, L.S.; Baseia, B.

    2011-01-01

    The exact Wigner function of a parametrically excited quantum oscillator in a phase-sensitive amplifying/attenuating reservoir is found for initial even/odd coherent states. Studying the evolution of negativity of the Wigner function we show the difference between the 'initial positivization time' (IPT), which is inversely proportional to the square of the initial size of the superposition, and the 'final positivization time' (FPT), which does not depend on this size. Both these times can be made arbitrarily long in maximally squeezed high-temperature reservoirs. Besides, we find the conditions when some (small) squeezing can exist even after the Wigner function becomes totally positive. -- Highlights: → We study parametric excitation of a quantum oscillator in phase-sensitive baths. → Exact time-dependent Wigner function for initial even/odd coherent states is found. → The evolution of negativity of Wigner function is compared with the squeezing dynamics. → The difference between initial and final 'classicalization times' is emphasized. → Both these times can be arbitrarily long for rigged reservoirs at infinite temperature.

  2. Automatic CT-based finite element model generation for temperature-based death time estimation: feasibility study and sensitivity analysis.

    Science.gov (United States)

    Schenkl, Sebastian; Muggenthaler, Holger; Hubig, Michael; Erdmann, Bodo; Weiser, Martin; Zachow, Stefan; Heinrich, Andreas; Güttler, Felix Victor; Teichgräber, Ulf; Mall, Gita

    2017-05-01

    Temperature-based death time estimation is based either on simple phenomenological models of corpse cooling or on detailed physical heat transfer models. The latter are much more complex but allow a higher accuracy of death time estimation, as in principle, all relevant cooling mechanisms can be taken into account.Here, a complete workflow for finite element-based cooling simulation is presented. The following steps are demonstrated on a CT phantom: Computer tomography (CT) scan Segmentation of the CT images for thermodynamically relevant features of individual geometries and compilation in a geometric computer-aided design (CAD) model Conversion of the segmentation result into a finite element (FE) simulation model Computation of the model cooling curve (MOD) Calculation of the cooling time (CTE) For the first time in FE-based cooling time estimation, the steps from the CT image over segmentation to FE model generation are performed semi-automatically. The cooling time calculation results are compared to cooling measurements performed on the phantoms under controlled conditions. In this context, the method is validated using a CT phantom. Some of the phantoms' thermodynamic material parameters had to be determined via independent experiments.Moreover, the impact of geometry and material parameter uncertainties on the estimated cooling time is investigated by a sensitivity analysis.

  3. Determination of the Nonlinearity Parameter in the TNM Model of Structural Recovery

    Science.gov (United States)

    Bari, Rozana; Simon, Sindee

    Structural recovery of non-equilibrium glassy materials takes place by evolution of volume and enthalpy as the glass attempts to reach to equilibrium. Structural recovery is nonlinear, nonexponential, and depends on thermal history and the process can be described by phenomenological models of structural recovery, such as the Tool-Narayanaswamy-Moynihan (TNM) and the Kovacs-Aklonis-Hutchinson-Ramos (KAHR) models. The goal of the present work is to analyze methods to determine the nonlinearity parameter x and activation energy Δh/R. The methods to determine x includes the inflectional analysis, time-temperature superposition, and two-step temperature jump methods. The activation energy Δh/R can also be obtained by the first two methods. The TNM model is used to simulate structural recovery data, which are then used to test the accuracy of the methods to determine x and Δh/R, with a particular interest in data obtained after cooling at high rates as can be obtained in the Flash DSC. The nonlinearity parameter x by the inflectional analysis and two-step temperature methods are accurate for exponential recovery. However, for real systems with nonexponential relaxation, methods to determine x are not reliable. The activation energy is well estimated by both the time-temperature superposition and inflectional analysis methods, with the former being slightly better.

  4. Coherent population transfer and superposition of atomic states via stimulated Raman adiabatic passage using an excited-doublet four-level atom

    International Nuclear Information System (INIS)

    Jin Shiqi; Gong Shangqing; Li Ruxin; Xu Zhizhan

    2004-01-01

    Coherent population transfer and superposition of atomic states via a technique of stimulated Raman adiabatic passage in an excited-doublet four-level atomic system have been analyzed. It is shown that the behavior of adiabatic passage in this system depends crucially on the detunings between the laser frequencies and the corresponding atomic transition frequencies. Particularly, if both the fields are tuned to the center of the two upper levels, the four-level system has two degenerate dark states, although one of them contains the contribution from the excited atomic states. The nonadiabatic coupling of the two degenerate dark states is intrinsic, it originates from the energy difference of the two upper levels. An arbitrary superposition of atomic states can be prepared due to such nonadiabatic coupling effect

  5. Time-resolving electron temperature diagnostic for ALCATOR C

    International Nuclear Information System (INIS)

    Fairfax, S.A.

    1984-05-01

    A diagnostic that provides time-resolved central electron temperatures has been designed, built, and tested on the ALCATOR C Tokamak. The diagnostic uses an array of fixed-wavelength x-ray crystal monochromators to sample the x-ray continuum and determine the absolute electron temperature. The resolution and central energy of each channel were chosen to exclude any contributions from impurity line radiation. This document describes the need for such a diagnostic, the design methodology, and the results with typical ALCATOR C plasmas. Sawtooth (m = 1) temperature oscillations were observed after pellet fueling of the plasma. This is the first time that such oscillations have been observed with an x-ray temperature diagnostic

  6. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring.

    Science.gov (United States)

    Reilly, John; Glisic, Branko

    2018-03-01

    Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature-deformation-displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.

  7. Effect of ageing time and temperature on corrosion behaviour of aluminum alloy 2014

    Science.gov (United States)

    Gadpale, Vikas; Banjare, Pragya N.; Manoj, Manoranjan Kumar

    2018-03-01

    In this paper, the effect of corrosion behaviour of aluminium alloy 2014 were studied by potentiodynamic polarization in 1 mole of NaCl solution of aged sample. The experimental testing results concluded that, corrosion resistance of Aluminum alloy 2014 degraded with the increasing the temperature (150°C & 200°C) and time of ageing. Corroded surface of the aged specimens was tested under optical microscopes for microstructures for phase analysis. Optical micrographs of corroded surfaces showed general corrosion and pitting corrosion. The corrosion resistance of lower ageing temperature and lower ageing time is higher because of its fine distribution of precipitates in matrix phase.

  8. Stability analysis of implicit time discretizations for the Compton-scattering Fokker-Planck equation

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Warsa, James S.; Lowrie, Robert B.; Morel, Jim E.

    2009-01-01

    The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.

  9. Stability analysis of implicit time discretizations for the Compton-scattering Fokker-Planck equation

    Energy Technology Data Exchange (ETDEWEB)

    Densmore, Jeffery D [Los Alamos National Laboratory; Warsa, James S [Los Alamos National Laboratory; Lowrie, Robert B [Los Alamos National Laboratory; Morel, Jim E [TEXAS A& M UNIV

    2008-01-01

    The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.

  10. Stability analysis of implicit time discretizations for the Compton-scattering Fokker-Planck equation

    Science.gov (United States)

    Densmore, Jeffery D.; Warsa, James S.; Lowrie, Robert B.; Morel, Jim E.

    2009-09-01

    The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.

  11. European summer temperatures since Roman times

    International Nuclear Information System (INIS)

    Luterbacher, J; Werner, J P; Smerdon, J E; Fernández-Donado, L; González-Rouco, F J; Barriopedro, D; Ljungqvist, F C; Büntgen, U; Frank, D; Zorita, E; Wagner, S; Esper, J; McCarroll, D; Toreti, A; Jungclaus, J H; Bothe, O; Barriendos, M; Bertolin, C; Camuffo, D; Brázdil, R

    2016-01-01

    The spatial context is critical when assessing present-day climate anomalies, attributing them to potential forcings and making statements regarding their frequency and severity in a long-term perspective. Recent international initiatives have expanded the number of high-quality proxy-records and developed new statistical reconstruction methods. These advances allow more rigorous regional past temperature reconstructions and, in turn, the possibility of evaluating climate models on policy-relevant, spatio-temporal scales. Here we provide a new proxy-based, annually-resolved, spatial reconstruction of the European summer (June–August) temperature fields back to 755 CE based on Bayesian hierarchical modelling (BHM), together with estimates of the European mean temperature variation since 138 BCE based on BHM and composite-plus-scaling (CPS). Our reconstructions compare well with independent instrumental and proxy-based temperature estimates, but suggest a larger amplitude in summer temperature variability than previously reported. Both CPS and BHM reconstructions indicate that the mean 20th century European summer temperature was not significantly different from some earlier centuries, including the 1st, 2nd, 8th and 10th centuries CE. The 1st century (in BHM also the 10th century) may even have been slightly warmer than the 20th century, but the difference is not statistically significant. Comparing each 50 yr period with the 1951–2000 period reveals a similar pattern. Recent summers, however, have been unusually warm in the context of the last two millennia and there are no 30 yr periods in either reconstruction that exceed the mean average European summer temperature of the last 3 decades (1986–2015 CE). A comparison with an ensemble of climate model simulations suggests that the reconstructed European summer temperature variability over the period 850–2000 CE reflects changes in both internal variability and external forcing on multi-decadal time

  12. Statistical properties and time-frequency analysis of temperature, salinity and turbidity measured by the MAREL Carnot station in the coastal waters of Boulogne-sur-Mer (France)

    Science.gov (United States)

    Kbaier Ben Ismail, Dhouha; Lazure, Pascal; Puillat, Ingrid

    2016-10-01

    In marine sciences, many fields display high variability over a large range of spatial and temporal scales, from seconds to thousands of years. The longer recorded time series, with an increasing sampling frequency, in this field are often nonlinear, nonstationary, multiscale and noisy. Their analysis faces new challenges and thus requires the implementation of adequate and specific methods. The objective of this paper is to highlight time series analysis methods already applied in econometrics, signal processing, health, etc. to the environmental marine domain, assess advantages and inconvenients and compare classical techniques with more recent ones. Temperature, turbidity and salinity are important quantities for ecosystem studies. The authors here consider the fluctuations of sea level, salinity, turbidity and temperature recorded from the MAREL Carnot system of Boulogne-sur-Mer (France), which is a moored buoy equipped with physico-chemical measuring devices, working in continuous and autonomous conditions. In order to perform adequate statistical and spectral analyses, it is necessary to know the nature of the considered time series. For this purpose, the stationarity of the series and the occurrence of unit-root are addressed with the Augmented-Dickey Fuller tests. As an example, the harmonic analysis is not relevant for temperature, turbidity and salinity due to the nonstationary condition, except for the nearly stationary sea level datasets. In order to consider the dominant frequencies associated to the dynamics, the large number of data provided by the sensors should enable the estimation of Fourier spectral analysis. Different power spectra show a complex variability and reveal an influence of environmental factors such as tides. However, the previous classical spectral analysis, namely the Blackman-Tukey method, requires not only linear and stationary data but also evenly-spaced data. Interpolating the time series introduces numerous artifacts to the

  13. Multimodality 3D Superposition and Automated Whole Brain Tractography: Comprehensive Printing of the Functional Brain.

    Science.gov (United States)

    Konakondla, Sanjay; Brimley, Cameron J; Sublett, Jesna Mathew; Stefanowicz, Edward; Flora, Sarah; Mongelluzzo, Gino; Schirmer, Clemens M

    2017-09-29

    Whole brain tractography using diffusion tensor imaging (DTI) sequences can be used to map cerebral connectivity; however, this can be time-consuming due to the manual component of image manipulation required, calling for the need for a standardized, automated, and accurate fiber tracking protocol with automatic whole brain tractography (AWBT). Interpreting conventional two-dimensional (2D) images, such as computed tomography (CT) and magnetic resonance imaging (MRI), as an intraoperative three-dimensional (3D) environment is a difficult task with recognized inter-operator variability. Three-dimensional printing in neurosurgery has gained significant traction in the past decade, and as software, equipment, and practices become more refined, trainee education, surgical skills, research endeavors, innovation, patient education, and outcomes via valued care is projected to improve. We describe a novel multimodality 3D superposition (MMTS) technique, which fuses multiple imaging sequences alongside cerebral tractography into one patient-specific 3D printed model. Inferences on cost and improved outcomes fueled by encouraging patient engagement are explored.

  14. Graphical analysis of processes with multiple activation energies

    International Nuclear Information System (INIS)

    Lachter, J.; Bragg, R.H.; Close, E.

    1986-01-01

    The activation energies characterizing a kinetic process are derived from the slopes of the Arrhenius diagrams obtained by plotting rate constants versus reciprocal temperature. Those rate constants correspond to the shifts along the time axis needed to superpose the successive isotherms. A general method based on Chebyshev interpolation is proposed for the optimization of the superposition of the experimental data points. This method is applied to determine the activation energies of the graphitization kinetics of the interlayer spacings of pitch coke and pyrocarbon samples

  15. Temperature and time variations during osteotomies performed with different piezosurgical devices: an in vitro study.

    Science.gov (United States)

    Delgado-Ruiz, R A; Sacks, D; Palermo, A; Calvo-Guirado, J L; Perez-Albacete, C; Romanos, G E

    2016-09-01

    The aim of this experimental in vitro study was to evaluate the effects of the piezoelectric device in temperature and time variations in standardized osteotomies performed with similar tip inserts in bovine bone blocks. Two different piezosurgical devices were used the OE-F15(®) (Osada Inc., Los Angeles, California, USA) and the Surgybone(®) (Silfradent Inc., Sofia, Forli Cesena, Italy). Serrated inserts with similar geometry were coupled with each device (ST94 insert/test A and P0700 insert/test B). Osteotomies 10 mm long and 3 mm deep were performed in bone blocks resembling type II (dense) and type IV (soft) bone densities with and without irrigation. Thermal changes and time variations were recorded. The effects of bone density, irrigation, and device on temperature changes and time necessary to accomplish the osteotomies were analyzed. Thermal analysis showed significant higher temperatures during piezosurgery osteotomies in hard bone without irrigation (P  0.05). Time analysis showed that the mean time values necessary to perform osteotomies were shorter in soft bone than in dense bone (P piezosurgery osteotomies in dense bone without irrigation; the time to perform the osteotomy with piezosurgery is shorter in soft bone compared to hard bone; and the piezosurgical device have a minimal influence in the temperature and time variations when a similar tip design is used during piezosurgery osteotomies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Analysis of Hydroperoxides in Solid Polyethylene by MAS (13)C NMR and EPR

    International Nuclear Information System (INIS)

    ASSINK, ROGER A.; CELINA, MATHIAS C.; DUNBAR, TIMOTHY D.; ALAM, TODD M.; CLOUGH, ROGER LEE; GILLEN, KENNETH T.

    1999-01-01

    13 C-enriched polyethylene was subjected to γ-irradiation in the presence of air at 25 and 80 C for total doses ranging from 71 to 355 kGy. Significant quantities of hydroperoxides were detected in the 25 C irradiated sample by 13 C magic angle spinning NMR spectroscopy. This method of detection was performed on the solid polymer and required no chemical derivatization or addition of solvent. The chemical stability and subsequent products of the hydroperoxide species were studied by annealing the irradiated samples in air at temperatures ranging from 22 to 110 C. A time-temperature superposition analysis provided an activation energy of 108 kJ/mol for the hydroperoxide decomposition process. The primary products of hydroperoxide decomposition were ketones and secondary alcohols with lesser amounts of acids and esters. EPR measurements suggest that the reactive hydroperoxide species reside in the amorphous phase of polyethylene, consistent with degradation occurring in the amorphous phase

  17. Classification of high-resolution remote sensing images based on multi-scale superposition

    Science.gov (United States)

    Wang, Jinliang; Gao, Wenjie; Liu, Guangjie

    2017-07-01

    Landscape structures and process on different scale show different characteristics. In the study of specific target landmarks, the most appropriate scale for images can be attained by scale conversion, which improves the accuracy and efficiency of feature identification and classification. In this paper, the authors carried out experiments on multi-scale classification by taking the Shangri-la area in the north-western Yunnan province as the research area and the images from SPOT5 HRG and GF-1 Satellite as date sources. Firstly, the authors upscaled the two images by cubic convolution, and calculated the optimal scale for different objects on the earth shown in images by variation functions. Then the authors conducted multi-scale superposition classification on it by Maximum Likelyhood, and evaluated the classification accuracy. The results indicates that: (1) for most of the object on the earth, the optimal scale appears in the bigger scale instead of the original one. To be specific, water has the biggest optimal scale, i.e. around 25-30m; farmland, grassland, brushwood, roads, settlement places and woodland follows with 20-24m. The optimal scale for shades and flood land is basically as the same as the original one, i.e. 8m and 10m respectively. (2) Regarding the classification of the multi-scale superposed images, the overall accuracy of the ones from SPOT5 HRG and GF-1 Satellite is 12.84% and 14.76% higher than that of the original multi-spectral images, respectively, and Kappa coefficient is 0.1306 and 0.1419 higher, respectively. Hence, the multi-scale superposition classification which was applied in the research area can enhance the classification accuracy of remote sensing images .

  18. Time series modelling of increased soil temperature anomalies during long period

    Science.gov (United States)

    Shirvani, Amin; Moradi, Farzad; Moosavi, Ali Akbar

    2015-10-01

    Soil temperature just beneath the soil surface is highly dynamic and has a direct impact on plant seed germination and is probably the most distinct and recognisable factor governing emergence. Autoregressive integrated moving average as a stochastic model was developed to predict the weekly soil temperature anomalies at 10 cm depth, one of the most important soil parameters. The weekly soil temperature anomalies for the periods of January1986-December 2011 and January 2012-December 2013 were taken into consideration to construct and test autoregressive integrated moving average models. The proposed model autoregressive integrated moving average (2,1,1) had a minimum value of Akaike information criterion and its estimated coefficients were different from zero at 5% significance level. The prediction of the weekly soil temperature anomalies during the test period using this proposed model indicated a high correlation coefficient between the observed and predicted data - that was 0.99 for lead time 1 week. Linear trend analysis indicated that the soil temperature anomalies warmed up significantly by 1.8°C during the period of 1986-2011.

  19. Superposition model analysis of nickel(II) ions in trigonal bipyramidal complexes exhibiting huge zero field splitting (aka ‘giant magnetic anisotropy’)

    Energy Technology Data Exchange (ETDEWEB)

    Rudowicz, Czesław, E-mail: crudowicz@zut.edu.pl [Faculty of Chemistry, A. Mickiewicz University, 61-614 Poznań (Poland); Institute of Physics, West Pomeranian University of Technology, Szczecin (Poland); Açıkgöz, Muhammed [Department of Chemistry, Rutgers University, Newark, New Jersey 07102 (United States); Gnutek, Paweł [Institute of Physics, West Pomeranian University of Technology, Szczecin (Poland)

    2017-07-15

    Graphical abstract: Using crystal structure data for [Ni(Me{sub 6}tren)Cl](ClO{sub 4}) and [Ni(Me{sub 6}tren)Br](Br) as well as taking into account the Jahn-Teller distortions of five-fold coordinated Ni-complexes revealed by DFT geometry optimization, the ZFSPs are predicted for several structural models and wide ranges of model parameters. - Highlights: • Semiempirical study of potential SMM [Ni(Me{sub 6}tren)Cl](ClO{sub 4}) and [Ni(Me{sub 6}tren)Br](Br). • Superposition model analysis of zero field splitting (ZFS) parameters carried out. • Jahn-Teller distortions revealed by DFT geometry optimization considered. • SPM predicts D(ZFS) of observed magnitudes with positive or negative signs. • Results corroborate giant ZFS, which shall not be equated with magnetic anisotropy. - Abstract: Potential single-ion magnet Ni{sup 2+} systems: [Ni(Me{sub 6}tren)Cl](ClO{sub 4}) and [Ni(Me{sub 6}tren)Br](Br) reveal unusually high zero field splitting (ZFS). The ZFS parameter (ZFSP) D{sub expt} = −120 to −180 cm{sup −1} was determined indirectly by high-magnetic field, high-frequency electron magnetic resonance (HMF-EMR). Modeling ZFSPs using the density functional theory (DFT) codes predicts D values: −100 to −200 cm{sup −1}. Such ZFSP values may seem controversial in view of the D values usually not exceeding several tens of cm{sup −1} for Ni{sup 2+} ions. To corroborate or otherwise these results and elucidate the origin of the huge ZFS (named inappropriately as ‘giant uniaxial magnetic anisotropy’) and respective wavefunctions, we have undertaken semiempirical modeling based on the crystal field (CF) and spin Hamiltonians (SH) theory. In this paper, a feasibility study is carried out to ascertain if superposition model (SPM) calculations may yield such huge D values for these Ni{sup 2+} systems. Using crystal structure data for [Ni(Me{sub 6}tren)Cl](ClO{sub 4}) and [Ni(Me{sub 6}tren)Br](Br) as well as taking into account the Jahn

  20. Real-time temperature field measurement based on acoustic tomography

    International Nuclear Information System (INIS)

    Bao, Yong; Jia, Jiabin; Polydorides, Nick

    2017-01-01

    Acoustic tomography can be used to measure the temperature field from the time-of-flight (TOF). In order to capture real-time temperature field changes and accurately yield quantitative temperature images, two improvements to the conventional acoustic tomography system are studied: simultaneous acoustic transmission and TOF collection along multiple ray paths, and an offline iteration reconstruction algorithm. During system operation, all the acoustic transceivers send modulated and filtered wideband Kasami sequences simultaneously to facilitate fast and accurate TOF measurements using cross-correlation detection. For image reconstruction, the iteration process is separated and executed offline beforehand to shorten computation time for online temperature field reconstruction. The feasibility and effectiveness of the developed methods are validated in the simulation study. The simulation results demonstrate that the proposed method can reduce the processing time per frame from 160 ms to 20 ms, while the reconstruction error remains less than 5%. Hence, the proposed method has great potential in the measurement of rapid temperature change with good temporal and spatial resolution. (paper)

  1. Structural analysis for elevated temperature design of the LMFBR

    International Nuclear Information System (INIS)

    Griffin, D.S.

    1976-02-01

    In the structural design of LMFBR components for elevated temperature service it is necessary to take account of the time-dependent, creep behavior of materials. The accommodation of creep to assure design reliability has required (1) development of new design limits and criteria, (2) development of more detailed representations of material behavior, and (3) application of the most advanced analysis techniques. These developments are summarized and examples are given to illustrate the current state of technology in elevated temperature design

  2. Active measurement-based quantum feedback for preparing and stabilizing superpositions of two cavity photon number states

    Science.gov (United States)

    Berube-Lauziere, Yves

    The measurement-based quantum feedback scheme developed and implemented by Haroche and collaborators to actively prepare and stabilize specific photon number states in cavity quantum electrodynamics (CQED) is a milestone achievement in the active protection of quantum states from decoherence. This feat was achieved by injecting, after each weak dispersive measurement of the cavity state via Rydberg atoms serving as cavity sensors, a low average number classical field (coherent state) to steer the cavity towards the targeted number state. This talk will present the generalization of the theory developed for targeting number states in order to prepare and stabilize desired superpositions of two cavity photon number states. Results from realistic simulations taking into account decoherence and imperfections in a CQED set-up will be presented. These demonstrate the validity of the generalized theory and points to the experimental feasibility of preparing and stabilizing such superpositions. This is a further step towards the active protection of more complex quantum states than number states. This work, cast in the context of CQED, is also almost readily applicable to circuit QED. YBL acknowledges financial support from the Institut Quantique through a Canada First Research Excellence Fund.

  3. Influences of temperature on asymmetric quantum dot qubit in Coulombic impunity potential

    Science.gov (United States)

    Chen, Y.-J.; Song, H.-T.; Xiao, J.-L.

    2018-05-01

    Using the variational method of the Pekar-type, we study the influences of the temperature on the asymmetric quantum dot (QD) qubit in the Coulombic impunity potential. Then we derive the numerical results and formulate the derivative relationships of the electron probability density and the electron oscillation period in the superposition state of the ground state and the first-excited state with the electron-phonon coupling constant, the Coulombic impurity potential, the transverse and longitudinal confinement strengths at different temperatures, respectively.

  4. Approach to the nonrelatiVistic scattering theory based on the causality superposition and unitarity principles

    International Nuclear Information System (INIS)

    Gajnutdinov, R.Kh.

    1983-01-01

    Possibility is studied to build the nonrelativistic scattering theory on the base of the general physical principles: causality, superposition, and unitarity, making no use of the Schroedinger formalism. The suggested approach is shown to be more general than the nonrelativistic scattering theory based on the Schroedinger equation. The approach is applied to build a model ofthe scattering theory for a system which consists of heavy nonrelativistic particles and a light relativistic particle

  5. Time-Series Analysis: A Cautionary Tale

    Science.gov (United States)

    Damadeo, Robert

    2015-01-01

    Time-series analysis has often been a useful tool in atmospheric science for deriving long-term trends in various atmospherically important parameters (e.g., temperature or the concentration of trace gas species). In particular, time-series analysis has been repeatedly applied to satellite datasets in order to derive the long-term trends in stratospheric ozone, which is a critical atmospheric constituent. However, many of the potential pitfalls relating to the non-uniform sampling of the datasets were often ignored and the results presented by the scientific community have been unknowingly biased. A newly developed and more robust application of this technique is applied to the Stratospheric Aerosol and Gas Experiment (SAGE) II version 7.0 ozone dataset and the previous biases and newly derived trends are presented.

  6. Applying Time Series Analysis Model to Temperature Data in Greenhouses

    Directory of Open Access Journals (Sweden)

    Abdelhafid Hasni

    2011-03-01

    Full Text Available The objective of the research is to find an appropriate Seasonal Auto-Regressive Integrated Moving Average (SARIMA Model for fitting the inside air temperature (Tin of a naturally ventilated greenhouse under Mediterranean conditions by considering the minimum of Akaike Information Criterion (AIC. The results of fitting were as follows: the best SARIMA Model for fitting air temperature of greenhouse is SARIMA (1,0,0 (1,0,224.

  7. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    John Reilly

    2018-03-01

    Full Text Available Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc. and generalized displacement (deflection, rotation, etc. to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature–deformation–displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i the range of raw temperatures on the structure, and (ii the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.

  8. Time response of temperature sensors using neural networks

    International Nuclear Information System (INIS)

    Santos, Roberto Carlos dos

    2010-01-01

    In a PWR nuclear power plant, the primary coolant temperature and feedwater temperature are measured using RTDs (Resistance Temperature Detectors). These RTDs typically feed the plant's control and safety systems and must, therefore, be very accurate and have good dynamic performance. The response time of RTDs is characterized by a single parameter called the Plunge Time Constant defined as the time it takes the sensor output to achieve 63.2 percent of its final value after a step change in temperature. Nuclear reactor service conditions are difficult to reproduce in the laboratory, and an in-situ test method called LCSR (Loop Current Step Response) test was developed to measure remotely the response time of RTDs. >From this test, the time constant of the sensor is identified by means of the LCSR transformation that involves the dynamic response modal time constants determination using a nodal heat-transfer model. This calculation is not simple and requires specialized personnel. For this reason an Artificial Neural Network has been developed to predict the time constant of RTD from LCSR test transient. It eliminates the transformations involved in the LCSR application. A series of LCSR tests on RTDs generates the response transients of the sensors, the input data of the networks. Plunge tests are used to determine the time constants of the RTDs, the desired output of the ANN, trained using these sets of input/output data. This methodology was firstly applied to theoretical data simulating 10 RTDs with different time constant values, resulting in an average error of about 0.74 %. Experimental data from three different RTDs was used to predict time constant resulting in a maximum error of 3,34 %. The time constants values predicted from ANN were compared with those obtained from traditional way resulting in an average error of about 18 % and that shows the network is able to predict accurately the sensor time constant. (author)

  9. Effects of deposition temperature and in-situ annealing time on structure and magnetic properties of (001) orientation FePt films

    International Nuclear Information System (INIS)

    Yu, Yongsheng; George, T.A.; Li, Haibo; Sun, Daqian; Ren, Zhenan; Sellmyer, D.J.

    2013-01-01

    FePt films were prepared on (100) oriented single crystal MgO substrates at high temperature ranging from 620 until 800 °C and in-situ annealed for different times ranging from 0 to 60 min to obtain ordered FePt films. The structural analysis indicates that FePt films grow epitaxially on MgO (100) substrates. Both increasing deposition temperature and in-situ annealing time enhance the (001) texture and ordering of FePt films. The magnetic analysis shows that these L1 0 FePt films have perpendicular anisotropy and the easy magnetization c-axis is perpendicular to the film plane. Magnetization reversal is controlled by a rotational mechanism. The hard magnetic properties of the films are improved with increasing deposition temperature or in-situ annealing time. - Highlights: ► The paper reports the texture and magnetic evolution of FePt films deposited on MgO substrates. ► Increasing deposition temperature or annealing time enhanced the texture and ordering. ► The magnetic analysis shows L1 0 FePt films have perpendicular anisotropy.

  10. Inverse heat transfer analysis of a functionally graded fin to estimate time-dependent base heat flux and temperature distributions

    International Nuclear Information System (INIS)

    Lee, Haw-Long; Chang, Win-Jin; Chen, Wen-Lih; Yang, Yu-Ching

    2012-01-01

    Highlights: ► Time-dependent base heat flux of a functionally graded fin is inversely estimated. ► An inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied. ► The distributions of temperature in the fin are determined as well. ► The influence of measurement error and measurement location upon the precision of the estimated results is also investigated. - Abstract: In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied to estimate the unknown time-dependent base heat flux of a functionally graded fin from the knowledge of temperature measurements taken within the fin. Subsequently, the distributions of temperature in the fin can be determined as well. It is assumed that no prior information is available on the functional form of the unknown base heat flux; hence the procedure is classified as the function estimation in inverse calculation. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The influence of measurement errors and measurement location upon the precision of the estimated results is also investigated. Results show that an excellent estimation on the time-dependent base heat flux and temperature distributions can be obtained for the test case considered in this study.

  11. Investigations of Low Temperature Time Dependent Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J

    2002-09-30

    The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.

  12. Generalization of Abel's mechanical problem: The extended isochronicity condition and the superposition principle

    Energy Technology Data Exchange (ETDEWEB)

    Kinugawa, Tohru, E-mail: kinugawa@phoenix.kobe-u.ac.jp [Institute for Promotion of Higher Education, Kobe University, Kobe 657-8501 (Japan)

    2014-02-15

    This paper presents a simple but nontrivial generalization of Abel's mechanical problem, based on the extended isochronicity condition and the superposition principle. There are two primary aims. The first one is to reveal the linear relation between the transit-time T and the travel-length X hidden behind the isochronicity problem that is usually discussed in terms of the nonlinear equation of motion (d{sup 2}X)/(dt{sup 2}) +(dU)/(dX) =0 with U(X) being an unknown potential. Second, the isochronicity condition is extended for the possible Abel-transform approach to designing the isochronous trajectories of charged particles in spectrometers and/or accelerators for time-resolving experiments. Our approach is based on the integral formula for the oscillatory motion by Landau and Lifshitz [Mechanics (Pergamon, Oxford, 1976), pp. 27–29]. The same formula is used to treat the non-periodic motion that is driven by U(X). Specifically, this unknown potential is determined by the (linear) Abel transform X(U) ∝ A[T(E)], where X(U) is the inverse function of U(X), A=(1/√(π))∫{sub 0}{sup E}dU/√(E−U) is the so-called Abel operator, and T(E) is the prescribed transit-time for a particle with energy E to spend in the region of interest. Based on this Abel-transform approach, we have introduced the extended isochronicity condition: typically, τ = T{sub A}(E) + T{sub N}(E) where τ is a constant period, T{sub A}(E) is the transit-time in the Abel type [A-type] region spanning X > 0 and T{sub N}(E) is that in the Non-Abel type [N-type] region covering X < 0. As for the A-type region in X > 0, the unknown inverse function X{sub A}(U) is determined from T{sub A}(E) via the Abel-transform relation X{sub A}(U) ∝ A[T{sub A}(E)]. In contrast, the N-type region in X < 0 does not ensure this linear relation: the region is covered with a predetermined potential U{sub N}(X) of some arbitrary choice, not necessarily obeying the Abel-transform relation. In

  13. Real time thermal hydraulic model for high temperature gas-cooled reactor core

    International Nuclear Information System (INIS)

    Sui Zhe; Sun Jun; Ma Yuanle; Zhang Ruipeng

    2013-01-01

    A real-time thermal hydraulic model of the reactor core was described and integrated into the simulation system for the high temperature gas-cooled pebble bed reactor nuclear power plant, which was developed in the vPower platform, a new simulation environment for nuclear and fossil power plants. In the thermal hydraulic model, the helium flow paths were established by the flow network tools in order to obtain the flow rates and pressure distributions. Meanwhile, the heat structures, representing all the solid heat transfer elements in the pebble bed, graphite reflectors and carbon bricks, were connected by the heat transfer network in order to solve the temperature distributions in the reactor core. The flow network and heat transfer network were coupled and calculated in real time. Two steady states (100% and 50% full power) and two transients (inlet temperature step and flow step) were tested that the quantitative comparisons of the steady results with design data and qualitative analysis of the transients showed the good applicability of the present thermal hydraulic model. (authors)

  14. On the analogy between thermally and irradiation induced creep

    International Nuclear Information System (INIS)

    Cozzarelli, F.A.; Huang, S.

    1977-01-01

    Employing an analogy between thermally induced and irradiation induced creep, physical arguments are used first to deduce a one-dimensional constitutive relation for metals under stress in a high temperature and high neutron flux field. This constitutive relation contains modified superposition integrals in which the temperature and flux dependence of the material parameters is included via the use of two reduced time scales; linear elastic, thermal expansion and swelling terms are also included. A systematic development based on thermodynamics, with the stress, temperature increment and defect density increment as independent variables in the Gibbs free energy, is then employed to obtain general three-dimensional memory integrals for strain; the entropy and coupled energy equation are also obtained. Modified superposition integrals similar to those previously obtained by physical argument are then obtained by substituting special functions into the results of the thermodynamic analysis, and the special case of an isotropic stress power law is examined in detail. (Auth.)

  15. Low temperature internal friction on γ-irradiated polyvinylidene fluoride (PVDF)

    International Nuclear Information System (INIS)

    Callens, A.; Eersels, L.; De Batist, R.

    1978-01-01

    A least-squares fitting of the below room temperature part of the internal friction spectra, obtained by the torsion pendulum technique on as-received and γ-irradiated (up to 1 Grad) strips and fibres of polyvinylidene fluoride by a superposition of single Debye functions, reveals that the spectral component features are determined not only by purely amorphous chain characteristics but also by the dose-dependence of crystallinity. A careful analysis of the relaxation spectra confirms that at least one relaxation effect (approximately 236 K) is created upon irradiation. The analysis of the dose dependence of the characteristics of the β (glass transition; approximately 220 K) and βsub(u) (apparent upper glass transition; approximately 270 K) relaxations, suggests the probable influence of crystallinity on the molecular motion in the amorphous phase. The increase of the intensity of the γ relaxation (approximately 190 K) is related to the irradiation-induced crystallite degradation. (author)

  16. A Real-Time Temperature Data Transmission Approach for Intelligent Cooling Control of Mass Concrete

    Directory of Open Access Journals (Sweden)

    Peng Lin

    2014-01-01

    Full Text Available The primary aim of the study presented in this paper is to propose a real-time temperature data transmission approach for intelligent cooling control of mass concrete. A mathematical description of a digital temperature control model is introduced in detail. Based on pipe mounted and electrically linked temperature sensors, together with postdata handling hardware and software, a stable, real-time, highly effective temperature data transmission solution technique is developed and utilized within the intelligent mass concrete cooling control system. Once the user has issued the relevant command, the proposed programmable logic controllers (PLC code performs all necessary steps without further interaction. The code can control the hardware, obtain, read, and perform calculations, and display the data accurately. Hardening concrete is an aggregate of complex physicochemical processes including the liberation of heat. The proposed control system prevented unwanted structural change within the massive concrete blocks caused by these exothermic processes based on an application case study analysis. In conclusion, the proposed temperature data transmission approach has proved very useful for the temperature monitoring of a high arch dam and is able to control thermal stresses in mass concrete for similar projects involving mass concrete.

  17. Sensory characteristics of meat cooked for prolonged times at low temperature

    DEFF Research Database (Denmark)

    Christensen, Line Bach; Gunvig, Annemarie; Tørngren, Mari Ann

    2012-01-01

    species, and cooking loss increased with increasing temperature. A done appearance was developed with increasing heating time at 58 °C in pork and beef, while in chicken the done appearance was only affected by temperature. Flavor attributes were less affected by the LTLT treatment for all species......The present study evaluated the sensory characteristics of low temperature long time (LTLT) treated Semitendinosus from pork and beef and Pectoralis profundus from chicken. Semitendinosus and Pectoralis profundus muscles were heat treated at 53°C and 58°C for Tc + 6 h, Tc + 17 h, and Tc + 30 h...... (only Semitendinosus from pork and beef). Tc was the time for the samples to equalize with the temperature in the water bath. Tenderness increased with increasing heating temperature and time in pork and beef, but not in chicken. Juiciness decreased with increasing heating temperature and time in all...

  18. Correspondence between imaginary-time and real-time finite-temperature field theory

    International Nuclear Information System (INIS)

    Kobes, R.

    1990-01-01

    It is known that one-particle-irreducible graphs found using the imaginary-time formalism of finite-temperature field theory differ in general with those of the real-time formalism. Here it is shown that within the real-time formalism one can consider a sum of graphs, motivated by causality arguments, which at least in a number of simple examples agree with the corresponding analytically continued imaginary-time result. The occurrence of multiple statistical factors in this sum of graphs is discussed

  19. Analysis model for forecasting extreme temperature using refined rank set pair

    Directory of Open Access Journals (Sweden)

    Qiao Ling-Xia

    2013-01-01

    Full Text Available In order to improve the precision of forecasting extreme temperature time series, a refined rank set pair analysis model with a refined rank transformation function is proposed to improve precision of its prediction. The measured values of the annual highest temperature of two China’s cities, Taiyuan and Shijiazhuang, in July are taken to examine the performance of a refined rank set pair model.

  20. Multivariate Time Series Decomposition into Oscillation Components.

    Science.gov (United States)

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-08-01

    Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.

  1. Real-time reactor coolant system pressure/temperature limit system

    International Nuclear Information System (INIS)

    Newton, D.G.; Schemmel, R.R.; Van Scooter, W.E. Jr.

    1991-01-01

    This patent describes an system, used in controlling the operating of a nuclear reactor coolant system, which automatically calculates and displays allowable reactor coolant system pressure/temperature limits within the nuclear reactor coolant system based upon real-time inputs. It comprises: means for producing signals representative of real-time operating parameters of the nuclear reactor cooling system; means for developing pressure and temperature limits relating the real-time operating parameters of the nuclear reactor coolant system, for normal and emergency operation thereof; means for processing the signals representative of real-time operating parameters of the nuclear reactor coolant system to perform calculations of a best estimate of signals, check manual inputs against permissible valves and test data acquisition hardware for validity and over/under range; and means for comparing the representative signals with limits for the real-time operating parameters to produce a signal for a real-time display of the pressure and temperature limits and of the real-time operating parameters use an operator in controlling the operation of the nuclear reactor coolant system

  2. Calculation of nonzero-temperature Casimir forces in the time domain

    International Nuclear Information System (INIS)

    Pan, Kai; Reid, M. T. Homer; McCauley, Alexander P.; Rodriguez, Alejandro W.; White, Jacob K.; Johnson, Steven G.

    2011-01-01

    We show how to compute Casimir forces at nonzero temperatures with time-domain electromagnetic simulations, for example, using a finite-difference time-domain (FDTD) method. Compared to our previous zero-temperature time-domain method, only a small modification is required, but we explain that some care is required to properly capture the zero-frequency contribution. We validate the method against analytical and numerical frequency-domain calculations, and show a surprising high-temperature disappearance of a nonmonotonic behavior previously demonstrated in a pistonlike geometry.

  3. A Generalized Time-Dependent Harmonic Oscillator at Finite Temperature

    International Nuclear Information System (INIS)

    Majima, H.; Suzuki, A.

    2006-01-01

    We show how a generalized time-dependent harmonic oscillator (GTHO) is extended to a finite temperature case by using thermo field dynamics (TFD). We derive the general time-dependent annihilation and creation operators for the system, and obtain the time-dependent quasiparticle annihilation and creation operators for the GTHO by using the temperature-dependent Bogoliubov transformation of TFD. We also obtain the thermal state as a two-mode squeezed vacuum state in the time-dependent case as well as in the time-independent case. The general formula is derived to calculate the thermal expectation value of operators

  4. Effect of temperature and time on solvothermal synthesis of ...

    Indian Academy of Sciences (India)

    Effect of temperature and time study on solvothermal synthesis of BaTiO3 revealed that a moderate reaction temperature i.e. 185◦C and longer reaction time favour tetragonal phase stabiliza- tion. Dissolution–precipitation appears to be the transformation mechanism for the crystallization of BaTiO3 from particulate TiO2 ...

  5. Throughput Maximization for Cognitive Radio Networks Using Active Cooperation and Superposition Coding

    KAUST Repository

    Hamza, Doha R.

    2015-02-13

    We propose a three-message superposition coding scheme in a cognitive radio relay network exploiting active cooperation between primary and secondary users. The primary user is motivated to cooperate by substantial benefits it can reap from this access scenario. Specifically, the time resource is split into three transmission phases: The first two phases are dedicated to primary communication, while the third phase is for the secondary’s transmission. We formulate two throughput maximization problems for the secondary network subject to primary user rate constraints and per-node power constraints with respect to the time durations of primary transmission and the transmit power of the primary and the secondary users. The first throughput maximization problem assumes a partial power constraint such that the secondary power dedicated to primary cooperation, i.e. for the first two communication phases, is fixed apriori. In the second throughput maximization problem, a total power constraint is assumed over the three phases of communication. The two problems are difficult to solve analytically when the relaying channel gains are strictly greater than each other and strictly greater than the direct link channel gain. However, mathematically tractable lowerbound and upperbound solutions can be attained for the two problems. For both problems, by only using the lowerbound solution, we demonstrate significant throughput gains for both the primary and the secondary users through this active cooperation scheme. We find that most of the throughput gains come from minimizing the second phase transmission time since the secondary nodes assist the primary communication during this phase. Finally, we demonstrate the superiority of our proposed scheme compared to a number of reference schemes that include best relay selection, dual-hop routing, and an interference channel model.

  6. Throughput Maximization for Cognitive Radio Networks Using Active Cooperation and Superposition Coding

    KAUST Repository

    Hamza, Doha R.; Park, Kihong; Alouini, Mohamed-Slim; Aissa, Sonia

    2015-01-01

    We propose a three-message superposition coding scheme in a cognitive radio relay network exploiting active cooperation between primary and secondary users. The primary user is motivated to cooperate by substantial benefits it can reap from this access scenario. Specifically, the time resource is split into three transmission phases: The first two phases are dedicated to primary communication, while the third phase is for the secondary’s transmission. We formulate two throughput maximization problems for the secondary network subject to primary user rate constraints and per-node power constraints with respect to the time durations of primary transmission and the transmit power of the primary and the secondary users. The first throughput maximization problem assumes a partial power constraint such that the secondary power dedicated to primary cooperation, i.e. for the first two communication phases, is fixed apriori. In the second throughput maximization problem, a total power constraint is assumed over the three phases of communication. The two problems are difficult to solve analytically when the relaying channel gains are strictly greater than each other and strictly greater than the direct link channel gain. However, mathematically tractable lowerbound and upperbound solutions can be attained for the two problems. For both problems, by only using the lowerbound solution, we demonstrate significant throughput gains for both the primary and the secondary users through this active cooperation scheme. We find that most of the throughput gains come from minimizing the second phase transmission time since the secondary nodes assist the primary communication during this phase. Finally, we demonstrate the superiority of our proposed scheme compared to a number of reference schemes that include best relay selection, dual-hop routing, and an interference channel model.

  7. Body temperature predicts the direction of internal desynchronization in humans isolated from time cues

    NARCIS (Netherlands)

    Daan, Serge; Honma, Sato; Honma, Ken-ichi

    2013-01-01

    This publication presents a new analysis of experiments that were carried out in human subjects in isolation from time cues, under supervision of Jurgen Aschoff and Rutger Wever at the Max Planck Institute for Behavioural Physiology (Erling-Andechs, Germany, 1964-1974). Mean rectal temperatures

  8. The use of a DNA stabilizer in human dental tissues stored under different temperature conditions and time intervals

    Science.gov (United States)

    TERADA, Andrea Sayuri Silveira Dias; da SILVA, Luiz Antonio Ferreira; GALO, Rodrigo; de AZEVEDO, Aline; GERLACH, Raquel Fernanda; da SILVA, Ricardo Henrique Alves

    2014-01-01

    Objective The present study evaluated the use of a reagent to stabilize the DNA extracted from human dental tissues stored under different temperature conditions and time intervals. Material and Methods A total of 161 teeth were divided into two distinct groups: intact teeth and isolated dental pulp tissue. The samples were stored with or without the product at different time intervals and temperature. After storage, DNA extraction and genomic DNA quantification were performed using real-time PCR; the fragments of the 32 samples that represented each possible condition were analyzed to find the four pre-selected markers in STR analysis. Results The results of the quantification showed values ranging from 0.01 to 10,246.88 ng/μL of DNA. The statistical difference in the quantity of DNA was observed when the factors related to the time and temperature of storage were analyzed. In relation to the use of the specific reagent, its use was relevant in the group of intact teeth when they were at room temperature for 30 and 180 days. The analysis of the fragments in the 32 selected samples was possible irrespective of the amount of DNA, confirming that the STR analysis using an automated method yields good results. Conclusions The use of a specific reagent showed a significant difference in stabilizing DNA in samples of intact human teeth stored at room temperature for 30 and 180 days, while the results showed no justification for using the product under the other conditions tested. PMID:25141206

  9. Influence of different maceration time and temperatures on total phenols, colour and sensory properties of Cabernet Sauvignon wines.

    Science.gov (United States)

    Şener, Hasan; Yildirim, Hatice Kalkan

    2013-12-01

    Maceration and fermentation time and temperatures are important factors affecting wine quality. In this study different maceration times (3 and 6 days) and temperatures (15  and 25 ) during production of red wine (Vitis vinifera L. Cabernet Sauvignon) were investigated. In all wines standard wine chemical parameters and some specific parameters as total phenols, tartaric esters, total flavonols and colour parameters (CD, CI, T, dA%, %Y, %R, %B, CIELAB values) were determined. Sensory evaluation was performed by descriptive sensory analysis. The results demonstrated not only the importance of skin contact time and temperature during maceration but also the effects of transition temperatures (different maceration and fermentation temperatures) on wine quality as a whole. The results of sensory descriptive analyses revealed that the temperature significantly affected the aroma and flavour attributes of wines. The highest scores for 'cassis', 'clove', 'fresh fruity' and 'rose' characters were obtained in wines produced at low temperature (15 ) of maceration (6 days) and fermentation.

  10. Spatially continuous approach to the description of incoherencies in fast reactor accident analysis

    International Nuclear Information System (INIS)

    Luck, L.B.

    1976-12-01

    A generalized cell-type approach is developed in which individual subassemblies are represented as a unit. By appropriate characterization of the results of separate detailed investigations, spatial variations within a cell are represented as a superposition. The advantage of this approach is that costly detailed cell-type information is generated only once or a very few times. Spatial information obtained by the cell treatment is properly condensed in order to drastically reduce the transient computation time. Approximate treatments of transient phenomena are developed based on the use of distributions of volume and reactivity worth with temperature and other reactor parameters. Incoherencies during transient are physically dependent on the detailed variations in the initial state. Therefore, stationary volumetric distributions which contain in condensed form the detailed initial incoherency information provides a proper basis for the transient treatment. Approximate transient volumetric distributions are generated by a suitable transformation of the stationary distribution to reflect the changes in the transient temperature field. Evaluation of transient changes is based on results of conventional uniform channel calculations and a superposition of lateral variations as they are derived from prior cell investigations. Specific formulations are developed for the treatment of reactivity feedback. Doppler and sodium expansion reactivity feedback is related to condensed temperature-worth distributions. Transient evaluation of the worth distribution is based on the relation between stationary and transient volumetric distributions, which contains the condensed temperature field information. Coolant voiding is similarly treated with proper distribution information. Results show that the treatments developed for the transient phase up to and including sodium boiling constitute a fast and effective simulation of inter- and intra-subassembly incoherence effects

  11. [Relationship between daily mean temperature and emergency department visits for respiratory diseases: a time-series analysis].

    Science.gov (United States)

    Mo, Yun-zheng; Zheng, Ya-an; Tao, Hui; Xu, Mei-mei; Li, Guo-xing; Dong, Feng-ming; Liu, Jun-han; Pan, Xiao-chuan

    2012-06-18

    To quantitatively evaluate the influences of daily mean air temperature (DMT) on Emergency Department Visits (EDVs) for the respiratory diseases. The EDV data from medical records for respiratory diseases in Peking University Third Hospital between January 2004 and June 2009 were collected. The data of the air pollutants (SO(2), NO(2) and PM(10)) and meteorological factors at the same time periods were also collected from the local authorities of Beijing. Time-series analysis and generalized additive models (GAM) were used to explore the exposurrre-response relationship between DMT and EDVs for respiratory diseases. A total of 35 073 patients [males 14 707(41.93%,14 707/35 073), females 19 122(54.52%,19 122/35 073) and gender missing 1 244(3.55%, 1 244/35 073)] EDVs for respiratory diseases were included. The relationship between DMT and EDVs for the respiratory diseases was mainly of "V" shape, the optimum temperature(OT) was about 4 °C and the effect of DMT was significant with a 0-3 day lag structure for most of the models. When DMT≤OT, each 1°C decrease in DMT corresponded to 3.75% (95% CI of RR: 0.938 3-0.965 3), 3.10% (95% CI of RR:0.949 2-0.989 1), 4.09% (95% CI of RR:0.940 7-0.977 8) increase of EDVs for the overall, male, and female, respectively. When DMT>OT, the value caused by each increase in 1°C in DMT was 1.54% (95% CI of RR:1.006 6-1.024 3), 1.80% (95% CI of RR:1.005 3-1.030 9), and 1.51 (95% CI of RR:1.003 2- 1.027 2), respectively. The effect was statistically significant within the 0-3 day lag. When DMT≤OT, the effect was stronger for the older people, while the effect was strongest for the 45-59 years old people. The relationship between DMT and EDVs for respiratory diseases is mainly of "V" type, with an optimum temperature of 4 °C.Both DMT decrease when DMT≤OT and increase when DMT>OT correspond to different increase of EDVs for respiratory diseases. Low DMT has stronger effect than high DMT. Different age group and gender have

  12. Evaluation of accidental coincidences for time-differential Moessbauer-spectroscopy

    International Nuclear Information System (INIS)

    Alflen, M.; Meyer, W.

    1995-01-01

    The accidental coincidences of a measuring system based on time-to-amplitude conversion are considered in some detail for the case of low starting and high stopping rates. Two types of accidental coincidences are distinguished, those carrying time information and those without time information. Neglecting any deadtime effects of the detectors, analytical expressions for the calculation of the time distribution of the random coincidences are evaluated. The analytical expressions have been confirmed by Monte Carlo simulations. The procedure is applied to time-differential Moessbauer spectroscopy in order to extract the time spectra of true coincidences. The measured spectrum in a time channel turns out to be a superposition of the true spectrum (true coincidences), a time integral spectrum (random coincidences), and a weighted superposition of true spectra of other time channels (random but time carrying information). A measurement with a single line 57 Co/Rh-source and single line K[Fe(CN) 6 ].3H 2 O-absorber with stopping rates of 1 MBq shows agreement between the theoretical time-filtered spectra and the corrected measured spectra of true coincidences. ((orig.))

  13. A theoretical analysis of time-dependent fragment momenta in indirect photofragmentation

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm

    2010-01-01

    We study theoretically diatomic molecules which are prepared in a superposition of quasibound resonance states by a femtosecond laser pulse. An analytical (Landau–Zener-like) result is derived for the momentum distribution of the atomic fragments in the asymptotic force-free region after a single...

  14. Large inelastic deformation analysis of steel pressure vessels at high temperature

    International Nuclear Information System (INIS)

    Ikonen, K.

    2001-01-01

    This publication describes the calculation methodology developed for a large inelastic deformation analysis of pressure vessels at high temperature. Continuum mechanical formulation related to a large deformation analysis is presented. Application of the constitutive equations is simplified when the evolution of stress and deformation state of an infinitesimal material element is considered in the directions of principal strains determined by the deformation during a finite time increment. A quantitative modelling of time dependent inelastic deformation is applied for reactor pressure vessel steels. Experimental data of uniaxial tensile, relaxation and creep tests performed at different laboratories for reactor pressure vessel steels are investigated and processed. An inelastic deformation rate model of strain hardening type is adopted. The model simulates well the axial tensile, relaxation and creep tests from room temperature to high temperature with only a few fitting parameters. The measurement data refined for the inelastic deformation rate model show useful information about inelastic deformation phenomena of reactor pressure vessel steels over a wide temperature range. The methodology and calculation process are validated by comparing the calculated results with measurements from experiments on small scale pressure vessels. A reasonably good agreement, when taking several uncertainties into account, is obtained between the measured and calculated results concerning deformation rate and failure location. (orig.)

  15. Predicting long-term temperature increase for time-dependent SAR levels with a single short-term temperature response.

    Science.gov (United States)

    Carluccio, Giuseppe; Bruno, Mary; Collins, Christopher M

    2016-05-01

    Present a novel method for rapid prediction of temperature in vivo for a series of pulse sequences with differing levels and distributions of specific energy absorption rate (SAR). After the temperature response to a brief period of heating is characterized, a rapid estimate of temperature during a series of periods at different heating levels is made using a linear heat equation and impulse-response (IR) concepts. Here the initial characterization and long-term prediction for a complete spine exam are made with the Pennes' bioheat equation where, at first, core body temperature is allowed to increase and local perfusion is not. Then corrections through time allowing variation in local perfusion are introduced. The fast IR-based method predicted maximum temperature increase within 1% of that with a full finite difference simulation, but required less than 3.5% of the computation time. Even higher accelerations are possible depending on the time step size chosen, with loss in temporal resolution. Correction for temperature-dependent perfusion requires negligible additional time and can be adjusted to be more or less conservative than the corresponding finite difference simulation. With appropriate methods, it is possible to rapidly predict temperature increase throughout the body for actual MR examinations. © 2015 Wiley Periodicals, Inc.

  16. Review of resistance temperature detector time response characteristics. Safety evaluation report

    International Nuclear Information System (INIS)

    1981-08-01

    A Resistance Temperature Detector (RTD) is used extensively for monitoring water temperatures in nuclear reactor plants. The RTD element does not respond instantaneously to changes in water temperature, but rather there is a time delay before the element senses the temperature change, and in nuclear reactors this delay must be factored into the computation of safety setpoints. For this reason it is necessary to have an accurate description of the RTD time response. This report is a review of the current state of the art of describing and measuring this time response

  17. Computational methods for fracture mechanics analysis of pressurized-thermal-shock experiments

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryan, R.H.; Bryson, J.W.; Merkle, J.G.

    1984-01-01

    Extensive computational analyses are required to determine material parameters and optimum pressure-temperature transients compatible with proposed pressurized-thermal-shock (PTS) test scenarios and with the capabilities of the PTS test facility at the Oak Ridge National Laboratory (ORNL). Computational economy has led to the application of techniques suitable for parametric studies involving the analysis of a large number of transients. These techniques, which include analysis capability for two- and three-dimensional (2-D and 3-D) superposition, inelastic ligament stability, and upper-shelf arrest, have been incorporated into the OCA/USA computer program. Features of the OCA/USA program are discussed, including applications to the PTS test configuration

  18. Computational methods for fracture mechanics analysis of pressurized-thermal-shock experiments

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryan, R.H.; Bryson, J.W.; Merkle, J.G.

    1984-01-01

    Extensive computational analyses are required to determine material parameters and optimum pressure-temperature transients compatible with proposed pressurized-thermal-shock (PTS) test scenarios and with the capabilities of the PTS test facility at the Oak Ridge National Laboratory (ORNL). Computational economy has led to the application of techniques suitable for parametric studies involving the analysis of a large number of transients. These techniques, which include analysis capability for two- and three-dimensional (2-D and 3-D) superposition, inelastic ligament stability, and upper-shelf arrest, have been incorporated into the OCA/ USA computer program. Features of the OCA/USA program are discussed, including applications to the PTS test configuration. (author)

  19. A combined stochastic analysis of mean daily temperature and diurnal temperature range

    Science.gov (United States)

    Sirangelo, B.; Caloiero, T.; Coscarelli, R.; Ferrari, E.

    2018-03-01

    In this paper, a stochastic model, previously proposed for the maximum daily temperature, has been improved for the combined analysis of mean daily temperature and diurnal temperature range. In particular, the procedure applied to each variable sequentially performs the deseasonalization, by means of truncated Fourier series expansions, and the normalization of the temperature data, with the use of proper transformation functions. Then, a joint stochastic analysis of both the climatic variables has been performed by means of a FARIMA model, taking into account the stochastic dependency between the variables, namely introducing a cross-correlation between the standardized noises. The model has been applied to five daily temperature series of southern Italy. After the application of a Monte Carlo simulation procedure, the return periods of the joint behavior of the mean daily temperature and the diurnal temperature range have been evaluated. Moreover, the annual maxima of the temperature excursions in consecutive days have been analyzed for the synthetic series. The results obtained showed different behaviors probably linked to the distance from the sea and to the latitude of the station.

  20. Strategies for reducing basis set superposition error (BSSE) in O/AU and O/Ni

    KAUST Repository

    Shuttleworth, I.G.

    2015-01-01

    © 2015 Elsevier Ltd. All rights reserved. The effect of basis set superposition error (BSSE) and effective strategies for the minimisation have been investigated using the SIESTA-LCAO DFT package. Variation of the energy shift parameter ΔEPAO has been shown to reduce BSSE for bulk Au and Ni and across their oxygenated surfaces. Alternative strategies based on either the expansion or contraction of the basis set have been shown to be ineffective in reducing BSSE. Comparison of the binding energies for the surface systems obtained using LCAO were compared with BSSE-free plane wave energies.

  1. Strategies for reducing basis set superposition error (BSSE) in O/AU and O/Ni

    KAUST Repository

    Shuttleworth, I.G.

    2015-11-01

    © 2015 Elsevier Ltd. All rights reserved. The effect of basis set superposition error (BSSE) and effective strategies for the minimisation have been investigated using the SIESTA-LCAO DFT package. Variation of the energy shift parameter ΔEPAO has been shown to reduce BSSE for bulk Au and Ni and across their oxygenated surfaces. Alternative strategies based on either the expansion or contraction of the basis set have been shown to be ineffective in reducing BSSE. Comparison of the binding energies for the surface systems obtained using LCAO were compared with BSSE-free plane wave energies.

  2. Topological transitions at finite temperatures: A real-time numerical approach

    International Nuclear Information System (INIS)

    Grigoriev, D.Yu.; Rubakov, V.A.; Shaposhnikov, M.E.

    1989-01-01

    We study topological transitions at finite temperatures within the (1+1)-dimensional abelian Higgs model by a numerical simulation in real time. Basic ideas of the real-time approach are presented and some peculiarities of the Metropolis technique are discussed. It is argued that the processes leading to topological transitions are of classical origin; the transitions can be observed by solving the classical field equations in real time. We show that the topological transitions actually pass via the sphaleron configuration. The transition rate as a function of temperature is found to be in good agreement with the analytical predictions. No extra suppression of the rate is observed. The conditions of applicability of our approach are discussed. The temperature interval where the low-temperature broken phase persists is estimated. (orig.)

  3. Multichord time-resolved electron temperature measurements by the x-ray absorber-foil method on TFTR

    International Nuclear Information System (INIS)

    Kiraly, J.; Bitter, M.; Efthimion, P.

    1985-09-01

    Absorber foils have been installed in the TFTR X-Ray Imaging System to permit measurement of the electron temperature along 10 to 30 chords spaced at 5-12.5 cm with a time resolution of less than 100 μs. The technique uses the ratio of x-ray fluxes transmitted through two different foils. The ratio depends mainly on electron temperature. Simulations show that strong impurity line radiation can distort this ratio. To correct for these effects, special beryllium-scandium filters are employed to select the line-free region between 2 and 4.5 keV. Other filter pairs allow corrections for Fe L and Ni L line radiation as well as Ti K and Ni K emission. Good accuracy is also obtained with simple beryllium filters, provided that impurity corrections are incorporated in the analysis, taking line intensities from the x-ray pulse-height analysis diagnostic. A description of modeling calculations and a comparison of temperature values from this diagnostic with data from the x-ray pulse height analysis, the electron cyclotron emission, and the Thomson scattering diagnostics are presented. Several applications of the absorber foil electron temperature diagnostic on TFTR are discussed

  4. Multichord time-resolved electron temperature measurements by the x-ray absorber-foil method on TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Kiraly, J.; Bitter, M.; Efthimion, P.; von Goeler, S.; Grek, B.; Hill, K.W.; Johnson, D.; McGuire, K.; Sauthoff, N.; Sesnic, S.

    1985-09-01

    Absorber foils have been installed in the TFTR X-Ray Imaging System to permit measurement of the electron temperature along 10 to 30 chords spaced at 5-12.5 cm with a time resolution of less than 100 ..mu..s. The technique uses the ratio of x-ray fluxes transmitted through two different foils. The ratio depends mainly on electron temperature. Simulations show that strong impurity line radiation can distort this ratio. To correct for these effects, special beryllium-scandium filters are employed to select the line-free region between 2 and 4.5 keV. Other filter pairs allow corrections for Fe L and Ni L line radiation as well as Ti K and Ni K emission. Good accuracy is also obtained with simple beryllium filters, provided that impurity corrections are incorporated in the analysis, taking line intensities from the x-ray pulse-height analysis diagnostic. A description of modeling calculations and a comparison of temperature values from this diagnostic with data from the x-ray pulse height analysis, the electron cyclotron emission, and the Thomson scattering diagnostics are presented. Several applications of the absorber foil electron temperature diagnostic on TFTR are discussed.

  5. Temperature and entropy of Schwarzschild-de Sitter space-time

    International Nuclear Information System (INIS)

    Shankaranarayanan, S.

    2003-01-01

    In the light of recent interest in quantum gravity in de Sitter space, we investigate semiclassical aspects of four-dimensional Schwarzschild-de Sitter space-time using the method of complex paths. The standard semiclassical techniques (such as Bogoliubov coefficients and Euclidean field theory) have been useful to study quantum effects in space-times with single horizons; however, none of these approaches seem to work for Schwarzschild-de Sitter space-time or, in general, for space-times with multiple horizons. We extend the method of complex paths to space-times with multiple horizons and obtain the spectrum of particles produced in these space-times. We show that the temperature of radiation in these space-times is proportional to the effective surface gravity--the inverse harmonic sum of surface gravity of each horizon. For the Schwarzschild-de Sitter space-time, we apply the method of complex paths to three different coordinate systems--spherically symmetric, Painleve, and Lemaitre. We show that the equilibrium temperature in Schwarzschild-de Sitter space-time is the harmonic mean of cosmological and event horizon temperatures. We obtain Bogoliubov coefficients for space-times with multiple horizons by analyzing the mode functions of the quantum fields near the horizons. We propose a new definition of entropy for space-times with multiple horizons, analogous to the entropic definition for space-times with a single horizon. We define entropy for these space-times to be inversely proportional to the square of the effective surface gravity. We show that this definition of entropy for Schwarzschild-de Sitter space-time satisfies the D-bound conjecture

  6. One-dimensional time-dependent conduction states and temperature distribution along a normal zone during a quench

    International Nuclear Information System (INIS)

    Lopez, G.

    1991-01-01

    The quench simulations of a superconducting (s.c.) magnet requires some assumptions about the evolution of the normal zone and its temperature profile. The axial evolution of the normal zone is considered through the longitudinal quench velocity. However, the transversal quench propagation may be considered through the transversal quench velocity or with the turn-to-turn time delay quench propagation. The temperature distribution has been assumed adiabatic-like or cosine-like in two different computer programs. Although both profiles are different, they bring about more or less the same qualitative quench results differing only in about 8%. Unfortunately, there are not experimental data for the temperature profile along the conductor in a quench event to have a realistic comparison. Little attention has received the temperature profile, mainly because it is not so critical parameter in the quench analysis. Nonetheless, a confident quench analysis requires that the temperature distribution along the normal zone be taken into account with good approximation. In this paper, an analytical study is made about the temperature profile

  7. Analysis of temperature and stress distribution of superheater tubes after attemperation or sootblower activation

    International Nuclear Information System (INIS)

    Madejski, Paweł; Taler, Dawid

    2013-01-01

    Highlights: • The CFD simulation was used to calculate 3D steam and tube wall temperature distributions in the platen superheater. • The CFD results can be used in design of superheaters made of tubes with complex cross-section. • The CFD analysis enables the proper selection of the steel grade. • The transient temperature and stress distributions were calculated using Finite Volume Method. • The detailed analysis prevents superheater tubes from excessive stresses during sootblower or attemperator activation. - Abstract: Superheaters are characterized by high metal temperatures due to higher steam temperature and low heat transfer coefficients on the tube inner surfaces. Superheaters have especially difficult operating conditions, particularly during attemperator and sootblower activations, when temperature and steam flow rate as well as tube wall temperature change with time. A detailed thermo-mechanical analysis of the superheater tubes makes it possible to identify the cause of premature high-temperature failures and aids greatly in the changes in tubing arrangement and improving start-up technology. This paper presents a thermal and strength analysis of a tube “double omega”, used in the steam superheaters in CFB boilers

  8. Decoherence, environment-induced superselection, and classicality of a macroscopic quantum superposition generated by quantum cloning

    International Nuclear Information System (INIS)

    De Martini, Francesco; Sciarrino, Fabio; Spagnolo, Nicolo

    2009-01-01

    The high resilience to decoherence shown by a recently discovered macroscopic quantum superposition (MQS) generated by a quantum-injected optical parametric amplifier and involving a number of photons in excess of 5x10 4 motivates the present theoretical and numerical investigation. The results are analyzed in comparison with the properties of the MQS based on |α> and N-photon maximally entangled states (NOON), in the perspective of the comprehensive theory of the subject by Zurek. In that perspective the concepts of 'pointer state' and 'environment-induced superselection' are applied to the new scheme.

  9. Safety analysis of a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shimazu, Akira; Morimoto, Toshio

    1975-01-01

    In recent years, in order to satisfy the social requirements of environment and safety and also to cope with the current energy stringency, the installation of safe nuclear power plants is indispensable. Herein, safety analysis and evaluation to confirm quantitatively the safety design of a nuclear power plant become more and more important. The safety analysis and its methods for a high temperature gas-cooled reactor are described, with emphasis placed on the practices by Fuji Electric Manufacturing Co. Fundamental rule of securing plant safety ; safety analysis in normal operation regarding plant dynamic characteristics and radioactivity evaluation ; and safety analysis at the time of accidents regarding plant response to the accidents and radioactivity evaluation are explained. (Mori, K.)

  10. Temperature of thermal plasma jets: A time resolved approach

    Energy Technology Data Exchange (ETDEWEB)

    Sahasrabudhe, S N; Joshi, N K; Barve, D N; Ghorui, S; Tiwari, N; Das, A K, E-mail: sns@barc.gov.i [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai - 400 094 (India)

    2010-02-01

    Boltzmann Plot method is routinely used for temperature measurement of thermal plasma jets emanating from plasma torches. Here, it is implicitly assumed that the plasma jet is 'steady' in time. However, most of the experimenters do not take into account the variations due to ripple in the high current DC power supplies used to run plasma torches. If a 3-phase transductor type of power supply is used, then the ripple frequency is 150 Hz and if 3- phase SCR based power supply is used, then the ripple frequency is 300 Hz. The electrical power fed to plasma torch varies at ripple frequency. In time scale, it is about 3.3 to 6.7 ms for one cycle of ripple and it is much larger than the arc root movement times which are within 0.2 ms. Fast photography of plasma jets shows that the luminosity of plasma jet also varies exactly like the ripple in the power supply voltage and thus with the power. Intensity of line radiations varies nonlinearly with the instantaneous power fed to the torch and the simple time average of line intensities taken for calculation of temperature is not appropriate. In this paper, these variations and their effect on temperature determination are discussed and a method to get appropriate data is suggested. With a small adaptation discussed here, this method can be used to get temperature profile of plasma jet within a short time.

  11. Analysis of Global Urban Temperature Trends and Urbanization Impacts

    Science.gov (United States)

    Lee, K. I.; Ryu, J.; Jeon, S. W.

    2018-04-01

    Due to urbanization, urban areas are shrinking green spaces and increasing concrete, asphalt pavement. So urban climates are different from non-urban areas. In addition, long-term macroscopic studies of urban climate change are becoming more important as global urbanization affects global warming. To do this, it is necessary to analyze the effect of urbanization on the temporal change in urban temperature with the same temperature data and standards for urban areas around the world. In this study, time series analysis was performed with the maximum, minimum, mean and standard values of surface temperature during the from 1980 to 2010 and analyzed the effect of urbanization through linear regression analysis with variables (population, night light, NDVI, urban area). As a result, the minimum value of the surface temperature of the urban area reflects an increase by a rate of 0.28K decade-1 over the past 31 years, the maximum value reflects an increase by a rate of 0.372K decade-1, the mean value reflects an increase by a rate of 0.208 decade-1, and the standard deviation reflects a decrease by rate of 0.023K decade-1. And the change of surface temperature in urban areas is affected by urbanization related to land cover such as decrease of greenery and increase of pavement area, but socioeconomic variables are less influential than NDVI in this study. This study are expected to provide an approach to future research and policy-planning for urban temperature change and urbanization impacts.

  12. Large-strain time-temperature equivalence in high density polyethylene for prediction of extreme deformation and damage

    Directory of Open Access Journals (Sweden)

    Gray G.T.

    2012-08-01

    Full Text Available Time-temperature equivalence is a widely recognized property of many time-dependent material systems, where there is a clear predictive link relating the deformation response at a nominal temperature and a high strain-rate to an equivalent response at a depressed temperature and nominal strain-rate. It has been found that high-density polyethylene (HDPE obeys a linear empirical formulation relating test temperature and strain-rate. This observation was extended to continuous stress-strain curves, such that material response measured in a load frame at large strains and low strain-rates (at depressed temperatures could be translated into a temperature-dependent response at high strain-rates and validated against Taylor impact results. Time-temperature equivalence was used in conjuction with jump-rate compression tests to investigate isothermal response at high strain-rate while exluding adiabatic heating. The validated constitutive response was then applied to the analysis of Dynamic-Tensile-Extrusion of HDPE, a tensile analog to Taylor impact developed at LANL. The Dyn-Ten-Ext test results and FEA found that HDPE deformed smoothly after exiting the die, and after substantial drawing appeared to undergo a pressure-dependent shear damage mechanism at intermediate velocities, while it fragmented at high velocities. Dynamic-Tensile-Extrusion, properly coupled with a validated constitutive model, can successfully probe extreme tensile deformation and damage of polymers.

  13. Diamond's temperature: Unruh effect for bounded trajectories and thermal time hypothesis

    International Nuclear Information System (INIS)

    Martinetti, Pierre; Rovelli, Carlo

    2003-01-01

    We study the Unruh effect for an observer with a finite lifetime, using the thermal time hypothesis. The thermal time hypothesis maintains that: (i) time is the physical quantity determined by the flow defined by a state over an observable algebra and (ii) when this flow is proportional to a geometric flow in spacetime, the temperature is the ratio between flow parameter and proper time. An eternal accelerated Unruh observer has access to the local algebra associated with a Rindler wedge. The flow defined by the Minkowski vacuum of a field theory over this algebra is proportional to a flow in spacetime and the associated temperature is the Unruh temperature. An observer with a finite lifetime has access to the local observable algebra associated with a finite spacetime region called a 'diamond'. The flow defined by the Minkowski vacuum of a (four-dimensional, conformally invariant) quantum field theory over this algebra is also proportional to a flow in spacetime. The associated temperature generalizes the Unruh temperature to finite lifetime observers. Furthermore, this temperature does not vanish even in the limit in which the acceleration is zero. The temperature associated with an inertial observer with lifetime Τ which we denote as 'diamond's temperature', is T D = 2 h/ π k b Τ. This temperature is related to the fact that a finite lifetime observer does not have access to all the degrees of freedom of the quantum field theory. However, we do not attempt to provide any physical interpretation of our proposed assignment of a temperature

  14. Impact of Air Temperature on London Ambulance Call-Out Incidents and Response Times

    Directory of Open Access Journals (Sweden)

    Marliyyah A. Mahmood

    2017-08-01

    Full Text Available Ambulance services are in operation around the world and yet, until recently, ambulance data has only been used for operational purposes rather than for assessing public health. Ambulance call-out data offers new and valuable (near real-time information that can be used to assess the impact of environmental conditions, such as temperature, upon human health. A detailed analysis of London ambulance data at a selection of dates between 2003 and 2015 is presented and compared to London temperature data. In London, the speed of ambulance response begins to suffer when the mean daily air temperature drops below 2 °C or rises above 20 °C. This is explained largely by the increased number of calls past these threshold temperatures. The baseline relationships established in this work will inform the prediction of likely changes in ambulance demand (and illness types that may be caused by seasonal temperature changes and the increased frequency and intensity of extreme/severe weather events, exacerbated by climate change, in the future.

  15. Time dependence of magnetization of high temperature superconductors

    International Nuclear Information System (INIS)

    Larkin, A.I.; Geshkenbein, V.B.

    1988-10-01

    Magnetization of high T c superconductors logarithmically decreases with time. There is a maximum in the temperature dependence of the coefficient at this logarithm. If one assumes that there do exist two kinds of pinning centers, then this dependence can be described in the Anderson theory of thermal creeps of Abrikosov's vortices. The temperature dependence of the critical current is also discussed. (author). 23 refs

  16. Influence of temperature on patch residence time in parasitoids: physiological and behavioural mechanisms

    Science.gov (United States)

    Moiroux, Joffrey; Abram, Paul K.; Louâpre, Philippe; Barrette, Maryse; Brodeur, Jacques; Boivin, Guy

    2016-04-01

    Patch time allocation has received much attention in the context of optimal foraging theory, including the effect of environmental variables. We investigated the direct role of temperature on patch time allocation by parasitoids through physiological and behavioural mechanisms and its indirect role via changes in sex allocation and behavioural defences of the hosts. We compared the influence of foraging temperature on patch residence time between an egg parasitoid, Trichogramma euproctidis, and an aphid parasitoid, Aphidius ervi. The latter attacks hosts that are able to actively defend themselves, and may thus indirectly influence patch time allocation of the parasitoid. Patch residence time decreased with an increase in temperature in both species. The increased activity levels with warming, as evidenced by the increase in walking speed, partially explained these variations, but other mechanisms were involved. In T. euproctidis, the ability to externally discriminate parasitised hosts decreased at low temperature, resulting in a longer patch residence time. Changes in sex allocation with temperature did not explain changes in patch time allocation in this species. For A. ervi, we observed that aphids frequently escaped at intermediate temperature and defended themselves aggressively at high temperature, but displayed few defence mechanisms at low temperature. These defensive behaviours resulted in a decreased patch residence time for the parasitoid and partly explained the fact that A. ervi remained for a shorter time at the intermediate and high temperatures than at the lowest temperature. Our results suggest that global warming may affect host-parasitoid interactions through complex mechanisms including both direct and indirect effects on parasitoid patch time allocation.

  17. Constructiveness and destructiveness of temperature in asymmetric quantum pseudo dot qubit system

    Science.gov (United States)

    Chen, Ying-Jie; Song, Hai-Tao; Xiao, Jing-Lin

    2018-06-01

    By using the variational method of the Pekar type, we theoretically study the temperature effects on the asymmetric quantum pseudo dot qubit with a pseudoharmonic potential under an electromagnetic field. The numerical results are analyzed and discussed in detail and show that the relationships of the ground and first excited state energies, the electron oscillation period and the electron probability density in the superposition state of the ground state and the first-excited state with the temperature, the chemical potential, the pseudoharmonic potential, the electric field strength, the cyclotron frequency, the electron phonon coupling constant, the transverse and longitudinal effective confinement length, respectively.

  18. Application of Fault Tree Analysis for Estimating Temperature Alarm Circuit Reliability

    International Nuclear Information System (INIS)

    El-Shanshoury, A.I.; El-Shanshoury, G.I.

    2011-01-01

    Fault Tree Analysis (FTA) is one of the most widely-used methods in system reliability analysis. It is a graphical technique that provides a systematic description of the combinations of possible occurrences in a system, which can result in an undesirable outcome. The presented paper deals with the application of FTA method in analyzing temperature alarm circuit. The criticality failure of this circuit comes from failing to alarm when temperature exceeds a certain limit. In order for a circuit to be safe, a detailed analysis of the faults causing circuit failure is performed by configuring fault tree diagram (qualitative analysis). Calculations of circuit quantitative reliability parameters such as Failure Rate (FR) and Mean Time between Failures (MTBF) are also done by using Relex 2009 computer program. Benefits of FTA are assessing system reliability or safety during operation, improving understanding of the system, and identifying root causes of equipment failures

  19. Development of NONSTA code for the design and analysis of LMR high temperature structure

    International Nuclear Information System (INIS)

    Kim, Jong Bum; Lee, H. Y.; Yoo, B.

    1999-02-01

    Liquid metal reactor(LMR) operates at high temperature (500-550 dg C) and structural materials undergo complex deformation behavior like diffusion, dislocation glide, and dislocation climb due to high temperature environment. And the material life reduces rapidly due to the interaction of cavities created inside structural materials and high temperature fatigue cracks. Thus the establishment of high temperature structure analysis techniques is necessary for the reliability and safety evaluation of such structures. The objectives of this study are to develop NONSTA code as the subprogram of ABAQUS code adopting constitutive equations which can predict high temperature material behavior precisely and to build the systematic analysis procedures. The developed program was applied to the example problems such as the tensile analysis using exponential creep model and the repetitive tensile-compression analysis using Chaboche unified viscoplastic model. In addition, the problem of a plate with a center hole subjected to tensile load was solved to show the applicability of the program to multiaxial problem and the time dependent stress redistribution was observed. (Author). 40 refs., 2 tabs., 24 figs

  20. Creative design-by-analysis solutions applied to high-temperature components

    International Nuclear Information System (INIS)

    Dhalla, A.K.

    1993-01-01

    Elevated temperature design has evolved over the last two decades from design-by-formula philosophy of the ASME Boiler and Pressure Vessel Code, Sections I and VIII (Division 1), to the design-by-analysis philosophy of Section III, Code Case N-47. The benefits of design-by-analysis procedures, which were developed under a US-DOE-sponsored high-temperature structural design (HTSD) program, are illustrated in the paper through five design examples taken from two U.S. liquid metal reactor (LMR) plants. Emphasis in the paper is placed upon the use of a detailed, nonlinear finite element analysis method to understand the structural response and to suggest design optimization so as to comply with Code Case N-47 criteria. A detailed analysis is cost-effective, if selectively used, to qualify an LMR component for service when long-lead-time structural forgings, procured based upon simplified preliminary analysis, do not meet the design criteria, or the operational loads are increased after the components have been fabricated. In the future, the overall costs of a detailed analysis will be reduced even further with the availability of finite element software used on workstations or PCs

  1. Time dependent temperature distribution in pulsed Ti:sapphire lasers

    Science.gov (United States)

    Buoncristiani, A. Martin; Byvik, Charles E.; Farrukh, Usamah O.

    1988-01-01

    An expression is derived for the time dependent temperature distribution in a finite solid state laser rod for an end-pumped beam of arbitrary shape. The specific case of end pumping by circular (constant) or Gaussian beam is described. The temperature profile for a single pump pulse and for repetitive pulse operation is discussed. The particular case of the temperature distribution in a pulsed titanium:sapphire rod is considered.

  2. Superposition of two optical vortices with opposite integer or non-integer orbital angular momentum

    Directory of Open Access Journals (Sweden)

    Carlos Fernando Díaz Meza

    2016-01-01

    Full Text Available This work develops a brief proposal to achieve the superposition of two opposite vortex beams, both with integer or non-integer mean value of the orbital angular momentum. The first part is about the generation of this kind of spatial light distributions through a modified Brown and Lohmann’s hologram. The inclusion of a simple mathematical expression into the pixelated grid’s transmittance function, based in Fourier domain properties, shifts the diffraction orders counterclockwise and clockwise to the same point and allows the addition of different modes. The strategy is theoretically and experimentally validated for the case of two opposite rotation helical wavefronts.

  3. Development of Adiabatic Doppler Feedback Model in 3D space time analysis Code ARCH

    International Nuclear Information System (INIS)

    Dwivedi, D.K.; Gupta, Anurag

    2015-01-01

    Integrated 3D space-time neutron kinetics with thermal-hydraulic feedback code system is being developed for transient analysis of Compact High Temperature Reactor (CHTR) and Advanced Heavy Water Reactor (AHWR). ARCH (code for Analysis of Reactor transients in Cartesian and Hexagon geometries) has been developed with IQS module for efficient 3D space time analysis. Recently, an adiabatic Doppler (fuel temperature) feedback module has been incorporated in this ARCH-IQS version of tile code. In the adiabatic model of fuel temperature feedback, the transfer of the excess heat from the fuel to the coolant during transient is neglected. The viability of Doppler feedback in ARCH-IQS with adiabatic heating has been checked with AER benchmark (Dyn002). Analyses of anticipated transient without scram (ATWS) case in CHTR as well as in AHWR have been performed with adiabatic fuel temperature feedback. The methodology and results have been presented in this paper. (author)

  4. Real-time finite-temperature correlators from AdS/CFT

    International Nuclear Information System (INIS)

    Barnes, Edwin; Vaman, Diana; Wu Chaolun; Arnold, Peter

    2010-01-01

    In this paper we use anti-de Sitter/conformal field theory correspondence ideas in conjunction with insights from finite-temperature real-time field theory formalism to compute 3-point correlators of N=4 super Yang-Mills operators, in real time and at finite temperature. To this end, we propose that the gravity field action is integrated only over the right and left quadrants of the Penrose diagram of the anti-de Sitter-Schwarzschild background, with a relative sign between the two terms. For concreteness we consider the case of a scalar field in the black hole background. Using the scalar field Schwinger-Keldysh bulk-to-boundary propagators, we give the general expression of a 3-point real-time Green's correlator. We then note that this particular prescription amounts to adapting the finite-temperature analog of Veltman's circling rules to tree-level Witten diagrams, and comment on the retarded and Feynman scalar bulk-to-boundary propagators. We subject our prescription to several checks: Kubo-Martin-Schwinger identities, the largest time equation, and the zero-temperature limit. When specializing to a particular retarded (causal) 3-point function, we find a very simple answer: the momentum-space correlator is given by three causal (two advanced and one retarded) bulk-to-boundary propagators, meeting at a vertex point which is integrated from spatial infinity to the horizon only. This result is expected based on analyticity, since the retarded n-point functions are obtained by analytic continuation from the imaginary-time Green's function, and based on causality considerations.

  5. Time series analysis of the association between ambient temperature and cerebrovascular morbidity in the elderly in Shanghai, China

    Science.gov (United States)

    Zhang, Xian-Jing; Ma, Wei-Ping; Zhao, Nai-Qing; Wang, Xi-Ling

    2016-01-01

    Research on the association between ambient temperature and cerebrovascular morbidity is scarce in China. In this study, we applied mixed generalized additive model (MGAM) to daily counts of cerebrovascular disease of Shanghai residents aged 65 years or older from 2007-2011, stratified by gender. Weighted daily mean temperature up to lags of one week was smoothed by natural cubic spline, and was added into the model to assess both linear and nonlinear effects of temperature. We found that when the mean temperature increased by 1 °C, the male cases of cerebrovascular disease reduced by 0.95% (95% Confidence Interval (CI): 0.80%, 1.10%) or reduced by 0.34% (95% CI: -0.68, 1.36%) in conditions of temperature was below or above 27 °C. However, for every 1 °C increase in temperature, the female cases of cerebrovascular disease increased by 0.34% (95% CI: -0.26%, 0.94%) or decreased by 0.92% (95% CI: 0.72, 1.11%) in conditions of temperature was below or above 8 °C, respectively. Temperature and cerebrovascular morbidity is negatively associated in Shanghai. MGAM is recommended in assessing the association between environmental hazards and health outcomes in time series studies.

  6. Relative air temperature analysis external building on Gowa Campus

    Science.gov (United States)

    Mustamin, Tayeb; Rahim, Ramli; Baharuddin; Jamala, Nurul; Kusno, Asniawaty

    2018-03-01

    This study aims to data analyze the relative temperature and humidity of the air outside the building. Data retrieval taken from weather monitoring device (monitoring) Vaisala, RTU (Remote Terminal Unit), Which is part of the AWS (Automatic Weather Stations) Then Processing data processed and analyzed by using Microsoft Excel program in the form of graph / picture fluctuation Which shows the average value, standard deviation, maximum value, and minimum value. Results of data processing then grouped in the form: Daily, and monthly, based on time intervals every 30 minutes. The results showed Outside air temperatures in March, April, May and September 2016 Which entered in the thermal comfort zone according to SNI standard (Indonesian National Standard) only at 06.00-10.00. In late March to early April Thermal comfort zone also occurs at 15.30-18.00. The highest maximum air temperature occurred in September 2016 at 11.01-11.30 And the lowest minimum value in September 2016, time 6:00 to 6:30. The result of the next analysis shows the level of data conformity with thermal comfort zone based on SNI (Indonesian National Standard) every month.

  7. Temperature has a causal effect on avian timing of reproduction

    NARCIS (Netherlands)

    Visser, M.E.; Holleman, L.J.M.; Caro, S.P.

    2009-01-01

    Many bird species reproduce earlier in years with high spring temperatures, but little is known about the causal effect of temperature. Temperature may have a direct effect on timing of reproduction but the correlation may also be indirect, for instance via food phenology. As climate change has led

  8. Dynamic temperature estimation and real time emergency rating of transmission cables

    DEFF Research Database (Denmark)

    Olsen, R. S.; Holboll, J.; Gudmundsdottir, Unnur Stella

    2012-01-01

    enables real time emergency ratings, such that the transmission system operator can make well-founded decisions during faults. Hereunder is included the capability of producing high resolution loadability vs. time schedules within few minutes, such that the TSO can safely control the system.......). It is found that the calculated temperature estimations are fairly accurate — within 1.5oC of the finite element method (FEM) simulation to which it is compared — both when looking at the temperature profile (time dependent) and the temperature distribution (geometric dependent). The methodology moreover...

  9. Global Trend Analysis of Multi-decade Soil Temperature Records Show Soils Resistant to Warming

    Science.gov (United States)

    Frey, S. D.; Jennings, K.

    2017-12-01

    Soil temperature is an important determinant of many subterranean ecological processes including plant growth, nutrient cycling, and carbon sequestration. Soils are expected to warm in response to increasing global surface temperatures; however, despite the importance of soil temperature to ecosystem processes, less attention has been given to examining changes in soil temperature over time. We collected long-term (> 20 years) soil temperature records from approximately 50 sites globally, many with multiple depths (5 - 100 cm), and examined temperature trends over the last few decades. For each site and depth we calculated annual summer means and conducted non-parametric Mann Kendall trend and Sen slope analysis to assess changes in summer soil temperature over the length of each time series. The mean summer soil temperature trend across all sites and depths was not significantly different than zero (mean = 0.004 °C year-1 ± 0.033 SD), suggesting that soils have not warmed over the observation period. Of the subset of sites that exhibit significant increases in temperature over time, site location, depth of measurement, time series length, and neither start nor end date seem to be related to trend strength. These results provide evidence that the thermal regime of soils may have a stronger buffering capacity than expected, having important implications for the global carbon cycle and feedbacks to climate change.

  10. Relativistic Inverse Scattering Problem for a Superposition of a Nonlocal Separable and a Local Quasipotential

    International Nuclear Information System (INIS)

    Chernichenko, Yu.D.

    2005-01-01

    Within the relativistic quasipotential approach to quantum field theory, the relativistic inverse scattering problem is solved for the case where the total quasipotential describing the interaction of two relativistic spinless particles having different masses is a superposition of a nonlocal separable and a local quasipotential. It is assumed that the local component of the total quasipotential is known and that there exist bound states in this local component. It is shown that the nonlocal separable component of the total interaction can be reconstructed provided that the local component, an increment of the phase shift, and the energies of bound states are known

  11. Associations between air temperature and cardio-respiratory mortality in the urban area of Beijing, China: a time-series analysis.

    Science.gov (United States)

    Liu, Liqun; Breitner, Susanne; Pan, Xiaochuan; Franck, Ulrich; Leitte, Arne Marian; Wiedensohler, Alfred; von Klot, Stephanie; Wichmann, H-Erich; Peters, Annette; Schneider, Alexandra

    2011-05-25

    Associations between air temperature and mortality have been consistently observed in Europe and the United States; however, there is a lack of studies for Asian countries. Our study investigated the association between air temperature and cardio-respiratory mortality in the urban area of Beijing, China. Death counts for cardiovascular and respiratory diseases for adult residents (≥15 years), meteorological parameters and concentrations of particulate air pollution were obtained from January 2003 to August 2005. The effects of two-day and 15-day average temperatures were estimated by Poisson regression models, controlling for time trend, relative humidity and other confounders if necessary. Effects were explored for warm (April to September) and cold periods (October to March) separately. The lagged effects of daily temperature were investigated by polynomial distributed lag (PDL) models. We observed a J-shaped exposure-response function only for 15-day average temperature and respiratory mortality in the warm period, with 21.3°C as the threshold temperature. All other exposure-response functions could be considered as linear. In the warm period, a 5°C increase of two-day average temperature was associated with a RR of 1.098 (95% confidence interval (95%CI): 1.057-1.140) for cardiovascular and 1.134 (95%CI: 1.050-1.224) for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.040 (95%CI: 0.990-1.093) for cardiovascular mortality. In the cold period, a 5°C increase of two-day average temperature was associated with a RR of 1.149 (95%CI: 1.078-1.224) for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.057 (95%CI: 1.022-1.094) for cardiovascular mortality. The effects remained robust after considering particles as additional confounders. Both increases and decreases in air temperature are associated with an increased risk of cardiovascular mortality. The effects of

  12. Associations between air temperature and cardio-respiratory mortality in the urban area of Beijing, China: a time-series analysis

    Directory of Open Access Journals (Sweden)

    Wiedensohler Alfred

    2011-05-01

    Full Text Available Abstract Background Associations between air temperature and mortality have been consistently observed in Europe and the United States; however, there is a lack of studies for Asian countries. Our study investigated the association between air temperature and cardio-respiratory mortality in the urban area of Beijing, China. Methods Death counts for cardiovascular and respiratory diseases for adult residents (≥15 years, meteorological parameters and concentrations of particulate air pollution were obtained from January 2003 to August 2005. The effects of two-day and 15-day average temperatures were estimated by Poisson regression models, controlling for time trend, relative humidity and other confounders if necessary. Effects were explored for warm (April to September and cold periods (October to March separately. The lagged effects of daily temperature were investigated by polynomial distributed lag (PDL models. Results We observed a J-shaped exposure-response function only for 15-day average temperature and respiratory mortality in the warm period, with 21.3°C as the threshold temperature. All other exposure-response functions could be considered as linear. In the warm period, a 5°C increase of two-day average temperature was associated with a RR of 1.098 (95% confidence interval (95%CI: 1.057-1.140 for cardiovascular and 1.134 (95%CI: 1.050-1.224 for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.040 (95%CI: 0.990-1.093 for cardiovascular mortality. In the cold period, a 5°C increase of two-day average temperature was associated with a RR of 1.149 (95%CI: 1.078-1.224 for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.057 (95%CI: 1.022-1.094 for cardiovascular mortality. The effects remained robust after considering particles as additional confounders. Conclusions Both increases and decreases in air temperature are associated with an

  13. Some kinematics and dynamics from a superposition of two axisymmetric stellar systems

    International Nuclear Information System (INIS)

    Cubarsi i Morera, R.

    1990-01-01

    Some kinematic and dynamic implications of a superposition of two stellar systems are studied. In the general case of a stellar system in nonsteady states, Chandrasekhar's axially symmetrical model has been adopted for each one of the subsystems. The solution obtained for the potential function provides some kinematical constraints between the subsystems. These relationships are derived using the partial centered moments of the velocity distribution and the subcentroid velocities in order to study the velocity distribution. These relationships are used to prove that, only in a stellar system where the potential function is assumed to be stationary, the relative movement of the local subcentroids (not only in rotation), the vertex deviation phenomenon, and the whole set of the second-order-centered moments may be explained. A qualitative verification with three stellar samples in the solar neighborhood is carried out. 41 refs

  14. Ozone-Temperature Diurnal and Longer Term Correlations, in the Lower Thermosphere, Mesosphere and Stratosphere, Based on Measurements from SABER on TIMED

    Science.gov (United States)

    Huang, Frank T.; Mayr, Hans G.; Russell, James M., III; Mlynczak, Martin G.

    2012-01-01

    The analysis of mutual ozone-temperature variations can provide useful information on their interdependencies relative to the photochemistry and dynamics governing their behavior. Previous studies have mostly been based on satellite measurements taken at a fixed local time in the stratosphere and lower mesosphere. For these data, it is shown that the zonal mean ozone amounts and temperatures in the lower stratosphere are mostly positively correlated, while they are mostly negatively correlated in the upper stratosphere and in the lower mesosphere. The negative correlation, due to the dependence of photochemical reaction rates on temperature, indicates that ozone photochemistry is more important than dynamics in determining the ozone amounts. In this study, we provide new results by extending the analysis to include diurnal variations over 24 hrs of local time, and to larger spatial regimes, to include the upper mesosphere and lower thermosphere (MLT). The results are based on measurements by the SABER instrument on the TIMED satellite. For mean variations (i.e., averages over local time and longitude) in the MLT, our results show that there is a sharp reversal in the correlation near 80 km altitude, above which the ozone mixing ratio and temperature are mostly positively correlated, while they are mostly negatively correlated below 80 km. This is consistent with the view that above -80 km, effects due to dynamics are more important compared to photochemistry. For diurnal variations, both the ozone and temperature show phase progressions in local time, as a function of altitude and latitude. For temperature, the phase progression is as expected, as they represent migrating tides. For day time ozone, we also find regular phase progression in local time over the whole altitude range of our analysis, 25 to 105 km, at least for low latitudes. This was not previously known, although phase progressions had been noted by us and by others at lower altitudes. For diurnal

  15. Design, fabrication and characterisation of a microfluidic time-temperature indicator

    Science.gov (United States)

    Schmitt, P.; Wedrich, K.; Müller, L.; Mehner, H.; Hoffmann, M.

    2017-11-01

    This paper describes a concept for a passive microfluidic time-temperature indicator (TTI) intended for intelligent food packaging. A microfluidic system is presented that makes use of the temperature-dependent flow of suitable food ingredients in a microcapillary. Based on the creeping distance inside the capillary, the time-temperature integral can be determined. A demonstrator of the microsystem has been designed, fabricated and characterised using liquid sugar alcohols as indicator fluids. To enable a first wireless read-out of the passive TTI, the sensor was read out using a commercial RFID equipment, and capacitive measurements have been carried out.

  16. On-line testing of response time and calibration of temperature and pressure sensors in nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    1995-01-01

    Periodic calibrations and response time measurements are necessary for temperature and pressure sensors in the safety systems of nuclear power plants. Conventional measurement methods require the test to be performed at the sensor location or involve removing the sensor from the process and performing the tests in a laboratory or on the bench. The conventional methods are time consuming and have the potential of causing wear and tear on the equipment, can expose the test personnel to radiation and other harsh environments, and increase the length of the plant outage. Also, the conventional methods do not account for the installation effects which may have an influence on sensor performance. On-line testing methods alleviate these problems by providing remote sensor response time and calibration capabilities. For temperature sensors such as Resistance Temperature Detectors (RTDs) and thermocouples, an on-line test method called the Loop Current Step Response (LCSR) technique has been developed, and for pressure transmitters, an on-line method called noise analysis which was available for reactor diagnostics was validated for response time testing applications. Both the LCSR and noise analysis tests are performed periodically in U.S. nuclear power plants to meet the plant technical specification requirements for response time testing of safety-related sensors. Automated testing of the calibration of both temperature and pressure sensors can be accomplished through an on-line monitoring system installed in the plant. The system monitors the DC output of the sensors over the fuel cycle to determine if any calibration drift has occurred. Changes in calibration can be detected using signal averaging and intercomparison methods and analytical redundancy techniques. (author)

  17. Description of a portable wireless device for high-frequency body temperature acquisition and analysis.

    Science.gov (United States)

    Cuesta-Frau, David; Varela, Manuel; Aboy, Mateo; Miró-Martínez, Pau

    2009-01-01

    We describe a device for dual channel body temperature monitoring. The device can operate as a real time monitor or as a data logger, and has Bluetooth capabilities to enable for wireless data download to the computer used for data analysis. The proposed device is capable of sampling temperature at a rate of 1 sample per minute with a resolution of 0.01 °C . The internal memory allows for stand-alone data logging of up to 10 days. The device has a battery life of 50 hours in continuous real-time mode. In addition to describing the proposed device in detail, we report the results of a statistical analysis conducted to assess its accuracy and reproducibility.

  18. Spatial patterns in timing of the diurnal temperature cycle

    Directory of Open Access Journals (Sweden)

    T. R. H. Holmes

    2013-10-01

    Full Text Available This paper investigates the structural difference in timing of the diurnal temperature cycle (DTC over land resulting from choice of measuring device or model framework. It is shown that the timing can be reliably estimated from temporally sparse observations acquired from a constellation of low Earth-orbiting satellites given record lengths of at least three months. Based on a year of data, the spatial patterns of mean DTC timing are compared between temperature estimates from microwave Ka-band, geostationary thermal infrared (TIR, and numerical weather prediction model output from the Global Modeling and Assimilation Office (GMAO. It is found that the spatial patterns can be explained by vegetation effects, sensing depth differences and more speculatively the orientation of orographic relief features. In absolute terms, the GMAO model puts the peak of the DTC on average at 12:50 local solar time, 23 min before TIR with a peak temperature at 13:13 (both averaged over Africa and Europe. Since TIR is the shallowest observation of the land surface, this small difference represents a structural error that possibly affects the model's ability to assimilate observations that are closely tied to the DTC. The equivalent average timing for Ka-band is 13:44, which is influenced by the effect of increased sensing depth in desert areas. For non-desert areas, the Ka-band observations lag the TIR observations by only 15 min, which is in agreement with their respective theoretical sensing depth. The results of this comparison provide insights into the structural differences between temperature measurements and models, and can be used as a first step to account for these differences in a coherent way.

  19. Fast, noise-free memory for photon synchronization at room temperature.

    Science.gov (United States)

    Finkelstein, Ran; Poem, Eilon; Michel, Ohad; Lahad, Ohr; Firstenberg, Ofer

    2018-01-01

    Future quantum photonic networks require coherent optical memories for synchronizing quantum sources and gates of probabilistic nature. We demonstrate a fast ladder memory (FLAME) mapping the optical field onto the superposition between electronic orbitals of rubidium vapor. Using a ladder-level system of orbital transitions with nearly degenerate frequencies simultaneously enables high bandwidth, low noise, and long memory lifetime. We store and retrieve 1.7-ns-long pulses, containing 0.5 photons on average, and observe short-time external efficiency of 25%, memory lifetime (1/ e ) of 86 ns, and below 10 -4 added noise photons. Consequently, coupling this memory to a probabilistic source would enhance the on-demand photon generation probability by a factor of 12, the highest number yet reported for a noise-free, room temperature memory. This paves the way toward the controlled production of large quantum states of light from probabilistic photon sources.

  20. Temperature dependence of relaxation times in proton components of fatty acids

    International Nuclear Information System (INIS)

    Kuroda, Kagayaki; Iwabuchi, Taku; Saito, Kensuke; Obara, Makoto; Honda, Masatoshi; Imai, Yutaka

    2011-01-01

    We examined the temperature dependence of relaxation times in proton components of fatty acids in various samples in vitro at 11 tesla as a standard calibration data for quantitative temperature imaging of fat. The spin-lattice relaxation time, T 1 , of both the methylene (CH 2 ) chain and terminal methyl (CH 3 ) was linearly related to temperature (r>0.98, P 2 signal for calibration and observed the signal with 18% of CH 3 to estimate temperature. These findings suggested that separating the fatty acid components would significantly improve accuracy in quantitative thermometry for fat. Use of the T 1 of CH 2 seems promising in terms of reliability and reproducibility in measuring temperature of fat. (author)

  1. Analysis of time variable gravity data over Africa

    International Nuclear Information System (INIS)

    Barletta, Valentina R.; Aoudia, Abdelkarim

    2010-01-01

    Africa, in principle, is a unique laboratory where to address the individual contribution of the different facets of the Earth system as well as their interactions. However, it shows both a rich hydrology that exhibits complex characteristics of rivers and wide basins of different sizes in addition to the hydrology of lakes, and other wetlands and storage reservoirs and groundwater aquifers, and continuous and discontinuous changes in the physical properties of the Earth interior. Stretching and heating processes are accompanied by punctuated episodes of faulting and/or volcanism, and longer-term changes in surface elevation that disrupt river drainage and climate. Space gravity missions GRACE, flying since 2002, was expressly designed to detect the time-dependent gravity field in order to study the hydrological cycle of the Earth, but has also evidenced Solid Earth phenomena such as Post Glacial Rebound (PGR) and the signature of a giant earthquake such as the 2004 Sumatra. Hence the idea to analyze time variable gravity data over Africa in order to retrieve fingerprints of geophysical phenomena. The exploitation of the GRACE data for geophysics, however, is not straightforward. Indeed, the quality of the signal is not uniform worldwide and gravity is always the superposition of contributions from solid Earth as well as climate-related phenomena, that cannot be easily distinguished, at a first glance, both in time and space. In the present study we show that mass changes cannot be classified simply as trends or periodic signals. We follow an alternative way to separate complementary components, periodic and non-periodic signals, without loosing information. We show that the a priori periodic and linear trend fitting function is not everywhere appropriate and in some cases it is even so poor to result in misinterpreting the data. Variations in long term behavior and periodicities higher than the usual annual (and semi-annual) indeed occur, related to geophysical

  2. Effect of different temperature-time combinations on physicochemical, microbiological, textural and structural features of sous-vide cooked lamb loins.

    Science.gov (United States)

    Roldán, Mar; Antequera, Teresa; Martín, Alberto; Mayoral, Ana Isabel; Ruiz, Jorge

    2013-03-01

    Lamb loins were subjected to sous-vide cooking at different combinations of temperature (60, 70, and 80 °C) and time (6, 12, and 24 h). Different physicochemical, histological and structural parameters were studied. Increasing cooking temperatures led to higher weight losses and lower moisture contents, whereas the effect of cooking time on these variables was limited. Samples cooked at 60 °C showed the highest lightness and redness, while increasing cooking temperature and cooking time produced higher yellowness values. Most textural variables in a texture profile analysis showed a marked interaction between cooking temperature and time. Samples cooked for 24h showed significantly lower values for most of the studied textural parameters for all the temperatures considered. Connective tissue granulation at 60 °C and gelation at 70 °C were observed in the SEM micrographs. The sous-vide cooking of lamb loins dramatically reduced microbial population even with the less intense heat treatment studied (60 °C-6 h). Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Morphology evolution of gold nanoparticles as function of time, temperature, and Au(III)/sodium ascorbate molar ratio

    Energy Technology Data Exchange (ETDEWEB)

    Priolisi, Ornella, E-mail: ornella.priolisi@depretto.gov.it [ITIS “De Pretto” (Italy); Fabrizi, Alberto, E-mail: fabrizi@gest.unipd.it [University of Padova, Department of Management and Engineering (Italy); Deon, Giovanna, E-mail: giovanna.deon@depretto-vi.it [ITIS “De Pretto” (Italy); Bonollo, Franco, E-mail: bonollo@gest.unipd.it [University of Padova, Department of Management and Engineering (Italy); Cattini, Stefano, E-mail: stefano.cattini@unimore.it [University of Modena and Reggio Emilia, Department of Engineering Enzo Ferrari (Italy)

    2016-01-15

    In this work the morphology evolution of Au nanoparticles (AuNPs), obtained by direct reduction, was studied as a function of time, temperature, and Au(III)/sodium ascorbate molar ratio. The NPs morphology was examined by transmission electron microscope with image analysis, while time evolution was investigated by visible and near-infrared absorption spectroscopy and dynamic light scattering. It is found that initially formed star-like NPs transform in more spheroidal particles and the evolution appears more rapid by increasing the temperature while a large amount of reducing agent prevents the remodeling of AuNPs. An explication of morphology evolution is proposed.

  4. Influence of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition

    Directory of Open Access Journals (Sweden)

    Guo Zerong

    2016-01-01

    Full Text Available To study the effect of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition, considering the heat transfer coefficient as the power function of temperature, mathematical thermal explosion steady state and unsteady-state model of finite cylindrical fireworks and crackers with complex shell structures are established based on two-dimensional steady state thermal explosion theory. The influence of variable heat transfer coefficient on thermal explosion critical ambient temperature and time to ignition are analyzed. When heat transfer coefficient is changing with temperature and in the condition of natural convection heat transfer, critical ambient temperature lessen, thermal explosion time to ignition shorten. If ambient temperature is close to critical ambient temperature, the influence of variable heat transfer coefficient on time to ignition become large. For firework with inner barrel in example analysis, the critical ambient temperature of propellant is 463.88 K and the time to ignition is 4054.9s at 466 K, 0.26 K and 450.8s less than without considering the change of heat transfer coefficient respectively. The calculation results show that the influence of variable heat transfer coefficient on thermal explosion time to ignition is greater in this example. Therefore, the effect of variable heat transfer coefficient should be considered into thermal safety evaluation of fireworks to reduce potential safety hazard.

  5. Low-Temperature Superionic Conductivity in Strained Yttria-Stabilized Zirconia

    DEFF Research Database (Denmark)

    Sillassen, Michael; Eklund, Per; Pryds, Nini

    2010-01-01

    Very high lateral ionic conductivities in epitaxial cubic yttria-stabilized zirconia (YSZ) synthesized on single-crystal SrTiO3 and MgO substrates by reactive direct current magnetron sputtering are reported. Superionic conductivities (i.e., ionic conductivities of the order 1 -1cm-1) are observed...... at 500 °C for 58-nm-thick films on MgO. The results indicate a superposition of two parallel contributions - one due to bulk conductivity and one attributable to conduction along the film-substrate interface. Interfacial effects dominate the conductivity at low temperatures (...

  6. Chemical stress relaxation of ethylene-propylene copolymer rubber by heat and radiation

    International Nuclear Information System (INIS)

    Ito, M.; Okada, S.; Kuriyama, I.

    1980-01-01

    An attempt was made to shorten the evaluation time for the deterioration under various conditions caused by chemical reactions by extending the time-temperature superposition principle for the stress relaxation of rubber. In the case of deterioration by radiation instead of by heat, a time-dose rate reduction is proposed and the master curves obtained for chemical-stress relaxation of rubber. A new method which contains a numerical analysis of stress decay curves is proposed to obtain the rate of crosslinking and scission under irradiation for already crosslinked samples. (author)

  7. STYCA, a computer program in the dynamic structural analysis of a PWR core

    International Nuclear Information System (INIS)

    Silva Macedo, L.V. da; Breyne Salvagni, R. de

    1992-01-01

    A procedure for the dynamic structural analysis of a PWR core is presented, impacts between fuel assemblies may occur because of the existence of gaps between them. Thus, the problem is non-linear and an spectral analysis is avoided. A time-history response analysis is necessary. The Modal Superposition Method with the Duhamel integral was used in order to solve the problem. An algorithm of solution and also results obtained with the STYCA computer program, developed on the basis of what was proposed here, are presented. (author)

  8. Near-Real-Time DMSP SSM/I-SSMIS Daily Polar Gridded Brightness Temperatures

    Data.gov (United States)

    National Aeronautics and Space Administration — The Near-Real-Time DMSP SSM/I-SSMIS Daily Polar Gridded Brightness Temperature product provides near-real-time brightness temperatures for both the Northern and...

  9. Multi-species time-history measurements during high-temperature acetone and 2-butanone pyrolysis

    KAUST Repository

    Lam, Kingyiu

    2013-01-01

    High-temperature acetone and 2-butanone pyrolysis studies were conducted behind reflected shock waves using five species time-history measurements (ketone, CO, CH3, CH4 and C2H4). Experimental conditions covered temperatures of 1100-1600 Kat 1.6 atm, for mixtures of 0.25-1.5% ketone in argon. During acetone pyrolysis, the CO concentration time-history was found to be strongly sensitive to the acetone dissociation rate constant κ1 (CH3COCH3 → CH3 + CH3CO), and this could be directly determined from the CO time-histories, yielding κ1(1.6 atm) = 2.46 × 1014 exp(-69.3 [kcal/mol]/RT) s-1 with an uncertainty of ±25%. This rate constant is in good agreement with previous shock tube studies from Sato and Hidaka (2000) [3] and Saxena et al. (2009) [4] (within 30%) at temperatures above 1450 K, but is at least three times faster than the evaluation from Sato and Hidaka at temperatures below 1250 K. Using this revised κ1 value with the recent mechanism of Pichon et al. (2009) [5], the simulated profiles during acetone pyrolysis show excellent agreement with all five species time-history measurements. Similarly, the overall 2-butanone decomposition rate constant κtot was inferred from measured 2-butanone time-histories, yielding κ tot(1.5 atm) = 6.08 × 1013 exp(-63.1 [kcal/mol]/RT) s -1 with an uncertainty of ±35%. This rate constant is approximately 30% faster than that proposed by Serinyel et al. (2010) [11] at 1119 K, and approximately 100% faster at 1412 K. Using the measured 2-butanone and CO time-histories and an O-atom balance analysis, a missing removal pathway for methyl ketene was identified. The rate constant for the decomposition of methyl ketene was assumed to be the same as the value for the ketene decomposition reaction. Using the revised κtot value and adding the methyl ketene decomposition reaction to the Serinyel et al. mechanism, the simulated profiles during 2-butanone pyrolysis show good agreement with the measurements for all five species.

  10. Functional relationship of room temperature and setting time of alginate impression material

    Directory of Open Access Journals (Sweden)

    Dyah Irnawati

    2009-09-01

    Full Text Available Background: Indonesia is a tropical country with temperature variation. A lot of dental clinics do not use air conditioner. The room temperature influences water temperature for mixing alginate impression materials. Purpose: The aim of this study was to investigate the functional relationship of room temperature and initial setting time of alginate impression materials. Methods: The New Kromopan® alginate (normal and fast sets were used. The initial setting time were tested at 23 (control, 24, 25, 26, 27, 28, 29, 30 and 31 degrees Celcius room temperatures (n = 5. The initial setting time was tested based on ANSI/ADA Specification no. 18 (ISO 1563. The alginate powder was mixed with distilled water (23/50 ratio, put in the metal ring mould, and the initial setting time was measured by test rod. Data were statistically analyzed by linear regression (α = 0.05. result: The initial setting times were 149.60 ± 0.55 (control and 96.40 ± 0.89 (31° C seconds for normal set, and 122.00 ± 1.00 (control and 69.60 ± 0.55 (31° C seconds for fast set. The coefficient of determination of room temperature to initial setting time of alginate were R2 = 0.74 (normal set and R2 = 0.88 (fast set. The regression equation for normal set was Y = 257.6 – 5.5 X (p < 0.01 and fast set was Y = 237.7 – 5.6 X (p < 0.01. Conclusions: The room temperature gave high contribution and became a strength predictor for initial setting time of alginates. The share contribution to the setting time was 0.74% for normal set and 0.88% for fast set alginates.

  11. Impact of diurnal temperature range on mortality in a high plateau area in southwest China: A time series analysis.

    Science.gov (United States)

    Ding, Zan; Guo, Pi; Xie, Fang; Chu, Huifang; Li, Kun; Pu, Jingbo; Pang, Shaojie; Dong, Hongli; Liu, Yahui; Pi, Fuhua; Zhang, Qingying

    2015-09-01

    Diurnal temperature range (DTR) is an important meteorological indicator that reflects weather stability and is associated with global climate change and urbanization. Previous studies have explored the effect of DTR on human health in coastal cities with small daily temperature variations, but we have little evidence for high plateau regions where large DTRs usually occur. Using daily mortality data (2007-2013), we conducted a time-series analysis to assess the effect of DTR on daily mortality in Yuxi, a high plateau city in southwest China. Poisson regression with distributed lag non-linear model was used to estimate DTR effects on daily mortality, controlling for daily mean temperature, relative humidity, sunshine duration, wind speed, atmospheric pressure, day of the week, and seasonal and long-term trends. The cumulative effects of DTR were J-shaped curves for non-accidental, cardiorespiratory and cardiovascular mortality, with a U-shaped curve for respiratory mortality. Risk assessments showed strong monotonic increases in mortality starting at a DTR of approximately 16 °C. The relative risk of non-accidental morality with extreme high DTR at lag 0 and 0-21 days was 1.03 (95% confidence interval: 0.95-1.11) and 1.33 (0.94-1.89), respectively. The risk of mortality with extreme high DTR was greater for males and age <75 years than females and age ≥75 years. The effect of DTR on mortality was non-linear, with high DTR associated with increased mortality. A DTR of 16 °C may be a cut-off point for mortality prognosis and has implications for developing intervention strategies to address high DTR exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Time-dependent electron temperature diagnostics for high-power aluminum z-pinch plasmas

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Nash, T.J.; Mock, R.C.

    1996-08-01

    Time-resolved x-ray pinhole photographs and time-integrated radially-resolved x-ray crystal-spectrometer measurements of azimuthally-symmetric aluminum-wire implosions suggest that the densest phase of the pinch is composed of a hot plasma core surrounded by a cooler plasma halo. The slope of the free-bound x-ray continuum, provides a time-resolved, model-independent diagnostic of the core electron temperature. A simultaneous measurement of the time-resolved K-shell line spectra provides the electron temperature of the spatially averaged plasma. Together, the two diagnostics support a 1-D Radiation-Hydrodynamic model prediction of a plasma whose thermalization on axis produces steep radial gradients in temperature, from temperatures in excess of a kilovolt in the core to below a kilovolt in the surrounding plasma halo

  13. Effect of low-temperature long-time and high-temperature short-time blanching and frying treatments on the French fry quality of six Irish potato cultivars

    OpenAIRE

    Ngobese, Nomali Ziphorah; Workneh, Tilahun Seyoum; Siwela, Muthulisi

    2017-01-01

    Processing conditions are an important determinant of French fry quality. However, the effect of low-temperature long-time (LTLT) and high-temperature short-time (HTST) blanching and frying treatments has not been investigated in many cultivars. The current study investigates the effect of the sequential application of these treatments on French fries processed from six Irish potato cultivars (Fianna, Innovator, Mondial, Navigator, Panamera and Savanna). Blanching was effected at 75 °C for 10...

  14. Mask CD relationship to temperature at the time backscatter is received

    Science.gov (United States)

    Zable, Harold; Kronmiller, Tom; Pearman, Ryan; Guthrie, Bill; Shirali, Nagesh; Masuda, Yukihiro; Kamikubo, Takashi; Nakayamada, Noriaki; Fujimura, Aki

    2017-07-01

    Mask writers need to be able to write sub-50nm features accurately. Nano-imprint lithography (NIL) masters need to create sub-20nm line and space (L:S) patterns reliably. Increasingly slower resists are deployed, but mask write times need to remain reasonable. The leading edge EBM-9500 offers 1200A/cm2 current density to shoot variable shaped beam (VSB) to write the masks. Last year, thermal effect correction (TEC) was introduced by NuFlare in the EBM-95001. It is a GPU-accelerated inline correction for the effect that the temperature of the resist has on CD. For example, a 100nm CD may print at 102nm where that area was at a comparably high temperature at the time of the shot. Since thermal effect is a temporal effect, the simulated temperature of the surface of the mask is dynamically updated for the effect of each shot in order to accurately predict the cumulative effect that is the temperature at the location of the shot at the time of the shot and therefore its impact on CD. The shot dose is changed to reverse the effects of the temperature change. This paper for the first time reveals an enhancement to this thermal model and a simulator for it. It turns out that the temperature at the time each location receives backscatter from other shots also make a difference to the CD. The effect is secondary, but still measurable for some resists and substrates. Results of a test-chip study will be presented. The computation required for the backscatter effect is substantial. It has been demonstrated that this calculation can be performed fast enough to be inline with the EBM-9500 with a reasonable-sized computing platform. Run-time results and the computing architecture will be presented.

  15. Thermotolerance in preirradiated intestine and its influence on time-temperature relationships

    International Nuclear Information System (INIS)

    Hume, S.P.; Marigold, J.C.; Manjil, L.G.

    1988-01-01

    The crypt compartment of mouse jejunum showed a transient increase in thermal susceptibility approximately 10 days after moderate X-ray doses to the abdomen (9-10 Gy). The increase in response was manifest as an increase in slope of the crypt dose-response curve but was limited to temperatures below 43 0 C. As a result, the 43 0 C inflexion in the Arrhenius plot (the relationship between treatment time and temperature) for thermal sensitivity of crypts was eliminated in preirradiated tissue, and the curve became monophasic over the range 42.0-44.5 0 C. At temperatures below 42 0 C, the curve again deviated. At supranormal temperatures of 42 0 C and below, the durations of hyperthermia needed for measurable effect were sufficient to allow thermotolerance to be expressed within the heating period. Neither the threshold heating times nor this thermotolerance were affected by prior irradiation. In the temperature range 42-43 0 C, an earlier development of thermotolerance could be demonstrated in control tissue by challenging with an acute high-temperature heat treatment. This thermotolerance was eliminated in preirradiated tissue, resulting in the apparent increase in sensitivity. The findings support the view that the complex nature of the time-temperature relationship seen in normal tissue in vivo is a manifestation of the ability of the tissue to progressively acquire a thermotolerant state during treatment at temperatures below approximately 43 0 C, so that the intrinsic sensitivity is modulated while being assessed

  16. Analysis of noise in energy-dispersive spectrometers using time-domain methods

    CERN Document Server

    Goulding, F S

    2002-01-01

    This paper presents an integrated time domain approach to the optimization of the signal-to-noise ratio in all spectrometer systems that contain a detector that converts incoming quanta of radiation into electrical pulse signals that are amplified and shaped by an electronic pulse shaper. It allows analysis of normal passive pulse shapers as well as time-variant systems where switching of shaping elements occurs in synchronism with the signal. It also deals comfortably with microcalorimeters (sometimes referred to as bolometers), where noise-determining elements, such as the temperature-sensing element's resistance and temperature, change with time in the presence of a signal. As part of the purely time-domain approach, a new method of calculating the Johnson noise in resistors using only the statistics of electron motion is presented. The result is a time-domain analog of the Nyquist formula.

  17. Thermal energy storages analysis for high temperature in air solar systems

    International Nuclear Information System (INIS)

    Andreozzi, Assunta; Buonomo, Bernardo; Manca, Oronzio; Tamburrino, Salvatore

    2014-01-01

    In this paper a high temperature thermal storage in a honeycomb solid matrix is numerically investigated and a parametric analysis is accomplished. In the formulation of the model it is assumed that the system geometry is cylindrical, the fluid and the solid thermo physical properties are temperature independent and radiative heat transfer is taken into account whereas the effect of gravity is neglected. Air is employed as working fluid and the solid material is cordierite. The evaluation of the fluid dynamic and thermal behaviors is accomplished assuming the honeycomb as a porous medium. The Brinkman–Forchheimer–extended Darcy model is used in the governing equations and the local thermal non equilibrium is assumed. The commercial CFD Fluent code is used to solve the governing equations in transient regime. Numerical simulations are carried out with storage medium for different mass flow rates of the working fluid and different porosity values. Results in terms of temperature profiles, temperatures fields and stored thermal energy as function of time are presented. The effects of storage medium, different porosity values and mass flow rate on stored thermal energy and storage time are shown. - Highlights: • HTTES in a honeycomb solid matrix is numerically investigated. • The numerical analysis is carried out assuming the honeycomb as a porous medium. • The Brinkman–Forchheimer–extended Darcy model is used in the governing equations. • Results are carried out for different mass flow rates and porosity values. • The main effect is due to the porosity which set the thermal energy storage value

  18. Imaging technique for real-time temperature monitoring during cryotherapy of lesions

    Science.gov (United States)

    Petrova, Elena; Liopo, Anton; Nadvoretskiy, Vyacheslav; Ermilov, Sergey

    2016-11-01

    Noninvasive real-time temperature imaging during thermal therapies is able to significantly improve clinical outcomes. An optoacoustic (OA) temperature monitoring method is proposed for noninvasive real-time thermometry of vascularized tissue during cryotherapy. The universal temperature-dependent optoacoustic response (ThOR) of red blood cells (RBCs) is employed to convert reconstructed OA images to temperature maps. To obtain the temperature calibration curve for intensity-normalized OA images, we measured ThOR of 10 porcine blood samples in the range of temperatures from 40°C to -16°C and analyzed the data for single measurement variations. The nonlinearity (ΔTmax) and the temperature of zero OA response (T0) of the calibration curve were found equal to 11.4±0.1°C and -13.8±0.1°C, respectively. The morphology of RBCs was examined before and after the data collection confirming cellular integrity and intracellular compartmentalization of hemoglobin. For temperatures below 0°C, which are of particular interest for cryotherapy, the accuracy of a single temperature measurement was ±1°C, which is consistent with the clinical requirements. Validation of the proposed OA temperature imaging technique was performed for slow and fast cooling of blood samples embedded in tissue-mimicking phantoms.

  19. Real time evolution at finite temperatures with operator space matrix product states

    International Nuclear Information System (INIS)

    Pižorn, Iztok; Troyer, Matthias; Eisler, Viktor; Andergassen, Sabine

    2014-01-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model. (paper)

  20. Real time evolution at finite temperatures with operator space matrix product states

    Science.gov (United States)

    Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias

    2014-07-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.

  1. Time trends in minimum mortality temperatures in Castile-La Mancha (Central Spain): 1975-2003

    Science.gov (United States)

    Miron, Isidro J.; Criado-Alvarez, Juan José; Diaz, Julio; Linares, Cristina; Mayoral, Sheila; Montero, Juan Carlos

    2008-03-01

    The relationship between air temperature and human mortality is described as non-linear, with mortality tending to rise in response to increasingly hot or cold ambient temperatures from a given minimum mortality or optimal comfort temperature, which varies from some areas to others according to their climatic and socio-demographic characteristics. Changes in these characteristics within any specific region could modify this relationship. This study sought to examine the time trend in the maximum temperature of minimum organic-cause mortality in Castile-La Mancha, from 1975 to 2003. The analysis was performed by using daily series of maximum temperatures and organic-cause mortality rates grouped into three decades (1975-1984, 1985-1994, 1995-2003) to compare confidence intervals ( p ARIMA models (Box-Jenkins) and cross-correlation functions (CCF) at seven lags. We observed a significant decrease in comfort temperature (from 34.2°C to 27.8°C) between the first two decades in the Province of Toledo, along with a growing number of significant lags in the summer CFF (1, 3 and 5, respectively). The fall in comfort temperature is attributable to the increase in the effects of heat on mortality, due, in all likelihood, to the percentage increase in the elderly population.

  2. Flowering time of butterfly nectar food plants is more sensitive to temperature than the timing of butterfly adult flight.

    Science.gov (United States)

    Kharouba, Heather M; Vellend, Mark

    2015-09-01

    1. Variation among species in their phenological responses to temperature change suggests that shifts in the relative timing of key life cycle events between interacting species are likely to occur under climate warming. However, it remains difficult to predict the prevalence and magnitude of these shifts given that there have been few comparisons of phenological sensitivities to temperature across interacting species. 2. Here, we used a broad-scale approach utilizing collection records to compare the temperature sensitivity of the timing of adult flight in butterflies vs. flowering of their potential nectar food plants (days per °C) across space and time in British Columbia, Canada. 3. On average, the phenology of both butterflies and plants advanced in response to warmer temperatures. However, the two taxa were differentially sensitive to temperature across space vs. across time, indicating the additional importance of nontemperature cues and/or local adaptation for many species. 4. Across butterfly-plant associations, flowering time was significantly more sensitive to temperature than the timing of butterfly flight and these sensitivities were not correlated. 5. Our results indicate that warming-driven shifts in the relative timing of life cycle events between butterflies and plants are likely to be prevalent, but that predicting the magnitude and direction of such changes in particular cases is going to require detailed, fine-scale data. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  3. Asymptotic equilibrium diffusion analysis of time-dependent Monte Carlo methods for grey radiative transfer

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Larsen, Edward W.

    2004-01-01

    The equations of nonlinear, time-dependent radiative transfer are known to yield the equilibrium diffusion equation as the leading-order solution of an asymptotic analysis when the mean-free path and mean-free time of a photon become small. We apply this same analysis to the Fleck-Cummings, Carter-Forest, and N'kaoua Monte Carlo approximations for grey (frequency-independent) radiative transfer. Although Monte Carlo simulation usually does not require the discretizations found in deterministic transport techniques, Monte Carlo methods for radiative transfer require a time discretization due to the nonlinearities of the problem. If an asymptotic analysis of the equations used by a particular Monte Carlo method yields an accurate time-discretized version of the equilibrium diffusion equation, the method should generate accurate solutions if a time discretization is chosen that resolves temperature changes, even if the time steps are much larger than the mean-free time of a photon. This analysis is of interest because in many radiative transfer problems, it is a practical necessity to use time steps that are large compared to a mean-free time. Our asymptotic analysis shows that: (i) the N'kaoua method has the equilibrium diffusion limit, (ii) the Carter-Forest method has the equilibrium diffusion limit if the material temperature change during a time step is small, and (iii) the Fleck-Cummings method does not have the equilibrium diffusion limit. We include numerical results that verify our theoretical predictions

  4. Pulse pileup effects of plasma electron temperature measurements by soft x-ray energy analysis

    International Nuclear Information System (INIS)

    Dyer, G.R.; Neilson, G.H.; Kelley, G.G.

    1978-10-01

    The electron temperature of hot plasmas is conveniently derived from bremsstrahlung spectra obtained by pulse-height analysis using a lithium-compensated silicon detector. Time-resolved temperature measurements require high counting rates, with ultimate rate limited by pulse pileup. To evaluate this limit, spectral distortion due to pileup and consequent effects on temperature determination are investigated. Expressions for distorted spectra are derived as functions of Maxwellian temperature and pileup fraction for both square and triangular pulse shapes. A comparison of temperatures obtained from distorted spectra with actual values indicates that measurements with less than 10% error can be made in the absence of line radiation, even from spectra containing 40% pileup

  5. Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images

    Science.gov (United States)

    Hengl, Tomislav; Heuvelink, Gerard B. M.; Perčec Tadić, Melita; Pebesma, Edzer J.

    2012-01-01

    A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations (159) in Croatia. The input data set contains 57,282 ground measurements of daily temperature for the year 2008. Temperature was modeled as a function of latitude, longitude, distance from the sea, elevation, time, insolation, and the MODIS LST images. The original rasters were first converted to principal components to reduce noise and filter missing pixels in the LST images. The residual were next analyzed for spatio-temporal auto-correlation; sum-metric separable variograms were fitted to account for zonal and geometric space-time anisotropy. The final predictions were generated for time-slices of a 3D space-time cube, constructed in the R environment for statistical computing. The results show that the space-time regression model can explain a significant part of the variation in station-data (84%). MODIS LST 8-day (cloud-free) images are unbiased estimator of the daily temperature, but with relatively low precision (±4.1°C); however their added value is that they systematically improve detection of local changes in land surface temperature due to local meteorological conditions and/or active heat sources (urban areas, land cover classes). The results of 10-fold cross-validation show that use of spatio-temporal regression-kriging and incorporation of time-series of remote sensing images leads to significantly more accurate maps of temperature than if plain spatial techniques were used. The average (global) accuracy of mapping temperature was ±2.4°C. The regression-kriging explained 91% of variability in daily temperatures, compared to 44% for ordinary kriging. Further software advancement—interactive space-time variogram exploration and automated retrieval

  6. Time-temperature dependent variations in beta-carotene contents in carrot using different spectrophotometric techniques

    Science.gov (United States)

    Ullah, Rahat; Khan, Saranjam; Shah, Attaullah; Ali, Hina; Bilal, Muhammad

    2018-05-01

    The current study presents time dependent variations in the concentration of beta-carotene in carrot under different storage-temperature conditions using UV–VIS and Raman spectrophotometric techniques. The UV–VIS absorption spectra of beta-carotene extracted from carrot shows three distinct absorption peaks at 442, 467, and 500 nm with maximum absorption at 467 nm. These absorption peaks are very much reproducible and are assigned to β-carotene. Similarly, Raman spectra of carrot samples also confirmed the three main Raman peaks of beta-carotene at shift positions 1003, 1150, and 1515 cm‑1. An overall decrease in beta-carotene content has been observed for time-temperature conditions. These results depict a decrease of about 40% in the content of beta-carotene when carrot samples were stored in a refrigerator (4 °C) for the first 20 d, whereas a decrease of about 25% was observed when carrot samples were stored in a freezer (‑16 °C) for the same period. The objective of this study is to investigate the possible use of Raman spectroscopy and UV–VIS spectroscopy for quick and detailed analysis of changes (degradation) in beta-carotene content associated with time and temperature in storage (frozen foods) in order to promote quality foods for consumers. Future study with a greater focus on the concentration/content of beta-carotene in other fruits/vegetables is also desirable.

  7. Deconvolution analysis to determine relaxation time spectra of internal friction peaks

    International Nuclear Information System (INIS)

    Cost, J.R.

    1985-01-01

    A new method for analysis of an internal friction vs temperature peak to obtain an approximation of the spectrum of relaxation time responsible for the peak is described. This method, referred to as direct spectrum analysis (DSA), is shown to provide an accurate estimate of the distribution of relaxation times. The method is validated for various spectra, and it is shown that: (1) It provides approximations to known input spectra which replicate the position, amplitude, width and shape with good accuracy (typically 10%). (2) It does not yield approximations which have false spectral peaks

  8. Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings

    Science.gov (United States)

    Krenn, Mario; Gu, Xuemei; Zeilinger, Anton

    2017-12-01

    We show a surprising link between experimental setups to realize high-dimensional multipartite quantum states and graph theory. In these setups, the paths of photons are identified such that the photon-source information is never created. We find that each of these setups corresponds to an undirected graph, and every undirected graph corresponds to an experimental setup. Every term in the emerging quantum superposition corresponds to a perfect matching in the graph. Calculating the final quantum state is in the #P-complete complexity class, thus it cannot be done efficiently. To strengthen the link further, theorems from graph theory—such as Hall's marriage problem—are rephrased in the language of pair creation in quantum experiments. We show explicitly how this link allows one to answer questions about quantum experiments (such as which classes of entangled states can be created) with graph theoretical methods, and how to potentially simulate properties of graphs and networks with quantum experiments (such as critical exponents and phase transitions).

  9. Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings.

    Science.gov (United States)

    Krenn, Mario; Gu, Xuemei; Zeilinger, Anton

    2017-12-15

    We show a surprising link between experimental setups to realize high-dimensional multipartite quantum states and graph theory. In these setups, the paths of photons are identified such that the photon-source information is never created. We find that each of these setups corresponds to an undirected graph, and every undirected graph corresponds to an experimental setup. Every term in the emerging quantum superposition corresponds to a perfect matching in the graph. Calculating the final quantum state is in the #P-complete complexity class, thus it cannot be done efficiently. To strengthen the link further, theorems from graph theory-such as Hall's marriage problem-are rephrased in the language of pair creation in quantum experiments. We show explicitly how this link allows one to answer questions about quantum experiments (such as which classes of entangled states can be created) with graph theoretical methods, and how to potentially simulate properties of graphs and networks with quantum experiments (such as critical exponents and phase transitions).

  10. A millimeter wave linear superposition oscillator in 0.18 μm CMOS technology

    International Nuclear Information System (INIS)

    Yan Dong; Mao Luhong; Su Qiujie; Xie Sheng; Zhang Shilin

    2014-01-01

    This paper presents a millimeter wave (mm-wave) oscillator that generates signal at 36.56 GHz. The mm-wave oscillator is realized in a UMC 0.18 μm CMOS process. The linear superposition (LS) technique breaks through the limit of cut-off frequency (f T ), and realizes a much higher oscillation than f T . Measurement results show that the LS oscillator produces a calibrated −37.17 dBm output power when biased at 1.8 V; the output power of fundamental signal is −10.85 dBm after calibration. The measured phase noise at 1 MHz frequency offset is −112.54 dBc/Hz at the frequency of 9.14 GHz. This circuit can be properly applied to mm-wave communication systems with advantages of low cost and high integration density. (semiconductor integrated circuits)

  11. Stratospheric Temperature Trends Observed by TIMED/SABER

    Science.gov (United States)

    Xian, T.; Tan, R.

    2017-12-01

    Trends in the stratospheric temperature are studied based on the temperature profile observation from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). The spatially trends are evaluated in different time scales ranging from decadal to monthly resolved. The results indicate a signature of BDC acceleration. There are strong warming trends (up to 9 K/decade) in the middle to upper stratosphere in the high latitude spring, summer, and autumn seasons, accompanied by strong cooling trends in the lower stratosphere. Besides, strong warming trends occurs through the whole stratosphere over the Southern Hemisphere, which confirms Antarctic ozone layer healing since 2000. In addition, the results demonstrate a significant warming trends in the middle of tropical stratosphere, which becomes strongest during June-July-August.

  12. The inverse Numerical Computer Program FLUX-BOT for estimating Vertical Water Fluxes from Temperature Time-Series.

    Science.gov (United States)

    Trauth, N.; Schmidt, C.; Munz, M.

    2016-12-01

    Heat as a natural tracer to quantify water fluxes between groundwater and surface water has evolved to a standard hydrological method. Typically, time series of temperatures in the surface water and in the sediment are observed and are subsequently evaluated by a vertical 1D representation of heat transport by advection and dispersion. Several analytical solutions as well as their implementation into user-friendly software exist in order to estimate water fluxes from the observed temperatures. Analytical solutions can be easily implemented but assumptions on the boundary conditions have to be made a priori, e.g. sinusoidal upper temperature boundary. Numerical models offer more flexibility and can handle temperature data which is characterized by irregular variations such as storm-event induced temperature changes and thus cannot readily be incorporated in analytical solutions. This also reduced the effort of data preprocessing such as the extraction of the diurnal temperature variation. We developed a software to estimate water FLUXes Based On Temperatures- FLUX-BOT. FLUX-BOT is a numerical code written in MATLAB which is intended to calculate vertical water fluxes in saturated sediments, based on the inversion of measured temperature time series observed at multiple depths. It applies a cell-centered Crank-Nicolson implicit finite difference scheme to solve the one-dimensional heat advection-conduction equation. Besides its core inverse numerical routines, FLUX-BOT includes functions visualizing the results and functions for performing uncertainty analysis. We provide applications of FLUX-BOT to generic as well as to measured temperature data to demonstrate its performance.

  13. Recovery time of high temperature superconducting tapes exposed in liquid nitrogen

    International Nuclear Information System (INIS)

    Sheng, Jie; Zeng, Weina; Yao, Zhihao; Zhao, Anfeng; Hu, Daoyu; Hong, Zhiyong

    2016-01-01

    Highlights: • A novel method based on a sequence of AC pulses is presented. • Liquid nitrogen temperature is used as criterion to judge whether the sample has recovered. • Recovery time of some tape doesn't increase with the amplitude of fault current. • This phenomenon is caused by boiling heat transfer process of liquid nitrogen. • This phenomenon can be used in optimizing both the limiting rate and reclosing system. - Abstract: The recovery time is a crucial parameter to high temperature superconducting tapes, especially in power applications. The cooperation between the reclosing device and the superconducting facilities mostly relies on the recovery time of the superconducting tapes. In this paper, a novel method is presented to measure the recovery time of several different superconducting samples. In this method criterion used to judge whether the sample has recovered is the liquid nitrogen temperature, instead of the critical temperature. An interesting phenomenon is observed during the testing of superconducting samples exposed in the liquid nitrogen. Theoretical explanations of this phenomenon are presented from the aspect of heat transfer. Optimization strategy of recovery characteristics based on this phenomenon is also briefly discussed.

  14. Temperature dependence of fluctuation time scales in spin glasses

    DEFF Research Database (Denmark)

    Kenning, Gregory G.; Bowen, J.; Sibani, Paolo

    2010-01-01

    Using a series of fast cooling protocols we have probed aging effects in the spin glass state as a function of temperature. Analyzing the logarithmic decay found at very long time scales within a simple phenomenological barrier model, leads to the extraction of the fluctuation time scale of the s...

  15. Elevated temperature alters the lunar timing of Planulation in the brooding coral Pocillopora damicornis.

    Directory of Open Access Journals (Sweden)

    Camerron M Crowder

    Full Text Available Reproductive timing in corals is associated with environmental variables including temperature, lunar periodicity, and seasonality. Although it is clear that these variables are interrelated, it remains unknown if one variable in particular acts as the proximate signaler for gamete and or larval release. Furthermore, in an era of global warming, the degree to which increases in ocean temperatures will disrupt normal reproductive patterns in corals remains unknown. Pocillopora damicornis, a brooding coral widely distributed in the Indo-Pacific, has been the subject of multiple reproductive ecology studies that show correlations between temperature, lunar periodicity, and reproductive timing. However, to date, no study has empirically measured changes in reproductive timing associated with increased seawater temperature. In this study, the effect of increased seawater temperature on the timing of planula release was examined during the lunar cycles of March and June 2012. Twelve brooding corals were removed from Hobihu reef in Nanwan Bay, southern Taiwan and placed in 23 and 28°C controlled temperature treatment tanks. For both seasons, the timing of planulation was found to be plastic, with the high temperature treatment resulting in significantly earlier peaks of planula release compared to the low temperature treatment. This suggests that temperature alone can influence the timing of larval release in Pocillopora damicornis in Nanwan Bay. Therefore, it is expected that continued increases in ocean temperature will result in earlier timing of reproductive events in corals, which may lead to either variations in reproductive success or phenotypic acclimatization.

  16. High temperature Moessbauer study of order-disorder transformation in iron-aluminum alloys

    International Nuclear Information System (INIS)

    Oki, Kensuke; Yamamura, Akihiko; Kudo, Kazunao; Eguchi, Tetsuo

    1979-01-01

    Ordering process of iron rich Fe-Al alloys has been investigated at elevated temperatures by mean of Moessbauer spectroscopy. The observed spectra are analyzed to obtain the temperature dependences of the internal field, isomer shift and line width, and the results are discussed in connection with the ordering process. The alloy with 24.7 at% Al exhibits spectra, which are characteristic of the superposition of a single-line spectrum and a six-line one, originating from the ordered paramagnetic B2 or DO 3 state and disordered ferromagnetic α, respectively, and the results confirm the coexistence of α phase with B2 or DO 3 . The isomer shift of the paramagnetic component of the spectra shows discontinuous changes at the temperatures of transformation α reversible B2 and B2 reversible DO 3 . (author)

  17. Determination of the temperature coefficients and the kinetic parameters for the HTTR safety analysis

    International Nuclear Information System (INIS)

    Tokuhara, K.; Nakata, T.; Murata, I.; Yamashita, K.; Shindo, R.

    1991-01-01

    This report describes the calculational methods which were employed to determine the temperature coefficients and the kinetic parameters for the safety analysis in the HTTR (High Temperature Engineering Test Reactor). The temperature coefficients (doppler, moderator temperature) and the kinetic parameters (prompt neutron life time; l, effective delayed neutron fraction; β eff) are important for the point model core dynamic analysis and should be evaluated properly. The temperature coefficients were calculated by the whole core model. Doppler coefficient was evaluated under the conditions of all control rods withdrawn and the uniform change of fuel temperature. The minimum and the maximum value of the evaluated doppler coefficients in a burnup cycle are -4.6x10 -5 and -1.5x10 -5 ΔK/K/deg. C respectively. The moderator temperature coefficient was evaluated under the conditions of all control rods withdrawn and the uniform change of moderator temperature. The minimum and the maximum value of the evaluated moderator temperature coefficients in a burnup cycle are -17.1x10 -5 and 0.99x10 -5 ΔK/K/deg. C respectively. In spite of positive moderator temperature coefficient, the power coefficient is always negative. Therefore the HTTR possesses inherent power-suppressing feed back characteristic in all operating condition. We surveyed the effects of the Xe existence, the control rods existence, the fuel temperature and the region in which the temperature was changed on the moderator temperature coefficients. The kinetic parameters were calculated by the perturbation method with the whole core model. The minimum and the maximum value of the evaluated effective delayed neutron fraction (β eff) are 0.0047 and 0.0065 respectively. These of the evaluated prompt neutron life time (l) are 0.67 and 0.78 ms respectively. We have surveyed the effects of the fuel depletion and the core power level on these parameters, and considered these effects on the kinetic parameters. From

  18. Isothermal Time-Temperature-Precipitation Diagram for an Aluminum Alloy 6005A by In Situ DSC Experiments

    Directory of Open Access Journals (Sweden)

    Benjamin Milkereit

    2014-03-01

    Full Text Available Time-temperature-precipitation (TTP diagrams deliver important material data, such as temperature and time ranges critical for precipitation during the quenching step of the age hardening procedure. Although the quenching step is continuous, isothermal TTP diagrams are often applied. Together with a so-called Quench Factor Analysis, they can be used to describe very different cooling paths. Typically, these diagrams are constructed based on mechanical properties or microstructures after an interrupted quenching, i.e., ex situ analyses. In recent years, an in situ calorimetric method to record continuous cooling precipitation diagrams of aluminum alloys has been developed to the application level by our group. This method has now been transferred to isothermal experiments, in which the whole heat treatment cycle was performed in a differential scanning calorimeter. The Al-Mg-Si-wrought alloy 6005A was investigated. Solution annealing at 540 °C and overcritical quenching to several temperatures between 450 °C and 250 °C were followed by isothermal soaking. Based on the heat flow curves during isothermal soaking, TTP diagrams were determined. An appropriate evaluation method has been developed. It was found that three different precipitation reactions in characteristic temperature intervals exist. Some of the low temperature reactions are not accessible in continuous cooling experiments and require isothermal studies.

  19. Dynamic structural analysis for assemblies of fuel elements in the core of a PWR

    International Nuclear Information System (INIS)

    Silva Macedo, L.V. da.

    1991-01-01

    It is presented a procedure for the dynamic structural analysis of a PWR core. Impacts between fuel assemblies may occur because of the existence of gaps between them. Thus, the problem is non-linear and an spectral analysis is avoided. It is necessary a time-history response analysis. The Modal Superposition Method with the Duhamel integral was used in order to solve the problem. It is presented an algorithm of solution and also results obtained with the STYCA computer program, developed in the basis of what was proposed here. (author)

  20. Scanless nonlinear optical microscope for image reconstruction and space-time correlation analysis

    Science.gov (United States)

    Ceffa, N. G.; Radaelli, F.; Pozzi, P.; Collini, M.; Sironi, L.; D'alfonso, L.; Chirico, G.

    2017-06-01

    Optical Microscopy has been applied to life science from its birth and reached widespread application due to its major advantages: limited perturbation of the biological tissue and the easy accessibility of the light sources. However, as the spatial and time resolution requirements and the time stability of the microscopes increase, researchers are struggling against some of its limitations: limited transparency and the refractivity of the living tissue to light and the field perturbations induced by the path in the tissue. We have developed a compact stand-alone, completely scan-less, optical setup that allows to acquire non-linear excitation images and to measure the sample dynamics simultaneously on an ensemble of arbitrary chosen regions of interests. The image is obtained by shining a square array of spots on the sample obtained by a spatial light modulator and by shifting it (10 ms refresh time) on the sample. The final image is computed from the superposition of (100-1000) images. Filtering procedures can be applied to the raw images of the excitation array before building the image. We discuss results that show how this setup can be used for the correction of wave front aberrations induced by turbid samples (such as living tissues) and for the computation of space-time cross-correlations in complex networks.

  1. A diagnostic for time-resolved spatial profiles measurements on the ion temperature on JET

    International Nuclear Information System (INIS)

    Brocken, H.J.B.M.; Ven, H.W van der.

    1980-05-01

    A neutral particle scattering experiment for a continuous measurement of the ion temperature and ion density of the JET plasma in the hydrogen and deuterium phase is proposed. Space- and time-resolved measurements are possible by injection of a mono-energetic particle beam into the plasma and from the analysis of the velocity distribution of the scattered particles. The requirements on the injection system are specified and a suitable analyzer system is described

  2. Time-Temperature Profiling of United Kingdom Consumers' Domestic Refrigerators.

    Science.gov (United States)

    Evans, Ellen W; Redmond, Elizabeth C

    2016-12-01

    Increased consumer demand for convenience and ready-to-eat food, along with changes to consumer food purchase and storage practices, have resulted in an increased reliance on refrigeration to maximize food safety. Previous research suggests that many domestic refrigerators operate at temperatures exceeding recommendations; however, the results of several studies were determined by means of one temperature data point, which, given temperature fluctuation, may not be a true indicator of actual continual operating temperatures. Data detailing actual operating temperatures and the effects of consumer practices on temperatures are limited. This study has collated the time-temperature profiles of domestic refrigerators in consumer kitchens (n = 43) over 6.5 days with concurrent self-reported refrigerator usage. Overall, the findings established a significant difference (P < 0.05) between one-off temperature (the recording of one temperature data point) and mean operating temperature. No refrigerator operated at ≤5.0°C for the entire duration of the study. Mean temperatures exceeding 5.0°C were recorded in the majority (91%) of refrigerators. No significant associations or differences were determined for temperature profiles and demographics, including household size, or refrigerator characteristics (age, type, loading, and location). A positive correlation (P < 0.05) between room temperature and refrigerator temperature was determined. Reported door opening frequency correlated with temperature fluctuation (P < 0.05). Thermometer usage was determined to be infrequent. Cumulatively, research findings have established that the majority of domestic refrigerators in consumer homes operate at potentially unsafe temperatures and that this is influenced by consumer usage. The findings from this study may be utilized to inform the development of shelf-life testing based on realistic domestic storage conditions. Furthermore, the data can inform the development of future

  3. Strong-field effects in Rabi oscillations between a single state and a superposition of states

    International Nuclear Information System (INIS)

    Zhdanovich, S.; Milner, V.; Hepburn, J. W.

    2011-01-01

    Rabi oscillations of quantum population are known to occur in two-level systems driven by spectrally narrow laser fields. In this work we study Rabi oscillations induced by shaped broadband femtosecond laser pulses. Due to the broad spectral width of the driving field, the oscillations are initiated between a ground state and a coherent superposition of excited states, or a ''wave packet,'' rather than a single excited state. Our experiments reveal an intricate dependence of the wave-packet phase on the intensity of the laser field. We confirm numerically that the effect is associated with the strong-field nature of the interaction and provide a qualitative picture by invoking a simple theoretical model.

  4. Metabolome Integrated Analysis of High-Temperature Response in Pinus radiata

    Directory of Open Access Journals (Sweden)

    Mónica Escandón

    2018-04-01

    Full Text Available The integrative omics approach is crucial to identify the molecular mechanisms underlying high-temperature response in non-model species. Based on future scenarios of heat increase, Pinus radiata plants were exposed to a temperature of 40°C for a period of 5 days, including recovered plants (30 days after last exposure to 40°C in the analysis. The analysis of the metabolome using complementary mass spectrometry techniques (GC-MS and LC-Orbitrap-MS allowed the reliable quantification of 2,287 metabolites. The analysis of identified metabolites and highlighter metabolic pathways across heat time exposure reveal the dynamism of the metabolome in relation to high-temperature response in P. radiata, identifying the existence of a turning point (on day 3 at which P. radiata plants changed from an initial stress response program (shorter-term response to an acclimation one (longer-term response. Furthermore, the integration of metabolome and physiological measurements, which cover from the photosynthetic state to hormonal profile, suggests a complex metabolic pathway interaction network related to heat-stress response. Cytokinins (CKs, fatty acid metabolism and flavonoid and terpenoid biosynthesis were revealed as the most important pathways involved in heat-stress response in P. radiata, with zeatin riboside (ZR and isopentenyl adenosine (iPA as the key hormones coordinating these multiple and complex interactions. On the other hand, the integrative approach allowed elucidation of crucial metabolic mechanisms involved in heat response in P. radiata, as well as the identification of thermotolerance metabolic biomarkers (L-phenylalanine, hexadecanoic acid, and dihydromyricetin, crucial metabolites which can reschedule the metabolic strategy to adapt to high temperature.

  5. Mesospheric temperature estimation from meteor decay times of weak and strong meteor trails

    Science.gov (United States)

    Kim, Jeong-Han; Kim, Yong Ha; Jee, Geonhwa; Lee, Changsup

    2012-11-01

    Neutral temperatures near the mesopause region were estimated from the decay times of the meteor echoes observed by a VHF meteor radar during a period covering 2007 to 2009 at King Sejong Station (62.22°S, 58.78°W), Antarctica. While some previous studies have used all meteor echoes to determine the slope from a height profile of log inverse decay times for temperature estimation, we have divided meteor echoes into weak and strong groups of underdense meteor trails, depending on the strength of estimated relative electron line densities within meteor trails. We found that the slopes from the strong group are inappropriate for temperature estimation because the decay times of strong meteors are considerably scattered, whereas the slopes from the weak group clearly define the variation of decay times with height. We thus utilize the slopes only from the weak group in the altitude region between 86 km and 96 km to estimate mesospheric temperatures. The meteor estimated temperatures show a typical seasonal variation near the mesopause region and the monthly mean temperatures are in good agreement with SABER temperatures within a mean difference of 4.8 K throughout the year. The meteor temperatures, representing typically the region around the altitude of 91 km, are lower on average by 2.1 K than simultaneously measured SATI OH(6-2) rotational temperatures during winter (March-October).

  6. Temperature dependence of magnetic anisotropies in ultrathin Fe film on vicinal Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong-Sheng; He, Wei; Ye, Jun; Hu, Bo; Tang, Jin; Zhang, Xiang-Qun [State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Cheng, Zhao-Hua, E-mail: zhcheng@aphy.iphy.ac.cn [State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190 (China)

    2017-05-01

    The temperature dependence of magnetic anisotropy of ultrathin Fe film with different thickness epitaxially grown on vicinal Si(111) substrate has been quantitatively investigated using the anisotropic magnetoresistance(AMR) measurements. Due to the effect of the vicinal substrate, the magnetic anisotropy is the superposition of a four-fold, a two-fold and a weakly six-fold contribution. It is found that the temperature dependence of the first-order magnetocrystalline anisotropies coefficient follows power laws of the reduced magnetization m(T)(=M(T)/M(0)) being consistent with the Callen and Callen's theory. However the temperature dependence of uniaxial magnetic anisotropy (UMA) shows novel behavior that decreases roughly as a function of temperature with different power law for samples with different thickness. We also found that the six-fold magnetocrystalline anisotropy is almost invariable over a wide temperature range. Possible mechanisms leading to the different exponents are discussed.

  7. Mechanical spectra of glass-forming liquids. I. Low-frequency bulk and shear moduli of DC704 and 5-PPE measured by piezoceramic transducers

    DEFF Research Database (Denmark)

    Hecksher, Tina; Olsen, Niels Boye; Nelson, Keith Adam

    2013-01-01

    We present dynamic shear and bulk modulus measurements of supercooled tetraphenyl-tetramethyl-trisiloxane (DC704) and 5-phenyl-4-ether over a range of temperatures close to their glass transition. The data are analyzed and compared in terms of time-temperature superposition (TTS), the relaxation ...

  8. Meteorological Reference Years of Daily Mean Temperature during the Slighting Time

    International Nuclear Information System (INIS)

    Marchante Jimenez, M.; Ramirez Santigosa, L.; Navarro Fernandez, A.; Mora Lopez, L.; Sidrach de Cardona Ortin, M.

    2002-01-01

    In this work the characterization of the daily mean temperature during the sunlight time has been analyzed. An algorithm for the hourly series generation from extreme daily values has been applied to evaluate the daily mean temperature during the sunlight time. A generic algorithm has been enhanced as a function of the sunrise time. This algorithm allows taking into account the fractions related to the sunrise and sunset hours. This methodology has been applied in data from 45 Spanish stations, uniformly distributed in the Iberian Peninsula. Data for a period of 14 years has been used in most of locations, and once the interest variable has been calculated, the meteorological reference year of the daily mean temperature during the sunlight time has been evaluated in each stations. The next step is the evaluation of the daily mean temperature during the sunlight time in any point into the zone of evaluation, not only in the measured stations. From the result data in each measured station, an geographic information system has been used in order to calculate the interpolation, obtaining maps with a data each 5 km. for each of the 365 days of the year. Then, this results can be superposed with the solar radiation evaluation obtaining the input data for the sizing of the photovoltaic grid connected system in any point of the Spanish geography. (Author) 64 refs

  9. Frequency domain analysis of piping systems under short duration loading

    International Nuclear Information System (INIS)

    Sachs, K.; Sand, H.; Lockau, J.

    1981-01-01

    In piping analysis two procedures are used almost exclusively: the modal superposition method for relatively long input time histories (e.g., earthquake) and direct integration of the equations of motion for short input time histories. A third possibility, frequency domain analysis, has only rarely been applied to piping systems to date. This paper suggests the use of frequency domain analysis for specific piping problems for which only direct integration could be used in the past. Direct integration and frequency domain analysis are compared, and it is shown that the frequency domain method is less costly if more than four or five load cases are considered. In addition, this method offers technical advantages, such as more accurate representation of modal damping and greater insight into the structural behavior of the system. (orig.)

  10. Time and temperature affect glycolysis in blood samples regardless of fluoride-based preservatives: a potential underestimation of diabetes.

    Science.gov (United States)

    Stapleton, Mary; Daly, Niamh; O'Kelly, Ruth; Turner, Michael J

    2017-11-01

    Background The inhibition of glycolysis prior to glucose measurement is an important consideration when interpreting glucose tolerance tests. This is particularly important in gestational diabetes mellitus where prompt diagnosis and treatment is essential. A study was planned to investigate the effect of preservatives and temperature on glycolysis. Methods Blood samples for glucose were obtained from consented females. Lithium heparin and fluoride-EDTA samples transported rapidly in ice slurry to the laboratory were analysed for glucose concentration and then held either in ice slurry or at room temperature for varying time intervals. Paired fluoride-citrate samples were received at room temperature and held at room temperature, with analysis at similar time intervals. Results No significant difference was noted between mean glucose concentrations when comparing different sample types received in ice slurry. The mean glucose concentrations decreased significantly for both sets of samples when held at room temperature (0.4 mmol/L) and in ice slurry (0.2 mmol/L). A review of patient glucose tolerance tests reported in our hospital indicated that 17.8% exceeded the recommended diagnostic criteria for gestational diabetes mellitus. It was predicted that if the results of fasting samples were revised to reflect the effect of glycolysis at room temperature, the adjusted diagnostic rate could increase to 35.3%. Conclusion Preanalytical handling of blood samples for glucose analysis is vital. Fluoride-EDTA is an imperfect antiglycolytic, even when the samples are transported and analysed rapidly provides such optimal conditions. The use of fluoride-citrate tubes may offer a viable alternative in the diagnosis of diabetes mellitus.

  11. Investigation of aquifer-estuary interaction using wavelet analysis of fiber-optic temperature data

    Science.gov (United States)

    Henderson, R.D.; Day-Lewis, Frederick D.; Harvey, Charles F.

    2009-01-01

    Fiber-optic distributed temperature sensing (FODTS) provides sub-minute temporal and meter-scale spatial resolution over kilometer-long cables. Compared to conventional thermistor or thermocouple-based technologies, which measure temperature at discrete (and commonly sparse) locations, FODTS offers nearly continuous spatial coverage, thus providing hydrologic information at spatiotemporal scales previously impossible. Large and information-rich FODTS datasets, however, pose challenges for data exploration and analysis. To date, FODTS analyses have focused on time-series variance as the means to discriminate between hydrologic phenomena. Here, we demonstrate the continuous wavelet transform (CWT) and cross-wavelet transform (XWT) to analyze FODTS in the context of related hydrologic time series. We apply the CWT and XWT to data from Waquoit Bay, Massachusetts to identify the location and timing of tidal pumping of submarine groundwater.

  12. Analytical solution of transient temperature in continuous wave end-pumped laser slab: Reduction of temperature distribution and time of thermal response

    Directory of Open Access Journals (Sweden)

    Shibib Khalid S.

    2017-01-01

    Full Text Available An analytical solution of transient 3-D heat equation based on integral transform method is derived. The result are compared with numerical solution, and good agreements are obtained. Minimization of response time and temperature distribution through a laser slab are tested. It is found that the increasing in the lateral convection heat transfer coefficient can significantly reduce the response time and the temperature distribution while no effect on response time is observed when changing pumping profile from Gaussian to top hat beam in spite of the latter reduce the temperature distribution, also it is found that dividing the pumping power between two slab ends might reduce the temperature distribution and it has no effect on thermal response time.

  13. Real time algorithm temperature compensation in tunable laser / VCSEL based WDM-PON system

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Rodes Lopez, Roberto; Pham, Tien Thang

    2012-01-01

    We report on a real time experimental validation of a centralized algorithm for temperature compensation of tunable laser/VCSEL at ONU and OLT, respectively. Locking to a chosen WDM channel is shown for temperature changes over 40°C.......We report on a real time experimental validation of a centralized algorithm for temperature compensation of tunable laser/VCSEL at ONU and OLT, respectively. Locking to a chosen WDM channel is shown for temperature changes over 40°C....

  14. Dynamical equations for time-ordered Green’s functions: from the Keldysh time-loop contour to equilibrium at finite and zero temperature

    International Nuclear Information System (INIS)

    Ness, H; Dash, L K

    2012-01-01

    We study the dynamical equation of the time-ordered Green’s function at finite temperature. We show that the time-ordered Green’s function obeys a conventional Dyson equation only at equilibrium and in the limit of zero temperature. In all other cases, i.e. finite temperature at equilibrium or non-equilibrium, the time-ordered Green’s function obeys instead a modified Dyson equation. The derivation of this result is obtained from the general formalism of the non-equilibrium Green’s functions on the Keldysh time-loop contour. At equilibrium, our result is fully consistent with the Matsubara temperature Green’s function formalism and also justifies rigorously the correction terms introduced in an ad hoc way with Hedin and Lundqvist. Our results show that one should use the appropriate dynamical equation for the time-ordered Green’s function when working beyond the equilibrium zero-temperature limit.

  15. The Effect of Temperature and Drying Method on Drying Time and Color Quality of Mint

    Directory of Open Access Journals (Sweden)

    H Bahmanpour

    2017-10-01

    applied to register and monitoring product weight real time. For imaging of dried samples, a semi-professional digital cameras Fujifilm Fine Pix HS55model Barzvlvshn 921000 pixel was applied. Dry samples were used to determine the RGB color model that consists of three whole red (Red, green (Green and blue (blue light intensity 0 to 255 (in this case, zero for black and 255 for white pixels Finally, the average of RGB changes color index were calculated as the mean change color of samples during the drying. Results and Discussion The results showed that drying time of solar dryer is more than vacuum-infrared (averaged: 201 versus 153 minutes. For two methods of drying, increasing temperature, made reduction in drying time. The maximum drying time registered 237 minutes for solar method which was set to 30°C and minimum drying time was registered 112 minutes relating to vacuum –infrared which was set to 50°C. Color evaluation showed that the effect of drying method on the changes of colour index (before and after drying is reasonable. Vacuumed-infrared dryer case with 8.75% color change was showed to be much efficient than solar dryer with 11.96% change. Analysis of variance was performed due to the drying temperature index mint color changes and results showed the reasonable difference. The highest and lowest color change related to the temperature of 50°C (11.767% and 30°C (9.197% respectively. Conclusions Drying method as well as applying temperature showed rescannable effects on daring time and color quality of mint. The vacuum-infrared method reduces drying time for all temperature treatments considered in this study. Beside this, using vacuum-infrared showed minimum changes on color characteristic and can be say more efficient in aspect of color quality especially at its lowest applicable temperature (30°C. Increasing temperature causes the samples to be more darken for both drying methods. This phenomena may be related to replacement of magnesium by hydrogen

  16. Measured winter and spring-time indoor temperatures in UK homes over the period 1969–2010: A review and synthesis

    International Nuclear Information System (INIS)

    Vadodaria, K.; Loveday, D.L.; Haines, V.

    2014-01-01

    This paper presents a review and synthesis of average winter and spring-time indoor temperatures in UK homes measured over the period 1969–2010. Analysis of measured temperatures in a sample of solid wall dwellings in the UK, conducted as part of the CALEBRE research project, is included. The review suggests that, for periods when occupation was likely, there has been little or no increase in winter and spring-time average living room temperatures over the last 40 years, with average recorded living room temperatures having been historically lower than the WHO-recommended value of 21 °C. Correspondingly, for periods of likely occupation, average bedroom temperatures appear to have increased. Compared with non-domestic buildings, there have been fewer investigations of domestic thermal comfort, either in the UK or elsewhere, and hence the paper also calls for further detailed investigations of domestic indoor temperatures during occupied hours together with thermal comfort evaluations in order to better understand domestic thermal environments. Based on suggestions from the limited range of studies available to date, living room temperatures may need to be maintained within the range 20–22 °C for thermal satisfaction, though this requires confirmation through further research. The study also emphasises that improving the energy efficiency of homes should be the primary means to effect any increases in indoor temperatures that are deemed essential. Considerations for future policy are discussed. - Highlights: • We review indoor temperatures measured in UK homes during 1960-2010. • We present analysis of temperature recorded by our study in 20 UK homes. • Little or no increase observed in living room temperatures for the last 40 years. • Occupied bedroom temperatures appear to have increased. • Living room temperatures have been historically lower than the WHO guidelines

  17. Modeling time-dependent corrosion fatigue crack propagation in 7000 series aluminum alloys

    Science.gov (United States)

    Mason, Mark E.; Gangloff, Richard P.

    1994-01-01

    Stress corrosion cracking and corrosion fatigue experiments were conducted with the susceptible S-L orientation of AA7075-T651, immersed in acidified and inhibited NaCl solution, to provide a basis for incorporating environmental effects into fatigue crack propagation life prediction codes such as NASA FLAGRO. This environment enhances da/dN by five to ten-fold compared to fatigue in moist air. Time-based crack growth rates from quasi-static load experiments are an order of magnitude too small for accurate linear superposition prediction of da/dN for loading frequencies above 0.001 Hz. Alternate methods of establishing da/dt, based on rising-load or ripple-load-enhanced crack tip strain rate, do not increase da/dt and do not improve linear superposition. Corrosion fatigue is characterized by two regimes of frequency dependence; da/dN is proportional to f(exp -1) below 0.001 Hz and to F(exp 0) to F(exp -0.1) for higher frequencies. Da/dN increases mildly both with increasing hold-time at K(sub max) and with increasing rise-time for a range of loading waveforms. The mild time-dependence is due to cycle-time-dependent corrosion fatigue growth. This behavior is identical for S-L nd L-T crack orientations. The frequency response of environmental fatigue in several 7000 series alloys is variable and depends on undefined compositional or microstructural variables. Speculative explanations are based on the effect of Mg on occluded crack chemistry and embritting hydrogen uptake, or on variable hydrogen diffusion in the crack tip process zone. Cracking in the 7075/NaCl system is adequately described for life prediction by linear superposition for prolonged load-cycle periods, and by a time-dependent upper bound relationship between da/dN and delta K for moderate loading times.

  18. Description of an identification method of thermocouple time constant based on application of recursive numerical filtering to temperature fluctuation

    International Nuclear Information System (INIS)

    Bernardin, B.; Le Guillou, G.; Parcy, JP.

    1981-04-01

    Usual spectral methods, based on temperature fluctuation analysis, aiming at thermocouple time constant identification are using an equipment too much sophisticated for on-line application. It is shown that numerical filtering is optimal for this application, the equipment is simpler than for spectral methods and less samples of signals are needed for the same accuracy. The method is described and a parametric study was performed using a temperature noise simulator [fr

  19. Time-temperature relationships for hyperthermal radiosensitisation in mouse intestine: influence of thermotolerance

    International Nuclear Information System (INIS)

    Hume, S.P.; Marigold, J.C.L.

    1985-01-01

    Thermal enhancement of radiation injury to the crypt compartment of mouse small intestinal mucosa has been measured as a function of heating time for temperatures in the range 41.0-44.0 0 C. All the hyperthermal treatments used were themselves subthreshold for gross tissue injury. With this limitation, thermoradiosensitisation increased linearly with duration of hyperthermia for temperatures in the range 42.3-44.0 0 C. Using temperatures below 42.0 0 C, there was a saturation in effect for treatments longer than approximately 40-90 min. For temperatures above the transition, a 1 0 C change was equivalent to a factor of 2.6 in heating time; below the transition, a 1 0 C change was equivalent to a factor of 5.4. Time-temperature relationships for thermoradiosensitisation in other rodent tissues are reviewed and compared with the general relationships for direct thermal injury, previously derived from experimental studies. The results are discussed with relevance to the interpretation of in vivo thermal enhancement of radiation injury. (Auth.)

  20. Study on effects of mixing vane grids on coolant temperature distribution by subchannel analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mao, H.; Yang, B.W.; Han, B. [Xi' an Jiaotong Univ., Shaanxi (China). Science and Technology Center for Advanced Nuclear Fuel Research

    2016-07-15

    Mixing vane grids (MVG) have great influence on coolant temperature field in the rod bundle. The MVG could enhance convective heat transfer between the fuel rod wall and the coolant, and promote inter-subchannel mixing at the same time. For the influence of the MVG on convective heat transfer enhancement, many experiments have been done and several correlations have been developed based on the experimental data. However, inter-subchannel mixing promotion caused by the MVG is not well estimated in subchannel analysis because the information of mixing vanes is totally missing in most subchannel codes. This paper analyzes the influence of mixing vanes on coolant temperature distribution using the improved MVG model in subchannel analysis. The coolant temperature distributions with the MVG are analyzed, and the results show that mixing vanes lead to a more uniform temperature distribution. The performances of split vane grids under different power conditions are evaluated. The results are compared with those of spacer grids without mixing vanes and some conclusions are obtained.

  1. Study on effects of mixing vane grids on coolant temperature distribution by subchannel analysis

    International Nuclear Information System (INIS)

    Mao, H.; Yang, B.W.; Han, B.

    2016-01-01

    Mixing vane grids (MVG) have great influence on coolant temperature field in the rod bundle. The MVG could enhance convective heat transfer between the fuel rod wall and the coolant, and promote inter-subchannel mixing at the same time. For the influence of the MVG on convective heat transfer enhancement, many experiments have been done and several correlations have been developed based on the experimental data. However, inter-subchannel mixing promotion caused by the MVG is not well estimated in subchannel analysis because the information of mixing vanes is totally missing in most subchannel codes. This paper analyzes the influence of mixing vanes on coolant temperature distribution using the improved MVG model in subchannel analysis. The coolant temperature distributions with the MVG are analyzed, and the results show that mixing vanes lead to a more uniform temperature distribution. The performances of split vane grids under different power conditions are evaluated. The results are compared with those of spacer grids without mixing vanes and some conclusions are obtained.

  2. OPTIMIZATION OF THE TEMPERATURE CONTROL SCHEME FOR ROLLER COMPACTED CONCRETE DAMS BASED ON FINITE ELEMENT AND SENSITIVITY ANALYSIS METHODS

    Directory of Open Access Journals (Sweden)

    Huawei Zhou

    2016-10-01

    Full Text Available Achieving an effective combination of various temperature control measures is critical for temperature control and crack prevention of concrete dams. This paper presents a procedure for optimizing the temperature control scheme of roller compacted concrete (RCC dams that couples the finite element method (FEM with a sensitivity analysis method. In this study, seven temperature control schemes are defined according to variations in three temperature control measures: concrete placement temperature, water-pipe cooling time, and thermal insulation layer thickness. FEM is employed to simulate the equivalent temperature field and temperature stress field obtained under each of the seven designed temperature control schemes for a typical overflow dam monolith based on the actual characteristics of a RCC dam located in southwestern China. A sensitivity analysis is subsequently conducted to investigate the degree of influence each of the three temperature control measures has on the temperature field and temperature tensile stress field of the dam. Results show that the placement temperature has a substantial influence on the maximum temperature and tensile stress of the dam, and that the placement temperature cannot exceed 15 °C. The water-pipe cooling time and thermal insulation layer thickness have little influence on the maximum temperature, but both demonstrate a substantial influence on the maximum tensile stress of the dam. The thermal insulation thickness is significant for reducing the probability of cracking as a result of high thermal stress, and the maximum tensile stress can be controlled under the specification limit with a thermal insulation layer thickness of 10 cm. Finally, an optimized temperature control scheme for crack prevention is obtained based on the analysis results.

  3. The effect of temperature and extraction period of time on the chemicals content of emprit ginger ethanol extract (Zingiber officinale var. Rubrum)

    Science.gov (United States)

    Ratnaningrum, Diah; Endah, Een Sri; Pudjiraharti, Sri

    2017-01-01

    Research on extraction method of emprit ginger using ethanol with agitation of 100 rpm at different temperatures (ambient temperature, 40, and 50°C) and various extraction period of times (30, 60, and 90 minutes) was conducted. Analysis of chemicals content i.e. total phenolic and total flavonoid. The objective of this work was to study the effect of temperatures and extraction period of times on the chemicals content of its ethanol extract. Based on the results of the test, the highest content total flavonoid (5.17% w/w) was resulted at 40°C for 90 minutes, while the total phenolic content was not affected by either temperature or extraction period of times used. The content of total phenolic was around 2.39% to 2.65% w/w.

  4. Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Christov, Ivan P., E-mail: ivan.christov@phys.uni-sofia.bg

    2016-08-15

    In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the real time propagation can be a challenge.

  5. Implementation of Coupled Skin Temperature Analysis and Bias Correction in a Global Atmospheric Data Assimilation System

    Science.gov (United States)

    Radakovich, Jon; Bosilovich, M.; Chern, Jiun-dar; daSilva, Arlindo

    2004-01-01

    The NASA/NCAR Finite Volume GCM (fvGCM) with the NCAR CLM (Community Land Model) version 2.0 was integrated into the NASA/GMAO Finite Volume Data Assimilation System (fvDAS). A new method was developed for coupled skin temperature assimilation and bias correction where the analysis increment and bias correction term is passed into the CLM2 and considered a forcing term in the solution to the energy balance. For our purposes, the fvDAS CLM2 was run at 1 deg. x 1.25 deg. horizontal resolution with 55 vertical levels. We assimilate the ISCCP-DX (30 km resolution) surface temperature product. The atmospheric analysis was performed 6-hourly, while the skin temperature analysis was performed 3-hourly. The bias correction term, which was updated at the analysis times, was added to the skin temperature tendency equation at every timestep. In this presentation, we focus on the validation of the surface energy budget at the in situ reference sites for the Coordinated Enhanced Observation Period (CEOP). We will concentrate on sites that include independent skin temperature measurements and complete energy budget observations for the month of July 2001. In addition, MODIS skin temperature will be used for validation. Several assimilations were conducted and preliminary results will be presented.

  6. Theta, time reversal and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gaiotto, Davide [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Kapustin, Anton [Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Komargodski, Zohar [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 76100 (Israel); Seiberg, Nathan [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States)

    2017-05-17

    SU(N) gauge theory is time reversal invariant at θ=0 and θ=π. We show that at θ=π there is a discrete ’t Hooft anomaly involving time reversal and the center symmetry. This anomaly leads to constraints on the vacua of the theory. It follows that at θ=π the vacuum cannot be a trivial non-degenerate gapped state. (By contrast, the vacuum at θ=0 is gapped, non-degenerate, and trivial.) Due to the anomaly, the theory admits nontrivial domain walls supporting lower-dimensional theories. Depending on the nature of the vacuum at θ=π, several phase diagrams are possible. Assuming area law for space-like loops, one arrives at an inequality involving the temperatures at which CP and the center symmetry are restored. We also analyze alternative scenarios for SU(2) gauge theory. The underlying symmetry at θ=π is the dihedral group of 8 elements. If deconfined loops are allowed, one can have two O(2)-symmetric fixed points. It may also be that the four-dimensional theory around θ=π is gapless, e.g. a Coulomb phase could match the underlying anomalies.

  7. Theta, time reversal and temperature

    International Nuclear Information System (INIS)

    Gaiotto, Davide; Kapustin, Anton; Komargodski, Zohar; Seiberg, Nathan

    2017-01-01

    SU(N) gauge theory is time reversal invariant at θ=0 and θ=π. We show that at θ=π there is a discrete ’t Hooft anomaly involving time reversal and the center symmetry. This anomaly leads to constraints on the vacua of the theory. It follows that at θ=π the vacuum cannot be a trivial non-degenerate gapped state. (By contrast, the vacuum at θ=0 is gapped, non-degenerate, and trivial.) Due to the anomaly, the theory admits nontrivial domain walls supporting lower-dimensional theories. Depending on the nature of the vacuum at θ=π, several phase diagrams are possible. Assuming area law for space-like loops, one arrives at an inequality involving the temperatures at which CP and the center symmetry are restored. We also analyze alternative scenarios for SU(2) gauge theory. The underlying symmetry at θ=π is the dihedral group of 8 elements. If deconfined loops are allowed, one can have two O(2)-symmetric fixed points. It may also be that the four-dimensional theory around θ=π is gapless, e.g. a Coulomb phase could match the underlying anomalies.

  8. Quantum properties of a superposition of squeezed displaced two-mode vacuum and single-photon states

    International Nuclear Information System (INIS)

    El-Orany, Faisal A A; Obada, A-S F; M Asker, Zafer; Perina, J

    2009-01-01

    In this paper, we study some quantum properties of a superposition of displaced squeezed two-mode vacuum and single-photon states, such as the second-order correlation function, the Cauchy-Schwarz inequality, quadrature squeezing, quasiprobability distribution functions and purity. These type of states include two mechanisms, namely interference in phase space and entanglement. We show that these states can exhibit sub-Poissonian statistics, squeezing and deviate from the classical Cauchy-Schwarz inequality. Moreover, the amount of entanglement in the system can be increased by increasing the squeezing mechanism. In the framework of the quasiprobability distribution functions, we show that the single-mode state can tend to the thermal state based on the correlation mechanism. A generation scheme for such states is given.

  9. Remote sensing of temperature and wind using acoustic travel-time measurements

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Manuela; Fischer, Gabi; Raabe, Armin; Weisse, Frank [Leipzig Univ. (Germany). Inst. fuer Meteorologie; Ziemann, Astrid [Technische Univ. Dresden (Germany). Professur fuer Meteorologie

    2013-04-15

    A remote sensing technique to detect area-averaged temperature and flow properties within an area under investigation, utilizing acoustic travel-time measurements, is introduced. This technique uses the dependency of the speed of acoustic signals on the meteorological parameters temperature and wind along the propagation path. The method itself is scalable: It is applicable for investigation areas with an extent of some hundred square metres as well as for small-scale areas in the range of one square metre. Moreover, an arrangement of the acoustic transducers at several height levels makes it possible to determine profiles and gradients of the meteorological quantities. With the help of two examples the potential of this remote sensing technique for simultaneously measuring averaged temperature and flow fields is demonstrated. A comparison of time histories of temperature and wind values derived from acoustic travel-time measurements with point measurements shows a qualitative agreement whereas calculated root-mean-square errors differ for the two example applications. They amount to 1.4 K and 0.3 m/s for transducer distances of 60 m and 0.4 K and 0.2 m/s for transducer distances in the range of one metre. (orig.)

  10. Creep behavior of bone cement: a method for time extrapolation using time-temperature equivalence.

    Science.gov (United States)

    Morgan, R L; Farrar, D F; Rose, J; Forster, H; Morgan, I

    2003-04-01

    The clinical lifetime of poly(methyl methacrylate) (PMMA) bone cement is considerably longer than the time over which it is convenient to perform creep testing. Consequently, it is desirable to be able to predict the long term creep behavior of bone cement from the results of short term testing. A simple method is described for prediction of long term creep using the principle of time-temperature equivalence in polymers. The use of the method is illustrated using a commercial acrylic bone cement. A creep strain of approximately 0.6% is predicted after 400 days under a constant flexural stress of 2 MPa. The temperature range and stress levels over which it is appropriate to perform testing are described. Finally, the effects of physical aging on the accuracy of the method are discussed and creep data from aged cement are reported.

  11. Time-temperature-transformation diagram of Zr-based Zr-Al-Cu-Ni metallic glasses

    International Nuclear Information System (INIS)

    Goh, T.T.; Li, Y.; Ng, S.C.

    1996-01-01

    The critical cooling rates R c for glass formation in four Zr-based Zr-Al-Cu-Ni alloys were determined using techniques developed by Uhlmann based on theories of homogeneous nucleation, crystal growth and transformation kinetics. It involves the construction of a time-temperature-transformation curve which requires the knowledge of the viscosity-temperature curve of the alloys. Two types of viscosity-temperature expressions, namely Andrade expression and Doolittle expression, were used to model the viscosity of the Zr-based alloys and the choice of the viscosity-temperature expression which gives the best estimate of the calculated time-temperature-transformation curve is discussed. (author)

  12. Analysis of low-temperature tar fractions

    Energy Technology Data Exchange (ETDEWEB)

    Kikkawa, S; Yamada, F

    1952-01-01

    A preliminary comparative study was made on the applicability of the methods commonly used for the type analysis of petroleum products to the low-temperature tar fractions. The usability of chromatography was also studied.

  13. A comparison between anisotropic analytical and multigrid superposition dose calculation algorithms in radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Wu, Vincent W.C.; Tse, Teddy K.H.; Ho, Cola L.M.; Yeung, Eric C.Y.

    2013-01-01

    Monte Carlo (MC) simulation is currently the most accurate dose calculation algorithm in radiotherapy planning but requires relatively long processing time. Faster model-based algorithms such as the anisotropic analytical algorithm (AAA) by the Eclipse treatment planning system and multigrid superposition (MGS) by the XiO treatment planning system are 2 commonly used algorithms. This study compared AAA and MGS against MC, as the gold standard, on brain, nasopharynx, lung, and prostate cancer patients. Computed tomography of 6 patients of each cancer type was used. The same hypothetical treatment plan using the same machine and treatment prescription was computed for each case by each planning system using their respective dose calculation algorithm. The doses at reference points including (1) soft tissues only, (2) bones only, (3) air cavities only, (4) soft tissue-bone boundary (Soft/Bone), (5) soft tissue-air boundary (Soft/Air), and (6) bone-air boundary (Bone/Air), were measured and compared using the mean absolute percentage error (MAPE), which was a function of the percentage dose deviations from MC. Besides, the computation time of each treatment plan was recorded and compared. The MAPEs of MGS were significantly lower than AAA in all types of cancers (p<0.001). With regards to body density combinations, the MAPE of AAA ranged from 1.8% (soft tissue) to 4.9% (Bone/Air), whereas that of MGS from 1.6% (air cavities) to 2.9% (Soft/Bone). The MAPEs of MGS (2.6%±2.1) were significantly lower than that of AAA (3.7%±2.5) in all tissue density combinations (p<0.001). The mean computation time of AAA for all treatment plans was significantly lower than that of the MGS (p<0.001). Both AAA and MGS algorithms demonstrated dose deviations of less than 4.0% in most clinical cases and their performance was better in homogeneous tissues than at tissue boundaries. In general, MGS demonstrated relatively smaller dose deviations than AAA but required longer computation time

  14. Trend analysis and change point detection of annual and seasonal temperature series in Peninsular Malaysia

    Science.gov (United States)

    Suhaila, Jamaludin; Yusop, Zulkifli

    2017-06-01

    Most of the trend analysis that has been conducted has not considered the existence of a change point in the time series analysis. If these occurred, then the trend analysis will not be able to detect an obvious increasing or decreasing trend over certain parts of the time series. Furthermore, the lack of discussion on the possible factors that influenced either the decreasing or the increasing trend in the series needs to be addressed in any trend analysis. Hence, this study proposes to investigate the trends, and change point detection of mean, maximum and minimum temperature series, both annually and seasonally in Peninsular Malaysia and determine the possible factors that could contribute to the significance trends. In this study, Pettitt and sequential Mann-Kendall (SQ-MK) tests were used to examine the occurrence of any abrupt climate changes in the independent series. The analyses of the abrupt changes in temperature series suggested that most of the change points in Peninsular Malaysia were detected during the years 1996, 1997 and 1998. These detection points captured by Pettitt and SQ-MK tests are possibly related to climatic factors, such as El Niño and La Niña events. The findings also showed that the majority of the significant change points that exist in the series are related to the significant trend of the stations. Significant increasing trends of annual and seasonal mean, maximum and minimum temperatures in Peninsular Malaysia were found with a range of 2-5 °C/100 years during the last 32 years. It was observed that the magnitudes of the increasing trend in minimum temperatures were larger than the maximum temperatures for most of the studied stations, particularly at the urban stations. These increases are suspected to be linked with the effect of urban heat island other than El Niño event.

  15. Motion Estimation Using the Single-row Superposition-type Planar Compound-like Eye

    Directory of Open Access Journals (Sweden)

    Gwo-Long Lin

    2007-06-01

    Full Text Available How can the compound eye of insects capture the prey so accurately andquickly? This interesting issue is explored from the perspective of computer vision insteadof from the viewpoint of biology. The focus is on performance evaluation of noiseimmunity for motion recovery using the single-row superposition-type planar compound-like eye (SPCE. The SPCE owns a special symmetrical framework with tremendousamount of ommatidia inspired by compound eye of insects. The noise simulates possibleambiguity of image patterns caused by either environmental uncertainty or low resolutionof CCD devices. Results of extensive simulations indicate that this special visualconfiguration provides excellent motion estimation performance regardless of themagnitude of the noise. Even when the noise interference is serious, the SPCE is able todramatically reduce errors of motion recovery of the ego-translation without any type offilters. In other words, symmetrical, regular, and multiple vision sensing devices of thecompound-like eye have statistical averaging advantage to suppress possible noises. Thisdiscovery lays the basic foundation in terms of engineering approaches for the secret of thecompound eye of insects.

  16. Comparison of setting time and temperature hydration in mortar with substituent ceramic

    International Nuclear Information System (INIS)

    Rodrigues, R.A.; Alves, L.S.; Evangelista, A.C.J.; Almeida, V.C.

    2011-01-01

    The workability of mortar is determined mainly by the kinetics of hydration of the hydraulic binder, the process of gelation / hydration of this material in aqueous solutions is significantly influenced by the presence of additives. As a result, this work aims at studying changes in setting time and temperature of hydration of mortars with 10, 15 and 30% of Portland cement replaced by residues of porcelain and ceramic bricks. The influence of these residues in the cement hydration process was studied by testing takes time, temperature, hydration and X-ray diffraction. The results indicate that the mortar setting time not changed significantly since the temperature of hydration has a minor variation on what is preferred because it reduces the microcracks created in mortar during drying.(author)

  17. Effect of corrosion potential on the corrosion fatigue crack growth behaviour of low-alloy steels in high-temperature water

    International Nuclear Information System (INIS)

    Ritter, S.; Seifert, H.P.

    2008-01-01

    The low-frequency corrosion fatigue (CF) crack growth behaviour of different low-alloy reactor pressure vessel steels was characterized under simulated boiling water reactor conditions by cyclic fatigue tests with pre-cracked fracture mechanics specimens. The experiments were performed in the temperature range of 240-288 deg. C with different loading parameters at different electrochemical corrosion potentials (ECPs). Modern high-temperature water loops, on-line crack growth monitoring (DCPD) and fractographical analysis by SEM were used to quantify the cracking response. In this paper the effect of ECP on the CF crack growth behaviour is discussed and compared with the crack growth model of General Electric (GE). The ECP mainly affected the transition from fast ('high-sulphur') to slow ('low-sulphur') CF crack growth, which appeared as critical frequencies ν crit = f(ΔK, R, ECP) and ΔK-thresholds ΔK EAC f(ν, R, ECP) in the cycle-based form and as a critical air fatigue crack growth rate da/dt Air,crit in the time-domain form. The critical crack growth rates, frequencies, and ΔK EAC -thresholds were shifted to lower values with increasing ECP. The CF crack growth rates of all materials were conservatively covered by the 'high-sulphur' CF line of the GE-model for all investigated temperatures and frequencies. Under most system conditions, the model seems to reasonably well predict the experimentally observed parameter trends. Only under highly oxidizing conditions (ECP ≥ 0 mV SHE ) and slow strain rates/low loading frequencies the GE-model does not conservatively cover the experimentally gathered crack growth rate data. Based on the GE-model and the observed cracking behaviour a simple time-domain superposition-model could be used to develop improved reference CF crack growth curves for codes

  18. Time-Dependent Hartree-Fock Approach to Nuclear Pasta at Finite Temperature

    International Nuclear Information System (INIS)

    Schuetrumpf, B; Maruhn, J A; Klatt, M A; Mecke, K; Reinhard, P-G; Iida, K

    2013-01-01

    We present simulations of neutron-rich matter at subnuclear densities, like supernova matter, with the time-dependent Hartree-Fock approximation at temperatures of several MeV. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. This matter evolves into spherical, rod-like, and slab-like shapes and mixtures thereof. The simulations employ a full Skyrme interaction in a periodic three-dimensional grid. By an improved morphological analysis based on Minkowski functionals, all eight pasta shapes can be uniquely identified by the sign of only two valuations, namely the Euler characteristic and the integral mean curvature.

  19. Time-Dependent Hartree-Fock Approach to Nuclear Pasta at Finite Temperature

    Science.gov (United States)

    Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.

    2013-03-01

    We present simulations of neutron-rich matter at subnuclear densities, like supernova matter, with the time-dependent Hartree-Fock approximation at temperatures of several MeV. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. This matter evolves into spherical, rod-like, and slab-like shapes and mixtures thereof. The simulations employ a full Skyrme interaction in a periodic three-dimensional grid. By an improved morphological analysis based on Minkowski functionals, all eight pasta shapes can be uniquely identified by the sign of only two valuations, namely the Euler characteristic and the integral mean curvature.

  20. Hemispherical Resonator Gyroscope Accuracy Analysis Under Temperature Influence

    Directory of Open Access Journals (Sweden)

    Boran LI

    2014-06-01

    Full Text Available Frequency splitting of hemispherical resonator gyroscope will change as system operating temperature changes. This phenomenon leads to navigation accuracy of hemispherical resonator gyroscope reduces. By researching on hemispherical resonator gyroscope dynamical model and its frequency characteristic, the frequency splitting formula and the precession angle formula of gyroscope vibrating mode based on hemispherical resonator gyroscope dynamic equation parameters are derived. By comparison, gyroscope precession angle deviation caused by frequency splitting can be obtained. Based on analysis of temperature variation against gyroscope resonator, the design of hemispherical resonator gyroscope feedback controller under temperature variation conditions is researched and the maximum theoretical fluctuation of gyroscope dynamical is determined by using a numerical analysis example.

  1. In situ response time measurements of RTD temperature sensors

    International Nuclear Information System (INIS)

    Goncalves, I.M.P.

    1985-01-01

    The loop-current-step-response test provides a mean for determining the time constant of resistence thermometers. The test consist in heating the sensor a few degrees above ambient temperature by causing a step pertubation in the electric current that flows through the sensor leads. The developed mathematical transformation permits to use data collected during the internal heating transient to predict the sensor response to perturbations in fluid temperature. Experimental data obtained show that the time constant determined by method is within 15 percent of true value. The loop-current-step-response test is a remote in situ test, which can be performed with the sensor installed in the process. Consequently it takes account the local heat transfer conditions, and appropriated for nuclear power plants, where sensors are installed in points of difficult access. (author) [pt

  2. Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with β>1

    Science.gov (United States)

    Hashimoto, Chihiro; Panizza, Pascal; Rouch, Jacques; Ushiki, Hideharu

    2005-10-01

    A new analytical concept is applied to the kinetics of the shrinking process of poly(N-isopropylacrylamide) (PNIPA) gels. When PNIPA gels are put into hot water above the critical temperature, two-step shrinking is observed and the secondary shrinking of gels is fitted well by a stretched exponential function. The exponent β characterizing the stretched exponential is always higher than one, although there are few analytical concepts for the stretched exponential function with β>1. As a new interpretation for this function, we propose a superposition of step (Heaviside) function and a new distribution function of characteristic time is deduced.

  3. Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with β>1

    International Nuclear Information System (INIS)

    Hashimoto, Chihiro; Panizza, Pascal; Rouch, Jacques; Ushiki, Hideharu

    2005-01-01

    A new analytical concept is applied to the kinetics of the shrinking process of poly(N-isopropylacrylamide) (PNIPA) gels. When PNIPA gels are put into hot water above the critical temperature, two-step shrinking is observed and the secondary shrinking of gels is fitted well by a stretched exponential function. The exponent β characterizing the stretched exponential is always higher than one, although there are few analytical concepts for the stretched exponential function with β>1. As a new interpretation for this function, we propose a superposition of step (Heaviside) function and a new distribution function of characteristic time is deduced

  4. Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with {beta}>1

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Chihiro [Graduate School of Bio-Application and System Engineering (BASE), Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi Tokyo 185-0054 (Japan); Panizza, Pascal [Centre de Physique Moleculaire Optique et Hertzienne (CPMOH), Bordeaux I University, 351 Cours de la Liberation 33405 Talance (France); Rouch, Jacques [Centre de Physique Moleculaire Optique et Hertzienne (CPMOH), Bordeaux I University, 351 Cours de la Liberation 33405 Talance (France); Ushiki, Hideharu [Graduate School of Bio-Application and System Engineering (BASE), Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi Tokyo 185-0054 (Japan)

    2005-10-19

    A new analytical concept is applied to the kinetics of the shrinking process of poly(N-isopropylacrylamide) (PNIPA) gels. When PNIPA gels are put into hot water above the critical temperature, two-step shrinking is observed and the secondary shrinking of gels is fitted well by a stretched exponential function. The exponent {beta} characterizing the stretched exponential is always higher than one, although there are few analytical concepts for the stretched exponential function with {beta}>1. As a new interpretation for this function, we propose a superposition of step (Heaviside) function and a new distribution function of characteristic time is deduced.

  5. Time-temperature-transformation kinetics in SRL waste glass

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Bickford, D.F.; Karraker, D.G.

    1983-01-01

    Time-temperature-transformation (TTT) curves have been determined for SRL 165 waste glass. Extent and sequence of crystallization were determined by XRD and SEM. The incipient crystallization product, spinel, can be determined at one volume percent by magnetic susceptibility. The type and percentage of crystallization is correlated with waste glass durability. 20 references, 5 figures, 1 table

  6. Changes in setting time of alginate impression material with different water temperature

    Directory of Open Access Journals (Sweden)

    Decky J. Indrani

    2013-03-01

    Full Text Available Background: Previous studies showed that setting process of alginates can be influenced by temperature. Purpose: To determine the changes in setting time due to differences in water temperature and to determine the correlation between water temperature and the setting time. Methods: Seven groups of dough alginate were prepared by mixing alginate powder and water, each using a temperature between 13° C–28° C with a interval of 2.5° C. A sample mold (Θ = 30 mm, t = 16 mm was placed on a flat plate and filled with doug alginate. Immediately the flat end of a polished acrylic rod was placed in contact with the surface of dough alginate. Setting time of alginat was measured from the starting of the mix to the time when the alginate does not adhere to the end of the rod. Setting time alginate data were analyzed using one way ANOVA, LSD and Pearson. Results: Setting time of alginate with water temperature between 13° C–28° C were 87 to 119.4 seconds and were significantly different (p < 0.01. The setting time between group were also significantly different (p<0.01. There was an inverse correlation between water temperature and the setting time (r = -0.968. Conclusion: Water temperature between 13° C–28°C with a difference of 2.5° C produced significant differences in alginate setting time; the lower the water temperature being used the longer the setting time was produced.Latar belakang: Penelitian-penelitian sebelumnya menunjukkan bahwa proses pengerasan alginat dapat dipengaruhi oleh suhu. Tujuan: Mengetahui perubahan waktu pengerasan alginat akibat perbedaan suhu air serta mengetahui hubungan antara suhu air dan waktu pengerasan. Metode: Tujuh kelompok adonan alginat yang dipersiapkan dengan mencampur bubuk alginat dan air, masingmasing menggunakan suhu antara 13°C–28° C dengan interval 2,5° C. Pengukuran waktu pengerasan alginat dilakukan sesuai dengan spesifikasi ADA no.18. Sebuah cetakan sampel terbuat dari pralon berbentuk

  7. Short-time, high temperature mechanical testing of electrically conductive materials

    International Nuclear Information System (INIS)

    Marion, R.H.; Karnes, C.H.

    1975-10-01

    Design and performance details are given for a facility which was developed to obtain the mechanical properties of materials under high heating rate or transient temperature conditions and medium strain rates. The system is shown to be applicable to materials possessing electrical resistivities ranging from that of aluminum to that of graphite without taxing the heating capability. Heating rates as high as 2000 0 K/s in graphite are attained under controlled conditions. Methods of measuring temperature and the effects of expected temperature distributions are discussed. A method for measuring strain valid for transient temperature conditions to 3000 0 K is described. Results are presented for the stress-strain behavior of 316 stainless steel and ATJ(S) graphite obtained for heating times of a few seconds. (auth)

  8. A convolution-superposition dose calculation engine for GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Hissoiny, Sami; Ozell, Benoit; Despres, Philippe [Departement de genie informatique et genie logiciel, Ecole polytechnique de Montreal, 2500 Chemin de Polytechnique, Montreal, Quebec H3T 1J4 (Canada); Departement de radio-oncologie, CRCHUM-Centre hospitalier de l' Universite de Montreal, 1560 rue Sherbrooke Est, Montreal, Quebec H2L 4M1 (Canada)

    2010-03-15

    Purpose: Graphic processing units (GPUs) are increasingly used for scientific applications, where their parallel architecture and unprecedented computing power density can be exploited to accelerate calculations. In this paper, a new GPU implementation of a convolution/superposition (CS) algorithm is presented. Methods: This new GPU implementation has been designed from the ground-up to use the graphics card's strengths and to avoid its weaknesses. The CS GPU algorithm takes into account beam hardening, off-axis softening, kernel tilting, and relies heavily on raytracing through patient imaging data. Implementation details are reported as well as a multi-GPU solution. Results: An overall single-GPU acceleration factor of 908x was achieved when compared to a nonoptimized version of the CS algorithm implemented in PlanUNC in single threaded central processing unit (CPU) mode, resulting in approximatively 2.8 s per beam for a 3D dose computation on a 0.4 cm grid. A comparison to an established commercial system leads to an acceleration factor of approximately 29x or 0.58 versus 16.6 s per beam in single threaded mode. An acceleration factor of 46x has been obtained for the total energy released per mass (TERMA) calculation and a 943x acceleration factor for the CS calculation compared to PlanUNC. Dose distributions also have been obtained for a simple water-lung phantom to verify that the implementation gives accurate results. Conclusions: These results suggest that GPUs are an attractive solution for radiation therapy applications and that careful design, taking the GPU architecture into account, is critical in obtaining significant acceleration factors. These results potentially can have a significant impact on complex dose delivery techniques requiring intensive dose calculations such as intensity-modulated radiation therapy (IMRT) and arc therapy. They also are relevant for adaptive radiation therapy where dose results must be obtained rapidly.

  9. Impact of landfill liner time-temperature history on the service life of HDPE geomembranes.

    Science.gov (United States)

    Rowe, R Kerry; Islam, M Z

    2009-10-01

    The observed temperatures in different landfills are used to establish a number of idealized time-temperature histories for geomembrane liners in municipal solid waste (MSW) landfills. These are then used for estimating the service life of different HDPE geomembranes. The predicted antioxidant depletion times (Stage I) are between 7 and 750 years with the large variation depending on the specific HDPE geomembrane product, exposure conditions, and most importantly, the magnitude and duration of the peak liner temperature. The higher end of the range corresponds to data from geomembranes aged in simulated landfill liner tests and a maximum liner temperature of 37 degrees C. The lower end of the range corresponds to a testing condition where geomembranes were immersed in a synthetic leachate and a maximum liner temperature of 60 degrees C. The total service life of the geomembranes was estimated to be between 20 and 3300 years depending on the time-temperature history examined. The range illustrates the important role that time-temperature history could play in terms of geomembrane service life. The need for long-term monitoring of landfill liner temperature and for geomembrane ageing studies that will provide improved data for assessing the likely long-term performance of geomembranes in MSW landfills are highlighted.

  10. Effect of temperature and relative humidity on the development times and survival of Synopsyllus fonquerniei and Xenopsylla cheopis, the flea vectors of plague in Madagascar.

    Science.gov (United States)

    Kreppel, Katharina S; Telfer, Sandra; Rajerison, Minoarisoa; Morse, Andy; Baylis, Matthew

    2016-02-11

    Plague, a zoonosis caused by Yersinia pestis, is found in Asia, the Americas but mainly in Africa, with the island of Madagascar reporting almost one third of human cases worldwide. In the highlands of Madagascar, plague is transmitted predominantly by two flea species which coexist on the island, but differ in their distribution. The endemic flea, Synopsyllus fonquerniei, dominates flea communities on rats caught outdoors, while the cosmopolitan flea, Xenopsylla cheopis, is found mostly on rats caught in houses. Additionally S. fonquerniei seems restricted to areas above 800 m. Climatic constraints on the development of the two main vectors of plague could explain the differences in their distribution and the seasonal changes in their abundance. Here we present the first study on effects of temperature and relative humidity on the immature stages of both vector species. We examined the two species' temperature and humidity requirements under experimental conditions at five different temperatures and two relative humidities. By employing multivariate and survival analysis we established the impact of temperature and relative humidity on development times and survival for both species. Using degree-day analysis we then predicted the average developmental threshold for larvae to reach pupation and for pupae to complete development under each treatment. This analysis was undertaken separately for the two relative humidities and for the two species. Development times and time to death differed significantly, with the endemic S. fonquerniei taking on average 1.79 times longer to complete development and having a shorter time to death than X. cheopis under adverse conditions with high temperature and low humidity. Temperature had a significant effect on the development times of flea larvae and pupae. While humidity did not affect the development times of either species, it did influence the time of death of S. fonquerniei. Using degree-day analysis we estimated an

  11. Single molecule manipulation at low temperature and laser scanning tunnelling photo-induced processes analysis through time-resolved studies

    International Nuclear Information System (INIS)

    Riedel, Damien

    2010-01-01

    This paper describes, firstly, the statistical analysis used to determine the processes that occur during the manipulation of a single molecule through electronically induced excitations with a low temperature (5 K) scanning tunnelling microscope (STM). Various molecular operation examples are described and the ability to probe the ensuing molecular manipulation dynamics is discussed within the excitation context. It is, in particular, shown that such studies can reveal reversible manipulation for tuning dynamics through variation of the excitation energy. Secondly, the photo-induced process arising from the irradiation of the STM junction is also studied through feedback loop dynamics analysis, allowing us to distinguish between photo-thermally and photo-electronically induced signals.

  12. PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature

    Directory of Open Access Journals (Sweden)

    Rider Mark A

    2012-06-01

    Full Text Available Abstract Background Reliable methods to preserve mosquito vectors for malaria studies are necessary for detecting Plasmodium parasites. In field settings, however, maintaining a cold chain of storage from the time of collection until laboratory processing, or accessing other reliable means of sample preservation is often logistically impractical or cost prohibitive. As the Plasmodium infection rate of Anopheles mosquitoes is a central component of the entomological inoculation rate and other indicators of transmission intensity, storage conditions that affect pathogen detection may bias malaria surveillance indicators. This study investigated the effect of storage time and temperature on the ability to detect Plasmodium parasites in desiccated Anopheles mosquitoes by real-time polymerase chain reaction (PCR. Methods Laboratory-infected Anopheles stephensi mosquitoes were chloroform-killed and stored over desiccant for 0, 1, 3, and 6 months while being held at four different temperatures: 28, 37, -20 and -80°C. The detection of Plasmodium DNA was evaluated by real-time PCR amplification of a 111 base pair region of block 4 of the merozoite surface protein. Results Varying the storage time and temperature of desiccated mosquitoes did not impact the sensitivity of parasite detection. A two-way factorial analysis of variance suggested that storage time and temperature were not associated with a loss in the ability to detect parasites. Storage of samples at 28°C resulted in a significant increase in the ability to detect parasite DNA, though no other positive associations were observed between the experimental storage treatments and PCR amplification. Conclusions Cold chain maintenance of desiccated mosquito samples is not necessary for real-time PCR detection of parasite DNA. Though field-collected mosquitoes may be subjected to variable conditions prior to molecular processing, the storage of samples over an inexpensive and logistically

  13. Adjustment of sleep and the circadian temperature rhythm after flights across nine time zones

    Science.gov (United States)

    Gander, Philippa H.; Myhre, Grete; Graeber, R. Curtis; Lauber, John K.; Andersen, Harald T.

    1989-01-01

    The adjustment of sleep-wake patterns and the circadian temperature rhythm was monitored in nine Royal Norwegian Airforce volunteers operating P-3 aircraft during a westward training deployment across nine time zones. Subjects recorded all sleep and nap times, rated nightly sleep quality, and completed personality inventories. Rectal temperature, heart rate, and wrist activity were continuously monitored. Adjustment was slower after the return eastward flight than after the outbound westward flight. The eastward flight produced slower readjustment of sleep timing to local time and greater interindividual variability in the patterns of adjustment of sleep and temperature. One subject apparently exhibited resynchronization by partition, with the temperature rhythm undergoing the reciprocal 15-h delay. In contrast, average heart rates during sleep were significantly elevated only after westward flight. Interindividual differences in adjustment of the temperature rhythm were correlated with some of the personality measures. Larger phase delays in the overall temperature waveform (as measured on the 5th day after westward flight) were exhibited by extraverts, and less consistently by evening types.

  14. The influence of measurement and relaxation time on flux jumps in high temperature superconductors

    International Nuclear Information System (INIS)

    Yang Xiaobin; Zhou Youhe; Tu Shandong

    2010-01-01

    The influence of the magnetization and relaxation time on flux jumps in high temperature superconductors (HTSC) under varying magnetic field is studied using the fundamental electromagnetic field equations and the thermal diffusion equation; temperature variety corresponding to flux jump is also discussed. We find that for a low sweep rate of the applied magnetic field, the measurement and relaxation times can reduce flux jump and to constrain the number of flux jumps, even stabilizing the HTSC, since much heat produced by the motion of magnetic flux can transfer into coolant during the measurement and relaxation times. As high temperature superconductors are subjected to a high sweep rate or a strong pulsed magnetic field, magnetization undergoes from stability or oscillation to jump for different pause times. And the period of temperature oscillation is equal to the measurement and relaxation time.

  15. Analysis of the U.K. measurements of temperature effects in tubular loose coated particle fuels in HECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, A J

    1972-06-15

    A series of measurements of reaction rates and reactivity changes with temperature were made in teh central region of HECTOR, using loose coated particle fuel provided by the Dragon project under the collaborative agrement between the Project and the UKAEA. A DP report giving the results of these experiments was issued in 1970 and an interim statement given at the 10th DCPM. Since that time, analysis of the reactivity changes with temperature in uranium fuelled cores has indicated significant discrepancies, which were not apparent from the earlier analysis of reaction rate measurements. This report documents the current analysis.

  16. High temperature structure design for FBRs and analysis technology

    International Nuclear Information System (INIS)

    Iwata, Koji

    1986-01-01

    In the case of FBRs, the operation temperature exceeds 500 deg C, therefore, the design taking the inelastic characteristics of structural materials, such as plasticity and creep, into account is required, and the high grade and detailed evaluation of design is demanded. This new high temperature structure design technology has been advanced in respective countries taking up experimental, prototype and demonstration reactors as the targets. The development of FBRs in Japan was begun with the experimental reactor 'Joyo' which has been operated since 1977, and now, the prototype FBR 'Monju' of 280 MWe is under construction, which is expected to attain the criticality in 1992. In order to realize FBRs which can compete with LWRs through the construction of a demonstration FBR, the construction of large scale plants and the heightening of the economy and reliability are necessary. The features and the role of FBR structural design, the method of high temperature structure design and the trend of its standardization, the trend of the structural analysis technology for FBRs such as inelastic analysis, buckling analysis and fluid and structure coupled vibration analysis, the present status of structural analysis programs, and the subjects for the future of high temperature structure design are explained. (Kako, I.)

  17. Tracing temperature in a nanometer size region in a picosecond time period.

    Science.gov (United States)

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-08-21

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model.

  18. Equivalent Circulation Density Analysis of Geothermal Well by Coupling Temperature

    Directory of Open Access Journals (Sweden)

    Xiuhua Zheng

    2017-02-01

    Full Text Available The accurate control of the wellbore pressure not only prevents lost circulation/blowout and fracturing formation by managing the density of the drilling fluid, but also improves productivity by mitigating reservoir damage. Calculating the geothermal pressure of a geothermal well by constant parameters would easily bring big errors, as the changes of physical, rheological and thermal properties of drilling fluids with temperature are neglected. This paper researched the wellbore pressure coupling by calculating the temperature distribution with the existing model, fitting the rule of density of the drilling fluid with the temperature and establishing mathematical models to simulate the wellbore pressures, which are expressed as the variation of Equivalent Circulating Density (ECD under different conditions. With this method, the temperature and ECDs in the wellbore of the first medium-deep geothermal well, ZK212 Yangyi Geothermal Field in Tibet, were determined, and the sensitivity analysis was simulated by assumed parameters, i.e., the circulating time, flow rate, geothermal gradient, diameters of the wellbore, rheological models and regimes. The results indicated that the geothermal gradient and flow rate were the most influential parameters on the temperature and ECD distribution, and additives added in the drilling fluid should be added carefully as they change the properties of the drilling fluid and induce the redistribution of temperature. To ensure the safe drilling and velocity of pipes tripping into the hole, the depth and diameter of the wellbore are considered to control the surge pressure.

  19. Effects of sintering time and temperature to the characteristics of FeCrAl powder compacts formed at elevated temperature

    Science.gov (United States)

    Rahman, M. M.; Rahman, H. Y.; Awang, M. A. A.; Sopyan, I.

    2018-01-01

    This paper presents the outcomes of an experimental investigation on the effect of sintering schedule, i.e., holding time and temperature to the final properties of FeCrAl powder compacts prepared through uniaxial die compaction process at above room temperature. The feedstock was prepared by mechanically mixing iron powder ASC 100.29 with chromium (22 wt%) and aluminium (11 wt%) for 30 min at room temperature. A cylindrical shape die was filled with the powder mass and heated for one hour for uniform heating of the die assembly together with the powder mass. Once the temperature reached to the setup temperature, i.e., 150°C, the powder mass was formed by applying an axial pressure of 425 MPa simultaneously from upward and downward directions. The as-pressed green compacts were then cooled to room temperature and subsequently sintered in argon gas fired furnace at a rate of 5°C/min for three different holding times, i.e., 30, 60, and 90 min at three different sintering temperatures, i.e., 800, 900, and 1000°C. The sintered samples were characterized for their density, electrical resistivity, bending strength, and microstructure. The results revealed that the sample sintered at 1000°C for 90 min achieved the better characteristics.

  20. Long-term adherence to a local guideline on postoperative body temperature measurement: mixed methods analysis

    NARCIS (Netherlands)

    Storm-Versloot, Marja N.; Knops, Anouk M.; Ubbink, Dirk T.; Goossens, Astrid; Legemate, Dink A.; Vermeulen, Hester

    2012-01-01

    Aim To find out whether a successful multifaceted implementation approach of a local evidence-based guideline on postoperative body temperature measurements (BTM) was persistent over time, and which factors influenced long-term adherence. Methods Mixed methods analysis. Patient records were

  1. Analysis and evaluation system for elevated temperature design of pressure vessels

    International Nuclear Information System (INIS)

    Hayakawa, Teiji; Sayawaki, Masaaki; Nishitani, Masahiro; Mii, Tatsuo; Murasawa, Kanji

    1977-01-01

    In pressure vessel technology, intensive efforts have recently been made to develop the elevated temperature design methods. Much of the impetus of these efforts has been provided mainly by the results of the Liquid Metal Fast Breeder Reactor (LMFBR) and more recently, of the High Temperature Gas-cooled Reactor (HTGR) Programs. The pressure vessels and associated components in these new type nuclear power plants must operate for long periods at elevated temperature where creep effects are significant and then must be designed by rigorous analysis for high reliability and safety. To carry out such an elevated temperature designing, numbers of highly developed analysis and evaluation techniques, which are so complicated as to be impossible by manual work, are indispensable. Under these circumstances, the authors have made the following approaches in the study: (1) Study into basic concepts and the associated techniques in elevated temperature design. (2) Systematization (Analysis System) of the procedure for loads and stress analyses. (3) Development of post-processor, ''POST-1592'', for strength evaluation based on ASME Code Case 1592-7. By linking the POST-1592 together with the Analysis System, an analysis and evaluation system is developed for an elevated temperature design of pressure vessels. Consequently, designing of elevated temperature vessels by detailed analysis and evaluation has easily and effectively become feasible by applying this software system. (auth.)

  2. Temperature dependence of fluorescence decay time and emission spectrum of bismuth germanate

    International Nuclear Information System (INIS)

    Melcher, C.L.; Liberman, A.; Schweitzer, J.S.; Simonetti, J.

    1985-01-01

    Bismuth germanate has become an increasingly popular replacement for NaI(Tl) scintillators in recent years, mainly due to its higher detection efficiency. However, its scintillation efficiency and fluorescence decay time are strongly temperature dependent. Optimum performance of detector systems which employ BGO crystals depends on knowledge of the BGO pulse shape and intensity and its emission spectrum at the operating temperature of the detector. Measurements of these quantities are presented over the temperature range -47 0 C to +111 0 C. Although the emission spectrum shifts only slightly over this temperature range, the scintillation efficiency and fluorescence decay time are strongly temperature dependent. In addition to the usefulness of these data for optimizing detector design, the results imply that luminescence quenching in BGO cannot be characterized by a single thermal activation to a radiationless transition but that a more complex model is required to characterize the light output from BGO crystals

  3. Enhancing quantum entanglement for continuous variables by a coherent superposition of photon subtraction and addition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su-Yong; Kim, Ho-Joon [Department of Physics, Texas A and M University at Qatar, P.O. Box 23874, Doha (Qatar); Ji, Se-Wan [School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012 (Korea, Republic of); Nha, Hyunchul [Department of Physics, Texas A and M University at Qatar, P.O. Box 23874, Doha (Qatar); Institute fuer Quantenphysik, Universitaet Ulm, D-89069 Ulm (Germany)

    2011-07-15

    We investigate how the entanglement properties of a two-mode state can be improved by performing a coherent superposition operation ta+ra{sup {dagger}} of photon subtraction and addition, proposed by Lee and Nha [Phys. Rev. A 82, 053812 (2010)], on each mode. We show that the degree of entanglement, the Einstein-Podolsky-Rosen-type correlation, and the performance of quantum teleportation can be all enhanced for the output state when the coherent operation is applied to a two-mode squeezed state. The effects of the coherent operation are more prominent than those of the mere photon subtraction a and the addition a{sup {dagger}} particularly in the small-squeezing regime, whereas the optimal operation becomes the photon subtraction (case of r=0) in the large-squeezing regime.

  4. Developing first time-series of land surface temperature from AATSR with uncertainty estimates

    Science.gov (United States)

    Ghent, Darren; Remedios, John

    2013-04-01

    . The uncertainty analysis takes into account the expected performance of the retrieval algorithm under varying surface and atmospheric conditions. We characterise the uncertainties in terms of: radiometric noise; fractional vegetation cover as representative of surface emissivity; atmospheric water vapour; and uncertainties as a result of the coefficient fitting process. The total uncertainty budget is a combination of these four components added together in quadrature. The uncertainty due to misclassification of cloudy pixels is difficult to propagate to LST uncertainty bars and has yet to be evaluated in the framework of the current study. The progress made here will allow other time series of LST to be compared with the record from AATSR with greater certainty and hence increases confidence in our knowledge of recent surface temperature changes over the land. References Ghent, D., Corlett, G., and Remedios, J. Advancing the AATSR land surface temperature retrieval with higher resolution auxiliary datasets, in prep. Kogler, C., Pinnock, S., Arino, O., Casadio, S., Corlett, G., Prata, F., and Bras, T. Note on the quality of the (A)ATSR land surface temperature record from 1991 to 2009, International Journal of Remote Sensing, 33, 4178-4192, 2012

  5. Influence of Sensor Ingestion Timing on Consistency of Temperature Measures

    National Research Council Canada - National Science Library

    Goodman, Daniel A; Kenefick, Robert W; Cadarette, Bruce S; Cheuvront, Samuel N

    2009-01-01

    ... (ITS) to measure core body temperature have been demonstrated. However, the effect of elapsed time between ITS ingestion and Tint measurement has not been thoroughly studied. Methods: Eight volunteers...

  6. Molecular analysis of the microbial community structures in water-flooding petroleum reservoirs with different temperatures

    Science.gov (United States)

    Wang, L.-Y.; Duan, R.-Y.; Liu, J.-F.; Yang, S.-Z.; Gu, J.-D.; Mu, B.-Z.

    2012-04-01

    Temperature is one of the most important environmental factors regulating the activity and determining the composition of the microbial community. Analysis of microbial communities from six water-flooding petroleum reservoirs at temperatures from 20 to 63 °C by 16S rRNA gene clone libraries indicates the presence of physiologically diverse and temperature-dependent microorganisms in these subterrestrial ecosystems. In high-temperature petroleum reservoirs, most of the archaeal sequences belong to the thermophilic archaea including the genera Thermococcus, Methanothermobacter and Thermoplasmatales, most of the bacterial sequences belong to the phyla Firmicutes, Thermotogae and Thermodesulfobacteria; in low-temperature petroleum reservoirs, most of the archaeal sequences are affiliated with the genera Methanobacterium, Methanoculleus and Methanocalculus, most of the bacterial sequences to the phyla Proteobacteria, Bacteroidetes and Actinobacteria. Canonical correspondence analysis (CCA) revealed that temperature, mineralization, ionic type as well as volatile fatty acids showed correlation with the microbial community structures. These organisms may be adapted to the environmental conditions of these petroleum reservoirs over geologic time by metabolizing buried organic matter from the original deep subsurface environment and became the common inhabitants in subsurface environments.

  7. Regression Analysis and Calibration Recommendations for the Characterization of Balance Temperature Effects

    Science.gov (United States)

    Ulbrich, N.; Volden, T.

    2018-01-01

    Analysis and use of temperature-dependent wind tunnel strain-gage balance calibration data are discussed in the paper. First, three different methods are presented and compared that may be used to process temperature-dependent strain-gage balance data. The first method uses an extended set of independent variables in order to process the data and predict balance loads. The second method applies an extended load iteration equation during the analysis of balance calibration data. The third method uses temperature-dependent sensitivities for the data analysis. Physical interpretations of the most important temperature-dependent regression model terms are provided that relate temperature compensation imperfections and the temperature-dependent nature of the gage factor to sets of regression model terms. Finally, balance calibration recommendations are listed so that temperature-dependent calibration data can be obtained and successfully processed using the reviewed analysis methods.

  8. Evaluation of the effect of temperature and time of incubation on ...

    African Journals Online (AJOL)

    The complete blood count (CBC) is one of the most common tests requested by physicians. The results of this test are affected by different factors such as temperature and time of incubation. Therefore, the aim of this study was to evaluate changes in CBC results at room temperature (RT). In a cross-sectional study, ...

  9. Ambient temperature, humidity and hand, foot, and mouth disease: A systematic review and meta-analysis.

    Science.gov (United States)

    Cheng, Qiang; Bai, Lijun; Zhang, Yanwu; Zhang, Heng; Wang, Shusi; Xie, Mingyu; Zhao, Desheng; Su, Hong

    2018-06-01

    The relationship between ambient temperature, humidity and hand, foot, and mouth disease (HFMD) has been highlighted in East and Southeast Asia, which showed multiple different results. Therefore, our goal is to conduct a meta-analysis to further clarify this relationship and to quantify the size of these effects as well as the susceptible populations. PubMed, Web of science, and Cochrane library were searched up to November 22, 2017 for articles analyzing the relationships between ambient temperature, humidity and incidence of HFMD. We assessed sources of heterogeneity by study design (temperature measure and exposed time resolution), population vulnerability (national income level and regional climate) and evaluated pooled effect estimates for the subgroups identified in the heterogeneity analysis. We identified 11 studies with 19 estimates of the relationship between ambient temperature, humidity and incidence of HFMD. It was found that per 1°C increase in the temperature and per 1% increase in the relative humidity were both significantly associated with increased incidence of HFMD (temperature: IRR, 1.05; 95% CI, 1.02-1.08; relative humidity: IRR, 1.01; 95% CI, 1.00-1.02). Subgroup analysis showed that people living in subtropical and middle income areas had a higher risk of incidence of HFMD. Ambient temperature and humidity may increase the incidence of HFMD in Asia-Pacific regions. Further studies are needed to clarify the relationship between ambient temperature, humidity and incidence of HFMD in various settings with distinct climate, socioeconomic, and demographic features. Copyright © 2018. Published by Elsevier B.V.

  10. Microbiota analysis to reveal temperature abuse of fresh pork

    DEFF Research Database (Denmark)

    Buschhardt, Tasja; Bahl, Martin Iain; Hansen, Tina Beck

    2017-01-01

    whether temperature induced changes in the community composition on fresh meat surfaces can reflect the temperature-history (combination of time and temperature). Sterile pieces of pork were inoculated with a carcass swab homogenate, to which Salmonella was added. Changes in the meat microbiota were...

  11. Temperature Observation Time and Type Influence Estimates of Heat-Related Mortality in Seven U.S. Cities.

    Science.gov (United States)

    Davis, Robert E; Hondula, David M; Patel, Anjali P

    2016-06-01

    Extreme heat is a leading weather-related cause of mortality in the United States, but little guidance is available regarding how temperature variable selection impacts heat-mortality relationships. We examined how the strength of the relationship between daily heat-related mortality and temperature varies as a function of temperature observation time, lag, and calculation method. Long time series of daily mortality counts and hourly temperature for seven U.S. cities with different climates were examined using a generalized additive model. The temperature effect was modeled separately for each hour of the day (with up to 3-day lags) along with different methods of calculating daily maximum, minimum, and mean temperature. We estimated the temperature effect on mortality for each variable by comparing the 99th versus 85th temperature percentiles, as determined from the annual time series. In three northern cities (Boston, MA; Philadelphia, PA; and Seattle, WA) that appeared to have the greatest sensitivity to heat, hourly estimates were consistent with a diurnal pattern in the heat-mortality response, with strongest associations for afternoon or maximum temperature at lag 0 (day of death) or afternoon and evening of lag 1 (day before death). In warmer, southern cities, stronger associations were found with morning temperatures, but overall the relationships were weaker. The strongest temperature-mortality relationships were associated with maximum temperature, although mean temperature results were comparable. There were systematic and substantial differences in the association between temperature and mortality based on the time and type of temperature observation. Because the strongest hourly temperature-mortality relationships were not always found at times typically associated with daily maximum temperatures, temperature variables should be selected independently for each study location. In general, heat-mortality was more closely coupled to afternoon and maximum

  12. Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images

    NARCIS (Netherlands)

    Hengl, T.; Heuvelink, G.B.M.; Percec Tadic, M.; Pebesma, E.J.

    2012-01-01

    A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations

  13. Real-time three-dimensional temperature mapping in photothermal therapy with optoacoustic tomography

    Science.gov (United States)

    Oyaga Landa, Francisco Javier; Deán-Ben, Xosé Luís.; Sroka, Ronald; Razansky, Daniel

    2017-07-01

    Ablation and photothermal therapy are widely employed medical protocols where the selective destruction of tissue is a necessity as in cancerous tissue removal or vascular and brain abnormalities. Tissue denaturation takes place when the temperature reaches a threshold value while the time of exposure determines the lesion size. Therefore, the spatio-temporal distribution of temperature plays a crucial role in the outcome of these clinical interventions. We demonstrate fast volumetric temperature mapping with optoacoustic tomography based on real-time optoacoustic readings from the treated region. The performance of the method was investigated in tissue-mimicking phantom experiments. The new ability to non-invasively measure temperature volumetrically in an entire treated region with high spatial and temporal resolutions holds potential for improving safety and efficacy of thermal ablation and to advance the general applicability of laser-based therapy.

  14. Taste and Temperature in Swallowing Transit Time after Stroke

    Directory of Open Access Journals (Sweden)

    Paula C. Cola

    2012-09-01

    Full Text Available Background: Oropharyngeal dysphagia is common in individuals after stroke. Taste and temperature are used in dysphagia rehabilitation. The influence of stimuli, such as taste and temperature, on swallowing biomechanics has been investigated in both healthy individuals and in individuals with neurological disease. However, some questions still remain unanswered, such as how the sequence of offered stimuli influences the pharyngeal response. The goal of the present study was to determine the influence of the sequence of stimuli, sour taste and cold temperature, on pharyngeal transit time during deglutition in individuals after stroke. Methods: The study included 60 individuals with unilateral ischemic stroke, 29 males and 31 females, aged 41–88 years (mean age: 66.2 years examined 0–50 days after ictus (median: 6 days, with mild to moderate oropharyngeal dysphagia. Exclusion criteria were hemorrhagic stroke patients, patients with decreased level of consciousness, and clinically unstable patients, as confirmed by medical evaluation. The individuals were divided into two groups of 30 individuals each. Group 1 received a nonrandomized sequence of stimuli (i.e. natural, cold, sour, and sour-cold and group 2 received a randomized sequence of stimuli. A videofluoroscopic swallowing study was performed to analyze the pharyngeal transit time. Four different stimuli (natural, cold, sour, and sour-cold were offered. The images were digitalized and specific software was used to measure the pharyngeal transit time. Since the values did not present regular distribution and uniform variances, nonparametric tests were performed. Results: Individuals in group 1 presented a significantly shorter pharyngeal transit time with the sour-cold stimulus than with the other stimuli. Individuals in group 2 did not show a significant difference in pharyngeal transit time between stimuli. Conclusions: The results showed that the sequence of offered stimuli influences

  15. Simulation analysis of temperature control on RCC arch dam of hydropower station

    Science.gov (United States)

    XIA, Shi-fa

    2017-12-01

    The temperature analysis of roller compacted concrete (RCC) dam plays an important role in their design and construction. Based on three-dimensional finite element method, in the computation of temperature field, many cases are included, such as air temperature, elevated temperature by cement hydration heat, concrete temperature during placing, the influence of water in the reservoir, and boundary temperature. According to the corresponding parameters of RCC arch dam, the analysis of temperature field and stress field during the period of construction and operation is performed. The study demonstrates that detailed thermal stress analysis should be performed for RCC dams to provide a basis to minimize and control the occurrence of thermal cracking.

  16. ICF implosion hotspot ion temperature diagnostic techniques based on neutron time-of-flight method

    International Nuclear Information System (INIS)

    Tang Qi; Song Zifeng; Chen Jiabin; Zhan Xiayu

    2013-01-01

    Ion temperature of implosion hotspot is a very important parameter for inertial confinement fusion. It reflects the energy level of the hotspot, and it is very sensitive to implosion symmetry and implosion speed. ICF implosion hotspot ion temperature diagnostic techniques based on neutron time-of-flight method were described. A neutron TOF spectrometer was developed using a ultrafast plastic scintillator as the neutron detector. Time response of the spectrometer has 1.1 ns FWHM and 0.5 ns rising time. TOF spectrum resolving method based on deconvolution and low pass filter was illuminated. Implosion hotspot ion temperature in low neutron yield and low ion temperature condition at Shenguang-Ⅲ facility was acquired using the diagnostic techniques. (authors)

  17. Analysis of thermodynamic properties for high-temperature superconducting oxides

    International Nuclear Information System (INIS)

    Kushwah, S.S.; Shanker, J.

    1993-01-01

    Analysis of thermodynamic properties such as specific heat, Debye temperature, Einstein temperature, thermal expansion coefficient, bulk modulus, and Grueneisen parameter is performed for rare-earth-based, Tl-based, and Bi-based superconducting copper oxides. Values of thermodynamic parameters are calculated and reported. The relationship between the Debye temperature and the superconducting transition temperature is used to estimate the values of T c using the interaction parameters from Ginzburg. (orig.)

  18. On the zero temperature limit of the Kubo-transformed quantum time correlation function

    Science.gov (United States)

    Hernández de la Peña, Lisandro

    2014-04-01

    The zero temperature limit of several quantum time correlation functions is analysed. It is shown that while the canonical quantum time correlation function retains the full dynamical information as temperature approaches zero, the Kubo-transformed and the thermally symmetrised quantum time correlation functions lose all dynamical information at this limit. This is shown to be a consequence of the projection onto the ground state, via the limiting process of the quantities ? and ?, either together as a product, or separately. Although these findings would seem to suggest that finite-temperature methods commonly used to estimate Kubo correlation functions would be incapable of retaining any ground state dynamics, we propose a route for recovering in principle all dynamical information at the ground state. It is first shown that the usual frequency space relation between canonical and Kubo correlation functions also holds for microcanonical time correlation functions. Since the Kubo-transformed microcanonical correlation function can be obtained from the usual finite-temperature function by including a projection onto the corresponding microcanonical ensemble, finite-temperature methods, properly modified to incorporate such a constraint, can be used to capture full quantum dynamics at any arbitrary energy state, including the ground state. This approach is illustrated with the application of centroid dynamics to the ground state dynamics of the harmonic oscillator.

  19. Experimental effects of immersion time and water temperature on body condition, burying depth and timing of spawning of the tellinid bivalve Macoma balthica

    Science.gov (United States)

    de Goeij, Petra; Honkoop, Pieter J.

    2003-03-01

    The burying depth of many bivalve molluscs on intertidal mudflats varies throughout the year and differs between places. Many factors are known to influence burying depth on a seasonal or spatial scale, with temperature and tidal regime probably being very important. Burying depth, body condition and gonadal development of Macoma balthica were followed throughout winter and spring in an experiment in which water temperature and immersion time were manipulated. Unexpectedly, relative water temperature, in contrast to the prediction, did not generally affect body condition or burying depth. This was probably a consequence of the exceptionally overall low water temperatures during the experimental winter. Differences in temperature did, however, result in different timing of spawning: M. balthica spawned earlier at higher spring temperatures. Longer immersion times led to higher body condition only late in spring, but led to deeper burying throughout almost the whole period. There was no effect of immersion time on the timing of spawning. We conclude that a longer immersion time leads to deeper burying, independent of body condition. We also conclude that burying behaviour of M. balthica is not determined by the moment of spawning.

  20. Revealing the association between cerebrovascular accidents and ambient temperature: a meta-analysis

    Science.gov (United States)

    Zorrilla-Vaca, Andrés; Healy, Ryan Jacob; Silva-Medina, Melissa M.

    2017-05-01

    The association between cerebrovascular accidents (CVA) and weather has been described across several studies showing multiple conflicting results. In this paper, we aim to conduct a meta-analysis to further clarify this association, as well as to find the potential sources of heterogeneity. PubMed, EMBASE, and Google Scholar were searched from inception through 2015, for articles analyzing the correlation between the incidence of CVA and temperature. A pooled effect size (ES) was estimated using random effects model and expressed as absolute values. Subgroup analyses by type of CVA were also performed. Heterogeneity and influence of covariates—including geographic latitude of the study site, male percentage, average temperature, and time interval—were assessed by meta-regression analysis. Twenty-six articles underwent full data extraction and scoring. A total of 19,736 subjects with CVA from 12 different countries were included and grouped as ischemic strokes (IS; n = 14,199), intracerebral hemorrhages (ICH; n = 3798), and subarachnoid hemorrhages (SAH; n = 1739). Lower ambient temperature was significantly associated with increase in incidence of overall CVA when using unadjusted (pooled ES = 0.23, P < 0.001) and adjusted data (pooled ES = 0.03, P = 0.003). Subgroup analyses showed that lower temperature has higher impact on the incidence of ICH (pooled ES = 0.34, P < 0.001), than that of IS (pooled ES = 0.22, P < 0.001) and SAH (pooled ES = 0.11, P = 0.012). In meta-regression analysis, the geographic latitude of the study site was the most influencing factor on this association ( Z-score = 8.68). Synthesis of the existing data provides evidence supporting that a lower ambient temperature increases the incidence of CVA. Further population-based studies conducted at negative latitudes are needed to clarify the influence of this factor.

  1. Analysis of optimal design of low temperature economizer

    Science.gov (United States)

    Song, J. H.; Wang, S.

    2017-11-01

    This paper has studied the Off-design characteristic of low temperature economizer system based on thermodynamics analysis. Based on the data from one 1000 MW coal-fired unit, two modes of operation are contrasted and analyzed. One is to fix exhaust gas temperature and the other one is to take into account both of the average temperature difference and the exhaust gas temperature. Meanwhile, the cause of energy saving effect change is explored. Result shows that: in mode 1, the amount of decrease in coal consumption reduces from 1.11 g/kWh (under full load) to 0.54 g/kWh (under half load), and in mode 2, when the load decreases from 90% to 50%, the decrease in coal consumption reduces from 1.29 g/kWh to 0.84 g/kWh. From the result, under high load, the energy saving effect is superior, and under lower work load, energy saving effect declines rapidly when load is reduced. When load changes, the temperature difference of heat transfer, gas flow, the flue gas heat rejection and the waste heat recovery change. The energy saving effect corresponding changes result in that the energy saving effect under high load is superior and more stable. However, rational adjustment to the temperature of outlet gas can alleviate the decline of the energy saving effect under low load. The result provides theoretical analysis data for the optimal design and operation of low temperature economizer system of power plant.

  2. Measurement of the quantum superposition state of an imaging ensemble of photons prepared in orbital angular momentum states using a phase-diversity method

    International Nuclear Information System (INIS)

    Uribe-Patarroyo, Nestor; Alvarez-Herrero, Alberto; Belenguer, Tomas

    2010-01-01

    We propose the use of a phase-diversity technique to estimate the orbital angular momentum (OAM) superposition state of an ensemble of photons that passes through an optical system, proceeding from an extended object. The phase-diversity technique permits the estimation of the optical transfer function (OTF) of an imaging optical system. As the OTF is derived directly from the wave-front characteristics of the observed light, we redefine the phase-diversity technique in terms of a superposition of OAM states. We test this new technique experimentally and find coherent results among different tests, which gives us confidence in the estimation of the photon ensemble state. We find that this technique not only allows us to estimate the square of the amplitude of each OAM state, but also the relative phases among all states, thus providing complete information about the quantum state of the photons. This technique could be used to measure the OAM spectrum of extended objects in astronomy or in an optical communication scheme using OAM states. In this sense, the use of extended images could lead to new techniques in which the communication is further multiplexed along the field.

  3. Adiabatic condition and the quantum hitting time of Markov chains

    International Nuclear Information System (INIS)

    Krovi, Hari; Ozols, Maris; Roland, Jeremie

    2010-01-01

    We present an adiabatic quantum algorithm for the abstract problem of searching marked vertices in a graph, or spatial search. Given a random walk (or Markov chain) P on a graph with a set of unknown marked vertices, one can define a related absorbing walk P ' where outgoing transitions from marked vertices are replaced by self-loops. We build a Hamiltonian H(s) from the interpolated Markov chain P(s)=(1-s)P+sP ' and use it in an adiabatic quantum algorithm to drive an initial superposition over all vertices to a superposition over marked vertices. The adiabatic condition implies that, for any reversible Markov chain and any set of marked vertices, the running time of the adiabatic algorithm is given by the square root of the classical hitting time. This algorithm therefore demonstrates a novel connection between the adiabatic condition and the classical notion of hitting time of a random walk. It also significantly extends the scope of previous quantum algorithms for this problem, which could only obtain a full quadratic speedup for state-transitive reversible Markov chains with a unique marked vertex.

  4. Coupling analysis of the target temperature and thermal stress due to pulsed ion beam

    International Nuclear Information System (INIS)

    Yan Jie; Liu Meng; Lin Jufang; An Li; Long Xinggui

    2013-01-01

    Background: Target temperature has an important effect on the target life for the sealed neutron generator without cooling system. Purpose: To carry out the thermal-mechanical coupling analysis of the film-substrate target bombarded by the pulsed ion beam. Methods: The indirect coupling Finite Element Method (FEM) with a 2-dimensional time-space Gaussian axisymmetric power density as heat source was used to simulate the target temperature and thermal stress fields. Results: The effects of the target temperature and thermal stress fields under difference pulse widths and beam sizes were analyzed in terms of the FEM results. Conclusions: Combining with the temperature requirement and the thermal stress inducing film thermal mechanical destruction effect of the sealed neutron generator film-substrate targets, an optimized pulsed ion beam work status was proposed. (authors)

  5. Relation between Euclidean and real time calculations of Green functions at finite temperature

    International Nuclear Information System (INIS)

    Bochkarev, A.

    1993-01-01

    We find a relation between the semiclassical approximation of the temperature (Matsubara) two-point correlator and the corresponding classical Green function in real time at finite temperature. The anharmonic oscillator at finite temperature is used to illustrate our statement, which is however of rather general origin

  6. Global sensitivity analysis of water age and temperature for informing salmonid disease management

    Science.gov (United States)

    Javaheri, Amir; Babbar-Sebens, Meghna; Alexander, Julie; Bartholomew, Jerri; Hallett, Sascha

    2018-06-01

    Many rivers in the Pacific Northwest region of North America are anthropogenically manipulated via dam operations, leading to system-wide impacts on hydrodynamic conditions and aquatic communities. Understanding how dam operations alter abiotic and biotic variables is important for designing management actions. For example, in the Klamath River, dam outflows could be manipulated to alter water age and temperature to reduce risk of parasite infections in salmon by diluting or altering viability of parasite spores. However, sensitivity of water age and temperature to the riverine conditions such as bathymetry can affect outcomes from dam operations. To examine this issue in detail, we conducted a global sensitivity analysis of water age and temperature to a comprehensive set of hydraulics and meteorological parameters in the Klamath River, California, where management of salmonid disease is a high priority. We applied an analysis technique, which combined Latin-hypercube and one-at-a-time sampling methods, and included simulation runs with the hydrodynamic numerical model of the Lower Klamath. We found that flow rate and bottom roughness were the two most important parameters that influence water age. Water temperature was more sensitive to inflow temperature, air temperature, solar radiation, wind speed, flow rate, and wet bulb temperature respectively. Our results are relevant for managers because they provide a framework for predicting how water within 'high infection risk' sections of the river will respond to dam water (low infection risk) input. Moreover, these data will be useful for prioritizing the use of water age (dilution) versus temperature (spore viability) under certain contexts when considering flow manipulation as a method to reduce risk of infection and disease in Klamath River salmon.

  7. Time - Temperature Relationships of Test Head Fired and Backfires

    Science.gov (United States)

    Lawrence S. Davis; Robert E. Martin

    1960-01-01

    Time-temperature relations were measured during the course of a preliminary investigation of the thermal characteristics of forest fires. Observations on 5 head fires and 5 backfires in 8-year-old gallberry-palmetto roughs on the Alapaha Experimental Range near Tifton, Georgia, are the basis for this report.

  8. Temperature loading and rocks mechanics at final storage of radioactive waste

    International Nuclear Information System (INIS)

    Leijon, B.; Stephansson, O.

    1979-01-01

    This report describes the rock mechanical effects - in the far field - from the thermal loading at a final storage of radioactive waste in crystalline rocks. The stress distribution of a two-storey storage is described in more details. The temperature rise in a final storage of radiactive waste will create thermal stresses which may cause a failure of the rock mass, and thereby an increase of its permeability. However, the state of stress in the Earth's crust is able to neutralize the thermal stresses. By this analysis we have been able to demonstrate that the thermal stresses due to heat conduction from the final storage are compensated by the state of stress in the upper part of the crust. The absolute stress, which is the superposition of thermal stress and virgin rock stress, is in all cases found to be below the limit of failure due to frictional resistance between surfaces of constituent blocks in the rock mass. Failure by sliding friction is the most conservative failure criterion for a rock mass. (author)

  9. Probing the conductance superposition law in single-molecule circuits with parallel paths.

    Science.gov (United States)

    Vazquez, H; Skouta, R; Schneebeli, S; Kamenetska, M; Breslow, R; Venkataraman, L; Hybertsen, M S

    2012-10-01

    According to Kirchhoff's circuit laws, the net conductance of two parallel components in an electronic circuit is the sum of the individual conductances. However, when the circuit dimensions are comparable to the electronic phase coherence length, quantum interference effects play a critical role, as exemplified by the Aharonov-Bohm effect in metal rings. At the molecular scale, interference effects dramatically reduce the electron transfer rate through a meta-connected benzene ring when compared with a para-connected benzene ring. For longer conjugated and cross-conjugated molecules, destructive interference effects have been observed in the tunnelling conductance through molecular junctions. Here, we investigate the conductance superposition law for parallel components in single-molecule circuits, particularly the role of interference. We synthesize a series of molecular systems that contain either one backbone or two backbones in parallel, bonded together cofacially by a common linker on each end. Single-molecule conductance measurements and transport calculations based on density functional theory show that the conductance of a double-backbone molecular junction can be more than twice that of a single-backbone junction, providing clear evidence for constructive interference.

  10. Time-resolved characterization and energy balance analysis of implosion core in shock-ignition experiments at OMEGA

    International Nuclear Information System (INIS)

    Florido, R.; Mancini, R. C.; Nagayama, T.; Tommasini, R.; Delettrez, J. A.; Regan, S. P.

    2014-01-01

    Time-resolved temperature and density conditions in the core of shock-ignition implosions have been determined for the first time. The diagnostic method relies on the observation, with a streaked crystal spectrometer, of the signature of an Ar tracer added to the deuterium gas fill. The data analysis confirms the importance of the shell attenuation effect previously noted on time-integrated spectroscopic measurements of thick-wall targets [R. Florido et al., Phys. Rev. E 83, 066408 (2011)]. This effect must be taken into account in order to obtain reliable results. The extracted temperature and density time-histories are representative of the state of the core during the implosion deceleration and burning phases. As a consequence of the ignitor shock launched by the sharp intensity spike at the end of the laser pulse, observed average core electron temperature and mass density reach T ∼ 1100 eV and ρ ∼ 2 g/cm 3 ; then temperature drops to T ∼ 920 eV while density rises to ρ ∼ 3.4 g/cm 3 about the time of peak compression. Compared to 1D hydrodynamic simulations, the experiment shows similar maximum temperatures and smaller densities. Simulations do not reproduce all observations. Differences are noted in the heating dynamics driven by the ignitor shock and the optical depth time-history of the compressed shell. Time-histories of core conditions extracted from spectroscopy show that the implosion can be interpreted as a two-stage polytropic process. Furthermore, an energy balance analysis of implosion core suggests an increase in total energy greater than what 1D hydrodynamic simulations predict. This new methodology can be implemented in other ICF experiments to look into implosion dynamics and help to understand the underlying physics

  11. Time-resolved characterization and energy balance analysis of implosion core in shock-ignition experiments at OMEGA

    Energy Technology Data Exchange (ETDEWEB)

    Florido, R., E-mail: ricardo.florido@ulpgc.es; Mancini, R. C.; Nagayama, T. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Tommasini, R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Delettrez, J. A.; Regan, S. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-10-15

    Time-resolved temperature and density conditions in the core of shock-ignition implosions have been determined for the first time. The diagnostic method relies on the observation, with a streaked crystal spectrometer, of the signature of an Ar tracer added to the deuterium gas fill. The data analysis confirms the importance of the shell attenuation effect previously noted on time-integrated spectroscopic measurements of thick-wall targets [R. Florido et al., Phys. Rev. E 83, 066408 (2011)]. This effect must be taken into account in order to obtain reliable results. The extracted temperature and density time-histories are representative of the state of the core during the implosion deceleration and burning phases. As a consequence of the ignitor shock launched by the sharp intensity spike at the end of the laser pulse, observed average core electron temperature and mass density reach T ∼ 1100 eV and ρ ∼ 2 g/cm{sup 3}; then temperature drops to T ∼ 920 eV while density rises to ρ ∼ 3.4 g/cm{sup 3} about the time of peak compression. Compared to 1D hydrodynamic simulations, the experiment shows similar maximum temperatures and smaller densities. Simulations do not reproduce all observations. Differences are noted in the heating dynamics driven by the ignitor shock and the optical depth time-history of the compressed shell. Time-histories of core conditions extracted from spectroscopy show that the implosion can be interpreted as a two-stage polytropic process. Furthermore, an energy balance analysis of implosion core suggests an increase in total energy greater than what 1D hydrodynamic simulations predict. This new methodology can be implemented in other ICF experiments to look into implosion dynamics and help to understand the underlying physics.

  12. Temperature effect on gastric emptying time of hybrid grouper (Epinephelus spp.)

    Energy Technology Data Exchange (ETDEWEB)

    De, Moumita; Ghaffar, Mazlan Abd. [School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Das, Simon K. [School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia and Marine Ecosystem Research Centre (EKOMAR), Faculty of Science and Technology, Universiti (Malaysia)

    2014-09-03

    Knowledge of fish gastric emptying time is a necessary component for understanding the fish feeding rates, energy budgets and commercial production of fishes in aquaculture. The hybrid grouper Epinephelus spp. is getting popular as a culture species in Malaysia for their faster growth rate compared to commonly cultured grouper species (giant grouper Epinephelus lanceolatus and tiger grouper Epinephelus fuscoguttatus). There are data suggests that elevated sea water temperature affects gastric emptying time (GET) of fishes. Hence, this study aims to study the GET of hybrid grouper at different temperature (22, 26, 30, 34°C) in laboratory condition with commercial diet pellet. The gastric emptying times (GETs) at different temperatures were determined X-radiographically, using barium sulfate (BaSO{sub 4}) as a contrast medium food marker. The food marker and X-radiography showed that initial voidance of fecal matter began 4-6 h after feeding at all temperature. The fastest GET (13 h) was obsereved in the 30°C group, whereas the longest (17 h) GET was seen in 22°C group fed with artificial diet pellet. Not much differences in GET were recorded between the 26 and 34°C groups as 34°C groups fed lesser amount compared to 26°C groups. Nevertheless a substantial delay in GET was observed in the 22°C group. The findings of this study suggest to culture hybrid grouper between 26 to 30°C with commercial diet pellet as this temperature ranges proliferate the faster digestion process which may contribute faster growth rate of this commerical important fish species. Overall, these findings may have important consequences for optimization of commercial production of hybrid grouper.

  13. Temperature effect on gastric emptying time of hybrid grouper (Epinephelus spp.)

    Science.gov (United States)

    De, Moumita; Ghaffar, Mazlan Abd.; Das, Simon K.

    2014-09-01

    Knowledge of fish gastric emptying time is a necessary component for understanding the fish feeding rates, energy budgets and commercial production of fishes in aquaculture. The hybrid grouper Epinephelus spp. is getting popular as a culture species in Malaysia for their faster growth rate compared to commonly cultured grouper species (giant grouper Epinephelus lanceolatus and tiger grouper Epinephelus fuscoguttatus). There are data suggests that elevated sea water temperature affects gastric emptying time (GET) of fishes. Hence, this study aims to study the GET of hybrid grouper at different temperature (22, 26, 30, 34°C) in laboratory condition with commercial diet pellet. The gastric emptying times (GETs) at different temperatures were determined X-radiographically, using barium sulfate (BaSO4) as a contrast medium food marker. The food marker and X-radiography showed that initial voidance of fecal matter began 4-6 h after feeding at all temperature. The fastest GET (13 h) was obsereved in the 30°C group, whereas the longest (17 h) GET was seen in 22°C group fed with artificial diet pellet. Not much differences in GET were recorded between the 26 and 34°C groups as 34°C groups fed lesser amount compared to 26°C groups. Nevertheless a substantial delay in GET was observed in the 22°C group. The findings of this study suggest to culture hybrid grouper between 26 to 30°C with commercial diet pellet as this temperature ranges proliferate the faster digestion process which may contribute faster growth rate of this commerical important fish species. Overall, these findings may have important consequences for optimization of commercial production of hybrid grouper.

  14. Temperature effect on gastric emptying time of hybrid grouper (Epinephelus spp.)

    International Nuclear Information System (INIS)

    De, Moumita; Ghaffar, Mazlan Abd.; Das, Simon K.

    2014-01-01

    Knowledge of fish gastric emptying time is a necessary component for understanding the fish feeding rates, energy budgets and commercial production of fishes in aquaculture. The hybrid grouper Epinephelus spp. is getting popular as a culture species in Malaysia for their faster growth rate compared to commonly cultured grouper species (giant grouper Epinephelus lanceolatus and tiger grouper Epinephelus fuscoguttatus). There are data suggests that elevated sea water temperature affects gastric emptying time (GET) of fishes. Hence, this study aims to study the GET of hybrid grouper at different temperature (22, 26, 30, 34°C) in laboratory condition with commercial diet pellet. The gastric emptying times (GETs) at different temperatures were determined X-radiographically, using barium sulfate (BaSO 4 ) as a contrast medium food marker. The food marker and X-radiography showed that initial voidance of fecal matter began 4-6 h after feeding at all temperature. The fastest GET (13 h) was obsereved in the 30°C group, whereas the longest (17 h) GET was seen in 22°C group fed with artificial diet pellet. Not much differences in GET were recorded between the 26 and 34°C groups as 34°C groups fed lesser amount compared to 26°C groups. Nevertheless a substantial delay in GET was observed in the 22°C group. The findings of this study suggest to culture hybrid grouper between 26 to 30°C with commercial diet pellet as this temperature ranges proliferate the faster digestion process which may contribute faster growth rate of this commerical important fish species. Overall, these findings may have important consequences for optimization of commercial production of hybrid grouper

  15. Determination of new time-temperature-transformation diagrams for lead-calcium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, F.; Lambertin, M. [Arts et Metiers Paristech, LaBoMaP, ENSAM, Rue porte de Paris, 71250 Cluny (France); Delfaut-Durut, L. [CEA, centre de Valduc [SEMP, LECM], 21120 Is-sur-Tille (France); Maitre, A. [SPCTS, UFR Sciences et techniques, 87060 Limoges (France); Vilasi, M. [LCSM, Universite Nancy I, 54506 Vandoeuvre les Nancy (France)

    2008-12-01

    The Pb-Ca is an age hardening alloy that allows for an increase in the hardness compared to pure lead. The hardening is obtained after different successive ageing transformations. In addition, this hardening is followed by an overageing which induces a softening. The ageing and overageing transformation mechanisms are now well identified in lead-calcium alloys. In this paper, we propose to represent the domain of stability of each transformation via time-temperature-transformation diagrams for a calcium concentration from 600 to 1280 ppm and in a range of temperatures from -20 to 180 C. These diagrams are constructed with the data obtained by in situ ageing with metallographic observations, hardness and electrical resistance measurements. The specificities of lead-calcium such as its fast ageing at ambient temperature and its overageing over time required the design of specific devices to be able to identify the characteristics of these alloys. (author)

  16. Harmonic Analysis of a Nonstationary Series of Temperature Paleoreconstruction for the Central Part of Greenland

    Directory of Open Access Journals (Sweden)

    T.E. Danova

    2016-06-01

    Full Text Available The results of the investigations of a transformed series of reconstructed air temperature data for the central part of Greenland with an increment of 30 years have been presented. Stationarization of a ~ 50,000-years’ series of the reconstructed air temperature in the central part of Greenland according to ice core data has been performed using mathematical expectation. To obtain mathematical expectation estimation, the smoothing procedure by the methods of moving average and wavelet analysis has been carried out. Fourier’s transformation has been applied repeatedly to the stationarized series with changing the averaging time in the process of smoothing. Three averaging time values have been selected for the investigations: ~ 400–500 years, ~ 2,000 years, and ~ 4,000 years. Stationarization of the reconstructed temperature series with the help of wavelet transformation showed the best results when applying the averaging time of ~ 400 and ~ 2000 years, the trends well characterize the initial temperature series, there-by revealing the main patterns of its dynamics. Using the period with the averaging time of ~ 4,000 years showed the worst result: significant events of the main temperature series were lost in the process of averaging. The obtained results well correspond to cycling known to be inherent to the climatic system of the planet; the detected modes of 1,470 ± 500 years are comparable to the Dansgaard–Oeschger and Bond oscillations.

  17. Analysis of trend in temperature and rainfall time series of an Indian arid region: comparative evaluation of salient techniques

    Science.gov (United States)

    Machiwal, Deepesh; Gupta, Ankit; Jha, Madan Kumar; Kamble, Trupti

    2018-04-01

    This study investigated trends in 35 years (1979-2013) temperature (maximum, Tmax and minimum, Tmin) and rainfall at annual and seasonal (pre-monsoon, monsoon, post-monsoon, and winter) scales for 31 grid points in a coastal arid region of India. Box-whisker plots of annual temperature and rainfall time series depict systematic spatial gradients. Trends were examined by applying eight tests, such as Kendall rank correlation (KRC), Spearman rank order correlation (SROC), Mann-Kendall (MK), four modified MK tests, and innovative trend analysis (ITA). Trend magnitudes were quantified by Sen's slope estimator, and a new method was adopted to assess the significance of linear trends in MK-test statistics. It was found that the significant serial correlation is prominent in the annual and post-monsoon Tmax and Tmin, and pre-monsoon Tmin. The KRC and MK tests yielded similar results in close resemblance with the SROC test. The performance of two modified MK tests considering variance-correction approaches was found superior to the KRC, MK, modified MK with pre-whitening, and ITA tests. The performance of original MK test is poor due to the presence of serial correlation, whereas the ITA method is over-sensitive in identifying trends. Significantly increasing trends are more prominent in Tmin than Tmax. Further, both the annual and monsoon rainfall time series have a significantly increasing trend of 9 mm year-1. The sequential significance of linear trend in MK test-statistics is very strong (R 2 ≥ 0.90) in the annual and pre-monsoon Tmin (90% grid points), and strong (R 2 ≥ 0.75) in monsoon Tmax (68% grid points), monsoon, post-monsoon, and winter Tmin (respectively 65, 55, and 48% grid points), as well as in the annual and monsoon rainfalls (respectively 68 and 61% grid points). Finally, this study recommends use of variance-corrected MK test for the precise identification of trends. It is emphasized that the rising Tmax may hamper crop growth due to enhanced

  18. Time-dependent photon heat transport through a mesoscopic Josephson device

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wen-Ting; Zhao, Hong-Kang, E-mail: zhaohonk@bit.edu.cn

    2017-02-15

    The time-oscillating photon heat current through a dc voltage biased mesoscopic Josephson Junction (MJJ) has been investigated by employing the nonequilibrium Green’s function approach. The Landauer-like formula of photon heat current has been derived in both of the Fourier space and its time-oscillating versions, where Coulomb interaction, self inductance, and magnetic flux take effective roles. Nonlinear behaviors are exhibited in the photon heat current due to the quantum nature of MJJ and applied external dc voltage. The magnitude of heat current decreases with increasing the external bias voltage, and subtle oscillation structures appear as the superposition of different photon heat branches. The overall period of heat current with respect to time is not affected by Coulomb interaction, however, the magnitude and phase of it vary considerably by changing the Coulomb interaction. - Highlights: • The time-oscillating photon heat current through a mesoscopic Josephson Junction has been investigated. • The Landauer-like formula of photon heat current has been derived by the nonequilibrium Green’s function approach. • Nonlinear behaviors are exhibited in the photon heat current resulting from the self inductance and Coulomb interaction. • The oscillation structure of heat current is composed of the superposition of oscillations with different periods.

  19. Time-dependent photon heat transport through a mesoscopic Josephson device

    International Nuclear Information System (INIS)

    Lu, Wen-Ting; Zhao, Hong-Kang

    2017-01-01

    The time-oscillating photon heat current through a dc voltage biased mesoscopic Josephson Junction (MJJ) has been investigated by employing the nonequilibrium Green’s function approach. The Landauer-like formula of photon heat current has been derived in both of the Fourier space and its time-oscillating versions, where Coulomb interaction, self inductance, and magnetic flux take effective roles. Nonlinear behaviors are exhibited in the photon heat current due to the quantum nature of MJJ and applied external dc voltage. The magnitude of heat current decreases with increasing the external bias voltage, and subtle oscillation structures appear as the superposition of different photon heat branches. The overall period of heat current with respect to time is not affected by Coulomb interaction, however, the magnitude and phase of it vary considerably by changing the Coulomb interaction. - Highlights: • The time-oscillating photon heat current through a mesoscopic Josephson Junction has been investigated. • The Landauer-like formula of photon heat current has been derived by the nonequilibrium Green’s function approach. • Nonlinear behaviors are exhibited in the photon heat current resulting from the self inductance and Coulomb interaction. • The oscillation structure of heat current is composed of the superposition of oscillations with different periods.

  20. PASTEURISASI HIGH TEMPERATURE SHORT TIME (HTST) SUSU TERHADAP Listeria monocytogenes PADA PENYIMPANAN REFRIGERATOR

    OpenAIRE

    SABIL, SYAHRIANA

    2015-01-01

    2015 SYAHRIANA SABIL (I 111 11 273). Pasteurisasi High Temperature Short Time (HTST) Susu terhadap Listeria monocytogenes pada Penyimpanan Refrigerator. Dibimbing oleh RATMAWATI MALAKA dan FARIDA NUR YULIATI. Pasteurisasi High Temperature Short Time (HTST) merupakan proses pemanasan susu di bawah titik didih yang diharapkan dapat membunuh Listeria monocytogenes (L. monocytogenes) karena bersifat patogen dan mengakibatkan listeriosis yang merupakan penyakit zoonosis. Tu...

  1. Time-dependent quantum many-body theory of identical bosons in a double well: Early-time ballistic interferences of fragmented and number entangled states

    International Nuclear Information System (INIS)

    Masiello, David J.; Reinhardt, William P.

    2007-01-01

    A time-dependent multiconfigurational self-consistent field theory is presented to describe the many-body dynamics of a gas of identical bosonic atoms confined to an external trapping potential at zero temperature from first principles. A set of generalized evolution equations are developed, through the time-dependent variational principle, which account for the complete and self-consistent coupling between the expansion coefficients of each configuration and the underlying one-body wave functions within a restricted two state Fock space basis that includes the full effects of the condensate's mean field as well as atomic correlation. The resulting dynamical equations are a classical Hamiltonian system and, by construction, form a well-defined initial value problem. They are implemented in an efficient numerical algorithm. An example is presented, highlighting the generality of the theory, in which the ballistic expansion of a fragmented condensate ground state is compared to that of a macroscopic quantum superposition state, taken here to be a highly entangled number state, upon releasing the external trapping potential. Strikingly different many-body matter-wave dynamics emerge in each case, accentuating the role of both atomic correlation and mean-field effects in the two condensate states

  2. Control of nanoparticle agglomeration through variation of the time-temperature profile in chemical vapor synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Djenadic, Ruzica; Winterer, Markus, E-mail: markus.winterer@uni-due.de [Universität Duisburg-Essen, Nanoparticle Process Technology, Faculty of Engineering and CENIDE (Germany)

    2017-02-15

    The influence of the time-temperature history on the characteristics of nanoparticles such as size, degree of agglomeration, or crystallinity is investigated for chemical vapor synthesis (CVS). A simple reaction-coagulation-sintering model is used to describe the CVS process, and the results of the model are compared to experimental data. Nanocrystalline titania is used as model material. Titania nanoparticles are generated from titanium-tetraisopropoxide (TTIP) in a hot-wall reactor. Pure anatase particles and mixtures of anatase, rutile (up to 11 vol.%), and brookite (up to 29 vol.%) with primary particle sizes from 1.7 nm to 10.5 nm and agglomerate particle sizes from 24.3 nm to 55.6 nm are formed depending on the particle time-temperature history. An inductively heated furnace with variable inductor geometry is used as a novel system to control the time-temperature profile in the reactor externally covering a large wall temperature range from 873 K to 2023 K. An appropriate choice of inductor geometry, i.e. time-temperature profile, can significantly reduce the degree of agglomeration. Other particle characteristics such as crystallinity are also substantially influenced by the time-temperature profile.

  3. Time-gated Einstein-Podolsky-Rosen correlation

    International Nuclear Information System (INIS)

    Takei, Nobuyuki; Lee, Noriyuki; Furusawa, Akira; Moriyama, Daiki; Neergaard-Nielsen, J. S.

    2006-01-01

    We experimentally demonstrate the creation and characterization of Einstein-Podolsky-Rosen (EPR) correlation between optical beams in a time-gated fashion. The correlated beams are created with two independent continuous-wave optical parametric oscillators and a half beam splitter. We define the temporal modes using a square temporal filter with duration T and make time-resolved measurements on the generated state. We observe correlations between the relevant conjugate variables in the temporal mode which correspond to EPR correlation. Our scheme is extendable to continuous-variable quantum teleportation of a non-Gaussian state defined in the time domain such as a superposition of coherent states

  4. New insights into soil temperature time series modeling: linear or nonlinear?

    Science.gov (United States)

    Bonakdari, Hossein; Moeeni, Hamid; Ebtehaj, Isa; Zeynoddin, Mohammad; Mahoammadian, Abdolmajid; Gharabaghi, Bahram

    2018-03-01

    Soil temperature (ST) is an important dynamic parameter, whose prediction is a major research topic in various fields including agriculture because ST has a critical role in hydrological processes at the soil surface. In this study, a new linear methodology is proposed based on stochastic methods for modeling daily soil temperature (DST). With this approach, the ST series components are determined to carry out modeling and spectral analysis. The results of this process are compared with two linear methods based on seasonal standardization and seasonal differencing in terms of four DST series. The series used in this study were measured at two stations, Champaign and Springfield, at depths of 10 and 20 cm. The results indicate that in all ST series reviewed, the periodic term is the most robust among all components. According to a comparison of the three methods applied to analyze the various series components, it appears that spectral analysis combined with stochastic methods outperformed the seasonal standardization and seasonal differencing methods. In addition to comparing the proposed methodology with linear methods, the ST modeling results were compared with the two nonlinear methods in two forms: considering hydrological variables (HV) as input variables and DST modeling as a time series. In a previous study at the mentioned sites, Kim and Singh Theor Appl Climatol 118:465-479, (2014) applied the popular Multilayer Perceptron (MLP) neural network and Adaptive Neuro-Fuzzy Inference System (ANFIS) nonlinear methods and considered HV as input variables. The comparison results signify that the relative error projected in estimating DST by the proposed methodology was about 6%, while this value with MLP and ANFIS was over 15%. Moreover, MLP and ANFIS models were employed for DST time series modeling. Due to these models' relatively inferior performance to the proposed methodology, two hybrid models were implemented: the weights and membership function of MLP and

  5. Spatio-temporal long-term (1950-2009) temperature trend analysis in North Carolina, United States

    Science.gov (United States)

    Sayemuzzaman, Mohammad; Jha, Manoj K.; Mekonnen, Ademe

    2015-04-01

    This study analyzed long-term (1950-2009) annual and seasonal time series data of maximum and minimum temperature from 249 uniformly distributed stations across the State of North Carolina, United States. The Mann-Kendall and Theil-Sen approach were applied to quantify the significance and magnitude of trend, respectively. A pre-whitening technique was applied to eliminate the effect of lag-1 serial correlation. For most stations over the period of the past 60 years, the difference between minimum and maximum temperatures was found decreasing with an overall increasing trend in the mean temperature. However, significant trends (confidence level ≥ 95 %) in the mean temperature analysis were detected only in 20, 3, 23, and 20 % of the stations in summer, winter, autumn, and spring, respectively. The magnitude of the highest warming trend in minimum temperature and the highest cooling trend in maximum temperature was +0.073 °C/year in the autumn season and -0.12 °C/year in the summer season, respectively. Additional analysis in mean temperature trend was conducted on three regions of North Carolina (mountain, piedmont, and coastal). The results revealed a warming trend for the coastal zone, a cooling trend for the mountain zone, and no distinct trend for the piedmont zone. The Sequential Mann-Kendall test results indicated that the significant increasing trends in minimum temperature and decreasing trend in maximum temperature had begun around 1970 and 1960 (change point), respectively, in most of the stations. Finally, the comparison between mean surface air temperature (SAT) and the North Atlantic Oscillation (NAO) concluded that the variability and trend in SAT can be explained partially by the NAO index for North Carolina.

  6. Statistical analysis of global surface temperature and sea level using cointegration methods

    DEFF Research Database (Denmark)

    Schmidt, Torben; Johansen, Søren; Thejll, Peter

    2012-01-01

    Global sea levels are rising which is widely understood as a consequence of thermal expansion and melting of glaciers and land-based ice caps. Due to the lack of representation of ice-sheet dynamics in present-day physically-based climate models being unable to simulate observed sea level trends......, semi-empirical models have been applied as an alternative for projecting of future sea levels. There is in this, however, potential pitfalls due to the trending nature of the time series. We apply a statistical method called cointegration analysis to observed global sea level and land-ocean surface air...... temperature, capable of handling such peculiarities. We find a relationship between sea level and temperature and find that temperature causally depends on the sea level, which can be understood as a consequence of the large heat capacity of the ocean. We further find that the warming episode in the 1940s...

  7. Apple detection using infrared thermal image, 3: Real-time temperature measurement of apple tree

    International Nuclear Information System (INIS)

    Zhang, S.H.; Takahashi, T.; Fukuchi, H.; Sun, M.; Terao, H.

    1998-01-01

    In Part 1, we reported the thermal distribution characteristics and the identification methods of apples, leaves and branches by using the infrared thermal image at the specific time. This paper reports the temperature changing characteristics and the relationships among apples, leaves and air temperature based on the information measured by the infrared thermal image equipment in the real-time for 24 hours. As a result, it was confirmed that the average temperature of apples was 1 degree C or more higher than the one of the leaves, and the average temperature of the leaves was almost same as the air temperature within daytime and about 3 hours period after sunset. It was also clarified for a remarkable temperature difference not to exist for midnight and the early morning between the apples and the leaves, and both became almost as well as the air temperature. Moreover, a binary image was easily obtained and the apples could be detected by using this temperature difference informat

  8. Analysis and modeling of the seasonal South China Sea temperature cycle using remote sensing

    Science.gov (United States)

    Twigt, Daniel J.; de Goede, Erik D.; Schrama, Ernst J. O.; Gerritsen, Herman

    2007-10-01

    The present paper describes the analysis and modeling of the South China Sea (SCS) temperature cycle on a seasonal scale. It investigates the possibility to model this cycle in a consistent way while not taking into account tidal forcing and associated tidal mixing and exchange. This is motivated by the possibility to significantly increase the model’s computational efficiency when neglecting tides. The goal is to develop a flexible and efficient tool for seasonal scenario analysis and to generate transport boundary forcing for local models. Given the significant spatial extent of the SCS basin and the focus on seasonal time scales, synoptic remote sensing is an ideal tool in this analysis. Remote sensing is used to assess the seasonal temperature cycle to identify the relevant driving forces and is a valuable source of input data for modeling. Model simulations are performed using a three-dimensional baroclinic-reduced depth model, driven by monthly mean sea surface anomaly boundary forcing, monthly mean lateral temperature, and salinity forcing obtained from the World Ocean Atlas 2001 climatology, six hourly meteorological forcing from the European Center for Medium range Weather Forecasting ERA-40 dataset, and remotely sensed sea surface temperature (SST) data. A sensitivity analysis of model forcing and coefficients is performed. The model results are quantitatively assessed against climatological temperature profiles using a goodness-of-fit norm. In the deep regions, the model results are in good agreement with this validation data. In the shallow regions, discrepancies are found. To improve the agreement there, we apply a SST nudging method at the free water surface. This considerably improves the model’s vertical temperature representation in the shallow regions. Based on the model validation against climatological in situ and SST data, we conclude that the seasonal temperature cycle for the deep SCS basin can be represented to a good degree. For shallow

  9. A linearization time-domain CMOS smart temperature sensor using a curvature compensation oscillator.

    Science.gov (United States)

    Chen, Chun-Chi; Chen, Hao-Wen

    2013-08-28

    This paper presents an area-efficient time-domain CMOS smart temperature sensor using a curvature compensation oscillator for linearity enhancement with a -40 to 120 °C temperature range operability. The inverter-based smart temperature sensors can substantially reduce the cost and circuit complexity of integrated temperature sensors. However, a large curvature exists on the temperature-to-time transfer curve of the inverter-based delay line and results in poor linearity of the sensor output. For cost reduction and error improvement, a temperature-to-pulse generator composed of a ring oscillator and a time amplifier was used to generate a thermal sensing pulse with a sufficient width proportional to the absolute temperature (PTAT). Then, a simple but effective on-chip curvature compensation oscillator is proposed to simultaneously count and compensate the PTAT pulse with curvature for linearization. With such a simple structure, the proposed sensor possesses an extremely small area of 0.07 mm2 in a TSMC 0.35-mm CMOS 2P4M digital process. By using an oscillator-based scheme design, the proposed sensor achieves a fine resolution of 0.045 °C without significantly increasing the circuit area. With the curvature compensation, the inaccuracy of -1.2 to 0.2 °C is achieved in an operation range of -40 to 120 °C after two-point calibration for 14 packaged chips. The power consumption is measured as 23 mW at a sample rate of 10 samples/s.

  10. Simulated glass-forming polymer melts: dynamic scattering functions, chain length effects, and mode-coupling theory analysis.

    Science.gov (United States)

    Frey, S; Weysser, F; Meyer, H; Farago, J; Fuchs, M; Baschnagel, J

    2015-02-01

    We present molecular-dynamics simulations for a fully flexible model of polymer melts with different chain length N ranging from short oligomers (N = 4) to values near the entanglement length (N = 64). For these systems we explore the structural relaxation of the supercooled melt near the critical temperature T c of mode-coupling theory (MCT). Coherent and incoherent scattering functions are analyzed in terms of the idealized MCT. For temperatures T > T c we provide evidence for the space-time factorization property of the β relaxation and for the time-temperature superposition principle (TTSP) of the α relaxation, and we also discuss deviations from these predictions for T ≈ T c. For T larger than the smallest temperature where the TTSP holds we perform a quantitative analysis of the dynamics with the asymptotic MCT predictions for the late β regime. Within MCT a key quantity, in addition to T c, is the exponent parameter λ. For the fully flexible polymer models studied we find that λ is independent of N and has a value (λ = 0.735 ) typical of simple glass-forming liquids. On the other hand, the critical temperature increases with chain length toward an asymptotic value T c (∞) . This increase can be described by T c (∞) - T c(N) ∼ 1/N and may be interpreted in terms of the N dependence of the monomer density ρ, if we assume that the MCT glass transition is ruled by a soft-sphere-like constant coupling parameter Γ c = ρ c T c (-1/4), where ρ c is the monomer density at T c. In addition, we also estimate T c from a Hansen-Verlet-like criterion and MCT calculations based on structural input from the simulation. For our polymer model both the Hansen-Verlet criterion and the MCT calculations suggest T c to decrease with increasing chain length, in contrast to the direct analysis of the simulation data.

  11. Temperature affects the timing of spawning and migration of North Sea mackerel

    DEFF Research Database (Denmark)

    Jansen, Teunis; Gislason, Henrik

    2011-01-01

    Climate change accentuates the need for knowing how temperature impacts the life history and productivity of economically and ecologically important species of fish. We examine the influence of temperature on the timing of the spawning and migrations of North Sea Mackerel using data from larvae C...

  12. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    Directory of Open Access Journals (Sweden)

    Benjamin H. Letcher

    2016-02-01

    Full Text Available Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C, identified a clear warming trend (0.63 °C decade−1 and a widening of the synchronized period (29 d decade−1. We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data. Missing all data for a year decreased performance (∼0.6 °C jump in RMSE, but this decrease was moderated when data were available from other streams in the network.

  13. Identification and root cause analysis of cell culture media precipitates in the viral deactivation treatment with high-temperature/short-time method.

    Science.gov (United States)

    Cao, Xiaolin; Stimpfl, Gregory; Wen, Zai-Qing; Frank, Gregory; Hunter, Glenn

    2013-01-01

    High-temperature/short-time (HTST) treatment of cell culture media is one of the proven techniques used in the biopharmaceutical manufacturing industry for the prevention and mitigation of media viral contamination. With the HTST method, the formulated media is pasteurized (virus-deactivated) by heating and pumping the media continuously through the preset high-temperature holding tubes to achieve a specified period of time at a specific temperature. Recently, during the evaluation and implementation of HTST method in multiple Amgen, Inc. manufacturing facilities, media precipitates were observed in the tests of HTST treatments. The media precipitates may have adverse consequences such as clogging the HTST system, altering operating conditions and compromising the efficacy of viral deactivation, and ultimately affecting the media composition and cell growth. In this study, we report the identification of the composition of media precipitates from multiple media HTST runs using combined microspectroscopic methods including Raman, Fourier transform infrared spectroscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy. The major composition in the precipitates was determined to be metal phosphates, including calcium phosphate, magnesium phosphate, and iron (III) phosphate. Based on the composition, stoichiometry, and root-cause study of media precipitations, methods were implemented for the mitigation and prevention of the occurrence of the media precipitation. Viral contamination in cell culture media is an important issue in the biopharmaceutical manufacturing industry and may have serious consequences on product quality, efficacy, and safety. High-temperature/short-time (HTST) treatment of cell culture media is one of the proven techniques used in the industry for the prevention and mitigation of media viral contamination. With the HTST method, the formulated media is pasteurized (virus-deactivated) by heating at preset conditions. This

  14. "Deflategate": Time, Temperature, and Moisture Effects on Football Pressure

    Science.gov (United States)

    Blumenthal, Jack; Beljak, Lauren; Macatangay, Dahlia-Marie; Helmuth-Malone, Lilly; McWilliams, Catharina; Raptis, Sofia

    2016-01-01

    In a recent paper in "The Physics Teacher (TPT)", DiLisi and Rarick used the National Football League "Deflategate" controversy to introduce to physics students the physics of a bouncing ball. In this paper, we measure and analyze the environmental effects of time, ambient temperature, and moisture on the internal pressure of…

  15. Analysis of the process of raising the temperature in the spark channel at a discharge in gas

    CERN Document Server

    Korytchenko, K V; Chumakov, V I

    2001-01-01

    Analysis of the process of raising the temperature in the spark channel at a discharge in gas is performed. The quantitative evaluation was made in main for the air. The effect of steadying a thermodynamic equilibrium in gas,as well as the influence of power discharge parameters on the process of temperature increasing was analyzed. The quantitative evaluation of time parameters of the processes of rotary, oscillatory relaxation, dissociation and ionization has allowed to reveal the influence of each of them on temperature increasing in the spark channel. The problems arising in the course of practical realization of a spark discharge which influence on the process of temperature raising are detected,and the ways for their solution are determined. The results obtained can be put in a basis of developing the methods to design devices for intensive increase of temperatures in gas media using the electrical discharge,as well as for analysis of a dependence of shock wave intensity on dynamic parameters of the ele...

  16. Sensory stability of whole mango juice: influence of temperature and storage time

    Directory of Open Access Journals (Sweden)

    Anderson do Nascimento Oliveira

    2012-12-01

    Full Text Available This study investigated the degradation kinetics of the sensory attributes of commercial whole mango (cv. Ubá juice and evaluated its sensory acceptability during storage. Samples of the product were stored in a BOD incubator at 25, 35, and 45 ºC under 24 hours light (650 lux for 120 days. Sensory analyses (Quantitative Descriptive Analysis - QDA were conducted with trained panel and consumers. The correlations between sensory and physicochemical characteristics (instrumental color and vitamin C content were also assessed. Flavor, aroma, and color vary with temperature and time of storage. Aroma and flavor were most affected by temperature with values of Q10 and Ea equal to 4.16 and 25.31 kcal.mol-1; and 3.61 and 22.80 kcal.mol-1, respectively. The sensory changes observed by the trained panel are related to the degradation of vitamin C and changes in the color coordinates (L* and ΔE* of mango juice. However, consumers were unable to detect changes in the overall quality of the juices. It was observed that the QDA can be a useful tool to assess shelf-life.

  17. Volatile compound profile of sous-vide cooked lamb loins at different temperature-time combinations.

    Science.gov (United States)

    Roldán, Mar; Ruiz, Jorge; Del Pulgar, José Sánchez; Pérez-Palacios, Trinidad; Antequera, Teresa

    2015-02-01

    Lamb loins were subjected to sous-vide cooking at different combinations of temperature (60 and 80°C) and time (6 and 24h) to assess the effect on the volatile compound profile. Major chemical families in cooked samples were aliphatic hydrocarbons and aldehydes. The volatile compound profile in sous-vide cooked lamb loin was affected by the cooking temperature and time. Volatile compounds arising from lipid oxidation presented a high abundance in samples cooked at low or moderate cooking conditions (60°C for 6 and 24h, 80°C for 6h), while a more intense time and temperature combination (80°C for 24h) resulted on a higher concentration of volatile compounds arising from Strecker degradations of amino acids, as 2-methylpropanal and 3-methylbutanal. Therefore, sous-vide cooking at moderately high temperatures for long times would result in the formation of a stronger meaty flavor and roast notes in lamb meat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Time dependent start-up thermal analysis of a Super Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sutanto,, E-mail: sutanto@fuji.waseda.jp; Oka, Yoshiaki

    2013-10-15

    Highlights: • Time dependent startup thermal analysis of a Super Fast Reactor is performed. • A recirculation system is used for pressurization and for generating supercritical steam. • MCST satisfies the criterion both during subcritical pressure and during power-raising. • MCST is not sensitive to the change of inlet temperature, gap volume and flow rate because of high flow to power ratio. • CHF is not limiting the MCST during subcritical pressure due to large margin of heat flux. -- Abstract: The startup system of a supercritical pressure light water cooled fast reactor (Super FR) is studied by time dependent thermal-hydraulic analysis. The plant analysis code is developed based on an innovative upward flow pattern in all the assemblies of the Super FR. A recirculation system consisting of a steam drum, a circulation pump, and a heat exchanger is used for the startup. Detailed procedures are performed and the maximum cladding surface temperature (MCST) at rated power, 640 °C, is used as the criterion. Firstly a small constant nuclear power is used for rising the core feed water temperature to be 280 °C through the recirculation system. Secondly, pressurization is done in the recirculation system from atmospheric to operating pressure, 25 MPa, by raising the power. Thirdly, line-switching from recirculation mode to once-through direct-cycle is performed while turbines are started by supercritical steam at supercritical pressure. Finally the power is raised to be 100% of power followed by raising the flow rate. During pressurization the heat flux margin is large due to low power used for pressurization and the MCST is much lower than the criterion. The MCST is not sensitive to the inlet temperature, the flow rate, and the gap volume of the core because of high flow to power ratio. Smaller dimension of steam drum can be used for pressurization stably. The MCST satisfies the criterion both during subcritical pressure and during power-raising.

  19. Time dependent start-up thermal analysis of a Super Fast Reactor

    International Nuclear Information System (INIS)

    Sutanto,; Oka, Yoshiaki

    2013-01-01

    Highlights: • Time dependent startup thermal analysis of a Super Fast Reactor is performed. • A recirculation system is used for pressurization and for generating supercritical steam. • MCST satisfies the criterion both during subcritical pressure and during power-raising. • MCST is not sensitive to the change of inlet temperature, gap volume and flow rate because of high flow to power ratio. • CHF is not limiting the MCST during subcritical pressure due to large margin of heat flux. -- Abstract: The startup system of a supercritical pressure light water cooled fast reactor (Super FR) is studied by time dependent thermal-hydraulic analysis. The plant analysis code is developed based on an innovative upward flow pattern in all the assemblies of the Super FR. A recirculation system consisting of a steam drum, a circulation pump, and a heat exchanger is used for the startup. Detailed procedures are performed and the maximum cladding surface temperature (MCST) at rated power, 640 °C, is used as the criterion. Firstly a small constant nuclear power is used for rising the core feed water temperature to be 280 °C through the recirculation system. Secondly, pressurization is done in the recirculation system from atmospheric to operating pressure, 25 MPa, by raising the power. Thirdly, line-switching from recirculation mode to once-through direct-cycle is performed while turbines are started by supercritical steam at supercritical pressure. Finally the power is raised to be 100% of power followed by raising the flow rate. During pressurization the heat flux margin is large due to low power used for pressurization and the MCST is much lower than the criterion. The MCST is not sensitive to the inlet temperature, the flow rate, and the gap volume of the core because of high flow to power ratio. Smaller dimension of steam drum can be used for pressurization stably. The MCST satisfies the criterion both during subcritical pressure and during power-raising

  20. Temperature and time stability of whole blood lactate: implications for feasibility of pre-hospital measurement

    Directory of Open Access Journals (Sweden)

    Watkins Timothy R

    2011-05-01

    Full Text Available Abstract Background To determine the time and temperature stability of whole blood lactate using experimental conditions applicable to the out-of-hospital environment. Findings We performed a prospective, clinical laboratory-based study at an academic hospital. Whole blood lactate was obtained by venipuncture from five post-prandial, resting subjects. Blood was stored in lithium heparinized vacutainers in three temperature conditions: 1 room temperature (20°C, 2 wrapped in a portable, instant ice pack (0°C, or 3 wet ice (0°C. Lactate concentrations (mmol/L were measured at 0, 5, 10, 20, and 30 minutes after sampling, and compared using repeated measures analysis of variance. Mean baseline lactate among resting subjects (N = 5 was 1.24 mmol/L (95%CI: 0.49,1.98 mmol/L. After 30 minutes, lactate concentration increased, on average, by 0.08 mmol/L (95%CI: 0.02,0.13 mmol/L, 0.18 mmol/L (95%CI: 0.07,0.28 mmol/L, and 0.36 mmol/L (95%CI: 0.24,0.47 mmol/L when stored in wet ice, ice pack, and room temperature, respectively. The increase in lactate was similar in samples wrapped in portable ice pack or stored in wet ice at all time points (p > 0.05, and met criteria for equivalence at 30 minutes. However, lactate measurements from whole blood stored at room temperature were significantly greater, on average, than wet ice or portable ice pack within five and ten minutes, respectively (p Conclusions Whole blood lactate measurements using samples stored in a portable ice pack are similar to wet ice for up to 30 minutes. These conditions are applicable to the out-of-hospital environment, and should inform future studies of pre-hospital measurement of lactate.