WorldWideScience

Sample records for time-scale invariant interval

  1. Time-scale invariance as an emergent property in a perceptron with realistic, noisy neurons.

    Science.gov (United States)

    Buhusi, Catalin V; Oprisan, Sorinel A

    2013-05-01

    In most species, interval timing is time-scale invariant: errors in time estimation scale up linearly with the estimated duration. In mammals, time-scale invariance is ubiquitous over behavioral, lesion, and pharmacological manipulations. For example, dopaminergic drugs induce an immediate, whereas cholinergic drugs induce a gradual, scalar change in timing. Behavioral theories posit that time-scale invariance derives from particular computations, rules, or coding schemes. In contrast, we discuss a simple neural circuit, the perceptron, whose output neurons fire in a clockwise fashion based on the pattern of coincidental activation of its input neurons. We show numerically that time-scale invariance emerges spontaneously in a perceptron with realistic neurons, in the presence of noise. Under the assumption that dopaminergic drugs modulate the firing of input neurons, and that cholinergic drugs modulate the memory representation of the criterion time, we show that a perceptron with realistic neurons reproduces the pharmacological clock and memory patterns, and their time-scale invariance, in the presence of noise. These results suggest that rather than being a signature of higher order cognitive processes or specific computations related to timing, time-scale invariance may spontaneously emerge in a massively connected brain from the intrinsic noise of neurons and circuits, thus providing the simplest explanation for the ubiquity of scale invariance of interval timing. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Evaluation of scaling invariance embedded in short time series.

    Directory of Open Access Journals (Sweden)

    Xue Pan

    Full Text Available Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2. Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03 and sharp confidential interval (standard deviation ≤0.05. Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.

  3. Evaluation of scaling invariance embedded in short time series.

    Science.gov (United States)

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2). Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03) and sharp confidential interval (standard deviation ≤0.05). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.

  4. Scale-invariant Green-Kubo relation for time-averaged diffusivity

    Science.gov (United States)

    Meyer, Philipp; Barkai, Eli; Kantz, Holger

    2017-12-01

    In recent years it was shown both theoretically and experimentally that in certain systems exhibiting anomalous diffusion the time- and ensemble-averaged mean-squared displacement are remarkably different. The ensemble-averaged diffusivity is obtained from a scaling Green-Kubo relation, which connects the scale-invariant nonstationary velocity correlation function with the transport coefficient. Here we obtain the relation between time-averaged diffusivity, usually recorded in single-particle tracking experiments, and the underlying scale-invariant velocity correlation function. The time-averaged mean-squared displacement is given by 〈δ2¯〉 ˜2 DνtβΔν -β , where t is the total measurement time and Δ is the lag time. Here ν is the anomalous diffusion exponent obtained from ensemble-averaged measurements 〈x2〉 ˜tν , while β ≥-1 marks the growth or decline of the kinetic energy 〈v2〉 ˜tβ . Thus, we establish a connection between exponents that can be read off the asymptotic properties of the velocity correlation function and similarly for the transport constant Dν. We demonstrate our results with nonstationary scale-invariant stochastic and deterministic models, thereby highlighting that systems with equivalent behavior in the ensemble average can differ strongly in their time average. If the averaged kinetic energy is finite, β =0 , the time scaling of 〈δ2¯〉 and 〈x2〉 are identical; however, the time-averaged transport coefficient Dν is not identical to the corresponding ensemble-averaged diffusion constant.

  5. Time-scale invariances in preseismic electromagnetic radiation, magnetization and damage evolution of rocks

    Directory of Open Access Journals (Sweden)

    Y. Kawada

    2007-10-01

    Full Text Available We investigate the time-scale invariant changes in electromagnetic and mechanical energy releases prior to a rock failure or a large earthquake. The energy release processes are caused by damage evolutions such as crack propagation, motion of charged dislocation, area-enlargement of sheared asperities and repetitive creep-rate changes. Damage mechanics can be used to represent the time-scale invariant evolutions of both brittle and plastic damages. Irreversible thermodynamics applied to the damage mechanics reveals that the damage evolution produces the variations in charge, dipole and electromagnetic signals in addition to mechanical energy release, and yields the time-scale invariant patterns of Benioff electromagnetic radiation and cumulative Benioff strain-release. The irreversible thermodynamic framework of damage mechanics is also applicable to the seismo-magnetic effect, and the time-scale invariance is recognized in the remanent magnetization change associated with damage evolution prior to a rock failure.

  6. Phenomenology of local scale invariance: from conformal invariance to dynamical scaling

    International Nuclear Information System (INIS)

    Henkel, Malte

    2002-01-01

    Statistical systems displaying a strongly anisotropic or dynamical scaling behaviour are characterized by an anisotropy exponent θ or a dynamical exponent z. For a given value of θ (or z), we construct local scale transformations, which can be viewed as scale transformations with a space-time-dependent dilatation factor. Two distinct types of local scale transformations are found. The first type may describe strongly anisotropic scaling of static systems with a given value of θ, whereas the second type may describe dynamical scaling with a dynamical exponent z. Local scale transformations act as a dynamical symmetry group of certain non-local free-field theories. Known special cases of local scale invariance are conformal invariance for θ=1 and Schroedinger invariance for θ=2. The hypothesis of local scale invariance implies that two-point functions of quasi primary operators satisfy certain linear fractional differential equations, which are constructed from commuting fractional derivatives. The explicit solution of these yields exact expressions for two-point correlators at equilibrium and for two-point response functions out of equilibrium. A particularly simple and general form is found for the two-time auto response function. These predictions are explicitly confirmed at the uniaxial Lifshitz points in the ANNNI and ANNNS models and in the aging behaviour of simple ferromagnets such as the kinetic Glauber-Ising model and the kinetic spherical model with a non-conserved order parameter undergoing either phase-ordering kinetics or non-equilibrium critical dynamics

  7. Time-Scale Invariant Audio Data Embedding

    Directory of Open Access Journals (Sweden)

    Mansour Mohamed F

    2003-01-01

    Full Text Available We propose a novel algorithm for high-quality data embedding in audio. The algorithm is based on changing the relative length of the middle segment between two successive maximum and minimum peaks to embed data. Spline interpolation is used to change the lengths. To ensure smooth monotonic behavior between peaks, a hybrid orthogonal and nonorthogonal wavelet decomposition is used prior to data embedding. The possible data embedding rates are between 20 and 30 bps. However, for practical purposes, we use repetition codes, and the effective embedding data rate is around 5 bps. The algorithm is invariant after time-scale modification, time shift, and time cropping. It gives high-quality output and is robust to mp3 compression.

  8. On logarithmic extensions of local scale-invariance

    International Nuclear Information System (INIS)

    Henkel, Malte

    2013-01-01

    Ageing phenomena far from equilibrium naturally present dynamical scaling and in many situations this may be generalised to local scale-invariance. Generically, the absence of time-translation-invariance implies that each scaling operator is characterised by two independent scaling dimensions. Building on analogies with logarithmic conformal invariance and logarithmic Schrödinger-invariance, this work proposes a logarithmic extension of local scale-invariance, without time-translation-invariance. Carrying this out requires in general to replace both scaling dimensions of each scaling operator by Jordan cells. Co-variant two-point functions are derived for the most simple case of a two-dimensional logarithmic extension. Their form is compared to simulational data for autoresponse functions in several universality classes of non-equilibrium ageing phenomena

  9. Inflation in a Scale Invariant Universe

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Pedro G. [Oxford U.; Hill, Christopher T. [Fermilab; Noller, Johannes [Zurich U.; Ross, Graham G. [Oxford U., Theor. Phys.

    2018-02-16

    A scale-invariant universe can have a period of accelerated expansion at early times: inflation. We use a frame-invariant approach to calculate inflationary observables in a scale invariant theory of gravity involving two scalar fields - the spectral indices, the tensor to scalar ratio, the level of isocurvature modes and non-Gaussianity. We show that scale symmetry leads to an exact cancellation of isocurvature modes and that, in the scale-symmetry broken phase, this theory is well described by a single scalar field theory. We find the predictions of this theory strongly compatible with current observations.

  10. Longitudinal multigroup invariance analysis of the satisfaction with food-related life scale in university students

    DEFF Research Database (Denmark)

    Schnettler, Berta; Miranda, Horacio; Miranda-Zapata, Edgardo

    2017-01-01

    This study examined longitudinal measurement invariance in the Satisfaction with Food-related Life (SWFL) scale using follow-up data from university students. We examined this measure of the SWFL in different groups of students, separated by various characteristics. Through non......-probabilistic longitudinal sampling, 114 university students (65.8% female, mean age: 22.5) completed the SWFL questionnaire three times, over intervals of approximately one year. Confirmatory factor analysis was used to examine longitudinal measurement invariance. Two types of analysis were conducted: first, a longitudinal...... students of both sexes, and among those older and younger than 22 years. Generally, these findings suggest that the SWFL scale has satisfactory psychometric properties for longitudinal measurement invariance in university students with similar characteristics as the students that participated...

  11. Scaling and scale invariance of conservation laws in Reynolds transport theorem framework

    Science.gov (United States)

    Haltas, Ismail; Ulusoy, Suleyman

    2015-07-01

    Scale invariance is the case where the solution of a physical process at a specified time-space scale can be linearly related to the solution of the processes at another time-space scale. Recent studies investigated the scale invariance conditions of hydrodynamic processes by applying the one-parameter Lie scaling transformations to the governing equations of the processes. Scale invariance of a physical process is usually achieved under certain conditions on the scaling ratios of the variables and parameters involved in the process. The foundational axioms of hydrodynamics are the conservation laws, namely, conservation of mass, conservation of linear momentum, and conservation of energy from continuum mechanics. They are formulated using the Reynolds transport theorem. Conventionally, Reynolds transport theorem formulates the conservation equations in integral form. Yet, differential form of the conservation equations can also be derived for an infinitesimal control volume. In the formulation of the governing equation of a process, one or more than one of the conservation laws and, some times, a constitutive relation are combined together. Differential forms of the conservation equations are used in the governing partial differential equation of the processes. Therefore, differential conservation equations constitute the fundamentals of the governing equations of the hydrodynamic processes. Applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework instead of applying to the governing partial differential equations may lead to more fundamental conclusions on the scaling and scale invariance of the hydrodynamic processes. This study will investigate the scaling behavior and scale invariance conditions of the hydrodynamic processes by applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework.

  12. Hidden scale invariance of metals

    DEFF Research Database (Denmark)

    Hummel, Felix; Kresse, Georg; Dyre, Jeppe C.

    2015-01-01

    Density functional theory (DFT) calculations of 58 liquid elements at their triple point show that most metals exhibit near proportionality between the thermal fluctuations of the virial and the potential energy in the isochoric ensemble. This demonstrates a general “hidden” scale invariance...... of metals making the condensed part of the thermodynamic phase diagram effectively one dimensional with respect to structure and dynamics. DFT computed density scaling exponents, related to the Grüneisen parameter, are in good agreement with experimental values for the 16 elements where reliable data were...... available. Hidden scale invariance is demonstrated in detail for magnesium by showing invariance of structure and dynamics. Computed melting curves of period three metals follow curves with invariance (isomorphs). The experimental structure factor of magnesium is predicted by assuming scale invariant...

  13. Longitudinal multigroup invariance analysis of the satisfaction with food-related life scale in university students.

    Science.gov (United States)

    Schnettler, Berta; Miranda, Horacio; Miranda-Zapata, Edgardo; Salinas-Oñate, Natalia; Grunert, Klaus G; Lobos, Germán; Sepúlveda, José; Orellana, Ligia; Hueche, Clementina; Bonilla, Héctor

    2017-06-01

    This study examined longitudinal measurement invariance in the Satisfaction with Food-related Life (SWFL) scale using follow-up data from university students. We examined this measure of the SWFL in different groups of students, separated by various characteristics. Through non-probabilistic longitudinal sampling, 114 university students (65.8% female, mean age: 22.5) completed the SWFL questionnaire three times, over intervals of approximately one year. Confirmatory factor analysis was used to examine longitudinal measurement invariance. Two types of analysis were conducted: first, a longitudinal invariance by time, and second, a multigroup longitudinal invariance by sex, age, socio-economic status and place of residence during the study period. Results showed that the 3-item version of the SWFL exhibited strong longitudinal invariance (equal factor loadings and equal indicator intercepts). Longitudinal multigroup invariance analysis also showed that the 3-item version of the SWFL displays strong invariance by socio-economic status and place of residence during the study period over time. Nevertheless, it was only possible to demonstrate equivalence of the longitudinal factor structure among students of both sexes, and among those older and younger than 22 years. Generally, these findings suggest that the SWFL scale has satisfactory psychometric properties for longitudinal measurement invariance in university students with similar characteristics as the students that participated in this research. It is also possible to suggest that satisfaction with food-related life is associated with sex and age. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Finite-Time Stability of Large-Scale Systems with Interval Time-Varying Delay in Interconnection

    Directory of Open Access Journals (Sweden)

    T. La-inchua

    2017-01-01

    Full Text Available We investigate finite-time stability of a class of nonlinear large-scale systems with interval time-varying delays in interconnection. Time-delay functions are continuous but not necessarily differentiable. Based on Lyapunov stability theory and new integral bounding technique, finite-time stability of large-scale systems with interval time-varying delays in interconnection is derived. The finite-time stability criteria are delays-dependent and are given in terms of linear matrix inequalities which can be solved by various available algorithms. Numerical examples are given to illustrate effectiveness of the proposed method.

  15. A scale invariance criterion for LES parametrizations

    Directory of Open Access Journals (Sweden)

    Urs Schaefer-Rolffs

    2015-01-01

    Full Text Available Turbulent kinetic energy cascades in fluid dynamical systems are usually characterized by scale invariance. However, representations of subgrid scales in large eddy simulations do not necessarily fulfill this constraint. So far, scale invariance has been considered in the context of isotropic, incompressible, and three-dimensional turbulence. In the present paper, the theory is extended to compressible flows that obey the hydrostatic approximation, as well as to corresponding subgrid-scale parametrizations. A criterion is presented to check if the symmetries of the governing equations are correctly translated into the equations used in numerical models. By applying scaling transformations to the model equations, relations between the scaling factors are obtained by demanding that the mathematical structure of the equations does not change.The criterion is validated by recovering the breakdown of scale invariance in the classical Smagorinsky model and confirming scale invariance for the Dynamic Smagorinsky Model. The criterion also shows that the compressible continuity equation is intrinsically scale-invariant. The criterion also proves that a scale-invariant turbulent kinetic energy equation or a scale-invariant equation of motion for a passive tracer is obtained only with a dynamic mixing length. For large-scale atmospheric flows governed by the hydrostatic balance the energy cascade is due to horizontal advection and the vertical length scale exhibits a scaling behaviour that is different from that derived for horizontal length scales.

  16. Scale invariant Volkov–Akulov supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, S., E-mail: sergio.ferrara@cern.ch [Th-Ph Department, CERN, CH-1211 Geneva 23 (Switzerland); INFN – Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati (Italy); Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Porrati, M., E-mail: mp9@nyu.edu [Th-Ph Department, CERN, CH-1211 Geneva 23 (Switzerland); CCPP, Department of Physics, NYU, 4 Washington Pl., New York, NY 10003 (United States); Sagnotti, A., E-mail: sagnotti@sns.it [Th-Ph Department, CERN, CH-1211 Geneva 23 (Switzerland); Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2015-10-07

    A scale invariant goldstino theory coupled to supergravity is obtained as a standard supergravity dual of a rigidly scale-invariant higher-curvature supergravity with a nilpotent chiral scalar curvature. The bosonic part of this theory describes a massless scalaron and a massive axion in a de Sitter Universe.

  17. Scale invariant Volkov–Akulov supergravity

    Directory of Open Access Journals (Sweden)

    S. Ferrara

    2015-10-01

    Full Text Available A scale invariant goldstino theory coupled to supergravity is obtained as a standard supergravity dual of a rigidly scale-invariant higher-curvature supergravity with a nilpotent chiral scalar curvature. The bosonic part of this theory describes a massless scalaron and a massive axion in a de Sitter Universe.

  18. Scale invariance in chaotic time series: Classical and quantum examples

    Science.gov (United States)

    Landa, Emmanuel; Morales, Irving O.; Stránský, Pavel; Fossion, Rubén; Velázquez, Victor; López Vieyra, J. C.; Frank, Alejandro

    Important aspects of chaotic behavior appear in systems of low dimension, as illustrated by the Map Module 1. It is indeed a remarkable fact that all systems tha make a transition from order to disorder display common properties, irrespective of their exacta functional form. We discuss evidence for 1/f power spectra in the chaotic time series associated in classical and quantum examples, the one-dimensional map module 1 and the spectrum of 48Ca. A Detrended Fluctuation Analysis (DFA) method is applied to investigate the scaling properties of the energy fluctuations in the spectrum of 48Ca obtained with a large realistic shell model calculation (ANTOINE code) and with a random shell model (TBRE) calculation also in the time series obtained with the map mod 1. We compare the scale invariant properties of the 48Ca nuclear spectrum sith similar analyses applied to the RMT ensambles GOE and GDE. A comparison with the corresponding power spectra is made in both cases. The possible consequences of the results are discussed.

  19. A model of interval timing by neural integration.

    Science.gov (United States)

    Simen, Patrick; Balci, Fuat; de Souza, Laura; Cohen, Jonathan D; Holmes, Philip

    2011-06-22

    We show that simple assumptions about neural processing lead to a model of interval timing as a temporal integration process, in which a noisy firing-rate representation of time rises linearly on average toward a response threshold over the course of an interval. Our assumptions include: that neural spike trains are approximately independent Poisson processes, that correlations among them can be largely cancelled by balancing excitation and inhibition, that neural populations can act as integrators, and that the objective of timed behavior is maximal accuracy and minimal variance. The model accounts for a variety of physiological and behavioral findings in rodents, monkeys, and humans, including ramping firing rates between the onset of reward-predicting cues and the receipt of delayed rewards, and universally scale-invariant response time distributions in interval timing tasks. It furthermore makes specific, well-supported predictions about the skewness of these distributions, a feature of timing data that is usually ignored. The model also incorporates a rapid (potentially one-shot) duration-learning procedure. Human behavioral data support the learning rule's predictions regarding learning speed in sequences of timed responses. These results suggest that simple, integration-based models should play as prominent a role in interval timing theory as they do in theories of perceptual decision making, and that a common neural mechanism may underlie both types of behavior.

  20. A scale invariant covariance structure on jet space

    DEFF Research Database (Denmark)

    Pedersen, Kim Steenstrup; Loog, Marco; Markussen, Bo

    2005-01-01

    This paper considers scale invariance of statistical image models. We study statistical scale invariance of the covariance structure of jet space under scale space blurring and derive the necessary structure and conditions of the jet covariance matrix in order for it to be scale invariant. As par...

  1. Decrease in scale invariance of activity fluctuations with aging and in patients with suprasellar tumors

    DEFF Research Database (Denmark)

    Joustra, S. D.; Gu, C.; Rohling, J. H.T.

    2018-01-01

    -matched healthy controls (age range 21.0–70.6 years). Spontaneous wrist locomotor activity was measured for 7 days with actigraphy, and detrended fluctuation analysis was applied to assess correlations over a range of time scales from minutes to 24 h. For all the subjects, complex scale-invariant correlations...... scale invariance. Conversely, activity patterns at time scales between 10 and 24 h were significantly more regular than all other time scales, and this was mostly associated with age. In conclusion, scale invariance is degraded in healthy subjects at the ages of >33 year as characterized by attenuation......Motor activity in healthy young humans displays intrinsic fluctuations that are scale-invariant over a wide range of time scales (from minutes to hours). Human postmortem and animal lesion studies showed that the intact function of the suprachiasmatic nucleus (SCN) is required to maintain...

  2. Quantum implications of a scale invariant regularization

    Science.gov (United States)

    Ghilencea, D. M.

    2018-04-01

    We study scale invariance at the quantum level in a perturbative approach. For a scale-invariant classical theory, the scalar potential is computed at a three-loop level while keeping manifest this symmetry. Spontaneous scale symmetry breaking is transmitted at a quantum level to the visible sector (of ϕ ) by the associated Goldstone mode (dilaton σ ), which enables a scale-invariant regularization and whose vacuum expectation value ⟨σ ⟩ generates the subtraction scale (μ ). While the hidden (σ ) and visible sector (ϕ ) are classically decoupled in d =4 due to an enhanced Poincaré symmetry, they interact through (a series of) evanescent couplings ∝ɛ , dictated by the scale invariance of the action in d =4 -2 ɛ . At the quantum level, these couplings generate new corrections to the potential, as scale-invariant nonpolynomial effective operators ϕ2 n +4/σ2 n. These are comparable in size to "standard" loop corrections and are important for values of ϕ close to ⟨σ ⟩. For n =1 , 2, the beta functions of their coefficient are computed at three loops. In the IR limit, dilaton fluctuations decouple, the effective operators are suppressed by large ⟨σ ⟩, and the effective potential becomes that of a renormalizable theory with explicit scale symmetry breaking by the DR scheme (of μ =constant).

  3. Modified dispersion relations, inflation, and scale invariance

    Science.gov (United States)

    Bianco, Stefano; Friedhoff, Victor Nicolai; Wilson-Ewing, Edward

    2018-02-01

    For a certain type of modified dispersion relations, the vacuum quantum state for very short wavelength cosmological perturbations is scale-invariant and it has been suggested that this may be the source of the scale-invariance observed in the temperature anisotropies in the cosmic microwave background. We point out that for this scenario to be possible, it is necessary to redshift these short wavelength modes to cosmological scales in such a way that the scale-invariance is not lost. This requires nontrivial background dynamics before the onset of standard radiation-dominated cosmology; we demonstrate that one possible solution is inflation with a sufficiently large Hubble rate, for this slow roll is not necessary. In addition, we also show that if the slow-roll condition is added to inflation with a large Hubble rate, then for any power law modified dispersion relation quantum vacuum fluctuations become nearly scale-invariant when they exit the Hubble radius.

  4. Longitudinal Cross-Gender Factorial Invariance of the Academic Motivation Scale

    Science.gov (United States)

    Grouzet, Frederick M. E.; Otis, Nancy; Pelletier, Luc G.

    2006-01-01

    This study examined the measurement and latent construct invariance of the Academic Motivation Scale (Vallerand, Blais, Brier, & Pelletier, 1989; Vallerand et al., 1992, 1993) across both gender and time. An integrative analytical strategy was used to assess in one set of nested models both longitudinal and cross-gender invariance, and…

  5. Manifestly scale-invariant regularization and quantum effective operators

    CERN Document Server

    Ghilencea, D.M.

    2016-01-01

    Scale invariant theories are often used to address the hierarchy problem, however the regularization of their quantum corrections introduces a dimensionful coupling (dimensional regularization) or scale (Pauli-Villars, etc) which break this symmetry explicitly. We show how to avoid this problem and study the implications of a manifestly scale invariant regularization in (classical) scale invariant theories. We use a dilaton-dependent subtraction function $\\mu(\\sigma)$ which after spontaneous breaking of scale symmetry generates the usual DR subtraction scale $\\mu(\\langle\\sigma\\rangle)$. One consequence is that "evanescent" interactions generated by scale invariance of the action in $d=4-2\\epsilon$ (but vanishing in $d=4$), give rise to new, finite quantum corrections. We find a (finite) correction $\\Delta U(\\phi,\\sigma)$ to the one-loop scalar potential for $\\phi$ and $\\sigma$, beyond the Coleman-Weinberg term. $\\Delta U$ is due to an evanescent correction ($\\propto\\epsilon$) to the field-dependent masses (of...

  6. The evolving Planck mass in classically scale-invariant theories

    Energy Technology Data Exchange (ETDEWEB)

    Kannike, K.; Raidal, M.; Spethmann, C.; Veermäe, H. [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia)

    2017-04-05

    We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.

  7. The evolving Planck mass in classically scale-invariant theories

    Science.gov (United States)

    Kannike, K.; Raidal, M.; Spethmann, C.; Veermäe, H.

    2017-04-01

    We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.

  8. Scale-invariant gravity: geometrodynamics

    International Nuclear Information System (INIS)

    Anderson, Edward; Barbour, Julian; Foster, Brendan; Murchadha, Niall O

    2003-01-01

    We present a scale-invariant theory, conformal gravity, which closely resembles the geometrodynamical formulation of general relativity (GR). While previous attempts to create scale-invariant theories of gravity have been based on Weyl's idea of a compensating field, our direct approach dispenses with this and is built by extension of the method of best matching w.r.t. scaling developed in the parallel particle dynamics paper by one of the authors. In spatially compact GR, there is an infinity of degrees of freedom that describe the shape of 3-space which interact with a single volume degree of freedom. In conformal gravity, the shape degrees of freedom remain, but the volume is no longer a dynamical variable. Further theories and formulations related to GR and conformal gravity are presented. Conformal gravity is successfully coupled to scalars and the gauge fields of nature. It should describe the solar system observations as well as GR does, but its cosmology and quantization will be completely different

  9. Heterotic superstring and curved, scale-invariant superspace

    International Nuclear Information System (INIS)

    Kuusk, P.K.

    1988-01-01

    It is shown that the modified heterotic superstring [R. E. Kallosh, JETP Lett. 43, 456 (1986); Phys. Lett. 176B, 50 (1986)] demands a scale-invariant superspace for its existence. Explicit expressions are given for the connection, the torsion, and the curvature of an extended scale-invariant superspace with 506 bosonic and 16 fermionic coordinates

  10. Generating scale-invariant tensor perturbations in the non-inflationary universe

    International Nuclear Information System (INIS)

    Li, Mingzhe

    2014-01-01

    It is believed that the recent detection of large tensor perturbations strongly favors the inflation scenario in the early universe. This common sense depends on the assumption that Einstein's general relativity is valid at the early universe. In this paper we show that nearly scale-invariant primordial tensor perturbations can be generated during a contracting phase before the radiation dominated epoch if the theory of gravity is modified by the scalar–tensor theory at that time. The scale-invariance protects the tensor perturbations from suppressing at large scales and they may have significant amplitudes to fit BICEP2's result. We construct a model to achieve this purpose and show that the universe can bounce to the hot big bang after long time contraction, and at almost the same time the theory of gravity approaches to general relativity through stabilizing the scalar field. Theoretically, such models are dual to inflation models if we change to the frame in which the theory of gravity is general relativity. Dual models are related by the conformal transformations. With this study we reinforce the point that only the conformal invariant quantities such as the scalar and tensor perturbations are physical. How did the background evolve before the radiation time depends on the frame and has no physical meaning. It is impossible to distinguish different pictures by later time cosmological probes.

  11. Generating scale-invariant tensor perturbations in the non-inflationary universe

    Directory of Open Access Journals (Sweden)

    Mingzhe Li

    2014-09-01

    Full Text Available It is believed that the recent detection of large tensor perturbations strongly favors the inflation scenario in the early universe. This common sense depends on the assumption that Einstein's general relativity is valid at the early universe. In this paper we show that nearly scale-invariant primordial tensor perturbations can be generated during a contracting phase before the radiation dominated epoch if the theory of gravity is modified by the scalar–tensor theory at that time. The scale-invariance protects the tensor perturbations from suppressing at large scales and they may have significant amplitudes to fit BICEP2's result. We construct a model to achieve this purpose and show that the universe can bounce to the hot big bang after long time contraction, and at almost the same time the theory of gravity approaches to general relativity through stabilizing the scalar field. Theoretically, such models are dual to inflation models if we change to the frame in which the theory of gravity is general relativity. Dual models are related by the conformal transformations. With this study we reinforce the point that only the conformal invariant quantities such as the scalar and tensor perturbations are physical. How did the background evolve before the radiation time depends on the frame and has no physical meaning. It is impossible to distinguish different pictures by later time cosmological probes.

  12. Factor Structure and Measurement Invariance of the Need-Supportive Teaching Style Scale for Physical Education.

    Science.gov (United States)

    Liu, Jing-Dong; Chung, Pak-Kwong

    2017-08-01

    The purpose of the current study was to examine the factor structure and measurement invariance of a scale measuring students' perceptions of need-supportive teaching (Need-Supportive Teaching Style Scale in Physical Education; NSTSSPE). We sampled 615 secondary school students in Hong Kong, 200 of whom also completed a follow-up assessment two months later. Factor structure of the scale was examined through exploratory structural equation modeling (ESEM). Further, nomological validity of the NSTSSPE was evaluated by examining the relationships between need-supportive teaching style and student satisfaction of psychological needs. Finally, four measurement models-configural, metric invariance, scalar invariance, and item uniqueness invariance-were assessed using multiple group ESEM to test the measurement invariance of the scale across gender, grade, and time. ESEM results suggested a three-factor structure of the NSTSSPE. Nomological validity was supported, and weak, strong, and strict measurement invariance of the NSTSSPE was evidenced across gender, grade, and time. The current study provides initial psychometric support for the NSTSSPE to assess student perceptions of teachers' need-supportive teaching style in physical education classes.

  13. Exact scale-invariant background of gravitational waves from cosmic defects.

    Science.gov (United States)

    Figueroa, Daniel G; Hindmarsh, Mark; Urrestilla, Jon

    2013-03-08

    We demonstrate that any scaling source in the radiation era produces a background of gravitational waves with an exact scale-invariant power spectrum. Cosmic defects, created after a phase transition in the early universe, are such a scaling source. We emphasize that the result is independent of the topology of the cosmic defects, the order of phase transition, and the nature of the symmetry broken, global or gauged. As an example, using large-scale numerical simulations, we calculate the scale-invariant gravitational wave power spectrum generated by the dynamics of a global O(N) scalar theory. The result approaches the large N theoretical prediction as N(-2), albeit with a large coefficient. The signal from global cosmic strings is O(100) times larger than the large N prediction.

  14. Classically scale-invariant B–L model and conformal gravity

    International Nuclear Information System (INIS)

    Oda, Ichiro

    2013-01-01

    We consider a coupling of conformal gravity to the classically scale-invariant B–L extended standard model which has been recently proposed as a phenomenologically viable model realizing the Coleman–Weinberg mechanism of breakdown of the electroweak symmetry. As in a globally scale-invariant dilaton gravity, it is also shown in a locally scale-invariant conformal gravity that without recourse to the Coleman–Weinberg mechanism, the B–L gauge symmetry is broken in the process of spontaneous symmetry breakdown of the local scale invariance (Weyl invariance) at the tree level and as a result the B–L gauge field becomes massive via the Higgs mechanism. As a bonus of conformal gravity, the massless dilaton field does not appear and the parameters in front of the non-minimal coupling of gravity are completely fixed in the present model. This observation clearly shows that the conformal gravity has a practical application even if the scalar field does not possess any dynamical degree of freedom owing to the local scale symmetry

  15. Inertial Spontaneous Symmetry Breaking and Quantum Scale Invariance

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Pedro G. [Oxford U.; Hill, Christopher T. [Fermilab; Ross, Graham G. [Oxford U., Theor. Phys.

    2018-01-23

    Weyl invariant theories of scalars and gravity can generate all mass scales spontaneously, initiated by a dynamical process of "inertial spontaneous symmetry breaking" that does not involve a potential. This is dictated by the structure of the Weyl current, $K_\\mu$, and a cosmological phase during which the universe expands and the Einstein-Hilbert effective action is formed. Maintaining exact Weyl invariance in the renormalised quantum theory is straightforward when renormalisation conditions are referred back to the VEV's of fields in the action of the theory, which implies a conserved Weyl current. We do not require scale invariant regulators. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential.

  16. Status of time reversal invariance

    International Nuclear Information System (INIS)

    Henley, E.M.

    1989-01-01

    Time Reversal Invariance is introduced, and theories for its violation are reviewed. The present experimental and theoretical status of Time Reversal Invariance and tests thereof will be presented. Possible future tests will be discussed. 30 refs., 2 figs., 1 tab

  17. Rotation, scale, and translation invariant pattern recognition using feature extraction

    Science.gov (United States)

    Prevost, Donald; Doucet, Michel; Bergeron, Alain; Veilleux, Luc; Chevrette, Paul C.; Gingras, Denis J.

    1997-03-01

    A rotation, scale and translation invariant pattern recognition technique is proposed.It is based on Fourier- Mellin Descriptors (FMD). Each FMD is taken as an independent feature of the object, and a set of those features forms a signature. FMDs are naturally rotation invariant. Translation invariance is achieved through pre- processing. A proper normalization of the FMDs gives the scale invariance property. This approach offers the double advantage of providing invariant signatures of the objects, and a dramatic reduction of the amount of data to process. The compressed invariant feature signature is next presented to a multi-layered perceptron neural network. This final step provides some robustness to the classification of the signatures, enabling good recognition behavior under anamorphically scaled distortion. We also present an original feature extraction technique, adapted to optical calculation of the FMDs. A prototype optical set-up was built, and experimental results are presented.

  18. Scale-Invariant Rotating Black Holes in Quadratic Gravity

    Directory of Open Access Journals (Sweden)

    Guido Cognola

    2015-07-01

    Full Text Available Black hole solutions in pure quadratic theories of gravity are interesting since they allow the formulation of a set of scale-invariant thermodynamics laws. Recently, we have proven that static scale-invariant black holes have a well-defined entropy, which characterizes equivalent classes of solutions. In this paper, we generalize these results and explore the thermodynamics of rotating black holes in pure quadratic gravity.

  19. Real-time trajectory analysis using stacked invariance methods

    OpenAIRE

    Kitts, B.

    1998-01-01

    Invariance methods are used widely in pattern recognition as a preprocessing stage before algorithms such as neural networks are applied to the problem. A pattern recognition system has to be able to recognise objects invariant to scale, translation, and rotation. Presumably the human eye implements some of these preprocessing transforms in making sense of incoming stimuli, for example, placing signals onto a log scale. This paper surveys many of the commonly used invariance methods, and asse...

  20. Evaluation of scale invariance in physiological signals by means of balanced estimation of diffusion entropy

    Science.gov (United States)

    Zhang, Wenqing; Qiu, Lu; Xiao, Qin; Yang, Huijie; Zhang, Qingjun; Wang, Jianyong

    2012-11-01

    By means of the concept of the balanced estimation of diffusion entropy, we evaluate the reliable scale invariance embedded in different sleep stages and stride records. Segments corresponding to waking, light sleep, rapid eye movement (REM) sleep, and deep sleep stages are extracted from long-term electroencephalogram signals. For each stage the scaling exponent value is distributed over a considerably wide range, which tell us that the scaling behavior is subject and sleep cycle dependent. The average of the scaling exponent values for waking segments is almost the same as that for REM segments (˜0.8). The waking and REM stages have a significantly higher value of the average scaling exponent than that for light sleep stages (˜0.7). For the stride series, the original diffusion entropy (DE) and the balanced estimation of diffusion entropy (BEDE) give almost the same results for detrended series. The evolutions of local scaling invariance show that the physiological states change abruptly, although in the experiments great efforts have been made to keep conditions unchanged. The global behavior of a single physiological signal may lose rich information on physiological states. Methodologically, the BEDE can evaluate with considerable precision the scale invariance in very short time series (˜102), while the original DE method sometimes may underestimate scale-invariance exponents or even fail in detecting scale-invariant behavior. The BEDE method is sensitive to trends in time series. The existence of trends may lead to an unreasonably high value of the scaling exponent and consequent mistaken conclusions.

  1. Real-time object tracking based on scale-invariant features employing bio-inspired hardware.

    Science.gov (United States)

    Yasukawa, Shinsuke; Okuno, Hirotsugu; Ishii, Kazuo; Yagi, Tetsuya

    2016-09-01

    We developed a vision sensor system that performs a scale-invariant feature transform (SIFT) in real time. To apply the SIFT algorithm efficiently, we focus on a two-fold process performed by the visual system: whole-image parallel filtering and frequency-band parallel processing. The vision sensor system comprises an active pixel sensor, a metal-oxide semiconductor (MOS)-based resistive network, a field-programmable gate array (FPGA), and a digital computer. We employed the MOS-based resistive network for instantaneous spatial filtering and a configurable filter size. The FPGA is used to pipeline process the frequency-band signals. The proposed system was evaluated by tracking the feature points detected on an object in a video. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Scale invariance from phase transitions to turbulence

    CERN Document Server

    Lesne, Annick

    2012-01-01

    During a century, from the Van der Waals mean field description (1874) of gases to the introduction of renormalization group (RG techniques 1970), thermodynamics and statistical physics were just unable to account for the incredible universality which was observed in numerous critical phenomena. The great success of RG techniques is not only to solve perfectly this challenge of critical behaviour in thermal transitions but to introduce extremely useful tools in a wide field of daily situations where a system exhibits scale invariance. The introduction of scaling, scale invariance and universality concepts has been a significant turn in modern physics and more generally in natural sciences. Since then, a new "physics of scaling laws and critical exponents", rooted in scaling approaches, allows quantitative descriptions of numerous phenomena, ranging from phase transitions to earthquakes, polymer conformations, heartbeat rhythm, diffusion, interface growth and roughening, DNA sequence, dynamical systems, chaos ...

  3. Broken Scale Invariance and Anomalous Dimensions

    Science.gov (United States)

    Wilson, K. G.

    1970-05-01

    Mack and Kastrup have proposed that broken scale invariance is a symmetry of strong interactions. There is evidence from the Thirring model and perturbation theory that the dimensions of fields defined by scale transformations will be changed by the interaction from their canonical values. We review these ideas and their consequences for strong interactions.

  4. One-loop potential with scale invariance and effective operators

    CERN Document Server

    Ghilencea, D M

    2016-01-01

    We study quantum corrections to the scalar potential in classically scale invariant theories, using a manifestly scale invariant regularization. To this purpose, the subtraction scale $\\mu$ of the dimensional regularization is generated after spontaneous scale symmetry breaking, from a subtraction function of the fields, $\\mu(\\phi,\\sigma)$. This function is then uniquely determined from general principles showing that it depends on the dilaton only, with $\\mu(\\sigma)\\sim \\sigma$. The result is a scale invariant one-loop potential $U$ for a higgs field $\\phi$ and dilaton $\\sigma$ that contains an additional {\\it finite} quantum correction $\\Delta U(\\phi,\\sigma)$, beyond the Coleman Weinberg term. $\\Delta U$ contains new, non-polynomial effective operators like $\\phi^6/\\sigma^2$ whose quantum origin is explained. A flat direction is maintained at the quantum level, the model has vanishing vacuum energy and the one-loop correction to the mass of $\\phi$ remains small without tuning (of its self-coupling, etc) bey...

  5. A characterization of scale invariant responses in enzymatic networks.

    Directory of Open Access Journals (Sweden)

    Maja Skataric

    Full Text Available An ubiquitous property of biological sensory systems is adaptation: a step increase in stimulus triggers an initial change in a biochemical or physiological response, followed by a more gradual relaxation toward a basal, pre-stimulus level. Adaptation helps maintain essential variables within acceptable bounds and allows organisms to readjust themselves to an optimum and non-saturating sensitivity range when faced with a prolonged change in their environment. Recently, it was shown theoretically and experimentally that many adapting systems, both at the organism and single-cell level, enjoy a remarkable additional feature: scale invariance, meaning that the initial, transient behavior remains (approximately the same even when the background signal level is scaled. In this work, we set out to investigate under what conditions a broadly used model of biochemical enzymatic networks will exhibit scale-invariant behavior. An exhaustive computational study led us to discover a new property of surprising simplicity and generality, uniform linearizations with fast output (ULFO, whose validity we show is both necessary and sufficient for scale invariance of three-node enzymatic networks (and sufficient for any number of nodes. Based on this study, we go on to develop a mathematical explanation of how ULFO results in scale invariance. Our work provides a surprisingly consistent, simple, and general framework for understanding this phenomenon, and results in concrete experimental predictions.

  6. Derivative-based scale invariant image feature detector with error resilience.

    Science.gov (United States)

    Mainali, Pradip; Lafruit, Gauthier; Tack, Klaas; Van Gool, Luc; Lauwereins, Rudy

    2014-05-01

    We present a novel scale-invariant image feature detection algorithm (D-SIFER) using a newly proposed scale-space optimal 10th-order Gaussian derivative (GDO-10) filter, which reaches the jointly optimal Heisenberg's uncertainty of its impulse response in scale and space simultaneously (i.e., we minimize the maximum of the two moments). The D-SIFER algorithm using this filter leads to an outstanding quality of image feature detection, with a factor of three quality improvement over state-of-the-art scale-invariant feature transform (SIFT) and speeded up robust features (SURF) methods that use the second-order Gaussian derivative filters. To reach low computational complexity, we also present a technique approximating the GDO-10 filters with a fixed-length implementation, which is independent of the scale. The final approximation error remains far below the noise margin, providing constant time, low cost, but nevertheless high-quality feature detection and registration capabilities. D-SIFER is validated on a real-life hyperspectral image registration application, precisely aligning up to hundreds of successive narrowband color images, despite their strong artifacts (blurring, low-light noise) typically occurring in such delicate optical system setups.

  7. The Scale Invariant Synchrotron Jet of Flat Spectrum Radio Quasars

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... In this paper, the scale invariance of the synchrotron jet of Flat Spectrum Radio Quasars has been studied using a sample of combined sources from FKM04 and from SDSS DR3 catalogue. Since the research of scale invariance has been focused on sub-Eddington cases that can be fitted onto the ...

  8. New technique for real-time distortion-invariant multiobject recognition and classification

    Science.gov (United States)

    Hong, Rutong; Li, Xiaoshun; Hong, En; Wang, Zuyi; Wei, Hongan

    2001-04-01

    A real-time hybrid distortion-invariant OPR system was established to make 3D multiobject distortion-invariant automatic pattern recognition. Wavelet transform technique was used to make digital preprocessing of the input scene, to depress the noisy background and enhance the recognized object. A three-layer backpropagation artificial neural network was used in correlation signal post-processing to perform multiobject distortion-invariant recognition and classification. The C-80 and NOA real-time processing ability and the multithread programming technology were used to perform high speed parallel multitask processing and speed up the post processing rate to ROIs. The reference filter library was constructed for the distortion version of 3D object model images based on the distortion parameter tolerance measuring as rotation, azimuth and scale. The real-time optical correlation recognition testing of this OPR system demonstrates that using the preprocessing, post- processing, the nonlinear algorithm os optimum filtering, RFL construction technique and the multithread programming technology, a high possibility of recognition and recognition rate ere obtained for the real-time multiobject distortion-invariant OPR system. The recognition reliability and rate was improved greatly. These techniques are very useful to automatic target recognition.

  9. Natural inflation with hidden scale invariance

    Directory of Open Access Journals (Sweden)

    Neil D. Barrie

    2016-05-01

    Full Text Available We propose a new class of natural inflation models based on a hidden scale invariance. In a very generic Wilsonian effective field theory with an arbitrary number of scalar fields, which exhibits scale invariance via the dilaton, the potential necessarily contains a flat direction in the classical limit. This flat direction is lifted by small quantum corrections and inflation is realised without need for an unnatural fine-tuning. In the conformal limit, the effective potential becomes linear in the inflaton field, yielding to specific predictions for the spectral index and the tensor-to-scalar ratio, being respectively: ns−1≈−0.025(N⋆60−1 and r≈0.0667(N⋆60−1, where N⋆≈30–65 is a number of efolds during observable inflation. This predictions are in reasonable agreement with cosmological measurements. Further improvement of the accuracy of these measurements may turn out to be critical in falsifying our scenario.

  10. Investigating longitudinal and cross cultural measurement Invariance of Inglehart’s short post-materialism scale

    NARCIS (Netherlands)

    Ippel, L.; Gelissen, J.P.T.M.; Moors, G.B.D.

    2014-01-01

    Inglehart applies a four item ranking scale to measure post-materialism which is used for cross-cultural and cross-temporal comparative purposes. The aim of this research is to test measurement invariance of the scale to establish to what extent the scale produces comparable results in time and

  11. Nonlocal matching condition and scale-invariant spectrum in bouncing cosmology

    International Nuclear Information System (INIS)

    Chu, C.-S.; Furuta, K.; Lin, F.-L.

    2006-01-01

    In cosmological scenarios such as the pre-big bang scenario or the ekpyrotic scenario, a matching condition between the metric perturbations in the pre-big bang phase and those in the post big bang phase is often assumed. Various matching conditions have been considered in the literature. Nevertheless obtaining a scale-invariant CMB spectrum via a concrete mechanism remains impossible. In this paper, we examine this problem from the point of view of local causality. We begin with introducing the notion of local causality and explain how it constrains the form of the matching condition. We then prove a no-go theorem: independent of the details of the matching condition, a scale-invariant spectrum is impossible as long as the local causality condition is satisfied. In our framework, it is easy to show that a violation of local causality around the bounce is needed in order to give a scale-invariant spectrum. We study a specific scenario of this possibility by considering a nonlocal effective theory inspired by noncommutative geometry around the bounce and show that a scale-invariant spectrum is possible. Moreover we demonstrate that the magnitude of the spectrum is compatible with observations if the bounce is assumed to occur at an energy scale which is a few orders of magnitude below the Planckian energy scale

  12. Generation of a scale-invariant spectrum of adiabatic fluctuations in cosmological models with a contracting phase

    International Nuclear Information System (INIS)

    Finelli, Fabio; Brandenberger, Robert

    2002-01-01

    In pre-big-bang and in ekpyrotic cosmology, perturbations on cosmological scales today are generated from quantum vacuum fluctuations during a phase when the Universe is contracting (viewed in the Einstein frame). The backgrounds studied to date do not yield a scale-invariant spectrum of adiabatic fluctuations. Here, we present a new contracting background model (neither of pre-big-bang nor of the ekpyrotic form) involving a single scalar field coupled to gravity in which a scale-invariant spectrum of curvature fluctuations and gravitational waves results. The equation of state of this scalar field corresponds to cold matter. We demonstrate that if this contracting phase can be matched via a nonsingular bounce to an expanding Friedmann cosmology, the scale-invariance of the curvature fluctuations is maintained. We also find new background solutions for pre-big-bang and for ekpyrotic cosmology, which involve two scalar fields with exponential potentials with background values which are evolving in time. We comment on the difficulty of obtaining a scale-invariant spectrum of adiabatic fluctuations with background solutions which have been studied in the past

  13. Multiperiod Maximum Loss is time unit invariant.

    Science.gov (United States)

    Kovacevic, Raimund M; Breuer, Thomas

    2016-01-01

    Time unit invariance is introduced as an additional requirement for multiperiod risk measures: for a constant portfolio under an i.i.d. risk factor process, the multiperiod risk should equal the one period risk of the aggregated loss, for an appropriate choice of parameters and independent of the portfolio and its distribution. Multiperiod Maximum Loss over a sequence of Kullback-Leibler balls is time unit invariant. This is also the case for the entropic risk measure. On the other hand, multiperiod Value at Risk and multiperiod Expected Shortfall are not time unit invariant.

  14. Gowdy phenomenology in scale-invariant variables

    International Nuclear Information System (INIS)

    Andersson, Lars; Elst, Henk van; Uggla, Claes

    2004-01-01

    The dynamics of Gowdy vacuum spacetimes is considered in terms of Hubble-normalized scale-invariant variables, using the timelike area temporal gauge. The resulting state space formulation provides for a simple mechanism for the formation of 'false' and 'true spikes' in the approach to the singularity, and a geometrical formulation for the local attractor

  15. Large transverse momenta in inclusive hadronic reactions and asymptotic scale invariance

    International Nuclear Information System (INIS)

    Miralles, F.; Sala, C.

    1976-01-01

    The inclusive reaction among scalar particles in considered, assuming that in the large-transverse momentum limit, scale invariance becomes important. Predictions are made of the asymptotic scale invariance for large four transverse momentum in hadron-hadron interactions, and they are compared with previous predictions. Photoproduction is also studied and the predictions that follow from different assumptions about the compositeness of hadrons are compared

  16. Scale-invariant entropy-based theory for dynamic ordering

    International Nuclear Information System (INIS)

    Mahulikar, Shripad P.; Kumari, Priti

    2014-01-01

    Dynamically Ordered self-organized dissipative structure exists in various forms and at different scales. This investigation first introduces the concept of an isolated embedding system, which embeds an open system, e.g., dissipative structure and its mass and/or energy exchange with its surroundings. Thereafter, scale-invariant theoretical analysis is presented using thermodynamic principles for Order creation, existence, and destruction. The sustainability criterion for Order existence based on its structured mass and/or energy interactions with the surroundings is mathematically defined. This criterion forms the basis for the interrelationship of physical parameters during sustained existence of dynamic Order. It is shown that the sufficient condition for dynamic Order existence is approached if its sustainability criterion is met, i.e., its destruction path is blocked. This scale-invariant approach has the potential to unify the physical understanding of universal dynamic ordering based on entropy considerations

  17. Time-scale invariant changes in atmospheric radon concentration and crustal strain prior to a large earthquake

    Directory of Open Access Journals (Sweden)

    Y. Kawada

    2007-01-01

    Full Text Available Prior to large earthquakes (e.g. 1995 Kobe earthquake, Japan, an increase in the atmospheric radon concentration is observed, and this increase in the rate follows a power-law of the time-to-earthquake (time-to-failure. This phenomenon corresponds to the increase in the radon migration in crust and the exhalation into atmosphere. An irreversible thermodynamic model including time-scale invariance clarifies that the increases in the pressure of the advecting radon and permeability (hydraulic conductivity in the crustal rocks are caused by the temporal changes in the power-law of the crustal strain (or cumulative Benioff strain, which is associated with damage evolution such as microcracking or changing porosity. As the result, the radon flux and the atmospheric radon concentration can show a temporal power-law increase. The concentration of atmospheric radon can be used as a proxy for the seismic precursory processes associated with crustal dynamics.

  18. Higgs mass naturalness and scale invariance in the UV

    CERN Document Server

    Tavares, Gustavo Marques; Skiba, Witold

    2014-01-01

    It has been suggested that electroweak symmetry breaking in the Standard Model may be natural if the Standard Model merges into a conformal field theory (CFT) at short distances. In such a scenario the Higgs mass would be protected from quantum corrections by the scale invariance of the CFT. In order for the Standard Model to merge into a CFT at least one new ultraviolet (UV) scale is required at which the couplings turn over from their usual Standard Model running to the fixed point behavior. We argue that the Higgs mass is sensitive to such a turn-over scale even if there are no associated massive particles and the scale arises purely from dimensional transmutation. We demonstrate this sensitivity to the turnover scale explicitly in toy models. Thus if scale invariance is responsible for Higgs mass naturalness, then the transition to CFT dynamics must occur near the TeV scale with observable consequences at colliders. In addition, the UV fixed point theory in such a scenario must be interacting because loga...

  19. Perception of short time scale intervals in a hypnotic virtuoso

    NARCIS (Netherlands)

    Noreika, Valdas; Falter, Christine M.; Arstila, Valtteri; Wearden, John H.; Kallio, Sakari

    2012-01-01

    Previous studies showed that hypnotized individuals underestimate temporal intervals in the range of several seconds to tens of minutes. However, no previous work has investigated whether duration perception is equally disorderly when shorter time intervals are probed. In this study, duration

  20. Invariance in the recurrence of large returns and the validation of models of price dynamics

    Science.gov (United States)

    Chang, Lo-Bin; Geman, Stuart; Hsieh, Fushing; Hwang, Chii-Ruey

    2013-08-01

    Starting from a robust, nonparametric definition of large returns (“excursions”), we study the statistics of their occurrences, focusing on the recurrence process. The empirical waiting-time distribution between excursions is remarkably invariant to year, stock, and scale (return interval). This invariance is related to self-similarity of the marginal distributions of returns, but the excursion waiting-time distribution is a function of the entire return process and not just its univariate probabilities. Generalized autoregressive conditional heteroskedasticity (GARCH) models, market-time transformations based on volume or trades, and generalized (Lévy) random-walk models all fail to fit the statistical structure of excursions.

  1. Do joint CMB and HST data support a scale invariant spectrum?

    Energy Technology Data Exchange (ETDEWEB)

    Benetti, Micol; Graef, Leila L.; Alcaniz, Jailson S., E-mail: micolbenetti@on.br, E-mail: leilagraef@on.br, E-mail: alcaniz@on.br [Departamento de Astronomia, Observatório Nacional, 20921-400, Rio de Janeiro, RJ (Brazil)

    2017-04-01

    We combine current measurements of the local expansion rate, H {sub 0}, and Big Bang Nucleosynthesis (BBN) estimates of helium abundance with the latest cosmic microwave background (CMB) data from the Planck Collaboration to discuss the observational viability of the scale invariant Harrison-Zeldovch-Peebles (HZP) spectrum. We also analyze some of its extensions, namely, HZP + Y {sub P} and HZP + N {sub eff}, where Y {sub P} is the primordial helium mass fraction and N {sub eff} is the effective number of relativistic degrees of freedom. We perform a Bayesian analysis and show that the latter model is favored with respect to the standard cosmology for values of N {sub eff} lying in the interval 3.70 ± 0.13 (1σ), which is currently allowed by some independent analyses.

  2. Two-loop scale-invariant scalar potential and quantum effective operators

    CERN Document Server

    Ghilencea, D.M.

    2016-11-29

    Spontaneous breaking of quantum scale invariance may provide a solution to the hierarchy and cosmological constant problems. In a scale-invariant regularization, we compute the two-loop potential of a higgs-like scalar $\\phi$ in theories in which scale symmetry is broken only spontaneously by the dilaton ($\\sigma$). Its vev $\\langle\\sigma\\rangle$ generates the DR subtraction scale ($\\mu\\sim\\langle\\sigma\\rangle$), which avoids the explicit scale symmetry breaking by traditional regularizations (where $\\mu$=fixed scale). The two-loop potential contains effective operators of non-polynomial nature as well as new corrections, beyond those obtained with explicit breaking ($\\mu$=fixed scale). These operators have the form: $\\phi^6/\\sigma^2$, $\\phi^8/\\sigma^4$, etc, which generate an infinite series of higher dimensional polynomial operators upon expansion about $\\langle\\sigma\\rangle\\gg \\langle\\phi\\rangle$, where such hierarchy is arranged by {\\it one} initial, classical tuning. These operators emerge at the quantum...

  3. Construction of time-dependent dynamical invariants: A new approach

    International Nuclear Information System (INIS)

    Bertin, M. C.; Pimentel, B. M.; Ramirez, J. A.

    2012-01-01

    We propose a new way to obtain polynomial dynamical invariants of the classical and quantum time-dependent harmonic oscillator from the equations of motion. We also establish relations between linear and quadratic invariants, and discuss how the quadratic invariant can be related to the Ermakov invariant.

  4. Augmented distinctive features with color and scale invariance

    Science.gov (United States)

    Liu, Yan; Lu, Xiaoqing; Qin, Yeyang; Tang, Zhi; Xu, Jianbo

    2013-03-01

    For objects with the same texture but different colors, it is difficult to discriminate them with the traditional scale invariant feature transform descriptor (SIFT), because it is designed for grayscale images only. Thus it is important to keep a high probability to make sure that the used key points are couples of correct pairs. In addition, mean distributed key points are much more expected than over dense and clustered key points for image match and other applications. In this paper, we analyze these two problems. First, we propose a color and scale invariant method to extract a more mean distributed key points relying on illumination intensity invariance but object reflectance sensitivity variance variable. Second, we modify the key point's canonical direction accumulated error by dispersing each pixel's gradient direction on a relative direction around the current key point. At last, we build the descriptors on a Gaussian pyramid and match the key points with our enhanced two-way matching regulations. Experiments are performed on the Amsterdam Library of Object Images dataset and some synthetic images manually. The results show that the extracted key points have better distribution character and larger number than SIFT. The feature descriptors can well discriminate images with different color but with the same content and texture.

  5. Rotation invariant fast features for large-scale recognition

    Science.gov (United States)

    Takacs, Gabriel; Chandrasekhar, Vijay; Tsai, Sam; Chen, David; Grzeszczuk, Radek; Girod, Bernd

    2012-10-01

    We present an end-to-end feature description pipeline which uses a novel interest point detector and Rotation- Invariant Fast Feature (RIFF) descriptors. The proposed RIFF algorithm is 15× faster than SURF1 while producing large-scale retrieval results that are comparable to SIFT.2 Such high-speed features benefit a range of applications from Mobile Augmented Reality (MAR) to web-scale image retrieval and analysis.

  6. Object detection based on improved color and scale invariant features

    Science.gov (United States)

    Chen, Mengyang; Men, Aidong; Fan, Peng; Yang, Bo

    2009-10-01

    A novel object detection method which combines color and scale invariant features is presented in this paper. The detection system mainly adopts the widely used framework of SIFT (Scale Invariant Feature Transform), which consists of both a keypoint detector and descriptor. Although SIFT has some impressive advantages, it is not only computationally expensive, but also vulnerable to color images. To overcome these drawbacks, we employ the local color kernel histograms and Haar Wavelet Responses to enhance the descriptor's distinctiveness and computational efficiency. Extensive experimental evaluations show that the method has better robustness and lower computation costs.

  7. Rotation and scale change invariant point pattern relaxation matching by the Hopfield neural network

    Science.gov (United States)

    Sang, Nong; Zhang, Tianxu

    1997-12-01

    Relaxation matching is one of the most relevant methods for image matching. The original relaxation matching technique using point patterns is sensitive to rotations and scale changes. We improve the original point pattern relaxation matching technique to be invariant to rotations and scale changes. A method that makes the Hopfield neural network perform this matching process is discussed. An advantage of this is that the relaxation matching process can be performed in real time with the neural network's massively parallel capability to process information. Experimental results with large simulated images demonstrate the effectiveness and feasibility of the method to perform point patten relaxation matching invariant to rotations and scale changes and the method to perform this matching by the Hopfield neural network. In addition, we show that the method presented can be tolerant to small random error.

  8. Psychometric evaluation of the internalized stigma of mental illness scale for patients with mental illnesses: measurement invariance across time.

    Directory of Open Access Journals (Sweden)

    Chih-Cheng Chang

    Full Text Available BACKGROUND: The current investigation examined the psychometric properties of the Internalized Stigma of Mental Illness (ISMI scale in a sample of patients with mental illness. In addition to the internal consistency, test-retest reliability, and concurrent validity that previous studies have tested for the ISMI, we extended the evaluation to its construct validity and measurement invariance using confirmatory factor analysis (CFA. METHODS: Three hundred forty-seven participants completed two questionnaires (i.e., the ISMI and the Depression and Somatic Symptoms Scale [DSSS], and 162 filled out the ISMI again after 50.23±31.18 days. RESULTS: The results of this study confirmed the frame structure of the ISMI; however, the Stigma Resistance subscale in the ISMI seemed weak. In addition, internal consistency, test-retest reliability, and concurrent validity were all satisfactory for all subscales and the total score of the ISMI, except for Stigma Resistance (α = 0.66; ICC = 0.52, and r = 0.02 to 0.06 with DSSS. Therefore, we hypothesize that Stigma Resistance is a new concept rather than a concept in internalized stigma. The acceptable fit indices supported the measurement invariance of the ISMI across time, and suggested that people with mental illness interpret the ISMI items the same at different times. CONCLUSION: The clinical implication of our finding is that clinicians, when they design interventions, may want to use the valid and reliable ISMI without the Stigma Resistance subscale to evaluate the internalized stigma of people with mental illness.

  9. A quantization scheme for scale-invariant pure gauge theories

    International Nuclear Information System (INIS)

    Hortacsu, M.

    1988-01-01

    A scheme is suggested for the quantization of the recently proposed scale-invariant gauge theories in higher dimensions. The model is minimally coupled to a spinor field. Regularization algorithms are proposed. (orig.)

  10. Anisotropic Weyl invariance

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Nadal, Guillem [Universidad de Buenos Aires, Buenos Aires (Argentina)

    2017-07-15

    We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates ''scaling like time'' is generically greater than one. We propose the Cartesian product of two curved spaces, the metric of each space being parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry. (orig.)

  11. Universal happiness? Cross-cultural measurement invariance of scales assessing positive mental health.

    Science.gov (United States)

    Bieda, Angela; Hirschfeld, Gerrit; Schönfeld, Pia; Brailovskaia, Julia; Zhang, Xiao Chi; Margraf, Jürgen

    2017-04-01

    Research into positive aspects of the psyche is growing as psychologists learn more about the protective role of positive processes in the development and course of mental disorders, and about their substantial role in promoting mental health. With increasing globalization, there is strong interest in studies examining positive constructs across cultures. To obtain valid cross-cultural comparisons, measurement invariance for the scales assessing positive constructs has to be established. The current study aims to assess the cross-cultural measurement invariance of questionnaires for 6 positive constructs: Social Support (Fydrich, Sommer, Tydecks, & Brähler, 2009), Happiness (Subjective Happiness Scale; Lyubomirsky & Lepper, 1999), Life Satisfaction (Diener, Emmons, Larsen, & Griffin, 1985), Positive Mental Health Scale (Lukat, Margraf, Lutz, van der Veld, & Becker, 2016), Optimism (revised Life Orientation Test [LOT-R]; Scheier, Carver, & Bridges, 1994) and Resilience (Schumacher, Leppert, Gunzelmann, Strauss, & Brähler, 2004). Participants included German (n = 4,453), Russian (n = 3,806), and Chinese (n = 12,524) university students. Confirmatory factor analyses and measurement invariance testing demonstrated at least partial strong measurement invariance for all scales except the LOT-R and Subjective Happiness Scale. The latent mean comparisons of the constructs indicated differences between national groups. Potential methodological and cultural explanations for the intergroup differences are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. Scale invariants from Gaussian-Hermite moments

    Czech Academy of Sciences Publication Activity Database

    Yang, B.; Kostková, Jitka; Flusser, Jan; Suk, Tomáš

    2017-01-01

    Roč. 132, č. 1 (2017), s. 77-84 ISSN 0165-1684 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Scale invariants * Gaussian–Hermite moments * Variable modulation * Normalization * Zernike moments Subject RIV: JD - Computer Applications, Robotics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 3.110, year: 2016 http://library.utia.cas.cz/separaty/2016/ZOI/flusser-0466031.pdf

  13. Color-based scale-invariant feature detection applied in robot vision

    Science.gov (United States)

    Gao, Jian; Huang, Xinhan; Peng, Gang; Wang, Min; Li, Xinde

    2007-11-01

    The scale-invariant feature detecting methods always require a lot of computation yet sometimes still fail to meet the real-time demands in robot vision fields. To solve the problem, a quick method for detecting interest points is presented. To decrease the computation time, the detector selects as interest points those whose scale normalized Laplacian values are the local extrema in the nonholonomic pyramid scale space. The descriptor is built with several subregions, whose width is proportional to the scale factor, and the coordinates of the descriptor are rotated in relation to the interest point orientation just like the SIFT descriptor. The eigenvector is computed in the original color image and the mean values of the normalized color g and b in each subregion are chosen to be the factors of the eigenvector. Compared with the SIFT descriptor, this descriptor's dimension has been reduced evidently, which can simplify the point matching process. The performance of the method is analyzed in theory in this paper and the experimental results have certified its validity too.

  14. Scale Invariant Gabor Descriptor-Based Noncooperative Iris Recognition

    Directory of Open Access Journals (Sweden)

    Du Yingzi

    2010-01-01

    Full Text Available Abstract A new noncooperative iris recognition method is proposed. In this method, the iris features are extracted using a Gabor descriptor. The feature extraction and comparison are scale, deformation, rotation, and contrast-invariant. It works with off-angle and low-resolution iris images. The Gabor wavelet is incorporated with scale-invariant feature transformation (SIFT for feature extraction to better extract the iris features. Both the phase and magnitude of the Gabor wavelet outputs were used in a novel way for local feature point description. Two feature region maps were designed to locally and globally register the feature points and each subregion in the map is locally adjusted to the dilation/contraction/deformation. We also developed a video-based non-cooperative iris recognition system by integrating video-based non-cooperative segmentation, segmentation evaluation, and score fusion units. The proposed method shows good performance for frontal and off-angle iris matching. Video-based recognition methods can improve non-cooperative iris recognition accuracy.

  15. Scale Invariant Gabor Descriptor-based Noncooperative Iris Recognition

    Directory of Open Access Journals (Sweden)

    Zhi Zhou

    2010-01-01

    Full Text Available A new noncooperative iris recognition method is proposed. In this method, the iris features are extracted using a Gabor descriptor. The feature extraction and comparison are scale, deformation, rotation, and contrast-invariant. It works with off-angle and low-resolution iris images. The Gabor wavelet is incorporated with scale-invariant feature transformation (SIFT for feature extraction to better extract the iris features. Both the phase and magnitude of the Gabor wavelet outputs were used in a novel way for local feature point description. Two feature region maps were designed to locally and globally register the feature points and each subregion in the map is locally adjusted to the dilation/contraction/deformation. We also developed a video-based non-cooperative iris recognition system by integrating video-based non-cooperative segmentation, segmentation evaluation, and score fusion units. The proposed method shows good performance for frontal and off-angle iris matching. Video-based recognition methods can improve non-cooperative iris recognition accuracy.

  16. Invariant relationships deriving from classical scaling transformations

    International Nuclear Information System (INIS)

    Bludman, Sidney; Kennedy, Dallas C.

    2011-01-01

    Because scaling symmetries of the Euler-Lagrange equations are generally not variational symmetries of the action, they do not lead to conservation laws. Instead, an extension of Noether's theorem reduces the equations of motion to evolutionary laws that prove useful, even if the transformations are not symmetries of the equations of motion. In the case of scaling, symmetry leads to a scaling evolutionary law, a first-order equation in terms of scale invariants, linearly relating kinematic and dynamic degrees of freedom. This scaling evolutionary law appears in dynamical and in static systems. Applied to dynamical central-force systems, the scaling evolutionary equation leads to generalized virial laws, which linearly connect the kinetic and potential energies. Applied to barotropic hydrostatic spheres, the scaling evolutionary equation linearly connects the gravitational and internal energy densities. This implies well-known properties of polytropes, describing degenerate stars and chemically homogeneous nondegenerate stellar cores.

  17. The pseudo-conformal universe: scale invariance from spontaneous breaking of conformal symmetry

    International Nuclear Information System (INIS)

    Hinterbichler, Kurt; Khoury, Justin

    2012-01-01

    We present a novel theory of the very early universe which addresses the traditional horizon and flatness problems of big bang cosmology and predicts a scale invariant spectrum of perturbations. Unlike inflation, this scenario requires no exponential accelerated expansion of space-time. Instead, the early universe is described by a conformal field theory minimally coupled to gravity. The conformal fields develop a time-dependent expectation value which breaks the flat space so(4,2) conformal symmetry down to so(4,1), the symmetries of de Sitter, giving perturbations a scale invariant spectrum. The solution is an attractor, at least in the case of a single time-dependent field. Meanwhile, the metric background remains approximately flat but slowly contracts, which makes the universe increasingly flat, homogeneous and isotropic, akin to the smoothing mechanism of ekpyrotic cosmology. Our scenario is very general, requiring only a conformal field theory capable of developing the appropriate time-dependent expectation values, and encompasses existing incarnations of this idea, specifically the U(1) model of Rubakov and the Galileon Genesis scenario. Its essential features depend only on the symmetry breaking pattern and not on the details of the underlying lagrangian. It makes generic observational predictions that make it potentially distinguishable from standard inflation, in particular significant non-gaussianities and the absence of primordial gravitational waves

  18. Scale-invariant extended inflation

    International Nuclear Information System (INIS)

    Holman, R.; Kolb, E.W.; Vadas, S.L.; Wang, Y.

    1991-01-01

    We propose a model of extended inflation which makes use of the nonlinear realization of scale invariance involving the dilaton coupled to an inflaton field whose potential admits a metastable ground state. The resulting theory resembles the Jordan-Brans-Dicke version of extended inflation. However, quantum effects, in the form of the conformal anomaly, generate a mass for the dilaton, thus allowing our model to evade the problems of the original version of extended inflation. We show that extended inflation can occur for a wide range of inflaton potentials with no fine-tuning of dimensionless parameters required. Furthermore, we also find that it is quite natural for the extended-inflation period to be followed by an epoch of slow-rollover inflation as the dilaton settles down to the minimum of its induced potential

  19. Solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory

    International Nuclear Information System (INIS)

    Foot, Robert; Kobakhidze, Archil; Volkas, Raymond R.; McDonald, Kristian L.

    2008-01-01

    If scale invariance is a classical symmetry then both the Planck scale and the weak scale should emerge as quantum effects. We show that this can be realized in simple scale invariant theories with a hidden sector. The weak/Planck scale hierarchy emerges in the (technically natural) limit in which the hidden sector decouples from the ordinary sector. In this limit, finite corrections to the weak scale are consequently small, while quadratic divergences are absent by virtue of classical scale invariance, so there is no hierarchy problem

  20. Attainable conditions and exact invariant for the time-dependent harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Guasti, Manuel Fernandez [Lab. de Optica Cuantica, Dep. de Fisica, Universidad A. Metropolitana, Unidad Iztapalapa, Mexico DF, Ap. Post. 55-534 (Mexico)

    2006-09-22

    The time-dependent oscillator equation is solved numerically for various trajectories in amplitude and phase variables. The solutions exhibit a finite time-dependent parameter whenever the squared amplitude times the derivative of the phase is invariant. If the invariant relationship does not hold, the time-dependent parameter has divergent singularities. These observations lead to the proposition that the harmonic oscillator equation with finite time-dependent parameter must have amplitude and phase solutions fulfilling the invariant relationship. Since the time-dependent parameter or the potential must be finite for any real oscillator implementation, the invariant must hold for any such physically realizable system.

  1. Attainable conditions and exact invariant for the time-dependent harmonic oscillator

    International Nuclear Information System (INIS)

    Guasti, Manuel Fernandez

    2006-01-01

    The time-dependent oscillator equation is solved numerically for various trajectories in amplitude and phase variables. The solutions exhibit a finite time-dependent parameter whenever the squared amplitude times the derivative of the phase is invariant. If the invariant relationship does not hold, the time-dependent parameter has divergent singularities. These observations lead to the proposition that the harmonic oscillator equation with finite time-dependent parameter must have amplitude and phase solutions fulfilling the invariant relationship. Since the time-dependent parameter or the potential must be finite for any real oscillator implementation, the invariant must hold for any such physically realizable system

  2. Hidden Scale Invariance in Condensed Matter

    DEFF Research Database (Denmark)

    Dyre, J. C.

    2014-01-01

    . This means that the phase diagram becomes effectively one-dimensional with regard to several physical properties. Liquids and solids with isomorphs include most or all van der Waals bonded systems and metals, as well as weakly ionic or dipolar systems. On the other hand, systems with directional bonding...... (hydrogen bonds or covalent bonds) or strong Coulomb forces generally do not exhibit hidden scale invariance. The article reviews the theory behind this picture of condensed matter and the evidence for it coming from computer simulations and experiments...

  3. Another scheme for quantization of scale invariant gauge theories

    International Nuclear Information System (INIS)

    Hortacsu, M.

    1987-10-01

    A new scheme is proposed for the quantization of scale invariant gauge theories for all even dimensions when they are minimally coupled to a spinor field. A cut-off procedure suggests an algorithm which may regularize the theory. (author). 10 refs

  4. Lorentz invariance with an invariant energy scale.

    Science.gov (United States)

    Magueijo, João; Smolin, Lee

    2002-05-13

    We propose a modification of special relativity in which a physical energy, which may be the Planck energy, joins the speed of light as an invariant, in spite of a complete relativity of inertial frames and agreement with Einstein's theory at low energies. This is accomplished by a nonlinear modification of the action of the Lorentz group on momentum space, generated by adding a dilatation to each boost in such a way that the Planck energy remains invariant. The associated algebra has unmodified structure constants. We also discuss the resulting modifications of field theory and suggest a modification of the equivalence principle which determines how the new theory is embedded in general relativity.

  5. Gauge-Invariant Formulation of Time-Dependent Configuration Interaction Singles Method

    Directory of Open Access Journals (Sweden)

    Takeshi Sato

    2018-03-01

    Full Text Available We propose a gauge-invariant formulation of the channel orbital-based time-dependent configuration interaction singles (TDCIS method [Phys. Rev. A, 74, 043420 (2006], one of the powerful ab initio methods to investigate electron dynamics in atoms and molecules subject to an external laser field. In the present formulation, we derive the equations of motion (EOMs in the velocity gauge using gauge-transformed time-dependent, not fixed, orbitals that are equivalent to the conventional EOMs in the length gauge using fixed orbitals. The new velocity-gauge EOMs avoid the use of the length-gauge dipole operator, which diverges at large distance, and allows us to exploit computational advantages of the velocity-gauge treatment over the length-gauge one, e.g., a faster convergence in simulations with intense and long-wavelength lasers, and the feasibility of exterior complex scaling as an absorbing boundary. The reformulated TDCIS method is applied to an exactly solvable model of one-dimensional helium atom in an intense laser field to numerically demonstrate the gauge invariance. We also discuss the consistent method for evaluating the time derivative of an observable, which is relevant, e.g., in simulating high-harmonic generation.

  6. Passion: Does one scale fit all? Construct validity of two-factor passion scale and psychometric invariance over different activities and languages.

    Science.gov (United States)

    Marsh, Herbert W; Vallerand, Robert J; Lafrenière, Marc-André K; Parker, Philip; Morin, Alexandre J S; Carbonneau, Noémie; Jowett, Sophia; Bureau, Julien S; Fernet, Claude; Guay, Frédéric; Salah Abduljabbar, Adel; Paquet, Yvan

    2013-09-01

    The passion scale, based on the dualistic model of passion, measures 2 distinct types of passion: Harmonious and obsessive passions are predictive of adaptive and less adaptive outcomes, respectively. In a substantive-methodological synergy, we evaluate the construct validity (factor structure, reliability, convergent and discriminant validity) of Passion Scale responses (N = 3,571). The exploratory structural equation model fit to the data was substantially better than the confirmatory factor analysis solution, and resulted in better differentiated (less correlated) factors. Results from a 13-model taxonomy of measurement invariance supported complete invariance (factor loadings, factor correlations, item uniquenesses, item intercepts, and latent means) over language (French vs. English; the instrument was originally devised in French, then translated into English) and gender. Strong measurement partial invariance over 5 passion activity groups (leisure, sport, social, work, education) indicates that the same set of items is appropriate for assessing passion across a wide variety of activities--a previously untested, implicit assumption that greatly enhances practical utility. Support was found for the convergent and discriminant validity of the harmonious and obsessive passion scales, based on a set of validity correlates: life satisfaction, rumination, conflict, time investment, activity liking and valuation, and perceiving the activity as a passion.

  7. Invariant length scale in relativistic kinematics: lessons from Dirichlet branes

    International Nuclear Information System (INIS)

    Schuller, Frederic P.; Pfeiffer, Hendryk

    2004-01-01

    Dirac-Born-Infeld theory is shown to possess a hidden invariance associated with its maximal electric field strength. The local Lorentz symmetry O(1,n) on a Dirichlet-n-brane is thereby enhanced to an O(1,n)xO(1,n) gauge group, encoding both an invariant velocity and acceleration (or length) scale. The presence of this enlarged gauge group predicts consequences for the kinematics of observers on Dirichlet branes, with admissible accelerations being bounded from above. An important lesson is that the introduction of a fundamental length scale into relativistic kinematics does not enforce a deformation of Lorentz boosts, as one might assume naively. The exhibited structures further show that Moffat's non-symmetric gravitational theory qualifies as a candidate for a consistent Born-Infeld type gravity with regulated solutions

  8. Near-Milne realization of scale-invariant fluctuations

    International Nuclear Information System (INIS)

    Magueijo, Joao

    2007-01-01

    A near-Milne universe produces a very red spectrum of vacuum quantum fluctuations but has the potential to produce near-scale-invariant thermal fluctuations. This happens if the energy and entropy are mildly subextensive, for example, if there is a Casimir contribution. Therefore, one does not need to invoke corrections to Einstein gravity (as in loop quantum cosmology) for a thermal scenario to be viable. Neither do we need the energy to scale like the area, as in scenarios where the thermal fluctuations are subject to a phase transition in the early universe. Some odd features of this model are pointed out: whether they are fatal or merely unusual will need to be investigated further

  9. Cross-cultural measurement invariance in the satisfaction with food-related life scale in older adults from two developing countries.

    Science.gov (United States)

    Schnettler, Berta; Miranda-Zapata, Edgardo; Lobos, Germán; Lapo, María; Grunert, Klaus G; Adasme-Berríos, Cristian; Hueche, Clementina

    2017-05-30

    Nutrition is one of the major determinants of successful aging. The Satisfaction with Food-related Life (SWFL) scale measures a person's overall assessment regarding their food and eating habits. The SWFL scale has been used in older adult samples across different countries in Europe, Asia and America, however, there are no studies that have evaluated the cross-cultural measurement invariance of the scale in older adult samples. Therefore, we evaluated the measurement invariance of the SWFL scale across older adults from Chile and Ecuador. Stratified random sampling was used to recruit a sample of older adults of both genders from Chile (mean age = 71.38, SD = 6.48, range = 60-92) and from Ecuador (mean age = 73.70, SD = 7.45, range = 60-101). Participants reported their levels of satisfaction with food-related life by completing the SWFL scale, which consists of five items grouped into a single dimension. Confirmatory factor analysis (CFA) was used to examine cross-cultural measurement invariance of the SWFL scale. Results showed that the SWFL scale exhibited partial measurement invariance, with invariance of all factor loadings, invariance in all but one item's threshold (item 1) and invariance in all items' uniqueness (residuals), which leads us to conclude that there is a reasonable level of partial measurement invariance for the CFA model of the SWFL scale, when comparing the Chilean and Ecuadorian older adult samples. The lack of invariance in item 1 confirms previous studies with adults and emerging adults in Chile that suggest this item is culture-sensitive. We recommend revising the wording of the first item of the SWFL in order to relate the statement with the person's life. The SWFL scale shows partial measurement invariance across older adults from Chile and Ecuador. A 4-item version of the scale (excluding item 1) provides the basis for international comparisons of satisfaction with food-related life in older adults from developing

  10. Gender Invariance of Family, School, and Peer Influence on Volunteerism Scale

    Science.gov (United States)

    Law, Ben; Shek, Daniel; Ma, Cecilia

    2015-01-01

    Objective: This article examines the measurement invariance of "Family, School, and Peer Influence on Volunteerism Scale" (FSPV) across genders using the mean and covariance structure analysis approach. Method: A total of 2,845 Chinese high school adolescents aged 11 to 15 years completed the FSPV scale. Results: Results of the…

  11. The Satisfaction with Life Scale: : Measurement invariance across immigrant groups

    NARCIS (Netherlands)

    Ponizovsky, Y.; Dimitrova, R.; Schachner, M.K.; Van de Schoot, R.

    2013-01-01

    The current study examined measurement invariance of the Satisfaction With Life Scale (SWLS; Diener, Emmons, Larsen, & Griffin, 1985) across three immigrant groups, namely, immigrants from the Former Soviet Union (FSU) in Israel, Turkish-Bulgarians, and Turkish-Germans. The results demonstrate

  12. The Satisfaction With Life Scale : Measurement invariance across immigrant groups

    NARCIS (Netherlands)

    Ponizovsky, Y.; Dimitrova, R.; Schachner, M.; van de Schoot, R.

    2013-01-01

    The current study examined measurement invariance of the Satisfaction With Life Scale (SWLS; Diener, Emmons, Larsen, & Griffin, 1985) across three immigrant groups, namely, immigrants from the Former Soviet Union (FSU) in Israel, Turkish-Bulgarians, and Turkish-Germans. The results demonstrate

  13. A biologically inspired scale-space for illumination invariant feature detection

    International Nuclear Information System (INIS)

    Vonikakis, Vasillios; Chrysostomou, Dimitrios; Kouskouridas, Rigas; Gasteratos, Antonios

    2013-01-01

    This paper presents a new illumination invariant operator, combining the nonlinear characteristics of biological center-surround cells with the classic difference of Gaussians operator. It specifically targets the underexposed image regions, exhibiting increased sensitivity to low contrast, while not affecting performance in the correctly exposed ones. The proposed operator can be used to create a scale-space, which in turn can be a part of a SIFT-based detector module. The main advantage of this illumination invariant scale-space is that, using just one global threshold, keypoints can be detected in both dark and bright image regions. In order to evaluate the degree of illumination invariance that the proposed, as well as other, existing, operators exhibit, a new benchmark dataset is introduced. It features a greater variety of imaging conditions, compared to existing databases, containing real scenes under various degrees and combinations of uniform and non-uniform illumination. Experimental results show that the proposed detector extracts a greater number of features, with a high level of repeatability, compared to other approaches, for both uniform and non-uniform illumination. This, along with its simple implementation, renders the proposed feature detector particularly appropriate for outdoor vision systems, working in environments under uncontrolled illumination conditions. (paper)

  14. Scale invariance, killing vectors, and the size of the fifth dimension

    International Nuclear Information System (INIS)

    Ross, D.K.

    1986-01-01

    An analysis is made of the classical five-dimensional sourceless Kaluza-Klein equations with the existence of the usual α/α/PSI/ Killing vector not assumed, where /PSI/ is the coordinate of the fifth dimension. The physical distance around the fifth dimension D 5 , needed for the calculation of the fine structure constant α, is not calculable in the usual theory because the equations have a global scale invariance. In the present case, the Killing vector and the global scale invariance are not present, but it is found rather generally that D 5 = 0. This indicates that quantum gravity is a necessary ingredient if α is to be calculated. It also provides an alternate explanation of why the universe appears four-dimensional

  15. Invariance Signatures: Characterizing contours by their departures from invariance

    OpenAIRE

    Squire, David; Caelli, Terry M.

    1997-01-01

    In this paper, a new invariant feature of two-dimensional contours is reported: the Invariance Signature. The Invariance Signature is a measure of the degree to which a contour is invariant under a variety of transformations, derived from the theory of Lie transformation groups. It is shown that the Invariance Signature is itself invariant under shift, rotation and scaling of the contour. Since it is derived from local properties of the contour, it is well-suited to a neural network implement...

  16. Rotation and scale invariant shape context registration for remote sensing images with background variations

    Science.gov (United States)

    Jiang, Jie; Zhang, Shumei; Cao, Shixiang

    2015-01-01

    Multitemporal remote sensing images generally suffer from background variations, which significantly disrupt traditional region feature and descriptor abstracts, especially between pre and postdisasters, making registration by local features unreliable. Because shapes hold relatively stable information, a rotation and scale invariant shape context based on multiscale edge features is proposed. A multiscale morphological operator is adapted to detect edges of shapes, and an equivalent difference of Gaussian scale space is built to detect local scale invariant feature points along the detected edges. Then, a rotation invariant shape context with improved distance discrimination serves as a feature descriptor. For a distance shape context, a self-adaptive threshold (SAT) distance division coordinate system is proposed, which improves the discriminative property of the feature descriptor in mid-long pixel distances from the central point while maintaining it in shorter ones. To achieve rotation invariance, the magnitude of Fourier transform in one-dimension is applied to calculate angle shape context. Finally, the residual error is evaluated after obtaining thin-plate spline transformation between reference and sensed images. Experimental results demonstrate the robustness, efficiency, and accuracy of this automatic algorithm.

  17. Unsupervised Video Shot Detection Using Clustering Ensemble with a Color Global Scale-Invariant Feature Transform Descriptor

    Directory of Open Access Journals (Sweden)

    Yuchou Chang

    2008-02-01

    Full Text Available Scale-invariant feature transform (SIFT transforms a grayscale image into scale-invariant coordinates of local features that are invariant to image scale, rotation, and changing viewpoints. Because of its scale-invariant properties, SIFT has been successfully used for object recognition and content-based image retrieval. The biggest drawback of SIFT is that it uses only grayscale information and misses important visual information regarding color. In this paper, we present the development of a novel color feature extraction algorithm that addresses this problem, and we also propose a new clustering strategy using clustering ensembles for video shot detection. Based on Fibonacci lattice-quantization, we develop a novel color global scale-invariant feature transform (CGSIFT for better description of color contents in video frames for video shot detection. CGSIFT first quantizes a color image, representing it with a small number of color indices, and then uses SIFT to extract features from the quantized color index image. We also develop a new space description method using small image regions to represent global color features as the second step of CGSIFT. Clustering ensembles focusing on knowledge reuse are then applied to obtain better clustering results than using single clustering methods for video shot detection. Evaluation of the proposed feature extraction algorithm and the new clustering strategy using clustering ensembles reveals very promising results for video shot detection.

  18. Unsupervised Video Shot Detection Using Clustering Ensemble with a Color Global Scale-Invariant Feature Transform Descriptor

    Directory of Open Access Journals (Sweden)

    Hong Yi

    2008-01-01

    Full Text Available Abstract Scale-invariant feature transform (SIFT transforms a grayscale image into scale-invariant coordinates of local features that are invariant to image scale, rotation, and changing viewpoints. Because of its scale-invariant properties, SIFT has been successfully used for object recognition and content-based image retrieval. The biggest drawback of SIFT is that it uses only grayscale information and misses important visual information regarding color. In this paper, we present the development of a novel color feature extraction algorithm that addresses this problem, and we also propose a new clustering strategy using clustering ensembles for video shot detection. Based on Fibonacci lattice-quantization, we develop a novel color global scale-invariant feature transform (CGSIFT for better description of color contents in video frames for video shot detection. CGSIFT first quantizes a color image, representing it with a small number of color indices, and then uses SIFT to extract features from the quantized color index image. We also develop a new space description method using small image regions to represent global color features as the second step of CGSIFT. Clustering ensembles focusing on knowledge reuse are then applied to obtain better clustering results than using single clustering methods for video shot detection. Evaluation of the proposed feature extraction algorithm and the new clustering strategy using clustering ensembles reveals very promising results for video shot detection.

  19. Long-Time Behavior and Critical Limit of Subcritical SQG Equations in Scale-Invariant Sobolev Spaces

    Science.gov (United States)

    Coti Zelati, Michele

    2018-02-01

    We consider the subcritical SQG equation in its natural scale-invariant Sobolev space and prove the existence of a global attractor of optimal regularity. The proof is based on a new energy estimate in Sobolev spaces to bootstrap the regularity to the optimal level, derived by means of nonlinear lower bounds on the fractional Laplacian. This estimate appears to be new in the literature and allows a sharp use of the subcritical nature of the L^∞ bounds for this problem. As a by-product, we obtain attractors for weak solutions as well. Moreover, we study the critical limit of the attractors and prove their stability and upper semicontinuity with respect to the strength of the diffusion.

  20. Dimensionality and measurement invariance in the Satisfaction with Life Scale in Norway.

    Science.gov (United States)

    Clench-Aas, Jocelyne; Nes, Ragnhild Bang; Dalgard, Odd Steffen; Aarø, Leif Edvard

    2011-10-01

    Results from previous studies examining the dimensionality and factorial invariance of the Satisfaction with Life Scale (SWLS) are inconsistent and often based on small samples. This study examines the factorial structure and factorial invariance of the SWLS in a Norwegian sample. Confirmatory factor analysis (AMOS) was conducted to explore dimensionality and test for measurement invariance in factor structure, factor loadings, intercepts, and residual variance across gender and four age groups in a large (N = 4,984), nationally representative sample of Norwegian men and women (15-79 years). The data supported a modified unidimensional structure. Factor loadings could be constrained to equality between the sexes, indicating metric invariance between genders. Further testing indicated invariance also at the strong and strict levels, thus allowing analyses involving group means. The SWLS was shown to be sensitive to age, however, at the strong and strict levels of invariance testing. In conclusion, the results in this Norwegian study seem to confirm that a unidimensional structure is acceptable, but that a modified single-factor model with correlations between error terms of items 4 and 5 is preferred. Additionally, comparisons may be made between the genders. Caution must be exerted when comparing age groups.

  1. Gauge invariance of the Rayleigh--Schroedinger time-independent perturbation theory

    International Nuclear Information System (INIS)

    Yang, K.H.

    1977-08-01

    It is shown that the Rayleigh-Schroedinger time-independent perturbation theory is gauge invariant when the operator concerned is the particle's instantaneous energy operator H/sub B/ = (1/2m)[vector p - (e/c) vector A] 2 + eV 0 . More explicitly, it is shown that the energy perturbation corrections of each individual order of every state is gauge invariant. When the vector potential is curlless, the energy corrections of all orders are shown to vanish identically regardless of the explicit form of the vector potential. The relation between causality and gauge invariance is investigated. It is shown that gauge invariance guarantees conformity with causality and violation of gauge invariance implies violation of causality

  2. Time reversal invariance for a nonlinear scatterer exhibiting contact acoustic nonlinearity

    Science.gov (United States)

    Blanloeuil, Philippe; Rose, L. R. Francis; Veidt, Martin; Wang, Chun H.

    2018-03-01

    The time reversal invariance of an ultrasonic plane wave interacting with a contact interface characterized by a unilateral contact law is investigated analytically and numerically. It is shown analytically that despite the contact nonlinearity, the re-emission of a time reversed version of the reflected and transmitted waves can perfectly recover the original pulse shape, thereby demonstrating time reversal invariance for this type of contact acoustic nonlinearity. With the aid of finite element modelling, the time-reversal analysis is extended to finite-size nonlinear scatterers such as closed cracks. The results show that time reversal invariance holds provided that all the additional frequencies generated during the forward propagation, such as higher harmonics, sub-harmonics and zero-frequency component, are fully included in the retro-propagation. If the scattered waves are frequency filtered during receiving or transmitting, such as through the use of narrowband transducers, the recombination of the time-reversed waves will not exactly recover the original incident wave. This discrepancy due to incomplete time invariance can be exploited as a new method for characterizing damage by defining damage indices that quantify the departure from time reversal invariance. The sensitivity of these damage indices for various crack lengths and contact stress levels is investigated computationally, indicating some advantages of this narrowband approach relative to the more conventional measurement of higher harmonic amplitude, which requires broadband transducers.

  3. Direct detection of singlet dark matter in classically scale-invariant standard model

    Directory of Open Access Journals (Sweden)

    Kazuhiro Endo

    2015-10-01

    Full Text Available Classical scale invariance is one of the possible solutions to explain the origin of the electroweak scale. The simplest extension is the classically scale-invariant standard model augmented by a multiplet of gauge singlet real scalar. In the previous study it was shown that the properties of the Higgs potential deviate substantially, which can be observed in the International Linear Collider. On the other hand, since the multiplet does not acquire vacuum expectation value, the singlet components are stable and can be dark matter. In this letter we study the detectability of the real singlet scalar bosons in the experiment of the direct detection of dark matter. It is shown that a part of this model has already been excluded and the rest of the parameter space is within the reach of the future experiment.

  4. uncertain dynamic systems on time scales

    Directory of Open Access Journals (Sweden)

    V. Lakshmikantham

    1995-01-01

    Full Text Available A basic feedback control problem is that of obtaining some desired stability property from a system which contains uncertainties due to unknown inputs into the system. Despite such imperfect knowledge in the selected mathematical model, we often seek to devise controllers that will steer the system in a certain required fashion. Various classes of controllers whose design is based on the method of Lyapunov are known for both discrete [4], [10], [15], and continuous [3–9], [11] models described by difference and differential equations, respectively. Recently, a theory for what is known as dynamic systems on time scales has been built which incorporates both continuous and discrete times, namely, time as an arbitrary closed sets of reals, and allows us to handle both systems simultaneously [1], [2], [12], [13]. This theory permits one to get some insight into and better understanding of the subtle differences between discrete and continuous systems. We shall, in this paper, utilize the framework of the theory of dynamic systems on time scales to investigate the stability properties of conditionally invariant sets which are then applied to discuss controlled systems with uncertain elements. For the notion of conditionally invariant set and its stability properties, see [14]. Our results offer a new approach to the problem in question.

  5. Robust object tracking combining color and scale invariant features

    Science.gov (United States)

    Zhang, Shengping; Yao, Hongxun; Gao, Peipei

    2010-07-01

    Object tracking plays a very important role in many computer vision applications. However its performance will significantly deteriorate due to some challenges in complex scene, such as pose and illumination changes, clustering background and so on. In this paper, we propose a robust object tracking algorithm which exploits both global color and local scale invariant (SIFT) features in a particle filter framework. Due to the expensive computation cost of SIFT features, the proposed tracker adopts a speed-up variation of SIFT, SURF, to extract local features. Specially, the proposed method first finds matching points between the target model and target candidate, than the weight of the corresponding particle based on scale invariant features is computed as the the proportion of matching points of that particle to matching points of all particles, finally the weight of the particle is obtained by combining weights of color and SURF features with a probabilistic way. The experimental results on a variety of challenging videos verify that the proposed method is robust to pose and illumination changes and is significantly superior to the standard particle filter tracker and the mean shift tracker.

  6. Boost-invariant early time dynamics from AdS/CFT

    International Nuclear Information System (INIS)

    Beuf, Guillaume; Peschanski, Robi; Heller, Michal P.; Janik, Romuald A.

    2009-01-01

    Boost-invariant dynamics of a strongly-coupled conformal plasma is studied in the regime of early proper-time using the AdS/CFT correspondence. It is shown, in contrast with the late-time expansion, that a scaling solution does not exist. The boundary dynamics in this regime depends on initial conditions encoded in the bulk behavior of a Fefferman-Graham metric coefficient at initial proper-time. The relation between the early-time expansion of the energy density and initial conditions in the bulk of AdS is provided. As a general result it is proven that a singularity of some metric coefficient in Fefferman-Graham frame exists at all times. Requiring that this singularity at τ = 0 is a mere coordinate singularity without the curvature blow-up gives constraints on the possible boundary dynamics. Using a simple Pade resummation for solutions satisfying the regularity constraint, the features of a transition to local equilibrium, and thus to the hydrodynamical late-time regime, have been observed. The impact of this study on the problem of thermalization is discussed.

  7. Pattern recognition invariant under changes of scale and orientation

    Science.gov (United States)

    Arsenault, Henri H.; Parent, Sebastien; Moisan, Sylvain

    1997-08-01

    We have used a modified method proposed by neiberg and Casasent to successfully classify five kinds of military vehicles. The method uses a wedge filter to achieve scale invariance, and lines in a multi-dimensional feature space correspond to each target with out-of-plane orientations over 360 degrees around a vertical axis. The images were not binarized, but were filtered in a preprocessing step to reduce aliasing. The feature vectors were normalized and orthogonalized by means of a neural network. Out-of-plane rotations of 360 degrees and scale changes of a factor of four were considered. Error-free classification was achieved.

  8. Esoteric elementary particle phenomena in undergraduate physics: spontaneous symmetry breaking and scale invariance

    International Nuclear Information System (INIS)

    Greenberger, D.M.

    1978-01-01

    We take two rather abstract concepts from elementary particle physics, and show that there actually exist analogs to both of them in undergraduate physics. In the case of spontaneous symmetry breaking, we provide an example where the most symmetrical state of a simple system suddenly becomes unstable, while a less symmetrical state develops lower energy and becomes stable. In the case of scale invariance, we consider an example with no natural scale determined, and show that a straightforward dimensional analysis of the problem leads to incorrect results, because of the occurrence of infinities, even though they would appear to be irrelevant infinities that might not be expected to affect the dimensions of the answer. We then show how a simple use of the scale invariance of the problem leads to the correct answer

  9. Measurement invariance of Rosenberg Self-Esteem Scale between British and Chinese college students

    OpenAIRE

    Luo, Chengwen

    2010-01-01

    The present study examined the factor structure and measurement invariance of the Rosenberg Self-Esteem Scale in college students from Britain (N=150) and China (N=205). Confirmatory factor analyses suggested that the two-factor model, which consisted of a positive self-image factor and a negative self-image factor, could fit the data better than single factor structure especially after deleting the eighth item. Furthermore, factorial structure was invariant across groups in configural level ...

  10. Can we really use available scales for child and adolescent psychopathology across cultures? A systematic review of cross-cultural measurement invariance data.

    Science.gov (United States)

    Stevanovic, Dejan; Jafari, Peyman; Knez, Rajna; Franic, Tomislav; Atilola, Olayinka; Davidovic, Nikolina; Bagheri, Zahra; Lakic, Aneta

    2017-02-01

    In this systematic review, we assessed available evidence for cross-cultural measurement invariance of assessment scales for child and adolescent psychopathology as an indicator of cross-cultural validity. A literature search was conducted using the Medline, PsychInfo, Scopus, Web of Science, and Google Scholar databases. Cross-cultural measurement invariance data was available for 26 scales. Based on the aggregation of the evidence from the studies under review, none of the evaluated scales have strong evidence for cross-cultural validity and suitability for cross-cultural comparison. A few of the studies showed a moderate level of measurement invariance for some scales (such as the Fear Survey Schedule for Children-Revised, Multidimensional Anxiety Scale for Children, Revised Child Anxiety and Depression Scale, Revised Children's Manifest Anxiety Scale, Mood and Feelings Questionnaire, and Disruptive Behavior Rating Scale), which may make them suitable in cross-cultural comparative studies. The remainder of the scales either showed weak or outright lack of measurement invariance. This review showed only limited testing for measurement invariance across cultural groups of scales for pediatric psychopathology, with evidence of cross-cultural validity for only a few scales. This study also revealed a need to improve practices of statistical analysis reporting in testing measurement invariance. Implications for future research are discussed.

  11. Longitudinal Invariance of the Wechsler Intelligence Scale for Children--Fourth Edition in a Referral Sample

    Science.gov (United States)

    Richerson, Lindsay P.; Watkins, Marley W.; Beaujean, A. Alexander

    2014-01-01

    Measurement invariance of the Wechsler Intelligence Scale for Children--Fourth Edition (WISC-IV) was investigated with a group of 352 students eligible for psychoeducational evaluations tested, on average, 2.8 years apart. Configural, metric, and scalar invariance were found. However, the error variance of the Coding subtest was not constant…

  12. Proposed Empirical Entropy and Gibbs Energy Based on Observations of Scale Invariance in Open Nonequilibrium Systems.

    Science.gov (United States)

    Tuck, Adrian F

    2017-09-07

    There is no widely agreed definition of entropy, and consequently Gibbs energy, in open systems far from equilibrium. One recent approach has sought to formulate an entropy and Gibbs energy based on observed scale invariances in geophysical variables, particularly in atmospheric quantities, including the molecules constituting stratospheric chemistry. The Hamiltonian flux dynamics of energy in macroscopic open nonequilibrium systems maps to energy in equilibrium statistical thermodynamics, and corresponding equivalences of scale invariant variables with other relevant statistical mechanical variables such as entropy, Gibbs energy, and 1/(k Boltzmann T), are not just formally analogous but are also mappings. Three proof-of-concept representative examples from available adequate stratospheric chemistry observations-temperature, wind speed and ozone-are calculated, with the aim of applying these mappings and equivalences. Potential applications of the approach to scale invariant observations from the literature, involving scales from molecular through laboratory to astronomical, are considered. Theoretical support for the approach from the literature is discussed.

  13. Decentralized control of discrete-time linear time invariant systems with input saturation

    NARCIS (Netherlands)

    Deliu, C.; Deliu, Ciprian; Malek, Babak; Roy, Sandip; Saberi, Ali; Stoorvogel, Antonie Arij

    We study decentralized stabilization of discrete-time linear time invariant (LTI) systems subject to actuator saturation, using LTI controllers. The requirement of stabilization under both saturation constraints and decentralization impose obvious necessary conditions on the open-loop plant, namely

  14. Decentralized control of discrete-time linear time invariant systems with input saturation

    NARCIS (Netherlands)

    Deliu, Ciprian; Deliu, C.; Malek, Babak; Roy, Sandip; Saberi, Ali; Stoorvogel, Antonie Arij

    2009-01-01

    We study decentralized stabilization of discrete time linear time invariant (LTI) systems subject to actuator saturation, using LTI controllers. The requirement of stabilization under both saturation constraints and decentralization impose obvious necessary conditions on the open-loop plant, namely

  15. Tokunaga self-similarity arises naturally from time invariance

    Science.gov (United States)

    Kovchegov, Yevgeniy; Zaliapin, Ilya

    2018-04-01

    The Tokunaga condition is an algebraic rule that provides a detailed description of the branching structure in a self-similar tree. Despite a solid empirical validation and practical convenience, the Tokunaga condition lacks a theoretical justification. Such a justification is suggested in this work. We define a geometric branching process G (s ) that generates self-similar rooted trees. The main result establishes the equivalence between the invariance of G (s ) with respect to a time shift and a one-parametric version of the Tokunaga condition. In the parameter region where the process satisfies the Tokunaga condition (and hence is time invariant), G (s ) enjoys many of the symmetries observed in a critical binary Galton-Watson branching process and reproduces the latter for a particular parameter value.

  16. Concerning tests of time-reversal invariance via the polarization-analyzing power equality

    International Nuclear Information System (INIS)

    Conzett, H.E.

    1982-01-01

    Previous tests of time-reversal invariance via comparisons of polarizations and analyzing powers in nuclear scattering have been examined. It is found that all of these comparisons fail as adequate tests of time-reversal invariance either because of a lack of experimental precision or the lack of sensitivity to any time-reversal symmetry violation

  17. Testing measurement invariance of the Learning Programme Management and Evaluation scale across academic achievement

    Directory of Open Access Journals (Sweden)

    Maelekanyo C. Mulaudzi

    2016-10-01

    Full Text Available Orientation: Measurement invariance is one of the most precarious aspects of the scale development process without which the interpretation of research findings on population subgroups may be ambiguous and even invalid. Besides tests for validity and reliability, measurement invariance represents the hallmark for psychometric compliance of a new measuring instrument and provides the basis for inference of research findings across a range of relevant population sub-groups. Research purpose: This study tested the measurement invariance of a Learning Programme Management and Evaluation (LPME scale across levels of academic achievement. Motivation for the study: It is important for any researcher involved in new scale development to ensure that the measurement instrument and its underlying constructs have proper structural alignment and that they both have the same level of meaning and significance across comparable heterogeneous groups. Research design, approach and method: A quantitative, non-experimental, cross-sectional survey design was used, and data were obtained from 369 participants who were selected from three public sector organisations using a probabilistic simple random sampling technique. The Statistical Package for Social Sciences and Analysis of Moment Structures software (versions 21.0.0 were used to analyse the data. Main findings: The findings show that all the four invariance models tested have achieved acceptable goodness-of-fit indices. Furthermore, the findings show that the factorial structure of the LPME scale and the meaning of its underlying constructs are invariant across different levels of academic achievement for human resource development (HRD practitioners and learners or apprentices involved in occupational learning programmes. Practical implications: The findings of this study suggest practical implications for HRD scholars as they are enabled to make informed decisional balance comparisons involving educational

  18. Construction of exact invariants of time-dependent linear nonholonomic dynamical systems

    International Nuclear Information System (INIS)

    Fu Jingli; Jimenez, Salvador; Tang Yifa; Vazquez, Luis

    2008-01-01

    In this work, we build exact dynamical invariants for time-dependent, linear, nonholonomic Hamiltonian systems in two dimensions. Our aim is to obtain an additional insight into the theoretical understanding of generalized Hamilton canonical equations. In particular, we investigate systems represented by a quadratic Hamiltonian subject to linear nonholonomic constraints. We use a Lie algebraic method on the systems to build the invariants. The role and scope of these invariants is pointed out

  19. Construction of exact invariants of time-dependent linear nonholonomic dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Fu Jingli [Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)], E-mail: sqfujingli@163.com; Jimenez, Salvador [Departamento de Matematica Aplicada TTII, E.T.S.I. Telecomunicacion, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Tang Yifa [State Key Laboratory of Scientific and Engineering Computing, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, PO Box 2719, Beijing 100080 (China); Vazquez, Luis [Departamento de Matematica Aplicada Facultad de Informatica, Universidad Complutense de Madrid, 28040 Madrid (Spain); Centro de Astrobiologia (CSIC-INTA), Torrejon de Ardoz, 28850 Madrid (Spain)

    2008-03-03

    In this work, we build exact dynamical invariants for time-dependent, linear, nonholonomic Hamiltonian systems in two dimensions. Our aim is to obtain an additional insight into the theoretical understanding of generalized Hamilton canonical equations. In particular, we investigate systems represented by a quadratic Hamiltonian subject to linear nonholonomic constraints. We use a Lie algebraic method on the systems to build the invariants. The role and scope of these invariants is pointed out.

  20. Measurement invariance of the Belief in a Zero-Sum Game scale across 36 countries.

    Science.gov (United States)

    Różycka-Tran, Joanna; Jurek, Paweł; Olech, Michał; Piotrowski, Jarosław; Żemojtel-Piotrowska, Magdalena

    2017-11-28

    In this paper, we examined the psychometric properties of cross-cultural validation and replicability (i.e. measurement invariance) of the Belief in a Zero-Sum Game (BZSG) scale, measuring antagonistic belief about interpersonal relations over scarce resources. The factorial structure of the BZSG scale was investigated in student samples from 36 countries (N = 9907), using separate confirmatory factor analyses (CFAs) for each country. The cross-cultural validation of the scale was based on multigroup confirmatory factor analyses (MGCFA). The results confirmed that the scale had a one-factor structure in all countries, in which configural and metric invariance between countries was confirmed. As a zero-sum belief about social relations perceived as antagonistic, BZSG is an important factor related to, for example, social and international relations, attitudes toward immigrants, or well-being. The paper proposes different uses of the BZSG scale for cross-cultural studies in different fields of psychology: social, political, or economic. © 2017 International Union of Psychological Science.

  1. Nearly scale-invariant spectrum of adiabatic fluctuations may be from a very slowly expanding phase of the Universe

    International Nuclear Information System (INIS)

    Piao Yunsong; Zhou, E.

    2003-01-01

    In this paper we construct an expanding phase with phantom matter, in which the scale factor expands very slowly but the Hubble parameter increases gradually, and assume that this expanding phase could be matched to our late observational cosmology by the proper mechanism. We obtain the nearly scale-invariant spectrum of adiabatic fluctuations in this scenario; different from the simplest inflation and usual ekpyrotic or cyclic scenario, the tilt of the nearly scale-invariant spectrum in this scenario is blue. Although there exists an uncertainty surrounding the way in which the perturbations propagate through the transition in our scenario, which is dependent on the details of possible 'bounce' physics, compared with inflation and the ekpyrotic or cyclic scenario, our work may provide another feasible cosmological scenario generating the nearly scale-invariant perturbation spectrum

  2. Scale-invariant matter distribution in the universe

    International Nuclear Information System (INIS)

    Balian, R.; Schaeffer, R.

    1989-01-01

    We calculate the galaxy counts or the matter content within a randomly placed cell, under the sole hypothesis of scale-invariance of the many-body correlations functions. The various forms taken by the probability for finding N objects in a given volume are obtained as a function of its size. At smallscales ( -1 Mpc), this probability decreases exponentially with N. At larger scales (0.5h -1 Mpc to 10h -1 Mpc) it behaves as a power-law with an upper and possibly a lower exponential cut-off, reminiscent of the current parametrizations of the galaxy and cluster luminosity functions. We show that the large scale void probability, whose logarithm is seen to be a power-law, is a scale-free extrapolation of its small scale behaviour. As long as the correlation functions are power-laws, this void distribution is not compatible with the linear theory, whatever large scale is considered. We relate this large-scale behaviour of the void probability to the power-law observed at the faint end of the luminosity functions. A scaling law is found, the galaxy and cluster distributions being expressed by the same universal function. We show that the counts in cells are approximately gaussian, only at very large scales, above 50h -1 Mpc, provived the density fluctuations are less than 10% of the mean. In the intermediate range of 10h -1 to 50h -1 Mpc, considerable deviations from gaussian statistics are predicted. Counts in cells are seen to provide a cleaner statistical tool than the mass or luminosity functions and are as easy to obtain either from theoretical information on correlation functions or from observations

  3. Scale-invariant instantons and the complete lifetime of the standard model

    Science.gov (United States)

    Andreassen, Anders; Frost, William; Schwartz, Matthew D.

    2018-03-01

    In a classically scale-invariant quantum field theory, tunneling rates are infrared divergent due to the existence of instantons of any size. While one expects such divergences to be resolved by quantum effects, it has been unclear how higher-loop corrections can resolve a problem appearing already at one loop. With a careful power counting, we uncover a series of loop contributions that dominate over the one-loop result and sum all the necessary terms. We also clarify previously incomplete treatments of related issues pertaining to global symmetries, gauge fixing, and finite mass effects. In addition, we produce exact closed-form solutions for the functional determinants over scalars, fermions, and vector bosons around the scale-invariant bounce, demonstrating manifest gauge invariance in the vector case. With these problems solved, we produce the first complete calculation of the lifetime of our Universe: 1 0139 years . With 95% confidence, we expect our Universe to last more than 1 058 years . The uncertainty is part experimental uncertainty on the top quark mass and on αs and part theory uncertainty from electroweak threshold corrections. Using our complete result, we provide phase diagrams in the mt/mh and the mt/αs planes, with uncertainty bands. To rule out absolute stability to 3 σ confidence, the uncertainty on the top quark pole mass would have to be pushed below 250 MeV or the uncertainty on αs(mZ) pushed below 0.00025.

  4. Mouse Activity across Time Scales: Fractal Scenarios

    Science.gov (United States)

    Lima, G. Z. dos Santos; Lobão-Soares, B.; do Nascimento, G. C.; França, Arthur S. C.; Muratori, L.; Ribeiro, S.; Corso, G.

    2014-01-01

    In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better

  5. Theory and computation of disturbance invariant sets for discrete-time linear systems

    Directory of Open Access Journals (Sweden)

    Kolmanovsky Ilya

    1998-01-01

    Full Text Available This paper considers the characterization and computation of invariant sets for discrete-time, time-invariant, linear systems with disturbance inputs whose values are confined to a specified compact set but are otherwise unknown. The emphasis is on determining maximal disturbance-invariant sets X that belong to a specified subset Γ of the state space. Such d-invariant sets have important applications in control problems where there are pointwise-in-time state constraints of the form χ ( t ∈ Γ . One purpose of the paper is to unite and extend in a rigorous way disparate results from the prior literature. In addition there are entirely new results. Specific contributions include: exploitation of the Pontryagin set difference to clarify conceptual matters and simplify mathematical developments, special properties of maximal invariant sets and conditions for their finite determination, algorithms for generating concrete representations of maximal invariant sets, practical computational questions, extension of the main results to general Lyapunov stable systems, applications of the computational techniques to the bounding of state and output response. Results on Lyapunov stable systems are applied to the implementation of a logic-based, nonlinear multimode regulator. For plants with disturbance inputs and state-control constraints it enlarges the constraint-admissible domain of attraction. Numerical examples illustrate the various theoretical and computational results.

  6. Scale-invariance underlying the logistic equation and its social applications

    Energy Technology Data Exchange (ETDEWEB)

    Hernando, A., E-mail: alberto.hernando@irsamc.ups-tlse.fr [Laboratoire Collisions, Agrégats, Réactivité, IRSAMC, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 09 (France); Plastino, A., E-mail: plastino@fisica.unlp.edu.ar [National University La Plata, IFLP-CCT-CONICET, C.C. 727, 1900 La Plata (Argentina); Universitat de les Illes Balears and IFISC-CSIC, 07122 Palma de Mallorca (Spain)

    2013-01-03

    On the basis of dynamical principles we i) advance a derivation of the Logistic Equation (LE), widely employed (among multiple applications) in the simulation of population growth, and ii) demonstrate that scale-invariance and a mean-value constraint are sufficient and necessary conditions for obtaining it. We also generalize the LE to multi-component systems and show that the above dynamical mechanisms underlie a large number of scale-free processes. Examples are presented regarding city-populations, diffusion in complex networks, and popularity of technological products, all of them obeying the multi-component logistic equation in an either stochastic or deterministic way.

  7. Scale-invariance underlying the logistic equation and its social applications

    International Nuclear Information System (INIS)

    Hernando, A.; Plastino, A.

    2013-01-01

    On the basis of dynamical principles we i) advance a derivation of the Logistic Equation (LE), widely employed (among multiple applications) in the simulation of population growth, and ii) demonstrate that scale-invariance and a mean-value constraint are sufficient and necessary conditions for obtaining it. We also generalize the LE to multi-component systems and show that the above dynamical mechanisms underlie a large number of scale-free processes. Examples are presented regarding city-populations, diffusion in complex networks, and popularity of technological products, all of them obeying the multi-component logistic equation in an either stochastic or deterministic way.

  8. A cross-national analysis of measurement invariance of the Satisfaction With Life Scale.

    Science.gov (United States)

    Whisman, Mark A; Judd, Charles M

    2016-02-01

    Measurement invariance of the Satisfaction With Life Scale (SWLS) was examined in probability samples of adults 50-79 years of age living in the United States, England, and Japan. Confirmatory factor analysis modeling was used to test for multigroup measurement invariance of a single-factor structure of the SWLS. Results support a single-factor structure of the SWLS across the 3 countries, with tests of measurement invariance of the SWLS supporting its configural invariance and metric invariance. These results suggest that the SWLS may be used as a single-factor measure of life satisfaction in the United States, England, and Japan, and that it is appropriate to compare correlates of the SWLS in middle-aged and older adults across these 3 countries. However, results provided evidence for only partial scalar invariance, with the intercept for SWLS Item 4 varying across countries. Cross-national comparisons of means revealed a lower mean at the latent variable level for the Japanese sample than for the other 2 samples. In addition, over and above the latent mean difference, the Japanese sample also manifested a significantly lower intercept on Item 4. Implications of the findings for research on cross-national comparisons of life satisfaction in European American and East Asian countries are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. Scale genesis and gravitational wave in a classically scale invariant extension of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Jisuke [Institute for Theoretical Physics, Kanazawa University,Kanazawa 920-1192 (Japan); Yamada, Masatoshi [Department of Physics, Kyoto University,Kyoto 606-8502 (Japan); Institut für Theoretische Physik, Universität Heidelberg,Philosophenweg 16, 69120 Heidelberg (Germany)

    2016-12-01

    We assume that the origin of the electroweak (EW) scale is a gauge-invariant scalar-bilinear condensation in a strongly interacting non-abelian gauge sector, which is connected to the standard model via a Higgs portal coupling. The dynamical scale genesis appears as a phase transition at finite temperature, and it can produce a gravitational wave (GW) background in the early Universe. We find that the critical temperature of the scale phase transition lies above that of the EW phase transition and below few O(100) GeV and it is strongly first-order. We calculate the spectrum of the GW background and find the scale phase transition is strong enough that the GW background can be observed by DECIGO.

  10. Experimental tests of confinement scale invariance on JET, DIIID, ASDEX Upgrade and CMOD

    International Nuclear Information System (INIS)

    Christiansen, J.P.; Cordey, J.G.; Budny, R.

    2001-01-01

    An international collaboration between JET, DIIID, AUG and CMOD has resulted in four sets of Tokamak discharges which are approximately identical as regards a set of dimensionless plasma variables. The data demonstrates some measure of scale invariance of local and global confinement but a more accurate matching of scaled density, power etc. is required to make firmer conclusions. (author)

  11. Dark matter and leptogenesis linked by classical scale invariance

    Energy Technology Data Exchange (ETDEWEB)

    Khoze, Valentin V.; Plascencia, Alexis D. [Institute for Particle Physics Phenomenology, Department of Physics, Durham University,South Road, Durham, DH1 3LE United Kingdom (United Kingdom)

    2016-11-07

    In this work we study a classically scale invariant extension of the Standard Model that can explain simultaneously dark matter and the baryon asymmetry in the universe. In our set-up we introduce a dark sector, namely a non-Abelian SU(2) hidden sector coupled to the SM via the Higgs portal, and a singlet sector responsible for generating Majorana masses for three right-handed sterile neutrinos. The gauge bosons of the dark sector are mass-degenerate and stable, and this makes them suitable as dark matter candidates. Our model also accounts for the matter-anti-matter asymmetry. The lepton flavour asymmetry is produced during CP-violating oscillations of the GeV-scale right-handed neutrinos, and converted to the baryon asymmetry by the electroweak sphalerons. All the characteristic scales in the model: the electro-weak, dark matter and the leptogenesis/neutrino mass scales, are generated radiatively, have a common origin and related to each other via scalar field couplings in perturbation theory.

  12. The baryon asymmetry and CPT invariance in the early universe

    International Nuclear Information System (INIS)

    Barshay, S.

    1981-01-01

    We discuss, and give a definite, simple phenomenological example, of the possibility that the baryon asymmetry is related to a failure of CPT invariance for a brief time interval at the origin of the universe. (orig.)

  13. Factorial invariance of the Satisfaction with Life Scale in adolescents from Spain and Portugal.

    Science.gov (United States)

    Atienza González, Francisco L; Balaguer Solá, Isabel; Corte-Real, Nuno; Fonseca, António M

    2016-08-01

    The Satisfaction with Life Scale is one of the most widely used scales to measure the global cognitive judgment of satisfaction with one’s life. This study assesses the equivalence of the SWLS across Spanish and Portuguese adolescents, using multi-sample Confirmatory Factor Analysis. Participants were Spanish (N = 2183) and Portuguese (N = 4082) junior high school. The results provide high support for the internal consistency of both the Spanish and Portuguese versions of this scale. The results also showed that factor structure, factor loadings, could be considered invariant across groups. However, the full scalar invariance between Spanish and Portuguese samples was not found, with the intercept for SWLS item 5 varying across countries. Similar findings have also been found in other cross-national studies with this scale. Implications of the findings are discussed and we conclude that the Spanish and Portuguese versions of the SWLS can be used for cross-national comparisons with Spanish and Portuguese adolescents.

  14. Retinal Identification Based on an Improved Circular Gabor Filter and Scale Invariant Feature Transform

    Directory of Open Access Journals (Sweden)

    Xiaoming Xi

    2013-07-01

    Full Text Available Retinal identification based on retinal vasculatures in the retina provides the most secure and accurate means of authentication among biometrics and has primarily been used in combination with access control systems at high security facilities. Recently, there has been much interest in retina identification. As digital retina images always suffer from deformations, the Scale Invariant Feature Transform (SIFT, which is known for its distinctiveness and invariance for scale and rotation, has been introduced to retinal based identification. However, some shortcomings like the difficulty of feature extraction and mismatching exist in SIFT-based identification. To solve these problems, a novel preprocessing method based on the Improved Circular Gabor Transform (ICGF is proposed. After further processing by the iterated spatial anisotropic smooth method, the number of uninformative SIFT keypoints is decreased dramatically. Tested on the VARIA and eight simulated retina databases combining rotation and scaling, the developed method presents promising results and shows robustness to rotations and scale changes.

  15. Scale-invariant solutions to partial differential equations of fractional order with a moving boundary condition

    International Nuclear Information System (INIS)

    Li Xicheng; Xu Mingyu; Wang Shaowei

    2008-01-01

    In this paper, we give similarity solutions of partial differential equations of fractional order with a moving boundary condition. The solutions are given in terms of a generalized Wright function. The time-fractional Caputo derivative and two types of space-fractional derivatives are considered. The scale-invariant variable and the form of the solution of the moving boundary are obtained by the Lie group analysis. A comparison between the solutions corresponding to two types of fractional derivative is also given

  16. The algebraic construction of the scale-invariant asymtotic theory

    International Nuclear Information System (INIS)

    Gatto, R.; Sartori, G.

    1975-01-01

    The procedure proposed in the preceding paper to construct the asymptotic scale-invariant theory is applied to massive free fields. The contracted fields (of the asymptotic theory) are calculated in terms of the original fields by two different procedures. The contracted charges are calculated and their general relation to the original charges is verified. The problem of defining a vacuum state for the contracted fields and charges is solved. The relation to the problem of non-equivalent representations of the commutator relations is pointed out

  17. Slow Invariant Manifolds in Chemically Reactive Systems

    Science.gov (United States)

    Paolucci, Samuel; Powers, Joseph M.

    2006-11-01

    The scientific design of practical gas phase combustion devices has come to rely on the use of mathematical models which include detailed chemical kinetics. Such models intrinsically admit a wide range of scales which renders their accurate numerical approximation difficult. Over the past decade, rational strategies, such as Intrinsic Low Dimensional Manifolds (ILDM) or Computational Singular Perturbations (CSP), for equilibrating fast time scale events have been successfully developed, though their computation can be challenging and their accuracy in most cases uncertain. Both are approximations to the preferable slow invariant manifold which best describes how the system evolves in the long time limit. Strategies for computing the slow invariant manifold are examined, and results are presented for practical combustion systems.

  18. Deviations from scale invariance near a general conformal background

    International Nuclear Information System (INIS)

    Babichenko, A.; Elitzur, S.

    1994-01-01

    Deviations from scale invariance resulting from small perturbations of a general two-dimensional conformal field theory are studied. They are expressed in terms of β-functions for the renormalization of general couplings under a local change of scale. The β-functions for a homogeneous background are given perturbatively in terms of the data of the original conformal theory without any specific assumptions on its nature. The renormalization of couplings to primary operators and to first descendents is considered as well as that of couplings of a dilatonic type which involve explicit dependence on world sheet curvature. The first descendent couplings are interpreted as gauge degrees of freedom in the string field action and the corresponding gauge transformation is spelled out. (orig.)

  19. A smooth bouncing cosmology with scale invariant spectrum

    International Nuclear Information System (INIS)

    Creminelli, P.; Senatore, L.

    2007-01-01

    We present a bouncing cosmology which evolves from the contracting to the expanding phase in a smooth way, without developing instabilities or pathologies and remaining in the regime of validity of 4d effective field theory. A nearly scale invariant spectrum of perturbations is generated during the contracting phase by an isocurvature scalar with a negative exponential potential and then converted to adiabatic. The model predicts a slightly blue spectrum, n S > or approx. 1, no observable gravitational waves and a high (but model dependent) level of non-Gaussianities with local shape. The model represents an explicit and predictive alternative to inflation, although, at present, it is clearly less compelling. (author)

  20. Testing measurement invariance in the International Social Survey Program Health 2011 – the mental well-being scale

    NARCIS (Netherlands)

    van Deurzen, I.A.; Roosma, F.

    2014-01-01

    Purpose In the present contribution we address the measurement invariance of a new mental well-being scale of three items that was applied in the International Social Survey Program (ISSP) Health 2011 module. Our aim is to establish if and for how many countries (partial) scalar invariance is

  1. Are trait-scaling relationships invariant across contrasting elevations in the widely distributed treeline species Nothofagus pumilio?

    Science.gov (United States)

    Fajardo, Alex

    2016-05-01

    The study of scaling examines the relative dimensions of diverse organismal traits. Understanding whether global scaling patterns are paralleled within species is key to identify causal factors of universal scaling. I examined whether the foliage-stem (Corner's rules), the leaf size-number, and the leaf mass-leaf area scaling relationships remained invariant and isometric with elevation in a wide-distributed treeline species in the southern Chilean Andes. Mean leaf area, leaf mass, leafing intensity, and twig cross-sectional area were determined for 1-2 twigs of 8-15 Nothofagus pumilio individuals across four elevations (including treeline elevation) and four locations (from central Chile at 36°S to Tierra del Fuego at 54°S). Mixed effects models were fitted to test whether the interaction term between traits and elevation was nonsignificant (invariant). The leaf-twig cross-sectional area and the leaf mass-leaf area scaling relationships were isometric (slope = 1) and remained invariant with elevation, whereas the leaf size-number (i.e., leafing intensity) scaling was allometric (slope ≠ -1) and showed no variation with elevation. Leaf area and leaf number were consistently negatively correlated across elevation. The scaling relationships examined in the current study parallel those seen across species. It is plausible that the explanation of intraspecific scaling relationships, as trait combinations favored by natural selection, is the same as those invoked to explain across species patterns. Thus, it is very likely that the global interspecific Corner's rules and other leaf-leaf scaling relationships emerge as the aggregate of largely parallel intraspecific patterns. © 2016 Botanical Society of America.

  2. Family of probability distributions derived from maximal entropy principle with scale invariant restrictions.

    Science.gov (United States)

    Sonnino, Giorgio; Steinbrecher, György; Cardinali, Alessandro; Sonnino, Alberto; Tlidi, Mustapha

    2013-01-01

    Using statistical thermodynamics, we derive a general expression of the stationary probability distribution for thermodynamic systems driven out of equilibrium by several thermodynamic forces. The local equilibrium is defined by imposing the minimum entropy production and the maximum entropy principle under the scale invariance restrictions. The obtained probability distribution presents a singularity that has immediate physical interpretation in terms of the intermittency models. The derived reference probability distribution function is interpreted as time and ensemble average of the real physical one. A generic family of stochastic processes describing noise-driven intermittency, where the stationary density distribution coincides exactly with the one resulted from entropy maximization, is presented.

  3. Computer-aided mass detection in mammography: False positive reduction via gray-scale invariant ranklet texture features

    International Nuclear Information System (INIS)

    Masotti, Matteo; Lanconelli, Nico; Campanini, Renato

    2009-01-01

    In this work, gray-scale invariant ranklet texture features are proposed for false positive reduction (FPR) in computer-aided detection (CAD) of breast masses. Two main considerations are at the basis of this proposal. First, false positive (FP) marks surviving our previous CAD system seem to be characterized by specific texture properties that can be used to discriminate them from masses. Second, our previous CAD system achieves invariance to linear/nonlinear monotonic gray-scale transformations by encoding regions of interest into ranklet images through the ranklet transform, an image transformation similar to the wavelet transform, yet dealing with pixels' ranks rather than with their gray-scale values. Therefore, the new FPR approach proposed herein defines a set of texture features which are calculated directly from the ranklet images corresponding to the regions of interest surviving our previous CAD system, hence, ranklet texture features; then, a support vector machine (SVM) classifier is used for discrimination. As a result of this approach, texture-based information is used to discriminate FP marks surviving our previous CAD system; at the same time, invariance to linear/nonlinear monotonic gray-scale transformations of the new CAD system is guaranteed, as ranklet texture features are calculated from ranklet images that have this property themselves by construction. To emphasize the gray-scale invariance of both the previous and new CAD systems, training and testing are carried out without any in-between parameters' adjustment on mammograms having different gray-scale dynamics; in particular, training is carried out on analog digitized mammograms taken from a publicly available digital database, whereas testing is performed on full-field digital mammograms taken from an in-house database. Free-response receiver operating characteristic (FROC) curve analysis of the two CAD systems demonstrates that the new approach achieves a higher reduction of FP marks

  4. Demystifying the constancy of the Ermakov-Lewis invariant for a time-dependent oscillator

    Science.gov (United States)

    Padmanabhan, T.

    2018-03-01

    It is well known that the time-dependent harmonic oscillator (TDHO) possesses a conserved quantity, usually called Ermakov-Lewis invariant. I provide a simple physical interpretation of this invariant as well as a whole family of related invariants. This interpretation does not seem to have been noticed in the literature before. The procedure also allows one to tackle some key conceptual issues which arise in the study of quantum fields in the external, time-dependent backgrounds like in the case of particle production in an expanding universe and Schwinger effect.

  5. Time-varying and time-invariant dimensions of depression in children and adolescents: Implications for cross-informant agreement.

    Science.gov (United States)

    Cole, David A; Martin, Joan M; Jacquez, Farrah M; Tram, Jane M; Zelkowitz, Rachel; Nick, Elizabeth A; Rights, Jason D

    2017-07-01

    The longitudinal structure of depression in children and adolescents was examined by applying a Trait-State-Occasion structural equation model to 4 waves of self, teacher, peer, and parent reports in 2 age groups (9 to 13 and 13 to 16 years old). Analyses revealed that the depression latent variable consisted of 2 longitudinal factors: a time-invariant dimension that was completely stable over time and a time-varying dimension that was not perfectly stable over time. Different sources of information were differentially sensitive to these 2 dimensions. Among adolescents, self- and parent reports better reflected the time-invariant aspects. For children and adolescents, peer and teacher reports better reflected the time-varying aspects. Relatively high cross-informant agreement emerged for the time-invariant dimension in both children and adolescents. Cross-informant agreement for the time-varying dimension was high for adolescents but very low for children. Implications emerge for theoretical models of depression and for its measurement, especially when attempting to predict changes in depression in the context of longitudinal studies. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Shift-, rotation-, and scale-invariant shape recognition system using an optical Hough transform

    Science.gov (United States)

    Schmid, Volker R.; Bader, Gerhard; Lueder, Ernst H.

    1998-02-01

    We present a hybrid shape recognition system with an optical Hough transform processor. The features of the Hough space offer a separate cancellation of distortions caused by translations and rotations. Scale invariance is also provided by suitable normalization. The proposed system extends the capabilities of Hough transform based detection from only straight lines to areas bounded by edges. A very compact optical design is achieved by a microlens array processor accepting incoherent light as direct optical input and realizing the computationally expensive connections massively parallel. Our newly developed algorithm extracts rotation and translation invariant normalized patterns of bright spots on a 2D grid. A neural network classifier maps the 2D features via a nonlinear hidden layer onto the classification output vector. We propose initialization of the connection weights according to regions of activity specifically assigned to each neuron in the hidden layer using a competitive network. The presented system is designed for industry inspection applications. Presently we have demonstrated detection of six different machined parts in real-time. Our method yields very promising detection results of more than 96% correctly classified parts.

  7. Same but different? Measurement invariance of the PIAAC motivation-to-learn scale across key socio-demographic groups

    Directory of Open Access Journals (Sweden)

    Julia Gorges

    2017-07-01

    Full Text Available Abstract Background Data from the Programme for the International Assessment of Adult Competencies (PIAAC revealed that countries systematically differ in their respondents’ literacy, numeracy, and problem solving in technology-rich environments skills; skill levels also vary by gender, age, level of education or migration background. Similarly, systematic differences have been documented with respect to adults’ participation in education, which can be considered as a means to develop and maintain skills. From a psychological perspective, motivation to learn is considered a key factor associated with both skill development and participation in (further education. In order to account for motivation when analyzing PIAAC data, four items from the PIAAC background questionnaire were recently compiled into a motivation-to-learn scale. This scale has been found to be invariant (i.e., showing full weak and partial strong measurement invariance across 21 countries. Methods This paper presents further analyses using multiple-group graded response models to scrutinize the validity of the motivation-to-learn scale for group comparisons. Results Results indicate at least partial strong measurement invariance across gender, age groups, level of education, and migration background in most countries under study (all CFI > .95, all RMSEA < .08. Thus, the scale is suitable for comparing both means and associations across these groups. Conclusions Results are discussed in light of country characteristics, challenges of measurement invariance testing, and potential future research using PIAAC data.

  8. Symmetries and Invariants of the Time-dependent Oscillator Equation and the Envelope Equation

    CERN Document Server

    Qin, Hong

    2005-01-01

    Single-particle dynamics in a time-dependent focusing field is examined. The existence of the Courant-Snyder invariant* is fundamentally the result of the corresponding symmetry admitted by the oscillator equation with time-dependent frequency.** A careful analysis of the admitted symmetries reveals a deeper connection between the nonlinear envelope equation and the oscillator equation. A general theorem regarding the symmetries and invariants of the envelope equation, which includes the existence of the Courant-Snyder invariant as a special case, is demonstrated. The symmetries of the envelope equation enable a fast algorithm for finding matched solutions without using the conventional iterative shooting method.

  9. Recent progress in invariant pattern recognition

    Science.gov (United States)

    Arsenault, Henri H.; Chang, S.; Gagne, Philippe; Gualdron Gonzalez, Oscar

    1996-12-01

    We present some recent results in invariant pattern recognition, including methods that are invariant under two or more distortions of position, orientation and scale. There are now a few methods that yield good results under changes of both rotation and scale. Some new methods are introduced. These include locally adaptive nonlinear matched filters, scale-adapted wavelet transforms and invariant filters for disjoint noise. Methods using neural networks will also be discussed, including an optical method that allows simultaneous classification of multiple targets.

  10. The role of instantons in scale-invariant gauge theories

    International Nuclear Information System (INIS)

    Affleck, I.

    1980-01-01

    Instanton calculations in scale-invariant gauge theories, such as QCD, have long been plagued by divergences at large distances where strong coupling effects are important. Furthermore, Witten has argued that quantum effects may cause the instanton gas to disappear and has displayed this phenomenon in the CPsup(N-1) model at large N. It is argued here that instantons can play a role in calculations involving an inherent infrared cut-off, and this is demonstrated in the CPsup(N-1) model for large N at a finite temperature. Some results on finite-temperature QED are also obtained in passing. (orig.)

  11. Scale-invariant curvature fluctuations from an extended semiclassical gravity

    Energy Technology Data Exchange (ETDEWEB)

    Pinamonti, Nicola, E-mail: pinamont@dima.unige.it, E-mail: siemssen@dima.unige.it [Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16146 Genova (Italy); INFN Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Siemssen, Daniel, E-mail: pinamont@dima.unige.it, E-mail: siemssen@dima.unige.it [Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16146 Genova (Italy)

    2015-02-15

    We present an extension of the semiclassical Einstein equations which couple n-point correlation functions of a stochastic Einstein tensor to the n-point functions of the quantum stress-energy tensor. We apply this extension to calculate the quantum fluctuations during an inflationary period, where we take as a model a massive conformally coupled scalar field on a perturbed de Sitter space and describe how a renormalization independent, almost-scale-invariant power spectrum of the scalar metric perturbation is produced. Furthermore, we discuss how this model yields a natural basis for the calculation of non-Gaussianities of the considered metric fluctuations.

  12. Time-reversal invariance in multiple collisions between coupled masses

    International Nuclear Information System (INIS)

    Crawford, F.S.

    1989-01-01

    The time evolution of two mechanical oscillators coupled by a spring can (but need not) exhibit an instant t = 2t' when the initial conditions at t = 0 have been exactly restored. When that is the case, then at t = t' energy and momentum have been exchanged exactly as in an elastic collision between two free particles, and the evolution of the system from t = t' to 2t' is related to that from 0 to t' by time-reversal invariance. A similar ''simulation of elastic scattering'' at t = t' can occur for two free particles coupled via collisions with an intermediary mass that bounces back and forth between the two particles provided the intermediary is left at rest at t = t'. Examined here is the time evolution of the exchange of momentum and energy for these two examples, determining the values of the coupling spring constant (or mass value) of the intermediating spring (or mass) needed to simulate single elastic scattering between free particles, and looking at the manifestation of time-reversal invariance

  13. QUIPS: Time-dependent properties of quasi-invariant self-gravitating polytropes

    International Nuclear Information System (INIS)

    Munier, A.; Feix, M.R.

    1983-01-01

    Quasi-invariance, a method based on group tranformations, is used to obtain time-dependent solutions for the expansion and/or contraction of a self-gravitating sphere of perfect gas with polytopic index n. Quasi-invariance transforms the equations of hydrodynamics into ''dual equations'' exhibiting extra terms such as a friction, a mass source or sink term, and a centripetal/centrifugal force. The search for stationary solutions in this ''dual space'' leads to a new class of time-dependent solutions, the QUIP (for Quasi-invariant polytrope), which generalizes Emden's static model and introduces a characteristic frequency a related to Jean's frequency. The second order differential equation describing the solution is integrated numerically. A critical point is seen always to exist for nnot =3. Solutions corresponding in the ''dual space'' to a time-dependent generalization of Eddington's standard model (n = 3) are discussed. These solutions conserve both the total mass and the energy. A transition between closed and open structures is seen to take place at a particular frequency a/sub c/. For n = 3, no critical point arises in the ''dual space'' due to the self-similar motion of the fluid. A new time-dependent mass-radius relation and a generalized Betti-Ritter relation are obtained. Conclusions about the existence of a minimum Q-factor are presented

  14. Measurement Invariance of the Reynolds Depression Adolescent Scale across Gender and Age

    Science.gov (United States)

    Fonseca-Pedrero, Eduardo; Wells, Craig; Paino, Mercedes; Lemos-Giraldez, Serafin; Villazon-Garcia, Ursula; Sierra, Susana; Garcia-Portilla Gonzalez, Ma Paz; Bobes, Julio; Muniz, Jose

    2010-01-01

    The main objective of the present study was to examine measurement invariance of the Reynolds Depression Adolescent Scale (RADS) (Reynolds, 1987) across gender and age in a representative sample of nonclinical adolescents. The sample was composed of 1,659 participants, 801 males (48.3%), with a mean age of 15.9 years (SD = 1.2). Confirmatory…

  15. The 22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    International Nuclear Information System (INIS)

    Sydnor, R.L.

    1990-05-01

    Papers presented at the 22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting are compiled. The following subject areas are covered: Rb, Cs, and H-based frequency standards and cryogenic and trapped-ion technology; satellite laser tracking networks, GLONASS timing, intercomparison of national time scales and international telecommunications; telecommunications, power distribution, platform positioning, and geophysical survey industries; military communications and navigation systems; and dissemination of precise time and frequency by means of GPS, GLONASS, MIL STAR, LORAN, and synchronous communication satellites

  16. Timing intervals using population synchrony and spike timing dependent plasticity

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2016-12-01

    Full Text Available We present a computational model by which ensembles of regularly spiking neurons can encode different time intervals through synchronous firing. We show that a neuron responding to a large population of convergent inputs has the potential to learn to produce an appropriately-timed output via spike-time dependent plasticity. We explain why temporal variability of this population synchrony increases with increasing time intervals. We also show that the scalar property of timing and its violation at short intervals can be explained by the spike-wise accumulation of jitter in the inter-spike intervals of timing neurons. We explore how the challenge of encoding longer time intervals can be overcome and conclude that this may involve a switch to a different population of neurons with lower firing rate, with the added effect of producing an earlier bias in response. Experimental data on human timing performance show features in agreement with the model’s output.

  17. Measurement of returns-to-scale using Interval Data Envelopment Analysis models

    DEFF Research Database (Denmark)

    Hatami-Marbini, Adel; Beigi, Zahra Ghelej; Hougaard, Jens Leth

    2018-01-01

    The economic concept of Returns-to-Scale (RTS) has been intensively studied in the context of Data Envelopment Analysis (DEA). The conventional DEA models that are used for RTS classification require well-defined and accurate data whereas in reality observations gathered from production systems may...... be characterized by intervals. For instance, the heat losses of the combined production of heat and power (CHP) systems may be within a certain range, hinging on a wide variety of factors such as external temperature and real-time energy demand. Enriching the current literature independently tackling the two...... problems; interval data and RTS estimation; we develop an overarching evaluation process for estimating RTS of Decision Making Units (DMUs) in Imprecise DEA (IDEA) where the input and output data lie within bounded intervals. In the presence of interval data, we introduce six types of RTS involving...

  18. A Scale-Invariant Model of Statistical Mechanics and Modified Forms of the First and the Second Laws of Thermodynamics

    Science.gov (United States)

    Sohrab, Siavash H.; Pitch, Nancy (Technical Monitor)

    1999-01-01

    A scale-invariant statistical theory of fields is presented that leads to invariant definition of density, velocity, temperature, and pressure, The definition of Boltzmann constant is introduced as k(sub k) = m(sub k)v(sub k)c = 1.381 x 10(exp -23) J x K(exp -1), suggesting that the Kelvin absolute temperature scale is equivalent to a length scale. Two new state variables called the reversible heat Q(sub rev) = TS and the reversible work W(sub rev) = PV are introduced. The modified forms of the first and second law of thermodynamics are presented. The microscopic definition of heat (work) is presented as the kinetic energy due to the random (peculiar) translational, rotational, and pulsational motions. The Gibbs free energy of an element at scale Beta is identified as the total system energy at scale (Beta-1), thus leading to an invariant form of the first law of thermodynamics U(sub Beta) = Q(sub Beta) - W(sub Beta) +N(e3)U(sub Beta-1).

  19. Age-related invariance of abilities measured with the Wechsler Adult Intelligence Scale-IV.

    Science.gov (United States)

    Sudarshan, Navaneetham J; Bowden, Stephen C; Saklofske, Donald H; Weiss, Lawrence G

    2016-11-01

    Assessment of measurement invariance across populations is essential for meaningful comparison of test scores, and is especially relevant where repeated measurements are required for educational assessment or clinical diagnosis. Establishing measurement invariance legitimizes the assumption that test scores reflect the same psychological trait in different populations or across different occasions. Examination of Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) U.S. standardization samples revealed that a first-order 5-factor measurement model was best fitting across 9 age groups from 16 years to 69 years. Strong metric invariance was found for 3 of 5 factors and partial intercept invariance for the remaining 2. Pairwise comparisons of adjacent age groups supported the inference that cognitive-trait group differences are manifested by group differences in the test scores. In educational and clinical settings these findings provide theoretical and empirical support to interpret changes in the index or subtest scores as reflecting changes in the corresponding cognitive abilities. Further, where clinically relevant, the subtest score composites can be used to compare changes in respective cognitive abilities. The model was supported in the Canadian standardization data with pooled age groups but the sample sizes were not adequate for detailed examination of separate age groups in the Canadian sample. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Strong anticipation: Multifractal cascade dynamics modulate scaling in synchronization behaviors

    International Nuclear Information System (INIS)

    Stephen, Damian G.; Dixon, James A.

    2011-01-01

    Research highlights: → We investigated anticipatory behaviors in response to chaotic metronomes. → We assessed multifractal structure in tap intervals and onset intervals. → Strength of multifractality in tap intervals appears to match that in onset intervals. - Abstract: Previous research on anticipatory behaviors has found that the fractal scaling of human behavior may attune to the fractal scaling of an unpredictable signal [Stephen DG, Stepp N, Dixon JA, Turvey MT. Strong anticipation: Sensitivity to long-range correlations in synchronization behavior. Physica A 2008;387:5271-8]. We propose to explain this attunement as a case of multifractal cascade dynamics [Schertzer D, Lovejoy S. Generalised scale invariance in turbulent phenomena. Physico-Chem Hydrodyn J 1985;6:623-5] in which perceptual-motor fluctuations are coordinated across multiple time scales. This account will serve to sharpen the contrast between strong and weak anticipation: whereas the former entails a sensitivity to the intermittent temporal structure of an unpredictable signal, the latter simply predicts sensitivity to an aggregate description of an unpredictable signal irrespective of actual sequence. We pursue this distinction through a reanalysis of Stephen et al.'s data by examining the relationship between the widths of singularity spectra for intertap interval time series and for each corresponding interonset interval time series. We find that the attunement of fractal scaling reported by Stephen et al. was not the trivial result of sensitivity to temporal structure in aggregate but reflected a subtle sensitivity to the coordination across multiple time scales of fluctuation in the unpredictable signal.

  1. Statistical characterisation of COSMO Sky-Med X-SAR retrieved precipitation fields by scale-invariance analysis

    Science.gov (United States)

    Deidda, Roberto; Mascaro, Giuseppe; Hellies, Matteo; Baldini, Luca; Roberto, Nicoletta

    2013-04-01

    COSMO Sky-Med (CSK) is an important programme of the Italian Space Agency aiming at supporting environmental monitoring and management of exogenous, endogenous and anthropogenic risks through X-band Synthetic Aperture Radar (X-SAR) on board of 4 satellites forming a constellation. Most of typical SAR applications are focused on land or ocean observation. However, X-band SAR can be detect precipitation that results in a specific signature caused by the combination of attenuation of surface returns induced by precipitation and enhancement of backscattering determined by the hydrometeors in the SAR resolution volume. Within CSK programme, we conducted an intercomparison between the statistical properties of precipitation fields derived by CSK SARs and those derived by the CNR Polar 55C (C-band) ground based weather radar located in Rome (Italy). This contribution presents main results of this research which was aimed at the robust characterisation of rainfall statistical properties across different scales by means of scale-invariance analysis and multifractal theory. The analysis was performed on a dataset of more two years of precipitation observations collected by the CNR Polar 55C radar and rainfall fields derived from available images collected by the CSK satellites during intense rainfall events. Scale-invariance laws and multifractal properties were detected on the most intense rainfall events derived from the CNR Polar 55C radar for spatial scales from 4 km to 64 km. The analysis on X-SAR retrieved rainfall fields, although based on few images, leaded to similar results and confirmed the existence of scale-invariance and multifractal properties for scales larger than 4 km. These outcomes encourage investigating SAR methodologies for future development of meteo-hydrological forecasting models based on multifractal theory.

  2. Invariant set computation for constrained uncertain discrete-time systems

    NARCIS (Netherlands)

    Athanasopoulos, N.; Bitsoris, G.

    2010-01-01

    In this article a novel approach to the determination of polytopic invariant sets for constrained discrete-time linear uncertain systems is presented. First, the problem of stabilizing a prespecified initial condition set in the presence of input and state constraints is addressed. Second, the

  3. Scale invariant for one-sided multivariate likelihood ratio tests

    Directory of Open Access Journals (Sweden)

    Samruam Chongcharoen

    2010-07-01

    Full Text Available Suppose 1 2 , ,..., n X X X is a random sample from Np ( ,V distribution. Consider 0 1 2 : ... 0 p H      and1 : 0 for 1, 2,..., i H   i  p , let 1 0 H  H denote the hypothesis that 1 H holds but 0 H does not, and let ~ 0 H denote thehypothesis that 0 H does not hold. Because the likelihood ratio test (LRT of 0 H versus 1 0 H  H is complicated, severalad hoc tests have been proposed. Tang, Gnecco and Geller (1989 proposed an approximate LRT, Follmann (1996 suggestedrejecting 0 H if the usual test of 0 H versus ~ 0 H rejects 0 H with significance level 2 and a weighted sum of the samplemeans is positive, and Chongcharoen, Singh and Wright (2002 modified Follmann’s test to include information about thecorrelation structure in the sum of the sample means. Chongcharoen and Wright (2007, 2006 give versions of the Tang-Gnecco-Geller tests and Follmann-type tests, respectively, with invariance properties. With LRT’s scale invariant desiredproperty, we investigate its powers by using Monte Carlo techniques and compare them with the tests which we recommendin Chongcharoen and Wright (2007, 2006.

  4. A biologically plausible transform for visual recognition that is invariant to translation, scale and rotation

    Directory of Open Access Journals (Sweden)

    Pavel eSountsov

    2011-11-01

    Full Text Available Visual object recognition occurs easily despite differences in position, size, and rotation of the object, but the neural mechanisms responsible for this invariance are not known. We have found a set of transforms that achieve invariance in a neurally plausible way. We find that a transform based on local spatial frequency analysis of oriented segments and on logarithmic mapping, when applied twice in an iterative fashion, produces an output image that is unique to the object and that remains constant as the input image is shifted, scaled or rotated.

  5. A Biologically Plausible Transform for Visual Recognition that is Invariant to Translation, Scale, and Rotation.

    Science.gov (United States)

    Sountsov, Pavel; Santucci, David M; Lisman, John E

    2011-01-01

    Visual object recognition occurs easily despite differences in position, size, and rotation of the object, but the neural mechanisms responsible for this invariance are not known. We have found a set of transforms that achieve invariance in a neurally plausible way. We find that a transform based on local spatial frequency analysis of oriented segments and on logarithmic mapping, when applied twice in an iterative fashion, produces an output image that is unique to the object and that remains constant as the input image is shifted, scaled, or rotated.

  6. Intact interval timing in circadian CLOCK mutants.

    Science.gov (United States)

    Cordes, Sara; Gallistel, C R

    2008-08-28

    While progress has been made in determining the molecular basis for the circadian clock, the mechanism by which mammalian brains time intervals measured in seconds to minutes remains a mystery. An obvious question is whether the interval-timing mechanism shares molecular machinery with the circadian timing mechanism. In the current study, we trained circadian CLOCK +/- and -/- mutant male mice in a peak-interval procedure with 10 and 20-s criteria. The mutant mice were more active than their wild-type littermates, but there were no reliable deficits in the accuracy or precision of their timing as compared with wild-type littermates. This suggests that expression of the CLOCK protein is not necessary for normal interval timing.

  7. Shift, rotation and scale invariant optical information authentication with binary digital holography

    Science.gov (United States)

    Jiao, Shuming; Zhou, Changyuan; Zou, Wenbin; Li, Xia

    2017-12-01

    An optical information authentication system using binary holography is proposed recently, with high security, flexibility and reduced cipher-text size. Despite the success, we point out one limitation of this system that it cannot well verify scaled and rotated versions of correct images and simply regard them as wrong images. In fact, this limitation generally exists in many other optical authentication systems. In this paper, a preprocessing method based Fourier transform and log polar transform is employed to allow the optical authentication systems shift, rotation and scale invariant. Numerical simulation results demonstrate that our proposed scheme significantly outperforms the existing method.

  8. Motivational Climate Sport Youth Scale: Measurement Invariance Across Gender and Five Different Sports.

    Science.gov (United States)

    Monteiro, Diogo; Borrego, Carla Chicau; Silva, Carlos; Moutão, João; Marinho, Daniel Almeida; Cid, Luís

    2018-03-01

    The aim of this study was to analyze the psychometric properties of the Portuguese version of the Motivational Climate Sport Youth Scale (MCSYSp) and invariance across gender and different sports (swimming, soccer, handball, basketball, futsal). A total of 4,569 athletes (3,053 males, 1,516 females) from soccer (1,098), swimming (1,049), basketball (1,754), futsal (340), and handball (328) participated in this study, with ages between 10 and 20 years (M = 15.13; SD = 1.95). The results show that the original model (two factors/12 items) did not adjust to the data in a satisfactory way; therefore, it was necessary to change the model by removing four items (two from each factor). Subsequently, the model adjusted to the data in a satisfactory way (χ 2 = 499.84; df = 19; χ 2 /df = 26.30; p sports (soccer, handball, basketball, futsal) (ΔCFK≤.01); however, it was not invariant between swimming and team sports (soccer, handball, basketball, futsal) (ΔCFI ≥ .01). In conclusion, the MCSYSp (two factors/eight items) is a valid and reliable choice that is transversal not only to gender, but also to the different studied team sports to measure the perception of the motivational climate in athletes. Future studies can research more deeply the invariance analysis between individual sports to better understand the invariance of the model between individual and team sports.

  9. Measurement Invariance of the Brief Multidimensional Student's Life Satisfaction Scale among Adolescents and Emerging Adults across 23 Cultural Contexts

    Science.gov (United States)

    Abubakar, Amina; van de Vijver, Fons; Alonso-Arbiol, Itziar; He, Jia; Adams, Byron; Aldhafri, Said; Aydinli-Karakulak, Arzu; Arasa, Josephine; Boer, Diana; Celenk, Ozgur; Dimitrova, Radosveta; Ferreira, Maria Cristina; Fischer, Ronald; Mbebeb, Fomba Emmanuel; Frías, María Teresa; Fresno, Andrés; Gillath, Omri; Harb, Charles; Handani, Penny; Hapunda, Given; Kamble, Shanmukh; Kosic, Marianna; Looh, Joseph Lah; Mazrui, Lubna; Mendia, Rafael Emilio; Murugami, Margaret; Mason-Li, Mei; Pandia, Weny Savitry; Perdomo, Cristina; Schachner, Maja; Sim, Samantha; Spencer, Rosario; Suryani, Angela; Tair, Ergyul

    2016-01-01

    There is hardly any cross-cultural research on the measurement invariance of the Brief Multidimensional Students' Life Satisfaction Scales (BMSLSS). The current article evaluates the measurement invariance of the BMSLSS across cultural contexts. This cross-sectional study sampled 7,739 adolescents and emerging adults in 23 countries. A multi-group…

  10. Factorial Validity and Invariance of the Rosenberg Self-Esteem Scale among Portuguese Youngsters

    Science.gov (United States)

    Vasconcelos-Raposo, Jose; Fernandes, Helder Miguel; Teixeira, Carla M.; Bertelli, Rosangela

    2012-01-01

    The purpose of the present study was to examine the reliability, factorial validity and measurement invariance (across gender, age and physical activity participation) of a Portuguese version of the Rosenberg Self-Esteem Scale (RSES). The sample consisted of 1,763 Portuguese youngsters (731 male and 1,032 female) with ages between 15 and 20 years.…

  11. Measuring the spin Chern number in time-reversal-invariant Hofstadter optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dan-Wei, E-mail: zdanwei@126.com [Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, SPTE, South China Normal University, Guangzhou 510006 (China); Cao, Shuai, E-mail: shuaicao2004@163.com [Department of Applied Physics, College of Electronic Engineering, South China Agricultural University, Guangzhou 510642 China (China)

    2016-10-14

    We propose an experimental scheme to directly measure the spin Chern number of the time-reversal-invariant Hofstadter model in optical lattices. We first show that this model can be realized by using ultracold Fermi atoms with two pseudo-spin states encoded by the internal Zeeman states in a square optical lattice and the corresponding topological Bloch bands are characterized by the spin Chern number. We then propose and numerically demonstrate that this topological invariant can be extracted from the shift of the hybrid Wannier center in the optical lattice. By spin-resolved in situ detection of the atomic densities along the transverse direction combined with time-of-flight measurement along another spatial direction, the spin Chern number in this system is directly measured. - Highlights: • The cold-atom optical-lattice scheme for realizing the time-reversal-invariant Hofstadter model is proposed. • The intrinsic spin Chern number related to the hybrid Wannier center in the optical lattice is investigated. • Direct measurement of the spin Chern number in the proposed system is theoretically demonstrated.

  12. Exact invariants in the form of momentum resonances for particle motion in one-dimensional, time-dependent potentials

    International Nuclear Information System (INIS)

    Goedert, J.; Lewis, H.R.

    1984-01-01

    A momentum-resonance ansatz of Lewis and Leach was used to study exact invariants for time-dependent, one-dimensional potentials. This ansatz provides a framework for finding invariants admitted by a larger class of time-dependent potentials that was known previously. For a potential that admits an exact invariant in this resonance form, we have shown how to construct the invariant as a functional of the potential in terms of the solution of a definite linear algebraic system of equations. We have found a necessary and sufficient condition on the potential for the existence of an invariant with a given number of resonances. There exist more potentials that admit invariants with two resonances than were previously known and we have found an example in parametric form of such a potential. We have also found examples of potentials that admit invariants with three resonances

  13. Electronic cleansing for computed tomography (CT) colonography using a scale-invariant three-material model

    NARCIS (Netherlands)

    Serlie, Iwo W. O.; Vos, Frans M.; Truyen, Roel; Post, Frits H.; Stoker, Jaap; van Vliet, Lucas J.

    2010-01-01

    A well-known reading pitfall in computed tomography (CT) colonography is posed by artifacts at T-junctions, i.e., locations where air-fluid levels interface with the colon wall. This paper presents a scale-invariant method to determine material fractions in voxels near such T-junctions. The proposed

  14. Time-warp invariant pattern detection with bursting neurons

    International Nuclear Information System (INIS)

    Gollisch, Tim

    2008-01-01

    Sound patterns are defined by the temporal relations of their constituents, individual acoustic cues. Auditory systems need to extract these temporal relations to detect or classify sounds. In various cases, ranging from human speech to communication signals of grasshoppers, this pattern detection has been found to display invariance to temporal stretching or compression of the sound signal ('linear time-warp invariance'). In this work, a four-neuron network model is introduced, designed to solve such a detection task for the example of grasshopper courtship songs. As an essential ingredient, the network contains neurons with intrinsic bursting dynamics, which allow them to encode durations between acoustic events in short, rapid sequences of spikes. As shown by analytical calculations and computer simulations, these neuronal dynamics result in a powerful mechanism for temporal integration. Finally, the network reads out the encoded temporal information by detecting equal activity of two such bursting neurons. This leads to the recognition of rhythmic patterns independent of temporal stretching or compression

  15. Department of Defense Precise Time and Time Interval program improvement plan

    Science.gov (United States)

    Bowser, J. R.

    1981-01-01

    The United States Naval Observatory is responsible for ensuring uniformity in precise time and time interval operations including measurements, the establishment of overall DOD requirements for time and time interval, and the accomplishment of objectives requiring precise time and time interval with minimum cost. An overview of the objectives, the approach to the problem, the schedule, and a status report, including significant findings relative to organizational relationships, current directives, principal PTTI users, and future requirements as currently identified by the users are presented.

  16. Producing a scale-invariant spectrum of perturbations in a Hagedorn phase of string cosmology.

    Science.gov (United States)

    Nayeri, Ali; Brandenberger, Robert H; Vafa, Cumrun

    2006-07-14

    We study the generation of cosmological perturbations during the Hagedorn phase of string gas cosmology. Using tools of string thermodynamics we provide indications that it may be possible to obtain a nearly scale-invariant spectrum of cosmological fluctuations on scales which are of cosmological interest today. In our cosmological scenario, the early Hagedorn phase of string gas cosmology goes over smoothly into the radiation-dominated phase of standard cosmology, without having a period of cosmological inflation.

  17. Research Motives of Faculty in Academic STEM: Measurement Invariance of the Research Motivation Scale

    Science.gov (United States)

    Deemer, Eric D.; Mahoney, Kevin T.; Ball, Jacqueline Hebert

    2012-01-01

    The authors examined the psychometric properties of the Research Motivation Scale (RMS) in a sample of faculty members (N = 337) in university science departments. It was hypothesized that the RMS would evidence partial measurement invariance across tenure status and noninvariance across gender, given the different sociocultural factors (e.g.,…

  18. Using Score Equating and Measurement Invariance to Examine the Flynn Effect in the Wechsler Adult Intelligence Scale.

    Science.gov (United States)

    Benson, Nicholas; Beaujean, A Alexander; Taub, Gordon E

    2015-01-01

    The Flynn effect (FE; i.e., increase in mean IQ scores over time) is commonly viewed as reflecting population shifts in intelligence, despite the fact that most FE studies have not investigated the assumption of score comparability. Consequently, the extent to which these mean differences in IQ scores reflect population shifts in cognitive abilities versus changes in the instruments used to measure these abilities is unclear. In this study, we used modern psychometric tools to examine the FE. First, we equated raw scores for each common subtest to be on the same scale across instruments. This enabled the combination of scores from all three instruments into one of 13 age groups before converting raw scores into Z scores. Second, using age-based standardized scores for standardization samples, we examined measurement invariance across the second (revised), third, and fourth editions of the Wechsler Adult Intelligence Scale. Results indicate that while scores were equivalent across the third and fourth editions, they were not equivalent across the second and third editions. Results suggest that there is some evidence for an increase in intelligence, but also call into question many published FE findings as presuming the instruments' scores are invariant when this assumption is not warranted.

  19. EMPLOYEE COMMITMENT ACROSS COUNTRIES AND TIMES - MEASUREMENT INVARIANCE

    Directory of Open Access Journals (Sweden)

    Dana Mesner Andolšek

    2015-01-01

    Full Text Available Employee organisational commitment has been long and extensively studied until now (Meyer & Allen, 1997; Jaussi, 2007.An emphasis of current analysis was to verify its measurement characteristics, for the purpose of comparisons of levels of commitment across time and countries. A limited set of countries was chosen among those available in a sample from the data on Work Orientations II, ISSP 1997, purpose fully selected to reflect cultural and structural differences that was expected to affect change in levels of organisational commitment. With the use of structural equations models we first confirmed that a model for configural invariance for two factors measuring conceptually distinct components of Affective commitment (AC and Continuance commitment (CC respectively has better support than of one factor model. Metric and error term invariance was subsequently confirmed. Scalar equivalence, needed for valid comparison of mean levels of both components of commitment, was confirmed as well, with the exception of two country specific Tau coefficient. Finally, a model thus established was applied additionally on data from2005 ISSP. Acceptable fit was achieved for a common model containing both points in time and all countries, which allowed making more firm conclusions about the changes in AC and CC in different countries.

  20. Time-to-code converter with selection of time intervals on duration

    International Nuclear Information System (INIS)

    Atanasov, I.Kh.; Rusanov, I.R.; )

    2001-01-01

    Identification of elementary particles on the basis of time-of-flight represents the important approach of the preliminary selection procedure. Paper describes a time-to-code converter with preliminary selection of the measured time intervals as to duration. It consists of a time-to-amplitude converter, an analog-to-digital converter, a unit of selection of time intervals as to duration, a unit of total reset and CAMAC command decoder. The time-to-code converter enables to measure time intervals with 100 ns accuracy within 0-100 ns range. Output code capacity is of 10. Selection time constitutes 50 ns [ru

  1. The invariance of classical electromagnetism under Charge-conjugation, Parity and Time-reversal (CPT) transformations

    Science.gov (United States)

    Norbury, John W.

    1989-01-01

    The invariance of classical electromagnetism under charge-conjugation, parity, and time-reversal (CPT) is studied by considering the motion of a charged particle in electric and magnetic fields. Upon applying CPT transformations to various physical quantities and noting that the motion still behaves physically demonstrates invariance.

  2. Hamiltonian Dynamics and Adiabatic Invariants for Time-Dependent Superconducting Qubit-Oscillators and Resonators in Quantum Computing Systems

    Directory of Open Access Journals (Sweden)

    Jeong Ryeol Choi

    2015-01-01

    Full Text Available An adiabatic invariant, which is a conserved quantity, is useful for studying quantum and classical properties of dynamical systems. Adiabatic invariants for time-dependent superconducting qubit-oscillator systems and resonators are investigated using the Liouville-von Neumann equation. At first, we derive an invariant for a simple superconducting qubit-oscillator through the introduction of its reduced Hamiltonian. Afterwards, an adiabatic invariant for a nanomechanical resonator linearly interfaced with a superconducting circuit, via a coupling with a time-dependent strength, is evaluated using the technique of unitary transformation. The accuracy of conservation for such invariant quantities is represented in detail. Based on the results of our developments in this paper, perturbation theory is applicable to the research of quantum characteristics of more complicated qubit systems that are described by a time-dependent Hamiltonian involving nonlinear terms.

  3. Probing interval timing with scalp-recorded electroencephalography (EEG).

    Science.gov (United States)

    Ng, Kwun Kei; Penney, Trevor B

    2014-01-01

    Humans, and other animals, are able to easily learn the durations of events and the temporal relationships among them in spite of the absence of a dedicated sensory organ for time. This chapter summarizes the investigation of timing and time perception using scalp-recorded electroencephalography (EEG), a non-invasive technique that measures brain electrical potentials on a millisecond time scale. Over the past several decades, much has been learned about interval timing through the examination of the characteristic features of averaged EEG signals (i.e., event-related potentials, ERPs) elicited in timing paradigms. For example, the mismatch negativity (MMN) and omission potential (OP) have been used to study implicit and explicit timing, respectively, the P300 has been used to investigate temporal memory updating, and the contingent negative variation (CNV) has been used as an index of temporal decision making. In sum, EEG measures provide biomarkers of temporal processing that allow researchers to probe the cognitive and neural substrates underlying time perception.

  4. Experimental study of time-reversal invariance in neutron-nucleus interactions

    International Nuclear Information System (INIS)

    Shaparov, E.I.; Shimizu, H.M.

    1996-01-01

    Experimental approaches for the test of time-reversal invariance in neutron-nucleus interactions are reviewed. Possible transmission experiments with polarized neutron beams and polarized or aligned targets are discussed as well as neutron capture experiments with unpolarized resonance neutrons. 102 refs., 13 figs., 3 tabs

  5. On the invariance of world time reference system

    International Nuclear Information System (INIS)

    Asanov, G.S.

    1978-01-01

    A universal reference system is studied. It is shown that time differentiation acquires an invariant meaning in the covariant theory of a curved space-time. All the principal covariant equations of the Einstein gravitational field theory can be interpreted successively relative to a universal reference system, whose base congruence is the S-congruence. The Lorentz calibration conditions determine the base tetrades of the universal reference system with an accuracy to rigid spatial rotations with constant coefficients. The use of rigid tetrades eliminates the ambiguity in the interpretation of the value of the energy momentum of a gravitational field

  6. Multi-scale kinetic description of granular clusters: invariance, balance, and temperature

    Science.gov (United States)

    Capriz, Gianfranco; Mariano, Paolo Maria

    2017-12-01

    We discuss a multi-scale continuum representation of bodies made of several mass particles flowing independently each other. From an invariance procedure and a nonstandard balance of inertial actions, we derive the balance equations introduced in earlier work directly in pointwise form, essentially on the basis of physical plausibility. In this way, we analyze their foundations. Then, we propose a Boltzmann-type equation for the distribution of kinetic energies within control volumes in space and indicate how such a distribution allows us to propose a definition of (granular) temperature along processes far from equilibrium.

  7. Testing Lorentz invariance of dark matter

    CERN Document Server

    Blas, Diego; Sibiryakov, Sergey

    2012-01-01

    We study the possibility to constrain deviations from Lorentz invariance in dark matter (DM) with cosmological observations. Breaking of Lorentz invariance generically introduces new light gravitational degrees of freedom, which we represent through a dynamical timelike vector field. If DM does not obey Lorentz invariance, it couples to this vector field. We find that this coupling affects the inertial mass of small DM halos which no longer satisfy the equivalence principle. For large enough lumps of DM we identify a (chameleon) mechanism that restores the inertial mass to its standard value. As a consequence, the dynamics of gravitational clustering are modified. Two prominent effects are a scale dependent enhancement in the growth of large scale structure and a scale dependent bias between DM and baryon density perturbations. The comparison with the measured linear matter power spectrum in principle allows to bound the departure from Lorentz invariance of DM at the per cent level.

  8. Testing Lorentz invariance of dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego [Theory Group, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Ivanov, Mikhail M.; Sibiryakov, Sergey, E-mail: diego.blas@cern.ch, E-mail: mm.ivanov@physics.msu.ru, E-mail: sibir@inr.ac.ru [Faculty of Physics, Moscow State University, Vorobjevy Gory, 119991 Moscow (Russian Federation)

    2012-10-01

    We study the possibility to constrain deviations from Lorentz invariance in dark matter (DM) with cosmological observations. Breaking of Lorentz invariance generically introduces new light gravitational degrees of freedom, which we represent through a dynamical timelike vector field. If DM does not obey Lorentz invariance, it couples to this vector field. We find that this coupling affects the inertial mass of small DM halos which no longer satisfy the equivalence principle. For large enough lumps of DM we identify a (chameleon) mechanism that restores the inertial mass to its standard value. As a consequence, the dynamics of gravitational clustering are modified. Two prominent effects are a scale dependent enhancement in the growth of large scale structure and a scale dependent bias between DM and baryon density perturbations. The comparison with the measured linear matter power spectrum in principle allows to bound the departure from Lorentz invariance of DM at the per cent level.

  9. Nonsingular cosmology with a scale-invariant spectrum of cosmological perturbations from Lee-Wick theory

    International Nuclear Information System (INIS)

    Cai Yifu; Qiu Taotao; Brandenberger, Robert; Zhang Xinmin

    2009-01-01

    We study the cosmology of a Lee-Wick type scalar field theory. First, we consider homogeneous and isotropic background solutions and find that they are nonsingular, leading to cosmological bounces. Next, we analyze the spectrum of cosmological perturbations which result from this model. Unless either the potential of the Lee-Wick theory or the initial conditions are finely tuned, it is impossible to obtain background solutions which have a sufficiently long period of inflation after the bounce. More interestingly, however, we find that in the generic noninflationary bouncing cosmology, perturbations created from quantum vacuum fluctuations in the contracting phase have the correct form to lead to a scale-invariant spectrum of metric inhomogeneities in the expanding phase. Since the background is nonsingular, the evolution of the fluctuations is defined unambiguously through the bounce. We also analyze the evolution of fluctuations which emerge from thermal initial conditions in the contracting phase. The spectrum of gravitational waves stemming from quantum vacuum fluctuations in the contracting phase is also scale-invariant, and the tensor to scalar ratio is not suppressed.

  10. Working time intervals and total work time on nursing positions in Poland

    Directory of Open Access Journals (Sweden)

    Danuta Kunecka

    2015-06-01

    Full Text Available Background: For the last few years a topic of overwork on nursing posts has given rise to strong discussions. The author has set herself a goal of answering the question if it is a result of real overwork of this particular profession or rather commonly assumed frustration of this professional group. The aim of this paper is to conduct the analysis of working time on chosen nursing positions in relation to measures of time being used as intervals in the course of conducting standard professional activities during one working day. Material and Methods: Research material consisted of documentation of work time on chosen nursing workplaces, compiled between 2007–2012 within the framework of a nursing course at the Pomeranian Medical University in Szczecin. As a method of measurement a photograph of a working day has been used. Measurements were performed in institutions located in 6 voivodeships in Poland. Results: Results suggest that only 6.5% of total of surveyed representatives of nurse profession spends proper amount of time (meaning: a time set by the applicable standards on work intervals during a working day. Conclusions: The scale of the phenomenon indicates excessive workload for nursing positions, which along with a longer period of time, longer working hours may cause decrease in efficiency of work and cause a drop in quality of provided services. Med Pr 2015;66,(2:165–172

  11. Necessity of intermediate mass scales in grand unified theories with spontaneously broken CP invariance

    International Nuclear Information System (INIS)

    Senjanovic, G.

    1982-07-01

    It is demonstrated that the spontaneous breakdown of CP invariance in grand unified theories requires the presence of intermediate mass scales. The simplest realization is provided by weakly broken left-right symmetry in the context of SU(2)sub(L) x SU(2)sub(R) x U(1)sub(B-L) model embedded in grand unified theories. (author)

  12. Renormalization group invariance and optimal QCD renormalization scale-setting: a key issues review

    Science.gov (United States)

    Wu, Xing-Gang; Ma, Yang; Wang, Sheng-Quan; Fu, Hai-Bing; Ma, Hong-Hao; Brodsky, Stanley J.; Mojaza, Matin

    2015-12-01

    A valid prediction for a physical observable from quantum field theory should be independent of the choice of renormalization scheme—this is the primary requirement of renormalization group invariance (RGI). Satisfying scheme invariance is a challenging problem for perturbative QCD (pQCD), since a truncated perturbation series does not automatically satisfy the requirements of the renormalization group. In a previous review, we provided a general introduction to the various scale setting approaches suggested in the literature. As a step forward, in the present review, we present a discussion in depth of two well-established scale-setting methods based on RGI. One is the ‘principle of maximum conformality’ (PMC) in which the terms associated with the β-function are absorbed into the scale of the running coupling at each perturbative order; its predictions are scheme and scale independent at every finite order. The other approach is the ‘principle of minimum sensitivity’ (PMS), which is based on local RGI; the PMS approach determines the optimal renormalization scale by requiring the slope of the approximant of an observable to vanish. In this paper, we present a detailed comparison of the PMC and PMS procedures by analyzing two physical observables R e+e- and Γ(H\\to b\\bar{b}) up to four-loop order in pQCD. At the four-loop level, the PMC and PMS predictions for both observables agree within small errors with those of conventional scale setting assuming a physically-motivated scale, and each prediction shows small scale dependences. However, the convergence of the pQCD series at high orders, behaves quite differently: the PMC displays the best pQCD convergence since it eliminates divergent renormalon terms; in contrast, the convergence of the PMS prediction is questionable, often even worse than the conventional prediction based on an arbitrary guess for the renormalization scale. PMC predictions also have the property that any residual dependence on

  13. Symmetries and invariants of the oscillator and envelope equations with time-dependent frequency

    Directory of Open Access Journals (Sweden)

    Hong Qin

    2006-05-01

    Full Text Available The single-particle dynamics in a time-dependent focusing field is examined. The existence of the Courant-Snyder invariant, a fundamental concept in accelerator physics, is fundamentally a result of the corresponding symmetry admitted by the harmonic oscillator equation with linear time-dependent frequency. It is demonstrated that the Lie algebra of the symmetry group for the oscillator equation with time-dependent frequency is eight dimensional, and is composed of four independent subalgebras. A detailed analysis of the admitted symmetries reveals a deeper connection between the nonlinear envelope equation and the oscillator equation. A general theorem regarding the symmetries and invariants of the envelope equation, which includes the existence of the Courant-Snyder invariant as a special case, is demonstrated. As an application to accelerator physics, the symmetries of the envelope equation enable a fast numerical algorithm for finding matched solutions without using the conventional iterative Newton’s method, where the envelope equation needs to be numerically integrated once for every iteration, and the Jacobi matrix needs to be calculated for the envelope perturbation.

  14. Time-invariant PT product and phase locking in PT -symmetric lattice models

    Science.gov (United States)

    Joglekar, Yogesh N.; Onanga, Franck Assogba; Harter, Andrew K.

    2018-01-01

    Over the past decade, non-Hermitian, PT -symmetric Hamiltonians have been investigated as candidates for both a fundamental, unitary, quantum theory and open systems with a nonunitary time evolution. In this paper, we investigate the implications of the former approach in the context of the latter. Motivated by the invariance of the PT (inner) product under time evolution, we discuss the dynamics of wave-function phases in a wide range of PT -symmetric lattice models. In particular, we numerically show that, starting with a random initial state, a universal, gain-site location dependent locking between wave-function phases at adjacent sites occurs in the PT -symmetry-broken region. Our results pave the way towards understanding the physically observable implications of time invariants in the nonunitary dynamics produced by PT -symmetric Hamiltonians.

  15. Invariant operator theory for the single-photon energy in time-varying media

    International Nuclear Information System (INIS)

    Jeong-Ryeol, Choi

    2010-01-01

    After the birth of quantum mechanics, the notion in physics that the frequency of light is the only factor that determines the energy of a single photon has played a fundamental role. However, under the assumption that the theory of Lewis–Riesenfeld invariants is applicable in quantum optics, it is shown in the present work that this widely accepted notion is valid only for light described by a time-independent Hamiltonian, i.e., for light in media satisfying the conditions, ε(i) = ε(0), μ(t) = μ(0), and σ(t) = 0 simultaneously. The use of the Lewis–Riesenfeld invariant operator method in quantum optics leads to a marvelous result: the energy of a single photon propagating through time-varying linear media exhibits nontrivial time dependence without a change of frequency. (general)

  16. Test of time-reversal invariance at COSY (TRIC)

    Energy Technology Data Exchange (ETDEWEB)

    Eversheim, D., E-mail: evershei@hiskp.uni-bonn.de; Valdau, Yu. [University Bonn, Helmholtz Institut fuer Strahlen- und Kernphysik (Germany); Lorentz, B. [Forschungszentrum Juelich, Institut fuer Kernphysik (Germany)

    2013-03-15

    At the Cooler Synchrotron COSY a novel (P-even, T-odd) null test of time-reversal invariance to an accuracy of 10{sup - 6} is planned as an internal target transmission experiment. The parity conserving time-reversal violating observable is the total cross-section asymmetry A{sub y,xz}. This quantity is measured using a polarized proton beam with an energy of 135 MeV and an internal tensor polarized deuteron target from the PAX atomic beam source. The reaction rate will be measured by means of an integrating beam current transformer. Thus, in this experiment the cooler synchroton ring serves as ideal forward spectrometer, as a detector, and an accelerator.

  17. Evidence for several dipolar quasi-invariants in liquid crystals

    Science.gov (United States)

    Bonin, C. J.; González, C. E.; Segnorile, H. H.; Zamar, R. C.

    2013-10-01

    The quasi-equilibrium states of an observed quantum system involve as many constants of motion as the dimension of the operator basis which spans the blocks of all the degenerate eigenvalues of the Hamiltonian that drives the system dynamics, however, the possibility of observing such quasi-invariants in solid-like spin systems in Nuclear Magnetic Resonance (NMR) is not a strictly exact prediction. The aim of this work is to provide experimental evidence of several quasi-invariants, in the proton NMR of small spin clusters, like nematic liquid crystal molecules, in which the use of thermodynamic arguments is not justified. We explore the spin states prepared with the Jeener-Broekaert pulse sequence by analyzing the time-domain signals yielded by this sequence as a function of the preparation times, in a variety of dipolar networks, solids, and liquid crystals. We observe that the signals can be explained with two dipolar quasi-invariants only within a range of short preparation times, however at longer times liquid crystal signals show an echo-like behaviour whose description requires assuming more quasi-invariants. We study the multiple quantum coherence content of such signals on a basis orthogonal to the z-basis and see that such states involve a significant number of correlated spins. Therefore, we show that the NMR signals within the whole preparation time-scale can only be reconstructed by assuming the occurrence of multiple quasi-invariants which we experimentally isolate.

  18. Stochastic model of financial markets reproducing scaling and memory in volatility return intervals

    Science.gov (United States)

    Gontis, V.; Havlin, S.; Kononovicius, A.; Podobnik, B.; Stanley, H. E.

    2016-11-01

    We investigate the volatility return intervals in the NYSE and FOREX markets. We explain previous empirical findings using a model based on the interacting agent hypothesis instead of the widely-used efficient market hypothesis. We derive macroscopic equations based on the microscopic herding interactions of agents and find that they are able to reproduce various stylized facts of different markets and different assets with the same set of model parameters. We show that the power-law properties and the scaling of return intervals and other financial variables have a similar origin and could be a result of a general class of non-linear stochastic differential equations derived from a master equation of an agent system that is coupled by herding interactions. Specifically, we find that this approach enables us to recover the volatility return interval statistics as well as volatility probability and spectral densities for the NYSE and FOREX markets, for different assets, and for different time-scales. We find also that the historical S&P500 monthly series exhibits the same volatility return interval properties recovered by our proposed model. Our statistical results suggest that human herding is so strong that it persists even when other evolving fluctuations perturbate the financial system.

  19. Construction and properties of a topological index for periodically driven time-reversal invariant 2D crystals

    Directory of Open Access Journals (Sweden)

    D. Carpentier

    2015-07-01

    Full Text Available We present mathematical details of the construction of a topological invariant for periodically driven two-dimensional lattice systems with time-reversal symmetry and quasienergy gaps, which was proposed recently by some of us. The invariant is represented by a gap-dependent Z2-valued index that is simply related to the Kane–Mele invariants of quasienergy bands but contains an extra information. As a byproduct, we prove new expressions for the two-dimensional Kane–Mele invariant relating the latter to Wess–Zumino amplitudes and the boundary gauge anomaly.

  20. Gauge-invariance and infrared divergences in the luminosity distance

    International Nuclear Information System (INIS)

    Biern, Sang Gyu; Yoo, Jaiyul

    2017-01-01

    Measurements of the luminosity distance have played a key role in discovering the late-time cosmic acceleration. However, when accounting for inhomogeneities in the Universe, its interpretation has been plagued with infrared divergences in its theoretical predictions, which are in some cases used to explain the cosmic acceleration without dark energy. The infrared divergences in most calculations are artificially removed by imposing an infrared cut-off scale. We show that a gauge-invariant calculation of the luminosity distance is devoid of such divergences and consistent with the equivalence principle, eliminating the need to impose a cut-off scale. We present proper numerical calculations of the luminosity distance using the gauge-invariant expression and demonstrate that the numerical results with an ad hoc cut-off scale in previous calculations have negligible systematic errors as long as the cut-off scale is larger than the horizon scale. We discuss the origin of infrared divergences and their cancellation in the luminosity distance.

  1. Gauge-invariance and infrared divergences in the luminosity distance

    Energy Technology Data Exchange (ETDEWEB)

    Biern, Sang Gyu; Yoo, Jaiyul, E-mail: sgbiern@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich (Switzerland)

    2017-04-01

    Measurements of the luminosity distance have played a key role in discovering the late-time cosmic acceleration. However, when accounting for inhomogeneities in the Universe, its interpretation has been plagued with infrared divergences in its theoretical predictions, which are in some cases used to explain the cosmic acceleration without dark energy. The infrared divergences in most calculations are artificially removed by imposing an infrared cut-off scale. We show that a gauge-invariant calculation of the luminosity distance is devoid of such divergences and consistent with the equivalence principle, eliminating the need to impose a cut-off scale. We present proper numerical calculations of the luminosity distance using the gauge-invariant expression and demonstrate that the numerical results with an ad hoc cut-off scale in previous calculations have negligible systematic errors as long as the cut-off scale is larger than the horizon scale. We discuss the origin of infrared divergences and their cancellation in the luminosity distance.

  2. Explicit Minkowski invariance and differential calculus in the quantum space-time

    International Nuclear Information System (INIS)

    Xu Zhan.

    1991-11-01

    In terms of the R-circumflex matrix of the quantum group SL q (2), the explicit Minkowski coordinate commutation relations in the four-dimensional quantum space-time are given, and the invariance of the Minkowski metric is shown. The differential calculus in this quantum space-time is discussed and the corresponding commutation relations are proposed. (author). 17 refs

  3. A gauge invariant theory for time dependent heat current

    International Nuclear Information System (INIS)

    Chen, Jian; ShangGuan, Minhui; Wang, Jian

    2015-01-01

    In this work, we develop a general gauge-invariant theory for AC heat current through multi-probe systems. Using the non-equilibrium Green’s function, a general expression for time-dependent electrothermal admittance is obtained where we include the internal potential due to the Coulomb interaction explicitly. We show that the gauge-invariant condition is satisfied for heat current if the self-consistent Coulomb interaction is considered. It is known that the Onsager relation holds for dynamic charge conductance. We show in this work that the Onsager relation for electrothermal admittance is violated, except for a special case of a quantum dot system with a single energy level. We apply our theory to a nano capacitor where the Coulomb interaction plays an essential role. We find that, to the first order in frequency, the heat current is related to the electrochemical capacitance as well as the phase accumulated in the scattering event. (paper)

  4. Continuous time modelling with individually varying time intervals for oscillating and non-oscillating processes.

    Science.gov (United States)

    Voelkle, Manuel C; Oud, Johan H L

    2013-02-01

    When designing longitudinal studies, researchers often aim at equal intervals. In practice, however, this goal is hardly ever met, with different time intervals between assessment waves and different time intervals between individuals being more the rule than the exception. One of the reasons for the introduction of continuous time models by means of structural equation modelling has been to deal with irregularly spaced assessment waves (e.g., Oud & Delsing, 2010). In the present paper we extend the approach to individually varying time intervals for oscillating and non-oscillating processes. In addition, we show not only that equal intervals are unnecessary but also that it can be advantageous to use unequal sampling intervals, in particular when the sampling rate is low. Two examples are provided to support our arguments. In the first example we compare a continuous time model of a bivariate coupled process with varying time intervals to a standard discrete time model to illustrate the importance of accounting for the exact time intervals. In the second example the effect of different sampling intervals on estimating a damped linear oscillator is investigated by means of a Monte Carlo simulation. We conclude that it is important to account for individually varying time intervals, and encourage researchers to conceive of longitudinal studies with different time intervals within and between individuals as an opportunity rather than a problem. © 2012 The British Psychological Society.

  5. Impulsivity and the Sexes: Measurement and Structural Invariance of the UPPS-P Impulsive Behavior Scale

    Science.gov (United States)

    Cyders, Melissa A.

    2013-01-01

    Before it is possible to test whether men and women differ in impulsivity, it is necessary to evaluate whether impulsivity measures are invariant across sex. The UPPS-P Impulsive Behavior Scale (negative urgency, lack of premeditation, lack of perseverance, and sensation seeking, with added subscale of positive urgency) is one measure of five…

  6. Neutral meson tests of time-reversal symmetry invariance

    OpenAIRE

    Bevan, Adrian; Inguglia, Gianluca; Zoccali, Michele

    2013-01-01

    The laws of quantum physics can be studied under the mathematical operation T that inverts the direction of time. Strong and electromagnetic forces are known to be invariant under temporal inversion, however the weak force is not. The BaBar experiment recently exploited the quantum-correlated production of pairs of B0 mesons to show that T is a broken symmetry. Here we show that it is possible to perform a wide range of tests of quark flavour changing processes under T in order to validate th...

  7. Influence of the time scale on the construction of financial networks.

    Science.gov (United States)

    Emmert-Streib, Frank; Dehmer, Matthias

    2010-09-30

    In this paper we investigate the definition and formation of financial networks. Specifically, we study the influence of the time scale on their construction. For our analysis we use correlation-based networks obtained from the daily closing prices of stock market data. More precisely, we use the stocks that currently comprise the Dow Jones Industrial Average (DJIA) and estimate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation coefficients. That means only if a correlation coefficient is statistically significant different from zero, we include an edge in the network. This construction procedure results in unweighted, undirected networks. By separating the time series of stock prices in non-overlapping intervals, we obtain one network per interval. The length of these intervals corresponds to the time scale of the data, whose influence on the construction of the networks will be studied in this paper. Numerical analysis of four different measures in dependence on the time scale for the construction of networks allows us to gain insights about the intrinsic time scale of the stock market with respect to a meaningful graph-theoretical analysis.

  8. Application of discrete scale invariance method on pipe rupture

    International Nuclear Information System (INIS)

    Rajkovic, M.; Mihailovic, Z.; Riznic, J.

    2007-01-01

    'Full text:' A process of material failure of a mechanical system in the form of cracks and microcracks, a catastrophic phenomenon of considerable technological and scientific importance, may be forecasted according to the recent advances in the theory of critical phenomena in statistical physics. Critical rupture scenario states that, in many concrete and composite heterogeneous materials under compression and materials with large distributed residual stresses, rupture is a genuine critical point, i.e., the culmination of a self-organization of damage and cracking characterized by power law signatures. The concept of discrete scale invariance leads to a complex critical exponent (or dimension) and may occur spontaneously in systems and materials developing rupture. It establishes, theoretically, the power law dependence of a measurable observable, such as the rate of acoustic emissions radiated during loading or rate of heat released during the process, upon the time to failure. However, the problem is the power law can be distinguished from other parametric functional forms such as an exponential only close to the critical time. In this paper we modify the functional renormalization method to include the noise elimination procedure and dimension reduction. The aim is to obtain the prediction of the critical rupture time only from the knowledge of the power law parameters at early times prior to rupture, and based on the assumption that the dynamics close to rupture is governed by the power law dependence of the temperature measured along the perimeter of the tube upon the time-to-failure. Such an analysis would not only enhance the precision of prediction related to the rupture mechanism but also significantly help in determining and predicting the leak rates. The prediction will be compared to experimental data on Zr-2.5%Nb made tubes. Note: The views expressed in the paper are those of the authors and do not necessary represents those of the commission. (author)

  9. Full-scale and time-scale heating experiments at Stripa: preliminary results

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Hood, Michael; California Univ., Berkeley

    1978-01-01

    Two full-scale heating experiments and a time-scale heating experiment have recently been started in granite 340 meters below surface. The purpose of the full-scale heating experiments is to assess the near-field effects of thermal loading for the design of an underground repository of nuclear wastes. That of the time-scale heating experiments is to obtain field data of the interaction between heaters and its effect on the rock mass during a period of about two years, which corresponds to about twenty years of full-scale operation. Geological features of the rock around each experiment have been mapped carefully, and temperatures, stresses and displacements induced in the rock by heating have been calculated in advance of the experiments. Some 800 different measurements are recorded at frequent intervals by a computer system situated underground. These data can be compared at any time with predictions made earlier on video display units underground

  10. Coarse-coded higher-order neural networks for PSRI object recognition. [position, scale, and rotation invariant

    Science.gov (United States)

    Spirkovska, Lilly; Reid, Max B.

    1993-01-01

    A higher-order neural network (HONN) can be designed to be invariant to changes in scale, translation, and inplane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Consequently, fewer training passes and a smaller training set are required to learn to distinguish between objects. The size of the input field is limited, however, because of the memory required for the large number of interconnections in a fully connected HONN. By coarse coding the input image, the input field size can be increased to allow the larger input scenes required for practical object recognition problems. We describe a coarse coding technique and present simulation results illustrating its usefulness and its limitations. Our simulations show that a third-order neural network can be trained to distinguish between two objects in a 4096 x 4096 pixel input field independent of transformations in translation, in-plane rotation, and scale in less than ten passes through the training set. Furthermore, we empirically determine the limits of the coarse coding technique in the object recognition domain.

  11. Scaling invariance of spherical projectile fragmentation upon high-velocity impact on a thin continuous shield

    Energy Technology Data Exchange (ETDEWEB)

    Myagkov, N. N., E-mail: nn-myagkov@mail.ru [Russian Academy of Sciences, Institute of Applied Mechanics (Russian Federation)

    2017-01-15

    The problem of aluminum projectile fragmentation upon high-velocity impact on a thin aluminum shield is considered. A distinctive feature of this description is that the fragmentation has been numerically simulated using the complete system of equations of deformed solid mechanics by a method of smoothed particle hydrodynamics in three-dimensional setting. The transition from damage to fragmentation is analyzed and scaling relations are derived in terms of the impact velocity (V), ratio of shield thickness to projectile diameter (h/D), and ultimate strength (σ{sub p}) in the criterion of projectile and shield fracture. Analysis shows that the critical impact velocity V{sub c} (separating the damage and fragmentation regions) is a power function of σ{sub p} and h/D. In the supercritical region (V > V{sub c}), the weight-average fragment mass asymptotically tends to a power function of the impact velocity with exponent independent of h/D and σ{sub p}. Mean cumulative fragment mass distributions at the critical point are scale-invariant with respect to parameters h/D and σ{sub p}. Average masses of the largest fragments are also scale-invariant at V > V{sub c}, but only with respect to variable parameter σ{sub p}.

  12. Improving scale invariant feature transform-based descriptors with shape-color alliance robust feature

    Science.gov (United States)

    Wang, Rui; Zhu, Zhengdan; Zhang, Liang

    2015-05-01

    Constructing appropriate descriptors for interest points in image matching is a critical aspect task in computer vision and pattern recognition. A method as an extension of the scale invariant feature transform (SIFT) descriptor called shape-color alliance robust feature (SCARF) descriptor is presented. To address the problem that SIFT is designed mainly for gray images and lack of global information for feature points, the proposed approach improves the SIFT descriptor by means of a concentric-rings model, as well as integrating the color invariant space and shape context with SIFT to construct the SCARF descriptor. The SCARF method developed is more robust than the conventional SIFT with respect to not only the color and photometrical variations but also the measuring similarity as a global variation between two shapes. A comparative evaluation of different descriptors is carried out showing that the SCARF approach provides better results than the other four state-of-the-art related methods.

  13. A Novel Real-Time Feature Matching Scheme

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2014-02-01

    Full Text Available Affine Scale Invariant Feature Transform (ASIFT can obtain fully affine invariance, however, its time cost reaches about twice that in Scale Invariant Feature Transform (SIFT. We propose an improved ASIFT algorithm based on feature points in scale space for real-time application. In order to detect the affine invariant feature point, we establish a second-order difference of Gaussian (DOG pyramid and replace the extreme detection in the DOG pyramid by zero detection in the proposed second-order DOG pyramid, which decreases the complexity of the scheme. Experimental results show that the proposed method has a big progress in the real-time performance compared to the traditional one, while preserving the fully affine invariance and precision.

  14. Measurement Invariance of a Summative Achievement Assessment over Time: Is Status Really Ready for Growth?

    Science.gov (United States)

    Viger, Steven Guy

    2014-01-01

    The current study investigates the phenomenon of measurement invariance by examining the construct stability of a summative mathematics achievement instrument over time gleaned from an existing data set. In doing so, not only is the general question of measurement invariance of the particular instrument addressed, but also in the context of growth…

  15. Gauge invariance in the theoretical description of time-resolved angle-resolved pump/probe photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Freericks, J. K.; Krishnamurthy, H. R.; Sentef, M. A.; Devereaux, T. P.

    2015-10-01

    Nonequilibrium calculations in the presence of an electric field are usually performed in a gauge, and need to be transformed to reveal the gauge-invariant observables. In this work, we discuss the issue of gauge invariance in the context of time-resolved angle-resolved pump/probe photoemission. If the probe is applied while the pump is still on, one must ensure that the calculations of the observed photocurrent are gauge invariant. We also discuss the requirement of the photoemission signal to be positive and the relationship of this constraint to gauge invariance. We end by discussing some technical details related to the perturbative derivation of the photoemission spectra, which involve processes where the pump pulse photoexcites electrons due to nonequilibrium effects.

  16. Step scaling and the Yang-Mills gradient flow

    International Nuclear Information System (INIS)

    Lüscher, Martin

    2014-01-01

    The use of the Yang-Mills gradient flow in step-scaling studies of lattice QCD is expected to lead to results of unprecedented precision. Step scaling is usually based on the Schrödinger functional, where time ranges over an interval [0,T] and all fields satisfy Dirichlet boundary conditions at time 0 and T. In these calculations, potentially important sources of systematic errors are boundary lattice effects and the infamous topology-freezing problem. The latter is here shown to be absent if Neumann instead of Dirichlet boundary conditions are imposed on the gauge field at time 0. Moreover, the expectation values of gauge-invariant local fields at positive flow time (and of other well localized observables) that reside in the center of the space-time volume are found to be largely insensitive to the boundary lattice effects.

  17. Low temperature electroweak phase transition in the Standard Model with hidden scale invariance

    Directory of Open Access Journals (Sweden)

    Suntharan Arunasalam

    2018-01-01

    Full Text Available We discuss a cosmological phase transition within the Standard Model which incorporates spontaneously broken scale invariance as a low-energy theory. In addition to the Standard Model fields, the minimal model involves a light dilaton, which acquires a large vacuum expectation value (VEV through the mechanism of dimensional transmutation. Under the assumption of the cancellation of the vacuum energy, the dilaton develops a very small mass at 2-loop order. As a result, a flat direction is present in the classical dilaton-Higgs potential at zero temperature while the quantum potential admits two (almost degenerate local minima with unbroken and broken electroweak symmetry. We found that the cosmological electroweak phase transition in this model can only be triggered by a QCD chiral symmetry breaking phase transition at low temperatures, T≲132 MeV. Furthermore, unlike the standard case, the universe settles into the chiral symmetry breaking vacuum via a first-order phase transition which gives rise to a stochastic gravitational background with a peak frequency ∼10−8 Hz as well as triggers the production of approximately solar mass primordial black holes. The observation of these signatures of cosmological phase transitions together with the detection of a light dilaton would provide a strong hint of the fundamental role of scale invariance in particle physics.

  18. Antipersistent dynamics in short time scale variability of self-potential signals

    Directory of Open Access Journals (Sweden)

    M. Ragosta

    2000-06-01

    Full Text Available Time scale properties of self-potential signals are investigated through the analysis of the second order structure function (variogram, a powerful tool to investigate the spatial and temporal variability of observational data. In this work we analyse two sequences of self-potential values measured by means of a geophysical monitoring array located in a seismically active area of Southern Italy. The range of scales investigated goes from a few minutes to several days. It is shown that signal fluctuations are characterised by two time scale ranges in which self-potential variability appears to follow slightly different dynamical behaviours. Results point to the presence of fractal, non stationary features expressing a long term correlation with scaling coefficients which are the clue of stabilising mechanisms. In the scale ranges in which the series show scale invariant behaviour, self-potentials evolve like fractional Brownian motions with anticorrelated increments typical of processes regulated by negative feedback mechanisms (antipersistence. On scales below about 6 h the strength of such an antipersistence appears to be slightly greater than that observed on larger time scales where the fluctuations are less efficiently stabilised.

  19. Correlated continuous time random walks: combining scale-invariance with long-range memory for spatial and temporal dynamics

    International Nuclear Information System (INIS)

    Schulz, Johannes H P; Chechkin, Aleksei V; Metzler, Ralf

    2013-01-01

    Standard continuous time random walk (CTRW) models are renewal processes in the sense that at each jump a new, independent pair of jump length and waiting time are chosen. Globally, anomalous diffusion emerges through scale-free forms of the jump length and/or waiting time distributions by virtue of the generalized central limit theorem. Here we present a modified version of recently proposed correlated CTRW processes, where we incorporate a power-law correlated noise on the level of both jump length and waiting time dynamics. We obtain a very general stochastic model, that encompasses key features of several paradigmatic models of anomalous diffusion: discontinuous, scale-free displacements as in Lévy flights, scale-free waiting times as in subdiffusive CTRWs, and the long-range temporal correlations of fractional Brownian motion (FBM). We derive the exact solutions for the single-time probability density functions and extract the scaling behaviours. Interestingly, we find that different combinations of the model parameters lead to indistinguishable shapes of the emerging probability density functions and identical scaling laws. Our model will be useful for describing recent experimental single particle tracking data that feature a combination of CTRW and FBM properties. (paper)

  20. Introducing English and German versions of the Adolescent Time Attitude Scale.

    Science.gov (United States)

    Worrell, Frank C; Mello, Zena R; Buhl, Monika

    2013-08-01

    In this study, the authors report on the development of English and German versions of the Adolescent Time Attitude Scale (ATAS). The ATAS consists of six subscales assessing Past Positive, Past Negative, Present Positive, Present Negative, Future Positive, and Future Negative time attitudes. The authors describe the development of the scales and present data on the reliability and structural validity of ATAS scores in samples of American (N = 300) and German (N = 316) adolescents. Internal consistency estimates for scores on the English and German versions of the ATAS were in the .70 to .80 range. Confirmatory factor analyses indicated that a six-factor structure yielded the best fit for scores and that the scores were invariant across samples.

  1. Factorial Validity and Invariance Testing of the Exercise Dependence Scale-Revised in Swedish and Portuguese Exercisers

    Science.gov (United States)

    Lindwall, Magnus; Palmeira, Antonio

    2009-01-01

    The present study investigated the factorial validity and factorial invariance of the 21-item Exercise Dependence Scale-Revised using 162 Swedish and 269 Portuguese exercisers. In addition, the prevalence of exercise dependence symptoms and links to exercise behavior, gender, and age in the two samples was also studied. Confirmatory factor…

  2. Factorial Invariance of the Asian American Family Conflicts Scale across Ethnicity, Generational Status, Sex, and Nationality

    Science.gov (United States)

    Miller, Matthew J.; Lee, Richard M.

    2009-01-01

    The factorial invariance of the Asian American Family Conflicts Scale-Likelihood (FCS-L) was examined in a sample of 1,012 participants. Results support the use of the FCS-L in future research with diverse Asian subgroups. Limitations and future directions for research are discussed. (Contains 7 tables and 1 note.)

  3. Scale-invariant scalar metric fluctuations during inflation: non-perturbative formalism from a 5D vacuum

    International Nuclear Information System (INIS)

    Anabitarte, M.; Bellini, M.; Madriz Aguilar, Jose Edgar

    2010-01-01

    We extend to 5D an approach of a 4D non-perturbative formalism to study scalar metric fluctuations of a 5D Riemann-flat de Sitter background metric. In contrast with the results obtained in 4D, the spectrum of cosmological scalar metric fluctuations during inflation can be scale invariant and the background inflaton field can take sub-Planckian values. (orig.)

  4. Higgs naturalness and dark matter stability by scale invariance

    Directory of Open Access Journals (Sweden)

    Jun Guo

    2015-09-01

    Full Text Available Extending the spacetime symmetries of standard model (SM by scale invariance (SI may address the Higgs naturalness problem. In this article we attempt to embed accidental dark matter (DM into SISM, requiring that the symmetry protecting DM stability is accidental due to the model structure rather than imposed by hand. In this framework, if the light SM-like Higgs boson is the pseudo Goldstone boson of SI spontaneously breaking, we can even pine down the model, two-Higgs-doublets plus a real singlet: The singlet is the DM candidate and the extra Higgs doublet triggers electroweak symmetry breaking via the Coleman–Weinberg mechanism; Moreover, it dominates DM dynamics. We study spontaneously breaking of SI using the Gillard–Weinberg approach and find that the second doublet should acquire vacuum expectation value near the weak scale. Moreover, its components should acquire masses around 380 GeV except for a light CP-odd Higgs boson. Based on these features, we explore viable ways to achieve the correct relic density of DM, facing stringent constraints from direct detections of DM. For instance, DM annihilates into bb¯ near the SM-like Higgs boson pole, or into a pair of CP-odd Higgs boson with mass above that pole.

  5. Testing measurement invariance of the Depression, Anxiety, and Stress Scales (DASS-21) across four countries.

    Science.gov (United States)

    Scholten, Saskia; Velten, Julia; Bieda, Angela; Zhang, Xiao Chi; Margraf, Jürgen

    2017-11-01

    The rising burden of mental and behavioral disorders has become a global challenge (Murray et al., 2012). Measurement invariant clinical instruments are necessary for the assessment of relevant symptoms across countries. The present study tested the measurement invariance of the 21-item version of the Depression, Anxiety, and Stress Scales (DASS; Lovibond & Lovibond, 1995b) in Poland, Russia, the United Kingdom (U.K.), and the United States of America (U.S.). Telephone interviews were conducted with population-based samples (nPL = 1003, nRU = 3020, nU.K. = 1002, nU.S. = 1002). The DASS-21 shows threshold measurement invariance. Comparisons of latent means did not indicate differences between U.K. and U.S. However, Polish and Russian samples reported more depressive symptoms compared with U.K. and U.S. samples; the Russian sample had the highest levels of anxiety symptoms and the Polish sample demonstrated the highest stress levels. The DASS-21 can be recommended to meaningfully compare the relationships between variables across groups and to compare latent means in Polish-, Russian-, and English-speaking populations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Delay-Dependent Guaranteed Cost Control of an Interval System with Interval Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Xiao Min

    2009-01-01

    Full Text Available This paper concerns the problem of the delay-dependent robust stability and guaranteed cost control for an interval system with time-varying delay. The interval system with matrix factorization is provided and leads to less conservative conclusions than solving a square root. The time-varying delay is assumed to belong to an interval and the derivative of the interval time-varying delay is not a restriction, which allows a fast time-varying delay; also its applicability is broad. Based on the Lyapunov-Ktasovskii approach, a delay-dependent criterion for the existence of a state feedback controller, which guarantees the closed-loop system stability, the upper bound of cost function, and disturbance attenuation lever for all admissible uncertainties as well as out perturbation, is proposed in terms of linear matrix inequalities (LMIs. The criterion is derived by free weighting matrices that can reduce the conservatism. The effectiveness has been verified in a number example and the compute results are presented to validate the proposed design method.

  7. Gravity, two times, tractors, Weyl invariance, and six-dimensional quantum mechanics

    International Nuclear Information System (INIS)

    Bonezzi, R.; Latini, E.; Waldron, A.

    2010-01-01

    Fefferman and Graham showed some time ago that four-dimensional conformal geometries could be analyzed in terms of six-dimensional, ambient, Riemannian geometries admitting a closed homothety. Recently, it was shown how conformal geometry provides a description of physics manifestly invariant under local choices of unit systems. Strikingly, Einstein's equations are then equivalent to the existence of a parallel scale tractor (a six-component vector subject to a certain first order covariant constancy condition at every point in four-dimensional spacetime). These results suggest a six-dimensional description of four-dimensional physics, a viewpoint promulgated by the 2 times physics program of Bars. The Fefferman-Graham construction relies on a triplet of operators corresponding, respectively, to a curved six-dimensional light cone, the dilation generator and the Laplacian. These form an sp(2) algebra which Bars employs as a first class algebra of constraints in a six-dimensional gauge theory. In this article four-dimensional gravity is recast in terms of six-dimensional quantum mechanics by melding the 2 times and tractor approaches. This parent formulation of gravity is built from an infinite set of six-dimensional fields. Successively integrating out these fields yields various novel descriptions of gravity including a new four-dimensional one built from a scalar doublet, a tractor-vector multiplet and a conformal class of metrics.

  8. Measuring Teacher Job Satisfaction: Assessing Invariance in the Teacher Job Satisfaction Scale (TJSS) Across Six Countries

    Science.gov (United States)

    Pepe, Alessandro; Addimando, Loredana; Veronese, Guido

    2017-01-01

    Work and organizational psychology has long been concerned with measuring job satisfaction in organizational contexts, and this has carried across to the field of education, leading to a research focus on the work-related satisfaction of teachers. Today, a myriad of organizations continue to assess employees’ job satisfaction on a routine basis (Liu, Borg, & Spector, 2004). Unfortunately, a sort of balkanization of the field has resulted in the production of dozens of specific measurement tools, making it difficult to cross-compare samples and contexts. The present paper tested the measurement invariance of the Teacher Job Satisfaction Scale (TJSS) in six international cohorts (Netherlands, United States, Russia China, Italy and Palestine) of in-service teachers (N = 2,819). Confirmatory factor analysis and multi-group invariance tests were applied. The TJSS-9 displayed robust psychometric proprieties and no substantial departures from measurement invariance (configural and metric). Future research is required to further test equivalence across additional countries, with view to developing a truly international tool for measuring job satisfaction in teaching. PMID:28904592

  9. Measuring Teacher Job Satisfaction: Assessing Invariance in the Teacher Job Satisfaction Scale (TJSS) Across Six Countries.

    Science.gov (United States)

    Pepe, Alessandro; Addimando, Loredana; Veronese, Guido

    2017-08-01

    Work and organizational psychology has long been concerned with measuring job satisfaction in organizational contexts, and this has carried across to the field of education, leading to a research focus on the work-related satisfaction of teachers. Today, a myriad of organizations continue to assess employees' job satisfaction on a routine basis (Liu, Borg, & Spector, 2004). Unfortunately, a sort of balkanization of the field has resulted in the production of dozens of specific measurement tools, making it difficult to cross-compare samples and contexts. The present paper tested the measurement invariance of the Teacher Job Satisfaction Scale (TJSS) in six international cohorts (Netherlands, United States, Russia China, Italy and Palestine) of in-service teachers (N = 2,819). Confirmatory factor analysis and multi-group invariance tests were applied. The TJSS-9 displayed robust psychometric proprieties and no substantial departures from measurement invariance (configural and metric). Future research is required to further test equivalence across additional countries, with view to developing a truly international tool for measuring job satisfaction in teaching.

  10. Measuring Teacher Job Satisfaction: Assessing Invariance in the Teacher Job Satisfaction Scale (TJSS Across Six Countries

    Directory of Open Access Journals (Sweden)

    Alessandro Pepe

    2017-08-01

    Full Text Available Work and organizational psychology has long been concerned with measuring job satisfaction in organizational contexts, and this has carried across to the field of education, leading to a research focus on the work-related satisfaction of teachers. Today, a myriad of organizations continue to assess employees’ job satisfaction on a routine basis (Liu, Borg, & Spector, 2004. Unfortunately, a sort of balkanization of the field has resulted in the production of dozens of specific measurement tools, making it difficult to cross-compare samples and contexts. The present paper tested the measurement invariance of the Teacher Job Satisfaction Scale (TJSS in six international cohorts (Netherlands, United States, Russia China, Italy and Palestine of in-service teachers (N = 2,819. Confirmatory factor analysis and multi-group invariance tests were applied. The TJSS-9 displayed robust psychometric proprieties and no substantial departures from measurement invariance (configural and metric. Future research is required to further test equivalence across additional countries, with view to developing a truly international tool for measuring job satisfaction in teaching.

  11. Mobile user forecast and power-law acceleration invariance of scale-free networks

    International Nuclear Information System (INIS)

    Guo Jin-Li; Guo Zhao-Hua; Liu Xue-Jiao

    2011-01-01

    This paper studies and predicts the number growth of China's mobile users by using the power-law regression. We find that the number growth of the mobile users follows a power law. Motivated by the data on the evolution of the mobile users, we consider scenarios of self-organization of accelerating growth networks into scale-free structures and propose a directed network model, in which the nodes grow following a power-law acceleration. The expressions for the transient and the stationary average degree distributions are obtained by using the Poisson process. This result shows that the model generates appropriate power-law connectivity distributions. Therefore, we find a power-law acceleration invariance of the scale-free networks. The numerical simulations of the models agree with the analytical results well. (interdisciplinary physics and related areas of science and technology)

  12. NDVI, scale invariance and the modifiable areal unit problem : An assessment of vegetation in the Adelaide Parklands

    NARCIS (Netherlands)

    Nouri, Hamideh; Anderson, Sharolyn; Sutton, Paul; Beecham, Simon; Nagler, Pamela; Jarchow, Christopher J.; Roberts, Dar A.

    2017-01-01

    This research addresses the question as to whether or not the Normalised Difference Vegetation Index (NDVI) is scale invariant (i.e. constant over spatial aggregation) for pure pixels of urban vegetation. It has been long recognized that there are issues related to the modifiable areal unit problem

  13. Reviewing interval cancers: Time well spent?

    International Nuclear Information System (INIS)

    Gower-Thomas, Kate; Fielder, Hilary M.P.; Branston, Lucy; Greening, Sarah; Beer, Helen; Rogers, Cerilan

    2002-01-01

    OBJECTIVES: To categorize interval cancers, and thus identify false-negatives, following prevalent and incident screens in the Welsh breast screening programme. SETTING: Breast Test Wales (BTW) Llandudno, Cardiff and Swansea breast screening units. METHODS: Five hundred and sixty interval breast cancers identified following negative mammographic screening between 1989 and 1997 were reviewed by eight screening radiologists. The blind review was achieved by mixing the screening films of women who subsequently developed an interval cancer with screen negative films of women who did not develop cancer, in a ratio of 4:1. Another radiologist used patients' symptomatic films to record a reference against which the reviewers' reports of the screening films were compared. Interval cancers were categorized as 'true', 'occult', 'false-negative' or 'unclassified' interval cancers or interval cancers with minimal signs, based on the National Health Service breast screening programme (NHSBSP) guidelines. RESULTS: Of the classifiable interval films, 32% were false-negatives, 55% were true intervals and 12% occult. The proportion of false-negatives following incident screens was half that following prevalent screens (P = 0.004). Forty percent of the seed films were recalled by the panel. CONCLUSIONS: Low false-negative interval cancer rates following incident screens (18%) versus prevalent screens (36%) suggest that lower cancer detection rates at incident screens may have resulted from fewer cancers than expected being present, rather than from a failure to detect tumours. The panel method for categorizing interval cancers has significant flaws as the results vary markedly with different protocol and is no more accurate than other, quicker and more timely methods. Gower-Thomas, K. et al. (2002)

  14. Short Is Beautiful: Dimensionality and Measurement Invariance in Two Length of the Basic Psychological Need Satisfaction at Work Scale

    Directory of Open Access Journals (Sweden)

    Mårten Eriksson

    2018-06-01

    Full Text Available Self-determination theory proposes that all humans have three intrinsic psychological needs: the needs for Autonomy, Competence, and Relatedness. These needs take different forms in different areas of life. The present study examines the psychometric properties of a Swedish version of the Basic Psychological Need Satisfaction at Work (BPNS-W scale. The fit of 10-factor structures previously suggested for related versions of the scale were compared. Cross-sectional data from 1,200 participants were examined in a confirmatory factor analysis framework. Both the original 21-item version and a reduced 12-item version of the BPNS-W were examined. The General Health Questionnaire was used for validation. The results supported a three-factor solution with correlated error variances for the reversed items. Invariance testing of the long and short scales gave best support to the short scale, for which partial scalar invariance was achieved. The external validity of the short scale was supported by a hierarchical regression analysis in which each need made a unique contribution in predicting psychological well-being. In conclusion, the results corroborate a three-factor structure of BPNS-W. Although not perfect the short scale should, it is argued, be preferred over the long version. Directions for the future development of the scale are discussed.

  15. SUPERFLUID VORTEX UNPINNING AS A COHERENT NOISE PROCESS, AND THE SCALE INVARIANCE OF PULSAR GLITCHES

    International Nuclear Information System (INIS)

    Melatos, A.; Warszawski, L.

    2009-01-01

    The scale-invariant glitch statistics observed in individual pulsars (exponential waiting-time and power-law size distributions) are consistent with a critical self-organization process, wherein superfluid vortices pin metastably in macroscopic domains and unpin collectively via nearest-neighbor avalanches. Macroscopic inhomogeneity emerges naturally if pinning occurs at crustal faults. If, instead, pinning occurs at lattice sites and defects, which are macroscopically homogeneous, we show that an alternative, noncritical self-organization process operates, termed coherent noise, wherein the global Magnus force acts uniformly on vortices trapped in a range of pinning potentials and undergoing thermal creep. It is found that vortices again unpin collectively, but not via nearest-neighbor avalanches, and that, counterintuitively, the resulting glitch sizes are scale invariant, in accord with observational data. A mean-field analytic theory of the coherent noise process, supported by Monte Carlo simulations, yields a power-law size distribution, between the smallest and largest glitch, with exponent a in the range -2 ≤ a ≤ 0. When the theory is fitted to data from the nine most active pulsars, including the two quasi-periodic glitchers PSR J0537-6910 and PSR J0835-4510, it directly constrains the distribution of pinning potentials in the star, leading to two conclusions: (1) the potentials are broadly distributed, with the mean comparable to the standard deviation; and (2) the mean potential decreases with characteristic age. Fitting the theory to the data also constrains the pinned vortex fraction and the rate of thermal creep. An observational test is proposed to discriminate between nearest-neighbor avalanches and coherent noise: the latter process predicts a statistical excess of large glitches ('aftershocks') following a large glitch, whereas the former process does not. Its discriminatory power is discussed under various microphysical scenarios.

  16. Invariance of the Berry phase under unitary transformations: application to the time-dependent generalized harmonic oscillator

    International Nuclear Information System (INIS)

    Kobe, D.H.

    1989-01-01

    The Berry phase is derived in a manifestly gauge-invariant way, without adiabatic or cyclic requirements. It is invariant under unitary transformations, contrary to recent assertions. A time-dependent generalized harmonic oscillator is taken as an example. The energy of the system is not in general the Hamiltonian. An energy, the time derivative of which is the power, is obtained from the equation of motion. When the system is quantized, the Berry phase is zero, and is invariant under unitary transformations. If the energy is chosen incorrectly to be the Hamiltonian, a nonzero Berry phase is obtained. In this case the total phase, the sun of the dynamical and Berry phases, is equal to the correct total phase through first order in perturbation theory. (author)

  17. Property - preserving convergent sequences of invariant sets for linear discrete - time systems

    NARCIS (Netherlands)

    Athanasopoulos, N.; Lazar, M.; Bitsoris, G.

    2014-01-01

    Abstract: New sequences of monotonically increasing sets are introduced, for linear discrete-time systems subject to input and state constraints. The elements of the set sequences are controlled invariant and admissible regions of stabilizability. They are generated from the iterative application of

  18. Structure, longitudinal invariance, and stability of the Child Behavior Checklist 1½-5's Diagnostic and Statistical Manual of Mental Disorders-Autism Spectrum Disorder scale: Findings from Generation R (Rotterdam).

    Science.gov (United States)

    Rescorla, Leslie A; Ghassabian, Akhgar; Ivanova, Masha Y; Jaddoe, Vincent Wv; Verhulst, Frank C; Tiemeier, Henning

    2017-11-01

    Although the Child Behavior Checklist 1½-5's 12-item Diagnostic and Statistical Manual of Mental Disorders-Autism Spectrum Problems Scale (formerly called Pervasive Developmental Problems scale) has been used in several studies as an autism spectrum disorder screener, the base rate and stability of its items and its measurement model have not been previously studied. We therefore examined the structure, longitudinal invariance, and stability of the Child Behavior Checklist 1½-5's Diagnostic and Statistical Manual of Mental Disorders-Autism Spectrum Problems Scale in the diverse Generation R (Rotterdam) sample based on mothers' ratings at 18 months ( n = 4695), 3 years ( n = 4571), and 5 years ( n = 5752). Five items that seemed especially characteristic of autism spectrum disorder had low base rates at all three ages. The rank order of base rates for the 12 items was highly correlated over time ( Qs ⩾ 0.86), but the longitudinal stability of individual items was modest (phi coefficients = 0.15-0.34). Confirmatory factor analyses indicated that the autism spectrum disorder scale model manifested configural, metric, and scalar longitudinal invariance over the time period from 18 months to 5 years, with large factor loadings. Correlations over time for observed autism spectrum disorder scale scores (0.25-0.50) were generally lower than the correlations across time of the latent factors (0.45-0.68). Results indicated significant associations of the autism spectrum disorder scale with later autism spectrum disorder diagnoses.

  19. Testing for Measurement Invariance in the Satisfaction with Life Scale: A Comparison of Russians and North Americans

    Science.gov (United States)

    Tucker, Kari L.; Ozer, Daniel J.; Lyubomirsky, Sonja; Boehm, Julia K.

    2006-01-01

    This study examined the comparability of Satisfaction With Life Scale (SWLS) [Diener, Emmons, Larsen, & Griffin, 1985, "Social Indicators Research," 34: 7-32] scores across U.S. and Russian student and community groups. Criteria for weak measurement invariance were met when comparing U.S. and Russian groups (combining student and…

  20. In search of invariants for viscous liquids in the density scaling regime: investigations of dynamic and thermodynamic moduli.

    Science.gov (United States)

    Jedrzejowska, Agnieszka; Grzybowski, Andrzej; Paluch, Marian

    2017-07-19

    In this paper, we report the nontrivial results of our investigations of dynamic and thermodynamic moduli in search of invariants for viscous liquids in the density scaling regime by using selected supercooled van der Waals liquids as representative materials. Previously, the dynamic modulus M p-T (defined in the pressure-temperature representation by the ratio of isobaric activation energy and activation volume) as well as the ratio B T /M p-T (where B T is the thermodynamic modulus defined as the inverse isothermal compressibility) have been suggested as some kinds of material constants. We have established that they are not valid in the explored wide range of temperatures T over a dozen decades of structural relaxation times τ. The temperature dependences of M p-T and B T /M p-T have been elucidated by comparison with the well-known measure of the relative contribution of temperature and density fluctuations to molecular dynamics near the glass transition, i.e., the ratio of isochoric and isobaric activation energies. Then, we have implemented an idea to transform the definition of the dynamic modulus M p-T from the p-T representation to the V-T one. This idea relied on the disentanglement of combined temperature and density fluctuations involved in isobaric parameters and has resulted in finding an invariant for viscous liquids in the density scaling regime, which is the ratio of thermodynamic and dynamic moduli, B T /M V-T . In this way, we have constituted a characteristic of thermodynamics and molecular dynamics, which remains unchanged in the supercooled liquid state for a given material, the molecular dynamics of which obeys the power density scaling law.

  1. New precession expressions, valid for long time intervals

    Science.gov (United States)

    Vondrák, J.; Capitaine, N.; Wallace, P.

    2011-10-01

    Context. The present IAU model of precession, like its predecessors, is given as a set of polynomial approximations of various precession parameters intended for high-accuracy applications over a limited time span. Earlier comparisons with numerical integrations have shown that this model is valid only for a few centuries around the basic epoch, J2000.0, while for more distant epochs it rapidly diverges from the numerical solution. In our preceding studies we also obtained preliminary developments for the precessional contribution to the motion of the equator: coordinates X,Y of the precessing pole and precession parameters ψA,ωA, suitable for use over long time intervals. Aims: The goal of the present paper is to obtain upgraded developments for various sets of precession angles that would fit modern observations near J2000.0 and at the same time fit numerical integration of the motions of solar system bodies on scales of several thousand centuries. Methods: We used the IAU 2006 solutions to represent the precession of the ecliptic and of the equator close to J2000.0 and, for more distant epochs, a numerical integration using the Mercury 6 package and solutions by Laskar et al. (1993, A&A, 270, 522) with upgraded initial conditions and constants to represent the ecliptic, and general precession and obliquity, respectively. From them, different precession parameters were calculated in the interval ± 200 millennia from J2000.0, and analytical expressions are found that provide a good fit for the whole interval. Results: Series for the various precessional parameters, comprising a cubic polynomial plus from 8 to 14 periodic terms, are derived that allow precession to be computed with an accuracy comparable to IAU 2006 around the central epoch J2000.0, a few arcseconds throughout the historical period, and a few tenths of a degree at the ends of the ± 200 millennia time span. Computer algorithms are provided that compute the ecliptic and mean equator poles and the

  2. The usage of color invariance in SURF

    Science.gov (United States)

    Meng, Gang; Jiang, Zhiguo; Zhao, Danpei

    2009-10-01

    SURF (Scale Invariant Feature Transform) is a robust local invariant feature descriptor. However, SURF is mainly designed for gray images. In order to make use of the information provided by color (mainly RGB channels), this paper presents a novel colored local invariant feature descriptor, CISURF (Color Invariance based SURF). The proposed approach builds the descriptors in a color invariant space, which stems from Kubelka-Munk model and provides more valuable information than the gray space. Compared with the conventional SURF and SIFT descriptors, the experimental results show that descriptors created by CISURF is more robust to the circumstance changes such as the illumination direction, illumination intensity, and the viewpoints, and are more suitable for the deep space background objects.

  3. Factorial Invariance of the Scale Beliefs about Children's Adjustment in Same-Sex Families in Spanish, Chilean, and Hispanic University Students

    Science.gov (United States)

    Pascual-Soler, Marcos; Frias-Navarro, Dolores; Barrientos-Delgado, Jaime; Badenes-Ribera, Laura; Monterde-i-Bort, Hector; Cárdenas-Castro, Manuel; Berrios-Riquelme, José

    2017-01-01

    This study examines the factorial invariance of the Scale on Beliefs About Children's Adjustment in Same-Sex Families (SBCASSF) across countries in three samples: Chilean, Spanish, and Hispanic university students. The scale analyzes attitudes toward the consequences of the rearing and education of children by parents with a homosexual sexual…

  4. Interval timing in genetically modified mice: a simple paradigm

    OpenAIRE

    Balci, F.; Papachristos, E. B.; Gallistel, C. R.; Brunner, D.; Gibson, J.; Shumyatsky, G. P.

    2007-01-01

    We describe a behavioral screen for the quantitative study of interval timing and interval memory in mice. Mice learn to switch from a short-latency feeding station to a long-latency station when the short latency has passed without a feeding. The psychometric function is the cumulative distribution of switch latencies. Its median measures timing accuracy and its interquartile interval measures timing precision. Next, using this behavioral paradigm, we have examined mice with a gene knockout ...

  5. Adiabatic perturbations in pre-big bang models: Matching conditions and scale invariance

    International Nuclear Information System (INIS)

    Durrer, Ruth; Vernizzi, Filippo

    2002-01-01

    At low energy, the four-dimensional effective action of the ekpyrotic model of the universe is equivalent to a slightly modified version of the pre-big bang model. We discuss cosmological perturbations in these models. In particular we address the issue of matching the perturbations from a collapsing to an expanding phase. We show that, under certain physically motivated and quite generic assumptions on the high energy corrections, one obtains n=0 for the spectrum of scalar perturbations in the original pre-big bang model (with a vanishing potential). With the same assumptions, when an exponential potential for the dilaton is included, a scale invariant spectrum (n=1) of adiabatic scalar perturbations is produced under very generic matching conditions, both in a modified pre-big bang and ekpyrotic scenario. We also derive the resulting spectrum for arbitrary power law scale factors matched to a radiation-dominated era

  6. On the simplest scale invariant tree-tensor-states preserving the quantum symmetries of the antiferromagnetic XXZ chain

    Science.gov (United States)

    Monthus, Cécile

    2018-03-01

    For the line of critical antiferromagnetic XXZ chains with coupling J  >  0 and anisotropy 0<Δ ≤slant 1 , we describe how the block-spin renormalization procedure preserving the SU q (2) symmetry introduced by Martin-Delgado and Sierra (1996 Phys. Rev. Lett. 76 1146) can be reformulated as the translation-invariant scale-invariant tree-tensor-state of the smallest dimension that is compatible with the quantum symmetries of the model. The properties of this tree-tensor-state are studied in detail via the ground-state energy, the magnetizations and the staggered magnetizations, as well as the Shannon-Renyi entropies characterizing the multifractality of the components of the wave function.

  7. Factorial Invariance and Convergent Validity of the Group-Based Medical Mistrust Scale across Gender and Ethnoracial Identity.

    Science.gov (United States)

    Wheldon, Christopher W; Kolar, Stephanie K; Hernandez, Natalie D; Daley, Ellen M

    2017-01-01

    The objective of this study was to assess the factorial invariance and convergent validity of the Group-Based Medical Mistrust Scale (GBMMS) across gender (male and female) and ethnoracial identity (Latino and Black). Minority students (N = 686) attending a southeastern university were surveyed in the fall of 2011. Psychometric analysis of the GBMMS was performed. A three-factor solution fit the data after the omission of two problematic items. This revised version of the GBMMS exhibited sufficient configural, metric, and scalar invariance. Convergence of the GBMMS with conceptually related measures provided further evidence of validity; however, there was variation across ethnoracial identity. The GBMMS has viable psychometric properties across gender and ethnoracial identity in Black and Latino populations.

  8. Scale invariance of the η-deformed AdS5×S5 superstring, T-duality and modified type II equations

    Directory of Open Access Journals (Sweden)

    G. Arutyunov

    2016-02-01

    Full Text Available We consider the ABF background underlying the η-deformed AdS5×S5 sigma model. This background fails to satisfy the standard IIB supergravity equations which indicates that the corresponding sigma model is not Weyl invariant, i.e. does not define a critical string theory in the usual sense. We argue that the ABF background should still define a UV finite theory on a flat 2d world-sheet implying that the η-deformed model is scale invariant. This property follows from the formal relation via T-duality between the η-deformed model and the one defined by an exact type IIB supergravity solution that has 6 isometries albeit broken by a linear dilaton. We find that the ABF background satisfies candidate type IIB scale invariance conditions which for the R–R field strengths are of the second order in derivatives. Surprisingly, we also find that the ABF background obeys an interesting modification of the standard IIB supergravity equations that are first order in derivatives of R–R fields. These modified equations explicitly depend on Killing vectors of the ABF background and, although not universal, they imply the universal scale invariance conditions. Moreover, we show that it is precisely the non-isometric dilaton of the T-dual solution that leads, after T-duality, to modification of type II equations from their standard form. We conjecture that the modified equations should follow from κ-symmetry of the η-deformed model. All our observations apply also to η-deformations of AdS3×S3×T4and AdS2×S2×T6models.

  9. Rheology of confined granular flows: scale invariance, glass transition, and friction weakening.

    Science.gov (United States)

    Richard, P; Valance, A; Métayer, J-F; Sanchez, P; Crassous, J; Louge, M; Delannay, R

    2008-12-12

    We study fully developed, steady granular flows confined between parallel flat frictional sidewalls using numerical simulations and experiments. Above a critical rate, sidewall friction stabilizes the underlying heap at an inclination larger than the angle of repose. The shear rate is constant and independent of inclination over much of the flowing layer. In the direction normal to the free surface, the solid volume fraction increases on a scale equal to half the flowing layer depth. Beneath a critical depth at which internal friction is invariant, grains exhibit creeping and intermittent cage motion similar to that in glasses, causing gradual weakening of friction at the walls.

  10. Second-order gauge-invariant perturbations during inflation

    International Nuclear Information System (INIS)

    Finelli, F.; Marozzi, G.; Vacca, G. P.; Venturi, G.

    2006-01-01

    The evolution of gauge invariant second-order scalar perturbations in a general single field inflationary scenario are presented. Different second-order gauge-invariant expressions for the curvature are considered. We evaluate perturbatively one of these second order curvature fluctuations and a second-order gauge-invariant scalar field fluctuation during the slow-roll stage of a massive chaotic inflationary scenario, taking into account the deviation from a pure de Sitter evolution and considering only the contribution of super-Hubble perturbations in mode-mode coupling. The spectra resulting from their contribution to the second order quantum correlation function are nearly scale-invariant, with additional logarithmic corrections with respect to the first order spectrum. For all scales of interest the amplitude of these spectra depends on the total number of e-folds. We find, on comparing first and second order perturbation results, an upper limit to the total number of e-folds beyond which the two orders are comparable

  11. Scoring correction for MMPI-2 Hs scale with patients experiencing a traumatic brain injury: a test of measurement invariance.

    Science.gov (United States)

    Alkemade, Nathan; Bowden, Stephen C; Salzman, Louis

    2015-02-01

    It has been suggested that MMPI-2 scoring requires removal of some items when assessing patients after a traumatic brain injury (TBI). Gass (1991. MMPI-2 interpretation and closed head injury: A correction factor. Psychological assessment, 3, 27-31) proposed a correction procedure in line with the hypothesis that MMPI-2 endorsement may be affected by symptoms of TBI. This study assessed the validity of the Gass correction procedure. A sample of patients with a TBI (n = 242), and a random subset of the MMPI-2 normative sample (n = 1,786). The correction procedure implies a failure of measurement invariance across populations. This study examined measurement invariance of one of the MMPI-2 scales (Hs) that includes TBI correction items. A four-factor model of the MMPI-2 Hs items was defined. The factor model was found to meet the criteria for partial measurement invariance. Analysis of the change in sensitivity and specificity values implied by partial measurement invariance failed to indicate significant practical impact of partial invariance. Overall, the results support continued use of all Hs items to assess psychological well-being in patients with TBI. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Embedding inflation into the Standard Model — More evidence for classical scale invariance

    International Nuclear Information System (INIS)

    Kannike, Kristjan; Racioppi, Antonio; Raidal, Martti

    2014-01-01

    If cosmological inflation is due to a slowly rolling single inflation field taking trans-Planckian values as suggested by the BICEP2 measurement of primordial tensor modes in CMB, embedding inflation into the Standard Model challenges standard paradigm of effective field theories. Together with an apparent absence of Planck scale contributions to the Higgs mass and to the cosmological constant, BICEP2 provides further experimental evidence for the absence of large M_P induced operators. We show that classical scale invariance — the paradigm that all fundamental scales in Nature are induced by quantum effects — solves the problem and allows for a remarkably simple scale-free Standard Model extension with inflaton without extending the gauge group. Due to trans-Planckian inflaton values and vevs, a dynamically induced Coleman-Weinberg-type inflaton potential of the model can predict tensor-to-scalar ratio r in a large range, converging around the prediction of chaotic m"2ϕ"2 inflation for a large trans-Planckian value of the inflaton vev. Precise determination of r in future experiments will single out a unique scale-free inflation potential, allowing to test the proposed field-theoretic framework.

  13. Short Form of Weinstein Noise Sensitivity Scale (NSS-SF): Reliability, Validity and Gender Invariance among Chinese Individuals.

    Science.gov (United States)

    Zhong, Tao; Chung, Pak-Kwong; Liu, Jing Dong

    2018-02-01

    Independent from noise exposure, noise sensitivity plays a pivotal role in people's noise annoyance perception and concomitant health deteriorations. The present study empirically investigated the psychometric properties of the Chinese version of the Weinstein Noise Sensitivity Scale-Short Form (CNSS-SF), the widely used inventory measuring individual differences in noise perception. In total, 373 Chinese participants (age = 21.41 ± 3.36) completed the online, anonymous questionnaire package. Examination of the CNSS-SF's reliability (internal consistency), factorial validity through validation and cross-validation, nomological validity and measurement invariance across gender groups were undertaken. The Cronbach alpha coefficients and composite reliabilities indicated sufficient reliability of the CNSS-SF. Two confirmatory factor analyses (CFA), in two randomly partitioned groups of participants, substantiated the factorial validity of the scale. The nomological validity of the scale was also corroborated by the significant positive association of its score with the trait anxiety score. Measurement invariance of the CNSS-SF was also found across genders via multi-group CFA. Though not without limitations, findings from the present research provide promising evidence for the utility of the scale in measuring noise sensitivity among the Chinese population. The availability of the CNSS-SF can promote research related to environmental noise and health in China, as well as facilitate cross-cultural comparisons. Copyright © 2018 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  14. A Comparative Test of the Interval-Scale Properties of Magnitude Estimation and Case III Scaling and Recommendations for Equal-Interval Frequency Response Anchors.

    Science.gov (United States)

    Schriesheim, Chester A.; Novelli, Luke, Jr.

    1989-01-01

    Differences between recommended sets of equal-interval response anchors derived from scaling techniques using magnitude estimations and Thurstone Case III pair-comparison treatment of complete ranks were compared. Differences in results for 205 undergraduates reflected differences in the samples as well as in the tasks and computational…

  15. Time interval approach to the pulsed neutron logging method

    International Nuclear Information System (INIS)

    Zhao Jingwu; Su Weining

    1994-01-01

    The time interval of neighbouring neutrons emitted from a steady state neutron source can be treated as that from a time-dependent neutron source. In the rock space, the neutron flux is given by the neutron diffusion equation and is composed of an infinite terms. Each term s composed of two die-away curves. The delay action is discussed and used to measure the time interval with only one detector in the experiment. Nuclear reactions with the time distribution due to different types of radiations observed in the neutron well-logging methods are presented with a view to getting the rock nuclear parameters from the time interval technique

  16. The role of topography on catchment‐scale water residence time

    Science.gov (United States)

    McGuire, K.J.; McDonnell, Jeffery J.; Weiler, M.; Kendall, C.; McGlynn, B.L.; Welker, J.M.; Seibert, J.

    2005-01-01

    The age, or residence time, of water is a fundamental descriptor of catchment hydrology, revealing information about the storage, flow pathways, and source of water in a single integrated measure. While there has been tremendous recent interest in residence time estimation to characterize watersheds, there are relatively few studies that have quantified residence time at the watershed scale, and fewer still that have extended those results beyond single catchments to larger landscape scales. We examined topographic controls on residence time for seven catchments (0.085–62.4 km2) that represent diverse geologic and geomorphic conditions in the western Cascade Mountains of Oregon. Our primary objective was to determine the dominant physical controls on catchment‐scale water residence time and specifically test the hypothesis that residence time is related to the size of the basin. Residence times were estimated by simple convolution models that described the transfer of precipitation isotopic composition to the stream network. We found that base flow mean residence times for exponential distributions ranged from 0.8 to 3.3 years. Mean residence time showed no correlation to basin area (r2 organization (i.e., topography) rather than basin area controls catchment‐scale transport. Results from this study may provide a framework for describing scale‐invariant transport across climatic and geologic conditions, whereby the internal form and structure of the basin defines the first‐order control on base flow residence time.

  17. Delay-Dependent Guaranteed Cost H∞ Control of an Interval System with Interval Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Zhongke Shi

    2009-01-01

    Full Text Available This paper concerns the problem of the delay-dependent robust stability and guaranteed cost H∞ control for an interval system with time-varying delay. The interval system with matrix factorization is provided and leads to less conservative conclusions than solving a square root. The time-varying delay is assumed to belong to an interval and the derivative of the interval time-varying delay is not a restriction, which allows a fast time-varying delay; also its applicability is broad. Based on the Lyapunov-Ktasovskii approach, a delay-dependent criterion for the existence of a state feedback controller, which guarantees the closed-loop system stability, the upper bound of cost function, and disturbance attenuation lever for all admissible uncertainties as well as out perturbation, is proposed in terms of linear matrix inequalities (LMIs. The criterion is derived by free weighting matrices that can reduce the conservatism. The effectiveness has been verified in a number example and the compute results are presented to validate the proposed design method.

  18. Discrete-time optimal control and games on large intervals

    CERN Document Server

    Zaslavski, Alexander J

    2017-01-01

    Devoted to the structure of approximate solutions of discrete-time optimal control problems and approximate solutions of dynamic discrete-time two-player zero-sum games, this book presents results on properties of approximate solutions in an interval that is independent lengthwise, for all sufficiently large intervals. Results concerning the so-called turnpike property of optimal control problems and zero-sum games in the regions close to the endpoints of the time intervals are the main focus of this book. The description of the structure of approximate solutions on sufficiently large intervals and its stability will interest graduate students and mathematicians in optimal control and game theory, engineering, and economics. This book begins with a brief overview and moves on to analyze the structure of approximate solutions of autonomous nonconcave discrete-time optimal control Lagrange problems.Next the structures of approximate solutions of autonomous discrete-time optimal control problems that are discret...

  19. Specifying real-time systems with interval logic

    Science.gov (United States)

    Rushby, John

    1988-01-01

    Pure temporal logic makes no reference to time. An interval temporal logic and an extension to that logic which includes real time constraints are described. The application of this logic by giving a specification for the well-known lift (elevator) example is demonstrated. It is shown how interval logic can be extended to include a notion of process. How the specification language and verification environment of EHDM could be enhanced to support this logic is described. A specification of the alternating bit protocol in this extended version of the specification language of EHDM is given.

  20. Translation invariant time-dependent solutions to massive gravity II

    Science.gov (United States)

    Mourad, J.; Steer, D. A.

    2014-06-01

    This paper is a sequel to JCAP 12 (2013) 004 and is also devoted to translation-invariant solutions of ghost-free massive gravity in its moving frame formulation. Here we consider a mass term which is linear in the vielbein (corresponding to a β3 term in the 4D metric formulation) in addition to the cosmological constant. We determine explicitly the constraints, and from the initial value formulation show that the time-dependent solutions can have singularities at a finite time. Although the constraints give, as in the β1 case, the correct number of degrees of freedom for a massive spin two field, we show that the lapse function can change sign at a finite time causing a singular time evolution. This is very different to the β1 case where time evolution is always well defined. We conclude that the β3 mass term can be pathological and should be treated with care.

  1. The imaginary-time path integral and non-time-reversal-invariant saddle points of the Euclidean action

    International Nuclear Information System (INIS)

    Dasgupta, I.

    1998-01-01

    We discuss new bounce-like (but non-time-reversal-invariant) solutions to Euclidean equations of motion, which we dub boomerons. In the Euclidean path integral approach to quantum theories, boomerons make an imaginary contribution to the vacuum energy. The fake vacuum instability can be removed by cancelling boomeron contributions against contributions from time reversed boomerons (anti-boomerons). The cancellation rests on a sign choice whose significance is not completely understood in the path integral method. (orig.)

  2. Unpacking a time interval lengthens its perceived temporal distance

    Directory of Open Access Journals (Sweden)

    Yang eLiu

    2014-11-01

    Full Text Available In quantity estimation, people often perceive that the whole is less than the sum of its parts. The current study investigated such an unpacking effect in temporal distance judgment. Our results showed that participants in the unpacked condition judged a given time interval longer than those in the packed condition, even the time interval was kept constant between the two conditions. Furthermore, this unpacking effect persists regardless of the unpacking ways we employed. Results suggest that unpacking a time interval may be a good strategy for lengthening its perceived temporal distance.

  3. Data warehousing technologies for large-scale and right-time data

    DEFF Research Database (Denmark)

    Xiufeng, Liu

    heterogeneous sources into a central data warehouse (DW) by Extract-Transform-Load (ETL) at regular time intervals, e.g., monthly, weekly, or daily. But now, it becomes challenging for large-scale data, and hard to meet the near real-time/right-time business decisions. This thesis considers some...

  4. Complete axiomatization of the stutter-invariant fragment of the linear time µ-calculus

    NARCIS (Netherlands)

    Gheerbrant, A.

    2010-01-01

    The logic µ(U) is the fixpoint extension of the "Until"-only fragment of linear-time temporal logic. It also happens to be the stutter-invariant fragment of linear-time µ-calculus µ(◊). We provide complete axiomatizations of µ(U) on the class of finite words and on the class of ω-words. We introduce

  5. The Dynamical Invariant of Open Quantum System

    OpenAIRE

    Wu, S. L.; Zhang, X. Y.; Yi, X. X.

    2015-01-01

    The dynamical invariant, whose expectation value is constant, is generalized to open quantum system. The evolution equation of dynamical invariant (the dynamical invariant condition) is presented for Markovian dynamics. Different with the dynamical invariant for the closed quantum system, the evolution of the dynamical invariant for the open quantum system is no longer unitary, and the eigenvalues of it are time-dependent. Since any hermitian operator fulfilling dynamical invariant condition ...

  6. Matching of gauge invariant dimension-six operators for $b\\to s$ and $b\\to c$ transitions

    CERN Document Server

    Aebischer, Jason; Fael, Matteo; Greub, Christoph

    2016-01-01

    New physics realized above the electroweak scale can be encoded in a model independent way in the Wilson coefficients of higher dimensional operators which are invariant under the Standard Model gauge group. In this article, we study the matching of the $SU(3)_C \\times SU(2)_L \\times U(1)_Y$ gauge invariant dim-6 operators on the standard $B$ physics Hamiltonian relevant for $b \\to s$ and $b\\to c$ transitions. The matching is performed at the electroweak scale (after spontaneous symmetry breaking) by integrating out the top quark, $W$, $Z$ and the Higgs particle. We first carry out the matching of the dim-6 operators that give a contribution at tree level to the low energy Hamiltonian. In a second step, we identify those gauge invariant operators that do not enter $b \\to s$ transitions already at tree level, but can give relevant one-loop matching effects.

  7. Traces of times past : Representations of temporal intervals in memory

    NARCIS (Netherlands)

    Taatgen, Niels; van Rijn, Hedderik

    2011-01-01

    Theories of time perception typically assume that some sort of memory represents time intervals. This memory component is typically underdeveloped in theories of time perception. Following earlier work that suggested that representations of different time intervals contaminate each other (Grondin,

  8. Learned Interval Time Facilitates Associate Memory Retrieval

    Science.gov (United States)

    van de Ven, Vincent; Kochs, Sarah; Smulders, Fren; De Weerd, Peter

    2017-01-01

    The extent to which time is represented in memory remains underinvestigated. We designed a time paired associate task (TPAT) in which participants implicitly learned cue-time-target associations between cue-target pairs and specific cue-target intervals. During subsequent memory testing, participants showed increased accuracy of identifying…

  9. Interval-Censored Time-to-Event Data Methods and Applications

    CERN Document Server

    Chen, Ding-Geng

    2012-01-01

    Interval-Censored Time-to-Event Data: Methods and Applications collects the most recent techniques, models, and computational tools for interval-censored time-to-event data. Top biostatisticians from academia, biopharmaceutical industries, and government agencies discuss how these advances are impacting clinical trials and biomedical research. Divided into three parts, the book begins with an overview of interval-censored data modeling, including nonparametric estimation, survival functions, regression analysis, multivariate data analysis, competing risks analysis, and other models for interva

  10. Reducing Error Bars through the Intercalibration of Radioisotopic and Astrochronologic Time Scales for the Cenomanian/Turonian Boundary Interval, Western Interior Basin, USA

    Science.gov (United States)

    Meyers, S. R.; Siewert, S. E.; Singer, B. S.; Sageman, B. B.; Condon, D. J.; Obradovich, J. D.; Jicha, B.; Sawyer, D. A.

    2010-12-01

    We develop a new intercalibrated astrochronologic and radioisotopic time scale for the Cenomanian/Turonian (C/T) boundary interval near the GSSP in Colorado, where orbitally-influenced rhythmic strata host bentonites that contain sanidine and zircon suitable for 40Ar/39Ar and U-Pb dating. This provides a rare opportunity to directly intercalibrate two independent radioisotopic chronometers against an astrochronologic age model. We present paired 40Ar/39Ar and U-Pb ages from four bentonites spanning the Vascoceras diartianum to Pseudaspidoceras flexuosum biozones, utilizing both newly collected material and legacy sanidine samples of Obradovich (1993). Full 2σ uncertainties (decay constant, standard age, analytical sources) for the 40Ar/39Ar ages, using a weighted mean of 33-103 concordant age determinations and an age of 28.201 Ma for Fish Canyon sanidine (FCs), range from ±0.15 to 0.19 Ma, with ages from 93.67 to 94.43 Ma. The traditional FCs age of 28.02 Ma yields ages from 93.04 to 93.78 Ma with full uncertainties of ±1.58 Ma. Using the ET535 tracer, single zircon CA-TIMS 206Pb/238U ages determined from each bentonite record a range of ages (up to 2.1 Ma), however, in three of the four bentonites the youngest single crystal ages are statistically indistinguishable from the 40Ar/39Ar ages calculated relative to 28.201 Ma FCs, supporting this calibration. Using the new radioisotopic data and published astrochronology (Sageman et al., 2006) we develop an integrated C/T boundary time scale using a Bayesian statistical approach that builds upon the strength of each geochronologic method. Whereas the radioisotopic data provide an age with a well-defined uncertainty for each bentonite, the orbital time scale yields a more highly resolved estimate of the duration between stratigraphic horizons, including the radioisotopically dated beds. The Bayesian algorithm yields a C/T time scale that is statistically compatible with the astrochronologic and radioisotopic data

  11. Early diastolic time intervals during hypertensive pregnancy.

    Science.gov (United States)

    Spinelli, L; Ferro, G; Nappi, C; Farace, M J; Talarico, G; Cinquegrana, G; Condorelli, M

    1987-10-01

    Early diastolic time intervals have been assessed by means of the echopolycardiographic method in 17 pregnant women who developed hypertension during pregnancy (HP) and in 14 normal pregnant women (N). Systolic time intervals (STI), stroke volume (SV), ejection fraction (EF), and mean velocity of myocardial fiber shortening (VCF) were also evaluated. Recordings were performed in the left lateral decubitus (LLD) and then in the supine decubitus (SD). In LLD, isovolumic relaxation period (IRP) was prolonged in the hypertensive pregnant women compared with normal pregnant women (HP 51 +/- 12.5 ms, N 32.4 +/- 15 ms p less than 0.05), whereas time of the mitral valve maximum opening (DE) was not different in the groups. There was no difference in SV, EF, and mean VCF, whereas STI showed only a significant (p less than 0.05) lengthening of pre-ejection period (PEP) in HP. When the subjects shifted from the left lateral to the supine decubitus position, left ventricular ejection time index (LVETi) and SV decreased significantly (p less than 0.05) in both normotensive hypertensive pregnant women. IRP and PEP lengthened significantly (p less than 0.05) only in normals, whereas they were unchanged in HP. DE time did not vary in either group. In conclusion, hypertension superimposed on pregnancy induces lengthening of IRP, as well as of PEP, and minimizes the effects of the postural changes in preload on the above-mentioned time intervals.

  12. Conformal invariance in the long-range Ising model

    Directory of Open Access Journals (Sweden)

    Miguel F. Paulos

    2016-01-01

    Full Text Available We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.

  13. Conformal Invariance in the Long-Range Ising Model

    CERN Document Server

    Paulos, Miguel F; van Rees, Balt C; Zan, Bernardo

    2016-01-01

    We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.

  14. Conformal invariance in the long-range Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Paulos, Miguel F. [CERN, Theory Group, Geneva (Switzerland); Rychkov, Slava, E-mail: slava.rychkov@lpt.ens.fr [CERN, Theory Group, Geneva (Switzerland); Laboratoire de Physique Théorique de l' École Normale Supérieure (LPTENS), Paris (France); Faculté de Physique, Université Pierre et Marie Curie (UPMC), Paris (France); Rees, Balt C. van [CERN, Theory Group, Geneva (Switzerland); Zan, Bernardo [Institute of Physics, Universiteit van Amsterdam, Amsterdam (Netherlands)

    2016-01-15

    We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.

  15. Constructing a Time-Invariant Measure of the Socio-economic Status of U.S. Census Tracts.

    Science.gov (United States)

    Miles, Jeremy N; Weden, Margaret M; Lavery, Diana; Escarce, José J; Cagney, Kathleen A; Shih, Regina A

    2016-02-01

    Contextual research on time and place requires a consistent measurement instrument for neighborhood conditions in order to make unbiased inferences about neighborhood change. We develop such a time-invariant measure of neighborhood socio-economic status (NSES) using exploratory and confirmatory factor analyses fit to census data at the tract level from the 1990 and 2000 U.S. Censuses and the 2008-2012 American Community Survey. A single factor model fit the data well at all three time periods, and factor loadings--but not indicator intercepts--could be constrained to equality over time without decrement to fit. After addressing remaining longitudinal measurement bias, we found that NSES increased from 1990 to 2000, and then--consistent with the timing of the "Great Recession"--declined in 2008-2012 to a level approaching that of 1990. Our approach for evaluating and adjusting for time-invariance is not only instructive for studies of NSES but also more generally for longitudinal studies in which the variable of interest is a latent construct.

  16. Power spectrum scale invariance identifies prefrontal dysregulation in paranoid schizophrenia.

    Science.gov (United States)

    Radulescu, Anca R; Rubin, Denis; Strey, Helmut H; Mujica-Parodi, Lilianne R

    2012-07-01

    Theory and experimental evidence suggest that complex living systems function close to the boundary of chaos, with erroneous organization to an improper dynamical range (too stiff or chaotic) underlying system-wide dysregulation and disease. We hypothesized that erroneous organization might therefore also characterize paranoid schizophrenia, via optimization abnormalities in the prefrontal-limbic circuit regulating emotion. To test this, we acquired fMRI scans from 35 subjects (N = 9 patients with paranoid schizophrenia and N = 26 healthy controls), while they viewed affect-valent stimuli. To quantify dynamic regulation, we analyzed the power spectrum scale invariance (PSSI) of fMRI time-courses and computed the geometry of time-delay (Poincaré) maps, a measure of variability. Patients and controls showed distinct PSSI in two clusters (k(1) : Z = 4.3215, P = 0.00002 and k(2) : Z = 3.9441, P = 0.00008), localized to the orbitofrontal/medial prefrontal cortex (Brodmann Area 10), represented by β close to white noise in patients (β ≈ 0) and in the pink noise range in controls (β ≈ -1). Interpreting the meaning of PSSI differences, the Poincaré maps indicated less variability in patients than controls (Z = -1.9437, P = 0.05 for k(1) ; Z = -2.5099, P = 0.01 for k(2) ). That the dynamics identified Brodmann Area 10 is consistent with previous schizophrenia research, which implicates this area in deficits of working memory, executive functioning, emotional regulation and underlying biological abnormalities in synaptic (glutamatergic) transmission. Our results additionally cohere with a large body of work finding pink noise to be the normal range of central function at the synaptic, cellular, and small network levels, and suggest that patients show less supple responsivity of this region. Copyright © 2011 Wiley-Liss, Inc.

  17. Rosenberg Self-Esteem Scale: Method Effects, Factorial Structure and Scale Invariance Across Migrant Child and Urban Child Populations in China.

    Science.gov (United States)

    Wu, Yang; Zuo, Bin; Wen, Fangfang; Yan, Lei

    2017-01-01

    Using confirmatory factor analyses, this study examined the method effects on a Chinese version of the Rosenberg Self-Esteem Scale (RSES; Rosenberg, 1965 ) in a sample of migrant and urban children in China. In all, 982 children completed the RSES, and 9 models and 9 corresponding variants were specified and tested. The results indicated that the method effects are associated with both positively and negatively worded items and that Item 8 should be treated as a positively worded item. Additionally, the method effects models were invariant across migrant and urban children in China.

  18. Timing of multiple overlapping intervals : How many clocks do we have?

    NARCIS (Netherlands)

    van Rijn, Hedderik; Taatgen, Niels A.

    2008-01-01

    Humans perceive and reproduce short intervals of time (e.g. 1-60 s) relatively accurately, and are capable of timing multiple overlapping intervals if these intervals are presented in different modalities [e.g., Rousseau, L., & Rousseau, RL (1996). Stop-reaction time and the internal clock.

  19. THEORETICAL REVIEW The Hippocampus, Time, and Memory Across Scales

    Science.gov (United States)

    Howard, Marc W.; Eichenbaum, Howard

    2014-01-01

    A wealth of experimental studies with animals have offered insights about how neural networks within the hippocampus support the temporal organization of memories. These studies have revealed the existence of “time cells” that encode moments in time, much as the well-known “place cells” map locations in space. Another line of work inspired by human behavioral studies suggests that episodic memories are mediated by a state of temporal context that changes gradually over long time scales, up to at least a few thousand seconds. In this view, the “mental time travel” hypothesized to support the experience of episodic memory corresponds to a “jump back in time” in which a previous state of temporal context is recovered. We suggest that these 2 sets of findings could be different facets of a representation of temporal history that maintains a record at the last few thousand seconds of experience. The ability to represent long time scales comes at the cost of discarding precise information about when a stimulus was experienced—this uncertainty becomes greater for events further in the past. We review recent computational work that describes a mechanism that could construct such a scale-invariant representation. Taken as a whole, this suggests the hippocampus plays its role in multiple aspects of cognition by representing events embedded in a general spatiotemporal context. The representation of internal time can be useful across nonhippocampal memory systems. PMID:23915126

  20. The Time Is Up: Compression of Visual Time Interval Estimations of Bimodal Aperiodic Patterns

    Science.gov (United States)

    Duarte, Fabiola; Lemus, Luis

    2017-01-01

    The ability to estimate time intervals subserves many of our behaviors and perceptual experiences. However, it is not clear how aperiodic (AP) stimuli affect our perception of time intervals across sensory modalities. To address this question, we evaluated the human capacity to discriminate between two acoustic (A), visual (V) or audiovisual (AV) time intervals of trains of scattered pulses. We first measured the periodicity of those stimuli and then sought for correlations with the accuracy and reaction times (RTs) of the subjects. We found that, for all time intervals tested in our experiment, the visual system consistently perceived AP stimuli as being shorter than the periodic (P) ones. In contrast, such a compression phenomenon was not apparent during auditory trials. Our conclusions are: first, the subjects exposed to P stimuli are more likely to measure their durations accurately. Second, perceptual time compression occurs for AP visual stimuli. Lastly, AV discriminations are determined by A dominance rather than by AV enhancement. PMID:28848406

  1. Near scale-free dynamics in neural population activity of waking/sleeping rats revealed by multiscale analysis.

    Directory of Open Access Journals (Sweden)

    Leonid A Safonov

    Full Text Available A neuron embedded in an intact brain, unlike an isolated neuron, participates in network activity at various spatial resolutions. Such multiple scale spatial dynamics is potentially reflected in multiple time scales of temporal dynamics. We identify such multiple dynamical time scales of the inter-spike interval (ISI fluctuations of neurons of waking/sleeping rats by means of multiscale analysis. The time scale of large non-Gaussianity in the ISI fluctuations, measured with the Castaing method, ranges up to several minutes, markedly escaping the low-pass filtering characteristics of neurons. A comparison between neural activity during waking and sleeping reveals that non-Gaussianity is stronger during waking than sleeping throughout the entire range of scales observed. We find a remarkable property of near scale independence of the magnitude correlations as the primary cause of persistent non-Gaussianity. Such scale-invariance of correlations is characteristic of multiplicative cascade processes and raises the possibility of the existence of a scale independent memory preserving mechanism.

  2. Cosmological disformal invariance

    Energy Technology Data Exchange (ETDEWEB)

    Domènech, Guillem; Sasaki, Misao [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Naruko, Atsushi, E-mail: guillem.domenech@yukawa.kyoto-u.ac.jp, E-mail: naruko@th.phys.titech.ac.jp, E-mail: misao@yukawa.kyoto-u.ac.jp [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2015-10-01

    The invariance of physical observables under disformal transformations is considered. It is known that conformal transformations leave physical observables invariant. However, whether it is true for disformal transformations is still an open question. In this paper, it is shown that a pure disformal transformation without any conformal factor is equivalent to rescaling the time coordinate. Since this rescaling applies equally to all the physical quantities, physics must be invariant under a disformal transformation, that is, neither causal structure, propagation speed nor any other property of the fields are affected by a disformal transformation itself. This fact is presented at the action level for gravitational and matter fields and it is illustrated with some examples of observable quantities. We also find the physical invariance for cosmological perturbations at linear and high orders in perturbation, extending previous studies. Finally, a comparison with Horndeski and beyond Horndeski theories under a disformal transformation is made.

  3. The Basic Psychological Needs at Work Scale: Measurement Invariance between Canada and France.

    Science.gov (United States)

    Brien, Maryse; Forest, Jacques; Mageau, Geneviève A; Boudrias, Jean-Sébastien; Desrumaux, Pascale; Brunet, Luc; Morin, Estelle M

    2012-07-01

    The purpose of this study is to develop and validate the Basic Psychological Needs at Work Scale (BPNWS) in French, but items are also provided in English in the article. The BPNWS is a work-related self-report instrument designed to measure the degree to which the needs for autonomy, competence, and relatedness, as identified by Self-Determination Theory (Deci & Ryan, 2000), are satisfied at work. Using exploratory and confirmatory factor analysis, the first study examines the structure of the BPNWS in a group of 271 workers. The second study tests the measurement invariance of the scale in a group of 851 teachers from two different cultures, Canada and France. Results support the three-factor structure and show adequate internal consistency, as well as nomological validity across samples. © 2012 The Authors. Applied Psychology: Health and Well-Being © 2012 The International Association of Applied Psychology.

  4. Properties of Asymmetric Detrended Fluctuation Analysis in the time series of RR intervals

    Science.gov (United States)

    Piskorski, J.; Kosmider, M.; Mieszkowski, D.; Krauze, T.; Wykretowicz, A.; Guzik, P.

    2018-02-01

    Heart rate asymmetry is a phenomenon by which the accelerations and decelerations of heart rate behave differently, and this difference is consistent and unidirectional, i.e. in most of the analyzed recordings the inequalities have the same directions. So far, it has been established for variance and runs based types of descriptors of RR intervals time series. In this paper we apply the newly developed method of Asymmetric Detrended Fluctuation Analysis, which so far has mainly been used with economic time series, to the set of 420 stationary 30 min time series of RR intervals from young, healthy individuals aged between 20 and 40. This asymmetric approach introduces separate scaling exponents for rising and falling trends. We systematically study the presence of asymmetry in both global and local versions of this method. In this study global means "applying to the whole time series" and local means "applying to windows jumping along the recording". It is found that the correlation structure of the fluctuations left over after detrending in physiological time series shows strong asymmetric features in both magnitude, with α+ physiological data after shuffling or with a group of symmetric synthetic time series.

  5. Measurement invariance of the Illness Intrusiveness Ratings Scale's three-factor structure in men and women with cancer.

    Science.gov (United States)

    Mah, Kenneth; Bezjak, Andrea; Loblaw, D Andrew; Gotowiec, Andrew; Devins, Gerald M

    2011-02-01

    Illness- and treatment-related disruptions to valued activities and interests (illness intrusiveness) are central to quality of life in chronic disease and are captured by three subscales of the Illness Intrusiveness Ratings Scale (IIRS): the Instrumental, Intimacy, and Relationships and Personal Development subscales. Using individual (CFA) and multisample confirmatory factor analyses (MSCFA), we evaluated measurement invariance of the IIRS's 3-factor structure in men and women with cancer. Men (n = 210) and women (n = 206) with 1 of 4 cancer diagnoses (gastrointestinal, head and neck, lymphoma, lung) recruited from outpatient clinics completed the IIRS. In the MSCFA, we applied an analysis of means and covariance structures approach to test increasingly stringent equality constraints on factor structure parameters to evaluate weak, strong, and strict measurement invariance of the 3-factor structure between men and women. Individual CFAs demonstrated fit of the hypothesized 3-factor structure for men and women, although more consistently for men. The 3-factor structure was superior to an alternative 1-factor structure. MSCFA results indicated that parameters of the 3-factor structure could be considered equivalent between the sexes up to the level of strong invariance. Strict invariance was not supported. Overall, IIRS scores can be interpreted similarly for men and women with cancer. Illness intrusiveness can be considered as important in the psychosocial adaptation of people with cancer as it is for people affected by other chronic conditions. (c) 2011 APA, all rights reserved

  6. Monitoring molecular interactions using photon arrival-time interval distribution analysis

    Science.gov (United States)

    Laurence, Ted A [Livermore, CA; Weiss, Shimon [Los Angels, CA

    2009-10-06

    A method for analyzing/monitoring the properties of species that are labeled with fluorophores. A detector is used to detect photons emitted from species that are labeled with one or more fluorophores and located in a confocal detection volume. The arrival time of each of the photons is determined. The interval of time between various photon pairs is then determined to provide photon pair intervals. The number of photons that have arrival times within the photon pair intervals is also determined. The photon pair intervals are then used in combination with the corresponding counts of intervening photons to analyze properties and interactions of the molecules including brightness, concentration, coincidence and transit time. The method can be used for analyzing single photon streams and multiple photon streams.

  7. Cohomological invariants in Galois cohomology

    CERN Document Server

    Garibaldi, Skip; Serre, Jean Pierre

    2003-01-01

    This volume is concerned with algebraic invariants, such as the Stiefel-Whitney classes of quadratic forms (with values in Galois cohomology mod 2) and the trace form of �tale algebras (with values in the Witt ring). The invariants are analogues for Galois cohomology of the characteristic classes of topology. Historically, one of the first examples of cohomological invariants of the type considered here was the Hasse-Witt invariant of quadratic forms. The first part classifies such invariants in several cases. A principal tool is the notion of versal torsor, which is an analogue of the universal bundle in topology. The second part gives Rost's determination of the invariants of G-torsors with values in H^3(\\mathbb{Q}/\\mathbb{Z}(2)), when G is a semisimple, simply connected, linear group. This part gives detailed proofs of the existence and basic properties of the Rost invariant. This is the first time that most of this material appears in print.

  8. Moving attention - Evidence for time-invariant shifts of visual selective attention

    Science.gov (United States)

    Remington, R.; Pierce, L.

    1984-01-01

    Two experiments measured the time to shift spatial selective attention across the visual field to targets 2 or 10 deg from central fixation. A central arrow cued the most likely target location. The direction of attention was inferred from reaction times to expected, unexpected, and neutral locations. The development of a spatial attentional set with time was examined by presenting target probes at varying times after the cue. There were no effects of distance on the time course of the attentional set. Reaction times for far locations were slower than for near, but the effects of attention were evident by 150 msec in both cases. Spatial attention does not shift with a characteristic, fixed velocity. Rather, velocity is proportional to distance, resulting in a movement time that is invariant over the distances tested.

  9. Bilateral symmetry detection on the basis of Scale Invariant Feature Transform.

    Directory of Open Access Journals (Sweden)

    Habib Akbar

    Full Text Available The automatic detection of bilateral symmetry is a challenging task in computer vision and pattern recognition. This paper presents an approach for the detection of bilateral symmetry in digital single object images. Our method relies on the extraction of Scale Invariant Feature Transform (SIFT based feature points, which serves as the basis for the ascertainment of the centroid of the object; the latter being the origin under the Cartesian coordinate system to be converted to the polar coordinate system in order to facilitate the selection symmetric coordinate pairs. This is followed by comparing the gradient magnitude and orientation of the corresponding points to evaluate the amount of symmetry exhibited by each pair of points. The experimental results show that our approach draw the symmetry line accurately, provided that the observed centroid point is true.

  10. Essential uncontrollability of discrete linear, time-invariant, dynamical systems

    Science.gov (United States)

    Cliff, E. M.

    1975-01-01

    The concept of a 'best approximating m-dimensional subspace' for a given set of vectors in n-dimensional whole space is introduced. Such a subspace is easily described in terms of the eigenvectors of an associated Gram matrix. This technique is used to approximate an achievable set for a discrete linear time-invariant dynamical system. This approximation characterizes the part of the state space that may be reached using modest levels of control. If the achievable set can be closely approximated by a proper subspace of the whole space then the system is 'essentially uncontrollable'. The notion finds application in studies of failure-tolerant systems, and in decoupling.

  11. Interval timing in genetically modified mice: a simple paradigm.

    Science.gov (United States)

    Balci, F; Papachristos, E B; Gallistel, C R; Brunner, D; Gibson, J; Shumyatsky, G P

    2008-04-01

    We describe a behavioral screen for the quantitative study of interval timing and interval memory in mice. Mice learn to switch from a short-latency feeding station to a long-latency station when the short latency has passed without a feeding. The psychometric function is the cumulative distribution of switch latencies. Its median measures timing accuracy and its interquartile interval measures timing precision. Next, using this behavioral paradigm, we have examined mice with a gene knockout of the receptor for gastrin-releasing peptide that show enhanced (i.e. prolonged) freezing in fear conditioning. We have tested the hypothesis that the mutants freeze longer because they are more uncertain than wild types about when to expect the electric shock. The knockouts however show normal accuracy and precision in timing, so we have rejected this alternative hypothesis. Last, we conduct the pharmacological validation of our behavioral screen using d-amphetamine and methamphetamine. We suggest including the analysis of interval timing and temporal memory in tests of genetically modified mice for learning and memory and argue that our paradigm allows this to be done simply and efficiently.

  12. A Novel Fast and Robust Binary Affine Invariant Descriptor for Image Matching

    Directory of Open Access Journals (Sweden)

    Xiujie Qu

    2014-01-01

    Full Text Available As the current binary descriptors have disadvantages of high computational complexity, no affine invariance, and the high false matching rate with viewpoint changes, a new binary affine invariant descriptor, called BAND, is proposed. Different from other descriptors, BAND has an irregular pattern, which is based on local affine invariant region surrounding a feature point, and it has five orientations, which are obtained by LBP effectively. Ultimately, a 256 bits binary string is computed by simple random sampling pattern. Experimental results demonstrate that BAND has a good matching result in the conditions of rotating, image zooming, noising, lighting, and small-scale perspective transformation. It has better matching performance compared with current mainstream descriptors, while it costs less time.

  13. Ratio-based lengths of intervals to improve fuzzy time series forecasting.

    Science.gov (United States)

    Huarng, Kunhuang; Yu, Tiffany Hui-Kuang

    2006-04-01

    The objective of this study is to explore ways of determining the useful lengths of intervals in fuzzy time series. It is suggested that ratios, instead of equal lengths of intervals, can more properly represent the intervals among observations. Ratio-based lengths of intervals are, therefore, proposed to improve fuzzy time series forecasting. Algebraic growth data, such as enrollments and the stock index, and exponential growth data, such as inventory demand, are chosen as the forecasting targets, before forecasting based on the various lengths of intervals is performed. Furthermore, sensitivity analyses are also carried out for various percentiles. The ratio-based lengths of intervals are found to outperform the effective lengths of intervals, as well as the arbitrary ones in regard to the different statistical measures. The empirical analysis suggests that the ratio-based lengths of intervals can also be used to improve fuzzy time series forecasting.

  14. Scale-invariant transition probabilities in free word association trajectories

    Directory of Open Access Journals (Sweden)

    Martin Elias Costa

    2009-09-01

    Full Text Available Free-word association has been used as a vehicle to understand the organization of human thoughts. The original studies relied mainly on qualitative assertions, yielding the widely intuitive notion that trajectories of word associations are structured, yet considerably more random than organized linguistic text. Here we set to determine a precise characterization of this space, generating a large number of word association trajectories in a web implemented game. We embedded the trajectories in the graph of word co-occurrences from a linguistic corpus. To constrain possible transport models we measured the memory loss and the cycling probability. These two measures could not be reconciled by a bounded diffusive model since the cycling probability was very high (16 % of order-2 cycles implying a majority of short-range associations whereas the memory loss was very rapid (converging to the asymptotic value in ∼ 7 steps which, in turn, forced a high fraction of long-range associations. We show that memory loss and cycling probabilities of free word association trajectories can be simultaneously accounted by a model in which transitions are determined by a scale invariant probability distribution.

  15. Gait in children with cerebral palsy : observer reliability of Physician Rating Scale and Edinburgh Visual Gait Analysis Interval Testing scale

    NARCIS (Netherlands)

    Maathuis, KGB; van der Schans, CP; van Iperen, A; Rietman, HS; Geertzen, JHB

    2005-01-01

    The aim of this study was to test the inter- and intra-observer reliability of the Physician Rating Scale (PRS) and the Edinburgh Visual Gait Analysis Interval Testing (GAIT) scale for use in children with cerebral palsy (CP). Both assessment scales are quantitative observational scales, evaluating

  16. Time interval measurement between to emission: a systematics

    International Nuclear Information System (INIS)

    Bizard, G.; Bougault, R.; Brou, R.; Colin, J.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Mahi, M.; Meslin, C.; Steckmeyer, J.C.; Tamain, B.; Wieloch, A.

    1998-01-01

    A systematic study of the evolution of intervals of fragment emission times as a function of the energy deposited in the compound system was performed. Several measurements, Ne at 60 MeV/u, Ar at 30 and 60 MeV/u and two measurements for Kr at 60 MeV/u (central and semi-peripheral collisions) are presented. In all the experiments the target was Au and the mass of the compounds system was around A = 200. The excitation energies per nucleon reached in the case of these heavy systems cover the range of 3 to 5.5 MeV/u. The method used to determine the emission time intervals is based on the correlation functions associated to the relative angle distributions. The gaps between the data and simulations allow to evaluate the emission times. A rapid decrease of these time intervals was observed when the excitation energy increased. This variation starts at 500 fm/c which corresponds to a sequential emission. This relatively long time which indicates a weak interaction between fragments, corresponds practically to the measurement threshold. The shortest intervals (about 50 fm/c) are associated to a spontaneous multifragmentation and were observed in the case of central collisions at Ar+Au and Kr+Au at 60 MeV/u. Two interpretations are possible. The multifragmentation process might be viewed as a sequential process of very short time-separation or else, one can separate two zones heaving in mind that the multifragmentation is predominant from 4,5 MeV/u excitation energy upwards. This question is still open and its study is under way at LPC. An answer could come from the study of the rupture process of an excited nucleus, notably by the determination of its life-time

  17. Testing the time-invariance of fundamental constants using microwave spectroscopy on cold diatomic radicals

    NARCIS (Netherlands)

    Bethlem, H.L.; Ubachs, W.M.G.

    2009-01-01

    The recently demonstrated methods to cool and manipulate neutral molecules offer new possibilities for precision tests of fundamental physics theories. We here discuss the possibility of testing the time-invariance of fundamental constants using near degeneracies between rotational levels in the

  18. Integral reinforcement learning for continuous-time input-affine nonlinear systems with simultaneous invariant explorations.

    Science.gov (United States)

    Lee, Jae Young; Park, Jin Bae; Choi, Yoon Ho

    2015-05-01

    This paper focuses on a class of reinforcement learning (RL) algorithms, named integral RL (I-RL), that solve continuous-time (CT) nonlinear optimal control problems with input-affine system dynamics. First, we extend the concepts of exploration, integral temporal difference, and invariant admissibility to the target CT nonlinear system that is governed by a control policy plus a probing signal called an exploration. Then, we show input-to-state stability (ISS) and invariant admissibility of the closed-loop systems with the policies generated by integral policy iteration (I-PI) or invariantly admissible PI (IA-PI) method. Based on these, three online I-RL algorithms named explorized I-PI and integral Q -learning I, II are proposed, all of which generate the same convergent sequences as I-PI and IA-PI under the required excitation condition on the exploration. All the proposed methods are partially or completely model free, and can simultaneously explore the state space in a stable manner during the online learning processes. ISS, invariant admissibility, and convergence properties of the proposed methods are also investigated, and related with these, we show the design principles of the exploration for safe learning. Neural-network-based implementation methods for the proposed schemes are also presented in this paper. Finally, several numerical simulations are carried out to verify the effectiveness of the proposed methods.

  19. Time interval measurement between two emissions: Ar + Au

    International Nuclear Information System (INIS)

    Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Durand, D.; Genoux-Lubain, A.; Hamdani, T.; Horn, D.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Louvel, M.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.

    1998-01-01

    The Ar + Au system was studied at two bombarding energies, 30 and 60 A.MeV. The comparison of the distributions of fragment emission angles in central collisions was carried out by means of a simulation allowing the emission time interval variation. It was found that this interval depends on the bombarding energy (i.e. deposed excitation energy).For 30 A.MeV this interval is 500 fm/c (0.33 · 10 -23 s), while for 60 A.MeV it is so short that the multifragmentation concept can be used

  20. Conformally invariant amplitudes and field theory in a space-time of constant curvature

    International Nuclear Information System (INIS)

    Drummond, I.T.

    1977-02-01

    The problem of calculating the ultra violet divergences of a field theory in a spherical space-time is reduced to analysing the pole structure of conformally invariant integrals which are analogous to amplitudes which occur in the theory of dual models. The calculations are illustrated with phi 3 -theory in six-dimensions. (author)

  1. Nonparametric Estimation of Interval Reliability for Discrete-Time Semi-Markov Systems

    DEFF Research Database (Denmark)

    Georgiadis, Stylianos; Limnios, Nikolaos

    2016-01-01

    In this article, we consider a repairable discrete-time semi-Markov system with finite state space. The measure of the interval reliability is given as the probability of the system being operational over a given finite-length time interval. A nonparametric estimator is proposed for the interval...

  2. Foundation for a Time Interval Access Control Model

    National Research Council Canada - National Science Library

    Afinidad, Francis B; Levin, Timothy E; Irvine, Cynthia E; Nguyen, Thuy D

    2005-01-01

    A new model for representing temporal access control policies is introduced. In this model, temporal authorizations are represented by time attributes associated with both subjects and objects, and a time interval access graph...

  3. Experimental congruence of interval scale production from paired comparisons and ranking for image evaluation

    Science.gov (United States)

    Handley, John C.; Babcock, Jason S.; Pelz, Jeff B.

    2003-12-01

    Image evaluation tasks are often conducted using paired comparisons or ranking. To elicit interval scales, both methods rely on Thurstone's Law of Comparative Judgment in which objects closer in psychological space are more often confused in preference comparisons by a putative discriminal random process. It is often debated whether paired comparisons and ranking yield the same interval scales. An experiment was conducted to assess scale production using paired comparisons and ranking. For this experiment a Pioneer Plasma Display and Apple Cinema Display were used for stimulus presentation. Observers performed rank order and paired comparisons tasks on both displays. For each of five scenes, six images were created by manipulating attributes such as lightness, chroma, and hue using six different settings. The intention was to simulate the variability from a set of digital cameras or scanners. Nineteen subjects, (5 females, 14 males) ranging from 19-51 years of age participated in this experiment. Using a paired comparison model and a ranking model, scales were estimated for each display and image combination yielding ten scale pairs, ostensibly measuring the same psychological scale. The Bradley-Terry model was used for the paired comparisons data and the Bradley-Terry-Mallows model was used for the ranking data. Each model was fit using maximum likelihood estimation and assessed using likelihood ratio tests. Approximate 95% confidence intervals were also constructed using likelihood ratios. Model fits for paired comparisons were satisfactory for all scales except those from two image/display pairs; the ranking model fit uniformly well on all data sets. Arguing from overlapping confidence intervals, we conclude that paired comparisons and ranking produce no conflicting decisions regarding ultimate ordering of treatment preferences, but paired comparisons yield greater precision at the expense of lack-of-fit.

  4. On generalized scaling laws with continuously varying exponents

    International Nuclear Information System (INIS)

    Sittler, Lionel; Hinrichsen, Haye

    2002-01-01

    Many physical systems share the property of scale invariance. Most of them show ordinary power-law scaling, where quantities can be expressed as a leading power law times a scaling function which depends on scaling-invariant ratios of the parameters. However, some systems do not obey power-law scaling, instead there is numerical evidence for a logarithmic scaling form, in which the scaling function depends on ratios of the logarithms of the parameters. Based on previous ideas by Tang we propose that this type of logarithmic scaling can be explained by a concept of local scaling invariance with continuously varying exponents. The functional dependence of the exponents is constrained by a homomorphism which can be expressed as a set of partial differential equations. Solving these equations we obtain logarithmic scaling as a special case. The other solutions lead to scaling forms where logarithmic and power-law scaling are mixed

  5. Smoothing of Fault Slip Surfaces by Scale Invariant Wear

    Science.gov (United States)

    Dascher-Cousineau, K.; Kirkpatrick, J. D.

    2017-12-01

    multi-scale wear model to explain the evolution of faults with displacement. We suggest that together, asperity failure as a scale invariant process, and the stochastic strength of host rocks are consistent with qualitative and quantitative observational constraints made in this study.

  6. Timing-Invariant CT Angiography Derived from CT Perfusion Imaging in Acute Stroke : A Diagnostic Performance Study

    NARCIS (Netherlands)

    Smith, E. J.; Vonken, E. -J.; Meijer, F. J. A.; Dankbaar, J. W.; Horsch, A. D.; van Ginneken, B.; Velthuis, B.; van der Schaaf, I.; Prokop, M.

    2015-01-01

    BACKGROUND AND PURPOSE: Timing-invariant (or delay-insensitive) CT angiography derived from CT perfusion data may obviate a separate cranial CTA in acute stroke, thus enhancing patient safety by reducing total examination time, radiation dose, and volume of contrast material. We assessed the

  7. Longitudinal and dynamic measurement invariance of the FACIT-Fatigue scale: an application of the measurement model of derivatives to ECOG-ACRIN study E2805.

    Science.gov (United States)

    Estabrook, Ryne; Cella, David; Zhao, Fengmin; Manola, Judith; DiPaola, Robert S; Wagner, Lynne I; Haas, Naomi B

    2018-03-05

    While quality of life measures may be used to assess meaningful change and group differences, their scaling and validation often rely on a single occasion of measurement. Using the 13-item FACIT-Fatigue questionnaire at three timepoints, this study tests whether individual items change together in ways consistent with a general fatigue factor. The measurement model of derivatives (MMOD) is a novel method for measurement evaluation that directly assesses whether a given factor structure accurately describes how individual test items change over time. MMOD transforms item-level longitudinal data into a set of orthogonal change scores, each one representing either a within-person longitudinal mean or a different type of longitudinal change. These change scores are then factor analyzed and tested for invariance. This approach is applied to the FACIT-Fatigue scale in a sample of patients with renal cell carcinoma treated on 'ECOG-ACRIN Cancer Research Group (ECOG-ACRIN) study 2805. Analyses revealed strong evidence of unidimensionality, and apparent factorial invariance using traditional techniques. MMOD revealed a small but statistically significant difference in factor structure ([Formula: see text], [Formula: see text]), where factor loadings were weaker and more variable for measuring longitudinal change. The differences in factor structure were not large enough to substantially affect scale usage in this application, but they do reveal some variability across items in the FACIT-Fatigue in their ability to detect change. Future applications should consider differential sensitivity of individual items in multi-item scales, and perhaps even capitalize upon these differences by selecting items that are more sensitive to change.

  8. Test of time-reversal invariance at COSY

    Energy Technology Data Exchange (ETDEWEB)

    Valdau, Yury [Helmholtz Institut fuer Strahlen- und Kernphysik, Bonn Univ. (Germany); National Research Center ' ' Kurchatov Institute' ' Petersburg Nuclear Physics Institute B.P. Konstantinov, Gatchina (Russian Federation); Eversheim, Dieter [Helmholtz Institut fuer Strahlen- und Kernphysik, Bonn Univ. (Germany); Lorentz, Bernd [Forschungszentrum Juelich, Institute fuer Kernphysik (Germany)

    2016-07-01

    The experiment to test the Time Reversal Invariance at Cosy (TRIC) is under the preparation by the PAX collaboration. It is planned to improve present limit on the T-odd P-even interaction by at least one order of magnitude using a unique genuine null observable available in double polarized proton-deuteron scattering. The TRIC experiment is planned as a transmission experiment using a tensor polarized deuterium target placed at the internal target place of the Cooler-Synchrotron COSY-Juelich. Total double polarized cross section will be measured observing a beam current change due to the interaction of a polarized proton beam with an internal tensor polarized deuterium target from the PAX atomic beam source. Hence, in this experiment COSY will be used as an accelerator, detector and ideal zero degree spectrometer. In addition to the high intensity polarized proton beam and high density polarized deuterium target, a new high precision beam current measurement system will be prepared for the TRIC experiment. In this report status of all the activities of PAX collaboration towards realization of the TRIC experiment will be presented.

  9. Exploring the Measurement Properties of the eHealth Literacy Scale (eHEALS) Among Baby Boomers: A Multinational Test of Measurement Invariance.

    Science.gov (United States)

    Sudbury-Riley, Lynn; FitzPatrick, Mary; Schulz, Peter J

    2017-02-27

    The eHealth Literacy Scale (eHEALS) is one of only a few available measurement scales to assess eHealth literacy. Perhaps due to the relative paucity of such measures and the rising importance of eHealth literacy, the eHEALS is increasingly a choice for inclusion in a range of studies across different groups, cultures, and nations. However, despite its growing popularity, questions have been raised over its theoretical foundations, and the factorial validity and multigroup measurement properties of the scale are yet to be investigated fully. The objective of our study was to examine the factorial validity and measurement invariance of the eHEALS among baby boomers (born between 1946 and 1964) in the United States, United Kingdom, and New Zealand who had used the Internet to search for health information in the last 6 months. Online questionnaires collected data from a random sample of baby boomers from the 3 countries of interest. The theoretical underpinning to eHEALS comprises social cognitive theory and self-efficacy theory. Close scrutiny of eHEALS with analysis of these theories suggests a 3-factor structure to be worth investigating, which has never before been explored. Structural equation modeling tested a 3-factor structure based on the theoretical underpinning to eHEALS and investigated multinational measurement invariance of the eHEALS. We collected responses (N=996) to the questionnaires using random samples from the 3 countries. Results suggest that the eHEALS comprises a 3-factor structure with a measurement model that falls within all relevant fit indices (root mean square error of approximation, RMSEA=.041, comparative fit index, CFI=.986). Additionally, the scale demonstrates metric invariance (RMSEA=.040, CFI=.984, ΔCFI=.002) and even scalar invariance (RMSEA=.042, CFI=.978, ΔCFI=.008). To our knowledge, this is the first study to demonstrate multigroup factorial equivalence of the eHEALS, and did so based on data from 3 diverse nations and

  10. Wavelet-based moment invariants for pattern recognition

    Science.gov (United States)

    Chen, Guangyi; Xie, Wenfang

    2011-07-01

    Moment invariants have received a lot of attention as features for identification and inspection of two-dimensional shapes. In this paper, two sets of novel moments are proposed by using the auto-correlation of wavelet functions and the dual-tree complex wavelet functions. It is well known that the wavelet transform lacks the property of shift invariance. A little shift in the input signal will cause very different output wavelet coefficients. The autocorrelation of wavelet functions and the dual-tree complex wavelet functions, on the other hand, are shift-invariant, which is very important in pattern recognition. Rotation invariance is the major concern in this paper, while translation invariance and scale invariance can be achieved by standard normalization techniques. The Gaussian white noise is added to the noise-free images and the noise levels vary with different signal-to-noise ratios. Experimental results conducted in this paper show that the proposed wavelet-based moments outperform Zernike's moments and the Fourier-wavelet descriptor for pattern recognition under different rotation angles and different noise levels. It can be seen that the proposed wavelet-based moments can do an excellent job even when the noise levels are very high.

  11. Adiabatic invariants in stellar dynamics. 1: Basic concepts

    Science.gov (United States)

    Weinberg, Martin D.

    1994-01-01

    The adiabatic criterion, widely used in astronomical dynamics, is based on the harmonic oscillator. It asserts that the change in action under a slowly varying perturbation is exponentially small. Recent mathematical results that precisely define the conditions for invariance show that this model does not apply in general. In particular, a slowly varying perturbation may cause significant evolution stellar dynamical systems even if its time scale is longer than any internal orbital time scale. This additional 'heating' may have serious implications for the evolution of star clusters and dwarf galaxies which are subject to long-term environmental forces. The mathematical developments leading to these results are reviewed, and the conditions for applicability to and further implications for stellar systems are discussed. Companion papers present a computational method for a general time-dependent disturbance and detailed example.

  12. Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information

    OpenAIRE

    Wei-Jong Yang; Wei-Hau Du; Pau-Choo Chang; Jar-Ferr Yang; Pi-Hsia Hung

    2017-01-01

    The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an importan...

  13. Scale-invariant gravity: spacetime recovered

    International Nuclear Information System (INIS)

    Kelleher, Bryan

    2004-01-01

    The configuration space of general relativity is superspace-the space of all Riemannian 3-metrics modulo diffeomorphisms. However, it has been argued that the configuration space for gravity should be conformal superspace-the space of all Riemannian 3-metrics modulo diffeomorphisms and conformal transformations. Recently a manifestly three-dimensional theory was constructed with conformal superspace as the configuration space. Here a fully four-dimensional action is constructed so as to be invariant under conformal transformations of the 4-metric using general relativity as a guide. This action is then decomposed to a (3 + 1)-dimensional form and from this to its Jacobi form. The surprising thing is that the new theory turns out to be precisely the original three-dimensional theory. The physical data are identified and used to find the physical representation of the theory. In this representation the theory is extremely similar to general relativity. The clarity of the four-dimensional picture should prove very useful for comparing the theory with those aspects of general relativity which are usually treated in the four-dimensional framework

  14. Global robust exponential stability analysis for interval recurrent neural networks

    International Nuclear Information System (INIS)

    Xu Shengyuan; Lam, James; Ho, Daniel W.C.; Zou Yun

    2004-01-01

    This Letter investigates the problem of robust global exponential stability analysis for interval recurrent neural networks (RNNs) via the linear matrix inequality (LMI) approach. The values of the time-invariant uncertain parameters are assumed to be bounded within given compact sets. An improved condition for the existence of a unique equilibrium point and its global exponential stability of RNNs with known parameters is proposed. Based on this, a sufficient condition for the global robust exponential stability for interval RNNs is obtained. Both of the conditions are expressed in terms of LMIs, which can be checked easily by various recently developed convex optimization algorithms. Examples are provided to demonstrate the reduced conservatism of the proposed exponential stability condition

  15. Full-scale and time-scale heating experiments at Stripa: preliminary results. Technical project report No. 11

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Hood, M.

    1978-12-01

    Two full-scale heating experiments and a time-scale heating experiment have recently been started in granite 340 meters below surface. The purpose of the full-scale heating experiments is to assess the near-field effects of thermal loading for the design of an underground repository of nuclear wastes. That of the time-scale heating experiments is to obtain field data of the interaction between heaters and its effect on the rock mass during a period of about two years, which corresponds to about twenty years of full-scale operation. Geological features of the rock around each experiment have been mapped carefully, and temperatures, stresses and displacements induced in the rock by heating have been calculated in advance of the experiments. Some 800 different measurements are recorded at frequent intervals by a computer system situated underground. These data can be compared at any time with predictions made earlier on video display units underground

  16. Usability of a new multiple high-speed pulse time data registration, processing and real-time display system for pulse time interval analysis

    International Nuclear Information System (INIS)

    Yawata, Takashi; Sakaue, Hisanobu; Hashimoto, Tetsuo; Itou, Shigeki

    2006-01-01

    A new high-speed multiple pulse time data registration, processing and real-time display system for time interval analysis (TIA) was developed for counting either β-α or α-α correlated decay-events. The TIA method has been so far limited to selective extraction of successive α-α decay events within the milli-second time scale owing to the use of original electronic hardware. In the present pulse-processing system, three different high-speed α/β(γ) pulses could be fed quickly to original 32 bit PCI board (ZN-HTS2) within 1 μs. This original PCI board is consisting of a timing-control IC (HTS-A) and 28 bit counting IC (HTS-B). All channel and pulse time data were stored to FIFO RAM, followed to transfer into temporary CPU RAM (32 MB) by DMA. Both data registration (into main RAM (200 MB)) and calculation of pulse time intervals together with real-time TIA-distribution display simultaneously processed using two sophisticate softwares. The present system has proven to succeed for the real-time display of TIA distribution spectrum even when 1.6x10 5 cps pulses from pulse generator were given to the system. By using this new system combined with liquid scintillation counting (LSC) apparatus, both a natural micro-second order β-α correlated decay-events and a milli-second order α-α correlated decay-event could be selectively extracted from the mixture of natural radionuclides. (author)

  17. Size invariance of the granular Rayleigh-Taylor instability.

    Science.gov (United States)

    Vinningland, Jan Ludvig; Johnsen, Øistein; Flekkøy, Eirik G; Toussaint, Renaud; Måløy, Knut Jørgen

    2010-04-01

    The size scaling behavior of the granular Rayleigh-Taylor instability [J. L. Vinningland, Phys. Rev. Lett. 99, 048001 (2007)] is investigated experimentally, numerically, and theoretically. An upper layer of grains displaces a lower gap of air by organizing into dense fingers of falling grains separated by rising bubbles of air. The dependence of these structures on the system and grain sizes is investigated. A spatial measurement of the finger structures is obtained by the Fourier power spectrum of the wave number k. As the size of the grains increases the wave number decreases accordingly which leaves the dimensionless product of wave number and grain diameter, dk, invariant. A theoretical interpretation of the invariance, based on the scaling properties of the model equations, suggests a gradual breakdown of the invariance for grains smaller than approximately 70 microm or greater than approximately 570 microm in diameter.

  18. Discussion on calculation of disease severity index values from scales with unequal intervals

    Science.gov (United States)

    When estimating severity of disease, a disease interval (or category) scale comprises a number of categories of known numeric values – with plant disease this is generally the percent area with symptoms (e.g., the Horsfall-Barratt (H-B) scale). Studies in plant pathology and plant breeding often use...

  19. Spin foam diagrammatics and topological invariance

    International Nuclear Information System (INIS)

    Girelli, Florian; Oeckl, Robert; Perez, Alejandro

    2002-01-01

    We provide a simple proof of the topological invariance of the Turaev-Viro model (corresponding to simplicial 3D pure Euclidean gravity with cosmological constant) by means of a novel diagrammatic formulation of the state sum models for quantum BF theories. Moreover, we prove the invariance under more general conditions allowing the state sum to be defined on arbitrary cellular decompositions of the underlying manifold. Invariance is governed by a set of identities corresponding to local gluing and rearrangement of cells in the complex. Due to the fully algebraic nature of these identities our results extend to a vast class of quantum groups. The techniques introduced here could be relevant for investigating the scaling properties of non-topological state sums, proposed as models of quantum gravity in 4D, under refinement of the cellular decomposition

  20. The decomposition of global conformal invariants

    CERN Document Server

    Alexakis, Spyros

    2012-01-01

    This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. These functionals act on a metric by first constructing a Riemannian scalar out of it, and then integrating this scalar over the manifold. Suppose this integral remains invariant under conformal re-scalings of the underlying metric. What information can one then deduce about the Riemannian scalar? Dese

  1. Discover potential in a search for time-reversal invariance violation in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gudkov, Vladimir, E-mail: gudkov@sc.edu; Song, Young-Ho [University of South Carolina, Department of Physics and Astronomy (United States)

    2013-03-15

    Time reversal invariance violating (TRIV) effects in low energy physics could be very important in searching for new physics, being complementary to neutron and atomic electric dipole moment (EDM) measurements. In this relation, we discuss a sensitivity of some TRIV observables to different models of time-reversal (CP) violation and their dependencies on nuclear structure. As a measure of a sensitivity of TRIV effects to the value of TRIV nucleon coupling constant, we introduce a coefficient of a 'discovery potential', which shows a possible factor for improving the current limits of the EDM experiments by measuring nuclear TRIV effects.

  2. The use of scale-invariance feature transform approach to recognize and retrieve incomplete shoeprints.

    Science.gov (United States)

    Wei, Chia-Hung; Li, Yue; Gwo, Chih-Ying

    2013-05-01

    Shoeprints left at the crime scene provide valuable information in criminal investigation due to the distinctive patterns in the sole. Those shoeprints are often incomplete and noisy. In this study, scale-invariance feature transform is proposed and evaluated for recognition and retrieval of partial and noisy shoeprint images. The proposed method first constructs different scale spaces to detect local extrema in the underlying shoeprint images. Those local extrema are considered as useful key points in the image. Next, the features of those key points are extracted to represent their local patterns around key points. Then, the system computes the cross-correlation between the query image and each shoeprint image in the database. Experimental results show that full-size prints and prints from the toe area perform best among all shoeprints. Furthermore, this system also demonstrates its robustness against noise because there is a very slight difference in comparison between original shoeprints and noisy shoeprints. © 2013 American Academy of Forensic Sciences.

  3. On Integral Invariants for Effective 3-D Motion Trajectory Matching and Recognition.

    Science.gov (United States)

    Shao, Zhanpeng; Li, Youfu

    2016-02-01

    Motion trajectories tracked from the motions of human, robots, and moving objects can provide an important clue for motion analysis, classification, and recognition. This paper defines some new integral invariants for a 3-D motion trajectory. Based on two typical kernel functions, we design two integral invariants, the distance and area integral invariants. The area integral invariants are estimated based on the blurred segment of noisy discrete curve to avoid the computation of high-order derivatives. Such integral invariants for a motion trajectory enjoy some desirable properties, such as computational locality, uniqueness of representation, and noise insensitivity. Moreover, our formulation allows the analysis of motion trajectories at a range of scales by varying the scale of kernel function. The features of motion trajectories can thus be perceived at multiscale levels in a coarse-to-fine manner. Finally, we define a distance function to measure the trajectory similarity to find similar trajectories. Through the experiments, we examine the robustness and effectiveness of the proposed integral invariants and find that they can capture the motion cues in trajectory matching and sign recognition satisfactorily.

  4. Confirmatory factor analysis and invariance testing between Blacks and Whites of the Multidimensional Health Locus of Control scale.

    Science.gov (United States)

    LaNoue, Marianna; Harvey, Abby; Mautner, Dawn; Ku, Bon; Scott, Kevin

    2015-07-01

    The factor structure of the Multidimensional Health Locus of Control scale remains in question. Additionally, research on health belief differences between Black and White respondents suggests that the Multidimensional Health Locus of Control scale may not be invariant. We reviewed the literature regarding the latent variable structure of the Multidimensional Health Locus of Control scale, used confirmatory factor analysis to confirm the three-factor structure of the Multidimensional Health Locus of Control, and analyzed between-group differences in the Multidimensional Health Locus of Control structure and means across Black and White respondents. Our results indicate differences in means and structure, indicating more research is needed to inform decisions regarding whether and how to deploy the Multidimensional Health Locus of Control appropriately.

  5. Inactivation of the Medial-Prefrontal Cortex Impairs Interval Timing Precision, but Not Timing Accuracy or Scalar Timing in a Peak-Interval Procedure in Rats

    Directory of Open Access Journals (Sweden)

    Catalin V. Buhusi

    2018-06-01

    Full Text Available Motor sequence learning, planning and execution of goal-directed behaviors, and decision making rely on accurate time estimation and production of durations in the seconds-to-minutes range. The pathways involved in planning and execution of goal-directed behaviors include cortico-striato-thalamo-cortical circuitry modulated by dopaminergic inputs. A critical feature of interval timing is its scalar property, by which the precision of timing is proportional to the timed duration. We examined the role of medial prefrontal cortex (mPFC in timing by evaluating the effect of its reversible inactivation on timing accuracy, timing precision and scalar timing. Rats were trained to time two durations in a peak-interval (PI procedure. Reversible mPFC inactivation using GABA agonist muscimol resulted in decreased timing precision, with no effect on timing accuracy and scalar timing. These results are partly at odds with studies suggesting that ramping prefrontal activity is crucial to timing but closely match simulations with the Striatal Beat Frequency (SBF model proposing that timing is coded by the coincidental activation of striatal neurons by cortical inputs. Computer simulations indicate that in SBF, gradual inactivation of cortical inputs results in a gradual decrease in timing precision with preservation of timing accuracy and scalar timing. Further studies are needed to differentiate between timing models based on coincidence detection and timing models based on ramping mPFC activity, and clarify whether mPFC is specifically involved in timing, or more generally involved in attention, working memory, or response selection/inhibition.

  6. Hybrid integrated circuit for charge-to-time interval conversion

    Energy Technology Data Exchange (ETDEWEB)

    Basiladze, S.G.; Dotsenko, Yu.Yu.; Man' yakov, P.K.; Fedorchenko, S.N. (Joint Inst. for Nuclear Research, Dubna (USSR))

    The hybrid integrated circuit for charge-to time interval conversion with nanosecond input fast response is described. The circuit can be used in energy measuring channels, time-to-digital converters and in the modified variant in amplitude-to-digital converters. The converter described consists of a buffer amplifier, a linear transmission circuit, a direct current source and a unit of time interval separation. The buffer amplifier represents a current follower providing low input and high output resistances by the current feedback. It is concluded that the described converter excelled the QT100B circuit analogous to it in a number of parameters especially, in thermostability.

  7. Dynamical topological invariant after a quantum quench

    Science.gov (United States)

    Yang, Chao; Li, Linhu; Chen, Shu

    2018-02-01

    We show how to define a dynamical topological invariant for one-dimensional two-band topological systems after a quantum quench. By analyzing general two-band models of topological insulators, we demonstrate that the reduced momentum-time manifold can be viewed as a series of submanifolds S2, and thus we are able to define a dynamical topological invariant on each of the spheres. We also unveil the intrinsic relation between the dynamical topological invariant and the difference in the topological invariant of the initial and final static Hamiltonian. By considering some concrete examples, we illustrate the calculation of the dynamical topological invariant and its geometrical meaning explicitly.

  8. The Brief Multidimensional Students' Life Satisfaction Scale (BMSLSS): Reliability, validity, and gender invariance in an Indian adolescent sample.

    Science.gov (United States)

    Hashim, Jayana; Areepattamannil, Shaljan

    2017-06-01

    This study examined the internal consistency reliability, factorial, convergent, discriminant, and predictive validity, as well as gender invariance of the Brief Multidimensional Students' Life Satisfaction Scale (BMSLSS; Seligson, Huebner, & Valois, 2003) in a sample of 445 adolescents (M age  = 16.04 years) hailing from the southernmost state of India, Kerala. The study also examined the test-retest reliability (n = 392) of the BMSLSS. The Cronbach's alpha coefficient suggested that the BMSLSS was reliable. Confirmatory factor analyses demonstrated the factorial validity of the BMSLSS. Bivariate correlational analyses provided support for the convergent, discriminant, and predictive validity of the BMSLSS. The test-retest reliability coefficient indicated the temporal stability of the BMSLSS. Finally, multi-group confirmatory factor analysis provided support for the gender invariance of the BMSLSS. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  9. MODIFIED PATH METHODOLOGY FOR OBTAINING INTERVAL-SCALED POSTURAL ASSESSMENTS OF FARMWORKERS.

    Science.gov (United States)

    Garrison, Emma B; Dropkin, Jonathan; Russell, Rebecca; Jenkins, Paul

    2018-01-29

    Agricultural workers perform tasks that frequently require awkward and extreme postures that are associated with musculoskeletal disorders (MSDs). The PATH (Posture, Activity, Tools, Handling) system currently provides a sound methodology for quantifying workers' exposure to these awkward postures on an ordinal scale of measurement, which places restrictions on the choice of analytic methods. This study reports a modification of the PATH methodology that instead captures these postures as degrees of flexion, an interval-scaled measurement. Rather than making live observations in the field, as in PATH, the postural assessments were performed on photographs using ImageJ photo analysis software. Capturing the postures in photographs permitted more careful measurement of the degrees of flexion. The current PATH methodology requires that the observer in the field be trained in the use of PATH, whereas the single photographer used in this modification requires only sufficient training to maintain the proper camera angle. Ultimately, these interval-scale measurements could be combined with other quantitative measures, such as those produced by electromyograms (EMGs), to provide more sophisticated estimates of future risk for MSDs. Further, these data can provide a baseline from which the effects of interventions designed to reduce hazardous postures can be calculated with greater precision. Copyright© by the American Society of Agricultural Engineers.

  10. Scale-invariance in three-dimensional isotropic turbulence: a paradox and its resolution

    International Nuclear Information System (INIS)

    McComb, David

    2008-01-01

    If the Reynolds number is large enough, turbulence is expected to exhibit scale invariance in an intermediate ('inertial') range of wave numbers, as shown by power-law behaviour of the energy spectrum and also by a constant rate of energy transfer through wave number. However, although it has long been known that the first of these is true, there has been little recognition of the fact that, if the second is to hold, then there is a contradiction between the definition of the energy flux (as the integral of the transfer spectrum) and the observed behaviour of the transfer spectrum itself. This is because the transfer spectrum T(k) is invariably found to have a zero crossing at a single point (at k 0 , say), implying that the corresponding energy flux cannot have an extended plateau but must instead have a maximum value at k = k 0 . We outline the resulting paradox and note that it may be resolved by the observation that the symmetry of the triadic interactions means that T(k) is not the relevant transfer term in determining the energy flux. Instead the relevant term is a filtered/partitioned version, herein denoted by T +- (k|k c ), where k = k c is the cut-off wave number for low/high-pass filtering. It is known from studies of spectral subgrid transfer that T +- (k|k c ) is zero over an extended range of wave numbers. As this is the case for quite modest Reynolds numbers, it not only resolves the paradox, but may also shed some light on the 'embarrassment of success' of the Kolmogorov theory

  11. Test of feasibility of a novel high precision test of time reversal invariance

    International Nuclear Information System (INIS)

    Samuel, Deepak

    2007-01-01

    The first results of a feasibility test of a novel high precision test of time reversal invariance are reported. The Time Reversal Invariance test at COSY (TRIC) was planned to measure the time reversal violating observable A y,xz with an accuracy of 10 -6 in proton-deuteron (p-d) scattering. A novel technique for measuring total cross sections is introduced and the achievable precision of this measuring technique is tested. The correlation coefficient A y,y in p-d scattering fakes a time-reversal violating effect. This work reports the feasibility test of the novel method in the measurement of A y,y in p-p scattering. The first step in the experimental design was the development of a hard real-time data acquisition system. To meet stringent latency requirements, the capabilities of Windows XP had to be augmented with a real-time subsystem. The remote control feature of the data acquisition enables users to operate it from any place via an internet connection. The data acquisition proved its reliability in several beam times without any failures. The analysis of the data showed the presence of 1/f noise which substantially limits the quality of our measurements. The origin of 1/f noise was traced and found to be the Barkhausen noise from the ferrite core of the beam current transformer (BCT). A global weighted fitting technique based on a modified Wiener-Khinchin method was developed and used to suppress the influence of 1/f noise, which increased the error bar of the results by a factor 3. This is the only deviation from our expectations. The results are presented and discussed. (orig.)

  12. Test of feasibility of a novel high precision test of time reversal invariance

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Deepak

    2007-07-01

    The first results of a feasibility test of a novel high precision test of time reversal invariance are reported. The Time Reversal Invariance test at COSY (TRIC) was planned to measure the time reversal violating observable A{sub y,xz} with an accuracy of 10{sup -6} in proton-deuteron (p-d) scattering. A novel technique for measuring total cross sections is introduced and the achievable precision of this measuring technique is tested. The correlation coefficient A{sub y,y} in p-d scattering fakes a time-reversal violating effect. This work reports the feasibility test of the novel method in the measurement of A{sub y,y} in p-p scattering. The first step in the experimental design was the development of a hard real-time data acquisition system. To meet stringent latency requirements, the capabilities of Windows XP had to be augmented with a real-time subsystem. The remote control feature of the data acquisition enables users to operate it from any place via an internet connection. The data acquisition proved its reliability in several beam times without any failures. The analysis of the data showed the presence of 1/f noise which substantially limits the quality of our measurements. The origin of 1/f noise was traced and found to be the Barkhausen noise from the ferrite core of the beam current transformer (BCT). A global weighted fitting technique based on a modified Wiener-Khinchin method was developed and used to suppress the influence of 1/f noise, which increased the error bar of the results by a factor 3. This is the only deviation from our expectations. The results are presented and discussed. (orig.)

  13. Relation between century-scale Holocene arid intervals in tropical and temperate zones

    Science.gov (United States)

    Lamb, H. F.; Gasse, F.; Benkaddour, A.; El Hamouti, N.; van der Kaars, S.; Perkins, W. T.; Pearce, N. J.; Roberts, C. N.

    1995-01-01

    CLIMATE records from lake sediments in tropical Africa, Central America and west Asia show several century-scale arid intervals during the Holocene1-10. These may have been caused by temporary weakening of the monsoonal circulation associated with reduced northward heat transport by the oceans7 or by feedback processes stimulated by changes in tropical land-surface conditions10. Here we use a lake-sediment record from the montane Mediterranean zone of Morocco to address the question of whether these events were also felt in temperate continental regions. We find evidence of arid intervals of similar duration, periodicity and possibly timing to those in the tropics. But our pollen data show that the forest vegetation was not substantially affected by these events, indicating that precipitation remained adequate during the summer growing season. Thus, the depletion of the groundwater aquifer that imprinted the dry events in the lake record must have resulted from reduced winter precipitation. We suggest that the occurrence of arid events during the summer in the tropics but during the winter at temperate latitudes can be rationalized if they are both associated with cooler sea surface temperatures in the North Atlantic.

  14. Parity and time invariance violation in mercury

    International Nuclear Information System (INIS)

    Ginges, J.S.M.; Dzuba, V.A.; Flambaum, V.V.; Kozlov, M.G.

    2002-01-01

    Full text: In a recent experiment, a stringent upper limit was placed on the atomic electric dipole moment (EDM) of 199 Hg corresponding to the best limit on an atomic EDM to date. This limit can be interpreted in terms of a limit on a parity-and time-invariance violating (P,T-odd) nuclear electric moment, the Schiff moment. This moment can arise in the nucleus due to an intrinsic EDM of an unpaired nucleon or a P,T-odd interaction between nucleons. In previous calculations the electrostatic potential of the Schiff moment was expressed in a singular form which must be treated carefully to avoid divergences in the electronic matrix elements. We have shown that the electric field distribution inside the nucleus arising from the Schiff moment is constant and directed along the nuclear spin. This allows us to express the Schiff moment in a form more convenient for numerical relativistic atomic calculations. We have calculated the atomic EDM induced in Hg due to the Schiff moment (for which no direct calculation has previously been performed) and have placed new limits on the fundamental P,T-odd parameters. These limits strongly constrain competing theories of CP-violation

  15. Variance composition, measurement invariance by gender, and construct validity of the Femininity Ideology Scale-Short Form.

    Science.gov (United States)

    Levant, Ronald F; Alto, Kathleen M; McKelvey, Daniel K; Richmond, Katherine A; McDermott, Ryon C

    2017-11-01

    The current study extended prior work on the Femininity Ideology Scale (FIS), a multidimensional measure of traditional femininity ideology (TFI), in several ways. First, we conducted exploratory factor and bifactor analyses, which revealed a general TFI factor and 3 specific factors: dependence/deference, purity, and emotionality/traditional roles. Second, based on these results we developed the 12-item FIS-Short Form (FIS-SF). Third, we assessed the FIS-SF using confirmatory factor analysis on a separate sample, finding that the items loaded on the general factor and 3 specific factors as hypothesized, and that the bifactor model fit better than common factors and unidimensional models. Fourth, model-based reliability estimates tentatively support the use of raw scores to represent the general TFI factor and the emotionality/traditional roles specific factor, but the other 2 specific factors are best measured using SEM or by ipsatizing their scores. Fifth, we assessed measurement invariance across 2 gender groups, finding evidence for configural invariance for all factors, and for partial metric invariance for the specific factors. Sixth, we found evidence for the convergent construct validity of the FIS-SF general factor and the emotionality/traditional roles specific factors by examining relationships with the latent variables of several constructs in the nomological network. The results are discussed in relationship to prior literature, future research directions, applications to counseling practice, and limitations. Data (N = 1,472, 907 women, 565 men, 530 people of color) were from community and college participants who responded to an online survey. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. The string prediction models as invariants of time series in the forex market

    Science.gov (United States)

    Pincak, R.

    2013-12-01

    In this paper we apply a new approach of string theory to the real financial market. The models are constructed with an idea of prediction models based on the string invariants (PMBSI). The performance of PMBSI is compared to support vector machines (SVM) and artificial neural networks (ANN) on an artificial and a financial time series. A brief overview of the results and analysis is given. The first model is based on the correlation function as invariant and the second one is an application based on the deviations from the closed string/pattern form (PMBCS). We found the difference between these two approaches. The first model cannot predict the behavior of the forex market with good efficiency in comparison with the second one which is, in addition, able to make relevant profit per year. The presented string models could be useful for portfolio creation and financial risk management in the banking sector as well as for a nonlinear statistical approach to data optimization.

  17. Concurrent variable-interval variable-ratio schedules in a dynamic choice environment.

    Science.gov (United States)

    Bell, Matthew C; Baum, William M

    2017-11-01

    Most studies of operant choice have focused on presenting subjects with a fixed pair of schedules across many experimental sessions. Using these methods, studies of concurrent variable- interval variable-ratio schedules helped to evaluate theories of choice. More recently, a growing literature has focused on dynamic choice behavior. Those dynamic choice studies have analyzed behavior on a number of different time scales using concurrent variable-interval schedules. Following the dynamic choice approach, the present experiment examined performance on concurrent variable-interval variable-ratio schedules in a rapidly changing environment. Our objectives were to compare performance on concurrent variable-interval variable-ratio schedules with extant data on concurrent variable-interval variable-interval schedules using a dynamic choice procedure and to extend earlier work on concurrent variable-interval variable-ratio schedules. We analyzed performances at different time scales, finding strong similarities between concurrent variable-interval variable-interval and concurrent variable-interval variable- ratio performance within dynamic choice procedures. Time-based measures revealed almost identical performance in the two procedures compared with response-based measures, supporting the view that choice is best understood as time allocation. Performance at the smaller time scale of visits accorded with the tendency seen in earlier research toward developing a pattern of strong preference for and long visits to the richer alternative paired with brief "samples" at the leaner alternative ("fix and sample"). © 2017 Society for the Experimental Analysis of Behavior.

  18. Slow dynamics in translation-invariant quantum lattice models

    Science.gov (United States)

    Michailidis, Alexios A.; Žnidarič, Marko; Medvedyeva, Mariya; Abanin, Dmitry A.; Prosen, Tomaž; Papić, Z.

    2018-03-01

    Many-body quantum systems typically display fast dynamics and ballistic spreading of information. Here we address the open problem of how slow the dynamics can be after a generic breaking of integrability by local interactions. We develop a method based on degenerate perturbation theory that reveals slow dynamical regimes and delocalization processes in general translation invariant models, along with accurate estimates of their delocalization time scales. Our results shed light on the fundamental questions of the robustness of quantum integrable systems and the possibility of many-body localization without disorder. As an example, we construct a large class of one-dimensional lattice models where, despite the absence of asymptotic localization, the transient dynamics is exceptionally slow, i.e., the dynamics is indistinguishable from that of many-body localized systems for the system sizes and time scales accessible in experiments and numerical simulations.

  19. Constraints on violation of Lorentz invariance from atmospheric showers initiated by multi-TeV photons

    Energy Technology Data Exchange (ETDEWEB)

    Rubtsov, Grigory; Satunin, Petr; Sibiryakov, Sergey, E-mail: grisha@ms2.inr.ac.ru, E-mail: satunin@ms2.inr.ac.ru, E-mail: Sergey.Sibiryakov@cern.ch [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect, 7a, 117312 Moscow (Russian Federation)

    2017-05-01

    Parameterizing hypothetical violation of Lorentz invariance at high energies using the framework of effective quantum field theory, we discuss its effect on the formation of atmospheric showers by very-high-energy gamma rays. In the scenario where Lorentz invariance violation leads to a decrease of the photon velocity with energy the formation of the showers is suppressed compared to the Lorentz invariant case. Absence of such suppression in the high-energy part of spectrum of the Crab nebula measured independently by HEGRA and H.E.S.S. collaborations is used to set lower bounds on the energy scale of Lorentz invariance violation. These bounds are competitive with the strongest existing constraints obtained from timing of variable astrophysical sources and the absorption of TeV photons on the extragalactic background light. They will be further improved by the next generation of multi-TeV gamma-ray observatories.

  20. Reparametrization invariance and the Schroedinger equation

    International Nuclear Information System (INIS)

    Tkach, V.I.; Pashnev, A.I.; Rosales, J.J.

    1999-01-01

    A time-dependent Schroedinger equation for systems invariant under the reparametrization of time is considered. We develop the two-stage procedure of construction such systems from a given initial ones, which are not invariant under the time reparametrization. One of the first-class constraints of the systems in such description becomes the time-dependent Schroedinger equation. The procedure is applicable in the supersymmetric theories as well. The n = 2 supersymmetric quantum mechanics is coupled to world-line supergravity, and the local supersymmetric action is constructed leading to the square root representation of the time-dependent Schroedinger equation

  1. Towards a High-resolution Time Scale for the Early Devonian

    Science.gov (United States)

    Dekkers, M. J.; da Silva, A. C.

    2017-12-01

    High-resolution time scales are crucial to understand Earth's history in detail. The construction of a robust geological time scale, however, inevitably becomes increasingly harder further back in time. Uncertainties associated with anchor radiometric ages increase in size, not speaking of the mere presence of suitable datable strata. However, durations of stages can be tightly constrained by making use of cyclic expressions in sediments, an approach that revolutionized the Cenozoic time scale. When precisely determined durations are stitched together, ultimately, a very precise time scale is the result. For the Mesozoic and Paleozoic an astronomical solution as a tuning target is not available but the dominant periods of eccentricity, obliquity and precession are reasonably well constrained for the entire Phanerozoic which enables their detection by means of spectral analysis. Eccentricity is time-invariant and is used as the prime building block. Here we focus on the Early Devonian, on its lowermost three stages: the Lochkovian, Pragian and Emsian. The uncertainties on the Devonian stage boundaries are currently in the order of several millions of years. The preservation of climatic cycles in diagenetically or even anchimetamorphically affected successions, however, is essential. The fit of spectral peak ratios with those calculated for orbital cycles, is classically used as a strong argument for a preserved climatic signal. Here we use primarily the low field magnetic susceptibility (MS) as proxy parameter, supported by gamma-ray spectrometry to test for consistency. Continuous Wavelet Transform, Evolutive Harmonic Analysis, Multitaper Method, and Average Spectral Misfit are used to reach an optimal astronomical interpretation. We report on classic Early Devonian sections from the Czech Republic: the Pozar-CS (Lochkovian and Pragian), Pod Barrandovem (Pragian and Lower Emsian), and Zlichov (Middle-Upper Emsian). Also a Middle-Upper Emsian section from the US

  2. Non-Abelian parafermions in time-reversal-invariant interacting helical systems

    Science.gov (United States)

    Orth, Christoph P.; Tiwari, Rakesh P.; Meng, Tobias; Schmidt, Thomas L.

    2015-02-01

    The interplay between bulk spin-orbit coupling and electron-electron interactions produces umklapp scattering in the helical edge states of a two-dimensional topological insulator. If the chemical potential is at the Dirac point, umklapp scattering can open a gap in the edge state spectrum even if the system is time-reversal invariant. We determine the zero-energy bound states at the interfaces between a section of a helical liquid which is gapped out by the superconducting proximity effect and a section gapped out by umklapp scattering. We show that these interfaces pin charges which are multiples of e /2 , giving rise to a Josephson current with 8 π periodicity. Moreover, the bound states, which are protected by time-reversal symmetry, are fourfold degenerate and can be described as Z4 parafermions. We determine their braiding statistics and show how braiding can be implemented in topological insulator systems.

  3. Invariant subspaces

    CERN Document Server

    Radjavi, Heydar

    2003-01-01

    This broad survey spans a wealth of studies on invariant subspaces, focusing on operators on separable Hilbert space. Largely self-contained, it requires only a working knowledge of measure theory, complex analysis, and elementary functional analysis. Subjects include normal operators, analytic functions of operators, shift operators, examples of invariant subspace lattices, compact operators, and the existence of invariant and hyperinvariant subspaces. Additional chapters cover certain results on von Neumann algebras, transitive operator algebras, algebras associated with invariant subspaces,

  4. Measurement invariance versus selection invariance: Is fair selection possible?

    NARCIS (Netherlands)

    Borsboom, D.; Romeijn, J.W.; Wicherts, J.M.

    2008-01-01

    This article shows that measurement invariance (defined in terms of an invariant measurement model in different groups) is generally inconsistent with selection invariance (defined in terms of equal sensitivity and specificity across groups). In particular, when a unidimensional measurement

  5. Measurement invariance versus selection invariance : Is fair selection possible?

    NARCIS (Netherlands)

    Borsboom, Denny; Romeijn, Jan-Willem; Wicherts, Jelte M.

    This article shows that measurement invariance (defined in terms of an invariant measurement model in different groups) is generally inconsistent with selection invariance (defined in terms of equal sensitivity and specificity across groups). In particular, when a unidimensional measurement

  6. Analysis of Time and Space Invariance of BOLD Responses in the Rat Visual System

    DEFF Research Database (Denmark)

    Bailey, Christopher; Sanganahalli, Basavaraju G; Herman, Peter

    2012-01-01

    Neuroimaging studies of functional magnetic resonance imaging (fMRI) and electrophysiology provide the linkage between neural activity and the blood oxygenation level-dependent (BOLD) response. Here, BOLD responses to light flashes were imaged at 11.7T and compared with neural recordings from...... for general linear modeling (GLM) of BOLD responses. Light flashes induced high magnitude neural/BOLD responses reproducibly from both regions. However, neural/BOLD responses from SC and V1 were markedly different. SC signals followed the boxcar shape of the stimulation paradigm at all flash rates, whereas V1...... signals were characterized by onset/offset transients that exhibited different flash rate dependencies. We find that IRF(SC) is generally time-invariant across wider flash rate range compared with IRF(V1), whereas IRF(SC) and IRF(V1) are both space invariant. These results illustrate the importance...

  7. Cardiac time intervals by tissue Doppler imaging M-mode echocardiography

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor

    2016-01-01

    for myocardial myocytes to achieve an LV pressure equal to that of aorta increases, resulting in a prolongation of the isovolumic contraction time (IVCT). Furthermore, the ability of myocardial myocytes to maintain the LV pressure decreases, resulting in reduction in the ejection time (ET). As LV diastolic...... of whether the LV is suffering from impaired systolic or diastolic function. A novel method of evaluating the cardiac time intervals has recently evolved. Using tissue Doppler imaging (TDI) M-mode through the mitral valve (MV) to estimate the cardiac time intervals may be an improved method reflecting global...

  8. Across-province standardization and comparative analysis of time-to-care intervals for cancer

    Directory of Open Access Journals (Sweden)

    Nugent Zoann

    2007-10-01

    Full Text Available Abstract Background A set of consistent, standardized definitions of intervals and populations on which to report across provinces is needed to inform the Provincial/Territorial Deputy Ministries of Health on progress of the Ten-Year Plan to Strengthen Health Care. The objectives of this project were to: 1 identify a set of criteria and variables needed to create comparable measures of important time-to-cancer-care intervals that could be applied across provinces and 2 use the measures to compare time-to-care across participating provinces for lung and colorectal cancer patients diagnosed in 2004. Methods A broad-based group of stakeholders from each of the three participating cancer agencies was assembled to identify criteria for time-to-care intervals to standardize, evaluate possible intervals and their corresponding start and end time points, and finalize the selection of intervals to pursue. Inclusion/exclusion criteria were identified for the patient population and the selected time points to reduce potential selection bias. The provincial 2004 colorectal and lung cancer data were used to illustrate across-province comparisons for the selected time-to-care intervals. Results Criteria identified as critical for time-to-care intervals and corresponding start and end points were: 1 relevant to patients, 2 relevant to clinical care, 3 unequivocally defined, and 4 currently captured consistently across cancer agencies. Time from diagnosis to first radiation or chemotherapy treatment and the smaller components, time from diagnosis to first consult with an oncologist and time from first consult to first radiation or chemotherapy treatment, were the only intervals that met all four criteria. Timeliness of care for the intervals evaluated was similar between the provinces for lung cancer patients but significant differences were found for colorectal cancer patients. Conclusion We identified criteria important for selecting time-to-care intervals

  9. Equation of state with scale-invariant hidden local symmetry and gravitational waves

    Directory of Open Access Journals (Sweden)

    Lee Hyun Kyu

    2018-01-01

    Full Text Available The equation of state (EoS for the effective theory proposed recently in the frame work of the scale-invariant hidden local symmetry is discussed briefly. The EoS is found to be relatively stiffer at lower density and but relatively softer at higher density. The particular features of EoS on the gravitational waves are discussed. A relatively stiffer EoS for the neutron stars with the lower density induces a larger deviation of the gravitational wave form from the point-particle-approximation. On the other hand, a relatively softer EoS for the merger remnant of the higher density inside might invoke a possibility of the immediate formation of a black hole for short gamma ray bursts or the appearance of the higher peak frequency for gravitational waves from remnant oscillations. It is anticipated that this particular features could be probed in detail by the detections of gravitational waves from the binary neutron star mergers.

  10. Renormalization-scheme-invariant QCD and QED: The method of effective charges

    International Nuclear Information System (INIS)

    Grunberg, G.

    1984-01-01

    We review, extend, and give some further applications of a method recently suggested to solve the renormalization-scheme-dependence problem in perturbative field theories. The use of a coupling constant as a universal expansion parameter is abandoned. Instead, to each physical quantity depending on a single scale variable is associated an effective charge, whose corresponding Stueckelberg--Peterman--Gell-Mann--Low function is identified as the proper object on which perturbation theory applies. Integration of the corresponding renormalization-group equations yields renormalization-scheme-invariant results free of any ambiguity related to the definition of the kinematical variable, or that of the scale parameter Λ, even though the theory is not solved to all orders. As a by-product, a renormalization-group improvement of the usual series is achieved. Extension of these methods to operators leads to the introduction of renormalization-group-invariant Green's function and Wilson coefficients, directly related to effective charges. The case of nonzero fermion masses is discussed, both for fixed masses and running masses in mass-independent renormalization schemes. The importance of the scale-invariant mass m is emphasized. Applications are given to deep-inelastic phenomena, where the use of renormalization-group-invariant coefficient functions allows to perform the factorization without having to introduce a factorization scale. The Sudakov form factor of the electron in QED is discussed as an example of an extension of the method to problems involving several momentum scales

  11. Manifestly gauge invariant discretizations of the Schrödinger equation

    International Nuclear Information System (INIS)

    Halvorsen, Tore Gunnar; Kvaal, Simen

    2012-01-01

    Grid-based discretizations of the time dependent Schrödinger equation coupled to an external magnetic field are converted to manifest gauge invariant discretizations. This is done using generalizations of ideas used in classical lattice gauge theory, and the process defined is applicable to a large class of discretized differential operators. In particular, popular discretizations such as pseudospectral discretizations using the fast Fourier transform can be transformed to gauge invariant schemes. Also generic gauge invariant versions of generic time integration methods are considered, enabling completely gauge invariant calculations of the time dependent Schrödinger equation. Numerical examples illuminating the differences between a gauge invariant discretization and conventional discretization procedures are also presented. -- Highlights: ► We investigate the Schrödinger equation coupled to an external magnetic field. ► Any grid-based discretization is made trivially gauge invariant. ► An extension of classical lattice gauge theory.

  12. Robust Stabilization of Fractional-Order Systems with Interval Uncertainties via Fractional-Order Controllers

    Directory of Open Access Journals (Sweden)

    Mohammadtaghi Hamidi Beheshti

    2010-01-01

    Full Text Available We propose a fractional-order controller to stabilize unstable fractional-order open-loop systems with interval uncertainty whereas one does not need to change the poles of the closed-loop system in the proposed method. For this, we will use the robust stability theory of Fractional-Order Linear Time Invariant (FO-LTI systems. To determine the control parameters, one needs only a little knowledge about the plant and therefore, the proposed controller is a suitable choice in the control of interval nonlinear systems and especially in fractional-order chaotic systems. Finally numerical simulations are presented to show the effectiveness of the proposed controller.

  13. Robust Stabilization of Fractional-Order Systems with Interval Uncertainties via Fractional-Order Controllers

    Directory of Open Access Journals (Sweden)

    Sayyad Delshad Saleh

    2010-01-01

    Full Text Available Abstract We propose a fractional-order controller to stabilize unstable fractional-order open-loop systems with interval uncertainty whereas one does not need to change the poles of the closed-loop system in the proposed method. For this, we will use the robust stability theory of Fractional-Order Linear Time Invariant (FO-LTI systems. To determine the control parameters, one needs only a little knowledge about the plant and therefore, the proposed controller is a suitable choice in the control of interval nonlinear systems and especially in fractional-order chaotic systems. Finally numerical simulations are presented to show the effectiveness of the proposed controller.

  14. Time-scale effects on the gain-loss asymmetry in stock indices

    Science.gov (United States)

    Sándor, Bulcsú; Simonsen, Ingve; Nagy, Bálint Zsolt; Néda, Zoltán

    2016-08-01

    The gain-loss asymmetry, observed in the inverse statistics of stock indices is present for logarithmic return levels that are over 2 % , and it is the result of the non-Pearson-type autocorrelations in the index. These non-Pearson-type correlations can be viewed also as functionally dependent daily volatilities, extending for a finite time interval. A generalized time-window shuffling method is used to show the existence of such autocorrelations. Their characteristic time scale proves to be smaller (less than 25 trading days) than what was previously believed. It is also found that this characteristic time scale has decreased with the appearance of program trading in the stock market transactions. Connections with the leverage effect are also established.

  15. Curing Black Hole Singularities with Local Scale Invariance

    Directory of Open Access Journals (Sweden)

    Predrag Dominis Prester

    2016-01-01

    Full Text Available We show that Weyl-invariant dilaton gravity provides a description of black holes without classical space-time singularities. Singularities appear due to the ill behaviour of gauge fixing conditions, one example being the gauge in which theory is classically equivalent to standard General Relativity. The main conclusions of our analysis are as follows: (1 singularities signal a phase transition from broken to unbroken phase of Weyl symmetry; (2 instead of a singularity, there is a “baby universe” or a white hole inside a black hole; (3 in the baby universe scenario, there is a critical mass after which reducing mass makes the black hole larger as viewed by outside observers; (4 if a black hole could be connected with white hole through the “singularity,” this would require breakdown of (classical geometric description; (5 the singularity of Schwarzschild BH solution is nongeneric and so it is dangerous to rely on it in deriving general results. Our results may have important consequences for resolving issues related to information loss puzzle. Though quantum effects are still crucial and may change the proposed classical picture, a position of building quantum theory around essentially regular classical solutions normally provides a much better starting point.

  16. Augmenting the core battery with supplementary subtests: Wechsler adult intelligence scale--IV measurement invariance across the United States and Canada.

    Science.gov (United States)

    Bowden, Stephen C; Saklofske, Donald H; Weiss, Lawrence G

    2011-06-01

    Examination of measurement invariance provides a powerful method to evaluate the hypothesis that the same set of psychological constructs underlies a set of test scores in different populations. If measurement invariance is observed, then the same psychological meaning can be ascribed to scores in both populations. In this study, the measurement model including core and supplementary subtests of the Wechsler Adult Intelligence Scale-Fourth edition (WAIS-IV) were compared across the U.S. and Canadian standardization samples. Populations were compared on the 15 subtest version of the test in people aged 70 and younger and on the 12 subtest version in people aged 70 or older. Results indicated that a slightly modified version of the four-factor model reported in the WAIS-IV technical manual provided the best fit in both populations and in both age groups. The null hypothesis of measurement invariance across populations was not rejected, and the results provide direct evidence for the generalizability of convergent and discriminant validity studies with the WAIS-IV across populations. Small to medium differences in latent means favoring Canadians highlight the value of local norms.

  17. Invariant measures in brain dynamics

    International Nuclear Information System (INIS)

    Boyarsky, Abraham; Gora, Pawel

    2006-01-01

    This note concerns brain activity at the level of neural ensembles and uses ideas from ergodic dynamical systems to model and characterize chaotic patterns among these ensembles during conscious mental activity. Central to our model is the definition of a space of neural ensembles and the assumption of discrete time ensemble dynamics. We argue that continuous invariant measures draw the attention of deeper brain processes, engendering emergent properties such as consciousness. Invariant measures supported on a finite set of ensembles reflect periodic behavior, whereas the existence of continuous invariant measures reflect the dynamics of nonrepeating ensemble patterns that elicit the interest of deeper mental processes. We shall consider two different ways to achieve continuous invariant measures on the space of neural ensembles: (1) via quantum jitters, and (2) via sensory input accompanied by inner thought processes which engender a 'folding' property on the space of ensembles

  18. Scalewise invariant analysis of the anisotropic Reynolds stress tensor for atmospheric surface layer and canopy sublayer turbulent flows

    Science.gov (United States)

    Brugger, Peter; Katul, Gabriel G.; De Roo, Frederik; Kröniger, Konstantin; Rotenberg, Eyal; Rohatyn, Shani; Mauder, Matthias

    2018-05-01

    Anisotropy in the turbulent stress tensor, which forms the basis of invariant analysis, is conducted using velocity time series measurements collected in the canopy sublayer (CSL) and the atmospheric surface layer (ASL). The goal is to assess how thermal stratification and surface roughness conditions simultaneously distort the scalewise relaxation towards isotropic state from large to small scales when referenced to homogeneous turbulence. To achieve this goal, conventional invariant analysis is extended to allow scalewise information about relaxation to isotropy in physical (instead of Fourier) space to be incorporated. The proposed analysis shows that the CSL is more isotropic than its ASL counterpart at large, intermediate, and small (or inertial) scales irrespective of the thermal stratification. Moreover, the small (or inertial) scale anisotropy is more prevalent in the ASL when compared to the CSL, a finding that cannot be fully explained by the intensity of the mean velocity gradient acting on all scales. Implications to the validity of scalewise Rotta and Lumley models for return to isotropy as well as advantages to using barycentric instead of anisotropy invariant maps for such scalewise analysis are discussed.

  19. Noninvariance of Space and Time Scale Ranges under a Lorentz Transformation and the Implications for the Numerical Study of Relativistic Systems

    International Nuclear Information System (INIS)

    Vay, J.-L.; Vay, J.-L.

    2007-01-01

    We present an analysis which shows that the ranges of space and time scales spanned by a system are not invariant under the Lorentz transformation. This implies the existence of a frame of reference which minimizes an aggregate measure of the range of space and time scales. Such a frame is derived for example cases: free electron laser, laser-plasma accelerator, and particle beam interacting with electron clouds. Implications for experimental, theoretical and numerical studies are discussed. The most immediate relevance is the reduction by orders of magnitude in computer simulation run times for such systems

  20. Invariant exchange perturbation theory for multicenter systems: Time-dependent perturbations

    International Nuclear Information System (INIS)

    Orlenko, E. V.; Evstafev, A. V.; Orlenko, F. E.

    2015-01-01

    A formalism of exchange perturbation theory (EPT) is developed for the case of interactions that explicitly depend on time. Corrections to the wave function obtained in any order of perturbation theory and represented in an invariant form include exchange contributions due to intercenter electron permutations in complex multicenter systems. For collisions of atomic systems with an arbitrary type of interaction, general expressions are obtained for the transfer (T) and scattering (S) matrices in which intercenter electron permutations between overlapping nonorthogonal states belonging to different centers (atoms) are consistently taken into account. The problem of collision of alpha particles with lithium atoms accompanied by the redistribution of electrons between centers is considered. The differential and total charge-exchange cross sections of lithium are calculated

  1. Continuous time random walk: Galilei invariance and relation for the nth moment

    International Nuclear Information System (INIS)

    Fa, Kwok Sau

    2011-01-01

    We consider a decoupled continuous time random walk model with a generic waiting time probability density function (PDF). For the force-free case we derive an integro-differential diffusion equation which is related to the Galilei invariance for the probability density. We also derive a general relation which connects the nth moment in the presence of any external force to the second moment without external force, i.e. it is valid for any waiting time PDF. This general relation includes the generalized second Einstein relation, which connects the first moment in the presence of any external force to the second moment without any external force. These expressions for the first two moments are verified by using several kinds of the waiting time PDF. Moreover, we present new anomalous diffusion behaviours for a waiting time PDF given by a product of power-law and exponential function.

  2. Quantized gauge invariant periodic TDHF solutions

    International Nuclear Information System (INIS)

    Kan, K.-K.; Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.

    1979-01-01

    Time-dependent Hartree-Fock (TDHF) is used to study steady state large amplitude nuclear collective motions, such as vibration and rotation. As is well known the small amplitude TDHF leads to the RPA equation. The analysis of periodicity in TDHF is not trivial because TDHF is a nonlinear theory and it is not known under what circumstances a nonlinear theory can support periodic solutions. It is also unknown whether such periodic solution, if they exist, form a continuous or a discrete set. But, these properties may be important in obtaining the energy spectrum of the collective states from the TDHF description. The periodicity and Gauge Invariant Periodicity of solutions are investigated for that class of models whose TDHF solutions depend on time through two parameters. In such models TDHF supports a continuous family of periodic solutions, but only a discrete subset of these is gauge invariant. These discrete Gauge Invariant Periodic solutions obey the Bohr-Summerfeld quantization rule. The energy spectrum of the Gauge Invariant Periodic solutions is compared with the exact eigenergies in one specific example

  3. Interval timing under a behavioral microscope: Dissociating motivational and timing processes in fixed-interval performance.

    Science.gov (United States)

    Daniels, Carter W; Sanabria, Federico

    2017-03-01

    The distribution of latencies and interresponse times (IRTs) of rats was compared between two fixed-interval (FI) schedules of food reinforcement (FI 30 s and FI 90 s), and between two levels of food deprivation. Computational modeling revealed that latencies and IRTs were well described by mixture probability distributions embodying two-state Markov chains. Analysis of these models revealed that only a subset of latencies is sensitive to the periodicity of reinforcement, and prefeeding only reduces the size of this subset. The distribution of IRTs suggests that behavior in FI schedules is organized in bouts that lengthen and ramp up in frequency with proximity to reinforcement. Prefeeding slowed down the lengthening of bouts and increased the time between bouts. When concatenated, latency and IRT models adequately reproduced sigmoidal FI response functions. These findings suggest that behavior in FI schedules fluctuates in and out of schedule control; an account of such fluctuation suggests that timing and motivation are dissociable components of FI performance. These mixture-distribution models also provide novel insights on the motivational, associative, and timing processes expressed in FI performance. These processes may be obscured, however, when performance in timing tasks is analyzed in terms of mean response rates.

  4. Do time-invariant confounders explain away the association between job stress and workers' mental health? Evidence from Japanese occupational panel data.

    Science.gov (United States)

    Oshio, Takashi; Tsutsumi, Akizumi; Inoue, Akiomi

    2015-02-01

    It is well known that job stress is negatively related to workers' mental health, but most recent studies have not controlled for unobserved time-invariant confounders. In the current study, we attempted to validate previous observations on the association between job stress and workers' mental health, by removing the effects of unobserved time-invariant confounders. We used data from three to four waves of an occupational Japanese cohort survey, focusing on 31,382 observations of 9741 individuals who participated in at least two consecutive waves. We estimated mean-centered fixed effects models to explain psychological distress in terms of the Kessler 6 (K6) scores (range: 0-24) by eight job stress indicators related to the job demands-control, effort-reward imbalance, and organizational injustice models. Mean-centered fixed effects models reduced the magnitude of the association between jobs stress and K6 scores to 44.8-54.2% of those observed from pooled ordinary least squares. However, the association remained highly significant even after controlling for unobserved time-invariant confounders for all job stress indicators. In addition, alternatively specified models showed the robustness of the results. In all, we concluded that the validity of major job stress models, which link job stress and workers' mental health, was robust, although unobserved time-invariant confounders led to an overestimation of the association. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Optimal time interval for induction of immunologic adaptive response

    International Nuclear Information System (INIS)

    Ju Guizhi; Song Chunhua; Liu Shuzheng

    1994-01-01

    The optimal time interval between prior dose (D1) and challenge dose (D2) for the induction of immunologic adaptive response was investigated. Kunming mice were exposed to 75 mGy X-rays at a dose rate of 12.5 mGy/min. 3, 6, 12, 24 or 60 h after the prior irradiation the mice were challenged with a dose of 1.5 Gy at a dose rate of 0.33 Gy/min. 18h after D2, the mice were sacrificed for examination of immunological parameters. The results showed that with an interval of 6 h between D1 and D2, the adaptive response of the reaction of splenocytes to LPS was induced, and with an interval of 12 h the adaptive responses of spontaneous incorporation of 3 H-TdR into thymocytes and the reaction of splenocytes to Con A and LPS were induced with 75 mGy prior irradiation. The data suggested that the optimal time intervals between D1 and D2 for the induction of immunologic adaptive response were 6 h and 12 h with a D1 of 75 mGy and a D2 of 1.5 Gy. The mechanism of immunologic adaptation following low dose radiation is discussed

  6. Assessing the Implicit Theory of Willpower for Strenuous Mental Activities Scale: Multigroup, across-gender, and cross-cultural measurement invariance and convergent and divergent validity.

    Science.gov (United States)

    Napolitano, Christopher M; Job, Veronika

    2018-05-21

    Why do some people struggle with self-control (colloquially called willpower) whereas others are able to sustain it during challenging circumstances? Recent research showed that a person's implicit theories of willpower-whether they think self-control capacity is a limited or nonlimited resource-predict sustained self-control on laboratory tasks and on goal-related outcomes in everyday life. The present research tests the Implicit Theory of Willpower for Strenuous Mental Activities Scale (or ITW-M) Scale for measurement invariance across samples and gender within each culture, and two cultural contexts (the U.S. and Switzerland/Germany). Across a series of multigroup confirmatory factor analyses, we found support for the measurement invariance of the ITW-M scale across samples within and across two cultures, as well as across men and women. Further, the analyses showed expected patterns of convergent (with life-satisfaction and trait-self-control) and discriminant validity (with implicit theory of intelligence). These results provide guidelines for future research and clinical practice using the ITW-M scale for the investigation of latent group differences, for example, between gender or cultures. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. The invariant theory of matrices

    CERN Document Server

    Concini, Corrado De

    2017-01-01

    This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of m\\times m matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation. Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving the first fundamental theorem that describes a set of generators in the ring of invariants, and the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case...

  8. Time reversal invariance - a test in free neutron decay

    Energy Technology Data Exchange (ETDEWEB)

    Lising, Laura Jean [Univ. of California, Berkeley, CA (United States)

    1999-01-01

    Time reversal invariance violation plays only a small role in the Standard Model, and the existence of a T-violating effect above the predicted level would be an indication of new physics. A sensitive probe of this symmetry in the weak interaction is the measurement of the T-violating ''D''-correlation in the decay of free neutrons. The triple-correlation Dσn∙pe x pv involves three kinematic variables, the neutron spin, electron momentu, and neutrino (or proton) momentum, and changes sign under time reversal. This experiment detects the decay products of a polarized cold neutron beam with an octagonal array of scintillation and solid-state detectors. Data from first run at NIST's Cold Neutron Research Facility give a D-coefficient of -0.1 ± 1.3(stat.) ± 0.7(syst) x 10-3 This measurement has the greatest bearing on extensions to the Standard model that incorporate leptoquarks, although exotic fermion and lift-right symmetric models also allow a D as large as the present limit.

  9. Conformal Invariance, Dark Energy, and CMB Non-Gaussianity

    CERN Document Server

    Antoniadis, Ignatios; Mottola, Emil

    2012-01-01

    We show that in addition to simple scale invariance, a universe dominated by dark energy naturally gives rise to correlation functions possessing full conformal invariance. This is due to the mathematical isomorphism between the conformal group of certain three dimensional slices of de Sitter space and the de Sitter isometry group SO(4,1). In the standard homogeneous, isotropic cosmological model in which primordial density perturbations are generated during a long vacuum energy dominated de Sitter phase, the embedding of flat spatial R^3 sections in de Sitter space induces a conformal invariant perturbation spectrum and definite prediction for the shape of the non-Gaussian CMB bispectrum. In the case in which the density fluctuations are generated instead on the de Sitter horizon, conformal invariance of the S^2 horizon embedding implies a different but also quite definite prediction for the angular correlations of CMB non-Gaussianity on the sky. Each of these forms for the bispectrum is intrinsic to the sym...

  10. Finite-time barriers to reaction front propagation

    Science.gov (United States)

    Locke, Rory; Mahoney, John; Mitchell, Kevin

    2015-11-01

    Front propagation in advection-reaction-diffusion systems gives rise to rich geometric patterns. It has been shown for time-independent and time-periodic fluid flows that invariant manifolds, termed burning invariant manifolds (BIMs), serve as one-sided dynamical barriers to the propagation of reaction front. More recently, theoretical work has suggested that one-sided barriers, termed burning Lagrangian Coherent structures (bLCSs), exist for fluid velocity data prescribed over a finite time interval, with no assumption on the time-dependence of the flow. In this presentation, we use a time-varying fluid ``wind'' in a double-vortex channel flow to demonstrate that bLCSs form the (locally) most attracting or repelling fronts.

  11. Fluorinated cellular polypropylene films with time-invariant excellent surface electret properties by post-treatments

    International Nuclear Information System (INIS)

    An Zhenlian; Mao Mingjun; Yao Junlan; Zhang Yewen; Xia Zhongfu

    2010-01-01

    In this work, to improve the electret properties of cellular polypropylene films, they were fluorinated and post-treated with nitrous oxide and by isothermal crystallization. Surface electret properties of the samples were investigated by thermally stimulated discharge current measurements, and their compositions and structures were analysed by attenuated total reflection infrared spectroscopy and wide angle x-ray diffraction, respectively. Time-dependent deterioration of surface electret properties was observed for the fluorinated samples without the nitrous oxide post-treatment. However, deterioration did not occur for the fluorinated samples post-treated with nitrous oxide, and time-invariant excellent surface electret properties or deep surface charge traps were obtained by the combined post-treatments of the fluorinated samples with nitrous oxide and by isothermal crystallization. Based on the analyses of composition and structure of the treated samples, the deterioration was clarified to be due to a trace of oxygen in the reactive mixture, which led to the formation of peroxy RO 2 . radicals in the fluorinated surface layer. The time invariability of surface electret properties was owing to the rapid termination of the peroxy RO 2 . radicals by nitrous oxide. And the deep surface charge traps resulted from the isothermal crystallization treatment which led to an increase in the efficient charging interface between the crystallite and amorphous region and its property change.

  12. Orientation Encoding and Viewpoint Invariance in Face Recognition: Inferring Neural Properties from Large-Scale Signals.

    Science.gov (United States)

    Ramírez, Fernando M

    2018-05-01

    Viewpoint-invariant face recognition is thought to be subserved by a distributed network of occipitotemporal face-selective areas that, except for the human anterior temporal lobe, have been shown to also contain face-orientation information. This review begins by highlighting the importance of bilateral symmetry for viewpoint-invariant recognition and face-orientation perception. Then, monkey electrophysiological evidence is surveyed describing key tuning properties of face-selective neurons-including neurons bimodally tuned to mirror-symmetric face-views-followed by studies combining functional magnetic resonance imaging (fMRI) and multivariate pattern analyses to probe the representation of face-orientation and identity information in humans. Altogether, neuroimaging studies suggest that face-identity is gradually disentangled from face-orientation information along the ventral visual processing stream. The evidence seems to diverge, however, regarding the prevalent form of tuning of neural populations in human face-selective areas. In this context, caveats possibly leading to erroneous inferences regarding mirror-symmetric coding are exposed, including the need to distinguish angular from Euclidean distances when interpreting multivariate pattern analyses. On this basis, this review argues that evidence from the fusiform face area is best explained by a view-sensitive code reflecting head angular disparity, consistent with a role of this area in face-orientation perception. Finally, the importance is stressed of explicit models relating neural properties to large-scale signals.

  13. A model for size- and rotation-invariant pattern processing in the visual system.

    Science.gov (United States)

    Reitboeck, H J; Altmann, J

    1984-01-01

    The mapping of retinal space onto the striate cortex of some mammals can be approximated by a log-polar function. It has been proposed that this mapping is of functional importance for scale- and rotation-invariant pattern recognition in the visual system. An exact log-polar transform converts centered scaling and rotation into translations. A subsequent translation-invariant transform, such as the absolute value of the Fourier transform, thus generates overall size- and rotation-invariance. In our model, the translation-invariance is realized via the R-transform. This transform can be executed by simple neural networks, and it does not require the complex computations of the Fourier transform, used in Mellin-transform size-invariance models. The logarithmic space distortion and differentiation in the first processing stage of the model is realized via "Mexican hat" filters whose diameter increases linearly with eccentricity, similar to the characteristics of the receptive fields of retinal ganglion cells. Except for some special cases, the model can explain object recognition independent of size, orientation and position. Some general problems of Mellin-type size-invariance models-that also apply to our model-are discussed.

  14. Discriminative phenomenological features of scale invariant models for electroweak symmetry breaking

    Directory of Open Access Journals (Sweden)

    Katsuya Hashino

    2016-01-01

    Full Text Available Classical scale invariance (CSI may be one of the solutions for the hierarchy problem. Realistic models for electroweak symmetry breaking based on CSI require extended scalar sectors without mass terms, and the electroweak symmetry is broken dynamically at the quantum level by the Coleman–Weinberg mechanism. We discuss discriminative features of these models. First, using the experimental value of the mass of the discovered Higgs boson h(125, we obtain an upper bound on the mass of the lightest additional scalar boson (≃543 GeV, which does not depend on its isospin and hypercharge. Second, a discriminative prediction on the Higgs-photon–photon coupling is given as a function of the number of charged scalar bosons, by which we can narrow down possible models using current and future data for the di-photon decay of h(125. Finally, for the triple Higgs boson coupling a large deviation (∼+70% from the SM prediction is universally predicted, which is independent of masses, quantum numbers and even the number of additional scalars. These models based on CSI can be well tested at LHC Run II and at future lepton colliders.

  15. JY1 time scale: a new Kalman-filter time scale designed at NIST

    International Nuclear Information System (INIS)

    Yao, Jian; Parker, Thomas E; Levine, Judah

    2017-01-01

    We report on a new Kalman-filter hydrogen-maser time scale (i.e. JY1 time scale) designed at the National Institute of Standards and Technology (NIST). The JY1 time scale is composed of a few hydrogen masers and a commercial Cs clock. The Cs clock is used as a reference clock to ease operations with existing data. Unlike other time scales, the JY1 time scale uses three basic time-scale equations, instead of only one equation. Also, this time scale can detect a clock error (i.e. time error, frequency error, or frequency drift error) automatically. These features make the JY1 time scale stiff and less likely to be affected by an abnormal clock. Tests show that the JY1 time scale deviates from the UTC by less than  ±5 ns for ∼100 d, when the time scale is initially aligned to the UTC and then is completely free running. Once the time scale is steered to a Cs fountain, it can maintain the time with little error even if the Cs fountain stops working for tens of days. This can be helpful when we do not have a continuously operated fountain or when the continuously operated fountain accidentally stops, or when optical clocks run occasionally. (paper)

  16. A Dynamical System Approach Explaining the Process of Development by Introducing Different Time-scales.

    Science.gov (United States)

    Hashemi Kamangar, Somayeh Sadat; Moradimanesh, Zahra; Mokhtari, Setareh; Bakouie, Fatemeh

    2018-06-11

    A developmental process can be described as changes through time within a complex dynamic system. The self-organized changes and emergent behaviour during development can be described and modeled as a dynamical system. We propose a dynamical system approach to answer the main question in human cognitive development i.e. the changes during development happens continuously or in discontinuous stages. Within this approach there is a concept; the size of time scales, which can be used to address the aforementioned question. We introduce a framework, by considering the concept of time-scale, in which "fast" and "slow" is defined by the size of time-scales. According to our suggested model, the overall pattern of development can be seen as one continuous function, with different time-scales in different time intervals.

  17. iGRaND: an invariant frame for RGBD sensor feature detection and descriptor extraction with applications

    Science.gov (United States)

    Willis, Andrew R.; Brink, Kevin M.

    2016-06-01

    This article describes a new 3D RGBD image feature, referred to as iGRaND, for use in real-time systems that use these sensors for tracking, motion capture, or robotic vision applications. iGRaND features use a novel local reference frame derived from the image gradient and depth normal (hence iGRaND) that is invariant to scale and viewpoint for Lambertian surfaces. Using this reference frame, Euclidean invariant feature components are computed at keypoints which fuse local geometric shape information with surface appearance information. The performance of the feature for real-time odometry is analyzed and its computational complexity and accuracy is compared with leading alternative 3D features.

  18. Interval Routing and Minor-Monotone Graph Parameters

    NARCIS (Netherlands)

    Bakker, E.M.; Bodlaender, H.L.; Tan, R.B.; Leeuwen, J. van

    2006-01-01

    We survey a number of minor-monotone graph parameters and their relationship to the complexity of routing on graphs. In particular we compare the interval routing parameters κslir(G) and κsir(G) with Colin de Verdi`ere’s graph invariant μ(G) and its variants λ(G) and κ(G). We show that for all the

  19. Computational invariant theory

    CERN Document Server

    Derksen, Harm

    2015-01-01

    This book is about the computational aspects of invariant theory. Of central interest is the question how the invariant ring of a given group action can be calculated. Algorithms for this purpose form the main pillars around which the book is built. There are two introductory chapters, one on Gröbner basis methods and one on the basic concepts of invariant theory, which prepare the ground for the algorithms. Then algorithms for computing invariants of finite and reductive groups are discussed. Particular emphasis lies on interrelations between structural properties of invariant rings and computational methods. Finally, the book contains a chapter on applications of invariant theory, covering fields as disparate as graph theory, coding theory, dynamical systems, and computer vision. The book is intended for postgraduate students as well as researchers in geometry, computer algebra, and, of course, invariant theory. The text is enriched with numerous explicit examples which illustrate the theory and should be ...

  20. Testing Lorentz invariance emergence in Ising Model using lattice Monte Carlo simulations

    CERN Document Server

    Stojku, Stefan

    2017-01-01

    All measurements performed so far at the observable energy scales show no violation of Lorentz invariance. However, it is yet impossible to check experimentally whether this symmetry holds at high energies such as the Planck scale. Recently, theories of gravitation with Lorentz violation, known as Horava-Lifshitz gravity [1, 2] have gained significant attention by treating Lorentz symmetry as an emergent phenomenon. A Lif-shitz type theory assumes an anisotropic scaling between space and time weighted by some critical exponent. In order for these theories to be viable candidates for quantum gravity description of the nature, Lorentz symmetry needs to be recovered at low energies.

  1. Time-invariant component-based normalization for a simultaneous PET-MR scanner.

    Science.gov (United States)

    Belzunce, M A; Reader, A J

    2016-05-07

    Component-based normalization is a method used to compensate for the sensitivity of each of the lines of response acquired in positron emission tomography. This method consists of modelling the sensitivity of each line of response as a product of multiple factors, which can be classified as time-invariant, time-variant and acquisition-dependent components. Typical time-variant factors are the intrinsic crystal efficiencies, which are needed to be updated by a regular normalization scan. Failure to do so would in principle generate artifacts in the reconstructed images due to the use of out of date time-variant factors. For this reason, an assessment of the variability and the impact of the crystal efficiencies in the reconstructed images is important to determine the frequency needed for the normalization scans, as well as to estimate the error obtained when an inappropriate normalization is used. Furthermore, if the fluctuations of these components are low enough, they could be neglected and nearly artifact-free reconstructions become achievable without performing a regular normalization scan. In this work, we analyse the impact of the time-variant factors in the component-based normalization used in the Biograph mMR scanner, but the work is applicable to other PET scanners. These factors are the intrinsic crystal efficiencies and the axial factors. For the latter, we propose a new method to obtain fixed axial factors that was validated with simulated data. Regarding the crystal efficiencies, we assessed their fluctuations during a period of 230 d and we found that they had good stability and low dispersion. We studied the impact of not including the intrinsic crystal efficiencies in the normalization when reconstructing simulated and real data. Based on this assessment and using the fixed axial factors, we propose the use of a time-invariant normalization that is able to achieve comparable results to the standard, daily updated, normalization factors used in this

  2. A circuit-level analysis of third order intermodulation mechanisms in CMOS mixers using time-invariant power and Volterra series

    NARCIS (Netherlands)

    Sakian, P.; Mahmoudi, R.; Roermund, van A.H.M.

    2011-01-01

    An in-depth analysis is performed on the third-order intermodulation distortions (IMD3) in the switching pair of active CMOS mixers. The nonlinear time-varying switching pair is described by a hypothetical circuit composed of a nonlinear time-invariant circuit cascaded with a linear time-varying

  3. Invariant submanifold flows

    Energy Technology Data Exchange (ETDEWEB)

    Olver, Peter J [School of Mathematics, University of Minnesota, Minneapolis, MN 55455 (United States)], E-mail: olver@math.umn.edu

    2008-08-29

    Given a Lie group acting on a manifold, our aim is to analyze the evolution of differential invariants under invariant submanifold flows. The constructions are based on the equivariant method of moving frames and the induced invariant variational bicomplex. Applications to integrable soliton dynamics, and to the evolution of differential invariant signatures, used in equivalence problems and object recognition and symmetry detection in images, are discussed.

  4. Construct validity, dimensionality and factorial invariance of the Rosenberg Self Esteem Scale: A bifactor modelling approach among children of prisoners

    OpenAIRE

    Sharratt, Kathryn; Boduszek, Daniel; Jones, Adele; Gallagher, Bernard

    2014-01-01

    Background The Rosenberg Self-Esteem Scale (RSES) has traditionally been conceptualised as a unidimensional measure of self-esteem, but empirical evidence is equivocal, with some studies supporting a one-factor solution and others favouring multidimensional models. Participants and procedure The aim of this study was to examine the factor structure, factorial invariance and composite reliability of the RSES within a European sample of children affected by parental imprison...

  5. Confirmatory factor analysis and sample invariance of the Chinese version of Somatosensory Amplification Scale (ChSAS) among Chinese adolescents

    OpenAIRE

    Tam, B. K.; Wong, W. S.

    2011-01-01

    Objective: This paper aimed to evaluate the factor structure of the Chinese version of Somatosensory Amplification Scale (ChSAS) in a sample of Chinese adolescents across different grade levels using confirmatory factor analysis (CFA). Methods: A total of 1991 Chinese adolescents completed the ChSAS. CFA assessed the fit of the one-factor model to the entire sample. Factorial invariance of the ChSAS was also examined across grade levels using multigroup CFA. Results: Results of CFA confirmed ...

  6. Quasi-invariant modified Sobolev norms for semi linear reversible PDEs

    International Nuclear Information System (INIS)

    Faou, Erwan; Grébert, Benoît

    2010-01-01

    We consider a general class of infinite dimensional reversible differential systems. Assuming a nonresonance condition on linear frequencies, we construct for such systems almost invariant pseudo-norms that are close to Sobolev-like norms. This allows us to prove that if the Sobolev norm of index s of the initial data z 0 is sufficiently small (of order ε) then the Sobolev norm of the solution is bounded by 2ε over a very long time interval (of order ε −r with r arbitrary). It turns out that this theorem applies to a large class of reversible semi-linear partial differential equations (PDEs) including the nonlinear Schrödinger (NLS) equation on the d-dimensional torus. We also apply our method to a system of coupled NLS equations which is reversible but not Hamiltonian. We also note that for the same class of reversible systems we can prove a Birkhoff normal form theorem, which in turn implies the same bounds on the Sobolev norms. Nevertheless the techniques that we use to prove the existence of quasi-invariant pseudo-norms are much more simple and direct

  7. Cerebellar Roles in Self-Timing for Sub- and Supra-Second Intervals.

    Science.gov (United States)

    Ohmae, Shogo; Kunimatsu, Jun; Tanaka, Masaki

    2017-03-29

    Previous studies suggest that the cerebellum and basal ganglia are involved in sub-second and supra-second timing, respectively. To test this hypothesis at the cellular level, we examined the activity of single neurons in the cerebellar dentate nucleus in monkeys performing the oculomotor version of the self-timing task. Animals were trained to report the passage of time of 400, 600, 1200, or 2400 ms following a visual cue by making self-initiated memory-guided saccades. We found a sizeable preparatory neuronal activity before self-timed saccades across delay intervals, while the time course of activity correlated with the trial-by-trial variation of saccade latency in different ways depending on the length of the delay intervals. For the shorter delay intervals, the ramping up of neuronal firing rate started just after the visual cue and the rate of rise of neuronal activity correlated with saccade timing. In contrast, for the longest delay (2400 ms), the preparatory activity started late during the delay period, and its onset time correlated with self-timed saccade latency. Because electrical microstimulation applied to the recording sites during saccade preparation advanced self-timed but not reactive saccades, regardless of their directions, the signals in the cerebellum may have a causal role in self-timing. We suggest that the cerebellum may regulate timing in both sub-second and supra-second ranges, although its relative contribution might be greater for sub-second than for supra-second time intervals. SIGNIFICANCE STATEMENT How we decide the timing of self-initiated movement is a fundamental question. According to the prevailing hypothesis, the cerebellum plays a role in monitoring sub-second timing, whereas the basal ganglia are important for supra-second timing. To verify this, we explored neuronal signals in the monkey cerebellum while animals reported the passage of time in the range 400-2400 ms by making eye movements. Contrary to our expectations, we

  8. Relational invariance of expressive microstructure across global tempo changes in music performance: an exploratory study.

    Science.gov (United States)

    Repp, B H

    1994-01-01

    This study addressed the question of whether the expressive microstructure of a music performance remains relationally invariant across moderate (musically acceptable) changes in tempo. Two pianists played Schumann's "Träumerei" three times at each of three tempi on a digital piano, and the performance data were recorded in MIDI format. In a perceptual test, musically trained listeners attempted to distinguish the original performances from performances that had been artificially speeded up or slowed down to the same overall duration. Accuracy in this task was barely above chance, suggesting that relational invariance was largely preserved. Subsequent analysis of the MIDI data confirmed that each pianist's characteristic timing patterns were highly similar across the three tempi, although there were statistically significant deviations from perfect relational invariance. The timing of (relatively slow) grace notes seemed relationally invariant, but selective examination of other detailed temporal features (chord asynchrony, tone overlap, pedal timing) revealed no systematic scaling with tempo. Finally, although the intensity profile seemed unaffected by tempo, a slight overall increase in intensity with tempo was observed. Effects of musical structure on expressive microstructure were large and pervasive at all levels, as were individual differences between the two pianists. For the specific composition and range of tempi considered here, these results suggest that major (cognitively controlled) temporal and dynamic features of a performance change roughly in proportion with tempo, whereas minor features tend to be governed by tempo-independent motoric constraints.

  9. Renormalization-group-invariant 1/N corrections to nontrival φ4 theory

    International Nuclear Information System (INIS)

    Smekal, L.v.; Langfeld, K.; Reinhardt, H.; Langbein, R.F.

    1994-01-01

    In the framework of path integral linearization techniques, the effective potential and the master field equation for massless φ 4 theory, in the modified loop expansion around the mean field, are derived up to next to leading order. In the O(N)-symmetric theory, these equations are equivalent to a subsummation of O(N) and order 1 diagrams. A renormalization prescription is proposed which is manifestly renormalization group invariant. The numerical results for the potential in next to leading order agree qualitatively well with the leading order ones. In particular, the nontrivial phase structure remains unchanged. Quantitatively, the corrections ar small for N much-gt 8, but even for N as small as one their essential effect is to modify the scaling coefficient β 0 in the Callan-Symanzik β function, in accordance with conventional loop expansions. The numerical results are best parametrized by scaling improved mean field formulas. Dimensional transmutation renders the overall (physical) mass scale M 0 , generated by a dynamical breaking of scale invariance, the only adjustable parameter of the theory. Renormalization group invariance of the numerical results is explicitly verified

  10. An Advanced Rotation Invariant Descriptor for SAR Image Registration

    Directory of Open Access Journals (Sweden)

    Yuming Xiang

    2017-07-01

    Full Text Available The Scale-Invariant Feature Transform (SIFT algorithm and its many variants have been widely used in Synthetic Aperture Radar (SAR image registration. The SIFT-like algorithms maintain rotation invariance by assigning a dominant orientation for each keypoint, while the calculation of dominant orientation is not robust due to the effect of speckle noise in SAR imagery. In this paper, we propose an advanced local descriptor for SAR image registration to achieve rotation invariance without assigning a dominant orientation. Based on the improved intensity orders, we first divide a circular neighborhood into several sub-regions. Second, rotation-invariant ratio orientation histograms of each sub-region are proposed by accumulating the ratio values of different directions in a rotation-invariant coordinate system. The proposed descriptor is composed of the concatenation of the histograms of each sub-region. In order to increase the distinctiveness of the proposed descriptor, multiple image neighborhoods are aggregated. Experimental results on several satellite SAR images have shown an improvement in the matching performance over other state-of-the-art algorithms.

  11. Quantification of organ motion based on an adaptive image-based scale invariant feature method

    Energy Technology Data Exchange (ETDEWEB)

    Paganelli, Chiara [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, piazza L. Da Vinci 32, Milano 20133 (Italy); Peroni, Marta [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, piazza L. Da Vinci 32, Milano 20133, Italy and Paul Scherrer Institut, Zentrum für Protonentherapie, WMSA/C15, CH-5232 Villigen PSI (Italy); Baroni, Guido; Riboldi, Marco [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, piazza L. Da Vinci 32, Milano 20133, Italy and Bioengineering Unit, Centro Nazionale di Adroterapia Oncologica, strada Campeggi 53, Pavia 27100 (Italy)

    2013-11-15

    Purpose: The availability of corresponding landmarks in IGRT image series allows quantifying the inter and intrafractional motion of internal organs. In this study, an approach for the automatic localization of anatomical landmarks is presented, with the aim of describing the nonrigid motion of anatomo-pathological structures in radiotherapy treatments according to local image contrast.Methods: An adaptive scale invariant feature transform (SIFT) was developed from the integration of a standard 3D SIFT approach with a local image-based contrast definition. The robustness and invariance of the proposed method to shape-preserving and deformable transforms were analyzed in a CT phantom study. The application of contrast transforms to the phantom images was also tested, in order to verify the variation of the local adaptive measure in relation to the modification of image contrast. The method was also applied to a lung 4D CT dataset, relying on manual feature identification by an expert user as ground truth. The 3D residual distance between matches obtained in adaptive-SIFT was then computed to verify the internal motion quantification with respect to the expert user. Extracted corresponding features in the lungs were used as regularization landmarks in a multistage deformable image registration (DIR) mapping the inhale vs exhale phase. The residual distances between the warped manual landmarks and their reference position in the inhale phase were evaluated, in order to provide a quantitative indication of the registration performed with the three different point sets.Results: The phantom study confirmed the method invariance and robustness properties to shape-preserving and deformable transforms, showing residual matching errors below the voxel dimension. The adapted SIFT algorithm on the 4D CT dataset provided automated and accurate motion detection of peak to peak breathing motion. The proposed method resulted in reduced residual errors with respect to standard SIFT

  12. Lorentz invariance on trial in the weak decay of polarized atoms

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Stefan E., E-mail: s.mueller@kvi.nl [Kernfysisch Versneller Instituut (Netherlands)

    2013-03-15

    One of the most fundamental principles underlying our current understanding of nature is the invariance of the laws of physics under Lorentz transformations. Theories trying to unify the Standard Model with quantum gravity suggest that this invariance may be broken by the presence of Lorentz-violating background fields. Dedicated high-precision experiments at low energies could observe such suppressed signals from the Planck scale. At KVI, a test on Lorentz invariance of the weak interaction is performed searching for a dependence of the decay rate of spin-polarized nuclei on the orientation of their spin with respect to a fixed absolute galactical reference frame. An observation of such a dependence would imply a violation of Lorentz invariance.

  13. Metric invariance in object recognition: a review and further evidence.

    Science.gov (United States)

    Cooper, E E; Biederman, I; Hummel, J E

    1992-06-01

    Phenomenologically, human shape recognition appears to be invariant with changes of orientation in depth (up to parts occlusion), position in the visual field, and size. Recent versions of template theories (e.g., Ullman, 1989; Lowe, 1987) assume that these invariances are achieved through the application of transformations such as rotation, translation, and scaling of the image so that it can be matched metrically to a stored template. Presumably, such transformations would require time for their execution. We describe recent priming experiments in which the effects of a prior brief presentation of an image on its subsequent recognition are assessed. The results of these experiments indicate that the invariance is complete: The magnitude of visual priming (as distinct from name or basic level concept priming) is not affected by a change in position, size, orientation in depth, or the particular lines and vertices present in the image, as long as representations of the same components can be activated. An implemented seven layer neural network model (Hummel & Biederman, 1992) that captures these fundamental properties of human object recognition is described. Given a line drawing of an object, the model activates a viewpoint-invariant structural description of the object, specifying its parts and their interrelations. Visual priming is interpreted as a change in the connection weights for the activation of: a) cells, termed geon feature assemblies (GFAs), that conjoin the output of units that represent invariant, independent properties of a single geon and its relations (such as its type, aspect ratio, relations to other geons), or b) a change in the connection weights by which several GFAs activate a cell representing an object.

  14. The string prediction models as an invariants of time series in forex market

    OpenAIRE

    Richard Pincak; Marian Repasan

    2011-01-01

    In this paper we apply a new approach of the string theory to the real financial market. It is direct extension and application of the work [1] into prediction of prices. The models are constructed with an idea of prediction models based on the string invariants (PMBSI). The performance of PMBSI is compared to support vector machines (SVM) and artificial neural networks (ANN) on an artificial and a financial time series. Brief overview of the results and analysis is given. The first model is ...

  15. Topological Field Theory of Time-Reversal Invariant Insulators

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiao-Liang; Hughes, Taylor; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    We show that the fundamental time reversal invariant (TRI) insulator exists in 4 + 1 dimensions, where the effective field theory is described by the 4 + 1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2 + 1 dimensions. The TRI quantum spin Hall insulator in 2 + 1 dimensions and the topological insulator in 3 + 1 dimension can be obtained as descendants from the fundamental TRI insulator in 4 + 1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the Z{sub 2} topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant {alpha} = e{sup 2}/hc. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.

  16. Renormalization scheme invariant predictions for deep-inelastic scattering and determination of ΛQCD

    International Nuclear Information System (INIS)

    Vovk, V.I.

    1989-01-01

    Theoretical aspects of the renormalization scheme (RS) ambiguity problem and the approaches to its solution are discussed from the point of view of QCD phenomenology and the scale Λ determination. The method of RS-invariant perturbation theory (RSIPT) as a sound basis for describing experiment in QCD is advocated. To this end the method is developed for the non-singlet structure functions (SF) of deep-inelastic scattering and recent high precision data on SF's are analyzed in a RS-invariant way. It is shown that RSIPT leads to a more accurate and reliable determination of the QCD scale Λ, which is consistent with the theoretical assumption of a better convergence of RS-invariant perturbative series. 24 refs.; 1 tab

  17. Real-time pose invariant logo and pattern detection

    Science.gov (United States)

    Sidla, Oliver; Kottmann, Michal; Benesova, Wanda

    2011-01-01

    The detection of pose invariant planar patterns has many practical applications in computer vision and surveillance systems. The recognition of company logos is used in market studies to examine the visibility and frequency of logos in advertisement. Danger signs on vehicles could be detected to trigger warning systems in tunnels, or brand detection on transport vehicles can be used to count company-specific traffic. We present the results of a study on planar pattern detection which is based on keypoint detection and matching of distortion invariant 2d feature descriptors. Specifically we look at the keypoint detectors of type: i) Lowe's DoG approximation from the SURF algorithm, ii) the Harris Corner Detector, iii) the FAST Corner Detector and iv) Lepetit's keypoint detector. Our study then compares the feature descriptors SURF and compact signatures based on Random Ferns: we use 3 sets of sample images to detect and match 3 logos of different structure to find out which combinations of keypoint detector/feature descriptors work well. A real-world test tries to detect vehicles with a distinctive logo in an outdoor environment under realistic lighting and weather conditions: a camera was mounted on a suitable location for observing the entrance to a parking area so that incoming vehicles could be monitored. In this 2 hour long recording we can successfully detect a specific company logo without false positives.

  18. Soil water content evaluation considering time-invariant spatial pattern and space-variant temporal change

    Science.gov (United States)

    Hu, W.; Si, B. C.

    2013-10-01

    Soil water content (SWC) varies in space and time. The objective of this study was to evaluate soil water content distribution using a statistical model. The model divides spatial SWC series into time-invariant spatial patterns, space-invariant temporal changes, and space- and time-dependent redistribution terms. The redistribution term is responsible for the temporal changes in spatial patterns of SWC. An empirical orthogonal function was used to separate the total variations of redistribution terms into the sum of the product of spatial structures (EOFs) and temporally-varying coefficients (ECs). Model performance was evaluated using SWC data of near-surface (0-0.2 m) and root-zone (0-1.0 m) from a Canadian Prairie landscape. Three significant EOFs were identified for redistribution term for both soil layers. EOF1 dominated the variations of redistribution terms and it resulted in more changes (recharge or discharge) in SWC at wetter locations. Depth to CaCO3 layer and organic carbon were the two most important controlling factors of EOF1, and together, they explained over 80% of the variations in EOF1. Weak correlation existed between either EOF2 or EOF3 and the observed factors. A reasonable prediction of SWC distribution was obtained with this model using cross validation. The model performed better in the root zone than in the near surface, and it outperformed conventional EOF method in case soil moisture deviated from the average conditions.

  19. Effects of practice on the Wechsler Adult Intelligence Scale-IV across 3- and 6-month intervals.

    Science.gov (United States)

    Estevis, Eduardo; Basso, Michael R; Combs, Dennis

    2012-01-01

    A total of 54 participants (age M = 20.9; education M = 14.9; initial Full Scale IQ M = 111.6) were administered the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) at baseline and again either 3 or 6 months later. Scores on the Full Scale IQ, Verbal Comprehension, Working Memory, Perceptual Reasoning, Processing Speed, and General Ability Indices improved approximately 7, 5, 4, 5, 9, and 6 points, respectively, and increases were similar regardless of whether the re-examination occurred over 3- or 6-month intervals. Reliable change indices (RCI) were computed using the simple difference and bivariate regression methods, providing estimated base rates of change across time. The regression method provided more accurate estimates of reliable change than did the simple difference between baseline and follow-up scores. These findings suggest that prior exposure to the WAIS-IV results in significant score increments. These gains reflect practice effects instead of genuine intellectual changes, which may lead to errors in clinical judgment.

  20. Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval.

    Science.gov (United States)

    Sumbre, Germán; Muto, Akira; Baier, Herwig; Poo, Mu-ming

    2008-11-06

    The ability to process temporal information is fundamental to sensory perception, cognitive processing and motor behaviour of all living organisms, from amoebae to humans. Neural circuit mechanisms based on neuronal and synaptic properties have been shown to process temporal information over the range of tens of microseconds to hundreds of milliseconds. How neural circuits process temporal information in the range of seconds to minutes is much less understood. Studies of working memory in monkeys and rats have shown that neurons in the prefrontal cortex, the parietal cortex and the thalamus exhibit ramping activities that linearly correlate with the lapse of time until the end of a specific time interval of several seconds that the animal is trained to memorize. Many organisms can also memorize the time interval of rhythmic sensory stimuli in the timescale of seconds and can coordinate motor behaviour accordingly, for example, by keeping the rhythm after exposure to the beat of music. Here we report a form of rhythmic activity among specific neuronal ensembles in the zebrafish optic tectum, which retains the memory of the time interval (in the order of seconds) of repetitive sensory stimuli for a duration of up to approximately 20 s. After repetitive visual conditioning stimulation (CS) of zebrafish larvae, we observed rhythmic post-CS activities among specific tectal neuronal ensembles, with a regular interval that closely matched the CS. Visuomotor behaviour of the zebrafish larvae also showed regular post-CS repetitions at the entrained time interval that correlated with rhythmic neuronal ensemble activities in the tectum. Thus, rhythmic activities among specific neuronal ensembles may act as an adjustable 'metronome' for time intervals in the order of seconds, and serve as a mechanism for the short-term perceptual memory of rhythmic sensory experience.

  1. Psychometric properties of the Perceived Stress Scale (PSS: measurement invariance between athletes and non-athletes and construct validity

    Directory of Open Access Journals (Sweden)

    Yi-Hsiang Chiu

    2016-12-01

    Full Text Available Background Although Perceived Stress Scale (PSS, Cohen, Kamarack & Mermelstein, 1983 has been validated and widely used in many domains, there is still no validation in sports by comparing athletes and non-athletes and examining related psychometric indices. Purpose The purpose of this study was to examine the measurement invariance of PSS between athletes and non-athletes, and examine construct validity and reliability in the sports contexts. Methods Study 1 sampled 359 college student-athletes (males = 233; females = 126 and 242 non-athletes (males = 124; females = 118 and examined factorial structure, measurement invariance and internal consistency. Study 2 sampled 196 student-athletes (males = 139, females = 57, Mage = 19.88 yrs, SD = 1.35 and examined discriminant validity and convergent validity of PSS. Study 3 sampled 37 student-athletes to assess test-retest reliability of PSS. Results Results found that 2-factor PSS-10 fitted the model the best and had appropriate reliability. Also, there was a measurement invariance between athletes and non-athletes; and PSS positively correlated with athletic burnout and life stress but negatively correlated with coping efficacy provided evidence of discriminant validity and convergent validity. Further, the test-retest reliability for PSS subscales was significant (r = .66 and r = .50. Discussion It is suggested that 2-factor PSS-10 can be a useful tool in assessing perceived stress either in sports or non-sports settings. We suggest future study may use 2-factor PSS-10 in examining the effects of stress on the athletic injury, burnout, and psychiatry disorders.

  2. Measurement invariance of the Yale Food Addiction Scale 2.0 across gender and racial groups.

    Science.gov (United States)

    Carr, Meagan M; Catak, Pelin D; Pejsa-Reitz, Megan C; Saules, Karen K; Gearhardt, Ashley N

    2017-08-01

    Food addiction describes a psychological and behavioral eating pattern that is similar to the experience of those compulsively taking drugs of abuse. Recent developments related to food addiction, including the development and validation of an updated measure (Yale Food Addiction Scale 2.0; Gearhardt, Corbin, & Brownell, 2016), have increased knowledge as to the prevalence and associated correlates of food addiction. However, less is known about the phenomenological experience of food addiction in diverse samples or how the existing measure of food addiction performs in heterogeneous samples. In a cross-sectional survey design, using a diverse sample of undergraduate students (N = 642) tests of measurement invariance were performed. Confirmatory factor analysis supported the hypothesized factor structure, indicating a single latent construct of food addiction modeled by 11 dichotomous indicators, in samples of White and Black participants as well as samples of men and women. Measurement invariance testing across the various demographic groups broadly provided good psychometric support for use of the measure. However, a single indicator related to attempts to cut down on highly palatable food varied across men and women. Thus, when using the measure in mixed gender samples researchers may consider obtaining additional information regarding gender and its relative impact on the experience of food addiction, particularly with respect to efforts to quit or cut down intake of highly palatable foods. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. A game theoretic approach to a finite-time disturbance attenuation problem

    Science.gov (United States)

    Rhee, Ihnseok; Speyer, Jason L.

    1991-01-01

    A disturbance attenuation problem over a finite-time interval is considered by a game theoretic approach where the control, restricted to a function of the measurement history, plays against adversaries composed of the process and measurement disturbances, and the initial state. A zero-sum game, formulated as a quadratic cost criterion subject to linear time-varying dynamics and measurements, is solved by a calculus of variation technique. By first maximizing the quadratic cost criterion with respect to the process disturbance and initial state, a full information game between the control and the measurement residual subject to the estimator dynamics results. The resulting solution produces an n-dimensional compensator which expresses the controller as a linear combination of the measurement history. A disturbance attenuation problem is solved based on the results of the game problem. For time-invariant systems it is shown that under certain conditions the time-varying controller becomes time-invariant on the infinite-time interval. The resulting controller satisfies an H(infinity) norm bound.

  4. Time-variant random interval natural frequency analysis of structures

    Science.gov (United States)

    Wu, Binhua; Wu, Di; Gao, Wei; Song, Chongmin

    2018-02-01

    This paper presents a new robust method namely, unified interval Chebyshev-based random perturbation method, to tackle hybrid random interval structural natural frequency problem. In the proposed approach, random perturbation method is implemented to furnish the statistical features (i.e., mean and standard deviation) and Chebyshev surrogate model strategy is incorporated to formulate the statistical information of natural frequency with regards to the interval inputs. The comprehensive analysis framework combines the superiority of both methods in a way that computational cost is dramatically reduced. This presented method is thus capable of investigating the day-to-day based time-variant natural frequency of structures accurately and efficiently under concrete intrinsic creep effect with probabilistic and interval uncertain variables. The extreme bounds of the mean and standard deviation of natural frequency are captured through the embedded optimization strategy within the analysis procedure. Three particularly motivated numerical examples with progressive relationship in perspective of both structure type and uncertainty variables are demonstrated to justify the computational applicability, accuracy and efficiency of the proposed method.

  5. Interval Timing Deficits Assessed by Time Reproduction Dual Tasks as Cognitive Endophenotypes for Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Hwang-Gu, Shoou-Lian; Gau, Susan Shur-Fen

    2015-01-01

    The literature has suggested timing processing as a potential endophenotype for attention deficit/hyperactivity disorder (ADHD); however, whether the subjective internal clock speed presented by verbal estimation and limited attention capacity presented by time reproduction could be endophenotypes for ADHD is still unknown. We assessed 223 youths with DSM-IV ADHD (age range: 10-17 years), 105 unaffected siblings, and 84 typically developing (TD) youths using psychiatric interviews, intelligence tests, verbal estimation and time reproduction tasks (single task and simple and difficult dual tasks) at 5-second, 12-second, and 17-second intervals. We found that youths with ADHD tended to overestimate time in verbal estimation more than their unaffected siblings and TD youths, implying that fast subjective internal clock speed might be a characteristic of ADHD, rather than an endophenotype for ADHD. Youths with ADHD and their unaffected siblings were less precise in time reproduction dual tasks than TD youths. The magnitude of estimated errors in time reproduction was greater in youths with ADHD and their unaffected siblings than in TD youths, with an increased time interval at the 17-second interval and with increased task demands on both simple and difficult dual tasks versus the single task. Increased impaired time reproduction in dual tasks with increased intervals and task demands were shown in youths with ADHD and their unaffected siblings, suggesting that time reproduction deficits explained by limited attention capacity might be a useful endophenotype of ADHD. PMID:25992899

  6. Investigations of timing during the schedule and reinforcement intervals with wheel-running reinforcement.

    Science.gov (United States)

    Belke, Terry W; Christie-Fougere, Melissa M

    2006-11-01

    Across two experiments, a peak procedure was used to assess the timing of the onset and offset of an opportunity to run as a reinforcer. The first experiment investigated the effect of reinforcer duration on temporal discrimination of the onset of the reinforcement interval. Three male Wistar rats were exposed to fixed-interval (FI) 30-s schedules of wheel-running reinforcement and the duration of the opportunity to run was varied across values of 15, 30, and 60s. Each session consisted of 50 reinforcers and 10 probe trials. Results showed that as reinforcer duration increased, the percentage of postreinforcement pauses longer than the 30-s schedule interval increased. On probe trials, peak response rates occurred near the time of reinforcer delivery and peak times varied with reinforcer duration. In a second experiment, seven female Long-Evans rats were exposed to FI 30-s schedules leading to 30-s opportunities to run. Timing of the onset and offset of the reinforcement period was assessed by probe trials during the schedule interval and during the reinforcement interval in separate conditions. The results provided evidence of timing of the onset, but not the offset of the wheel-running reinforcement period. Further research is required to assess if timing occurs during a wheel-running reinforcement period.

  7. Infinite time interval backward stochastic differential equations with continuous coefficients.

    Science.gov (United States)

    Zong, Zhaojun; Hu, Feng

    2016-01-01

    In this paper, we study the existence theorem for [Formula: see text] [Formula: see text] solutions to a class of 1-dimensional infinite time interval backward stochastic differential equations (BSDEs) under the conditions that the coefficients are continuous and have linear growths. We also obtain the existence of a minimal solution. Furthermore, we study the existence and uniqueness theorem for [Formula: see text] [Formula: see text] solutions of infinite time interval BSDEs with non-uniformly Lipschitz coefficients. It should be pointed out that the assumptions of this result is weaker than that of Theorem 3.1 in Zong (Turkish J Math 37:704-718, 2013).

  8. High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models

    Science.gov (United States)

    Stecker, Floyd W.

    2012-01-01

    High energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approx.10(exp -35) m. I will discuss the possible signatures of Lorentz invariance violation (LIV) that can be manifested by observing of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) on the fraction of LIV at a Lorentz factor of approx. 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space-based detection techniques to improve searches for LIV in the future. I will also discuss how the LIV formalism casts doubt on the OPERA superluminal neutrino claim.

  9. Multi-clues image retrieval based on improved color invariants

    Science.gov (United States)

    Liu, Liu; Li, Jian-Xun

    2012-05-01

    At present, image retrieval has a great progress in indexing efficiency and memory usage, which mainly benefits from the utilization of the text retrieval technology, such as the bag-of-features (BOF) model and the inverted-file structure. Meanwhile, because the robust local feature invariants are selected to establish BOF, the retrieval precision of BOF is enhanced, especially when it is applied to a large-scale database. However, these local feature invariants mainly consider the geometric variance of the objects in the images, and thus the color information of the objects fails to be made use of. Because of the development of the information technology and Internet, the majority of our retrieval objects is color images. Therefore, retrieval performance can be further improved through proper utilization of the color information. We propose an improved method through analyzing the flaw of shadow-shading quasi-invariant. The response and performance of shadow-shading quasi-invariant for the object edge with the variance of lighting are enhanced. The color descriptors of the invariant regions are extracted and integrated into BOF based on the local feature. The robustness of the algorithm and the improvement of the performance are verified in the final experiments.

  10. Two-jet invariant-mass distribution at √s =1.8 TeV

    International Nuclear Information System (INIS)

    Abe, F.; Amidei, D.; Apollinari, G.; Ascoli, G.; Atac, M.; Auchincloss, P.; Baden, A.R.; Barbaro-Galtieri, A.; Barnes, V.E.; Bedeschi, F.; Behrends, S.; Belforte, S.; Bellettini, G.; Bellinger, J.; Bensinger, J.; Beretvas, A.; Berge, P.; Bertolucci, S.; Bhadra, S.; Binkley, M.; Blair, R.; Blocker, C.; Bofill, J.; Booth, A.W.; Brandenburg, G.; Brown, D.; Byon, A.; Byrum, K.L.; Campbell, M.; Carey, R.; Carithers, W.; Carlsmith, D.; Carroll, J.T.; Cashmore, R.; Cervelli, F.; Chadwick, K.; Chapin, T.; Chiarelli, G.; Chinowsky, W.; Cihangir, S.; Cline, D.; Connor, D.; Contreras, M.; Cooper, J.; Cordelli, M.; Curatolo, M.; Day, C.; DelFabbro, R.; Dell'Orso, M.; DeMortier, L.; Devlin, T.; DiBitonto, D.; Diebold, R.; Dittus, F.; DiVirgilio, A.; Elias, J.E.; Ely, R.; Errede, S.; Esposito, B.; Flaugher, B.; Focardi, E.; Foster, G.W.; Franklin, M.; Freeman, J.; Frisch, H.; Fukui, Y.; Garfinkel, A.F.; Giannetti, P.; Giokaris, N.; Giromini, P.; Gladney, L.; Gold, M.; Goulianos, K.; Grosso-Pilcher, C.; Haber, C.; Hahn, S.R.; Handler, R.; Harris, R.M.; Hauser, J.; Hessing, T.; Hollebeek, R.; Hu, P.; Hubbard, B.; Hurst, P.; Huth, J.; Jensen, H.; Johnson, R.P.; Joshi, U.; Kadel, R.W.; Kamon, T.; Kanda, S.; Kardelis, D.A.; Karliner, I.; Kearns, E.; Kephart, R.; Kesten, P.; Keutelian, H.; Kim, S.; Kirsch, L.; Kondo, K.; Kruse, U.; Kuhlmann, S.E.; Laasanen, A.T.; Li, W.; Liss, T.; Lockyer, N.; Marchetto, F.; Markeloff, R.; Markosky, L.A.; McIntyre, P.; Menzione, A.; Meyer, T.; Mikamo, S.; Miller, M.; Mimashi, T.; Miscetti, S.; Mishina, M.; Miyashita, S.; Mondal, N.; Mori, S.; Morita, Y.; Mukherjee, A.; Newman-Holmes, C.; Nodulman, L.; Paoletti, R.; Para, A.; Patrick, J.; Phillips, T.J.; Piekarz, H.; Plunkett, R.; Pondrom, L.; Proudfoot, J.; Punzi, G.; Quarrie, D.; Ragan, K.; Redlinger, G.; Rhoades, J.; Rimondi, F.; Ristori, L.; Rohaly, T.; Roodman, A.; Sansoni, A.; Sard, R.; Scarpine, V.; Schlabach, P.; Schmidt, E.E.; Schoessow, P.; Schub, M.H.; Schwitters, R.; Scribano, A.

    1990-01-01

    We present the dijet invariant-mass distribution in the region between 60 and 500 GeV, measured in 1.8-TeV bar pp collisions in the Collider Detector at Fermilab. Jets are restricted to the pseudorapidity interval |η| A A =Nα s M A /6, with N=5

  11. Radial diffusion with outer boundary determined by geosynchronous measurements: Storm and post-storm intervals

    Science.gov (United States)

    Chu, F.; Haines, P.; Hudson, M.; Kress, B.; Freidel, R.; Kanekal, S.

    2007-12-01

    Work is underway by several groups to quantify diffusive radial transport of radiation belt electrons, including a model for pitch angle scattering losses to the atmosphere. The radial diffusion model conserves the first and second adiabatic invariants and breaks the third invariant. We have developed a radial diffusion code which uses the Crank Nicholson method with a variable outer boundary condition. For the radial diffusion coefficient, DLL, we have several choices, including the Brautigam and Albert (JGR, 2000) diffusion coefficient parameterized by Kp, which provides an ad hoc measure of the power level at ULF wave frequencies in the range of electron drift (mHz), breaking the third invariant. Other diffusion coefficient models are Kp-independent, fixed in time but explicitly dependent on the first invariant, or energy at a fixed L, such as calculated by Elkington et al. (JGR, 2003) and Perry et al. (JGR, 2006) based on ULF wave model fields. We analyzed three periods of electron flux and phase space density (PSD) enhancements inside of geosynchronous orbit: March 31 - May 31, 1991, and July 2004 and Nov 2004 storm intervals. The radial diffusion calculation is initialized with a computed phase space density profile for the 1991 interval using differential flux values from the CRRES High Energy Electron Fluxmeter instrument, covering 0.65 - 7.5 MeV. To calculate the initial phase space density, we convert Roederer L* to McIlwain's L- parameter using the ONERA-DESP program. A time averaged model developed by Vampola1 from the entire 14 month CRRES data set is applied to the July 2004 and Nov 2004 storms. The online CRESS data for specific orbits and the Vampola-model flux are both expressed in McIlwain L-shell, while conversion to L* conserves phase space density in a distorted non-dipolar magnetic field model. A Tsyganenko (T04) magnetic field model is used for conversion between L* and L. The outer boundary PSD is updated using LANL GEO satellite fluxes

  12. Evaluating Protocol Lifecycle Time Intervals in HIV/AIDS Clinical Trials

    Science.gov (United States)

    Schouten, Jeffrey T.; Dixon, Dennis; Varghese, Suresh; Cope, Marie T.; Marci, Joe; Kagan, Jonathan M.

    2014-01-01

    Background Identifying efficacious interventions for the prevention and treatment of human diseases depends on the efficient development and implementation of controlled clinical trials. Essential to reducing the time and burden of completing the clinical trial lifecycle is determining which aspects take the longest, delay other stages, and may lead to better resource utilization without diminishing scientific quality, safety, or the protection of human subjects. Purpose In this study we modeled time-to-event data to explore relationships between clinical trial protocol development and implementation times, as well as identify potential correlates of prolonged development and implementation. Methods We obtained time interval and participant accrual data from 111 interventional clinical trials initiated between 2006 and 2011 by NIH’s HIV/AIDS Clinical Trials Networks. We determined the time (in days) required to complete defined phases of clinical trial protocol development and implementation. Kaplan-Meier estimates were used to assess the rates at which protocols reached specified terminal events, stratified by study purpose (therapeutic, prevention) and phase group (pilot/phase I, phase II, and phase III/ IV). We also examined several potential correlates to prolonged development and implementation intervals. Results Even though phase grouping did not determine development or implementation times of either therapeutic or prevention studies, overall we observed wide variation in protocol development times. Moreover, we detected a trend toward phase III/IV therapeutic protocols exhibiting longer developmental (median 2 ½ years) and implementation times (>3years). We also found that protocols exceeding the median number of days for completing the development interval had significantly longer implementation. Limitations The use of a relatively small set of protocols may have limited our ability to detect differences across phase groupings. Some timing effects

  13. Invariant and Absolute Invariant Means of Double Sequences

    Directory of Open Access Journals (Sweden)

    Abdullah Alotaibi

    2012-01-01

    Full Text Available We examine some properties of the invariant mean, define the concepts of strong σ-convergence and absolute σ-convergence for double sequences, and determine the associated sublinear functionals. We also define the absolute invariant mean through which the space of absolutely σ-convergent double sequences is characterized.

  14. Strongly first-order electroweak phase transition and classical scale invariance

    Science.gov (United States)

    Farzinnia, Arsham; Ren, Jing

    2014-10-01

    In this work, we examine the possibility of realizing a strongly first-order electroweak phase transition within the minimal classically scale-invariant extension of the standard model (SM), previously proposed and analyzed as a potential solution to the hierarchy problem. By introducing one complex gauge-singlet scalar and three (weak scale) right-handed Majorana neutrinos, the scenario was successfully rendered capable of achieving a radiative breaking of the electroweak symmetry (by means of the Coleman-Weinberg mechanism), inducing nonzero masses for the SM neutrinos (via the seesaw mechanism), presenting a pseudoscalar dark matter candidate (protected by the CP symmetry of the potential), and predicting the existence of a second CP-even boson (with suppressed couplings to the SM content) in addition to the 125 GeV scalar. In the present treatment, we construct the full finite-temperature one-loop effective potential of the model, including the resummed thermal daisy loops, and demonstrate that finite-temperature effects induce a first-order electroweak phase transition. Requiring the thermally driven first-order phase transition to be sufficiently strong at the onset of the bubble nucleation (corresponding to nucleation temperatures TN˜100-200 GeV) further constrains the model's parameter space; in particular, an O(0.01) fraction of the dark matter in the Universe may be simultaneously accommodated with a strongly first-order electroweak phase transition. Moreover, such a phase transition disfavors right-handed Majorana neutrino masses above several hundreds of GeV, confines the pseudoscalar dark matter masses to ˜1-2 TeV, predicts the mass of the second CP-even scalar to be ˜100-300 GeV, and requires the mixing angle between the CP-even components of the SM doublet and the complex singlet to lie within the range 0.2≲sinω ≲0.4. The obtained results are displayed in comprehensive exclusion plots, identifying the viable regions of the parameter space

  15. A biologically inspired neural network model to transformation invariant object recognition

    Science.gov (United States)

    Iftekharuddin, Khan M.; Li, Yaqin; Siddiqui, Faraz

    2007-09-01

    Transformation invariant image recognition has been an active research area due to its widespread applications in a variety of fields such as military operations, robotics, medical practices, geographic scene analysis, and many others. The primary goal for this research is detection of objects in the presence of image transformations such as changes in resolution, rotation, translation, scale and occlusion. We investigate a biologically-inspired neural network (NN) model for such transformation-invariant object recognition. In a classical training-testing setup for NN, the performance is largely dependent on the range of transformation or orientation involved in training. However, an even more serious dilemma is that there may not be enough training data available for successful learning or even no training data at all. To alleviate this problem, a biologically inspired reinforcement learning (RL) approach is proposed. In this paper, the RL approach is explored for object recognition with different types of transformations such as changes in scale, size, resolution and rotation. The RL is implemented in an adaptive critic design (ACD) framework, which approximates the neuro-dynamic programming of an action network and a critic network, respectively. Two ACD algorithms such as Heuristic Dynamic Programming (HDP) and Dual Heuristic dynamic Programming (DHP) are investigated to obtain transformation invariant object recognition. The two learning algorithms are evaluated statistically using simulated transformations in images as well as with a large-scale UMIST face database with pose variations. In the face database authentication case, the 90° out-of-plane rotation of faces from 20 different subjects in the UMIST database is used. Our simulations show promising results for both designs for transformation-invariant object recognition and authentication of faces. Comparing the two algorithms, DHP outperforms HDP in learning capability, as DHP takes fewer steps to

  16. Invariant object recognition based on the generalized discrete radon transform

    Science.gov (United States)

    Easley, Glenn R.; Colonna, Flavia

    2004-04-01

    We introduce a method for classifying objects based on special cases of the generalized discrete Radon transform. We adjust the transform and the corresponding ridgelet transform by means of circular shifting and a singular value decomposition (SVD) to obtain a translation, rotation and scaling invariant set of feature vectors. We then use a back-propagation neural network to classify the input feature vectors. We conclude with experimental results and compare these with other invariant recognition methods.

  17. Empirical likelihood-based confidence intervals for the sensitivity of a continuous-scale diagnostic test at a fixed level of specificity.

    Science.gov (United States)

    Gengsheng Qin; Davis, Angela E; Jing, Bing-Yi

    2011-06-01

    For a continuous-scale diagnostic test, it is often of interest to find the range of the sensitivity of the test at the cut-off that yields a desired specificity. In this article, we first define a profile empirical likelihood ratio for the sensitivity of a continuous-scale diagnostic test and show that its limiting distribution is a scaled chi-square distribution. We then propose two new empirical likelihood-based confidence intervals for the sensitivity of the test at a fixed level of specificity by using the scaled chi-square distribution. Simulation studies are conducted to compare the finite sample performance of the newly proposed intervals with the existing intervals for the sensitivity in terms of coverage probability. A real example is used to illustrate the application of the recommended methods.

  18. [Estimation of the atrioventricular time interval by pulse Doppler in the normal fetal heart].

    Science.gov (United States)

    Hamela-Olkowska, Anita; Dangel, Joanna

    2009-08-01

    To assess normative values of the fetal atrioventricular (AV) time interval by pulse-wave Doppler methods on 5-chamber view. Fetal echocardiography exams were performed using Acuson Sequoia 512 in 140 singleton fetuses at 18 to 40 weeks of gestation with sinus rhythm and normal cardiac and extracardiac anatomy. Pulsed Doppler derived AV intervals were measured from left ventricular inflow/outflow view using transabdominal convex 3.5-6 MHz probe. The values of AV time interval ranged from 100 to 150 ms (mean 123 +/- 11.2). The AV interval was negatively correlated with the heart rhythm (page of gestation (p=0.007). However, in the same subgroup of the fetal heart rate there was no relation between AV intervals and gestational age. Therefore, the AV intervals showed only the heart rate dependence. The 95th percentiles of AV intervals according to FHR ranged from 135 to 148 ms. 1. The AV interval duration was negatively correlated with the heart rhythm. 2. Measurement of AV time interval is easy to perform and has a good reproducibility. It may be used for the fetal heart block screening in anti-Ro and anti-La positive pregnancies. 3. Normative values established in the study may help obstetricians in assessing fetal abnormalities of the AV conduction.

  19. Optimizing Time Intervals of Meteorological Data Used with Atmospheric Dose Modeling at SRS

    International Nuclear Information System (INIS)

    Simpkins, A.A.

    1999-01-01

    Measured tritium oxide concentrations in air have been compared with calculated values using routine release Gaussian plume models for different time intervals of meteorological data. These comparisons determined an optimum time interval of meteorological data used with atmospheric dose models at the Savannah River Site (SRS). Meteorological data of varying time intervals (1-yr to 10-yr) were used for the comparison. Insignificant differences are seen in using a one-year database as opposed to a five-year database. Use of a ten-year database results in slightly more conservative results. For meteorological databases of length one to five years the mean ratio of predicted to measured tritium oxide concentrations is approximately 1.25 whereas for the ten-year meteorological database the ration is closer to 1.35. Currently at the Savannah River Site a meteorological database of five years duration is used for all dose models. This study suggests no substantially improved accuracy using meteorological files of shorter or longer time intervals

  20. Permutationally invariant state reconstruction

    DEFF Research Database (Denmark)

    Moroder, Tobias; Hyllus, Philipp; Tóth, Géza

    2012-01-01

    Feasible tomography schemes for large particle numbers must possess, besides an appropriate data acquisition protocol, an efficient way to reconstruct the density operator from the observed finite data set. Since state reconstruction typically requires the solution of a nonlinear large-scale opti...... optimization, which has clear advantages regarding speed, control and accuracy in comparison to commonly employed numerical routines. First prototype implementations easily allow reconstruction of a state of 20 qubits in a few minutes on a standard computer.......-scale optimization problem, this is a major challenge in the design of scalable tomography schemes. Here we present an efficient state reconstruction scheme for permutationally invariant quantum state tomography. It works for all common state-of-the-art reconstruction principles, including, in particular, maximum...

  1. Cardiac Time Intervals Measured by Tissue Doppler Imaging M-mode

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor; Møgelvang, Rasmus; Schnohr, Peter

    2016-01-01

    function was evaluated in 1915 participants by using both conventional echocardiography and tissue Doppler imaging (TDI). The cardiac time intervals, including the isovolumic relaxation time (IVRT), isovolumic contraction time (IVCT), and ejection time (ET), were obtained by TDI M-mode through the mitral......). Additionally, they displayed a significant dose-response relationship, between increasing severity of elevated blood pressure and increasing left ventricular mass index (P

  2. Scale symmetry and virial theorem

    International Nuclear Information System (INIS)

    Westenholz, C. von

    1978-01-01

    Scale symmetry (or dilatation invariance) is discussed in terms of Noether's Theorem expressed in terms of a symmetry group action on phase space endowed with a symplectic structure. The conventional conceptual approach expressing invariance of some Hamiltonian under scale transformations is re-expressed in alternate form by infinitesimal automorphisms of the given symplectic structure. That is, the vector field representing scale transformations leaves the symplectic structure invariant. In this model, the conserved quantity or constant of motion related to scale symmetry is the virial. It is shown that the conventional virial theorem can be derived within this framework

  3. Invariant and semi-invariant probabilistic normed spaces

    Energy Technology Data Exchange (ETDEWEB)

    Ghaemi, M.B. [School of Mathematics Iran, University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)], E-mail: mghaemi@iust.ac.ir; Lafuerza-Guillen, B. [Departamento de Estadistica y Matematica Aplicada, Universidad de Almeria, Almeria E-04120 (Spain)], E-mail: blafuerz@ual.es; Saiedinezhad, S. [School of Mathematics Iran, University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)], E-mail: ssaiedinezhad@yahoo.com

    2009-10-15

    Probabilistic metric spaces were introduced by Karl Menger. Alsina, Schweizer and Sklar gave a general definition of probabilistic normed space based on the definition of Menger . We introduce the concept of semi-invariance among the PN spaces. In this paper we will find a sufficient condition for some PN spaces to be semi-invariant. We will show that PN spaces are normal spaces. Urysohn's lemma, and Tietze extension theorem for them are proved.

  4. Ns-scaled time-gated fluorescence lifetime imaging for forensic document examination

    Science.gov (United States)

    Zhong, Xin; Wang, Xinwei; Zhou, Yan

    2018-01-01

    A method of ns-scaled time-gated fluorescence lifetime imaging (TFLI) is proposed to distinguish different fluorescent substances in forensic document examination. Compared with Video Spectral Comparator (VSC) which can examine fluorescence intensity images only, TFLI can detect questioned documents like falsification or alteration. TFLI system can enhance weak signal by accumulation method. The two fluorescence intensity images of the interval delay time tg are acquired by ICCD and fitted into fluorescence lifetime image. The lifetimes of fluorescence substances are represented by different colors, which make it easy to detect the fluorescent substances and the sequence of handwritings. It proves that TFLI is a powerful tool for forensic document examination. Furthermore, the advantages of TFLI system are ns-scaled precision preservation and powerful capture capability.

  5. The synaptic properties of cells define the hallmarks of interval timing in a recurrent neural network.

    Science.gov (United States)

    Pérez, Oswaldo; Merchant, Hugo

    2018-04-03

    Extensive research has described two key features of interval timing. The bias property is associated with accuracy and implies that time is overestimated for short intervals and underestimated for long intervals. The scalar property is linked to precision and states that the variability of interval estimates increases as a function of interval duration. The neural mechanisms behind these properties are not well understood. Here we implemented a recurrent neural network that mimics a cortical ensemble and includes cells that show paired-pulse facilitation and slow inhibitory synaptic currents. The network produces interval selective responses and reproduces both bias and scalar properties when a Bayesian decoder reads its activity. Notably, the interval-selectivity, timing accuracy, and precision of the network showed complex changes as a function of the decay time constants of the modeled synaptic properties and the level of background activity of the cells. These findings suggest that physiological values of the time constants for paired-pulse facilitation and GABAb, as well as the internal state of the network, determine the bias and scalar properties of interval timing. Significant Statement Timing is a fundamental element of complex behavior, including music and language. Temporal processing in a wide variety of contexts shows two primary features: time estimates exhibit a shift towards the mean (the bias property) and are more variable for longer intervals (the scalar property). We implemented a recurrent neural network that includes long-lasting synaptic currents, which can not only produce interval selective responses but also follow the bias and scalar properties. Interestingly, only physiological values of the time constants for paired-pulse facilitation and GABAb, as well as intermediate background activity within the network can reproduce the two key features of interval timing. Copyright © 2018 the authors.

  6. Mean Square Exponential Stability of Stochastic Switched System with Interval Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Manlika Rajchakit

    2012-01-01

    Full Text Available This paper is concerned with mean square exponential stability of switched stochastic system with interval time-varying delays. The time delay is any continuous function belonging to a given interval, but not necessary to be differentiable. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, a switching rule for the mean square exponential stability of switched stochastic system with interval time-varying delays and new delay-dependent sufficient conditions for the mean square exponential stability of the switched stochastic system are first established in terms of LMIs. Numerical example is given to show the effectiveness of the obtained result.

  7. Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks.

    Science.gov (United States)

    Goudar, Vishwa; Buonomano, Dean V

    2018-03-14

    Much of the information the brain processes and stores is temporal in nature-a spoken word or a handwritten signature, for example, is defined by how it unfolds in time. However, it remains unclear how neural circuits encode complex time-varying patterns. We show that by tuning the weights of a recurrent neural network (RNN), it can recognize and then transcribe spoken digits. The model elucidates how neural dynamics in cortical networks may resolve three fundamental challenges: first, encode multiple time-varying sensory and motor patterns as stable neural trajectories; second, generalize across relevant spatial features; third, identify the same stimuli played at different speeds-we show that this temporal invariance emerges because the recurrent dynamics generate neural trajectories with appropriately modulated angular velocities. Together our results generate testable predictions as to how recurrent networks may use different mechanisms to generalize across the relevant spatial and temporal features of complex time-varying stimuli. © 2018, Goudar et al.

  8. A life-course and time perspective on the construct validity of psychological distress in women and men. Measurement invariance of the K6 across gender

    Directory of Open Access Journals (Sweden)

    Boyer Richard

    2010-07-01

    Full Text Available Abstract Background Psychological distress is a widespread indicator of mental health and mental illness in research and clinical settings. A recurrent finding from epidemiological studies and population surveys is that women report a higher mean level and a higher prevalence of psychological distress than men. These differences may reflect, to some extent, cultural norms associated with the expression of distress in women and men. Assuming that these norms differ across age groups and that they evolve over time, one would expect gender differences in psychological distress to vary over the life-course and over time. The objective of this study was to investigate the construct validity of a psychological distress scale, the K6, across gender in different age groups and over a twelve-year period. Methods This study is based on data from the Canadian National Population Health Survey (C-NPHS. Psychological distress was assessed with the K6, a scale developed by Kessler and his colleagues. Data were examined through multi-group confirmatory factor analyses. Increasing levels of measurement and structural invariance across gender were assessed cross-sectionally with data from cycle 1 (n = 13019 of the C-NPHS and longitudinally with cycles 1 (1994-1995, 4 (2000-2001 and 7 (2006-2007. Results Higher levels of measurement and structural invariance across gender were reached only after the constraint of equivalence was relaxed for various parameters of a few items of the K6. Some items had a different pattern of gender non invariance across age groups and over the course of the study. Gender differences in the expression of psychological distress may vary over the lifespan and over a 12-year period without markedly affecting the construct validity of the K6. Conclusions This study confirms the cross-gender construct validity of psychological distress as assessed with the K6 despite differences in the expression of some symptoms in women and in men over

  9. Dynamical invariants for variable quadratic Hamiltonians

    International Nuclear Information System (INIS)

    Suslov, Sergei K

    2010-01-01

    We consider linear and quadratic integrals of motion for general variable quadratic Hamiltonians. Fundamental relations between the eigenvalue problem for linear dynamical invariants and solutions of the corresponding Cauchy initial value problem for the time-dependent Schroedinger equation are emphasized. An eigenfunction expansion of the solution of the initial value problem is also found. A nonlinear superposition principle for generalized Ermakov systems is established as a result of decomposition of the general quadratic invariant in terms of the linear ones.

  10. Fault detection for discrete-time LPV systems using interval observers

    Science.gov (United States)

    Zhang, Zhi-Hui; Yang, Guang-Hong

    2017-10-01

    This paper is concerned with the fault detection (FD) problem for discrete-time linear parameter-varying systems subject to bounded disturbances. A parameter-dependent FD interval observer is designed based on parameter-dependent Lyapunov and slack matrices. The design method is presented by translating the parameter-dependent linear matrix inequalities (LMIs) into finite ones. In contrast to the existing results based on parameter-independent and diagonal Lyapunov matrices, the derived disturbance attenuation, fault sensitivity and nonnegative conditions lead to less conservative LMI characterisations. Furthermore, without the need to design the residual evaluation functions and thresholds, the residual intervals generated by the interval observers are used directly for FD decision. Finally, simulation results are presented for showing the effectiveness and superiority of the proposed method.

  11. Measurement invariance of the people of Color Racial Identity Attitudes Scale with Asian Americans.

    Science.gov (United States)

    Miller, Matthew J; Alvarez, Alvin N; Li, Robin; Chen, Grace A; Iwamoto, Derek K

    2016-01-01

    Racial identity has been linked to a number of important psychological outcomes, including perceptions of racism, self-esteem, and psychological well-being in Asian American populations. Although the People of Color Racial Identity Attitudes Scale (PRIAS; Helms, 1995) is the most widely used measure in Asian American racial identity research, numerous competing measurement models of the PRIAS have been identified in independent Asian American samples. Therefore, this study tested these competing PRIAS measurement models and also examined PRIAS measurement invariance across generational status, gender, and ethnicity using a combined sample of 1,946 Asian American college students and community adults. Study findings demonstrated the superiority of a 12-item 4-factor PRIAS measurement model that was consistent with Helms's original racial identity theory, suggesting that the PRIAS operates in an equivalent manner across generational status, gender, and ethnicity. Study limitations and future directions for research are discussed. (c) 2016 APA, all rights reserved).

  12. Homogenization-based interval analysis for structural-acoustic problem involving periodical composites and multi-scale uncertain-but-bounded parameters.

    Science.gov (United States)

    Chen, Ning; Yu, Dejie; Xia, Baizhan; Liu, Jian; Ma, Zhengdong

    2017-04-01

    This paper presents a homogenization-based interval analysis method for the prediction of coupled structural-acoustic systems involving periodical composites and multi-scale uncertain-but-bounded parameters. In the structural-acoustic system, the macro plate structure is assumed to be composed of a periodically uniform microstructure. The equivalent macro material properties of the microstructure are computed using the homogenization method. By integrating the first-order Taylor expansion interval analysis method with the homogenization-based finite element method, a homogenization-based interval finite element method (HIFEM) is developed to solve a periodical composite structural-acoustic system with multi-scale uncertain-but-bounded parameters. The corresponding formulations of the HIFEM are deduced. A subinterval technique is also introduced into the HIFEM for higher accuracy. Numerical examples of a hexahedral box and an automobile passenger compartment are given to demonstrate the efficiency of the presented method for a periodical composite structural-acoustic system with multi-scale uncertain-but-bounded parameters.

  13. q-conformally covariant q-Minkowski space-time and invariant equations

    International Nuclear Information System (INIS)

    Dobrev, V.K.

    1997-09-01

    We present explicitly the covariant action of the q-conformal algebra on the q-Minkowski space we proposed earlier. We also present some q-conformally invariant equations, namely a hierarchy of q-Maxwell equations, and also a q-d'Alembert equation, proposed earlier by us, in a form different from the original . (author). 19 refs

  14. Cardiac Time Intervals by Tissue Doppler Imaging M-Mode

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor; Mogelvang, Rasmus; de Knegt, Martina Chantal

    2016-01-01

    PURPOSE: To define normal values of the cardiac time intervals obtained by tissue Doppler imaging (TDI) M-mode through the mitral valve (MV). Furthermore, to evaluate the association of the myocardial performance index (MPI) obtained by TDI M-mode (MPITDI) and the conventional method of obtaining...

  15. Late-time acceleration and phantom divide line crossing with non-minimal coupling and Lorentz-invariance violation

    International Nuclear Information System (INIS)

    Nozari, Kourosh; Sadatian, S.D.

    2008-01-01

    We consider two alternative dark-energy models: a Lorentz-invariance preserving model with a non-minimally coupled scalar field and a Lorentz-invariance violating model with a minimally coupled scalar field. We study accelerated expansion and the dynamics of the equation of state parameter in these scenarios. While a minimally coupled scalar field does not have the capability to be a successful dark-energy candidate with line crossing of the cosmological constant, a non-minimally coupled scalar field in the presence of Lorentz invariance or a minimally coupled scalar field with Lorentz-invariance violation have this capability. In the latter case, accelerated expansion and phantom divide line crossing are the results of the interactive nature of this Lorentz-violating scenario. (orig.)

  16. A Galilean and tensorial invariant k-epsilon model for near wall turbulence

    Science.gov (United States)

    Yang, Z.; Shih, T. H.

    1993-01-01

    A k-epsilon model is proposed for wall bounded turbulent flows. In this model, the eddy viscosity is characterized by a turbulent velocity scale and a turbulent time scale. The time scale is bounded from below by the Kolmogorov time scale. The dissipation rate equation is reformulated using this time scale and no singularity exists at the wall. A new parameter R = k/S(nu) is introduced to characterize the damping function in the eddy viscosity. This parameter is determined by local properties of both the mean and the turbulent flow fields and is free from any geometry parameter. The proposed model is then Galilean and tensorial invariant. The model constants used are the same as in the high Reynolds number Standard k-epsilon Model. Thus, the proposed model will also be suitable for flows far from the wall. Turbulent channel flows and turbulent boundary layer flows with and without pressure gradients are calculated. Comparisons with the data from direct numerical simulations and experiments show that the model predictions are excellent for turbulent channel flows and turbulent boundary layers with favorable pressure gradients, good for turbulent boundary layers with zero pressure gradients, and fair for turbulent boundary layer with adverse pressure gradients.

  17. Rotationally invariant correlation filtering

    International Nuclear Information System (INIS)

    Schils, G.F.; Sweeney, D.W.

    1985-01-01

    A method is presented for analyzing and designing optical correlation filters that have tailored rotational invariance properties. The concept of a correlation of an image with a rotation of itself is introduced. A unified theory of rotation-invariant filtering is then formulated. The unified approach describes matched filters (with no rotation invariance) and circular-harmonic filters (with full rotation invariance) as special cases. The continuum of intermediate cases is described in terms of a cyclic convolution operation over angle. The angular filtering approach allows an exact choice for the continuous trade-off between loss of the correlation energy (or specificity regarding the image) and the amount of rotational invariance desired

  18. Discriminator/time interval meter system evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    Condreva, K. J.

    1976-04-12

    The purpose of this report is to discuss the evaluation of a modular prototype Discriminator/Time Interval Meter data acquisition unit as a useful tool in a digital diagnostics system. The characteristics, operation and calibration of each of the hardware components are discussed in some detail. A discussion of the system calibration, operation, and data ingestion and reduction is also given. System test results to date are given and discussed. Finally, recommendations and conclusions concerning the capabilities of the Discriminator/T.I.M. system based on test and calibration results to date are given.

  19. Discriminator/time interval meter system evaluation report

    International Nuclear Information System (INIS)

    Condreva, K.J.

    1976-01-01

    The purpose of this report is to discuss the evaluation of a modular prototype Discriminator/Time Interval Meter data acquisition unit as a useful tool in a digital diagnostics system. The characteristics, operation and calibration of each of the hardware components are discussed in some detail. A discussion of the system calibration, operation, and data ingestion and reduction is also given. System test results to date are given and discussed. Finally, recommendations and conclusions concerning the capabilities of the Discriminator/T.I.M. system based on test and calibration results to date are given

  20. Properties of invariant modelling and invariant glueing of vector fields

    International Nuclear Information System (INIS)

    Petukhov, V.R.

    1987-01-01

    Invariant modelling and invariant glueing of both continuous (rates and accelerations) and descrete vector fields, gradient and divergence cases are considered. The following appendices are discussed: vector fields in crystals, crystal disclinations, topological charges and their fields

  1. TISK 1.0: An easy-to-use Python implementation of the time-invariant string kernel model of spoken word recognition.

    Science.gov (United States)

    You, Heejo; Magnuson, James S

    2018-04-30

    This article describes a new Python distribution of TISK, the time-invariant string kernel model of spoken word recognition (Hannagan et al. in Frontiers in Psychology, 4, 563, 2013). TISK is an interactive-activation model similar to the TRACE model (McClelland & Elman in Cognitive Psychology, 18, 1-86, 1986), but TISK replaces most of TRACE's reduplicated, time-specific nodes with theoretically motivated time-invariant, open-diphone nodes. We discuss the utility of computational models as theory development tools, the relative merits of TISK as compared to other models, and the ways in which researchers might use this implementation to guide their own research and theory development. We describe a TISK model that includes features that facilitate in-line graphing of simulation results, integration with standard Python data formats, and graph and data export. The distribution can be downloaded from https://github.com/maglab-uconn/TISK1.0 .

  2. Frequency interval balanced truncation of discrete-time bilinear systems

    DEFF Research Database (Denmark)

    Jazlan, Ahmad; Sreeram, Victor; Shaker, Hamid Reza

    2016-01-01

    This paper presents the development of a new model reduction method for discrete-time bilinear systems based on the balanced truncation framework. In many model reduction applications, it is advantageous to analyze the characteristics of the system with emphasis on particular frequency intervals...... are the solution to a pair of new generalized Lyapunov equations. The conditions for solvability of these new generalized Lyapunov equations are derived and a numerical solution method for solving these generalized Lyapunov equations is presented. Numerical examples which illustrate the usage of the new...... generalized frequency interval controllability and observability gramians as part of the balanced truncation framework are provided to demonstrate the performance of the proposed method....

  3. Gamma-Ray, Cosmic Ray and Neutrino Tests of Lorentz Invariance and Quantum Gravity Models

    Science.gov (United States)

    Stecker, Floyd

    2011-01-01

    High-energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10(exp -35) m. I will discuss here the possible signatures of Lorentz invariance violation (LIV) from observations of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) to the amount of LIV of at a proton Lorentz factor of approximately 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space based detection techniques to improve searches for LIV in the future.

  4. Rigorous bounds on survival times in circular accelerators and efficient computation of fringe-field transfer maps

    International Nuclear Information System (INIS)

    Hoffstaetter, G.H.

    1994-12-01

    Analyzing stability of particle motion in storage rings contributes to the general field of stability analysis in weakly nonlinear motion. A method which we call pseudo invariant estimation (PIE) is used to compute lower bounds on the survival time in circular accelerators. The pseudeo invariants needed for this approach are computed via nonlinear perturbative normal form theory and the required global maxima of the highly complicated multivariate functions could only be rigorously bound with an extension of interval arithmetic. The bounds on the survival times are large enough to the relevant; the same is true for the lower bounds on dynamical aperatures, which can be computed. The PIE method can lead to novel design criteria with the objective of maximizing the survival time. A major effort in the direction of rigourous predictions only makes sense if accurate models of accelerators are available. Fringe fields often have a significant influence on optical properties, but the computation of fringe-field maps by DA based integration is slower by several orders of magnitude than DA evaluation of the propagator for main-field maps. A novel computation of fringe-field effects called symplectic scaling (SYSCA) is introduced. It exploits the advantages of Lie transformations, generating functions, and scaling properties and is extremely accurate. The computation of fringe-field maps is typically made nearly two orders of magnitude faster. (orig.)

  5. Count-to-count time interval distribution analysis in a fast reactor

    International Nuclear Information System (INIS)

    Perez-Navarro Gomez, A.

    1973-01-01

    The most important kinetic parameters have been measured at the zero power fast reactor CORAL-I by means of the reactor noise analysis in the time domain, using measurements of the count-to-count time intervals. (Author) 69 refs

  6. More consistent, yet less sensitive : Interval timing in autism spectrum disorders

    NARCIS (Netherlands)

    Falter, Christine M.; Noreika, Valdas; Wearden, John H.; Bailey, Anthony J.

    2012-01-01

    Even though phenomenological observations and anecdotal reports suggest atypical time processing in individuals with an autism spectrum disorder (ASD), very few psychophysical studies have investigated interval timing, and the obtained results are contradictory. The present study aimed to clarify

  7. Semiparametric regression analysis of failure time data with dependent interval censoring.

    Science.gov (United States)

    Chen, Chyong-Mei; Shen, Pao-Sheng

    2017-09-20

    Interval-censored failure-time data arise when subjects are examined or observed periodically such that the failure time of interest is not examined exactly but only known to be bracketed between two adjacent observation times. The commonly used approaches assume that the examination times and the failure time are independent or conditionally independent given covariates. In many practical applications, patients who are already in poor health or have a weak immune system before treatment usually tend to visit physicians more often after treatment than those with better health or immune system. In this situation, the visiting rate is positively correlated with the risk of failure due to the health status, which results in dependent interval-censored data. While some measurable factors affecting health status such as age, gender, and physical symptom can be included in the covariates, some health-related latent variables cannot be observed or measured. To deal with dependent interval censoring involving unobserved latent variable, we characterize the visiting/examination process as recurrent event process and propose a joint frailty model to account for the association of the failure time and visiting process. A shared gamma frailty is incorporated into the Cox model and proportional intensity model for the failure time and visiting process, respectively, in a multiplicative way. We propose a semiparametric maximum likelihood approach for estimating model parameters and show the asymptotic properties, including consistency and weak convergence. Extensive simulation studies are conducted and a data set of bladder cancer is analyzed for illustrative purposes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Memory assessment and depression: testing for factor structure and measurement invariance of the Wechsler Memory Scale-Fourth Edition across a clinical and matched control sample.

    Science.gov (United States)

    Pauls, Franz; Petermann, Franz; Lepach, Anja Christina

    2013-01-01

    Between-group comparisons are permissible and meaningfully interpretable only if diagnostic instruments are proved to measure the same latent dimensions across different groups. Addressing this issue, the present study was carried out to provide a rigorous test of measurement invariance. Confirmatory factor analyses were used to determine which model solution could best explain memory performance as measured by the Wechsler Memory Scale-Fourth Edition (WMS-IV) in a clinical depression sample and in healthy controls. Multigroup confirmatory factor analysis was conducted to evaluate the evidence for measurement invariance. A three-factor model solution including the dimensions of auditory memory, visual memory, and visual working memory was identified to best fit the data in both samples, and measurement invariance was partially satisfied. The results supported clinical utility of the WMS-IV--that is, auditory and visual memory performances of patients with depressive disorders are interpretable on the basis of the WMS-IV standardization data. However, possible differences in visual working memory functions between healthy and depressed individuals could restrict comparisons of the WMS-IV working memory index.

  9. Robust stability analysis of uncertain stochastic neural networks with interval time-varying delay

    International Nuclear Information System (INIS)

    Feng Wei; Yang, Simon X.; Fu Wei; Wu Haixia

    2009-01-01

    This paper addresses the stability analysis problem for uncertain stochastic neural networks with interval time-varying delays. The parameter uncertainties are assumed to be norm bounded, and the delay factor is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. A sufficient condition is derived such that for all admissible uncertainties, the considered neural network is robustly, globally, asymptotically stable in the mean square. Some stability criteria are formulated by means of the feasibility of a linear matrix inequality (LMI), which can be effectively solved by some standard numerical packages. Finally, numerical examples are provided to demonstrate the usefulness of the proposed criteria.

  10. Alabama Parenting Questionnaire-9: Longitudinal Measurement Invariance Across Parents and Youth During the Transition to High School.

    Science.gov (United States)

    Gross, Thomas J; Fleming, Charles B; Mason, W Alex; Haggerty, Kevin P

    2017-07-01

    The Alabama Parenting Questionnaire nine-item short form (APQ-9) is an often used assessment of parenting in research and applied settings. It uses parent and youth ratings for three scales: Positive Parenting, Inconsistent Discipline, and Poor Supervision. The purpose of this study is to examine the longitudinal invariance of the APQ-9 for both parents and youth, and the multigroup invariance between parents and youth during the transition from middle school to high school. Parent and youth longitudinal configural, metric, and scalar invariance for the APQ-9 were supported when tested separately. However, the multigroup invariance tests indicated that scalar invariance was not achieved between parent and youth ratings. Essentially, parent and youth mean scores for Positive Parenting, Inconsistent Discipline, and Poor Supervision can be independently compared across the transition from middle school to high school. However, comparing parent and youth scores across the APQ-9 scales may not be meaningful.

  11. Optimal unit sizing for small-scale integrated energy systems using multi-objective interval optimization and evidential reasoning approach

    International Nuclear Information System (INIS)

    Wei, F.; Wu, Q.H.; Jing, Z.X.; Chen, J.J.; Zhou, X.X.

    2016-01-01

    This paper proposes a comprehensive framework including a multi-objective interval optimization model and evidential reasoning (ER) approach to solve the unit sizing problem of small-scale integrated energy systems, with uncertain wind and solar energies integrated. In the multi-objective interval optimization model, interval variables are introduced to tackle the uncertainties of the optimization problem. Aiming at simultaneously considering the cost and risk of a business investment, the average and deviation of life cycle cost (LCC) of the integrated energy system are formulated. In order to solve the problem, a novel multi-objective optimization algorithm, MGSOACC (multi-objective group search optimizer with adaptive covariance matrix and chaotic search), is developed, employing adaptive covariance matrix to make the search strategy adaptive and applying chaotic search to maintain the diversity of group. Furthermore, ER approach is applied to deal with multiple interests of an investor at the business decision making stage and to determine the final unit sizing solution from the Pareto-optimal solutions. This paper reports on the simulation results obtained using a small-scale direct district heating system (DH) and a small-scale district heating and cooling system (DHC) optimized by the proposed framework. The results demonstrate the superiority of the multi-objective interval optimization model and ER approach in tackling the unit sizing problem of integrated energy systems considering the integration of uncertian wind and solar energies. - Highlights: • Cost and risk of investment in small-scale integrated energy systems are considered. • A multi-objective interval optimization model is presented. • A novel multi-objective optimization algorithm (MGSOACC) is proposed. • The evidential reasoning (ER) approach is used to obtain the final optimal solution. • The MGSOACC and ER can tackle the unit sizing problem efficiently.

  12. Remarks on the E-invariant and the Casson invariant

    International Nuclear Information System (INIS)

    Seade, J.

    1991-08-01

    In this work a framed manifold means a pair (M,F) consisting of a closed C ∞ , stably parallelizable manifold M, together with a trivialization F of its stable tangent bundle. The purpose of this work is to understand and determine in higher dimensions the invariant h(M,F) appearing in connection with the Adams e-invariants. 28 refs

  13. Scale invariance properties of rainfall in AMMA-CATCH observatory ...

    African Journals Online (AJOL)

    1International Chair in Physics Mathematics and Applications (CIPMA-Chair Unesco) , University of .... modeling the distribution of rainfall intensities, in time and space. There is particular lack of knowledge about rainfall variability at different scales [1].The knotty problem of .... Lovejoy [6] have provided the definition of.

  14. Scaling violations beyond the leading order

    CERN Document Server

    Petronzio, R

    1981-01-01

    The authors are concerned with the explicit construction of a method which generalizes beyond leading order the simple probabilistic interpretation of leading scaling violations. The results obtained in this language allow to predict the evolution with the variation of external invariants not only of 'space-like' processes, where the off- shell partons starting the hard interaction have space-like four momenta, like in the case of deep inelastic scattering or Drell-Yan, but also of 'time-like' processes, like the one-particle inclusive e /sup +/e/sup -/ annihilation, where the partons acting in the fragmentation functions have 'time-like' off-shell invariant masses. (9 refs).

  15. Invariants of generalized Lie algebras

    International Nuclear Information System (INIS)

    Agrawala, V.K.

    1981-01-01

    Invariants and invariant multilinear forms are defined for generalized Lie algebras with arbitrary grading and commutation factor. Explicit constructions of invariants and vector operators are given by contracting invariant forms with basic elements of the generalized Lie algebra. The use of the matrix of a linear map between graded vector spaces is emphasized. With the help of this matrix, the concept of graded trace of a linear operator is introduced, which is a rich source of multilinear forms of degree zero. To illustrate the use of invariants, a characteristic identity similar to that of Green is derived and a few Racah coefficients are evaluated in terms of invariants

  16. Internal representations of temporal statistics and feedback calibrate motor-sensory interval timing.

    Directory of Open Access Journals (Sweden)

    Luigi Acerbi

    Full Text Available Humans have been shown to adapt to the temporal statistics of timing tasks so as to optimize the accuracy of their responses, in agreement with the predictions of Bayesian integration. This suggests that they build an internal representation of both the experimentally imposed distribution of time intervals (the prior and of the error (the loss function. The responses of a Bayesian ideal observer depend crucially on these internal representations, which have only been previously studied for simple distributions. To study the nature of these representations we asked subjects to reproduce time intervals drawn from underlying temporal distributions of varying complexity, from uniform to highly skewed or bimodal while also varying the error mapping that determined the performance feedback. Interval reproduction times were affected by both the distribution and feedback, in good agreement with a performance-optimizing Bayesian observer and actor model. Bayesian model comparison highlighted that subjects were integrating the provided feedback and represented the experimental distribution with a smoothed approximation. A nonparametric reconstruction of the subjective priors from the data shows that they are generally in agreement with the true distributions up to third-order moments, but with systematically heavier tails. In particular, higher-order statistical features (kurtosis, multimodality seem much harder to acquire. Our findings suggest that humans have only minor constraints on learning lower-order statistical properties of unimodal (including peaked and skewed distributions of time intervals under the guidance of corrective feedback, and that their behavior is well explained by Bayesian decision theory.

  17. Accurate and independent spectral response scale based on silicon trap detectors and spectrally invariant detectors

    International Nuclear Information System (INIS)

    Gran, Jarle

    2005-01-01

    of the trap detector is very close to the responisivity of an ideal detector over most of its spectral range. The uncertainties given in (b) are very low uncertainties for the spectral response scales in the visual and infrared. The improvements of using the hybrid self calibration method is clearly demonstrated, though longer integration time and more measurement series in the purely relative method is expected to reduce the uncertainty in that method as well. The suggested methods presented in this thesis would improve if better spectrally invariant detectors were developed. Designing spectrally invariant detectors to be chilled with liquid nitrogen, but without all the facilities needed for a CR, would reduce the noise of' such detectors. This CR-light should preferably be small and the silicon detector should be placed behind the needed window so that window effects are minimised and full advantage of the method is obtained. The disadvantages by this suggested set-up are that the system is more complex and requires vacuum. In addition, the temperature differences will cause condensation problems, which also have to be handled. The uncertainties are obtained with a power levels in the order of 1 microW per nm. If we had access to a smoothly varying spectrally selective system with higher throughput, we expect to reduce the uncertainties accordingly. This could be a continuous laser source or a monochromator system and source with higher brightness. On the other hand, the cost of such a system would be rather high, so the main advantage with the presented methods would therefore be reduced. The evolution of self-calibration is going further. Geist et al has suggested to cool the silicon detectors down to cryogenic temperatures in order to achieve an ultra high accuracy primary standard below the I ppm level. Gran has initiated a NICe (Nordic Innovations Centre) funded project with custom designed silicon detectors where half of the surface is covered with a

  18. Change of adiabatic invariant near the separatrix

    International Nuclear Information System (INIS)

    Bulanov, S.V.

    1995-10-01

    The properties of particle motion in the vicinity of the separatrix in a phase plane are investigated. The change of adiabatic invariant value due to the separatrix crossing is evaluated as a function of a perturbation parameter magnitude and a phase of a particle for time dependent Hamiltonians. It is demonstrated that the change of adiabatic invariant value near the separatrix birth is much larger than that in the case of the separatrix crossing near the saddle point in a phase plane. The conditions of a stochastic regime to appear around the separatrix are found. The results are applied to study the longitudinal invariant behaviour of charged particles near singular lines of the magnetic field. (author). 22 refs, 9 figs

  19. Asymptotics of pion electromagnetics form factor in scale invariant quark model

    International Nuclear Information System (INIS)

    Efremov, A.V.; Radyushkin, A.V.

    1976-01-01

    A consistent relativistic approach is proposed to the investigation of asymptotic behaviour of form factor of a system, composed of two spinor particles, interacting with the vector of (pseudo) scalar neutral field. It is shown that the assumption of finite and small asymptotical value of quark-gluon interaction invariant charge at small distances (g 9 2 9 2 ln(-Q 2 ) 2 values (Q 2 is squared momentum)

  20. Noether symmetries, energy-momentum tensors, and conformal invariance in classical field theory

    International Nuclear Information System (INIS)

    Pons, Josep M.

    2011-01-01

    In the framework of classical field theory, we first review the Noether theory of symmetries, with simple rederivations of its essential results, with special emphasis given to the Noether identities for gauge theories. With this baggage on board, we next discuss in detail, for Poincare invariant theories in flat spacetime, the differences between the Belinfante energy-momentum tensor and a family of Hilbert energy-momentum tensors. All these tensors coincide on shell but they split their duties in the following sense: Belinfante's tensor is the one to use in order to obtain the generators of Poincare symmetries and it is a basic ingredient of the generators of other eventual spacetime symmetries which may happen to exist. Instead, Hilbert tensors are the means to test whether a theory contains other spacetime symmetries beyond Poincare. We discuss at length the case of scale and conformal symmetry, of which we give some examples. We show, for Poincare invariant Lagrangians, that the realization of scale invariance selects a unique Hilbert tensor which allows for an easy test as to whether conformal invariance is also realized. Finally we make some basic remarks on metric generally covariant theories and classical field theory in a fixed curved background.

  1. An examination of the factor structure and sex invariance of a French translation of the Body Appreciation Scale-2 in university students.

    Science.gov (United States)

    Kertechian, Sevag; Swami, Viren

    2017-06-01

    The Body Appreciation Scale-2 (BAS-2) is a measure of positive body image that has been found that have a one-dimensional factor structure in a number of different cultural groups. Here, we examined the factor structure and sex-based measurement invariance of a French translation of the BAS-2. A total of 652 university students (age M=21.33, SD=3.18) completed a newly-translated French version of the BAS-2. Exploratory factor analyses with a randomly selected split-half subsample revealed that the BAS-2 had a one-dimensional factor structure in both sexes. Confirmatory factor analyses with a second split-half subsample indicated that the one-dimensional factor structure had adequate fit following modifications and was invariant across sex. French BAS-2 scores had adequate internal consistency and men had significantly higher body appreciation than women (ds=.16-.23). These results provide preliminary support for the factorial validity of the French BAS-2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. On density of the Vassiliev invariants

    DEFF Research Database (Denmark)

    Røgen, Peter

    1999-01-01

    The main result is that the Vassiliev invariants are dense in the set of numeric knot invariants if and only if they separate knots.Keywords: Knots, Vassiliev invariants, separation, density, torus knots......The main result is that the Vassiliev invariants are dense in the set of numeric knot invariants if and only if they separate knots.Keywords: Knots, Vassiliev invariants, separation, density, torus knots...

  3. Efficient and robust model-to-image alignment using 3D scale-invariant features.

    Science.gov (United States)

    Toews, Matthew; Wells, William M

    2013-04-01

    This paper presents feature-based alignment (FBA), a general method for efficient and robust model-to-image alignment. Volumetric images, e.g. CT scans of the human body, are modeled probabilistically as a collage of 3D scale-invariant image features within a normalized reference space. Features are incorporated as a latent random variable and marginalized out in computing a maximum a posteriori alignment solution. The model is learned from features extracted in pre-aligned training images, then fit to features extracted from a new image to identify a globally optimal locally linear alignment solution. Novel techniques are presented for determining local feature orientation and efficiently encoding feature intensity in 3D. Experiments involving difficult magnetic resonance (MR) images of the human brain demonstrate FBA achieves alignment accuracy similar to widely-used registration methods, while requiring a fraction of the memory and computation resources and offering a more robust, globally optimal solution. Experiments on CT human body scans demonstrate FBA as an effective system for automatic human body alignment where other alignment methods break down. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. The importance of time interval to development of second tumor in metachronous bilateral wilms' tumor

    International Nuclear Information System (INIS)

    Paulino, Arnold C.; Thakkar, Bharat; Henderson, William G.

    1997-01-01

    Purpose: To determine whether the time interval to development of second tumor is a prognostic factor for overall survival in children with metachronous bilateral Wilms' tumor and to give a recommendation regarding screening of the contralateral kidney in patients with Wilms' tumor. Materials and Management: A literature search using MEDLINE was performed of manuscripts in the English language from 1950-1996 and identified 108 children with metachronous bilateral Wilms' tumor. Children were classified according to time interval to development of a contralateral Wilms' tumor ( 78 mos (2), 78 - < 84 mos (1), 84 - < 90 mos (0), 90 - < 96 mos (1), ≥ 96 mos (0). Analysis of overall survival in patients with a time interval of < 18 months and ≥ 18 months showed a 10 year survival of 39.6% and 55.2%, respectively (p = 0.024, log-rank test). Conclusions: Children with metachronous bilateral Wilms' tumor who develop a contralateral tumor at a time interval of ≥ 18 months from the initial Wilms' tumor had a better overall survival than children with a time interval of < 18 months. Screening by abdominal ultrasound of the contralateral kidney for more than 5 years after initial diagnosis of Wilms' tumor may not be necessary since 102/106 (96.2%) of children had a time interval to second tumor of < 60 months

  5. Procedure prediction from symbolic Electronic Health Records via time intervals analytics.

    Science.gov (United States)

    Moskovitch, Robert; Polubriaginof, Fernanda; Weiss, Aviram; Ryan, Patrick; Tatonetti, Nicholas

    2017-11-01

    Prediction of medical events, such as clinical procedures, is essential for preventing disease, understanding disease mechanism, and increasing patient quality of care. Although longitudinal clinical data from Electronic Health Records provides opportunities to develop predictive models, the use of these data faces significant challenges. Primarily, while the data are longitudinal and represent thousands of conceptual events having duration, they are also sparse, complicating the application of traditional analysis approaches. Furthermore, the framework presented here takes advantage of the events duration and gaps. International standards for electronic healthcare data represent data elements, such as procedures, conditions, and drug exposures, using eras, or time intervals. Such eras contain both an event and a duration and enable the application of time intervals mining - a relatively new subfield of data mining. In this study, we present Maitreya, a framework for time intervals analytics in longitudinal clinical data. Maitreya discovers frequent time intervals related patterns (TIRPs), which we use as prognostic markers for modelling clinical events. We introduce three novel TIRP metrics that are normalized versions of the horizontal-support, that represents the number of TIRP instances per patient. We evaluate Maitreya on 28 frequent and clinically important procedures, using the three novel TIRP representation metrics in comparison to no temporal representation and previous TIRPs metrics. We also evaluate the epsilon value that makes Allen's relations more flexible with several settings of 30, 60, 90 and 180days in comparison to the default zero. For twenty-two of these procedures, the use of temporal patterns as predictors was superior to non-temporal features, and the use of the vertically normalized horizontal support metric to represent TIRPs as features was most effective. The use of the epsilon value with thirty days was slightly better than the zero

  6. Assessing cross-cultural differences through use of multiple-group invariance analyses.

    Science.gov (United States)

    Stein, Judith A; Lee, Jerry W; Jones, Patricia S

    2006-12-01

    The use of structural equation modeling in cross-cultural personality research has become a popular method for testing measurement invariance. In this report, we present an example of testing measurement invariance using the Sense of Coherence Scale of Antonovsky (1993) in 3 ethnic groups: Chinese, Japanese, and Whites. In a series of increasingly restrictive constraints on the measurement models of the 3 groups, we demonstrate how to assess differences among the groups. We also provide an example of construct validation.

  7. Opposite Distortions in Interval Timing Perception for Visual and Auditory Stimuli with Temporal Modulations.

    Science.gov (United States)

    Yuasa, Kenichi; Yotsumoto, Yuko

    2015-01-01

    When an object is presented visually and moves or flickers, the perception of its duration tends to be overestimated. Such an overestimation is called time dilation. Perceived time can also be distorted when a stimulus is presented aurally as an auditory flutter, but the mechanisms and their relationship to visual processing remains unclear. In the present study, we measured interval timing perception while modulating the temporal characteristics of visual and auditory stimuli, and investigated whether the interval times of visually and aurally presented objects shared a common mechanism. In these experiments, participants compared the durations of flickering or fluttering stimuli to standard stimuli, which were presented continuously. Perceived durations for auditory flutters were underestimated, while perceived durations of visual flickers were overestimated. When auditory flutters and visual flickers were presented simultaneously, these distortion effects were cancelled out. When auditory flutters were presented with a constantly presented visual stimulus, the interval timing perception of the visual stimulus was affected by the auditory flutters. These results indicate that interval timing perception is governed by independent mechanisms for visual and auditory processing, and that there are some interactions between the two processing systems.

  8. Changes in crash risk following re-timing of traffic signal change intervals.

    Science.gov (United States)

    Retting, Richard A; Chapline, Janella F; Williams, Allan F

    2002-03-01

    More than I million motor vehicle crashes occur annually at signalized intersections in the USA. The principal method used to prevent crashes associated with routine changes in signal indications is employment of a traffic signal change interval--a brief yellow and all-red period that follows the green indication. No universal practice exists for selecting the duration of change intervals, and little is known about the influence of the duration of the change interval on crash risk. The purpose of this study was to estimate potential crash effects of modifying the duration of traffic signal change intervals to conform with values associated with a proposed recommended practice published by the Institute of Transportation Engineers. A sample of 122 intersections was identified and randomly assigned to experimental and control groups. Of 51 eligible experimental sites, 40 (78%) needed signal timing changes. For the 3-year period following implementation of signal timing changes, there was an 8% reduction in reportable crashes at experimental sites relative to those occurring at control sites (P = 0.08). For injury crashes, a 12% reduction at experimental sites relative to those occurring at control sites was found (P = 0.03). Pedestrian and bicycle crashes at experimental sites decreased 37% (P = 0.03) relative to controls. Given these results and the relatively low cost of re-timing traffic signals, modifying the duration of traffic signal change intervals to conform with values associated with the Institute of Transportation Engineers' proposed recommended practice should be strongly considered by transportation agencies to reduce the frequency of urban motor vehicle crashes.

  9. Gauge-invariant cosmic structures---A dynamic systems approach

    International Nuclear Information System (INIS)

    Woszczyna, A.

    1992-01-01

    Gravitational instability is expressed in terms of the dynamic systems theory. The gauge-invariant Ellis-Bruni equation and Bardeen's equation are discussed in detail. It is shown that in an open universe filled with matter of constant sound velocity the Jeans criterion does not adequately define the length scale of the gravitational structure

  10. Quantification of transuranic elements by time interval correlation spectroscopy of the detected neutrons

    Science.gov (United States)

    Baeten; Bruggeman; Paepen; Carchon

    2000-03-01

    The non-destructive quantification of transuranic elements in nuclear waste management or in safeguards verifications is commonly performed by passive neutron assay techniques. To minimise the number of unknown sample-dependent parameters, Neutron Multiplicity Counting (NMC) is applied. We developed a new NMC-technique, called Time Interval Correlation Spectroscopy (TICS), which is based on the measurement of Rossi-alpha time interval distributions. Compared to other NMC-techniques, TICS offers several advantages.

  11. Slow feature analysis: unsupervised learning of invariances.

    Science.gov (United States)

    Wiskott, Laurenz; Sejnowski, Terrence J

    2002-04-01

    Invariant features of temporally varying signals are useful for analysis and classification. Slow feature analysis (SFA) is a new method for learning invariant or slowly varying features from a vectorial input signal. It is based on a nonlinear expansion of the input signal and application of principal component analysis to this expanded signal and its time derivative. It is guaranteed to find the optimal solution within a family of functions directly and can learn to extract a large number of decorrelated features, which are ordered by their degree of invariance. SFA can be applied hierarchically to process high-dimensional input signals and extract complex features. SFA is applied first to complex cell tuning properties based on simple cell output, including disparity and motion. Then more complicated input-output functions are learned by repeated application of SFA. Finally, a hierarchical network of SFA modules is presented as a simple model of the visual system. The same unstructured network can learn translation, size, rotation, contrast, or, to a lesser degree, illumination invariance for one-dimensional objects, depending on only the training stimulus. Surprisingly, only a few training objects suffice to achieve good generalization to new objects. The generated representation is suitable for object recognition. Performance degrades if the network is trained to learn multiple invariances simultaneously.

  12. Theory and computation of disturbance invariant sets for discrete-time linear systems

    Directory of Open Access Journals (Sweden)

    Ilya Kolmanovsky

    1998-01-01

    . One purpose of the paper is to unite and extend in a rigorous way disparate results from the prior literature. In addition there are entirely new results. Specific contributions include: exploitation of the Pontryagin set difference to clarify conceptual matters and simplify mathematical developments, special properties of maximal invariant sets and conditions for their finite determination, algorithms for generating concrete representations of maximal invariant sets, practical computational questions, extension of the main results to general Lyapunov stable systems, applications of the computational techniques to the bounding of state and output response. Results on Lyapunov stable systems are applied to the implementation of a logic-based, nonlinear multimode regulator. For plants with disturbance inputs and state-control constraints it enlarges the constraint-admissible domain of attraction. Numerical examples illustrate the various theoretical and computational results.

  13. Embodiment and the origin of interval timing: kinematic and electromyographic data.

    Science.gov (United States)

    Addyman, Caspar; Rocha, Sinead; Fautrelle, Lilian; French, Robert M; Thomas, Elizabeth; Mareschal, Denis

    2017-03-01

    Recent evidence suggests that interval timing (the judgment of durations lasting from approximately 500 ms. to a few minutes) is closely coupled to the action control system. We used surface electromyography (EMG) and motion capture technology to explore the emergence of this coupling in 4-, 6-, and 8-month-olds. We engaged infants in an active and socially relevant arm-raising task with seven cycles and response period. In one condition, cycles were slow (every 4 s); in another, they were fast (every 2 s). In the slow condition, we found evidence of time-locked sub-threshold EMG activity even in the absence of any observed overt motor responses at all three ages. This study shows that EMGs can be a more sensitive measure of interval timing in early development than overt behavior.

  14. The efficiency of parameter estimation of latent path analysis using summated rating scale (SRS) and method of successive interval (MSI) for transformation of score to scale

    Science.gov (United States)

    Solimun, Fernandes, Adji Achmad Rinaldo; Arisoesilaningsih, Endang

    2017-12-01

    Research in various fields generally investigates systems and involves latent variables. One method to analyze the model representing the system is path analysis. The data of latent variables measured using questionnaires by applying attitude scale model yields data in the form of score, before analyzed should be transformation so that it becomes data of scale. Path coefficient, is parameter estimator, calculated from scale data using method of successive interval (MSI) and summated rating scale (SRS). In this research will be identifying which data transformation method is better. Path coefficients have smaller varieties are said to be more efficient. The transformation method that produces scaled data and used in path analysis capable of producing path coefficients (parameter estimators) with smaller varieties is said to be better. The result of analysis using real data shows that on the influence of Attitude variable to Intention Entrepreneurship, has relative efficiency (ER) = 1, where it shows that the result of analysis using data transformation of MSI and SRS as efficient. On the other hand, for simulation data, at high correlation between items (0.7-0.9), MSI method is more efficient 1.3 times better than SRS method.

  15. On Noether symmetries and form invariance of mechanico-electrical systems

    International Nuclear Information System (INIS)

    Fu Jingli; Chen Liqun

    2004-01-01

    This Letter focuses on form invariance and Noether symmetries of mechanico-electrical systems. Based on the invariance of Hamiltonian actions for mechanico-electrical systems under the infinitesimal transformation of the coordinates, the electric quantities and the time, the authors present the Noether symmetry transformation, the Noether quasi-symmetry transformation, the generalized Noether quasi-symmetry transformation and the general Killing equations of Lagrange mechanico-electrical systems and Lagrange-Maxwell mechanico-electrical systems. Using the invariance of the differential equations, satisfied by physical quantities, such as Lagrangian, non-potential general forces, under the infinitesimal transformation, the authors propose the definition and criterions of the form invariance for mechanico-electrical systems. The Letter also demonstrates connection between the Noether symmetries and the form invariance of mechanico-electrical systems. An example is designed to illustrate these results

  16. Beat-to-beat systolic time-interval measurement from heart sounds and ECG

    International Nuclear Information System (INIS)

    Paiva, R P; Carvalho, P; Couceiro, R; Henriques, J; Antunes, M; Quintal, I; Muehlsteff, J

    2012-01-01

    Systolic time intervals are highly correlated to fundamental cardiac functions. Several studies have shown that these measurements have significant diagnostic and prognostic value in heart failure condition and are adequate for long-term patient follow-up and disease management. In this paper, we investigate the feasibility of using heart sound (HS) to accurately measure the opening and closing moments of the aortic heart valve. These moments are crucial to define the main systolic timings of the heart cycle, i.e. pre-ejection period (PEP) and left ventricular ejection time (LVET). We introduce an algorithm for automatic extraction of PEP and LVET using HS and electrocardiogram. PEP is estimated with a Bayesian approach using the signal's instantaneous amplitude and patient-specific time intervals between atrio-ventricular valve closure and aortic valve opening. As for LVET, since the aortic valve closure corresponds to the start of the S2 HS component, we base LVET estimation on the detection of the S2 onset. A comparative assessment of the main systolic time intervals is performed using synchronous signal acquisitions of the current gold standard in cardiac time-interval measurement, i.e. echocardiography, and HS. The algorithms were evaluated on a healthy population, as well as on a group of subjects with different cardiovascular diseases (CVD). In the healthy group, from a set of 942 heartbeats, the proposed algorithm achieved 7.66 ± 5.92 ms absolute PEP estimation error. For LVET, the absolute estimation error was 11.39 ± 8.98 ms. For the CVD population, 404 beats were used, leading to 11.86 ± 8.30 and 17.51 ± 17.21 ms absolute PEP and LVET errors, respectively. The results achieved in this study suggest that HS can be used to accurately estimate LVET and PEP. (paper)

  17. The Gauge-Invariant Angular Momentum Sum-Rule for the Proton

    CERN Document Server

    Shore, G.M.

    2000-01-01

    We give a gauge-invariant treatment of the angular momentum sum-rule for the proton in terms of matrix elements of three gauge-invariant, local composite operators. These matrix elements are decomposed into three independent form factors, one of which is the flavour singlet axial charge. We further show that the axial charge cancels out of the sum-rule, so that it is unaffacted by the axial anomaly. The three form factors are then related to the four proton spin components in the parton model, namely quark and gluon intrinsic spin and orbital angular momentum. The renormalisation of the three operators is determined to one loop from which the scale dependence and mixing of the spin components is derived under the constraint that the quark spin be scale-independent. We also show how the three form factors can be measured in experiments.

  18. Search for Violation of $CPT$ and Lorentz invariance in ${B_s^0}$ meson oscillations

    CERN Document Server

    Abazov, Victor Mukhamedovich; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Agnew, James P; Alexeev, Guennadi D; Alkhazov, Georgiy D; Alton, Andrew K; Askew, Andrew Warren; Atkins, Scott; Augsten, Kamil; Avila, Carlos A; Badaud, Frederique; Bagby, Linda F; Baldin, Boris; Bandurin, Dmitry V; Banerjee, Sunanda; Barberis, Emanuela; Baringer, Philip S; Bartlett, JFrederick; Bassler, Ursula Rita; Bazterra, Victor; Bean, Alice L; Begalli, Marcia; Bellantoni, Leo; Beri, Suman B; Bernardi, Gregorio; Bernhard, Ralf Patrick; Bertram, Iain A; Besancon, Marc; Beuselinck, Raymond; Bhat, Pushpalatha C; Bhatia, Sudeep; Bhatnagar, Vipin; Blazey, Gerald Charles; Blessing, Susan K; Bloom, Kenneth A; Boehnlein, Amber S; Boline, Daniel Dooley; Boos, Edward E; Borissov, Guennadi; Borysova, Maryna; Brandt, Andrew; Brandt, Oleg; Brock, Raymond L; Bross, Alan D; Brown, Duncan Paul; Bu, Xue-Bing; Buehler, Marc; Buescher, Volker; Bunichev, Viacheslav Yevgenyevich; Burdin, Sergey; Buszello, Claus Peter; Camacho-Perez, Enrique; Casey, Brendan Cameron Kieran; Castilla-Valdez, Heriberto; Caughron, Seth Aaron; Chakrabarti, Subhendu; Chan, Kwok Ming Leo; Chandra, Avdhesh; Chapon, Emilien; Chen, Guo; Cho, Sung-Woong; Choi, Suyong; Choudhary, Brajesh C; Cihangir, Selcuk; Claes, Daniel R; Clutter, Justace Randall; Cooke, Michael P; Cooper, William Edward; Corcoran, Marjorie D; Couderc, Fabrice; Cousinou, Marie-Claude; Cuth, Jakub; Cutts, David; Das, Amitabha; Davies, Gavin John; de Jong, Sijbrand Jan; De La Cruz-Burelo, Eduard; Deliot, Frederic; Demina, Regina; Denisov, Dmitri S; Denisov, Sergei P; Desai, Satish Vijay; Deterre, Cecile; DeVaughan, Kayle Otis; Diehl, HThomas; Diesburg, Michael; Ding, Pengfei; Dominguez, DAaron M; Dubey, Abhinav Kumar; Dudko, Lev V; Duperrin, Arnaud; Dutt, Suneel; Eads, Michael T; Edmunds, Daniel L; Ellison, John A; Elvira, VDaniel; Enari, Yuji; Evans, Harold G; Evdokimov, Anatoly V; Evdokimov, Valeri N; Faure, Alexandre; Feng, Lei; Ferbel, Thomas; Fiedler, Frank; Filthaut, Frank; Fisher, Wade Cameron; Fisk, HEugene; Fortner, Michael R; Fox, Harald; Fuess, Stuart C; Garbincius, Peter H; Garcia-Bellido, Aran; Garcia-Gonzalez, Jose Andres; Gavrilov, Vladimir B; Geng, Weigang; Gerber, Cecilia Elena; Gershtein, Yuri S; Ginther, George E; Gogota, Olga; Golovanov, Georgy Anatolievich; Grannis, Paul D; Greder, Sebastien; Greenlee, Herbert B; Grenier, Gerald Jean; Gris, Phillipe Luc; Grivaz, Jean-Francois; Grohsjean, Alexander; Gruenendahl, Stefan; Gruenewald, Martin Werner; Guillemin, Thibault; Gutierrez, Gaston R; Gutierrez, Phillip; Haley, Joseph Glenn Biddle; Han, Liang; Harder, Kristian; Harel, Amnon; Hauptman, John Michael; Hays, Jonathan M; Head, Tim; Hebbeker, Thomas; Hedin, David R; Hegab, Hatim; Heinson, Ann; Heintz, Ulrich; Hensel, Carsten; Heredia-De La Cruz, Ivan; Herner, Kenneth Richard; Hesketh, Gavin G; Hildreth, Michael D; Hirosky, Robert James; Hoang, Trang; Hobbs, John D; Hoeneisen, Bruce; Hogan, Julie; Hohlfeld, Mark; Holzbauer, Jenny Lyn; Howley, Ian James; Hubacek, Zdenek; Hynek, Vlastislav; Iashvili, Ia; Ilchenko, Yuriy; Illingworth, Robert A; Ito, Albert S; Jabeen, Shabnam; Jaffre, Michel J; Jayasinghe, Ayesh; Jeong, Min-Soo; Jesik, Richard L; Jiang, Peng; Johns, Kenneth Arthur; Johnson, Emily; Johnson, Marvin E; Jonckheere, Alan M; Jonsson, Per Martin; Joshi, Jyoti; Jung, Andreas Werner; Juste, Aurelio; Kajfasz, Eric; Karmanov, Dmitriy Y; Katsanos, Ioannis; Kaur, Manbir; Kehoe, Robert Leo Patrick; Kermiche, Smain; Khalatyan, Norayr; Khanov, Alexander; Kharchilava, Avto; Kharzheev, Yuri N; Kiselevich, Ivan Lvovich; Kohli, Jatinder M; Kozelov, Alexander V; Kraus, James Alexander; Kumar, Ashish; Kupco, Alexander; Kurca, Tibor; Kuzmin, Valentin Alexandrovich; Lammers, Sabine Wedam; Lebrun, Patrice; Lee, Hyeon-Seung; Lee, Seh-Wook; Lee, William M; Lei, Xiaowen; Lellouch, Jeremie; Li, Dikai; Li, Hengne; Li, Liang; Li, Qi-Zhong; Lim, Jeong Ku; Lincoln, Donald W; Linnemann, James Thomas; Lipaev, Vladimir V; Lipton, Ronald J; Liu, Huanzhao; Liu, Yanwen; Lobodenko, Alexandre; Lokajicek, Milos; Lopes de Sa, Rafael; Luna-Garcia, Rene; Lyon, Adam Leonard; Maciel, Arthur KA; Madar, Romain; Magana-Villalba, Ricardo; Malik, Sudhir; Malyshev, Vladimir L; Mansour, Jason; Martinez-Ortega, Jorge; McCarthy, Robert L; Mcgivern, Carrie Lynne; Meijer, Melvin M; Melnitchouk, Alexander S; Menezes, Diego D; Mercadante, Pedro Galli; Merkin, Mikhail M; Meyer, Arnd; Meyer, Jorg Manfred; Miconi, Florian; Mondal, Naba K; Mulhearn, Michael James; Nagy, Elemer; Narain, Meenakshi; Nayyar, Ruchika; Neal, Homer A; Negret, Juan Pablo; Neustroev, Petr V; Nguyen, Huong Thi; Nunnemann, Thomas P; Hernandez Orduna, Jose de Jesus; Osman, Nicolas Ahmed; Osta, Jyotsna; Pal, Arnab; Parashar, Neeti; Parihar, Vivek; Park, Sung Keun; Partridge, Richard A; Parua, Nirmalya; Patwa, Abid; Penning, Bjoern; Perfilov, Maxim Anatolyevich; Peters, Reinhild Yvonne Fatima; Petridis, Konstantinos; Petrillo, Gianluca; Petroff, Pierre; Pleier, Marc-Andre; Podstavkov, Vladimir M; Popov, Alexey V; Prewitt, Michelle; Price, Darren; Prokopenko, Nikolay N; Qian, Jianming; Quadt, Arnulf; Quinn, Gene Breese; Ratoff, Peter N; Razumov, Ivan A; Ripp-Baudot, Isabelle; Rizatdinova, Flera; Rominsky, Mandy Kathleen; Ross, Anthony; Royon, Christophe; Rubinov, Paul Michael; Ruchti, Randal C; Sajot, Gerard; Sanchez-Hernandez, Alberto; Sanders, Michiel P; Santos, Angelo Souza; Savage, David G; Savitskyi, Mykola; Sawyer, HLee; Scanlon, Timothy P; Schamberger, RDean; Scheglov, Yury A; Schellman, Heidi M; Schott, Matthias; Schwanenberger, Christian; Schwienhorst, Reinhard H; Sekaric, Jadranka; Severini, Horst; Shabalina, Elizaveta K; Shary, Viacheslav V; Shaw, Savanna; Shchukin, Andrey A; Simak, Vladislav J; Skubic, Patrick Louis; Slattery, Paul F; Smirnov, Dmitri V; Snow, Gregory R; Snow, Joel Mark; Snyder, Scott Stuart; Soldner-Rembold, Stefan; Sonnenschein, Lars; Soustruznik, Karel; Stark, Jan; Stoyanova, Dina A; Strauss, Michael G; Suter, Louise; Svoisky, Peter V; Titov, Maxim; Tokmenin, Valeriy V; Tsai, Yun-Tse; Tsybychev, Dmitri; Tuchming, Boris; Tully, Christopher George T; Uvarov, Lev; Uvarov, Sergey L; Uzunyan, Sergey A; Van Kooten, Richard J; van Leeuwen, Willem M; Varelas, Nikos; Varnes, Erich W; Vasilyev, Igor A; Verkheev, Alexander Yurievich; Vertogradov, Leonid S; Verzocchi, Marco; Vesterinen, Mika; Vilanova, Didier; Vokac, Petr; Wahl, Horst D; Wang, Michael HLS; Warchol, Jadwiga; Watts, Gordon Thomas; Wayne, Mitchell R; Weichert, Jonas; Welty-Rieger, Leah Christine; Williams, Mark Richard James; Wilson, Graham Wallace; Wobisch, Markus; Wood, Darien Robert; Wyatt, Terence R; Xie, Yunhe; Yamada, Ryuji; Yang, Siqi; Yasuda, Takahiro; Yatsunenko, Yuriy A; Ye, Wanyu; Ye, Zhenyu; Yin, Hang; Yip, Kin; Youn, Sungwoo; Yu, Jiaming; Zennamo, Joseph; Zhao, Tianqi Gilbert; Zhou, Bing; Zhu, Junjie; Zielinski, Marek; Zieminska, Daria; Zivkovic, Lidija

    2015-10-14

    We present the first search for CPT-violating effects in the mixing of ${B_s^0}$ mesons using the full Run II data set with an integrated luminosity of 10.4 fb$^{-1}$ of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. We measure the CPT-violating asymmetry in the decay $B_s^0 \\to \\mu^\\pm D_s^\\pm$ as a function of celestial direction and sidereal phase. We find no evidence for CPT-violating effects and place limits on the direction and magnitude of flavor-dependent CPT- and Lorentz-invariance violating coupling coefficients. We find 95\\% confidence intervals of $\\Delta a_{\\perp} < 1.2 \\times 10^{-12}$ GeV and $(-0.8 < \\Delta a_T - 0.396 \\Delta a_Z < 3.9) \\times 10^{-13}$ GeV.

  19. Intentional and unintentional contributions to nonspecific information during reaction time foreperiods

    NARCIS (Netherlands)

    Los, S.A.; Knol, D.L.; Boers, R.M.

    2001-01-01

    The foreperiod (FP) is the interval between a warning stimulus and the imperative stimulus. It is a classical finding that both the duration and the intertrial variability of FP considerably affects response time. These effects are invariably attributed to the participant's state of nonspecific

  20. Donaldson invariants in algebraic geometry

    International Nuclear Information System (INIS)

    Goettsche, L.

    2000-01-01

    In these lectures I want to give an introduction to the relation of Donaldson invariants with algebraic geometry: Donaldson invariants are differentiable invariants of smooth compact 4-manifolds X, defined via moduli spaces of anti-self-dual connections. If X is an algebraic surface, then these moduli spaces can for a suitable choice of the metric be identified with moduli spaces of stable vector bundles on X. This can be used to compute Donaldson invariants via methods of algebraic geometry and has led to a lot of activity on moduli spaces of vector bundles and coherent sheaves on algebraic surfaces. We will first recall the definition of the Donaldson invariants via gauge theory. Then we will show the relation between moduli spaces of anti-self-dual connections and moduli spaces of vector bundles on algebraic surfaces, and how this makes it possible to compute Donaldson invariants via algebraic geometry methods. Finally we concentrate on the case that the number b + of positive eigenvalues of the intersection form on the second homology of the 4-manifold is 1. In this case the Donaldson invariants depend on the metric (or in the algebraic geometric case on the polarization) via a system of walls and chambers. We will study the change of the invariants under wall-crossing, and use this in particular to compute the Donaldson invariants of rational algebraic surfaces. (author)

  1. Probing Higgs self-coupling of a classically scale invariant model in e+e- → Zhh: Evaluation at physical point

    Science.gov (United States)

    Fujitani, Y.; Sumino, Y.

    2018-04-01

    A classically scale invariant extension of the standard model predicts large anomalous Higgs self-interactions. We compute missing contributions in previous studies for probing the Higgs triple coupling of a minimal model using the process e+e- → Zhh. Employing a proper order counting, we compute the total and differential cross sections at the leading order, which incorporate the one-loop corrections between zero external momenta and their physical values. Discovery/exclusion potential of a future e+e- collider for this model is estimated. We also find a unique feature in the momentum dependence of the Higgs triple vertex for this class of models.

  2. Intervalos de observações com diferentes escalas de tempo no comportamento ingestivo de vacas leiteiras confinadas Intervals between observations at different time scales in the feeding behavior of dairy confined cows

    Directory of Open Access Journals (Sweden)

    Fabrício Bacelar Lima Mendes

    2011-09-01

    Full Text Available Objetivou-se analisar as diferentes escalas de tempo para determinar qual o intervalo mais adequado no estudo do comportamento ingestivo de vacas leiteiras confinadas. O experimento foi conduzido na fazenda Água Azul, Município de Macarani-Bahia, no período de outubro a novembro de 2005. Foram utilizadas 12 vacas mestiças Holandês, apresentando, em média, 478,5  15,89kg de peso corporal. Os tratamentos do presente estudo foram os intervalos (cinco, 10; 15; 20 e 30 minutos, observados durante o comportamento ingestivo. A observação do comportamento ocorreu no penúltimo dia de cada período de 12 dias durante 24 horas. Procedeu-se a análise de variância e a aplicação do teste de Dunnett, adotando-se 0,05 como nível crítico de probabilidade. Não houve efeito significativo das escalas de registro do tempo de alimentação, ruminação, ócio e para as eficiências de alimentação e ruminação. Para as variáveis dos números de períodos de alimentação, ruminação e ócio e os tempos por período de alimentação, ruminação e ócio, as escalas de 10, 15, 20 e 30 minutos foram diferentes quando comparadas com o intervalo de observação de cinco minutos. As coletas totais dos tempos de alimentação ruminação e ócio, e as eficiências de alimentação e ruminação nos diferentes nutrientes podem ser realizadas com intervalo de observação de até 30 minutos. Para a discretização das séries temporais do comportamento ingestivo recomenda-se a escala de cinco minutos entre as observações.This study aimed to analyze different time scales to determine the most appropriate interval in the study of ingestive behavior of confined dairy cows. The experiment was conducted at the farm Blue Water, city of Macarani-Bahia, in the period from October to November 2005. 12 crossbred Holstein cows were used, with an average body weight of 478.5  15.89kg. The treatments of this study were the intervals (five; 10; 15; 20 and 30

  3. Moment invariants for particle beams

    International Nuclear Information System (INIS)

    Lysenko, W.P.; Overley, M.S.

    1988-01-01

    The rms emittance is a certain function of second moments in 2-D phase space. It is preserved for linear uncoupled (1-D) motion. In this paper, the authors present new functions of moments that are invariants for coupled motion. These invariants were computed symbolically using a computer algebra system. Possible applications for these invariants are discussed. Also, approximate moment invariants for nonlinear motion are presented

  4. Non-Perturbative Formulation of Time-Dependent String Solutions

    CERN Document Server

    Alexandre, J; Mavromatos, Nikolaos E; Alexandre, Jean; Ellis, John; Mavromatos, Nikolaos E.

    2006-01-01

    We formulate here a new world-sheet renormalization-group technique for the bosonic string, which is non-perturbative in the Regge slope alpha' and based on a functional method for controlling the quantum fluctuations, whose magnitudes are scaled by the value of alpha'. Using this technique we exhibit, in addition to the well-known linear-dilaton cosmology, a new, non-perturbative time-dependent background solution. Using the reparametrization invariance of the string S-matrix, we demonstrate that this solution is conformally invariant to alpha', and we give a heuristic inductive argument that conformal invariance can be maintained to all orders in alpha'. This new time-dependent string solution may be applicable to primordial cosmology or to the exit from linear-dilaton cosmology at large times.

  5. Galileo-invariant theory of low energy pion-nucleus scattering. III

    International Nuclear Information System (INIS)

    Mach, R.

    1983-01-01

    Using two versions of the Galileo-invariant optical model, π - - 4 He elastic scattering cross sections were calculated in the energy interval 50 to 260 MeV. Level shifts and widths of several light π-mesoatoms were estimated in the Born approximation. Whereas the (A+1)-body model appears to be more suitable in the resonance region, the two-body model yields surprisingly good results for both the low-energy scattering and the characteristics of π-mesoatoms. (author)

  6. Time interval measurement between two emissions: Kr + Au

    International Nuclear Information System (INIS)

    Aboufirassi, M; Bougault, R.; Brou, R.; Colin, J.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Mahi, M.; Steckmeyer, J.C.; Tamain, B.

    1998-01-01

    To indicate the method allowing the determination of the emission intervals, the results obtained with the Kr + Au system at 43 and 60 A.MeV are presented. The experiments were performed with the NAUTILUS exclusive detectors. Central collisions were selected by means of a relative velocity criterion to reject the events containing a forward emitted fragment. For the two bombardment energies the data analysis shows that the formation of a compound of mass around A = 200. By comparing the fragment dynamical variables with simulations one can conclude about the simultaneity of the compound deexcitation processes. It was found that a 5 MeV/A is able to reproduce the characteristics of the detected fragments. Also, it was found that to reproduce the dynamical characteristics of the fragments issued from central collisions it was not necessary to superimpose a radial collective energy upon the Coulomb and thermal motion. The distribution of the relative angles between detected fragments is used here as a chronometer. For simultaneous ruptures the small relative angles are forbidden by the Coulomb repulsion, while for sequential processes this interdiction is the more lifted the longer the interval between the two emissions is. For the system discussed here the comparison between simulation and data has been carried out for the extreme cases, i.e. for a vanishing and infinite time interval between the two emissions, respectively. More sophisticated simulations to describe angular distributions between the emitted fragments were also developed

  7. Chaoticity of interval self-maps with positive entropy

    International Nuclear Information System (INIS)

    Xiong Jincheng.

    1988-12-01

    Li and Yorke originally introduced the notion of chaos for continuous self-map of the interval I = (0,1). In the present paper we show that an interval self-map with positive topological entropy has a chaoticity more complicated than the chaoticity in the sense of Li and Yorke. The main result is that if f:I → I is continuous and has a periodic point with odd period > 1 then there exists a closed subset K of I invariant with respect to f such that the periodic points are dense in K, the periods of periodic points in K form an infinite set and f|K is topologically mixing. (author). 9 refs

  8. Systolic time intervals vs invasive predictors of fluid responsiveness after coronary artery bypass surgery(dagger)

    NARCIS (Netherlands)

    Smorenberg, A.; Lust, E.J.; Beishuizen, A.; Meijer, J.H.; Verdaasdonk, R.M.; Groeneveld, A.B.J.

    2013-01-01

    OBJECTIVES: Haemodynamic parameters for predicting fluid responsiveness in intensive care patients are invasive, technically challenging or not universally applicable. We compared the initial systolic time interval (ISTI), a non-invasive measure of the time interval between the electrical and

  9. PENGARUH PARAMETER CUACA TERHADAP PROSES EVAPORASI PADA INTERVAL WAKTU YANG BERBEDA

    Directory of Open Access Journals (Sweden)

    Trinah Wati

    2016-03-01

    Full Text Available Evaluasi perbandingan, analisis korelasi dan regresi antara evaporasi panci dengan parameter cuaca dilakukan pada interval waktu harian, dasarian dan bulanan untuk mempelajari ketergantungan evaporasi panci terhadap parameter cuaca dan untuk menduga evaporasi panci menggunakan parameter cuaca di stasiun Darmaga Bogor, Semarang dan Karangploso. Variasi lima faktor utama yang mengendalikan proses evaporasi antara lain radiasi matahari (lama penyinaran, defisit tekanan uap air, kelembaban relative, kecepatan angin dan suhu udara telah dibandingkan dengan variasi evaporasi panci pada interval waktu harian, dasarian dan bulanan. Defisit tekanan uap air memiliki pengaruh dominan dengan evaporasi panci pada semua interval waktu di Darmaga dan Semarang, sedangkan di Karangploso pada interval waktu harian dan dasarian. Kecepatan angin juga memiliki pengaruh dominan dengan evaporasi panci di Karangploso pada interval waktu dasarian dan bulanan. Pemodelan evaporasi panci menggunakan parameter cuaca yang dominan berpengaruh terhadap proses evaporasi menghasilkan persamaan model yang cukup baik dengan nilai R2 > 0,50, berdasarkan validasi data model dengan observasi memiliki. secara keseluruhan kesalahan hasil validasi antara data model dengan data pengamatan kurang dari 12%.. Tren evaporasi panci di Darmaga menunjukkan peningkatan dengan koefisien determinansi > 0.5, sedangkan di Semarang dan Karangploso secara statistik belum mengalami kecenderungan perubahan evaporasi.   Comparative evaluation, correlation and regression analysis of pan evaporation with other meteorological variables at daily, 10-daily and monthly time-scales were conducted to learn the dependence of pan evaporation to other meteorological variables and to estimate pan evaporation using other meteorological variables at Darmaga Bogor station, Semarang and Karangploso. Five major factors that control evaporation were solar radiation (sunshine duration, vapour pressure deficit, relative

  10. Unified models of interactions with gauge-invariant variables

    International Nuclear Information System (INIS)

    Zet, Gheorghe

    2000-01-01

    A model of gauge theory is formulated in terms of gauge-invariant variables over a 4-dimensional space-time. Namely, we define a metric tensor g μν ( μ , ν = 0,1,2,3) starting with the components F μν a and F μν a tilde of the tensor associated to the Yang-Mills fields and its dual: g μν = 1/(3Δ 1/3 ) (ε abc F μα a F αβ b tilde F βν c ). Here Δ is a scale factor which can be chosen of a convenient form so that the theory may be self-dual or not. The components g μν are interpreted as new gauge-invariant variables. The model is applied to the case when the gauge group is SU(2). For the space-time we choose two different manifolds: (i) the space-time is R x S 3 , where R is the real line and S 3 is the three-dimensional sphere; (ii) the space-time is endowed with axial symmetry. We calculate the components g μν of the new metric for the two cases in terms of SU(2) gauge potentials. Imposing the supplementary condition that the new metric coincides with the initial metric of the space-time, we obtain the field equations (of the first order in derivatives) for the gauge fields. In addition, we determine the scale factor Δ which is introduced in the definition of g μν to ensure the property of self-duality for our SU(2) gauge theory, namely, 1/(2√g)(ε αβστ g μα g νβ F στ a = F μν a , g = det (g μν ). In the case (i) we show that the space-time R x S 3 is not compatible with a self-dual SU(2) gauge theory, but in the case (ii) the condition of self-duality is satisfied. The model developed in our work can be considered as a possible way to unification of general relativity and Yang-Mills theories. This means that the gauge theory can be formulated in the close analogy with the general relativity, i.e. the Yang-Mills equations are equivalent to Einstein equations with the right-hand side of a simple form. (authors)

  11. Does expressive timing in music performance scale proportionally with tempo?

    NARCIS (Netherlands)

    Desain, P.; Honing, H.

    1994-01-01

    Evidence is presented that expressive timing in music is not relationally invariant with global tempo. Our results stem from an analysis of repeated performances of Beethoven's variations on a Paisiello theme. Recordings were made of two pianists playing the pieces at three tempi. In contrast with

  12. Multiscale Rotation-Invariant Convolutional Neural Networks for Lung Texture Classification.

    Science.gov (United States)

    Wang, Qiangchang; Zheng, Yuanjie; Yang, Gongping; Jin, Weidong; Chen, Xinjian; Yin, Yilong

    2018-01-01

    We propose a new multiscale rotation-invariant convolutional neural network (MRCNN) model for classifying various lung tissue types on high-resolution computed tomography. MRCNN employs Gabor-local binary pattern that introduces a good property in image analysis-invariance to image scales and rotations. In addition, we offer an approach to deal with the problems caused by imbalanced number of samples between different classes in most of the existing works, accomplished by changing the overlapping size between the adjacent patches. Experimental results on a public interstitial lung disease database show a superior performance of the proposed method to state of the art.

  13. Dynamic inequalities on time scales

    CERN Document Server

    Agarwal, Ravi; Saker, Samir

    2014-01-01

    This is a monograph devoted to recent research and results on dynamic inequalities on time scales. The study of dynamic inequalities on time scales has been covered extensively in the literature in recent years and has now become a major sub-field in pure and applied mathematics. In particular, this book will cover recent results on integral inequalities, including Young's inequality, Jensen's inequality, Holder's inequality, Minkowski's inequality, Steffensen's inequality, Hermite-Hadamard inequality and Čebyšv's inequality. Opial type inequalities on time scales and their extensions with weighted functions, Lyapunov type inequalities, Halanay type inequalities for dynamic equations on time scales, and Wirtinger type inequalities on time scales and their extensions will also be discussed here in detail.

  14. Unusual high-energy phenomenology of Lorentz-invariant noncommutative field theories

    International Nuclear Information System (INIS)

    Carone, Christopher D.; Kwee, Herry J.

    2006-01-01

    It has been suggested that one may construct a Lorentz-invariant noncommutative field theory by extending the coordinate algebra to additional, fictitious coordinates that transform nontrivially under the Lorentz group. Integration over these coordinates in the action produces a four-dimensional effective theory with Lorentz invariance intact. Previous applications of this approach, in particular, to a specific construction of noncommutative QED, have been studied only in a low-momentum approximation. Here we discuss Lorentz-invariant field theories in which the relevant physics can be studied without requiring an expansion in the inverse scale of noncommutativity. Qualitatively, we find that tree-level scattering cross sections are dramatically suppressed as the center-of-mass energy exceeds the scale of noncommutativity, that cross sections that are isotropic in the commutative limit can develop a pronounced angular dependence, and that nonrelativistic potentials (for example, the Coloumb potential) become nonsingular at the origin. We consider a number of processes in noncommutative QED that may be studied at a future linear collider. We also give an example of scattering via a four-fermion operator in which the noncommutative modifications of the interaction can unitarize the tree-level amplitude, without requiring any other new physics in the ultraviolet

  15. Invariant functionals in higher-spin theory

    Directory of Open Access Journals (Sweden)

    M.A. Vasiliev

    2017-03-01

    Full Text Available A new construction for gauge invariant functionals in the nonlinear higher-spin theory is proposed. Being supported by differential forms closed by virtue of the higher-spin equations, invariant functionals are associated with central elements of the higher-spin algebra. In the on-shell AdS4 higher-spin theory we identify a four-form conjectured to represent the generating functional for 3d boundary correlators and a two-form argued to support charges for black hole solutions. Two actions for 3d boundary conformal higher-spin theory are associated with the two parity-invariant higher-spin models in AdS4. The peculiarity of the spinorial formulation of the on-shell AdS3 higher-spin theory, where the invariant functional is supported by a two-form, is conjectured to be related to the holomorphic factorization at the boundary. The nonlinear part of the star-product function F⁎(B(x in the higher-spin equations is argued to lead to divergencies in the boundary limit representing singularities at coinciding boundary space–time points of the factors of B(x, which can be regularized by the point splitting. An interpretation of the RG flow in terms of proposed construction is briefly discussed.

  16. Characterization of Cardiac Time Intervals in Healthy Bonnet Macaques (Macaca radiata) by Using an Electronic Stethoscope

    Science.gov (United States)

    Kamran, Haroon; Salciccioli, Louis; Pushilin, Sergei; Kumar, Paraag; Carter, John; Kuo, John; Novotney, Carol; Lazar, Jason M

    2011-01-01

    Nonhuman primates are used frequently in cardiovascular research. Cardiac time intervals derived by phonocardiography have long been used to assess left ventricular function. Electronic stethoscopes are simple low-cost systems that display heart sound signals. We assessed the use of an electronic stethoscope to measure cardiac time intervals in 48 healthy bonnet macaques (age, 8 ± 5 y) based on recorded heart sounds. Technically adequate recordings were obtained from all animals and required 1.5 ± 1.3 min. The following cardiac time intervals were determined by simultaneously recording acoustic and single-lead electrocardiographic data: electromechanical activation time (QS1), electromechanical systole (QS2), the time interval between the first and second heart sounds (S1S2), and the time interval between the second and first sounds (S2S1). QS2 was correlated with heart rate, mean arterial pressure, diastolic blood pressure, and left ventricular ejection time determined by using echocardiography. S1S2 correlated with heart rate, mean arterial pressure, diastolic blood pressure, left ventricular ejection time, and age. S2S1 correlated with heart rate, mean arterial pressure, diastolic blood pressure, systolic blood pressure, and left ventricular ejection time. QS1 did not correlate with any anthropometric or echocardiographic parameter. The relation S1S2/S2S1 correlated with systolic blood pressure. On multivariate analyses, heart rate was the only independent predictor of QS2, S1S2, and S2S1. In conclusion, determination of cardiac time intervals is feasible and reproducible by using an electrical stethoscope in nonhuman primates. Heart rate is a major determinant of QS2, S1S2, and S2S1 but not QS1; regression equations for reference values for cardiac time intervals in bonnet macaques are provided. PMID:21439218

  17. Model-independent phenotyping of C. elegans locomotion using scale-invariant feature transform.

    Directory of Open Access Journals (Sweden)

    Yelena Koren

    Full Text Available To uncover the genetic basis of behavioral traits in the model organism C. elegans, a common strategy is to study locomotion defects in mutants. Despite efforts to introduce (semi-automated phenotyping strategies, current methods overwhelmingly depend on worm-specific features that must be hand-crafted and as such are not generalizable for phenotyping motility in other animal models. Hence, there is an ongoing need for robust algorithms that can automatically analyze and classify motility phenotypes quantitatively. To this end, we have developed a fully-automated approach to characterize C. elegans' phenotypes that does not require the definition of nematode-specific features. Rather, we make use of the popular computer vision Scale-Invariant Feature Transform (SIFT from which we construct histograms of commonly-observed SIFT features to represent nematode motility. We first evaluated our method on a synthetic dataset simulating a range of nematode crawling gaits. Next, we evaluated our algorithm on two distinct datasets of crawling C. elegans with mutants affecting neuromuscular structure and function. Not only is our algorithm able to detect differences between strains, results capture similarities in locomotory phenotypes that lead to clustering that is consistent with expectations based on genetic relationships. Our proposed approach generalizes directly and should be applicable to other animal models. Such applicability holds promise for computational ethology as more groups collect high-resolution image data of animal behavior.

  18. Perceptions of Time and Long Time Intervals

    International Nuclear Information System (INIS)

    Drottz-Sjoeberg, Britt-Marie

    2006-01-01

    There are certainly many perspectives presented in the literature on time and time perception. This contribution has focused on perceptions of the time frames related to risk and danger of radiation from a planned Swedish repository for spent nuclear fuel. Respondents from two municipalities judged SSI's reviews of the entrepreneur's plans and work of high importance, and more important the closer to our time the estimate was given. Similarly were the consequences of potential leakage from a repository perceived as more serious the closer it would be to our time. Judgements of risks related to the storage of spent nuclear fuel were moderately large on the used measurement scales. Experts are experts because they have more knowledge, and in this context they underlined e.g. the importance of reviews of the radiation situation of time periods up to 100,000 years. It was of interest to note that 55% of the respondents from the municipalities did not believe that the future repository would leak radioactivity. They were much more pessimistic with respect to world politics, i.e. a new world war. However, with respect to the seriousness of the consequences given a leakage from the repository, the public group consistently gave high risk estimates, often significantly higher than those of the expert group. The underestimations of time estimates, as seen in the tasks of pinpointing historic events, provide examples of the difficulty of making estimations involving long times. Similar results showed that thinking of 'the future' most often involved about 30 years. On average, people reported memories of about 2.5 generations back in time, and emotional relationships stretching approximately 2.5 generations into the future; 94% of the responses, with respect to how many future generations one had an emotional relationship, were given in the range of 1-5 generations. Similarly, Svenson and Nilsson found the opinion that the current generations' general responsibility for

  19. Evolution of Brain Tumor and Stability of Geometric Invariants

    Directory of Open Access Journals (Sweden)

    K. Tawbe

    2008-01-01

    Full Text Available This paper presents a method to reconstruct and to calculate geometric invariants on brain tumors. The geometric invariants considered in the paper are the volume, the area, the discrete Gauss curvature, and the discrete mean curvature. The volume of a tumor is an important aspect that helps doctors to make a medical diagnosis. And as doctors seek a stable calculation, we propose to prove the stability of some invariants. Finally, we study the evolution of brain tumor as a function of time in two or three years depending on patients with MR images every three or six months.

  20. Comparing the Psychometric Properties of Two Physical Activity Self-Efficacy Instruments in Urban, Adolescent Girls: Validity, Measurement Invariance, and Reliability

    Science.gov (United States)

    Voskuil, Vicki R.; Pierce, Steven J.; Robbins, Lorraine B.

    2017-01-01

    Aims: This study compared the psychometric properties of two self-efficacy instruments related to physical activity. Factorial validity, cross-group and longitudinal invariance, and composite reliability were examined. Methods: Secondary analysis was conducted on data from a group randomized controlled trial investigating the effect of a 17-week intervention on increasing moderate to vigorous physical activity among 5th–8th grade girls (N = 1,012). Participants completed a 6-item Physical Activity Self-Efficacy Scale (PASE) and a 7-item Self-Efficacy for Exercise Behaviors Scale (SEEB) at baseline and post-intervention. Confirmatory factor analyses for intervention and control groups were conducted with Mplus Version 7.4 using robust weighted least squares estimation. Model fit was evaluated with the chi-square index, comparative fit index, and root mean square error of approximation. Composite reliability for latent factors with ordinal indicators was computed from Mplus output using SAS 9.3. Results: Mean age of the girls was 12.2 years (SD = 0.96). One-third of the girls were obese. Girls represented a diverse sample with over 50% indicating black race and an additional 19% identifying as mixed or other race. Both instruments demonstrated configural invariance for simultaneous analysis of cross-group and longitudinal invariance based on alternative fit indices. However, simultaneous metric invariance was not met for the PASE or the SEEB instruments. Partial metric invariance for the simultaneous analysis was achieved for the PASE with one factor loading identified as non-invariant. Partial metric invariance was not met for the SEEB. Longitudinal scalar invariance was achieved for both instruments in the control group but not the intervention group. Composite reliability for the PASE ranged from 0.772 to 0.842. Reliability for the SEEB ranged from 0.719 to 0.800 indicating higher reliability for the PASE. Reliability was more stable over time in the control