WorldWideScience

Sample records for time-resolved optical studies

  1. Time-resolved studies

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    When new or more powerful probes become available that offer both shorter data-collection times and the opportunity to apply innovative approaches to established techniques, it is natural that investigators consider the feasibility of exploring the kinetics of time-evolving systems. This stimulating area of research not only can lead to insights into the metastable or excited states that a system may populate on its way to a ground state, but can also lead to a better understanding of that final state. Synchrotron radiation, with its unique properties, offers just such a tool to extend X-ray measurements from the static to the time-resolved regime. The most straight-forward application of synchrotron radiation to the study of transient phenomena is directly through the possibility of decreased data-collection times via the enormous increase in flux over that of a laboratory X-ray system. Even further increases in intensity can be obtained through the use of novel X-ray optical devices. Widebandpass monochromators, e.g., that utilize the continuous spectral distribution of synchrotron radiation, can increase flux on the sample several orders of magnitude over conventional X-ray optical systems thereby allowing a further shortening of the data-collection time. Another approach that uses the continuous spectral nature of synchrotron radiation to decrease data-collection times is the open-quote parallel data collectionclose quotes method. Using this technique, intensities as a function of X-ray energy are recorded simultaneously for all energies rather than sequentially recording data at each energy, allowing for a dramatic decrease in the data-collection time

  2. Time-resolved optical studies of wide-gap II-VI semiconductor heterostructures

    Science.gov (United States)

    Wang, Hong

    ZnSe and ZnSe-based quantum well and superlattice structures are potential candidates for light emitting devices and other optical devices such as switches and modulators working in the blue-green wavelength range. Carrier dynamics studies of these structures are important in evaluating device performance as well as understanding the underlying physical processes. In this thesis, a carrier dynamics investigation is conducted for temperature from 77K to 295K on CdZnSSe/ZnSSe single quantum well structure (SQW) and ZnSe/ZnSTe superlattice fabricated by molecular beam epitaxy (MBE). Two experimental techniques with femtosecond time resolution are used in this work: up-conversion technique for time- resolved photoluminescence (PL) and pump-probe technique for time-resolved differential absorption studies. For both heterostructures, the radiative recombination is dominated by exciton transition due to the large exciton binding energy as a result of quantum confinement effect. The measured decay time of free exciton PL in CdZnSSe/ZnSSe SQW increases linearly with increasing temperature which agrees with the theoretical prediction by considering the conservation of momentum requirement for radiative recombination. However, the recombination of free carriers is also observed in CdZnSSe/ZnSSe SQW for the whole temperature range studied. On the other hand, in ZnSe/ZnSTe superlattice structures, the non- radiative recombination processes are non-negligible even at 77K and become more important in higher temperature range. The relaxation processes such as spectral hole burning, carrier thermalization and hot-carrier cooling are observed in ZnSe/ZnSTe superlattices at room temperature (295K) by the femtosecond pump-probe measurements. A rapid cooling of the thermalized hot- carrier from 763K to 450K within 4ps is deduced. A large optical nonlinearity (i.e., the induced absorption change) around the heavy-hole exciton energy is also obtained.

  3. Studies of nanostructures using time-resolved x-ray excited optical luminescence*

    International Nuclear Information System (INIS)

    Rosenberg, R.A.; Shenoy, G.K.; Smita, S.; Burda, C.; Sham, T.K.

    2004-01-01

    Full text:The scientific community is currently investing a great deal of effort into understanding the physics and chemistry of nanoscale structures. Synchrotron radiation techniques are being used to study the physical, electronic, and magnetic structure of nanosystems, albeit at a relatively large size (greater than 30 nm). A major challenge facing researchers is finding methods that can probe structures of the smallest scale (less than 10 nm). Optical luminescence has been shown to be directly sensitive to structures in this size range due to quantum confinement phenomena. X-ray-excited optical luminescence (XEOL) provides the capability to chemically map the sites responsible for producing low-energy (1-6 eV) fluorescence. By taking advantage of the time structure of the x-ray pulses at the Advanced Photon Source (70 ps wide, 153 ns separation), it also possible to determine the dynamic behavior of the states involved in the luminescence. In this paper we will present results of time-resolved XEOL experiments on various nanostructures including porous silicon, silicon nanowires, and CdSe nanodots

  4. Charge recombination processes in minerals studied using optically stimulated luminescence and time-resolved exo-electrons

    DEFF Research Database (Denmark)

    Tsukamoto, Sumiko; Murray, Andrew; Ankjærgaard, Christina

    2010-01-01

    electron concentration in the conduction band. In this study, TR-OSE and time-resolved optically stimulated luminescence (TR-OSL) were measured for the first time using quartz, K-feldspar and NaCl by stimulating the samples using pulsed blue LEDs at different temperatures between 50 and 250 °C after beta...... irradiation and preheating to 280 °C. The majority of TR-OSE signals from all the samples decayed much faster than TR-OSL signals irrespective of the stimulation temperatures. This suggests that the lifetime of OSL in these dosimeters arises mainly from the relaxation of an excited state of the recombination...

  5. Femtosecond Time-resolved Optical Polarigraphy (FTOP)

    International Nuclear Information System (INIS)

    Aoshima, S.; Fujimoto, M.; Hosoda, M.; Tsuchiya, Y.

    2000-01-01

    A novel time-resolved imaging technique named FTOP (Femtosecond Time-resolved Optical Polarigraphy) for visualizing the ultrafast propagation dynamics of intense light pulses in a medium has been proposed and demonstrated. Femtosecond snapshot images can be created with a high spatial resolution by imaging only the polarization components of the probe pulse; these polarization components change due to the instantaneous birefringence induced by the pump pulse in the medium. Ultrafast temporal changes in the two-dimensional spatial distribution of the optical pulse intensity were clearly visualized in consecutive images by changing the delay between the pump and probe. We observe that several filaments appear and then come together before the vacuum focus due to nonlinear effects in air. We also prove that filamentation dynamics such as the formation position and the propagation behavior are complex and are strongly affected by the pump energy. The results collected clearly show that this method FTOP succeeds for the first time in directly visualizing the ultrafast dynamics of the self-modulated nonlinear propagation of light. (author)

  6. Charge recombination processes in minerals studied using optically stimulated luminescence and time-resolved exo-electrons

    International Nuclear Information System (INIS)

    Tsukamoto, Sumiko; Murray, Andrew; Ankjaergaard, Christina; Jain, Mayank; Lapp, Torben

    2010-01-01

    A time-resolved optically stimulated exo-electron (TR-OSE) measurement system has been developed using a Photon Timer attached to a gas-flow semi-proportional pancake electron detector within a Risoe TL/OSL reader. The decay rate of the exo-electron emission after the stimulation pulse depends on the probability of (1) escape of electrons into the detector gas from the conduction band by overcoming the work function of the material and (2) thermalization of electrons in the conduction band, and subsequent re-trapping/recombination. Thus, we expect the exo-electron signal to reflect the instantaneous electron concentration in the conduction band. In this study, TR-OSE and time-resolved optically stimulated luminescence (TR-OSL) were measured for the first time using quartz, K-feldspar and NaCl by stimulating the samples using pulsed blue LEDs at different temperatures between 50 and 250 0 C after beta irradiation and preheating to 280 0 C. The majority of TR-OSE signals from all the samples decayed much faster than TR-OSL signals irrespective of the stimulation temperatures. This suggests that the lifetime of OSL in these dosimeters arises mainly from the relaxation of an excited state of the recombination centre, rather than from residence time of an electron in the conduction band.

  7. Time-resolved studies. Ch. 9

    International Nuclear Information System (INIS)

    Mills, Dennis M.; Argonne National Lab., IL

    1991-01-01

    Synchrotron radiation, with its unique properties, offers a tool to extend X-ray measurements from the static to the time-resolved regime. The most straight-forward application of synchrotron radiation to the study of transient phenomena is directly through the possibility of decreased data-collection times via the enormous increase in flux over that of a laboratory X-ray system. Even further increases in intensity can be obtained through the use of novel X-ray optical devices. Wide-bandpass monochromators, e.g., that utilize the continuous spectral distribution of synchrotron radiation, can increase flux on the sample several orders of magnitude over conventional X-ray optical systems thereby allowing a further shortening of the data-collection time. Another approach that uses the continuous spectral nature of synchrotron radiation to decrease data-collection times is the 'parallel data collection' method. Using this technique, intensities as a function of X-ray energy are recorded simultaneously for all energies rather than sequentially recording data at each energy, allowing for a dramatic decrease in data-collection time. Perhaps the most exciting advances in time-resolved X-ray studies will be made by those methods that exploit the pulsed nature of the radiation emitted from storage rings. Pulsed techniques have had an enormous impact in the study of the temporal evolution of transient phenomena. The extension from continuous to modulated sources for use in time-resolved work has been carried over in a host of fields that use both pulsed particle and pulsed electro-magnetic beams. In this chapter the new experimental techniques are reviewed and illustrated with some experiments. (author). 98 refs.; 20 figs.; 5 tabs

  8. Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions

    International Nuclear Information System (INIS)

    Taroni, Paola; Torricelli, Alessandro; Spinelli, Lorenzo; Pifferi, Antonio; Arpaia, Francesco; Danesini, Gianmaria; Cubeddu, Rinaldo

    2005-01-01

    The first time-resolved optical mammograph operating beyond 900 nm was tested in a retrospective clinical study involving 194 patients with malignant and benign lesions, to investigate the diagnostic potential for the detection and characterization of breast lesions. For the first part of the study (101 patients with 114 lesions), the system was operated at 683, 785, 913 and 975 nm. Subsequently, to improve the spectral content of optical images, the number of wavelengths was increased (up to 7) and the spectral range was extended (637-985 nm). Late gated intensity and scattering images provide sensitivity to tissue composition (oxy- and deoxyhaemoglobin, water and lipids) and physiology (total haemoglobin content and oxygen saturation), as well as to structural changes. Tumours are typically identified because of the strong blood absorption at short wavelengths (637-685 nm), while cysts are characterized by low scattering, leading to a detection rate of approximately 80% for both lesion types, when detection is required in both cranio-caudal and oblique views. The detection rate for other benign lesions, such as fibroadenomas, is presently much lower (<40%). The effectiveness of the technique in localizing and identifying different lesion types was analysed as a function of various parameters (lesion size, compressed breast thickness, age, body mass index, breast parenchymal pattern). The possibility that physiologic changes due to the development of a malignant lesion could affect the entire breast was investigated. The capacity to assess the density of breast based on the average scattering properties was also tested

  9. A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part I. Theoretical material

    Energy Technology Data Exchange (ETDEWEB)

    Ducros, Nicolas; Herve, Lionel; Dinten, Jean-Marc [CEA, LETI, MINATEC, 17 rue des Martyrs, F-38054 Grenoble (France); Da Silva, Anabela [Institut Fresnel, CNRS UMR 6133, Universite Aix-Marseille, Ecole Centrale Marseille, Campus universitaire de Saint-Jerome, F-13013 Marseille (France); Peyrin, Francoise [CREATIS, INSERM U 630, CNRS UMR 5220, Universite de Lyon, INSA de Lyon, bat. Blaise Pascal, F-69621 Villeurbanne Cedex (France)], E-mail: nicolas.ducros@cea.fr

    2009-12-07

    The problem of fluorescence diffuse optical tomography consists in localizing fluorescent markers from near-infrared light measurements. Among the different available acquisition modalities, the time-resolved modality is expected to provide measurements of richer information content. To extract this information, the moments of the time-resolved measurements are often considered. In this paper, a theoretical analysis of the moments of the forward problem in fluorescence diffuse optical tomography is proposed for the infinite medium geometry. The moments are expressed as a function of the source, detector and markers positions as well as the optical properties of the medium and markers. Here, for the first time, an analytical expression holding for any moments order is mathematically derived. In addition, analytical expressions of the mean, variance and covariance of the moments in the presence of noise are given. These expressions are used to demonstrate the increasing sensitivity of moments to noise. Finally, the newly derived expressions are illustrated by means of sensitivity maps. The physical interpretation of the analytical formulae in conjunction with their map representations could provide new insights into the analysis of the information content provided by moments.

  10. An x-ray detector for time-resolved studies

    International Nuclear Information System (INIS)

    Rodricks, B.; Brizard, C.; Clarke, R.; Lowe, W.

    1992-01-01

    The development of ultrahigh-brightness x-ray sources makes time-resolved x-ray studies more and more feasible. Improvements in x-ray optics components are also critical for obtaining the appropriate beam for a particular type of experiment. Moreover, fast parallel detectors will be essential in order to exploit the combination of high intensity x-ray sources and novel optics for time-resolved experiments. A CCD detector with a time resolution of microseconds has been developed at the Advanced Photon Source (APS). This detector is fully programmable using CAMAC electronics and a Micro Vax computer. The techniques of time-resolved x-ray studies, which include scattering, microradiography, microtomography, stroboscopy, etc., can be applied to a range of phenomena (including rapid thermal annealing, surface ordering, crystallization, and the kinetics of phase transition) in order to understand these time-dependent microscopic processes. Some of these applications will be illustrated by recent results performed at synchrotrons. New powerful x-ray sources now under construction offer the opportunity to apply innovative approaches in time-resolved work

  11. A case study of the highly time-resolved evolution of aerosol chemical and optical properties in urban Shanghai, China

    Directory of Open Access Journals (Sweden)

    Y. Huang

    2013-04-01

    Full Text Available Characteristics of the chemical and optical properties of aerosols in urban Shanghai and their relationship were studied over a three-day period in October 2011. A suite of real-time instruments, including an Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS, a Monitor for AeRosols and GAses (MARGA, a Cavity Ring Down Spectrometer (CRDS, a nephelometer and a Scanning Mobility Particle Sizer (SMPS, was employed to follow the quick changes of the aerosol properties within the 72 h sampling period. The origin of the air mass arriving in Shanghai during this period shifted from the East China Sea to the northwest area of China, offering a unique opportunity to observe the evolution of aerosols influenced by regional transport from the most polluted areas in China. According to the meteorological conditions and temporal characterizations of the chemical and optical properties, the sampling period was divided into three periods. During Period 1 (00:00–23:00 LT, 13 October, the aerosols in urban Shanghai were mainly fresh and the single scattering albedo varied negatively with the emission of elemental carbon, indicating that local sources dominated. Period 2 (23:00 LT on 13 October to 10:00 LT on 15 October was impacted by regionally transported pollutants and had the highest particulate matter (PM mass loading and the lowest particle acidity, characterized by large fractions of aged particles and high secondary ion (nitrate, sulfate and ammonium mass concentrations. Comparison between ATOFMS particle acidity and quantitative particle acidity by MARGA indicated the significance of semi-quantitative calculation in ATOFMS. Two sub-periods were identified in Period 2 based on the scattering efficiency of PM1 mass. Period 3 (from 10:00 LT on 15 October to 00:00 LT on 16 October had a low PM1/PM10 ratio and a new particle formation event. The comparison of these sub-periods highlights the influence of particle mixing state on aerosol optical properties

  12. The analysis of time-resolved optically stimulated luminescence: I. Theoretical considerations

    International Nuclear Information System (INIS)

    Chithambo, M L

    2007-01-01

    This is the first of two linked papers on the analysis of time-resolved optically stimulated luminescence. This paper focusses on a theoretical basis of analytical methods and on methods for interpretation of time-resolved luminescence spectra and calculation of luminescence throughput. Using a comparative analysis of the principal features of time-resolved luminescence and relevant analogues from steady state optical stimulation, formulae for configuring a measurement system for optimum performance are presented. We also examine the possible use of stretched-exponential functions for analysis of time-resolved optically stimulated luminescence spectra

  13. Time-resolved analysis of nonlinear optical limiting for laser synthesized carbon nanoparticles

    Science.gov (United States)

    Chen, G. X.; Hong, M. H.

    2010-11-01

    Nonlinear optical limiting materials have attracted much research interest in recent years. Carbon nanoparticles suspended in liquids show a strong nonlinear optical limiting function. It is important to investigate the nonlinear optical limiting process of carbon nanoparticles for further improving their nonlinear optical limiting performance. In this study, carbon nanoparticles were prepared by laser ablation of a carbon target in tetrahydrofuran (THF). Optical limiting properties of the samples were studied with 532-nm laser light, which is in the most sensitive wavelength band for human eyes. The shape of the laser pulse plays an important role for initializing the nonlinear optical limiting effect. Time-resolved analysis of laser pulses discovered 3 fluence stages of optical limiting. Theoretical simulation indicates that the optical limiting is initialized by a near-field optical enhancement effect.

  14. Coherent optical effect on time-resolved vibrational SFG spectrum of adsorbates

    Science.gov (United States)

    Ueba, H.; Sawabu, T.; Mii, T.

    2002-04-01

    We present a theory to study the influence of the coherent mixing between pump-infrared and probe-visible pulse on a time-resolved sum-frequency generation (TR-SFG) spectrum for vibrations at surfaces. The general formula of the time-dependent and its Fourier transform of the SFG polarization and its Fourier transform allows us to calculate the time-resolved vibrational SFG spectrum and the transient characteristics of the SFG intensity as a function of the delay time td between the pump-infrared and probe-visible pulse. It is found the coherent optical effect manifests itself in the broadening and narrowing of the SFG spectrum with the intrinsic width of T2 at negative and positive td, respectively, being in qualitative agreement with recent experimental results. The influence of the coherent mixing on the transient behavior of the SFG intensity is also discussed in conjunction to the T2 determination.

  15. A case study of highly time-resolved evolution of aerosol chemical composition and optical properties during severe haze pollution in Shanghai, China

    Science.gov (United States)

    Zhu, W.; Cheng, Z.; Lou, S.

    2017-12-01

    Despite of extensive efforts into characterization of the sources in severe haze pollution periods in the megacity of Shanghai, the study of aerosol composition, mass-size distribution and optical properties to PM1 in the pollution periods remain poorly understood. Here we conducted a 47days real-time measurement of submicron aerosol (PM1) composition and size distribution by a High-Resolution Time-of-Flight Aerosol Mass spectrometer (HR-TOF-AMS), particle light scattering by a Cavity Attenuated Phase Shift ALBedo monitor (CAPS-ALB) and Photoacoustic Extinctionmeter (PAX) in Shanghai, China, from November 28, 2016 to January 12, 2017. The average PM1 concentration was 85.9(±14.7) μg/m3 during the pollution period, which was nearly 4 times higher than that of clean period. Increased scattering coefficient during EP was associated with higher secondary inorganic aerosols and organics. We also observed organics mass size distribution for different pollution extents showing different distribution characteristics. There were no obvious differences for ammonium nitrate and ammonium sulfate among the pollution periods, which represented single peak distributions, and peaks ranged at 650-700nm and 700nm, respectively. A strong relationship can be expected between PM1 compounds mass concentration size distribution and scattering coefficient, suggesting that chemical composition, size distribution of the particles and their variations could also contribute to the extinction coefficients. Organics and secondary inorganic species to particle light scattering were quantified. The results showed that organics and ammonium nitrate were the largest contribution to scattering coefficients of PM1. The contribution of (NH4)2SO4 to the light scattering exceeded that of NH4NO3 during clean period due to the enhanced sulfate concentrations. Our results elucidate substantial changes of aerosol composition, formation mechanisms, size distribution and optical properties due to local

  16. Improvements in brain activation detection using time-resolved diffuse optical means

    Science.gov (United States)

    Montcel, Bruno; Chabrier, Renee; Poulet, Patrick

    2005-08-01

    An experimental method based on time-resolved absorbance difference is described. The absorbance difference is calculated over each temporal step of the optical signal with the time-resolved Beer-Lambert law. Finite element simulations show that each step corresponds to a different scanned zone and that cerebral contribution increases with the arrival time of photons. Experiments are conducted at 690 and 830 nm with a time-resolved system consisting of picosecond laser diodes, micro-channel plate photo-multiplier tube and photon counting modules. The hemodynamic response to a short finger tapping stimulus is measured over the motor cortex. Time-resolved absorbance difference maps show that variations in the optical signals are not localized in superficial regions of the head, which testify for their cerebral origin. Furthermore improvements in the detection of cerebral activation is achieved through the increase of variations in absorbance by a factor of almost 5 for time-resolved measurements as compared to non-time-resolved measurements.

  17. Characterization of female breast lesions from multi-wavelength time-resolved optical mammography

    International Nuclear Information System (INIS)

    Spinelli, Lorenzo; Torricelli, Alessandro; Pifferi, Antonio; Taroni, Paola; Danesini, Gianmaria; Cubeddu, Rinaldo

    2005-01-01

    Characterization of both malignant and benign lesions in the female breast is presented as the result of a clinical study that involved more than 190 subjects in the framework of the OPTIMAMM European project. All the subjects underwent optical mammography, by means of a multi-wavelength time-resolved mammograph, in the range 637-985 nm. Optical images were processed by applying a perturbation model, relying on a nonlinear approximation of time-resolved transmittance curves in the presence of an inclusion, with the aim of estimating the major tissue constituents (i.e. oxy- and deoxy-haemoglobin, lipid and water) and structural parameters (linked to dimension and density of the scatterer centres) for both the lesion area and the surrounding tissue. The critical factors for the application of the perturbation model on in vivo data are also discussed. Forty-six malignant and 68 benign lesions were analysed. A subset of 32 cancers, 40 cysts and 14 fibroadenomas were found reliable for the perturbation analysis. For cancers, we show a higher blood content with respect to the surrounding tissue, while cysts are characterized by a lower concentration of scattering centres with respect to the surrounding tissue. For fibroadenomas, the low number of cases does not allow any definite conclusions

  18. Understanding optically stimulated charge movement in quartz and feldspar using time-resolved measurements

    International Nuclear Information System (INIS)

    Ankjaergaard, C.

    2010-02-01

    Thermoluminescence (TL) and optically stimulated luminescence (OSL) from quartz and feldspar are widely used in accident dosimetry and luminescence dating. In order to improve already existing methods or to develop new methods towards extending the current limits of the technique, it is important to understand the charge movement within these materials. Earlier studies have primarily focussed on examination of the trap behaviour; however, this only tells half of the story as OSL is a combination of charge stimulation and recombination. By using time-resolved OSL (TR-OSL), one can directly examine the recombination route(s), and thus obtain insight into the other half of the process involved in luminescence emission. This thesis studies the TR-OSL and optically stimulated phosphorescence signals from quartz and feldspars spanning several orders of magnitude in time (few ns to the seconds time scale) in order to identify various charge transport mechanisms in the different time regimes. The techniques employed are time-resolved OSL, continuous-wave OSL, TL, optically stimulated exo-electron (OSE) emission and time-resolved OSE. These different techniques are used in combination with variable thermal or optical stimulation energy. The thesis first delves into three main methodological developments, namely (i) research and development of the equipment for TR-OSL measurements, (ii) finding the best method for multiple-exponential analysis of a TR-OSL curve, and (iii) optimisation of the pulsing configuration for the best separation of quartz OSL from a mixed quarts-feldspar sample. It then proceeds to study the different charge transport mechanisms subsequent to an optical stimulation pulse in quartz and feldspars. The results obtained for quartz conclude that the main lifetime component in quartz represents an excited state lifetime of the recombination centre, and the more slowly decaying components on the millisecond to seconds time scale arise from charge recycling

  19. Understanding optically stimulated charge movement in quartz and feldspar using time-resolved measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ankjaergaard, C.

    2010-02-15

    Thermoluminescence (TL) and optically stimulated luminescence (OSL) from quartz and feldspar are widely used in accident dosimetry and luminescence dating. In order to improve already existing methods or to develop new methods towards extending the current limits of the technique, it is important to understand the charge movement within these materials. Earlier studies have primarily focussed on examination of the trap behaviour; however, this only tells half of the story as OSL is a combination of charge stimulation and recombination. By using time-resolved OSL (TR-OSL), one can directly examine the recombination route(s), and thus obtain insight into the other half of the process involved in luminescence emission. This thesis studies the TR-OSL and optically stimulated phosphorescence signals from quartz and feldspars spanning several orders of magnitude in time (few ns to the seconds time scale) in order to identify various charge transport mechanisms in the different time regimes. The techniques employed are time-resolved OSL, continuous-wave OSL, TL, optically stimulated exo-electron (OSE) emission and time-resolved OSE. These different techniques are used in combination with variable thermal or optical stimulation energy. The thesis first delves into three main methodological developments, namely (i) research and development of the equipment for TR-OSL measurements, (ii) finding the best method for multiple-exponential analysis of a TR-OSL curve, and (iii) optimisation of the pulsing configuration for the best separation of quartz OSL from a mixed quarts-feldspar sample. It then proceeds to study the different charge transport mechanisms subsequent to an optical stimulation pulse in quartz and feldspars. The results obtained for quartz conclude that the main lifetime component in quartz represents an excited state lifetime of the recombination centre, and the more slowly decaying components on the millisecond to seconds time scale arise from charge recycling

  20. Time-Resolved Transient Optical Absorption Study of Bis(terpyridyl)oligothiophenes and Their Metallo-Supramolecular Polymers with Zn(II) Ion Couplers.

    Science.gov (United States)

    Rais, David; Menšík, Miroslav; Štenclová-Bláhová, Pavla; Svoboda, Jan; Vohlídal, Jiří; Pfleger, Jiří

    2015-06-18

    α,ω-Bis(terpyridyl)oligothiophenes spontaneously assemble with Zn(II) ions giving conjugated constitutional dynamic polymers (dynamers) of the metallo-supramolecular class, which potentially might be utilized in optoelectronics. Their photophysical properties, which are of great importance in this field of application, are strongly influenced by the dynamic morphology. It was assessed in this study by using ultrafast pump-probe optical absorption spectroscopy. We identified and characterized relaxation processes running in photoexcited molecules of these oligomers and dynamers and show impacts of disturbed coplanarity of adjacent rings (twisting the thiophene-thiophene and thiophene-terpyridyl bonds by attached hexyl side groups) and Zn(II) ion couplers on these processes. Major effects are seen in the time constants of rotational relaxation, intersystem crossing, and de-excitation lifetimes. The photoexcited states formed on different repeating units within the same dynamer chain do not interact with each other even at very high excitation density. The method is presented that allows determining the equilibrium fraction of unbound oligothiophene species in a dynamer solution, from which otherwise hardly accessible values of the average degree of polymerization of constitutionally dynamic chains in solution can be estimated.

  1. Ultrafast Time-Resolved Photoluminescence Studies of Gallium-Arsenide

    Science.gov (United States)

    Johnson, Matthew Bruce

    This thesis concerns the study of ultrafast phenomena in GaAs using time-resolved photoluminescence (PL). The thesis consists of five chapters. Chapter one is an introduction, which discusses the study of ultrafast phenomena in semiconductors. Chapter two is a description of the colliding-pulse mode-locked (CPM) ring dye laser, which is at the heart of the experimental apparatus used in this thesis. Chapter three presents a detailed experimental and theoretical investigation of photoluminescence excitation correlation spectroscopy (PECS), the novel technique which is used to time-resolve ultrafast PL phenomena. Chapters 4 and 5 discuss two applications of the PECS technique. In Chapter 4 the variation of PL intensity in In-alloyed GaAs substrate material is studied, while Chapter 5 discusses the variation of carrier lifetimes in ion-damaged GaAs used in photo-conductive circuit elements (PCEs). PECS is a pulse-probe technique that measures the cross correlation of photo-excited carrier populations. The theoretical model employed in this thesis is based upon the rate equation for a simple three-level system consisting of valence and conduction bands and a single trap level. In the limit of radiative band-to-band dominated recombination, no PECS signal should be observed; while in the capture -dominated recombination limit, the PECS signal from the band-to-band PL measures the cross correlation of the excited electron and hole populations and thus, the electron and hole lifetimes. PECS is experimentally investigated using a case study of PL in semi-insulating (SI) GaAs and In -alloyed GaAs. At 77 K, the PECS signal is characteristic of a capture-dominated system, yielding an electron-hole lifetime of about 200 ps. However, at 5 K the behavior is more complicated and shows saturation effects due to the C acceptor level, which is un-ionized at 5 K. As a first application, PECS is used to investigate the large band-to-band PL contrast observed near dislocations in In

  2. Spectral and time-resolved studies on ocular structures

    Science.gov (United States)

    Schweitzer, D.; Jentsch, S.; Schenke, S.; Hammer, M.; Biskup, C.; Gaillard, E.

    2007-07-01

    Measurements of endogeous fluorophores open the possibility for evaluation of metabolic state at the eye. For interpretation of 2-dimensional measurements of time-resolved auto fluorescence in 2 separate spectral ranges at the human eye, comparing measurements were performed on porcine eyes. Determining excitation and emission spectra, attention was drawn of proof of coenzymes NADH and FAD in isolated anatomical structures cornea, aqueous humor, lens, vitreous, neuronal retina, retinal pigment epithelium (RPE), choroid, and sclera. All these structures exhibit auto fluorescence, highest in lens. Excitation at 350 nm results in local fluorescence maxima at 460 nm, corresponding to NADH, in all structures. This short-wave excitation allows metabolic studies only at the anterior eye, because of the limited transmission of the ocular media. During excitation at 446 nm the existence of FAD is expressed by local fluorescence maxima at 530 nm. The composition fluorescence spectra allow no discrimination between single ocular structures. Approximating the dynamic fluorescence by a double exponential function, the shortest lifetimes were detected in RPE and neuronal retina. The histograms of mean lifetime t M cover each other on lens with cornea and also on sclera with choroid. Despite the lifetimes are close between RPE and neuronal retina, the relative contributions Q I are wide different. The gradient of trend lines in cluster diagrams of amplitudes α II vs. α I allows a discrimination of ocular structures.

  3. Time resolved optical emission spectroscopy of cross-beam pulsed laser ablation on graphite targets

    International Nuclear Information System (INIS)

    Sangines, R.; Sanchez Ake, C.; Sobral, H.; Villagran-Muniz, M.

    2007-01-01

    Cross-beam pulsed laser ablation with two delayed lasers is performed on two perpendicular graphite targets. The time delay between lasers is varied by up to 5 μs, and physical changes on the second plasma, due to the interaction with the first generated one, are determined by time resolved optical emission spectroscopy

  4. MONSTIR II: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Robert J., E-mail: robert.cooper@ucl.ac.uk; Magee, Elliott; Everdell, Nick; Magazov, Salavat; Varela, Marta; Airantzis, Dimitrios; Gibson, Adam P.; Hebden, Jeremy C. [Biomedical Optics Research Laboratory, Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT (United Kingdom)

    2014-05-15

    We detail the design, construction and performance of the second generation UCL time-resolved optical tomography system, known as MONSTIR II. Intended primarily for the study of the newborn brain, the system employs 32 source fibres that sequentially transmit picosecond pulses of light at any four wavelengths between 650 and 900 nm. The 32 detector channels each contain an independent photo-multiplier tube and temporally correlated photon-counting electronics that allow the photon transit time between each source and each detector position to be measured with high temporal resolution. The system's response time, temporal stability, cross-talk, and spectral characteristics are reported. The efficacy of MONSTIR II is demonstrated by performing multi-spectral imaging of a simple phantom.

  5. Dynamic View on Nanostructures: A Technique for Time Resolved Optical Luminescence Using Synchrotron Light Pulses at SRC, APS, and CLS

    International Nuclear Information System (INIS)

    Heigl, F.; Jurgensen, A.; Zhou, X.-T.; Lam, S.; Murphy, M.; Ko, J.Y.P.; Sham, T.K.; Rosenberg, R.A.; Gordon, R.; Brewe, D.; Regier, T.; Armelao, L.

    2007-01-01

    We present an experimental technique using the time structure of synchrotron radiation to study time resolved X-ray excited optical luminescence. In particular we are taking advantage of the bunched distribution of electrons in a synchrotron storage ring, giving short x-ray pulses (10-10 2 picoseconds) which are separated by non-radiating gaps on the nano- to tens of nanosecond scale - sufficiently wide to study a broad range of optical decay channels observed in advanced nanostructured materials.

  6. Sub-nanosecond time-resolved near-field scanning magneto-optical microscope.

    Science.gov (United States)

    Rudge, J; Xu, H; Kolthammer, J; Hong, Y K; Choi, B C

    2015-02-01

    We report on the development of a new magnetic microscope, time-resolved near-field scanning magneto-optical microscope, which combines a near-field scanning optical microscope and magneto-optical contrast. By taking advantage of the high temporal resolution of time-resolved Kerr microscope and the sub-wavelength spatial resolution of a near-field microscope, we achieved a temporal resolution of ∼50 ps and a spatial resolution of microscope, the magnetic field pulse induced gyrotropic vortex dynamics occurring in 1 μm diameter, 20 nm thick CoFeB circular disks has been investigated. The microscope provides sub-wavelength resolution magnetic images of the gyrotropic motion of the vortex core at a resonance frequency of ∼240 MHz.

  7. A novel multiplex absorption spectrometer for time-resolved studies

    Science.gov (United States)

    Lewis, Thomas; Heard, Dwayne E.; Blitz, Mark A.

    2018-02-01

    A Time-Resolved Ultraviolet/Visible (UV/Vis) Absorption Spectrometer (TRUVAS) has been developed that can simultaneously monitor absorption at all wavelengths between 200 and 800 nm with millisecond time resolution. A pulsed photolysis laser (KrF 248 nm) is used to initiate chemical reactions that create the target species. The absorption signals from these species evolve as the composition of the gas in the photolysis region changes over time. The instrument can operate at pressures over the range ˜10-800 Torr and can measure time-resolved absorbances systems (in particular the Herriott cell), there are fundamental differences, most notably the ability to adjust each mirror to maximise the overlap between the probe beam and the photolysis laser. Another feature which aids the sensitivity and versatility of the system is the use of 2 high-throughput spectrographs coupled with sensitive line-array CCDs, which can measure absorbance from ˜200 to 800 nm simultaneously. The capability of the instrument is demonstrated via measurements of the absorption spectrum of the peroxy radical, HOCH2CH2O2, and its self-reaction kinetics.

  8. Analytical expressions for time-resolved optically stimulated luminescence experiments in quartz

    International Nuclear Information System (INIS)

    Pagonis, V.; Lawless, J.; Chen, R.; Chithambo, M.L.

    2011-01-01

    Optically stimulated luminescence (OSL) signals can be obtained using a time-resolved optical stimulation (TR-OSL) method, also known as pulsed OSL. During TR-OSL measurements, the stimulation and emission of luminescence are experimentally separated in time using short light pulses. This paper presents analytical expressions for the TR-OSL intensity observed during and after such a pulse in quartz experiments. The analytical expressions are derived using a recently published kinetic model which describes thermal quenching phenomena in quartz samples. In addition, analytical expressions are derived for the concentration of electrons in the conduction band during and after the TR-OSL pulse, and for the maximum signals attained during optical stimulation of the samples. The relevance of the model for dosimetric applications is examined, by studying the dependence of the maximum TR-OSL signals on the degree of initial trap filling, and also on the probability of electron retrapping into the dosimetric trap. Analytical expressions are derived for two characteristic times of the TR-OSL mechanism; these times are the relaxation time for electrons in the conduction band, and the corresponding relaxation time for the radiative transition within the luminescence center. The former relaxation time is found to depend on several experimental parameters, while the latter relaxation time depends only on internal parameters characteristic of the recombination center. These differences between the two relaxation times can be explained by the presence of localized and delocalized transitions in the quartz sample. The analytical expressions in this paper are shown to be equivalent to previous analytical expressions derived using a different mathematical approach. A description of thermal quenching processes in quartz based on AlO 4 - /AlO 4 defects is presented, which illustrates the connection between the different descriptions of the luminescence process found in the literature

  9. Modelling the thermal quenching mechanism in quartz based on time-resolved optically stimulated luminescence

    International Nuclear Information System (INIS)

    Pagonis, V.; Ankjaergaard, C.; Murray, A.S.; Jain, M.; Chen, R.; Lawless, J.; Greilich, S.

    2010-01-01

    This paper presents a new numerical model for thermal quenching in quartz, based on the previously suggested Mott-Seitz mechanism. In the model electrons from a dosimetric trap are raised by optical or thermal stimulation into the conduction band, followed by an electronic transition from the conduction band into an excited state of the recombination center. Subsequently electrons in this excited state undergo either a direct radiative transition into a recombination center, or a competing thermally assisted non-radiative process into the ground state of the recombination center. As the temperature of the sample is increased, more electrons are removed from the excited state via the non-radiative pathway. This reduction in the number of available electrons leads to both a decrease of the intensity of the luminescence signal and to a simultaneous decrease of the luminescence lifetime. Several simulations are carried out of time-resolved optically stimulated luminescence (TR-OSL) experiments, in which the temperature dependence of luminescence lifetimes in quartz is studied as a function of the stimulation temperature. Good quantitative agreement is found between the simulation results and new experimental data obtained using a single-aliquot procedure on a sedimentary quartz sample.

  10. Electro-optic sampling for time resolving relativistic ultrafast electron diffraction

    International Nuclear Information System (INIS)

    Scoby, C. M.; Musumeci, P.; Moody, J.; Gutierrez, M.; Tran, T.

    2009-01-01

    The Pegasus laboratory at UCLA features a state-of-the-art electron photoinjector capable of producing ultrashort (<100 fs) high-brightness electron bunches at energies of 3.75 MeV. These beams recently have been used to produce static diffraction patterns from scattering off thin metal foils, and it is foreseen to take advantage of the ultrashort nature of these bunches in future pump-probe time-resolved diffraction studies. In this paper, single shot 2-d electro-optic sampling is presented as a potential technique for time of arrival stamping of electron bunches used for diffraction. Effects of relatively low bunch charge (a few 10's of pC) and modestly relativistic beams are discussed and background compensation techniques to obtain high signal-to-noise ratio are explored. From these preliminary tests, electro-optic sampling is suitable to be a reliable nondestructive time stamping method for relativistic ultrafast electron diffraction at the Pegasus lab.

  11. Time-resolved optically-detected magnetic resonance of II-VI diluted-magnetic-semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, V.Yu.; Karczewski, G. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Godlewski, M. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Dept. Mathem. and Natural Sci. College of Sci., Card. S. Wyszynski Univ., Warsaw (Poland); Yakovlev, D.R. [Experimental Physics 2, University of Dortmund, 44221 Dortmund (Germany); A. F. Ioffe Physico-Technical Institute, 194017 St. Petersburg (Russian Federation); Ryabchenko, S.M. [Institute of Physics NAS Ukraine, 03028 Kiev (Ukraine); Waag, A. [Institute of Semiconductor Technology, Braunschweig Technical University, 38106 Braunschweig (Germany)

    2007-01-15

    Time-resolved optically-detected magnetic resonance (ODMR) technique was used to study spin dynamics of Mn{sup 2+} ions in (Zn,Mn)Se- and (Cd,Mn)Te-based diluted magnetic semiconductor quantum wells. Times of spin-lattice relaxation have been measured directly from a dynamical shift of exciton luminescence lines after a pulsed impact of 60 GHz microwave radiation. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Data and Analysis from a Time-Resolved Tomographic Optical Beam Diagnostic

    International Nuclear Information System (INIS)

    Frayer, Daniel K.; Johnson, Douglas; Ekdahl, Carl

    2010-01-01

    An optical tomographic diagnostic instrument developed for the acquisition of high-speed time-resolved images has been fielded at the Dual-Axis Radiographic Hydrodynamic Test (DARHT) Facility at Los Alamos National Laboratory. The instrument was developed for the creation of time histories of electron-beam cross section through the collection of Cerenkov light. Four optical lines of sight optically collapse an image and relay projections via an optical fiber relay to recording instruments; a tomographic reconstruction algorithm creates the time history. Because the instrument may be operated in an adverse environment, it may be operated, adjusted, and calibrated remotely. The instrument was operated over the course of various activities during and after DARHT commissioning, and tomographic reconstructions reported verifiable beam characteristics. Results from the collected data and reconstructions and analysis of the data are discussed.

  13. In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model

    International Nuclear Information System (INIS)

    Kienle, A.; Glanzmann, T.

    1999-01-01

    We have investigated the possibility of determining the optical coefficients of muscle in the extremities with in vivo time-resolved reflectance measurements using a layered model. A solution of the diffusion equation for two layers was fitted to three-layered Monte Carlo calculations simulating the skin, the subcutaneous fat and the muscle. Relative time-resolved reflectance data at two distances were used to derive the optical coefficients of the layers. We found for skin and subcutaneous fat layer thicknesses (l 2 ) of up to 10 mm that the estimated absorption coefficients of the second layer of the diffusion model have differences of less than 20% compared with those of the muscle layer of the Monte Carlo simulations if the thickness of the first layer of the diffusion model is also fitted. If l 2 is known, the differences are less than 5%, whereas the use of a semi-infinite model delivers differences of up to 55%. Even if l 2 is only approximately known the absorption coefficient of the muscle can be determined accurately. Experimentally, the time-resolved reflectance was measured on the forearms of volunteers at two distances from the incident beam by means of a streak camera. The thicknesses of the tissues involved were determined by ultrasound. The optical coefficients were derived from these measurements by applying the two-layered diffusion model, and results in accordance with the theoretical studies were observed. (author)

  14. Optical Coherence Tomography (OCT for Time-Resolved Imaging of Alveolar Dynamics in Mechanically Ventilated Rats

    Directory of Open Access Journals (Sweden)

    Christian Schnabel

    2017-03-01

    Full Text Available Though artificial ventilation is an essential life-saving treatment, the mechanical behavior of lung tissue at the alveolar level is still unknown. Therefore, we need to understand the tissue response during artificial ventilation at this microscale in order to develop new and more protective ventilation methods. Optical coherence tomography (OCT combined with intravital microscopy (IVM is a promising tool for visualizing lung tissue dynamics with a high spatial and temporal resolution in uninterruptedly ventilated rats. We present a measurement setup using a custom-made animal ventilator and a gating technique for data acquisition of time-resolved sequences.

  15. Time Resolved Digital PIV Measurements of Flow Field Cyclic Variation in an Optical IC Engine

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, S; Justham, T; Clarke, A; Garner, C P; Hargrave, G K; Halliwell, N A [Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom)

    2006-07-15

    Time resolved digital particle image velocimetry (DPIV) experimental data is presented for the in-cylinder flow field development of a motored four stroke spark ignition (SI) optical internal combustion (IC) engine. A high speed DPIV system was employed to quantify the velocity field development during the intake and compression stroke at an engine speed of 1500 rpm. The results map the spatial and temporal development of the in-cylinder flow field structure allowing comparison between traditional ensemble average and cycle average flow field structures. Conclusions are drawn with respect to engine flow field cyclic variations.

  16. Time Resolved Digital PIV Measurements of Flow Field Cyclic Variation in an Optical IC Engine

    International Nuclear Information System (INIS)

    Jarvis, S; Justham, T; Clarke, A; Garner, C P; Hargrave, G K; Halliwell, N A

    2006-01-01

    Time resolved digital particle image velocimetry (DPIV) experimental data is presented for the in-cylinder flow field development of a motored four stroke spark ignition (SI) optical internal combustion (IC) engine. A high speed DPIV system was employed to quantify the velocity field development during the intake and compression stroke at an engine speed of 1500 rpm. The results map the spatial and temporal development of the in-cylinder flow field structure allowing comparison between traditional ensemble average and cycle average flow field structures. Conclusions are drawn with respect to engine flow field cyclic variations

  17. Time Resolved Digital PIV Measurements of Flow Field Cyclic Variation in an Optical IC Engine

    Science.gov (United States)

    Jarvis, S.; Justham, T.; Clarke, A.; Garner, C. P.; Hargrave, G. K.; Halliwell, N. A.

    2006-07-01

    Time resolved digital particle image velocimetry (DPIV) experimental data is presented for the in-cylinder flow field development of a motored four stroke spark ignition (SI) optical internal combustion (IC) engine. A high speed DPIV system was employed to quantify the velocity field development during the intake and compression stroke at an engine speed of 1500 rpm. The results map the spatial and temporal development of the in-cylinder flow field structure allowing comparison between traditional ensemble average and cycle average flow field structures. Conclusions are drawn with respect to engine flow field cyclic variations.

  18. Time-resolved diffraction studies of muscle using synchrotron radiation

    International Nuclear Information System (INIS)

    Harford, Jeffrey; Squire, John

    1997-01-01

    details the practical methods involved in recording time-resolved x-ray diffraction patterns from active muscles and the theoretical approaches that are being used to interpret the diffraction patterns that are obtained. The ultimate aim is to produce a series of time-sliced images of the changing molecular arrangements and shapes in the muscle as force is produced; together these images will form 'Muscle - The Movie'. (author)

  19. An instrument for small-animal imaging using time-resolved diffuse and fluorescence optical methods

    International Nuclear Information System (INIS)

    Montcel, Bruno; Poulet, Patrick

    2006-01-01

    We describe time-resolved optical methods that use diffuse near-infrared photons to image the optical properties of tissues and their inner fluorescent probe distribution. The assembled scanner uses picosecond laser diodes at 4 wavelengths, an 8-anode photo-multiplier tube and time-correlated single photon counting. Optical absorption and reduced scattering images as well as fluorescence emission images are computed from temporal profiles of diffuse photons. This method should improve the spatial resolution and the quantification of fluorescence signals. We used the diffusion approximation of the radiation transport equation and the finite element method to solve the forward problem. The inverse problem is solved with an optimization algorithm such as ART or conjugate gradient. The scanner and its performances are presented, together with absorption, scattering and fluorescent images obtained with it

  20. Time-Resolved Emittance Characterization of an Induction Linac Beam using Optical Transition Radiation

    International Nuclear Information System (INIS)

    Le Sage, G P

    2002-01-01

    An induction linac is used by Lawrence Livermore National Laboratory to perform radiographic testing at the Flash X-ray Radiography facility. Emittance characterization is important since x-ray spot size impacts the resolution of shadow-graphs. Due to the long pulse length, high current, and beam energy, emittance measurement using Optical Transition Radiation is an attractive alternative for reasons that will be described in the text. The utility of OTR-based emittance measurement has been well demonstrated for both RF and induction linacs. We describe the time-resolved emittance characterization of an induction linac electron beam. We have refined the optical collection system for the induction linac application, and have demonstrated a new technique for probing the divergence of a subset of the beam profile. The experimental apparatus, data reduction, and conclusions will be presented. Additionally, a new scheme for characterizing the correlation between beam divergence and spatial coordinates within the beam profile will be described

  1. Time-Resolved Emittance Characterization of an Induction Linac Beam using Optical Transition Radiation

    CERN Document Server

    Le Sage, G P

    2002-01-01

    An induction linac is used by Lawrence Livermore National Laboratory to perform radiographic testing at the Flash X-ray Radiography facility. Emittance characterization is important since x-ray spot size impacts the resolution of shadow-graphs. Due to the long pulse length, high current, and beam energy, emittance measurement using Optical Transition Radiation is an attractive alternative for reasons that will be described in the text. The utility of OTR-based emittance measurement has been well demonstrated for both RF and induction linacs. We describe the time-resolved emittance characterization of an induction linac electron beam. We have refined the optical collection system for the induction linac application, and have demonstrated a new technique for probing the divergence of a subset of the beam profile. The experimental apparatus, data reduction, and conclusions will be presented. Additionally, a new scheme for characterizing the correlation between beam divergence and spatial coordinates within the b...

  2. Further time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. [Argonne National Lab., IL (United States). Advanced Photon Source Accelerator Systems Div.; Wilke, M.D. [Los Alamos National Lab., NM (United States)

    1992-12-31

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatialposition and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kick effects are reported as a function of charge.

  3. Further time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. (Argonne National Lab., IL (United States). Advanced Photon Source Accelerator Systems Div.); Wilke, M.D. (Los Alamos National Lab., NM (United States))

    1992-01-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 [mu]s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatialposition and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kick effects are reported as a function of charge.

  4. Time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. (Argonne National Lab., IL (United States)); Wilke, M.D. (Los Alamos National Lab., NM (United States))

    1992-01-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatial position and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kicks are reported as a function of charge.

  5. Time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. [Argonne National Lab., IL (United States); Wilke, M.D. [Los Alamos National Lab., NM (United States)

    1992-09-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatial position and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kicks are reported as a function of charge.

  6. Parameters affecting temporal resolution of Time Resolved Integrative Optical Neutron Detector (TRION)

    International Nuclear Information System (INIS)

    Mor, I; Vartsky, D; Bar, D; Feldman, G; Goldberg, M B; Brandis, M; Dangendorf, V; Tittelmeier, K; Bromberger, B; Weierganz, M

    2013-01-01

    The Time-Resolved Integrative Optical Neutron (TRION) detector was developed for Fast Neutron Resonance Radiography (FNRR), a fast-neutron transmission imaging method that exploits characteristic energy-variations of the total scattering cross-section in the E n = 1–10 MeV range to detect specific elements within a radiographed object. As opposed to classical event-counting time of flight (ECTOF), it integrates the detector signal during a well-defined neutron Time of Flight window corresponding to a pre-selected energy bin, e.g., the energy-interval spanning a cross-section resonance of an element such as C, O and N. The integrative characteristic of the detector permits loss-free operation at very intense, pulsed neutron fluxes, at a cost however, of recorded temporal resolution degradation This work presents a theoretical and experimental evaluation of detector related parameters which affect temporal resolution of the TRION system

  7. Fluorescence diffuse optical tomography: benefits of using the time-resolved modality

    International Nuclear Information System (INIS)

    Ducros, Nicolas

    2009-01-01

    Fluorescence diffuse optical tomography enables the three-dimensional reconstruction of fluorescence markers injected within a biological tissue, with light in the near infrared range. The simple continuous modality uses steady excitation light and operates from the measurements at different positions of the attenuation of the incident beam. This technique is low-cost, non-ionizing, and easy to handle, but subject to low resolution for thick tissues due to diffusion. Hopefully, the time-resolved modality, which provides the time of flight of any detected photon, could overcome this limitation and pave the way to clinical applications. This thesis aims at determining the best way to exploit the time resolved information and at quantifying the advantages of this modality over the standard continuous wave one. Model deviations must be carefully limited when ill-posed problems as fluorescence diffuse optical tomography are considered. As a result, we have first addressed the modelling part of the problem. We have shown that the photons density models to good approximation the measurable quantity that is the quantity measured by an actual acquisition set-up. Then, the moment-based reconstruction scheme has been thoroughly evaluated by means of a theoretical analysis of the moments properties. It was found that the moment-based approach requires high photon counts to be profitable compared to the continuous wave modality. Last, a novel wavelet-based approach, which enables an improved reconstruction quality, has been introduced. This approach has shown good ability to exploit the temporal information at lower photon counts. (author) [fr

  8. Time-resolved infrared studies of protein conformational dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, W.H.; Causgrove, T.P.; Dyer, R.B. [Los Alamos National Laboratory, NM (United States); Callender, R.H. [Univ. of New York, NY (United States)

    1994-12-01

    We have demonstrated that TRIR in the amide I region gives structural information regarding protein conformational changes in realtime, both on processes involved in the development of the functional structure (protein folding) and on protein structural changes that accompany the functional dynamics of the native structure. Assignment of many of the amide I peaks to specific amide or sidechain structures will require much additional effort. Specifically, the congestion and complexity of the protein vibrational spectra dictate that isotope studies are an absolute requirement for more than a qualitative notion of the structural interpretation of these measurements. It is clear, however, that enormous potential exists for elucidating structural relaxation dynamics and energetics with a high degree of structural specificity using this approach.

  9. Time-resolved hard x-ray studies using third-generation synchrotron radiation sources (abstract)

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    The third-generation, high-brilliance, synchrotron radiation sources currently under construction will usher in a new era of x-ray research in the physical, chemical, and biological sciences. One of the most exciting areas of experimentation will be the extension of static x-ray scattering and diffraction techniques to the study of transient or time-evolving systems. The high repetition rate, short-pulse duration, high-brilliance, variable spectral bandwidth, and large particle beam energies of these sources make them ideal for hard x-ray, time-resolved studies. The primary focus of this presentation will be on the novel instrumentation required for time-resolved studies such as optics which can increase the flux on the sample or disperse the x-ray beam, detectors and electronics for parallel data collection, and methods for altering the natural time structure of the radiation. This work is supported by the U.S. Department of Energy, BES-Materials Science, under Contract No. W-31-109-ENG-38

  10. Reflective optical system for time-resolved electron bunch measurements at PITZ

    Energy Technology Data Exchange (ETDEWEB)

    Rosbach, K; Baehr, J [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Roensch-Schulenburg, J [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik

    2011-01-15

    The Photo-Injector Test facility at DESY, Zeuthen site (PITZ), produces pulsed electron beams with low transverse emittance and is equipped with diagnostic devices for measuring various electron bunch properties, including the longitudinal and transverse electron phase space distributions. The longitudinal bunch structure is recorded using a streak camera located outside the accelerator tunnel, connected to the diagnostics in the beam-line stations by an optical system of about 30 m length. This system mainly consists of telescopes of achromatic lenses, which transport the light pulses and image them onto the entrance slit of the streak camera. Due to dispersion in the lenses, the temporal resolution degrades during transport. This article presents general considerations for time-resolving optical systems as well as simulations and measurements of specific candidate systems. It then describes the development of an imaging system based on mirror telescopes which will improve the temporal resolution, with an emphasis on off-axis parabolic mirror systems working at unit magnification. A hybrid system of lenses and mirrors will serve as a proof of principle. (orig.)

  11. A flexible experimental setup for femtosecond time-resolved broad-band ellipsometry and magneto-optics

    Energy Technology Data Exchange (ETDEWEB)

    Boschini, F.; Hedayat, H.; Piovera, C.; Dallera, C. [Dipartimento di Fisica, Politecnico di Milano, p.zza Leonardo da Vinci 32, 20133 Milano (Italy); Gupta, A. [Department of Chemistry, University of Alabama, Tuscaloosa, Alabama 35487 (United States); Carpene, E., E-mail: ettore.carpene@polimi.it [CNR-IFN, Dipartimento di Fisica, Politecnico di Milano, p.zza Leonardo da Vinci 32, 20133 Milano (Italy)

    2015-01-15

    A versatile experimental setup for femtosecond time-resolved ellipsometry and magneto-optical Kerr effect measurements in the visible light range is described. The apparatus is based on the pump-probe technique and combines a broad-band probing beam with an intense near-infrared pump. According to Fresnel scattering matrix formalism, the analysis of the reflected beam at different polarization states of the incident probe light allows one to determine the diagonal and the off-diagonal elements of the dielectric tensor in the investigated sample. Moreover, the pump-probe method permits to study the dynamics of the dielectric response after a short and intense optical excitation. The performance of the experimental apparatus is tested on CrO{sub 2} single crystals as a benchmark.

  12. A flexible experimental setup for femtosecond time-resolved broad-band ellipsometry and magneto-optics

    International Nuclear Information System (INIS)

    Boschini, F.; Hedayat, H.; Piovera, C.; Dallera, C.; Gupta, A.; Carpene, E.

    2015-01-01

    A versatile experimental setup for femtosecond time-resolved ellipsometry and magneto-optical Kerr effect measurements in the visible light range is described. The apparatus is based on the pump-probe technique and combines a broad-band probing beam with an intense near-infrared pump. According to Fresnel scattering matrix formalism, the analysis of the reflected beam at different polarization states of the incident probe light allows one to determine the diagonal and the off-diagonal elements of the dielectric tensor in the investigated sample. Moreover, the pump-probe method permits to study the dynamics of the dielectric response after a short and intense optical excitation. The performance of the experimental apparatus is tested on CrO 2 single crystals as a benchmark

  13. Spatially-resolved measurement of optically stimulated luminescence and time-resolved luminescence

    International Nuclear Information System (INIS)

    Bailiff, I.K.; Mikhailik, V.B.

    2003-01-01

    Spatially-resolved measurements of optically stimulated luminescence (OSL) were performed using a two-dimensional scanning system designed for use with planar samples. The scanning system employs a focused laser beam to stimulate a selected area of the sample, which is moved under the beam by a motorised stage. Exposure of the sample is controlled by an electronic shutter. Mapping of the distribution of OSL using a continuous wave laser source was obtained with sub-millimeter resolution for samples of sliced brick, synthetic single crystal quartz, concrete and dental ceramic. These revealed sporadic emission in the case of brick or concrete and significant spatial variation of emission for quartz and dental ceramic slices. Determinations of absorbed dose were performed for quartz grains within a slice of modern brick. Reconfiguration of the scanner with a pulsed laser source enabled quartz and feldspathic minerals within a ceramic sample to be thinner region. about 6 nm from the extrapolation of themeasuring the time-resolved luminescence spectrum

  14. Development of time-resolved optical measurement and diagnostic system for parameters of high current and pulsed electron beam

    International Nuclear Information System (INIS)

    Jiang Xiaoguo; Wang Yuan; Yang Guojun; Xia Liansheng; Li Hong; Zhang Zhuo; Liao Shuqing; Shi Jinshui

    2013-01-01

    The beam parameters measurement is the most important work for the study of linear induction accelerator(LIA). The beam parameters are important to evaluate the character of the beam. The demands of beam parameters measurement are improving while the development of accelerator is improving. The measurement difficulty feature higher time-resolved ability, higher spatial resolution, larger dynamic range and higher intuitionistic view data. The measurement technology of beam spot, beam emittance, beam energy have been developed for the past several years. Some high performance equipment such as high speed framing camera are developed recently. Under this condition, the relative integrated optical measurement and diagnostic system for the beam parameters is developed based on several principles. The system features time-resolved ability of up to 2 ns, high sensitivity and large dynamic range. The processing program is compiled for the data process and the local real-time process is reached. The measurement and diagnostic system has provided full and accurate data for the debug work and has been put into applications. (authors)

  15. Time-resolved blood flow measurement in the in vivo mouse model by optical frequency domain imaging

    Science.gov (United States)

    Walther, Julia; Mueller, Gregor; Meissner, Sven; Cimalla, Peter; Homann, Hanno; Morawietz, Henning; Koch, Edmund

    2009-07-01

    In this study, we demonstrate that phase-resolved Doppler optical frequency domain imaging (OFDI) is very suitable to quantify the pulsatile blood flow within a vasodynamic measurement in the in vivo mouse model. For this, an OFDI-system with a read-out rate of 20 kHz and a center wavelength of 1320 nm has been used to image the time-resolved murine blood flow in 300 μμm vessels. Because OFDI is less sensitive to fringe washout due to axial sample motion, it is applied to analyze the blood flow velocities and the vascular dynamics in six-week-old C57BL/6 mice compared to one of the LDLR knockout strain kept under sedentary conditions or with access to voluntary wheel running. We have shown that the systolic as well as the diastolic phase of the pulsatile arterial blood flow can be well identified at each vasodynamic state. Furthermore, the changes of the flow velocities after vasoconstriction and -dilation were presented and interpreted in the entire physiological context. With this, the combined measurement of time-resolved blood flow and vessel diameter provides the basis to analyze the vascular function and its influence on the blood flow of small arteries of different mouse strains in response to different life styles.

  16. Time-resolved studies of ultrarapid solidification of highly undercooled molten silicon formed by pulsed laser irradiation

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Jellison, G.E. Jr.; Wood, R.F.; Carpenter, R.

    1984-01-01

    This paper reports new results of nanosecond-resolution time-resolved optical reflectivity measurements, during pulsed excimer (KrF, 248 nm) laser irradiation of Si-implanted amorphous (a) silicon layers, which, together with model calculations and post-irradiation TEM measurements, have allowed us to study both the transformation of a-Si to a highly undercooled liquid (l) phase and the subsequent ultrarapid solidification process

  17. Time-resolved laser-excited Shpol'skii spectrometry with a fiber-optic probe and ICCD camera

    International Nuclear Information System (INIS)

    Bystol, Adam J.; Campiglia, Andres D.; Gillispie, Gregory D.

    2000-01-01

    Improved methodology for chemical analysis via laser-excited Shpol'skii spectrometry is reported. The complications of traditional methodology for measurements at liquid nitrogen temperature are avoided by freezing the distal end of a bifurcated fiber-optic probe directly into the sample matrix. Emission wavelength-time matrices were rapidly collected by automatically incrementing the gate delay of an intensified charge-coupled device (ICCD) camera relative to the laser excitation pulse. The excitation source is a compact frequency-doubled tunable dye laser whose bandwidth (<0.03 nm) is well matched for Shpol'skii spectroscopy. Data reproducibility for quantitative analysis purposes and analytical figures of merit are demonstrated for several polycyclic aromatic hydrocarbons at 77 K. Although not attempted in this study, time-resolved excitation-emission matrices could easily be collected with this instrumental system. (c) 2000 Society for Applied Spectroscopy

  18. Preclinical, fluorescence and diffuse optical tomography: non-contact instrumentation, modeling and time-resolved 3D reconstruction

    International Nuclear Information System (INIS)

    Nouizi, F.

    2011-09-01

    Time-Resolved Diffuse Optical Tomography (TR-DOT) is a new non-invasive imaging technique increasingly used in the clinical and preclinical fields. It yields optical absorption and scattering maps of the explored organs, and related physiological parameters. Time-Resolved Fluorescence Diffuse Optical Tomography (TR-FDOT) is based on the detection of fluorescence photons. It provides spatio-temporal maps of fluorescent probe concentrations and life times, and allows access to metabolic and molecular imaging which is important for diagnosis and therapeutic monitoring, particularly in oncology. The main goal of this thesis was to reconstruct 3D TR-DOT/TR-FDOT images of small animals using time-resolved optical technology. Data were acquired using optical fibers fixed around the animal without contact with its surface. The work was achieved in four steps: 1)- Setting up an imaging device to record the 3D coordinates of an animal's surface; 2)- Modeling the no-contact approach to solve the forward problem; 3)- Processing of the measured signals taking into account the impulse response of the device; 4)- Implementation of a new image reconstruction method based on a selection of carefully chosen points. As a result, good-quality 3D optical images were obtained owing to reduced cross-talk between absorption and scattering. Moreover, the computation time was cut down, compared to full-time methods using whole temporal profiles. (author)

  19. Reduction of Guanosyl Radical by Cysteine and Cysteine-Glycine Studied by Time-Resolved CIDNP

    NARCIS (Netherlands)

    Morozova, O.B.; Kaptein, R.; Yurkovskaya, A.V.

    2012-01-01

    As a model for chemical DNA repair, reduction of guanosyl radicals in the reaction with cysteine or the dipeptide cysteine-glycine has been studied by time-resolved chemically induced dynamic nuclear polarization (CIDNP). Radicals were generated photochemically by pulsed laser irradiation of a

  20. Exploratory study on a statistical method to analyse time resolved data obtained during nanomaterial exposure measurements

    International Nuclear Information System (INIS)

    Clerc, F; Njiki-Menga, G-H; Witschger, O

    2013-01-01

    Most of the measurement strategies that are suggested at the international level to assess workplace exposure to nanomaterials rely on devices measuring, in real time, airborne particles concentrations (according different metrics). Since none of the instruments to measure aerosols can distinguish a particle of interest to the background aerosol, the statistical analysis of time resolved data requires special attention. So far, very few approaches have been used for statistical analysis in the literature. This ranges from simple qualitative analysis of graphs to the implementation of more complex statistical models. To date, there is still no consensus on a particular approach and the current period is always looking for an appropriate and robust method. In this context, this exploratory study investigates a statistical method to analyse time resolved data based on a Bayesian probabilistic approach. To investigate and illustrate the use of the this statistical method, particle number concentration data from a workplace study that investigated the potential for exposure via inhalation from cleanout operations by sandpapering of a reactor producing nanocomposite thin films have been used. In this workplace study, the background issue has been addressed through the near-field and far-field approaches and several size integrated and time resolved devices have been used. The analysis of the results presented here focuses only on data obtained with two handheld condensation particle counters. While one was measuring at the source of the released particles, the other one was measuring in parallel far-field. The Bayesian probabilistic approach allows a probabilistic modelling of data series, and the observed task is modelled in the form of probability distributions. The probability distributions issuing from time resolved data obtained at the source can be compared with the probability distributions issuing from the time resolved data obtained far-field, leading in a

  1. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    International Nuclear Information System (INIS)

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.

    2016-01-01

    Scintillator performance in time-resolved, hard, indirect detection X-ray studies on the sub-microsecond timescale at synchrotron light sources is reviewed, modelled and examined experimentally. LYSO:Ce is found to be the only commercially available crystal suitable for these experiments. The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits)

  2. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G. [Imperial College London, London (United Kingdom); Drakopoulos, Michael [Diamond Light Source, I12 Joint Engineering, Environmental, Processing (JEEP) Beamline, Didcot, Oxfordshire (United Kingdom); Rack, Alexander [European Synchrotron Radiation Facility, Grenoble (France); Eakins, Daniel E., E-mail: d.eakins@imperial.ac.uk [Imperial College London, London (United Kingdom)

    2016-03-24

    Scintillator performance in time-resolved, hard, indirect detection X-ray studies on the sub-microsecond timescale at synchrotron light sources is reviewed, modelled and examined experimentally. LYSO:Ce is found to be the only commercially available crystal suitable for these experiments. The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits)

  3. Time-resolved resonance fluorescence spectroscopy for study of chemical reactions in laser-induced plasmas.

    Science.gov (United States)

    Liu, Lei; Deng, Leimin; Fan, Lisha; Huang, Xi; Lu, Yao; Shen, Xiaokang; Jiang, Lan; Silvain, Jean-François; Lu, Yongfeng

    2017-10-30

    Identification of chemical intermediates and study of chemical reaction pathways and mechanisms in laser-induced plasmas are important for laser-ablated applications. Laser-induced breakdown spectroscopy (LIBS), as a promising spectroscopic technique, is efficient for elemental analyses but can only provide limited information about chemical products in laser-induced plasmas. In this work, time-resolved resonance fluorescence spectroscopy was studied as a promising tool for the study of chemical reactions in laser-induced plasmas. Resonance fluorescence excitation of diatomic aluminum monoxide (AlO) and triatomic dialuminum monoxide (Al 2 O) was used to identify these chemical intermediates. Time-resolved fluorescence spectra of AlO and Al 2 O were used to observe the temporal evolution in laser-induced Al plasmas and to study their formation in the Al-O 2 chemistry in air.

  4. Time-resolved X-ray studies using third generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Mills, D.M.

    1991-10-01

    The third generation, high-brilliance, hard x-ray, synchrotron radiation (SR) sources currently under construction (ESRF at Grenoble, France; APS at Argonne, Illinois; and SPring-8 at Harima, Japan) will usher in a new era of x-ray experimentation for both physical and biological sciences. One of the most exciting areas of experimentation will be the extension of x-ray scattering and diffraction techniques to the study of transient or time-evolving systems. The high repetition rate, short-pulse duration, high brilliance, and variable spectral bandwidth of these sources make them ideal for x-ray time-resolved studies. The temporal properties (bunch length, interpulse period, etc.) of these new sources will be summarized. Finally, the scientific potential and the technological challenges of time-resolved x-ray scattering from these new sources will be described. 13 refs., 4 figs

  5. Time-resolved photoluminescence spectroscopy of semiconductors for optical applications beyond the visible spectral range

    Energy Technology Data Exchange (ETDEWEB)

    Chernikov, Alexey A.

    2011-07-01

    The work discussed in this thesis is focused on the experimental studies regarding these three steps: (1) investigation of the fundamental effects, (2) characterization of new material systems, and (3) optimization of the semiconductor devices. In all three cases, the experimental technique of choice is photoluminescence (PL) spectroscopy. The thesis is organized as follows. Chapter 2 gives a summary of the PL properties of semiconductors relevant for this work. The first section deals with the intrinsic processes in an ideal direct band gap material, starting with a brief summary of the theoretical background followed by the overview of a typical PL scenario. In the second part of the chapter, the role of the lattice-vibrations, the internal electric fields as well as the influence of the band-structure and the dielectric environment are discussed. Finally, extrinsic PL properties are presented in the third section, focusing on defects and disorder in real materials. In chapter 3, the experimental realization of the spectroscopic studies is discussed. The time-resolved photoluminescence (TRPL) setup is presented, focusing on the applied excitation source, non-linear frequency mixing, and the operation of the streak camera used for the detection. In addition, linear spectroscopy setup for continous-wave (CW) PL and absorption measurements is illustrated. Chapter 4 aims at the study of the interactions between electrons and lattice-vibrations in semiconductor crystals relevant for the proper description of carrier dynamics as well as the heat-transfer processes. The presented discussion covers the experimental studies of many-body effects in phonon-assisted emission of semiconductors due to the carriercarrier Coulomb-interaction. The corresponding theoretical background is discussed in detail in chapter 2. The investigations are focused on the two main questions regarding electron-hole plasma contributions to the phonon-assisted light-matter interaction as well as

  6. Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Stobbe, Søren; Nikolaev, Ivan S.

    2008-01-01

    and a theoretical model, we determine the striking dependence of the overlap of the electron and hole wavefunctions on the quantum dot size. We conclude that the optical quality is best for large quantum dots, which is important in order to optimally tailor quantum dot emitters for, e.g., quantum electrodynamics......The radiative and nonradiative decay rates of InAs quantum dots are measured by controlling the local density of optical states near an interface. From time-resolved measurements, we extract the oscillator strength and the quantum efficiency and their dependence on emission energy. From our results...

  7. Time-resolved ultraviolet near-field scanning optical microscope for characterizing photoluminescence lifetime of light-emitting devices.

    Science.gov (United States)

    Park, Kyoung-Duck; Jeong, Hyun; Kim, Yong Hwan; Yim, Sang-Youp; Lee, Hong Seok; Suh, Eun-Kyung; Jeong, Mun Seok

    2013-03-01

    We developed a instrument consisting of an ultraviolet (UV) near-field scanning optical microscope (NSOM) combined with time-correlated single photon counting, which allows efficient observation of temporal dynamics of near-field photoluminescence (PL) down to the sub-wavelength scale. The developed time-resolved UV NSOM system showed a spatial resolution of 110 nm and a temporal resolution of 130 ps in the optical signal. The proposed microscope system was successfully demonstrated by characterizing the near-field PL lifetime of InGaN/GaN multiple quantum wells.

  8. Time-resolved Polarimetry of the Superluminous SN 2015bn with the Nordic Optical Telescope

    DEFF Research Database (Denmark)

    Leloudas, Giorgos; Maund, Justyn R.; Gal-Yam, Avishay

    2017-01-01

    We present imaging polarimetry of the superluminous supernova SN 2015bn, obtained over nine epochs between -20 and +46 days with the Nordic Optical Telescope. This was a nearby, slowly evolving Type I superluminous supernova that has been studied extensively and for which two epochs of spectropol......We present imaging polarimetry of the superluminous supernova SN 2015bn, obtained over nine epochs between -20 and +46 days with the Nordic Optical Telescope. This was a nearby, slowly evolving Type I superluminous supernova that has been studied extensively and for which two epochs...... of spectropolarimetry are also available. Based on field stars, we determine the interstellar polarization in the Galaxy to be negligible. The polarization of SN 2015bn shows a statistically significant increase during the last epochs, confirming previous findings. Our well-sampled imaging polarimetry series allows us...

  9. Factors affecting measurement of optic parameters by time-resolved near-infrared spectroscopy in breast cancer

    Science.gov (United States)

    Yoshizawa, Nobuko; Ueda, Yukio; Mimura, Tetsuya; Ohmae, Etsuko; Yoshimoto, Kenji; Wada, Hiroko; Ogura, Hiroyuki; Sakahara, Harumi

    2018-02-01

    The purpose of this study was to evaluate the effects of the thickness and depth of tumors on hemoglobin measurements in breast cancer by optical spectroscopy and to demonstrate tissue oxygen saturation (SO2) and reduced scattering coefficient (μs‧) in breast tissue and breast cancer in relation to the skin-to-chest wall distance. We examined 53 tumors from 44 patients. Total hemoglobin concentration (tHb), SO2, and μs‧ were measured by time-resolved spectroscopy (TRS). The skin-to-chest wall distance and the size and depth of tumors were measured by ultrasonography. There was a positive correlation between tHb and tumor thickness, and a negative correlation between tHb and tumor depth. SO2 in breast tissue decreased when the skin-to-chest wall distance decreased, and SO2 in tumors tended to be lower than in breast tissue. In breast tissue, there was a negative correlation between μs‧ and the skin-to-chest wall distance, and μs‧ in tumors was higher than in breast tissue. Measurement of tHb in breast cancer by TRS was influenced by tumor thickness and depth. Although SO2 seemed lower and μs‧ was higher in breast cancer than in breast tissue, the skin-to-chest wall distance may have affected the measurements.

  10. Whole-head functional brain imaging of neonates at cot-side using time-resolved diffuse optical tomography

    Science.gov (United States)

    Dempsey, Laura A.; Cooper, Robert J.; Powell, Samuel; Edwards, Andrea; Lee, Chuen-Wai; Brigadoi, Sabrina; Everdell, Nick; Arridge, Simon; Gibson, Adam P.; Austin, Topun; Hebden, Jeremy C.

    2015-07-01

    We present a method for acquiring whole-head images of changes in blood volume and oxygenation from the infant brain at cot-side using time-resolved diffuse optical tomography (TR-DOT). At UCL, we have built a portable TR-DOT device, known as MONSTIR II, which is capable of obtaining a whole-head (1024 channels) image sequence in 75 seconds. Datatypes extracted from the temporal point spread functions acquired by the system allow us to determine changes in absorption and reduced scattering coefficients within the interrogated tissue. This information can then be used to define clinically relevant measures, such as oxygen saturation, as well as to reconstruct images of relative changes in tissue chromophore concentration, notably those of oxy- and deoxyhaemoglobin. Additionally, the effective temporal resolution of our system is improved with spatio-temporal regularisation implemented through a Kalman filtering approach, allowing us to image transient haemodynamic changes. By using this filtering technique with intensity and mean time-of-flight datatypes, we have reconstructed images of changes in absorption and reduced scattering coefficients in a dynamic 2D phantom. These results demonstrate that MONSTIR II is capable of resolving slow changes in tissue optical properties within volumes that are comparable to the preterm head. Following this verification study, we are progressing to imaging a 3D dynamic phantom as well as the neonatal brain at cot-side. Our current study involves scanning healthy babies to demonstrate the quality of recordings we are able to achieve in this challenging patient population, with the eventual goal of imaging functional activation and seizures.

  11. Time-resolved Polarimetry of the Superluminous SN 2015bn with the Nordic Optical Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Leloudas, Giorgos; Gal-Yam, Avishay [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001 (Israel); Maund, Justyn R. [The Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Pursimo, Tapio [Nordic Optical Telescope, Apartado 474, E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Hsiao, Eric [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Malesani, Daniele; De Ugarte Postigo, Antonio [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 30, DK-2100 Copenhagen (Denmark); Patat, Ferdinando [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Sollerman, Jesper [The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm (Sweden); Stritzinger, Maximilian D. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Wheeler, J. Craig [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States)

    2017-03-01

    We present imaging polarimetry of the superluminous supernova SN 2015bn, obtained over nine epochs between −20 and +46 days with the Nordic Optical Telescope. This was a nearby, slowly evolving Type I superluminous supernova that has been studied extensively and for which two epochs of spectropolarimetry are also available. Based on field stars, we determine the interstellar polarization in the Galaxy to be negligible. The polarization of SN 2015bn shows a statistically significant increase during the last epochs, confirming previous findings. Our well-sampled imaging polarimetry series allows us to determine that this increase (from ∼0.54% to ≳1.10%) coincides in time with rapid changes that took place in the optical spectrum. We conclude that the supernova underwent a “phase transition” at around +20 days, when the photospheric emission shifted from an outer layer, dominated by natal C and O, to a more aspherical inner core, dominated by freshly nucleosynthesized material. This two-layered model might account for the characteristic appearance and properties of Type I superluminous supernovae.

  12. Understanding optically stimulated charge movement in quartz and feldspar using time-resolved measurements

    DEFF Research Database (Denmark)

    Ankjærgaard, Christina

    . Although, results are only presented for some quartz and feldspar samples, they were found to be very similar within the each group during the course of this work.Thermoluminescence (TL) and optically stimulated luminescence (OSL) from quartz and feldspar are widely used in accident dosimetry...... stimulation energy. The thesis first delves into three main methodological developments, namely (i) research and development of the equipment for TR-OSL measurements, (ii) finding the best method for multiple-exponential analysis of a TR-OSL curve, and (iii) optimisation of the pulsing configuration...... of the equipment for TR-OSL measurements, (ii) finding the best method for multiple-exponential analysis of a TR-OSL curve, and (iii) optimisation of the pulsing configuration for the best separation of quartz OSL from a mixed quarts-feldspar sample. It then proceeds to study the different charge transport...

  13. Hole emission from Ge/Si quantum dots studied by time-resolved capacitance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kapteyn, C.M.A.; Lion, M.; Heitz, R.; Bimberg, D. [Technische Univ. Berlin (Germany). Inst. fuer Festkoerperphysik; Miesner, C.; Asperger, T.; Brunner, K.; Abstreiter, G. [Technische Univ. Muenchen, Garching (Germany). Walter-Schottky-Inst. fuer Physikalische Grundlagen der Halbleiterelektronik

    2001-03-01

    Emission of holes from self-organized Ge quantum dots (QDs) embedded in Si Schottky diodes is studied by time-resolved capacitance spectroscopy (DLTS). The DLTS signal is rather broad and depends strongly on the filling and detection bias conditions. The observed dependence is interpreted in terms of carrier emission from many-hole states of the QDs. The activation energies obtained from the DLTS measurements are a function of the amount of stored charge and the position of the Fermi level in the QDs. (orig.)

  14. Unfolding of Ubiquitin Studied by Picosecond Time-Resolved Fluorescence of the Tyrosine Residue

    OpenAIRE

    Noronha, Melinda; Lima, João C.; Bastos, Margarida; Santos, Helena; Maçanita, António L.

    2004-01-01

    The photophysics of the single tyrosine in bovine ubiquitin (UBQ) was studied by picosecond time-resolved fluorescence spectroscopy, as a function of pH and along thermal and chemical unfolding, with the following results: First, at room temperature (25°C) and below pH 1.5, native UBQ shows single-exponential decays. From pH 2 to 7, triple-exponential decays were observed and the three decay times were attributed to the presence of tyrosine, a tyrosine-carboxylate hydrogen-bonded complex, and...

  15. Time-resolved circular dichroism: Application to the study of conformal changes in biomolecules

    Science.gov (United States)

    Hache, F.

    2010-06-01

    Circular dichroism (CD) is known to be a very sensitive probe of the conformation of molecules and biomolecules. It is therefore tempting to implement CD in a pump-probe experiment in order to measure ultrarapid conformational changes which occur in photochemical processes. We present two technical developments of such time-resolved CD experiments. The first one relies on the modulation of the probe polarization from left to right circular whereas the second one measures the pump-induced ellipticity of the probe with a Babinet-Soleil compensator. Some applications are described and extension of these techniques towards the study of elementary protein folding processes is discussed.

  16. Time-resolved circular dichroism: Application to the study of conformal changes in biomolecules

    Directory of Open Access Journals (Sweden)

    Hache F.

    2010-06-01

    Full Text Available Circular dichroism (CD is known to be a very sensitive probe of the conformation of molecules and biomolecules. It is therefore tempting to implement CD in a pump-probe experiment in order to measure ultrarapid conformational changes which occur in photochemical processes. We present two technical developments of such time-resolved CD experiments. The first one relies on the modulation of the probe polarization from left to right circular whereas the second one measures the pump-induced ellipticity of the probe with a Babinet-Soleil compensator. Some applications are described and extension of these techniques towards the study of elementary protein folding processes is discussed.

  17. Nonlinear Optical and Time-Resolved Properties of Novel Organic Dendrimers and Dendrimer Metal

    National Research Council Canada - National Science Library

    Goodson, T., III

    2004-01-01

    .... We found in particular that gold-metal dendrimer nanocomposites have very strong optical limiting properties that may be useful for eye and sensor protection devices in the visible and near Infrared spectral regions...

  18. Time resolved 2-D optical imaging of a pulsed unbalanced magnetron plasma

    International Nuclear Information System (INIS)

    Bradley, J W; Clarke, G C B; Braithwaite, N St J; Bryant, P M; Kelly, P J

    2006-01-01

    Using wavelength filtered two dimensional (2-D) optical imaging, the temporal and spatial evolution of selected excited species in a pulsed magnetron discharge has been studied. A titanium target was sputtered at a pulse frequency of 100 kHz, in an argon atmosphere, at an operating pressure of 0.27 Pa. The radial information of the emissivity was determined using the Abel inversion technique. The results show strong excitation of the observed species above the racetrack in the on-time, and the possible development of an ion-acoustic wave, initiated after the off-on transition. The on-off transition is accompanied by a burst of light from the plasma bulk consistent with the transient plasma potential reaching about +200 V. During this phase, we argue that there is a release of secondary electrons from the grounded substrate and walls due to ion bombardment, as well as an increased confinement of energetic plasma electrons. The characteristic decay times of the selected transitions at 750.4, 751.5, 810.4 and 811.5 nm (ArI), present within the bandpass width of our filters, is briefly discussed in terms of the production of fast electrons in the system

  19. Signal and noise analysis in TRION-Time-Resolved Integrative Optical Fast Neutron detector

    International Nuclear Information System (INIS)

    Vartsky, D; Feldman, G; Mor, I; Goldberg, M B; Bar, D; Dangendorf, V

    2009-01-01

    TRION is a sub-mm spatial resolution fast neutron imaging detector, which employs an integrative optical time-of-flight technique. The detector was developed for fast neutron resonance radiography, a method capable of detecting a broad range of conventional and improvised explosives. In this study we have analyzed in detail, using Monte-Carlo calculations and experimentally determined parameters, all the processes that influence the signal and noise in the TRION detector. In contrast to event-counting detectors where the signal-to-noise ratio is dependent only on the number of detected events (quantum noise), in an energy-integrating detector additional factors, such as the fluctuations in imparted energy, number of photoelectrons, system gain and other factors will contribute to the noise. The excess noise factor (over the quantum noise) due to these processes was 4.3, 2.7, 2.1, 1.9 and 1.9 for incident neutron energies of 2, 4, 7.5, 10 and 14 MeV, respectively. It is shown that, even under ideal light collection conditions, a fast neutron detection system operating in an integrative mode cannot be quantum-noise-limited due to the relatively large variance in the imparted proton energy and the resulting scintillation light distributions.

  20. Time-Resolved Emission Spectroscopic Study of Laser-Induced Steel Plasmas

    International Nuclear Information System (INIS)

    Shah, M. L.; Pulhani, A. K.; Suri, B. M.; Gupta, G. P.

    2013-01-01

    Laser-induced steel plasma is generated by focusing a Q-switched Nd:YAG visible laser (532 nm wavelength) with an irradiance of ∼ 1 × 10 9 W/cm 2 on a steel sample in air at atmospheric pressure. An Echelle spectrograph coupled with a gateable intensified charge-coupled detector is used to record the plasma emissions. Using time-resolved spectroscopic measurements of the plasma emissions, the temperature and electron number density of the steel plasma are determined for many times of the detector delay. The validity of the assumption by the spectroscopic methods that the laser-induced plasma (LIP) is optically thin and is also in local thermodynamic equilibrium (LTE) has been evaluated for many delay times. From the temporal evolution of the intensity ratio of two Fe I lines and matching it with its theoretical value, the delay times where the plasma is optically thin and is also in LTE are found to be 800 ns, 900 ns and 1000 ns.

  1. Time-resolved FTIR [Fourier transform infrared] emission studies of laser photofragmentation and chain reactions

    International Nuclear Information System (INIS)

    Leone, S.R.

    1990-01-01

    Recent progress is described resulting from the past three years of DOE support for studies of combustion-related photofragmentation dynamics, energy transfer, and reaction processes using a time-resolved Fourier transform infrared (FTIR) emission technique. The FTIR is coupled to a high repetition rate excimer laser which produces radicals by photolysis to obtain novel, high resolution measurements on vibrational and rotational state dynamics. The results are important for the study of numerous radical species relevant to combustion processes. The method has been applied to the detailed study of photofragmentation dynamics in systems such as acetylene, which produces C 2 H; chlorofluoroethylene to study the HF product channel; vinyl chloride and dichloroethylene, which produce HCl; acetone, which produces CO and CH 3 ; and ammonia, which produces NH 2 . In addition, we have recently demonstrated use of the FTIR technique for preliminary studies of energy transfer events under near single collision conditions, radical-radical reactions, and laser-initiated chain reaction processes

  2. All-optical time-resolved measurement of laser energy modulation in a relativistic electron beam

    Directory of Open Access Journals (Sweden)

    D. Xiang

    2011-11-01

    Full Text Available We propose and demonstrate an all-optical method to measure laser energy modulation in a relativistic electron beam. In this scheme the time-dependent energy modulation generated from the electron-laser interaction in an undulator is converted into time-dependent density modulation with a chicane, which is measured to infer the laser energy modulation. The method, in principle, is capable of simultaneously providing information on femtosecond time scale and 10^{-5} energy scale not accessible with conventional methods. We anticipate that this method may have wide applications in many laser-based advanced beam manipulation techniques.

  3. Reduction of Poisson noise in measured time-resolved data for time-domain diffuse optical tomography.

    Science.gov (United States)

    Okawa, S; Endo, Y; Hoshi, Y; Yamada, Y

    2012-01-01

    A method to reduce noise for time-domain diffuse optical tomography (DOT) is proposed. Poisson noise which contaminates time-resolved photon counting data is reduced by use of maximum a posteriori estimation. The noise-free data are modeled as a Markov random process, and the measured time-resolved data are assumed as Poisson distributed random variables. The posterior probability of the occurrence of the noise-free data is formulated. By maximizing the probability, the noise-free data are estimated, and the Poisson noise is reduced as a result. The performances of the Poisson noise reduction are demonstrated in some experiments of the image reconstruction of time-domain DOT. In simulations, the proposed method reduces the relative error between the noise-free and noisy data to about one thirtieth, and the reconstructed DOT image was smoothed by the proposed noise reduction. The variance of the reconstructed absorption coefficients decreased by 22% in a phantom experiment. The quality of DOT, which can be applied to breast cancer screening etc., is improved by the proposed noise reduction.

  4. Time-Resolved Spectroscopy Diagnostic of Laser-Induced Optical Breakdown

    Directory of Open Access Journals (Sweden)

    Christian G. Parigger

    2010-01-01

    Full Text Available Transient laser plasma is generated in laser-induced optical breakdown (LIOB. Here we report experiments conducted with 10.6-micron CO2 laser radiation, and with 1.064-micron fundamental, 0.532-micron frequency-doubled, 0.355-micron frequency-tripled Nd:YAG laser radiation. Characterization of laser induced plasma utilizes laser-induced breakdown spectroscopy (LIBS techniques. Atomic hydrogen Balmer series emissions show electron number density of 1017 cm−3 measured approximately 10 μs and 1 μs after optical breakdown for CO2 and Nd:YAG laser radiation, respectively. Recorded molecular recombination emission spectra of CN and C2 Swan bands indicate an equilibrium temperature in excess of 7000 Kelvin, inferred for these diatomic molecules. Reported are also graphite ablation experiments where we use unfocused laser radiation that is favorable for observation of neutral C3 emission due to reduced C3 cation formation. Our analysis is based on computation of diatomic molecular spectra that includes accurate determination of rotational line strengths, or Hönl-London factors.

  5. Time-resolved studies at PETRA III with a highly repetitive synchronized laser system

    Energy Technology Data Exchange (ETDEWEB)

    Schlie, Mortiz

    2013-09-15

    Atomic and molecular processes can nowadays be directly followed in the time domain. This is a core technique for a better understanding of the involved fundamental physics, thus auguring new applications in the future as well. Usually the so-called pump-probe technique making use of two synchronized ultrashort light pulses is utilized to obtain this time-resolved data. In this work, the development and characterization of a synchronization system enabling such pump-probe studies at the storage ring PETRA III in combination with an external, then synchronized fs-laser system is described. The synchronization is based on an extended PLL approach with three interconnected feedback loops allowing to monitor short-time losses of the lock and thus prevent them. This way, the jitter between the laser PHAROS and the PETRA III reference signal is reduced to {sigma} <5 ps. Thus the system allows to conduct experiments at a repetition rate of 130 kHz with a temporal resolution limited only by the X-ray pulse length. A major emphasis in the fundamental introductory chapters is an intuitive explanation of the basic principles of phase locked loops and the different aspects of phase noise to allow a deeper understanding of the synchronization. Furthermore, first pump-probe experiments conducted at different beamlines at PETRA III are presented, demonstrating the usability of the laser system in a scientific environment as well. In first characterizing experiments the pulse duration of PETRA III X-ray pulses has been measured to be 90 ps FWHM. In particular, there have been time resolved X-ray absorption spectroscopy experiments on Gaq3 and Znq2 conducted at beamline P11. First results show dynamics of the electronic excitation on the timescale of a few hundred pico seconds up to a few nano seconds and provide a basic understanding for further research on those molecules. For Gaq3 this data is analyzed in detail and compared with visible fluorescence measurements suggesting at

  6. An integrated approach using high time-resolved tools to study the origin of aerosols

    International Nuclear Information System (INIS)

    Di Gilio, A.; Gennaro, G. de; Dambruoso, P.; Ventrella, G.

    2015-01-01

    Long-range transport of natural and/or anthropogenic particles can contribute significantly to PM10 and PM2.5 concentrations and some European cities often fail to comply with PM daily limit values due to the additional impact of particles from remote sources. For this reason, reliable methodologies to identify long-range transport (LRT) events would be useful to better understand air pollution phenomena and support proper decision-making. This study explores the potential of an integrated and high time-resolved monitoring approach for the identification and characterization of local, regional and long-range transport events of high PM. In particular, the goal of this work was also the identification of time-limited event. For this purpose, a high time-resolved monitoring campaign was carried out at an urban background site in Bari (southern Italy) for about 20 days (1st–20th October 2011). The integration of collected data as the hourly measurements of inorganic ions in PM 2.5 and their gas precursors and of the natural radioactivity, in addition to the analyses of aerosol maps and hourly back trajectories (BT), provided useful information for the identification and chemical characterization of local sources and trans-boundary intrusions. Non-sea salt (nss) sulfate levels were found to increase when air masses came from northeastern Europe and higher dispersive conditions of the atmosphere were detected. Instead, higher nitrate and lower nss-sulfate concentrations were registered in correspondence with air mass stagnation and attributed to local traffic source. In some cases, combinations of local and trans-boundary sources were observed. Finally, statistical investigations such as the principal component analysis (PCA) applied on hourly ion concentrations and the cluster analyses, the Potential Source Contribution Function (PSCF) and the Concentration Weighted Trajectory (CWT) models computed on hourly back-trajectories enabled to complete a cognitive framework

  7. Time-resolved studies at PETRA III with a highly repetitive synchronized laser system

    International Nuclear Information System (INIS)

    Schlie, Mortiz

    2013-09-01

    Atomic and molecular processes can nowadays be directly followed in the time domain. This is a core technique for a better understanding of the involved fundamental physics, thus auguring new applications in the future as well. Usually the so-called pump-probe technique making use of two synchronized ultrashort light pulses is utilized to obtain this time-resolved data. In this work, the development and characterization of a synchronization system enabling such pump-probe studies at the storage ring PETRA III in combination with an external, then synchronized fs-laser system is described. The synchronization is based on an extended PLL approach with three interconnected feedback loops allowing to monitor short-time losses of the lock and thus prevent them. This way, the jitter between the laser PHAROS and the PETRA III reference signal is reduced to σ <5 ps. Thus the system allows to conduct experiments at a repetition rate of 130 kHz with a temporal resolution limited only by the X-ray pulse length. A major emphasis in the fundamental introductory chapters is an intuitive explanation of the basic principles of phase locked loops and the different aspects of phase noise to allow a deeper understanding of the synchronization. Furthermore, first pump-probe experiments conducted at different beamlines at PETRA III are presented, demonstrating the usability of the laser system in a scientific environment as well. In first characterizing experiments the pulse duration of PETRA III X-ray pulses has been measured to be 90 ps FWHM. In particular, there have been time resolved X-ray absorption spectroscopy experiments on Gaq3 and Znq2 conducted at beamline P11. First results show dynamics of the electronic excitation on the timescale of a few hundred pico seconds up to a few nano seconds and provide a basic understanding for further research on those molecules. For Gaq3 this data is analyzed in detail and compared with visible fluorescence measurements suggesting at least

  8. Studying the potential of point detectors in time-resolved dose verification of dynamic radiotherapy

    International Nuclear Information System (INIS)

    Beierholm, A.R.; Behrens, C.F.; Andersen, C.E.

    2015-01-01

    Modern megavoltage x-ray radiotherapy with high spatial and temporal dose gradients puts high demands on the entire delivery system, including not just the linear accelerator and the multi-leaf collimator, but also algorithms used for optimization and dose calculations, and detectors used for quality assurance and dose verification. In this context, traceable in-phantom dosimetry using a well-characterized point detector is often an important supplement to 2D-based quality assurance methods based on radiochromic film or detector arrays. In this study, an in-house developed dosimetry system based on fiber-coupled plastic scintillator detectors was evaluated and compared with a Farmer-type ionization chamber and a small-volume ionization chamber. An important feature of scintillator detectors is that the sensitive volume of the detector can easily be scaled, and five scintillator detectors of different scintillator length were thus employed to quantify volume averaging effects by direct measurement. The dosimetric evaluation comprised several complex-shape static fields as well as simplified dynamic deliveries using RapidArc, a volumetric-modulated arc therapy modality often used at the participating clinic. The static field experiments showed that the smallest scintillator detectors were in the best agreement with dose calculations, while needing the smallest volume averaging corrections. Concerning total dose measured during RapidArc, all detectors agreed with dose calculations within 1.1 ± 0.7% when positioned in regions of high homogenous dose. Larger differences were observed for high dose gradient and organ at risk locations, were differences between measured and calculated dose were as large as 8.0 ± 5.5%. The smallest differences were generally seen for the small-volume ionization chamber and the smallest scintillators. The time-resolved RapidArc dose profiles revealed volume-dependent discrepancies between scintillator and ionization chamber response

  9. An integrated approach using high time-resolved tools to study the origin of aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Di Gilio, A. [Chemistry Department, University of Bari, via Orabona, 4, 70126 Bari (Italy); ARPA PUGLIA, Corso Trieste, 27, 70126 Bari (Italy); Gennaro, G. de, E-mail: gianluigi.degennaro@uniba.it [Chemistry Department, University of Bari, via Orabona, 4, 70126 Bari (Italy); ARPA PUGLIA, Corso Trieste, 27, 70126 Bari (Italy); Dambruoso, P. [Chemistry Department, University of Bari, via Orabona, 4, 70126 Bari (Italy); ARPA PUGLIA, Corso Trieste, 27, 70126 Bari (Italy); Ventrella, G. [Chemistry Department, University of Bari, via Orabona, 4, 70126 Bari (Italy)

    2015-10-15

    Long-range transport of natural and/or anthropogenic particles can contribute significantly to PM10 and PM2.5 concentrations and some European cities often fail to comply with PM daily limit values due to the additional impact of particles from remote sources. For this reason, reliable methodologies to identify long-range transport (LRT) events would be useful to better understand air pollution phenomena and support proper decision-making. This study explores the potential of an integrated and high time-resolved monitoring approach for the identification and characterization of local, regional and long-range transport events of high PM. In particular, the goal of this work was also the identification of time-limited event. For this purpose, a high time-resolved monitoring campaign was carried out at an urban background site in Bari (southern Italy) for about 20 days (1st–20th October 2011). The integration of collected data as the hourly measurements of inorganic ions in PM{sub 2.5} and their gas precursors and of the natural radioactivity, in addition to the analyses of aerosol maps and hourly back trajectories (BT), provided useful information for the identification and chemical characterization of local sources and trans-boundary intrusions. Non-sea salt (nss) sulfate levels were found to increase when air masses came from northeastern Europe and higher dispersive conditions of the atmosphere were detected. Instead, higher nitrate and lower nss-sulfate concentrations were registered in correspondence with air mass stagnation and attributed to local traffic source. In some cases, combinations of local and trans-boundary sources were observed. Finally, statistical investigations such as the principal component analysis (PCA) applied on hourly ion concentrations and the cluster analyses, the Potential Source Contribution Function (PSCF) and the Concentration Weighted Trajectory (CWT) models computed on hourly back-trajectories enabled to complete a cognitive

  10. Time-resolved fluorescence study of exciplex formation in diastereomeric naproxen-pyrrolidine dyads.

    Science.gov (United States)

    Khramtsova, Ekaterina A; Plyusnin, Viktor F; Magin, Ilya M; Kruppa, Alexander I; Polyakov, Nikolay E; Leshina, Tatyana V; Nuin, Edurne; Marin, M Luisa; Miranda, Miguel A

    2013-12-19

    The influence of chirality on the elementary processes triggered by excitation of the (S,S)- and (R,S)- diastereoisomers of naproxen-pyrrolidine (NPX-Pyr) dyads has been studied by time-resolved fluorescence in acetonitrile-benzene mixtures. In these systems, the quenching of the (1)NPX*-Pyr singlet excited state occurs through electron transfer and exciplex formation. Fluorescence lifetimes and quantum yields revealed a significant difference (around 20%) between the (S,S)- and (R,S)- diastereomers. In addition, the quantum yields of exciplexes differed by a factor of 2 regardless of solvent polarity. This allows us to suggest a similar influence of the chiral centers on the local charge transfer resulting in exciplex and full charge separation that leads to ion-biradicals. A simplified scheme is proposed to estimate a set of rate constant values (k1-k5) for the elementary stages in each solvent system.

  11. Studies of Minerals, Organic and Biogenic Materials through Time-Resolved Raman Spectroscopy

    Science.gov (United States)

    Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Nyugen, Trac; Elsayed-Ali, hani

    2009-01-01

    A compact remote Raman spectroscopy system was developed at NASA Langley Research center and was previously demonstrated for its ability to identify chemical composition of various rocks and minerals. In this study, the Raman sensor was utilized to perform time-resolved Raman studies of various samples such as minerals and rocks, Azalea leaves and a few fossil samples. The Raman sensor utilizes a pulsed 532 nm Nd:YAG laser as excitation source, a 4-inch telescope to collect the Raman-scattered signal from a sample several meters away, a spectrograph equipped with a holographic grating, and a gated intensified CCD (ICCD) camera system. Time resolved Raman measurements were carried out by varying the gate delay with fixed short gate width of the ICCD camera, allowing measurement of both Raman signals and fluorescence signals. Rocks and mineral samples were characterized including marble, which contain CaCO3. Analysis of the results reveals the short (approx.10-13 s) lifetime of the Raman process, and shows that Raman spectra of some mineral samples contain fluorescence emission due to organic impurities. Also analyzed were a green (pristine) and a yellow (decayed) sample of Gardenia leaves. It was observed that the fluorescence signals from the green and yellow leaf samples showed stronger signals compared to the Raman lines. Moreover, it was also observed that the fluorescence of the green leaf was more intense and had a shorter lifetime than that of the yellow leaf. For the fossil samples, Raman shifted lines could not be observed due the presence of very strong short-lived fluorescence.

  12. Fully time-resolved near-field scanning optical microscopy fluorescence imaging

    International Nuclear Information System (INIS)

    Kwak, Eun-Soo; Vanden Bout, David A.

    2003-01-01

    Time-correlated single photon counting has been coupled with near-field scanning optical microscopy (NSOM) to record complete fluorescence lifetime decays at each pixel in an NSOM image. The resulting three-dimensional data sets can be binned in the time dimension to create images of photons at particular time delays or images of the fluorescence lifetime. Alternatively, regions of interest identified in the topography and fluorescence images can be used to bin the data in the spatial dimensions resulting in high signal to noise fluorescence decays of particular regions of the sample. The technique has been demonstrated on films of poly(vinylalcohol), doped with the fluorescent dye, cascade blue (CB). The CB segregates into small circular regions of high concentration within the films during the drying process. The lifetime imaging shows that the spots have slightly faster excited state decays due to quenching of the luminescence as a result of the higher concentration. The technique is also used to image the fluorescence lifetime of an annealed film of poly(dihexylfluorene). The samples show high contrast in the total intensity fluorescence image, but the lifetime image reveals the sample to be extremely uniform

  13. Study Of Soot Growth And Nucleation By A Time-Resolved Synchrotron Radiation Based X-Ray Absorption Method

    National Research Council Canada - National Science Library

    Mitchell, Judith I

    2001-01-01

    This report results from a contract tasking University of Rennes I as follows: The contractor will perform a study of soot growth and nucleation by a time-resolved synchrotron radiation based x-ray absorption method...

  14. Time-resolved lateral spin-caloric transport of optically generated spin packets in n-GaAs

    Science.gov (United States)

    Göbbels, Stefan; Güntherodt, Gernot; Beschoten, Bernd

    2018-05-01

    We report on lateral spin-caloric transport (LSCT) of electron spin packets which are optically generated by ps laser pulses in the non-magnetic semiconductor n-GaAs at K. LSCT is driven by a local temperature gradient induced by an additional cw heating laser. The spatio-temporal evolution of the spin packets is probed using time-resolved Faraday rotation. We demonstrate that the local temperature-gradient induced spin diffusion is solely driven by a non-equilibrium hot spin distribution, i.e. without involvement of phonon drag effects. Additional electric field-driven spin drift experiments are used to verify directly the validity of the non-classical Einstein relation for moderately doped semiconductors at low temperatures for near band-gap excitation.

  15. Time-resolved photoelectron spectroscopy and ab initio multiple spawning studies of hexamethylcyclopentadiene

    DEFF Research Database (Denmark)

    Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.

    2014-01-01

    Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom.......Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom....

  16. Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques

    Science.gov (United States)

    Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Zhukov, E. A.; Yakovlev, D. R.; Bayer, M.

    2009-08-01

    We study the electron-spin dynamics in p -type GaAs doped with magnetic Mn acceptors by means of time-resolved pump-probe and photoluminescence techniques. Measurements in transverse magnetic fields show a long spin-relaxation time of 20 ns that can be uniquely related to electrons. Application of weak longitudinal magnetic fields above 100 mT extends the spin-relaxation times up to microseconds which is explained by suppression of the Bir-Aronov-Pikus spin relaxation for the electron on the Mn acceptor.

  17. Time-resolved spectroscopy of the probe fluorescence in the study of human blood protein dynamic structure on SR beam

    International Nuclear Information System (INIS)

    Dobretsov, G.E.; Kurek, N.K.; Syrejshchikova, T.I.; Yakimenko, M.N.; Clarke, D.T.; Jones, G.R.; Munro, I.H.

    2000-01-01

    Time-resolved spectroscopy on the SRS of the Daresbury Laboratory was used for the study of the human serum lipoproteins and human blood albumins with fluorescent probes K-37 and K-35, developed in Russia. The probe K-37 was found sensitive to the difference in dynamic properties of the lipid objects. Two sets of the parameters were used for the description of lipid dynamic structure: (1) time-resolved fluorescence spectra and (2) time-resolved fluorescence depolarization as a function of rotational mobility of lipid molecules. Each measured dynamic parameter reflected the monotonous changes of dynamic properties in the range: lipid spheres-very low density lipoproteins-low density lipoproteins-high density lipoproteins-phospholipid liposomes. The range is characterized by the increase of the ratio polar/ nonpolar lipids. Thus, time-resolved fluorescence could be used to detect some structural modifications in lipoproteins related to atherosclerosis and subsequent cardiovascular diseases development

  18. Time-Resolved Diffuse Optical Spectroscopy and Imaging Using Solid-State Detectors: Characteristics, Present Status, and Research Challenges.

    Science.gov (United States)

    Alayed, Mrwan; Deen, M Jamal

    2017-09-14

    Diffuse optical spectroscopy (DOS) and diffuse optical imaging (DOI) are emerging non-invasive imaging modalities that have wide spread potential applications in many fields, particularly for structural and functional imaging in medicine. In this article, we review time-resolved diffuse optical imaging (TR-DOI) systems using solid-state detectors with a special focus on Single-Photon Avalanche Diodes (SPADs) and Silicon Photomultipliers (SiPMs). These TR-DOI systems can be categorized into two types based on the operation mode of the detector (free-running or time-gated). For the TR-DOI prototypes, the physical concepts, main components, figures-of-merit of detectors, and evaluation parameters are described. The performance of TR-DOI prototypes is evaluated according to the parameters used in common protocols to test DOI systems particularly basic instrumental performance (BIP). In addition, the potential features of SPADs and SiPMs to improve TR-DOI systems and expand their applications in the foreseeable future are discussed. Lastly, research challenges and future developments for TR-DOI are discussed for each component in the prototype separately and also for the entire system.

  19. Time-Resolved Studies of Laser-Induced Phase Transitions in Gallium Arsenide

    Science.gov (United States)

    Siegal, Yakir

    This thesis describes a series of time-resolved experiments of the linear and nonlinear optical properties of GaAs during laser-induced phase transitions. The first set of experiments consists of a direct determination of the behavior of the linear dielectric constant at photon energies of 2.2 eV and 4.4 eV following excitation of the sample with 1.9-eV, 70-fs laser pulses spanning a fluence range from 0 to 2.5 kJ/m^2. The results from this set of experiments were used to extract the behavior of the second-order optical susceptibility from second-harmonic generation measurements made under identical excitation conditions. These experiments are unique because they provide explicit information on the behavior of intrinsic material properties--the linear and nonlinear optical susceptibilities--during laser-induced phase transitions in semiconductors without the ambiguities in interpretation that are generally inherent in reflectivity and second-harmonic generation measurements. The dielectric constant data indicate a drop in the average bonding-antibonding splitting of GaAs following the laser pulse excitation. This behavior leads to a collapse of the band-gap on a picosecond time scale for excitation at fluences near the damage threshold of 1.0 kJ/m ^2 and even faster at higher excitation fluences. The changes in the electronic band structure result from a combination of electronic screening by the excited free carriers and structural deformation of the lattice caused by the destabilization of the covalent bonds. The behavior of the second-order susceptibility shows that the material loses long-range order before the average bonding-antibonding splitting, which is more sensitive to short-range structure, changes significantly. Loss of long-range order and a drop of more than 2 eV in the average bonding-antibonding splitting are seen even at fluences below the damage threshold, a regime in which the laser-induced changes are reversible.

  20. An integrated approach using high time-resolved tools to study the origin of aerosols.

    Science.gov (United States)

    Di Gilio, A; de Gennaro, G; Dambruoso, P; Ventrella, G

    2015-10-15

    Long-range transport of natural and/or anthropogenic particles can contribute significantly to PM10 and PM2.5 concentrations and some European cities often fail to comply with PM daily limit values due to the additional impact of particles from remote sources. For this reason, reliable methodologies to identify long-range transport (LRT) events would be useful to better understand air pollution phenomena and support proper decision-making. This study explores the potential of an integrated and high time-resolved monitoring approach for the identification and characterization of local, regional and long-range transport events of high PM. In particular, the goal of this work was also the identification of time-limited event. For this purpose, a high time-resolved monitoring campaign was carried out at an urban background site in Bari (southern Italy) for about 20 days (1st-20th October 2011). The integration of collected data as the hourly measurements of inorganic ions in PM2.5 and their gas precursors and of the natural radioactivity, in addition to the analyses of aerosol maps and hourly back trajectories (BT), provided useful information for the identification and chemical characterization of local sources and trans-boundary intrusions. Non-sea salt (nss) sulfate levels were found to increase when air masses came from northeastern Europe and higher dispersive conditions of the atmosphere were detected. Instead, higher nitrate and lower nss-sulfate concentrations were registered in correspondence with air mass stagnation and attributed to local traffic source. In some cases, combinations of local and trans-boundary sources were observed. Finally, statistical investigations such as the principal component analysis (PCA) applied on hourly ion concentrations and the cluster analyses, the Potential Source Contribution Function (PSCF) and the Concentration Weighted Trajectory (CWT) models computed on hourly back-trajectories enabled to complete a cognitive framework

  1. Femtosecond time-resolved two-photon photoemission study of organic semiconductor copper phthalocyanine film

    International Nuclear Information System (INIS)

    Tanaka, A.; Tohoku University; University of Rochester, NY; Yan, L.; Watkins, N.J.; Gao, Y.

    2004-01-01

    Full text: Organic semiconductors are recently attracting much interest from the viewpoints of both device and fundamental physics. These organic semiconductors are considered to be important constituents of the future devices, such as organic light-emitting diode, organic field effect transistor, and organic solid-state injection laser. In order to elucidate their detailed physical properties and to develop the future devices, it is indispensable to understand their excited-state dynamics as well as their electronic structures. The femtosecond time-resolved two-photon photoemission (TR-2PPE) spectroscopy is attracting much interest because of its capability to observe the energy-resolved excited electron dynamics. In this work, we have carried out a TR-2PPE study of the organic semiconductor copper phthalocyanine (CuPc) film. Furthermore, we have investigated the detailed electronic structure of CuPc film using the photoemission (PES) and inverse photoemission (IPES) spectroscopies. From the simultaneous PES and IPES measurements for CuPc film with a thickness of 100 nm, the lowest unoccupied molecular orbital (LUMO), highest occupied molecular orbital, and ionization potential of CuPc film have been directly determined. The observed two-photon photoemission (2PPE) spectrum of the present CuPc film, measured with photon energy of about hv=3.3 eV, exhibits a broad feature. From the energy diagram of CuPc film determined by the PES and IPES measurements, the intermediate state observed in the present 2PPE spectrum of CuPc film corresponds to the energy region between about 0.4 and 1.7 eV above the LUMO energy. From the time-resolved pump-probe measurements, it is found that the relaxation lifetimes of excited states in the present CuPc films are very short (all below 50 fs) and monotonously become faster with increasing excitation energy. We attribute this extremely fast relaxation process of photoexcitation to a rapid internal conversion process. From these results

  2. Photolysis of Br2 in CCl4 studied by time-resolved X-ray scattering.

    Science.gov (United States)

    Kong, Qingyu; Lee, Jae Hyuk; Lo Russo, Manuela; Kim, Tae Kyu; Lorenc, Maciej; Cammarata, Marco; Bratos, Savo; Buslaps, Thomas; Honkimaki, Veijo; Ihee, Hyotcherl; Wulff, Michael

    2010-03-01

    A time-resolved X-ray solution scattering study of bromine molecules in CCl(4) is presented as an example of how to track atomic motions in a simple chemical reaction. The structures of the photoproducts are tracked during the recombination process, geminate and non-geminate, from 100 ps to 10 micros after dissociation. The relaxation of hot Br(2)(*) molecules heats the solvent. At early times, from 0.1 to 10 ns, an adiabatic temperature rise is observed, which leads to a pressure gradient that forces the sample to expand. The expansion starts after about 10 ns with the laser beam sizes used here. When thermal artefacts are removed by suitable scaling of the transient solvent response, the excited-state solute structures can be obtained with high fidelity. The analysis shows that 30% of Br(2)(*) molecules recombine directly along the X potential, 60% are trapped in the A/A' state with a lifetime of 5.5 ns, and 10% recombine non-geminately via diffusive motion in about 25 ns. The Br-Br distance distribution in the A/A' state peaks at 3.0 A.

  3. Time-resolved studies of direct effects of radiation on DNA

    International Nuclear Information System (INIS)

    Fielden, E.M.; O'Neill, P.; Al-Kazwini, A.

    1987-01-01

    The biological changes induced by ionising radiation are a consequence of radiation-induced chemical events taking place at times <1s. These events are strongly influenced by the presence of chemical modifiers. Since DNA is a principle target for radiation-induced cell killing, DNA-free radicals are generated by direct ionisation of DNA moieties (direct effect) and by reaction with hydroxyl radicals formed by radiolysis of the water which is in the vicinity of the DNA (indirect effect). In order to study the 'direct' effects of radiation on DNA the following model approaches are discussed:- 1) Use of the technique of pulse radiolysis to investigate in aqueous solution the interactions of deoxynucleosides with SO/sub 4//sup .-/ whereby one-electron oxidised species of the bases are generated; and 2) time resolved, radiation-induced changes to solid DNA and related macromolecules (e.g. radiation-induced luminescence) in order to obtain an understanding of charge/energy migration as a result of ionisation of DNA. The influence of chemical modifiers and of environment is discussed in terms of the properties of the radiation-induced species produced. Since the properties of base radicals produced by SO/sub 4//sup .-/ are similar to those of the base OH-adducts oxidising properties, potential similarities between the 'direct' and 'indirect' effects of radiation are presented

  4. Time-resolved luminescence studies in hydrogen uranyl phosphate intercalated with amines

    Energy Technology Data Exchange (ETDEWEB)

    Novo, Joao Batista Marques [Departamento de Quimica, Universidade Federal do Parana, CP 19081, 81531-990 Curitiba-PR (Brazil)]. E-mail: jbmnovo@quimica.ufpr.br; Batista, Fabio Roberto [Departamento de Quimica, Universidade Federal do Parana, CP 19081, 81531-990 Curitiba-PR (Brazil); Cunha, Carlos Jorge da [Departamento de Quimica, Universidade Federal do Parana, CP 19081, 81531-990 Curitiba-PR (Brazil); Dias, Lauro Camargo Jr. [Departamento de Quimica, Universidade Federal do Parana, CP 19081, 81531-990 Curitiba-PR (Brazil); Teixeira Pessine, Francisco Benedito [Instituto de Quimica, Universidade Estadual de Campinas, CP 6154, 13084-971 Campinas-SP (Brazil)

    2007-05-15

    Time-resolved luminescence decays of intercalated compounds of hydrogen uranyl phosphate (HUP) with p-toluidinium (HUPPT), benzylaminium (HUPBZ), {alpha}-methylbenzylaminium (HUPMBZ) and hydroxylaminium (HUPHAM) were studied. The prepared compounds belong to the tetragonal P4/ncc space group and showed 00 l reflections shifted to lower angles relative to HUP, indicating that the intercalation increases the c parameter of the unit cell. The luminescence decays of the compounds with 100% of intercalation ratio (HUPHAM and HUPBZ) were analyzed by Global Analysis, assuming Lianos' stretched exponential as the model function, which can be applied to compounds with restricted geometry and mobile donor and quencher molecules. It was remarkable that the luminescence decays showed that the quenching of the emission of the uranyl ions by the intercalated protonated amines is not restricted by low dimensionality of the host uranyl phosphate, and that a diffusion mechanism occurs. Benzylaminium cation efficiently quenches the excited energy of the uranyl ions at close distance, but the long-range and long-lifetime quenching is hindered. A different situation is found in the case of the small hydroxylaminium cation, where the long distance diffusion of the species is fast, playing an important role in the quenching of the excited uranyl ions at longer times.

  5. Time-resolved luminescence studies in hydrogen uranyl phosphate intercalated with amines

    International Nuclear Information System (INIS)

    Novo, Joao Batista Marques; Batista, Fabio Roberto; Cunha, Carlos Jorge da; Dias, Lauro Camargo Jr.; Teixeira Pessine, Francisco Benedito

    2007-01-01

    Time-resolved luminescence decays of intercalated compounds of hydrogen uranyl phosphate (HUP) with p-toluidinium (HUPPT), benzylaminium (HUPBZ), α-methylbenzylaminium (HUPMBZ) and hydroxylaminium (HUPHAM) were studied. The prepared compounds belong to the tetragonal P4/ncc space group and showed 00 l reflections shifted to lower angles relative to HUP, indicating that the intercalation increases the c parameter of the unit cell. The luminescence decays of the compounds with 100% of intercalation ratio (HUPHAM and HUPBZ) were analyzed by Global Analysis, assuming Lianos' stretched exponential as the model function, which can be applied to compounds with restricted geometry and mobile donor and quencher molecules. It was remarkable that the luminescence decays showed that the quenching of the emission of the uranyl ions by the intercalated protonated amines is not restricted by low dimensionality of the host uranyl phosphate, and that a diffusion mechanism occurs. Benzylaminium cation efficiently quenches the excited energy of the uranyl ions at close distance, but the long-range and long-lifetime quenching is hindered. A different situation is found in the case of the small hydroxylaminium cation, where the long distance diffusion of the species is fast, playing an important role in the quenching of the excited uranyl ions at longer times

  6. Femtosecond time-resolved studies of coherent vibrational Raman scattering in large gas-phase molecules

    International Nuclear Information System (INIS)

    Hayden, C.C.; Chandler, D.W.

    1995-01-01

    Results are presented from femtosecond time-resolved coherent Raman experiments in which we excite and monitor vibrational coherence in gas-phase samples of benzene and 1,3,5-hexatriene. Different physical mechanisms for coherence decay are seen in these two molecules. In benzene, where the Raman polarizability is largely isotropic, the Q branch of the vibrational Raman spectrum is the primary feature excited. Molecules in different rotational states have different Q-branch transition frequencies due to vibration--rotation interaction. Thus, the macroscopic polarization that is observed in these experiments decays because it has many frequency components from molecules in different rotational states, and these frequency components go out of phase with each other. In 1,3,5-hexatriene, the Raman excitation produces molecules in a coherent superposition of rotational states, through (O, P, R, and S branch) transitions that are strong due to the large anisotropy of the Raman polarizability. The coherent superposition of rotational states corresponds to initially spatially oriented, vibrationally excited, molecules that are freely rotating. The rotation of molecules away from the initial orientation is primarily responsible for the coherence decay in this case. These experiments produce large (∼10% efficiency) Raman shifted signals with modest excitation pulse energies (10 μJ) demonstrating the feasibility of this approach for a variety of gas phase studies. copyright 1995 American Institute of Physics

  7. Time resolved LIF measurements for the study of NO removal: influence of H2O

    International Nuclear Information System (INIS)

    Fresnet, F.; Baravian, G.; Magne, L.; Pasquiers, S.; Postel, C.; Puech, V.; Rousseau, A.

    2001-01-01

    We have developed a time-resolved laser-induced fluorescence (LIF) diagnostic of the NO-removal in a pre-ionized homogeneous discharge, i.e. without density nor temperature gradients, using the photo-triggering technique. This technique allows to measure specie densities in the temporal post-discharge after one homogeneous pulsed excitation, so that experimental results can be more confidently compared to predictions of a 0D-model, i.e. a model which have a spatially homogeneous kinetic description of the cleaning process. This model is fully self-consistent and describe both kinetics during the discharge and the post-discharge. We first reported the influence of electrical parameters (energy and reduced electric field) on the NO removal efficiency in the N 2 /NO mixture. Then, the influence of hydrocarbon (C 2 H 4 ) addition was determined. We showed that dissociation of NO through collision with the metastable state N 2 (a '1 Σ u - ) play the main part in the NO-removal process in homogeneously excited N 2 /NO mixture, and, that a de-excitation process of N 2 (a '1 Σ u - ) by C 2 H 4 explains that the NO-removal efficiency decreases when ethene is added to the mixture. Estimation for the rate coefficient value of this reaction, closed to the known value for methane, was also deduced from our results. In this study, the influence of water is investigated on the NO removal efficiency

  8. Time resolved FTIR study of the catalytic CO oxidation under periodic variation of the reactant concentration

    Energy Technology Data Exchange (ETDEWEB)

    Kritzenberger, J; Wokaun, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Oxidation of CO over palladium/zirconia catalyst obtained from an amorphous Pd{sub 25}Zr{sub 75} precursor was investigated by time resolved FTIR spectroscopy. Sine wave shaped modulation of the reactant concentration, i.e. variation of CO or O{sub 2} partial pressure, was used to induce variations of the IR signals of product (CO{sub 2}) and unconverted reactant (CO), which were detected in a multi-pass absorption cell. The phase shift {phi} between external perturbation and variation of the CO{sub 2} signal was examined in dependence on temperature (100{sup o}C{<=}T{<=}350{sup o}C) and modulation frequency (1.39x10{sup -4}Hz{<=}{omega}{<=}6.67x10{sup -2}Hz). From the phase shift values, a simple Eley-Rideal mechanism is excluded, and the rate limiting step of the Langmuir-Hinshelwood mechanism for the CO oxidation may be identified. Adsorption and possible surface movement of CO to the actual reaction site determine the rate of the CO oxidation on the palladium/zirconia catalyst used in our study. The introduction of an external perturbation is a first step towards the application of two-dimensional infrared spectroscopy to heterogeneous catalyzed reactions. (author) 3 figs., 4 refs.

  9. Compact cryogenic Kerr microscope for time-resolved studies of electron spin transport in microstructures

    NARCIS (Netherlands)

    Rizo, P. J.; Pugzlys, A.; Liu, J.; Reuter, D.; Wieck, A. D.; van der Wal, C. H.; van Loosdrecht, P. H. M.; Pugžlys, A.

    2008-01-01

    A compact cryogenic Kerr microscope for operation in the small volume of high-field magnets is described. It is suited for measurements both in Voigt and Faraday configurations. Coupled with a pulsed laser source, the microscope is used to measure the time-resolved Kerr rotation response of

  10. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics.

    Science.gov (United States)

    Davis, Caitlin M; Reddish, Michael J; Dyer, R Brian

    2017-05-05

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of jump induced difference spectrum from 50ns to 0.5ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Time-resolved optical spectrometer based on a monolithic array of high-precision TDCs and SPADs

    Science.gov (United States)

    Tamborini, Davide; Markovic, Bojan; Di Sieno, Laura; Contini, Davide; Bassi, Andrea; Tisa, Simone; Tosi, Alberto; Zappa, Franco

    2013-12-01

    We present a compact time-resolved spectrometer suitable for optical spectroscopy from 400 nm to 1 μm wavelengths. The detector consists of a monolithic array of 16 high-precision Time-to-Digital Converters (TDC) and Single-Photon Avalanche Diodes (SPAD). The instrument has 10 ps resolution and reaches 70 ps (FWHM) timing precision over a 160 ns full-scale range with a Differential Non-Linearity (DNL) better than 1.5 % LSB. The core of the spectrometer is the application-specific integrated chip composed of 16 pixels with 250 μm pitch, containing a 20 μm diameter SPAD and an independent TDC each, fabricated in a 0.35 μm CMOS technology. In front of this array a monochromator is used to focus different wavelengths into different pixels. The spectrometer has been used for fluorescence lifetime spectroscopy: 5 nm spectral resolution over an 80 nm bandwidth is achieved. Lifetime spectroscopy of Nile blue is demonstrated.

  12. Time-resolved diffuse optical tomographic imaging for the provision of both anatomical and functional information about biological tissue

    Science.gov (United States)

    Zhao, Huijuan; Gao, Feng; Tanikawa, Yukari; Homma, Kazuhiro; Yamada, Yukio

    2005-04-01

    We present in vivo images of near-infrared (NIR) diffuse optical tomography (DOT) of human lower legs and forearm to validate the dual functions of a time-resolved (TR) NIR DOT in clinical diagnosis, i.e., to provide anatomical and functional information simultaneously. The NIR DOT system is composed of time-correlated single-photon-counting channels, and the image reconstruction algorithm is based on the modified generalized pulsed spectral technique, which effectively incorporates the TR data with reasonable computation time. The reconstructed scattering images of both the lower legs and the forearm revealed their anatomies, in which the bones were clearly distinguished from the muscles. In the absorption images, some of the blood vessels were observable. In the functional imaging, a subject was requested to do handgripping exercise to stimulate physiological changes in the forearm tissue. The images of oxyhemoglobin, deoxyhemoglobin, and total hemoglobin concentration changes in the forearm were obtained from the differential images of the absorption at three wavelengths between the exercise and the rest states, which were reconstructed with a differential imaging scheme. These images showed increases in both blood volume and oxyhemoglobin concentration in the arteries and simultaneously showed hypoxia in the corresponding muscles. All the results have demonstrated the capability of TR NIR DOT by reconstruction of the absolute images of the scattering and the absorption with a high spatial resolution that finally provided both the anatomical and functional information inside bulky biological tissues.

  13. Time-resolved homo-FRET studies of biotin-streptavidin complexes.

    Science.gov (United States)

    Andreoni, Alessandra; Nardo, Luca; Rigler, Rudolf

    2016-09-01

    Förster resonance energy transfer is a mechanism of fluorescence quenching that is notably useful for characterizing properties of biomolecules and/or their interactions. Here we study water-solutions of Biotin-Streptavidin complexes, in which Biotin is labeled with a rigidly-bound fluorophore that can interact by Förster resonance energy transfer with the fluorophores labeling the other, up to three, Biotins of the same complex. The fluorophore, Atto550, is a Rhodamine analogue. We detect the time-resolved fluorescence decay of the fluorophores with an apparatus endowed with single-photon sensitivity and temporal resolution of ~30ps. The decay profiles we observe for samples containing constant Biotin-Atto550 conjugates and varying Streptavidin concentrations are multi-exponential. Each decay component can be associated with the rate of quenching exerted on each donor by each of the acceptors that label the other Biotin molecules, depending on the binding site they occupy. The main features that lead to this result are that (i) the transition dipole moments of the up-to-four Atto550 fluorophores that label the complexes are fixed as to both relative positions and mutual orientations; (ii) the fluorophores are identical and the role of donor in each Biotin-Streptavidin complex is randomly attributed to the one that has absorbed the excitation light (homo-FRET). Obviously the high-temporal resolution of the excitation-detection apparatus is necessary to discriminate among the fluorescence decay components. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Time-resolved spectroscopy in synchrotron radiation

    International Nuclear Information System (INIS)

    Rehn, V.; Stanford Univ., CA

    1980-01-01

    Synchrotron radiation (SR) from large-diameter storage rings has intrinsic time structure which facilitates time-resolved measurements form milliseconds to picoseconds and possibly below. The scientific importance of time-resolved measurements is steadily increasing as more and better techniques are discovered and applied to a wider variety of scientific problems. This paper presents a discussion of the importance of various parameters of the SR facility in providing for time-resolved spectroscopy experiments, including the role of beam-line optical design parameters. Special emphasis is placed on the requirements of extremely fast time-resolved experiments with which the effects of atomic vibrational or relaxation motion may be studied. Before discussing the state-of-the-art timing experiments, we review several types of time-resolved measurements which have now become routine: nanosecond-range fluorescence decay times, time-resolved emission and excitation spectroscopies, and various time-of-flight applications. These techniques all depend on a short SR pulse length and a long interpulse period, such as is provided by a large-diameter ring operating in a single-bunch mode. In most cases, the pulse shape and even the stability of the pulse shape is relatively unimportant as long as the pulse length is smaller than the risetime of the detection apparatus, typically 1 to 2 ns. For time resolution smaller than 1 ns, the requirements on the pulse shape become more stringent. (orig./FKS)

  15. A synchrotron radiation camera and data acquisition system for time resolved x-ray scattering studies

    International Nuclear Information System (INIS)

    Bordas, J.; Koch, M.H.J.; Clout, P.N.; Dorrington, E.; Boulin, C.; Gabriel, A.

    1980-01-01

    Until recently, time resolved measurements of x-ray scattering patterns have not been feasible because laboratory x-ray sources were too weak and detectors unavailable. Recent developments in both these fields have changed the situation, and it is now possible to follow changes in x-ray scattering patterns with a time resolution of a few ms. The apparatus used to achieve this is described and some examples from recent biological experiments are given. (author)

  16. Charge transport in nanostructured materials for solar energy conversion studied by time-resolved terahertz spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Kužel, Petr; Sundström, V.

    2010-01-01

    Roč. 215, 2-3 (2010), s. 123-139 ISSN 1010-6030 R&D Projects: GA ČR(CZ) GP202/09/P099; GA AV ČR(CZ) IAA100100902; GA MŠk LC512 Institutional research plan: CEZ:AV0Z10100520 Keywords : time-resolved terahertz spectroscopy * ultrafast dynamics * bulk heterojunction * semiconductor nanostructures * transport * mobility Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.243, year: 2010

  17. Time-resolved small-angle neutron scattering study on soap-free emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Motokawa, Ryuhei [Research Group of Soft Matter and Neutron Scattering, Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Koizumi, Satoshi [Research Group of Soft Matter and Neutron Scattering, Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan)]. E-mail: koizumi@neutrons.tokai.jaeri.go.jp; Hashimoto, Takeji [Research Group of Soft Matter and Neutron Scattering, Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Nakahira, Takayuki [Department of Applied Chemistry and Biotechnology, Chiba University, Chiba-shi, Chiba 263-8522 (Japan); Annaka, Masahiko [Department of Chemistry, Kyushu University, Fukuoka 812-8581 (Japan)

    2006-11-15

    We investigated an aqueous soap-free emulsion polymerization process of Poly(N-isopropylacrylamide)-block-poly(ethylene glycol) by ultra-small-angle and time-resolved small-angle neutron scattering methods. The results indicate that the compartmentalization of chain end radicals into solid-like micelle cores crucially leads to the quasi-living behavior of the radical polymerization by prohibiting recombination process.

  18. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources.

    Science.gov (United States)

    Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E

    2016-05-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).

  19. Time resolved spectroscopic investigation of SiD2 + D2: kinetic study

    Science.gov (United States)

    Al-Rubaiey, Najem A.; Walsh, Robin

    2017-03-01

    Silylenes (silanediyls) have made an important impact on organosilicon chemistry even if it is of more recent foundation than carbenes in organic chemistry and much less complete. These species are highly reactive intermediates. They play a central role in the chemical vapour deposition (CVD) of various silicon-containing thin films which have a technological importance in microelectronics as well as in the dry etching processes of silicon wafers. Spectroscopic methods have been developed to observe these species, a necessary pre-requisite to their direct monitoring. In this work, deuterated phenylsilane precursor, PhSiD3 was chosen for SiD2 because its analogue phenylsilane, PhSiH3 proved to be a good precursor for SiH2 and the high quality decay signals observed revealed that SiD2 be readily detected from PhSiD3 and that if other decomposition pathways (e.g. PhSiD + D2) are occurring, they do not effect measurements of the rate constants for SiD2. The absorption spectrum of SiD2 formed from the flash photolysis of a mixture of PhSiD3 and SF6 at 193nm were found in the region 17384-17391 cm-1 with strong band at 17387.07 cm-1. This single rotational line of pQ1 was chosen to monitor SiD2 removal. Time-resolved studies of SiD2 have been carried out to obtain rate constants for its bimolecular reactions with D2. The reactions were studied over the pressure range 5-100 Torr (in SF6 bath gas) at four temperatures in the range 298-498K. Single decay from 10 photolysis laser shots were averaged and found to give reasonable first-order kinetics fits. Second order kinetics were obtained by pressure dependence of the pseudo first order decay constants and substance D2 pressures within experimental error. The reaction was found to be weakly pressure dependent at all temperatures, consistent with a third-body mediated association process. In addition, SiH2+ H2 reaction is approximately ca. 60% faster than SiD2+D2 reaction. Theoretical extrapolations (using Lindemann

  20. Time resolved spectroscopic investigation of SiD2 + D2: kinetic study

    Directory of Open Access Journals (Sweden)

    Al-Rubaiey Najem A.

    2017-01-01

    Full Text Available Silylenes (silanediyls have made an important impact on organosilicon chemistry even if it is of more recent foundation than carbenes in organic chemistry and much less complete. These species are highly reactive intermediates. They play a central role in the chemical vapour deposition (CVD of various silicon-containing thin films which have a technological importance in microelectronics as well as in the dry etching processes of silicon wafers. Spectroscopic methods have been developed to observe these species, a necessary pre-requisite to their direct monitoring. In this work, deuterated phenylsilane precursor, PhSiD3 was chosen for SiD2 because its analogue phenylsilane, PhSiH3 proved to be a good precursor for SiH2 and the high quality decay signals observed revealed that SiD2 be readily detected from PhSiD3 and that if other decomposition pathways (e.g. PhSiD + D2 are occurring, they do not effect measurements of the rate constants for SiD2. The absorption spectrum of SiD2 formed from the flash photolysis of a mixture of PhSiD3 and SF6 at 193nm were found in the region 17384-17391 cm-1 with strong band at 17387.07 cm-1. This single rotational line of pQ1 was chosen to monitor SiD2 removal. Time-resolved studies of SiD2 have been carried out to obtain rate constants for its bimolecular reactions with D2. The reactions were studied over the pressure range 5-100 Torr (in SF6 bath gas at four temperatures in the range 298-498K. Single decay from 10 photolysis laser shots were averaged and found to give reasonable first-order kinetics fits. Second order kinetics were obtained by pressure dependence of the pseudo first order decay constants and substance D2 pressures within experimental error. The reaction was found to be weakly pressure dependent at all temperatures, consistent with a third-body mediated association process. In addition, SiH2+ H2 reaction is approximately ca. 60% faster than SiD2+D2 reaction. Theoretical extrapolations (using

  1. Time-resolved EPR study of singlet oxygen in the gas phase.

    Science.gov (United States)

    Ruzzi, Marco; Sartori, Elena; Moscatelli, Alberto; Khudyakov, Igor V; Turro, Nicholas J

    2013-06-27

    X-band EPR spectra of singlet O2((1)Δg) and triplet O2((3)Σg(-)) were observed in the gas phase under low molecular-oxygen pressures PO2 = 0.175-0.625 Torr, T = 293-323 K. O2((1)Δg) was produced by quenching of photogenerated triplet sensitizers naphthalene C8H10, perdeuterated naphthalene, and perfluoronaphthalene in the gas phase. The EPR spectrum of O2((1)Δg) was also observed under microwave discharge. Integrated intensities and line widths of individual components of the EPR spectrum of O2((3)Σg(-)) were used as internal standards for estimating the concentration of O2 species and PO2 in the EPR cavity. Time-resolved (TR) EPR experiments of C8H10 were the main focus of this Article. Pulsed irradiation of C8H10 in the presence of O2((3)Σg(-)) allowed us to determine the kinetics of formation and decay for each of the four components of the O2((1)Δg) EPR signal, which lasted for only a few seconds. We found that the kinetics of EPR-component decay fit nicely to a biexponential kinetics law. The TR EPR 2D spectrum of the third component of the O2((1)Δg) EPR spectrum was examined in experiments using C8H10. This spectrum vividly presents the time evolution of an EPR component. The largest EPR signal and the longest lifetime of O2((1)Δg), τ = 0.4 s, were observed at medium pressure PO2 = 0.4 Torr, T = 293 K. The mechanism of O2((1)Δg) decay in the presence of photosensitizers is discussed. EPR spectra of O2((1)Δg) evidence that the spin-rotational states of O2((1)Δg) are populated according to Boltzmann distribution in the studied time range of 10-100 ms. We believe that this is the first report dealing with the dependence of O2((1)Δg) EPR line width on PO2 and T.

  2. Thermo-oxidative degradation study of melt-processed polyethylene and its blend with polyamide using time-resolved rheometry

    CSIR Research Space (South Africa)

    Salehiyan, Reza

    2017-05-01

    Full Text Available Time-resolved mechanical spectroscopy (TRMS) was conducted to study the thermo-oxidative degradation of linear low density polyethylene (LLDPE) samples with different thermal histories and their blends with a polyamide (PA6) in the melt state. Neat...

  3. NO kinetics in pulsed low-pressure nitrogen plasmas studied by time resolved quantum cascade laser absorption spectroscopy

    NARCIS (Netherlands)

    Welzel, S.; Guaitella, O.; Lazzaroni, C.; Pintassilgo, C.; Rousseau, A.; Röpcke, J.

    2011-01-01

    Time-resolved quantum cascade laser absorption spectroscopy at 1897 cm-1 (5.27 µm) has been applied to study the NO(X) kinetics on the micro- and millisecond time scale in pulsed low-pressure N2/NO dc discharges. Experiments have been performed under flowing and static gas conditions to infer the

  4. Time-resolved fluorescence quenching studies of sodium lauryl ether sulfate micelles

    OpenAIRE

    Friedrich, Leidi C.; Silva, Volnir O.; Moreira Jr, Paulo F.; Tcacenco, Celize M.; Quina, Frank H.

    2013-01-01

    Aggregation numbers (N Ag) of micelles of the commercial anionic detergent sodium lauryl ether sulfate (SLES), with an average of two ethylene oxide subunits, were determined at 30 and 40º C by the time-resolved fluorescence quenching method with pyrene as the fluorescent probe and the N-hexadecylpyridinium ion as the quencher. The added-salt dependent growth of SLES micelles (γ = 0.11-0.15, where γ is the slope of a plot of log aggregation number vs. log [Yaq] and [Yaq] is the sodium counter...

  5. Time-resolved study of formate on Ni( 1 1 1 ) by picosecond SFG spectroscopy

    Science.gov (United States)

    Kusafuka, K.; Noguchi, H.; Onda, K.; Kubota, J.; Domen, K.; Hirose, C.; Wada, A.

    2002-04-01

    Time-resolved vibrational measurements were carried out on formate (HCOO) adsorbed on Ni(1 1 1) surface by combining the sum-frequency generation method and picosecond laser system (time resolution of 6 ps). Rapid intensity decrease (within the time resolution) followed by intensity recovery (time constant of several tens of ps) of CH stretching signal was observed when picosecond 800 nm pulse was irradiated on the sample surface. From the results of temperature and pump fluence dependences of temporal behaviour of signal intensity, we concluded that the observed intensity change was induced by non-thermal process. Mechanism of the temporal intensity change was discussed.

  6. Studying the potential of point detectors in time-resolved dose verification of dynamic radiotherapy

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Behrens, C. F.; Andersen, Claus E.

    2015-01-01

    based on fiber-coupled plastic scintillator detectors was evaluated and compared with a Farmer-type ionization chamber and a small-volume ionization chamber. An important feature of scintillator detectors is that the sensitive volume of the detector can easily be scaled, and five scintillator detectors......-volume ionization chamber and the smallest scintillators. The time-resolved RapidArc dose profiles revealed volume-dependent discrepancies between scintillator and ionization chamber response, which confirmed that correction factors for ionization chambers in high temporal and spatial dose gradients are dominated...

  7. Time-resolved fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gustavsson, Thomas; Mialocq, Jean-Claude

    2007-01-01

    This article addresses the evolution in time of light emitted by a molecular system after a brief photo-excitation. The authors first describe fluorescence from a photo-physical point of view and discuss the characterization of the excited state. Then, they explain some basic notions related to fluorescence characterization (lifetime and decays, quantum efficiency, so on). They present the different experimental methods and techniques currently used to study time-resolved fluorescence. They discuss basic notions of time resolution and spectral reconstruction. They briefly present some conventional methods: intensified Ccd cameras, photo-multipliers and photodiodes associated with a fast oscilloscope, and phase modulation. Other methods and techniques are more precisely presented: time-correlated single photon counting (principle, examples, and fluorescence lifetime imagery), streak camera (principle, examples), and optical methods like the Kerr optical effect (principle and examples) and fluorescence up-conversion (principle and theoretical considerations, examples of application)

  8. Thin film growth studies using time-resolved x-ray scattering

    Science.gov (United States)

    Kowarik, Stefan

    2017-02-01

    Thin-film growth is important for novel functional materials and new generations of devices. The non-equilibrium growth physics involved is very challenging, because the energy landscape for atomic scale processes is determined by many parameters, such as the diffusion and Ehrlich-Schwoebel barriers. We review the in situ real-time techniques of x-ray diffraction (XRD), x-ray growth oscillations and diffuse x-ray scattering (GISAXS) for the determination of structure and morphology on length scales from Å to µm. We give examples of time resolved growth experiments mainly from molecular thin film growth, but also highlight growth of inorganic materials using molecular beam epitaxy (MBE) and electrochemical deposition from liquids. We discuss how scaling parameters of rate equation models and fundamental energy barriers in kinetic Monte Carlo methods can be determined from fits of the real-time x-ray data.

  9. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy

    Science.gov (United States)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2016-05-01

    The excited state relaxation dynamics of the solvated electron in H2O and D2O are investigated using time-resolved photoelectron spectroscopy in a liquid microjet. The data show that the initial excited state decays on a time scale of 75 ± 12 fs in H2O and 102 ± 8 fs in D2O, followed by slower relaxation on time scales of 400 ± 70 fs and 390 ± 70 fs that are isotopically invariant within the precision of our measurements. Based on the time evolution of the transient signals, the faster and slower time constants are assigned to p → s internal conversion (IC) of the hydrated electron and relaxation on the ground electronic state, respectively. This assignment is consistent with the non-adiabatic mechanism for relaxation of the hydrated electron and yields an isotope effect of 1.4 ± 0.2 for IC of the hydrated electron.

  10. Time resolved photoluminescence studies of long lived emissive specie in F8BT:PFB blends

    Science.gov (United States)

    Gélinas, Simon; Howard, Ian; Friend, Richard; Silva, Carlos

    2009-03-01

    Type-II heterojunctions play a crucial role in organic optoelectronic devices. We use donor-acceptor polyfluorene blends as a model system to understand excited-state dynamics at heterojunctions. These interfacial excitations are intrachain singlet and triplet excitons, geminate polaron pairs, and exciplexes (interfacial charge-transfer excitons). Time-resolved photoluminescence (PL) spectra were taken at 10,and room temperature to investigate the interconversion dynamics of these species. We observe delayed PL with sub-linear excitation fluence dependence. This implies that delayed singlet exciton generation involves a bimolecular annihilation mechanism. By means of kinetic modeling, we propose triplet-triplet exciton annihilation as a regeneration route to singlet excitons, and subsequently to exciplexes. This points to a significant (<15,%) yield of triplet excitons after interfacial charge separation, and to the central role of these species on the interfacial dynamics.

  11. Studying electron distributions using the time-resolved free-bound spectra from coronal plasmas

    International Nuclear Information System (INIS)

    Matthews, D.L.; Kauffman, R.L.; Kilkenny, J.D.; Lee, R.W.

    1982-11-01

    Absorption of laser light in a plasma by inverse bremsstrahlung, I.B., can lead to a non-Maxwellian velocity distribution provided the electron-elecron collision frequency is too low to equilibrate the velocity distribution in the coronal plasma region of a laser heated aluminum disk by measuring the radiation recombination continuum. The experiments are performed using lambda/sub L/ = 0.532 μm laser light at intensities of approx. 10 16 W/cm 2 . Such parameters are predicted to produce conditions suitable for a non-thermal electron distribution. The shape of the K-shell recombination radiation has been measured using a time-resolved x-ray spectrograph. The electron distribution can be determined from deconvolution of the recombination continuum shape

  12. Metalation of positively charged water soluble mesoporphyrins studied via time-resolved SERRS spectroscopy

    Science.gov (United States)

    Procházka, Marek; Hanzliková, Jana; Štěpánek, Josef; Baumruk, Vladimir

    1997-06-01

    Time-resolved SERRS spectra of 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]21 H,23 H-porphine (TMAP) were recorded (using a multichannel Raman spectrometer) in various SERS-active Ag colloid/porphyrin systems. Data treatment based on a factor analysis was used to decompose all the SERRS spectra into two main components: SERRS spectrum of the free base TMAP and that of its Ag metalated form. The metalation kinetics obtained in this way was found to be highly dependent on the presence of phosphate anions, citrate and/or Triton X-100 in the colloidal system. The results are analogous to those previously obtained for 5,10,15,20-tetrakis(1-methyl-4-pyridyl)21 H,23 H-porphine, a porphyrin with a substantially stronger tendency towards metalation.

  13. Evolution of a Rippled Membrane during Phospholipase A2 Hydrolysis Studied by Time-Resolved AFM

    DEFF Research Database (Denmark)

    Leidy, Chad; Mouritsen, Ole G.; Jørgensen, Kent

    2004-01-01

    The sensitivity of phospholipase A2 (PLA2) for lipid membrane curvature is explored by monitoring, through time-resolved atomic force microscopy, the hydrolysis of supported double bilayers in the ripple phase. The ripple phase presents a corrugated morphology. PLA2 is shown to have higher activity...... toward the ripple phase compared to the gel phase in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes, indicating its preference for this highly curved membrane morphology. Hydrolysis of the stable and metastable ripple structures is monitored for equimolar DMPC/1,2-distearoyl- sn-glycero-3....... This is reflected in an increase in ripple spacing, followed by a sudden flattening of the lipid membrane during hydrolysis. Hydrolysis of the ripple phase results in anisotropic holes running parallel to the ripples, suggesting that the ripple phase has strip regions of higher sensitivity to enzymatic attack. Bulk...

  14. Time-resolved X-ray photoelectron spectroscopy techniques for the study of interfacial charge dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Neppl, Stefan, E-mail: sneppl@lbl.gov; Gessner, Oliver

    2015-04-15

    Highlights: • Ultrafast interfacial charge transfer is probed with atomic site specificity. • Femtosecond X-ray photoelectron spectroscopy using a free electron laser. • Efficient and flexible picosecond X-ray photoelectron pump–probe scheme using synchrotron radiation. - Abstract: X-ray photoelectron spectroscopy (XPS) is one of the most powerful techniques to quantitatively analyze the chemical composition and electronic structure of surfaces and interfaces in a non-destructive fashion. Extending this technique into the time domain has the exciting potential to shed new light on electronic and chemical dynamics at surfaces by revealing transient charge configurations with element- and site-specificity. Here, we describe prospects and challenges that are associated with the implementation of picosecond and femtosecond time-resolved X-ray photoelectron spectroscopy at third-generation synchrotrons and X-ray free-electron lasers, respectively. In particular, we discuss a series of laser-pump/X-ray-probe photoemission experiments performed on semiconductor surfaces, molecule-semiconductor interfaces, and films of semiconductor nanoparticles that demonstrate the high sensitivity of time-resolved XPS to light-induced charge carrier generation, diffusion and recombination within the space charge layers of these materials. Employing the showcase example of photo-induced electronic dynamics in a dye-sensitized semiconductor system, we highlight the unique possibility to probe heterogeneous charge transfer dynamics from both sides of an interface, i.e., from the perspective of the molecular electron donor and the semiconductor acceptor, simultaneously. Such capabilities will be crucial to improve our microscopic understanding of interfacial charge redistribution and associated chemical dynamics, which are at the heart of emerging energy conversion, solar fuel generation, and energy storage technologies.

  15. Time Resolved Studies of Carrier Dynamics in III -v Heterojunction Semiconductors.

    Science.gov (United States)

    Westland, Duncan James

    Available from UMI in association with The British Library. Requires signed TDF. Picosecond time-resolution photoluminescence spectroscopy has been used to study transient processes in Ga _{.47}In_{.53 }As/InP multiple quantum wells (MQWs), and in bulk Ga_{.47}In _{.53}As and GaSb. To facilitate the experimental studies, apparatus was constructed to allow the detection of transient luminescence with 3ps time resolution. A frequency upconversion technique was employed. Relaxation of energetic carriers in bulk Ga _{.47}In_{.53 }As by optic phonons has been investigated, and, at carrier densities ~3 times 10^{18}cm ^{-3} is found to be a considerably slower process than simple theory predicts. The discrepancy is resolved by the inclusion of a non-equilibrium population of longitudinal optic phonons in the theoretical description. Slow energy loss is also observed in a 154A MQW under similar conditions, but carriers are found to relax more quickly in a 14A MQW with a comparable repeat period. The theory of non-equilibrium mode occupation is modified to describe the case of a MQW and is found to agree with experiment. Carrier relaxation in GaSb is studied and the importance of occupation of the L _6 conduction band valley in this material is demonstrated. The ambipolar diffusion of a photoexcited carrier plasma through an InP capping layer was investigated using an optical time-of-flight technique. This experiment also enables the efficiency of carrier capture by a Ga _{.47}In_{.53 }As quantum well to be determined. A capture time of 4ps was found.

  16. Ultrafast optical responses of {beta}-carotene and lycopene probed by sub-20-fs time-resolved coherent spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, M.; Sugisaki, M. [CREST-JST and Department of Physics, Osaka City University, Osaka 558-8585 (Japan); Gall, A.; Robert, B. [CEA, Institut de Biologie et Technologies de Saclay, and CNRS, Gif-sur-Yvette F-91191 (France); Cogdell, R.J. [IBLS, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Hashimoto, H., E-mail: hassy@sci.osaka-cu.ac.j [CREST-JST and Department of Physics, Osaka City University, Osaka 558-8585 (Japan)

    2009-12-15

    We investigate how structural distortions in carotenoid cause decoherences of its high-frequency vibrational modes by applying the sub-20-fs time-resolved transient grating spectroscopy to {beta}-carotene and lycopene. The results indicate that the C=C central stretching mode shows significant loss of coherence under the effects of the steric hindrance between {beta}-ionone ring and polyene backbone, whereas the other high-frequency modes do not show such dependency on the structural distortions.

  17. Ultrafast optical responses of β-carotene and lycopene probed by sub-20-fs time-resolved coherent spectroscopy

    International Nuclear Information System (INIS)

    Fujiwara, M.; Sugisaki, M.; Gall, A.; Robert, B.; Cogdell, R.J.; Hashimoto, H.

    2009-01-01

    We investigate how structural distortions in carotenoid cause decoherences of its high-frequency vibrational modes by applying the sub-20-fs time-resolved transient grating spectroscopy to β-carotene and lycopene. The results indicate that the C=C central stretching mode shows significant loss of coherence under the effects of the steric hindrance between β-ionone ring and polyene backbone, whereas the other high-frequency modes do not show such dependency on the structural distortions.

  18. Time-resolved fluorescence quenching studies of sodium lauryl ether sulfate micelles

    International Nuclear Information System (INIS)

    Friedrich, Leidi C.; Silva, Volnir O.; Quina, Frank H.; Moreira Junior, Paulo F.; Tcacenco, Celize M.

    2013-01-01

    Aggregation numbers (N Ag ) of micelles of the commercial anionic detergent sodium lauryl ether sulfate (SLES), with an average of two ethylene oxide subunits, were determined at 30 and 40 deg C by the time-resolved fluorescence quenching method with pyrene as the fluorescent probe and the N-hexadecylpyridinium ion as the quencher. The added-salt dependent growth of SLES micelles (γ = 0.11-0.15, where γ is the slope of a plot of log aggregation number vs. log [Y aq ] and [Y aq ] is the sodium counterion concentration free in the intermicellar aqueous phase) is found to be significantly lower than that of sodium alkyl sulfate micelles (γ ca. 0.25), a difference attributed to the larger headgroup size of SLES. The I 1 /I 3 vibronic intensity ratio and the rate constant for intramicellar quenching of pyrene show that the pyrene solubilization microenvironment and the intramicellar microviscosity are insensitive to micelle size or the presence of added salt. (author)

  19. Studies of the reactions of hydrogen atoms by time-resolved E. S. R. spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fessenden, R W; Verma, N C [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Chemistry

    1977-01-01

    Time-resolved e.s.r. spectroscopy has been used to follow directly the reactions of H atoms produced by pulse radiolysis of acid solutions. Detailed analysis of the time profile of the e.s.r. signal was carried out by means of modified Bloch equations. The increased signal found when a scavenger for OH such as t-butyl alcohol is present is shown to be mainly the result of slower H atom decay by radical-radical reaction. The reaction H + OH does not appear to produce any signal polarization. The decay curves observed in the presence of solute are readily accounted for by the treatment, and good plots of pseudo first-order rate constant against solute concentration are obtained. The absolute rate constants for reaction with H atoms are for methanol 2.5 x10/sup 6/, for ethanol 2.1 X 10/sup 7/, for isopropanol 6.8 x 10/sup 7/, and for succinic acid 3.0 x 10/sup 6/ dm/sup 3/ mol/sup -1/s/sup -1/. These values are in good agreement with the earlier chemical measurements.

  20. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, Madeline H.; Williams, Holly L. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Neumark, Daniel M., E-mail: dneumark@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-05-14

    The excited state relaxation dynamics of the solvated electron in H{sub 2}O and D{sub 2}O are investigated using time-resolved photoelectron spectroscopy in a liquid microjet. The data show that the initial excited state decays on a time scale of 75 ± 12 fs in H{sub 2}O and 102 ± 8 fs in D{sub 2}O, followed by slower relaxation on time scales of 400 ± 70 fs and 390 ± 70 fs that are isotopically invariant within the precision of our measurements. Based on the time evolution of the transient signals, the faster and slower time constants are assigned to p → s internal conversion (IC) of the hydrated electron and relaxation on the ground electronic state, respectively. This assignment is consistent with the non-adiabatic mechanism for relaxation of the hydrated electron and yields an isotope effect of 1.4 ± 0.2 for IC of the hydrated electron.

  1. Time-resolved study of absorbing film assisted laser induced forward transfer of Trichoderma longibrachiatum conidia

    Energy Technology Data Exchange (ETDEWEB)

    Hopp, B [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Smausz, T [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Barna, N [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary); Vass, Cs [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary); Antal, Zs [Hungarian Academy of Sciences and University of Szeged, Microbiological Research Group, PO Box 533, H-6701 Szeged (Hungary); Kredics, L [Hungarian Academy of Sciences and University of Szeged, Microbiological Research Group, PO Box 533, H-6701 Szeged (Hungary); Chrisey, D [Naval Research Laboratory, Washington, DC 20375 (United States)

    2005-03-21

    We have characterized the absorbing film assisted transfer of Trichoderma longibrachiatum conidia using a synchronized laser for illumination. The transfer laser used was a KrF excimer laser ({lambda} = 248 nm, FWHM = 30 ns) and the ejected material was illuminated parallel to the quartz plate by a nitrogen laser pumped Coumarine 153 dye laser beam ({lambda} = 453 nm, FWHM 1 ns) electronically delayed relative to the transfer UV pulse. Our time-resolved investigations determined that the ejection velocity front of the conidia plume from the donor surface during the transfer procedure was 1150 m s{sup -1} at 355 mJ cm{sup -2} applied laser fluence. On the basis of the measured data, the acceleration of the emitted conidia at the plume front was approximately 10{sup 9} x g. The conidia survived the absorbing film assisted forward transfer and associated mechanical shear without significant damages suggesting that the technique might be applicable to other more fragile types of biological objects and applications.

  2. Study of combustion properties of a solid propellant by highly time-resolved passive FTIR

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liming; Zhang, Lin; Li, Yan; Liu, Bingping; Wang, Junde [Laboratory of Advanced Spectroscopy, Nanjing University of Science and Technology, Nanjing 210014 (China)

    2006-10-15

    With a time resolution of 0.125 s and a spectral resolution of 4 cm{sup -1}, emission spectra of the combustion process of a solid propellant were recorded by highly time-resolved passive FTIR. Some gaseous combustion products, such as H{sub 2}O, CO, CO{sub 2}, NO and HCl, were distinguished by the characteristic emission band of each molecule. The equation for flame temperature calculation based on the diatomic molecule emission fine structure theory was improved through judicious utilization of the spectral running number 'm' which makes the temperature measurement simpler and faster. Some combustion information of the solid propellant had been given including the characteristic spectral profile, the distribution of the absolute spectral energy, the distribution of the combustion flame temperature, and the concentration distributions of HCl and NO versus burning time. The results will provide theoretical and experimental bases for improving the formula and raising combustion efficiency of solid propellant, and developing the design of rocket motor, infrared guidance and antiguidance systems. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  3. Time-resolved fluorescence quenching studies of sodium lauryl ether sulfate micelles

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Leidi C.; Silva, Volnir O.; Quina, Frank H., E-mail: quina@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Quimica; Moreira Junior, Paulo F. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Escola Politecnica. Departamento de Engenharia Quimica; Tcacenco, Celize M. [Fundacao Instituto de Ensino para Osasco (FIEO/UNIFIEO), SP (Brazil). Centro Universitario FIEO. Centro de Estudos Quimicos

    2013-02-15

    Aggregation numbers (N{sub Ag}) of micelles of the commercial anionic detergent sodium lauryl ether sulfate (SLES), with an average of two ethylene oxide subunits, were determined at 30 and 40 deg C by the time-resolved fluorescence quenching method with pyrene as the fluorescent probe and the N-hexadecylpyridinium ion as the quencher. The added-salt dependent growth of SLES micelles ({gamma} = 0.11-0.15, where {gamma} is the slope of a plot of log aggregation number vs. log [Y{sub aq}] and [Y{sub aq}] is the sodium counterion concentration free in the intermicellar aqueous phase) is found to be significantly lower than that of sodium alkyl sulfate micelles ({gamma} ca. 0.25), a difference attributed to the larger headgroup size of SLES. The I{sub 1}/I{sub 3} vibronic intensity ratio and the rate constant for intramicellar quenching of pyrene show that the pyrene solubilization microenvironment and the intramicellar microviscosity are insensitive to micelle size or the presence of added salt. (author)

  4. Time-resolved study of absorbing film assisted laser induced forward transfer of Trichoderma longibrachiatum conidia

    International Nuclear Information System (INIS)

    Hopp, B; Smausz, T; Barna, N; Vass, Cs; Antal, Zs; Kredics, L; Chrisey, D

    2005-01-01

    We have characterized the absorbing film assisted transfer of Trichoderma longibrachiatum conidia using a synchronized laser for illumination. The transfer laser used was a KrF excimer laser (λ = 248 nm, FWHM = 30 ns) and the ejected material was illuminated parallel to the quartz plate by a nitrogen laser pumped Coumarine 153 dye laser beam (λ = 453 nm, FWHM 1 ns) electronically delayed relative to the transfer UV pulse. Our time-resolved investigations determined that the ejection velocity front of the conidia plume from the donor surface during the transfer procedure was 1150 m s -1 at 355 mJ cm -2 applied laser fluence. On the basis of the measured data, the acceleration of the emitted conidia at the plume front was approximately 10 9 x g. The conidia survived the absorbing film assisted forward transfer and associated mechanical shear without significant damages suggesting that the technique might be applicable to other more fragile types of biological objects and applications

  5. Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials

    Science.gov (United States)

    Hendricks, F.; Matylitsky, V. V.; Domke, M.; Huber, Heinz P.

    2016-03-01

    Laser processing of optically transparent or semi-transparent, brittle materials is finding wide use in various manufacturing sectors. For example, in consumer electronic devices such as smartphones or tablets, cover glass needs to be cut precisely in various shapes. The unique advantage of material processing with femtosecond lasers is efficient, fast and localized energy deposition in nearly all types of solid materials. When an ultra-short laser pulse is focused inside glass, only the localized region in the neighborhood of the focal volume absorbs laser energy by nonlinear optical absorption. Therefore, the processing volume is strongly defined, while the rest of the target stays unaffected. Thus ultra-short pulse lasers allow cutting of the chemically strengthened glasses such as Corning Gorilla glass without cracking. Non-ablative cutting of transparent, brittle materials, using the newly developed femtosecond process ClearShapeTM from Spectra-Physics, is based on producing a micron-sized material modification track with well-defined geometry inside. The key point for development of the process is to understand the induced modification by a single femtosecond laser shot. In this paper, pump-probe microscopy techniques have been applied to study the defect formation inside of transparent materials, namely soda-lime glass samples, on a time scale between one nanosecond to several tens of microseconds. The observed effects include acoustic wave propagation as well as mechanical stress formation in the bulk of the glass. Besides better understanding of underlying physical mechanisms, our experimental observations have enabled us to find optimal process parameters for the glass cutting application and lead to better quality and speed for the ClearShapeTM process.

  6. Two-dimensional time-resolved X-ray diffraction study of directional solidification in steels

    International Nuclear Information System (INIS)

    Yonemura, Mitsuharu

    2009-01-01

    Full text: The high intensity heat source used for fusion welding creates steep thermal gradients of 100 degree C/s from 1800 degree Celsius. Further, the influence of a preferred orientation is serious for observation of a directional solidification that follows the dendrite growth along the direction toward the moving heat source. Therefore, we observed the rapid solidification of weld metal at a time resolution of 0.01∼0.1seconds by the Two-Dimensional Time-Resolved X-ray Diffraction (2DTRXRD) system for real welding. The diffraction ring was dynamically observed by 2DTRXRD during arc-passing over the irradiation area of X-ray with synchrotron energy of 18 KeV. The arc power output was 10 V - 150 A, and a scan speed of the arc was 1.0 mm/s. The temperature rise of instruments was suppressed by the water-cooled copper plate under the sample. Further, the temperature distribution of the weld metal was measured by the thermocouple and related to the diffraction patterns. Consequently, solidification and solid phase transformation of low carbon steels and stainless steels were observed during rapid cooling by 2DTRXRD. In the low-carbon steel, the microstructure is formed in the 2 step process; (i) formation of crystallites and (ii) increase of crystallinity. In the stainless steel, the irregular interface layer of σ/y in the quenched metal after solidification is expected that it is easy for dendrites to move at the lower temperature. In the carbide precipitation stainless steel, it is easy for NbC to grow on σ phase with a little under cooling. Further, a mist-like pattern, which differs from the halo-pattern, in the fusion zone gave some indication of the possibilities to observe the nucleation and the early solidification by 2DTRXRD. (author)

  7. Pulse radiolysis of alkanes: a time-resolved EPR study - Part I. Alkyl radicals

    International Nuclear Information System (INIS)

    Shkrob, I.A.; Trifunac, A.D.

    1995-01-01

    Time-resolved EPR was applied to detect short-lived alkyl radicals in pulse radiolysis of liquid alkanes. Two problems were addressed: (i) the mechanism of radical formation and (ii) the mechanism of chemically-induced spin polarization in these radicals. (i) The ratio of yields of penultimate and interior radicals in n-alkanes at the instant of their generation was found to be ≅ 1.25 times greater than the statistical quantity. This higher-than-statistical production of penultimate radicals indicates that the proton transfer reaction involving excited radical cations must be a prevailing route of radical generation. The relative yields of hydrogen abstraction and fragmentation for various branched alkanes are estimated. It is concluded that the fragmentation occurs prior to the formation of radicals in an excited precursor species. (ii) The analysis of spin-echo kinetics in n-alkanes suggests that the alkyl radicals gain the emissive polarization in spur reactions. This initial polarization increases with shortening of the aliphatic chain. We suggest that the origin of this polarization is the ST mechanism operating in the pairs of alkyl radicals and hydrogen atoms generated in dissociation of excited alkane molecules. It is also found that a long-chain structure of alkyl radicals results in much higher rate of Heisenberg spin exchange relative to the recombination rate (up to 30 times). That suggests prominent steric effects in recombination or the occurrence of through-chain electron exchange. The significance of these results in the context of cross-linking in polyethylene and higher paraffins is discussed. (Author)

  8. Mapping Charge Carrier Density in Organic Thin-Film Transistors by Time-Resolved Photoluminescence Lifetime Studies

    DEFF Research Database (Denmark)

    Leißner, Till; Jensen, Per Baunegaard With; Liu, Yiming

    2017-01-01

    The device performance of organic transistors is strongly influenced by the charge carrier distribution. A range of factors effect this distribution, including injection barriers at the metal-semiconductor interface, the morphology of the organic film, and charge traps at the dielectric/organic...... interface or at grain boundaries. In our comprehensive experimental and analytical work we demonstrate a method to characterize the charge carrier density in organic thin-film transistors using time-resolved photoluminescence spectroscopy. We developed a numerical model that describes the electrical...... and optical responses consistently. We determined the densities of free and trapped holes at the interface between the organic layer and the SiO2 gate dielectric by comparison to electrical measurements. Furthermore by applying fluorescence lifetime imaging microscopy we determine the local charge carrier...

  9. The Oxford-Diamond In Situ Cell for studying chemical reactions using time-resolved X-ray diffraction

    Science.gov (United States)

    Moorhouse, Saul J.; Vranješ, Nenad; Jupe, Andrew; Drakopoulos, Michael; O'Hare, Dermot

    2012-08-01

    A versatile, infrared-heated, chemical reaction cell has been assembled and commissioned for the in situ study of a range of chemical syntheses using time-resolved energy-dispersive X-ray diffraction (EDXRD) on Beamline I12 at the Diamond Light Source. Specialized reactor configurations have been constructed to enable in situ EDXRD investigation of samples under non-ambient conditions. Chemical reactions can be studied using a range of sample vessels such as alumina crucibles, steel hydrothermal autoclaves, and glassy carbon tubes, at temperatures up to 1200 °C.

  10. Mapping exciton quenching in photovoltaic-applicable polymer blends using time-resolved scanning near-field optical microscopy

    Science.gov (United States)

    Cadby, A.; Khalil, G.; Fox, A. M.; Lidzey, D. G.

    2008-05-01

    We have used time-resolved scanning near-field microscopy to image the fluorescence decay lifetime across a phase-separated blend of the photovoltaic-applicable polymers poly(9,9'-dioctylfluorene-alt-benzothiadiazole) (F8BT) and poly(9,9'-dioctylfluorene-alt-bis- N ,N'-(4-butylphenyl)-bis-N ,N'-phenyl-1,4-phenylenediamine) (PFB). We show that the efficiency of local fluorescence quenching is composition dependent, with excitons on F8BT molecules being more effectively quenched when F8BT is trapped at a low concentration in a PFB-rich phase. Despite such presumed differences in charge-carrier generation efficiency, our results demonstrate that charge extraction from F8BT:PFB devices is the most dominant mechanism limiting their operational efficiency.

  11. Time resolved techniques: An overview

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1990-06-01

    Synchrotron sources provide exceptional opportunities for carrying out time-resolved x-ray diffraction investigations. The high intensity, high angular resolution, and continuously tunable energy spectrum of synchrotron x-ray beams lend themselves directly to carrying out sophisticated time-resolved x-ray scattering measurements on a wide range of materials and phenomena. When these attributes are coupled with the pulsed time-structure of synchrotron sources, entirely new time-resolved scattering possibilities are opened. Synchrotron beams typically consist of sub-nanosecond pulses of x-rays separated in time by a few tens of nanoseconds to a few hundred nanoseconds so that these beams appear as continuous x-ray sources for investigations of phenomena on time scales ranging from hours down to microseconds. Studies requiring time-resolution ranging from microseconds to fractions of a nanosecond can be carried out in a triggering mode by stimulating the phenomena under investigation in coincidence with the x-ray pulses. Time resolution on the picosecond scale can, in principle, be achieved through the use of streak camera techniques in which the time structure of the individual x-ray pulses are viewed as quasi-continuous sources with ∼100--200 picoseconds duration. Techniques for carrying out time-resolved scattering measurements on time scales varying from picoseconds to kiloseconds at present and proposed synchrotron sources are discussed and examples of time-resolved studies are cited. 17 refs., 8 figs

  12. A new method for obtaining time resolved optical spectra of transients produced by a single pulse of electrons

    International Nuclear Information System (INIS)

    Gordon, S.; Schmidt, K.H.; Martin, J.E.

    1975-01-01

    The essential features of the kinetic spectroscopic method and the kinetic spectrophotometric method are summarized. It is stated that the new method embodies some of the advantages of both. A diagram of the apparatus is shown. This is essentially a version of a conventional pulse radiolysis experimental arrangement with the modification that the usual monochromator is replaced by a spectrograph equipped with a horizontal and a vertical slit and the usual photomultiplier-amplifier detector is replaced by a streak camera (TRW) incorporating an image converter tube (ICT) and a TV camera interfaced to a 2000 channel Biomation transient recorder. The time resolved absorption spectrum (or emission spectrum) is displayed on the P-11 phosphor of the ICT. This image is focussed on the photoelements of the TV tube. The TV camera scans the image of the spectrum stored on these elements and the output of this scan is stored in the Biomation. This recorder is in turn interfaced to a Sigma 5 computer. Results are presented for several experiments, from which it is concluded that with the present equipment absorbances down to 0.02 can be measured, and a time resolution of 1ns can be achieved. It is stated that with improved equipment it should be possible to extend the time resolution of the method to less than 50 picoseconds. (U.K.)

  13. Time-resolved ESR spectroscopy

    International Nuclear Information System (INIS)

    Beckert, D.

    1986-06-01

    The time-resolved ESR spectroscopy is one of the modern methods in radiospectroscopy and plays an important role in solving various problems in chemistry and biology. Proceeding from the basic ideas of time-resolved ESR spectroscopy the experimental equipment is described generally including the equipment developed at the Central Institute of Isotope and Radiation Research. The experimental methods applied to the investigation of effects of chemically induced magnetic polarization of electrons and to kinetic studies of free radicals in polymer systems are presented. The theory of radical pair mechanism is discussed and theoretical expressions are summarized in a computer code to compute the theoretical polarization for each pair of the radicals

  14. Time-resolved FTIR emission studies of laser photofragmentation and radical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Leone, S.R. [Univ. of Colorado, Boulder (United States)

    1993-12-01

    Recent studies have focused specifically on collision processes, such as single collision energy transfer, reaction dynamics, and radical reactions. The authors employ novel FTIR techniques in the study of single collision energy transfer processes using translationally fast H atom, as well as radical-radical reactions, e.g. CH{sub 3} + O, CF{sub 3} + H(D), and Cl + C{sub 2}H{sub 5}. The fast atoms permit unique high energy regions of certain transition states of combustion species to be probed for the first time.

  15. Time-resolved EPR studies of the H atom: A stable heavy isotope of muonium

    International Nuclear Information System (INIS)

    Bartels, D.M.

    1994-01-01

    Muonium physicists and chemists, when they talk about ''primary processes,'' are probably concerned mostly about end-of-track phenomena in the slowing down of a many-MeV charged particle, analogous to the proton. The author's experience is with electron accelerators and radiolysis; hence, he will comment briefly on the differences and relative advantages of electron and proton radiolysis for the study of H atoms, as opposed to muonium. Then, he will take the liberty of defining primary processes to include the recombination reactions that may occur between geminate or quasi-geminate free radicals within radiolysis spurs

  16. Time resolved studies of H{sub 2}{sup +} dissociation with phase-stabilized laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Bettina

    2010-06-23

    In the course of this thesis, experimental studies on the dissociation of H{sub 2}{sup +}(H{sub 2}{sup +}{yields}p+H) in ultrashort laser pulses with a stabilized carrier-envelope phase (CEP) were carried out. In single-pulse measurements, the ability to control the emission direction of low energetic protons, i.e. the localization of the bound electron at one of the nuclei after dissociation, by the CEP was demonstrated. The coincident detection of the emitted protons and electrons and the measurement of their three-dimensional momentum vectors with a reaction microscope allowed to clarify the localization mechanism. Further control was achieved by a pump-control scheme with two timedelayed CEP-stabilized laser pulses. Here the neutral H{sub 2} molecule was ionized in the first pulse and dissociation was induced by the second pulse. Electron localization was shown to depend on the properties of the bound nuclear wave packet in H{sub 2}{sup +} at the time the control pulse is applied, demonstrating the ability to use the shape and dynamics of the nuclear wave packet as control parameters. Wave packet simulations were performed reproducing qualitatively the experimental results of the single and the two-pulse measurements. For both control schemes, intuitive models are presented, which qualitatively explain the main features of the obtained results. (orig.)

  17. Time resolved studies of H2+ dissociation with phase-stabilized laser pulses

    International Nuclear Information System (INIS)

    Fischer, Bettina

    2010-01-01

    In the course of this thesis, experimental studies on the dissociation of H 2 + (H 2 + →p+H) in ultrashort laser pulses with a stabilized carrier-envelope phase (CEP) were carried out. In single-pulse measurements, the ability to control the emission direction of low energetic protons, i.e. the localization of the bound electron at one of the nuclei after dissociation, by the CEP was demonstrated. The coincident detection of the emitted protons and electrons and the measurement of their three-dimensional momentum vectors with a reaction microscope allowed to clarify the localization mechanism. Further control was achieved by a pump-control scheme with two timedelayed CEP-stabilized laser pulses. Here the neutral H 2 molecule was ionized in the first pulse and dissociation was induced by the second pulse. Electron localization was shown to depend on the properties of the bound nuclear wave packet in H 2 + at the time the control pulse is applied, demonstrating the ability to use the shape and dynamics of the nuclear wave packet as control parameters. Wave packet simulations were performed reproducing qualitatively the experimental results of the single and the two-pulse measurements. For both control schemes, intuitive models are presented, which qualitatively explain the main features of the obtained results. (orig.)

  18. Time-resolved quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Verano-Braga, Thiago; Schwämmle, Veit; Sylvester, Marc

    2012-01-01

    proteins involved in the Ang-(1-7) signaling, we performed a mass spectrometry-based time-resolved quantitative phosphoproteome study of human aortic endothelial cells (HAEC) treated with Ang-(1-7). We identified 1288 unique phosphosites on 699 different proteins with 99% certainty of correct peptide...

  19. Time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  20. ESR spectrometer with a loop-gap resonator for cw and time resolved studies in a superconducting magnet.

    Science.gov (United States)

    Simon, Ferenc; Murányi, Ferenc

    2005-04-01

    The design and performance of an electron spin resonance spectrometer operating at 3 and 9 GHz microwave frequencies combined with a 9-T superconducting magnet are described. The probehead contains a compact two-loop, one gap resonator, and is inside the variable temperature insert of the magnet enabling measurements in the 0-9T magnetic field and 1.5-400 K temperature range. The spectrometer allows studies on systems where resonance occurs at fields far above the g approximately 2 paramagnetic condition such as in antiferromagnets. The low quality factor of the resonator allows time resolved experiments such as, e.g., longitudinally detected ESR. We demonstrate the performance of the spectrometer on the NaNiO2 antiferromagnet, the MgB2 superconductor, and the RbC60 conducting alkaline fulleride polymer.

  1. Study of the photoexcited carrier dynamics in InP:Fe using time-resolved reflection and photoluminescence spectra

    International Nuclear Information System (INIS)

    Huang Shihua; Li Xi; Lu Fang

    2004-01-01

    The photoexcited carrier dynamics and photoluminescence of the undoped InP and Fe implanted InP was studied by time-resolved reflection and photoluminescence spectra. The decay times of reflection recovery and the radiative recombination for Fe implanted InP are shorter than those of undoped InP. Considering the surface recombination, a model was developed to simulate the reflection recovery dynamics, it agrees with the experimental results very well. Moreover, we obtained the ambipolar diffusion coefficient and the surface recombination velocity by using the model. For Fe-doped InP, the surface recombination velocity is much larger than that for the undoped InP, which is probably due to Fe 2+/3+ trapping centers and the large surface band bending. The PL decay time for Fe implanted InP is shorter than that for undoped InP, which is ascribed to the capture centers introduced by metallic precipitates

  2. Loss mechanisms in organic solar cells based on perylene diimide acceptors studied by time-resolved photoluminescence

    KAUST Repository

    Gerhard, Marina

    2016-04-27

    In organic photovoltaics (OPV), perylene diimide (PDI) acceptor materials are promising candidates to replace the commonly used, but more expensive fullerene derivatives. The use of alternative acceptor materials however implies new design guidelines for OPV devices. It is therefore important to understand the underlying photophysical processes, which either lead to charge generation or geminate recombination. In this contribution, we investigate radiative losses in a series of OPV materials based on two polymers, P3HT and PTB7, respectively, which were blended with different PDI derivatives. Our time-resolved photoluminescence measurements (TRPL) allow us to identify different loss mechanisms by the decay characteristics of several excitonic species. In particular, we find evidence for unfavorable morphologies in terms of large-scale pure domains, inhibited exciton transport and incomplete charge transfer. Furthermore, in one of the P3HT-blends, an interfacial emissive charge transfer (CT) state with strong trapping character is identified. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  3. Loss mechanisms in organic solar cells based on perylene diimide acceptors studied by time-resolved photoluminescence

    KAUST Repository

    Gerhard, Marina; Gehrig, Dominik; Howard, Ian A.; Arndt, Andreas P.; Bilal, Mü henad; Rahimi-Iman, Arash; Lemmer, Uli; Laquai, Fré dé ric; Koch, Martin

    2016-01-01

    In organic photovoltaics (OPV), perylene diimide (PDI) acceptor materials are promising candidates to replace the commonly used, but more expensive fullerene derivatives. The use of alternative acceptor materials however implies new design guidelines for OPV devices. It is therefore important to understand the underlying photophysical processes, which either lead to charge generation or geminate recombination. In this contribution, we investigate radiative losses in a series of OPV materials based on two polymers, P3HT and PTB7, respectively, which were blended with different PDI derivatives. Our time-resolved photoluminescence measurements (TRPL) allow us to identify different loss mechanisms by the decay characteristics of several excitonic species. In particular, we find evidence for unfavorable morphologies in terms of large-scale pure domains, inhibited exciton transport and incomplete charge transfer. Furthermore, in one of the P3HT-blends, an interfacial emissive charge transfer (CT) state with strong trapping character is identified. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  4. Study of the Bulk Charge Carrier Dynamics in Anatase and Rutile TiO2 Single Crystals by Femtosecond Time Resolved Spectroscopy

    KAUST Repository

    Maity, Partha; Mohammed, Omar F.; Katsiev, Khabiboulakh; Idriss, Hicham

    2018-01-01

    as the best model for fundamental studies. Their ultrafast charge carrier dynamics especially on TiO2 anatase single crystal (the most active phase) are unresolved. Here femtosecond time resolved spectroscopy (TRS) was carried out to explore the dynamics

  5. Time-resolved phosphorous magnetization transfer of the human calf muscle at 3 T and 7 T: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Valkovič, Ladislav, E-mail: siegfried.trattnig@meduniwien.ac.at [MR Center of Excellence, Department of Radiology, Medical University Vienna, A-1090 Wien, Lazarettgasse 14 (Austria); Institute of Measurement Science, Department of Imaging Methods, Slovak Academy of Sciences, 841 04 Bratislava, Dúbravska cesta 9 (Slovakia); Chmelík, Marek, E-mail: marek.chmelik@meduniwien.ac.at [MR Center of Excellence, Department of Radiology, Medical University Vienna, A-1090 Wien, Lazarettgasse 14 (Austria); Just Kukurova, Ivica, E-mail: ivica.kukurova@meduniwien.ac.at [MR Center of Excellence, Department of Radiology, Medical University Vienna, A-1090 Wien, Lazarettgasse 14 (Austria); Krššák, Martin, E-mail: martin.krssak@meduniwien.ac.at [Department of Internal Medicine III, Medical University Vienna, A-1090 Wien, Lazarettgasse 14 (Austria); Gruber, Stephan, E-mail: stephan@nmr.at [MR Center of Excellence, Department of Radiology, Medical University Vienna, A-1090 Wien, Lazarettgasse 14 (Austria); Frollo, Ivan, E-mail: umerollo@savba.sk [Institute of Measurement Science, Department of Imaging Methods, Slovak Academy of Sciences, 841 04 Bratislava, Dúbravska cesta 9 (Slovakia); Trattnig, Siegfried, E-mail: siegfried.trattnig@meduniwien.ac.at [MR Center of Excellence, Department of Radiology, Medical University Vienna, A-1090 Wien, Lazarettgasse 14 (Austria); Bogner, Wolfgang, E-mail: wolfgang@nmr.at [MR Center of Excellence, Department of Radiology, Medical University Vienna, A-1090 Wien, Lazarettgasse 14 (Austria)

    2013-05-15

    Phosphorous ({sup 31}P) magnetization transfer (MT) experiments enable the non-invasive investigation of human muscle metabolism in various physiological and pathological conditions. The purpose of our study was to investigate the feasibility of time-resolved MT, and to compare the results of MT experiments at 3 T and 7 T. Six healthy volunteers were examined on a 3 T and a 7 T MR scanner using the same setup and identical measurement protocols. In the calf muscle of all volunteers, four separate MT experiments (each ∼10 min duration) were performed in one session. The forward rate constant of the ATP synthesis reaction (k{sub ATP}) and creatine kinase reaction (k{sub CK}), as well as corresponding metabolic fluxes (F{sub ATP}, F{sub CK}), were estimated. A comparison of these exchange parameters, apparent T{sub 1}s, data quality, quantification precision, and reproducibility was performed. The data quality and reproducibility of the same MT experiments at 7 T was significantly higher (i.e., k{sub ATP} 2.7 times higher and k{sub CK} 3.4 times higher) than at 3 T (p < 0.05). The values for k{sub ATP} (p = 0.35) and k{sub CK} (p = 0.09) at both field strengths were indistinguishable. Even a single MT experiment at 7 T provided better data quality than did a 4 times-longer MT experiment at 3 T. The minimal time-resolution to reliably quantify both F{sub ATP} and F{sub CK} at 7 T was ∼6 min. Our results show that MT experiments at 7 T can be at least 4 times faster than 3 T MT experiments and still provide significantly better quantification. This enables time-resolved MT experiments for the observation of slow metabolic changes in the human calf muscle at 7 T.

  6. Time-resolved phosphorous magnetization transfer of the human calf muscle at 3 T and 7 T: A feasibility study

    International Nuclear Information System (INIS)

    Valkovič, Ladislav; Chmelík, Marek; Just Kukurova, Ivica; Krššák, Martin; Gruber, Stephan; Frollo, Ivan; Trattnig, Siegfried; Bogner, Wolfgang

    2013-01-01

    Phosphorous ( 31 P) magnetization transfer (MT) experiments enable the non-invasive investigation of human muscle metabolism in various physiological and pathological conditions. The purpose of our study was to investigate the feasibility of time-resolved MT, and to compare the results of MT experiments at 3 T and 7 T. Six healthy volunteers were examined on a 3 T and a 7 T MR scanner using the same setup and identical measurement protocols. In the calf muscle of all volunteers, four separate MT experiments (each ∼10 min duration) were performed in one session. The forward rate constant of the ATP synthesis reaction (k ATP ) and creatine kinase reaction (k CK ), as well as corresponding metabolic fluxes (F ATP , F CK ), were estimated. A comparison of these exchange parameters, apparent T 1 s, data quality, quantification precision, and reproducibility was performed. The data quality and reproducibility of the same MT experiments at 7 T was significantly higher (i.e., k ATP 2.7 times higher and k CK 3.4 times higher) than at 3 T (p < 0.05). The values for k ATP (p = 0.35) and k CK (p = 0.09) at both field strengths were indistinguishable. Even a single MT experiment at 7 T provided better data quality than did a 4 times-longer MT experiment at 3 T. The minimal time-resolution to reliably quantify both F ATP and F CK at 7 T was ∼6 min. Our results show that MT experiments at 7 T can be at least 4 times faster than 3 T MT experiments and still provide significantly better quantification. This enables time-resolved MT experiments for the observation of slow metabolic changes in the human calf muscle at 7 T

  7. Proposal for the momentum-resolved and time-resolved optical measurement of the current distribution in semiconductors.

    Science.gov (United States)

    Liu, Jiang-Tao; Su, Fu-Hai; Deng, Xin-Hua; Wang, Hai

    2012-05-21

    The two-color optical coherence absorption spectrum (QUIC-AB) of semiconductors in the presence of a charge current is investigated. We find that the QUIC-AB depends strongly not only on the amplitude of the electron current but also on the direction of the electron current. Thus, the amplitude and the angular distribution of current in semiconductors can be detected directly in real time with the QUIC-AB.

  8. Three-dimensional, time-resolved profiling of ferroelectric domain wall dynamics by spectral-domain optical coherence tomography

    International Nuclear Information System (INIS)

    Haussmann, Alexander; Schmidt, Sebastian; Wehmeier, Lukas; Eng, Lukas M.; Kirsten, Lars; Cimalla, Peter; Koch, Edmund

    2017-01-01

    We apply here spectral-domain optical coherence tomography (SD-OCT) for the precise detection and temporal tracking of ferroelectric domain walls (DWs) in magnesium-doped periodically poled lithium niobate (Mg:PPLN). We reproducibly map static DWs at an axial (depth) resolution down to ∝ 0.6 μm, being located up to 0.5 mm well inside the single crystalline Mg:PPLN sample. We show that a full 3-dimensional (3D) reconstruction of the DW geometry is possible from the collected data, when applying a special algorithm that accounts for the nonlinear optical dispersion of the material. Our OCT investigation provides valuable reference information on the DWs' polarization charge distribution, which is known to be the key to the electrical conductivity of ferroelectric DWs in such systems. Hence, we carefully analyze the SD-OCT signal dependence both when varying the direction of incident polarization, and when applying electrical fields along the polar axis. Surprisingly, the large backreflection intensities recorded under extraordinary polarization are not affected by any electrical field, at least for field strengths below the switching threshold, while no significant signals above noise floor are detected under ordinary polarization. Finally, we employed the high-speed SD-OCT setup for the real-time DW tracking upon ferroelectric domain switching under high external fields. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Three-dimensional, time-resolved profiling of ferroelectric domain wall dynamics by spectral-domain optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haussmann, Alexander; Schmidt, Sebastian; Wehmeier, Lukas; Eng, Lukas M. [Technische Universitaet Dresden, Institute of Applied Physics and Center for Advancing Electronics Dresden (cfaed), Dresden (Germany); Kirsten, Lars; Cimalla, Peter; Koch, Edmund [Technische Universitaet Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Dresden (Germany)

    2017-08-15

    We apply here spectral-domain optical coherence tomography (SD-OCT) for the precise detection and temporal tracking of ferroelectric domain walls (DWs) in magnesium-doped periodically poled lithium niobate (Mg:PPLN). We reproducibly map static DWs at an axial (depth) resolution down to ∝ 0.6 μm, being located up to 0.5 mm well inside the single crystalline Mg:PPLN sample. We show that a full 3-dimensional (3D) reconstruction of the DW geometry is possible from the collected data, when applying a special algorithm that accounts for the nonlinear optical dispersion of the material. Our OCT investigation provides valuable reference information on the DWs' polarization charge distribution, which is known to be the key to the electrical conductivity of ferroelectric DWs in such systems. Hence, we carefully analyze the SD-OCT signal dependence both when varying the direction of incident polarization, and when applying electrical fields along the polar axis. Surprisingly, the large backreflection intensities recorded under extraordinary polarization are not affected by any electrical field, at least for field strengths below the switching threshold, while no significant signals above noise floor are detected under ordinary polarization. Finally, we employed the high-speed SD-OCT setup for the real-time DW tracking upon ferroelectric domain switching under high external fields. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Optical sensor system for time-resolved quantification of methane densities in CH4-fueled spark ignition engines.

    Science.gov (United States)

    Golibrzuch, Kai; Digulla, Finn-Erik; Bauke, Stephan; Wackerbarth, Hainer; Thiele, Olaf; Berg, Thomas

    2017-08-01

    We present the development and the first application of an optical sensor system that allows single-cycle determination of methane (CH 4 ) concentration inside internal combustion (IC) engines. We use non-dispersive infrared absorption spectroscopy to detect the CH 4 density with a time resolution up to 33 μs at acquisition rates of 30 kHz. The measurement scheme takes advantage of the strong temperature dependence of the absorption band applying two detection channels for CH 4 that detect different spectral regions of the ν 3 anti-symmetric C-H-stretch absorption. The strategy allows the simultaneous determination of fuel concentration as well as gas temperature. We show the proof-of-concept by validation of the measurement strategy in static pressure cell experiments as well as its application to a methane-fueled IC engine using a modified spark plug probe. Our results clearly demonstrate that it is crucial to determine the CH 4 temperature in the probe volume. Due to thermal influences of the sensor probe, the temperature needed to calculate the desired quantities (fuel density, fuel concentration) significantly differs from the gas phase temperature in the rest of the combustion chamber and estimations from standard thermodynamic models, e.g., polytropic compression, will fail.

  11. Studies on Ternary Complex Formation of U(VI)-salicylate by Using Time-resolved Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Wan Sik; Cho, H. R.; Park, K. K.; Kim, W. H.; Jung, E. C. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Organic ligands containing carboxylic and phenolic functional groups naturally occur in groundwater environment, particularly in forms of polyelectrolytes such as humic and fulvic acids, from microbial degradation of biomass, e.g., plant and animal tissues. These ligands play important roles in dissolution and migration of actinide radionuclide species since they can form stable ternary actinide complexes with common inorganic ions like hydroxides and carbonates. Therefore, model ternary complexes of lanthanides and actinides have been targets of studies to understand their chemical behaviors under near-neutral pH groundwater conditions. Previous model carboxylic ligands include phthalates, maleic acids, or alpha- substituted carboxylic acids. However, majority of previous studies investigated binary systems or used potentiometric titration method that requires high ligand concentration in mM levels. Recently, highly sensitive time-resolved laserinduced fluorescence spectroscopy (TRLFS) has been used to investigate lower concentration (e.g., a few {mu}M levels) reactions of binary complexes between of ligands and metal ions. This technique provides information regarding electronic structures and complexation constants as well as fluorescence quenching mechanism. In the present study, we studied the U(VI)-OH-salicylate (SA) ternary complex formation at higher pH (> 4) via TRLF spectrum and UV-Vis absorbance measurement. Preliminary studies show that the fluorescence (FL) intensity of hydroxouranyl species at pH 4.5 decreases as SA concentration elevates in aqueous solution. Fluorescence quenching mechanism by SA is suggested based on FL intensity (I) and lifetime (tau) measurement via TRLFS

  12. Preliminary results on time-resolved ion beam induced luminescence applied to the provenance study of lapis lazuli

    Energy Technology Data Exchange (ETDEWEB)

    Czelusniak, C. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Palla, L. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa and Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Massi, M. [Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Carraresi, L.; Giuntini, L. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Re, A.; Lo Giudice, A. [Dipartimento di Fisica, Università di Torino & INFN Sezione di Torino, Via Giuria 1, 10125 Torino (Italy); Pratesi, G. [Museo di Storia Naturale, Università di Firenze, Via G. La Pira 4, 50121 Firenze (Italy); Mazzinghi, A. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Ruberto, C. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 1, 50019 Sesto Fiorentino, Firenze (Italy); Castelli, L. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); and others

    2016-03-15

    This work will present preliminary results concerning the use of time-resolved ion beam induced luminescence applied to provenance studies of lapis lazuli. Measurements were performed at the pulsed beam facility at LABEC laboratory in Florence. Lapis lazuli is a semi-precious gemstone, used as ornament since the early civilizations that can be found in few places on Earth. The importance of this work lies in understanding the origin of various samples of lapis lazuli, from which it may be possible to gain insight into trade routes from ancient times. The samples studied in this work originated from Chile, Afghanistan, Tajikistan, Myanmar, and Siberia. The stones were irradiated with 3 MeV protons and the resulting luminescence was detected by a photomultiplier tube, whose output was acquired using a sampling digitizer VME module (CAEN/V1720). Wavelength discrimination was performed at 430 nm utilizing a range of beam currents. The results showed that, by changing the beam current intensity, one can study different features of lapis lazuli, and this may aid in distinguishing lapis lazuli from different provenances.

  13. Preliminary results on time-resolved ion beam induced luminescence applied to the provenance study of lapis lazuli

    International Nuclear Information System (INIS)

    Czelusniak, C.; Palla, L.; Massi, M.; Carraresi, L.; Giuntini, L.; Re, A.; Lo Giudice, A.; Pratesi, G.; Mazzinghi, A.; Ruberto, C.; Castelli, L.

    2016-01-01

    This work will present preliminary results concerning the use of time-resolved ion beam induced luminescence applied to provenance studies of lapis lazuli. Measurements were performed at the pulsed beam facility at LABEC laboratory in Florence. Lapis lazuli is a semi-precious gemstone, used as ornament since the early civilizations that can be found in few places on Earth. The importance of this work lies in understanding the origin of various samples of lapis lazuli, from which it may be possible to gain insight into trade routes from ancient times. The samples studied in this work originated from Chile, Afghanistan, Tajikistan, Myanmar, and Siberia. The stones were irradiated with 3 MeV protons and the resulting luminescence was detected by a photomultiplier tube, whose output was acquired using a sampling digitizer VME module (CAEN/V1720). Wavelength discrimination was performed at 430 nm utilizing a range of beam currents. The results showed that, by changing the beam current intensity, one can study different features of lapis lazuli, and this may aid in distinguishing lapis lazuli from different provenances.

  14. Excited state non-adiabatic dynamics of N-methylpyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    International Nuclear Information System (INIS)

    Wu, Guorong; Neville, Simon P.; Schalk, Oliver; Sekikawa, Taro; Ashfold, Michael N. R.; Worth, Graham A.; Stolow, Albert

    2016-01-01

    The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A 2 (πσ ∗ ) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B 1 (π3p y ) Rydberg state, followed by prompt internal conversion to the A 2 (πσ ∗ ) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A 2 (πσ ∗ ) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A 2 (πσ ∗ ) state, facilitating wavepacket motion around the potential barrier in the N–CH 3 dissociation coordinate

  15. Excited state non-adiabatic dynamics of N-methylpyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guorong [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P. [Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Schalk, Oliver [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm (Sweden); Sekikawa, Taro [Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Worth, Graham A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada)

    2016-01-07

    The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A{sub 2}(πσ{sup ∗}) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B{sub 1}(π3p{sub y}) Rydberg state, followed by prompt internal conversion to the A{sub 2}(πσ{sup ∗}) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A{sub 2}(πσ{sup ∗}) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A{sub 2}(πσ{sup ∗}) state, facilitating wavepacket motion around the potential barrier in the N–CH{sub 3} dissociation coordinate.

  16. Reorientational Dynamics of Enzymes Adsorbed on Quartz: A Temperature-Dependent Time-Resolved TIRF Anisotropy Study

    Science.gov (United States)

    Czeslik, C.; Royer, C.; Hazlett, T.; Mantulin, W.

    2003-01-01

    The preservation of enzyme activity and protein binding capacity upon protein adsorption at solid interfaces is important for biotechnological and medical applications. Because these properties are partly related to the protein flexibility and mobility, we have studied the internal dynamics and the whole-body reorientational rates of two enzymes, staphylococcal nuclease (SNase) and hen egg white lysozyme, over the temperature range of 20–80°C when the proteins are adsorbed at the silica/water interface and, for comparison, when they are dissolved in buffer. The data were obtained using a combination of two experimental techniques, total internal reflection fluorescence spectroscopy and time-resolved fluorescence anisotropy measurements in the frequency domain, with the protein Trp residues as intrinsic fluorescence probes. It has been found that the internal dynamics and the whole-body rotation of SNase and lysozyme are markedly reduced upon adsorption over large temperature ranges. At elevated temperatures, both protein molecules appear completely immobilized and the fractional amplitudes for the whole-body rotation, which are related to the order parameter for the local rotational freedom of the Trp residues, remain constant and do not approach zero. This behavior indicates that the angular range of the Trp reorientation within the adsorbed proteins is largely restricted even at high temperatures, in contrast to that of the dissolved proteins. The results of this study thus provide a deeper understanding of protein activity at solid surfaces. PMID:12668461

  17. Time-resolved SAXS studies of morphological changes in a blend of linear polyethylene with homogeneous ethylene-1-octene copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Ślusarczyk, Czesław, E-mail: cslusarczyk@ath.bielsko.pl

    2015-12-01

    Isothermal melt crystallization in the 15/85 (m/m) blend of a high density polyethylene (HDPE) and a homogeneous ethylene copolymer with 5.5 mol% 1-octene was studied by time-resolved SAXS method with synchrotron radiation over a wide-range of crystallization temperatures. The SAXS profile was analyzed by means of the correlation function which allows to elucidate the evolution of the morphological parameters of polyethylene lamellar structure (long period (LP), thicknesses of crystalline (L{sub C}) and amorphous (L{sub A}) layers) during a crystallization process. It was found that for the samples crystallized at 100 °C, 120 °C and 122 °C L{sub C} increases with time. The lamellar thickening rate strongly depends on crystallization temperature. At 40 °C thickening of the crystalline layers does not occur. The time evolution of the lamellar structure in the blend studied confirms the role of hexyl branches of homogeneous copolymer in the crystallization process of polyethylene. The branches introduce steric constraints which hinder the crystallization of HDPE, thus decreasing the size of the HDPE lamellar crystals.

  18. Dispersion of sulphur in the northern hemisphere. A study with a 3-dimensional time-resolved model

    Energy Technology Data Exchange (ETDEWEB)

    Tarrason, L

    1996-12-31

    This thesis on atmospheric dispersion of sulphur presents a calculation of intercontinental transport of oxidized sulphur and allocates different contributions to sulphur background levels over Europe. It is found that a significant fraction of anthropogenic sulphur (AS) is transported out of continental boundaries thus affecting the background levels over major parts of the northern hemisphere. Over Europe, the contribution of AS from North America is similar in amount to that of Asian AS and natural sources from the North Atlantic Ocean. Although the yearly contribution of intercontinental transport to deposition of sulphur over Europe is quite small, it can be much more important over certain areas and seasons and is comparable to the contributions from individual European countries. The calculations are based on a three-dimensional Eulerian time-resolved model that describes sulphur dispersion in the atmosphere in connection with large-scale synoptic flows and agree well with observations. The thesis emphasizes the role of synoptic scale atmospheric motions in determining intercontinental transport of sulphur. It indicates the need to resolve individual cyclones and anticyclones in order to describe the dispersion and distribution of atmospheric sulphur in the northern hemisphere and stresses the value of comparing model calculations with observations, both in atmospheric chemistry studies and in climate applications. 260 refs., 50 figs., 17 tabs.

  19. Time-resolved photoluminescence study of CdSe/CdMnS/CdS core/multi-shell nanoplatelets

    International Nuclear Information System (INIS)

    Murphy, J. R.; Delikanli, S.; Demir, H. V.; Scrace, T.; Zhang, P.; Norden, T.; Petrou, A.; Thomay, T.; Cartwright, A. N.

    2016-01-01

    We used photoluminescence spectroscopy to resolve two emission features in CdSe/CdMnS/CdS and CdSe/CdS core/multi-shell nanoplatelet heterostructures. The photoluminescence from the magnetic sample has a positive circular polarization with a maximum centered at the position of the lower energy feature. The higher energy feature has a corresponding signature in the absorption spectrum; this is not the case for the low-energy feature. We have also studied the temporal evolution of these features using a pulsed-excitation/time-resolved photoluminescence technique to investigate their corresponding recombination channels. A model was used to analyze the temporal dynamics of the photoluminescence which yielded two distinct timescales associated with these recombination channels. The above results indicate that the low-energy feature is associated with recombination of electrons with holes localized at the core/shell interfaces; the high-energy feature, on the other hand, is excitonic in nature with the holes confined within the CdSe cores.

  20. Interaction of europium and nickel with calcite studied by Rutherford Backscattering Spectrometry and Time-Resolved Laser Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, A. [Agence Nationale pour la gestion des Déchets RAdioactifs, 1-7 rue J. Monnet, Parc de la Croix Blanche, 92298 Châtenay-Malabry Cedex (France); Université de Nice Sophia Antipolis, Ecosystèmes Côtiers Marins et Réponses aux Stress (ECOMERS), 28 avenue Valrose, 06108 Nice Cedex 2 (France); Pipon, Y., E-mail: pipon@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); Institut Universitaire de Technologie (IUT) Lyon-1, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); CEA/DEN, Saclay, 91191 Gif sur Yvette (France); Lomenech, C. [Université de Nice Sophia Antipolis, Ecosystèmes Côtiers Marins et Réponses aux Stress (ECOMERS), 28 avenue Valrose, 06108 Nice Cedex 2 (France); Jordan, N. [Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Resource Ecology (IRE) (Germany); Moncoffre, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); Barkleit, A. [Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Resource Ecology (IRE) (Germany); and others

    2014-08-01

    This study aims at elucidating the mechanisms regulating the interaction of Eu and Ni with calcite (CaCO{sub 3}). Calcite powders or single crystals (some mm sized) were put into contact with Eu or Ni solutions at concentrations ranging from 10{sup −3} to 10{sup −5} mol L{sup −1} for Eu and 10{sup −3} mol L{sup −1} for Ni. The sorption durations ranged from 1 week to 1 month. Rutherford Backscattering Spectrometry (RBS) well adapted to discriminate incorporation processes such as: (i) adsorption or co precipitation at the mineral surfaces or, (ii) incorporation into the mineral structure (through diffusion for instance), has been carried out. Moreover, using the fluorescence properties of europium, the results have been compared to those obtained by Time-Resolved Laser Fluorescence Spectroscopy (TRLFS) on calcite powders. For the single crystals, complementary SEM observations of the mineral surfaces at low voltage were also performed. Results showed that Ni accumulates at the calcite surface whereas Eu is also incorporated at a greater depth. Eu seems therefore to be incorporated into two different states in calcite: (i) heterogeneous surface accumulation and (ii) incorporation at depth greater than 160 nm after 1 month of sorption. Ni was found to accumulate at the surface of calcite without incorporation.

  1. Novel thermosyphon driven hydrothermal flow-through cell for in situ and time resolved neutron diffraction studies

    International Nuclear Information System (INIS)

    Xia, Fang; Qian, Gujie; Etschmann, Barbara; University of Adelaide, South Australia, Australia; University of Adelaide, South Australia, Australia; Studer, Andrew; Olsen, Scott

    2009-01-01

    Full text: A flow-through cell for hydrothermal phase transformation studies by in situ and time-resolved neutron diffraction has been designed and constructed. The cell has a large internal volume of 320 m L and can work at up to 300 degree Centigrade under autogeneous vapour pressures (-85 bar). The fluid flow is driven by thermosyphon which is realized by the proper design of temperature difference around the closed loop[1,2). The main body of the cell is made of stainless steel (316 type), but the sample compartment is constructed from non-scattering Ti/Zr alloy. We have successfully commissioned the cell on Australia's new high intensity powder diffractometer WOMBAT in ANSTO, using a simple transformation reaction from leucite (KAISi 2 O 6 ) to analcime (NaAISi 2 O 6H2O ) and then back from analcime to leucite. The demonstration proved that the cell is an excellent tool for probing hydrothermal phase transformations. By collecting diffraction data every 5 min, it was clearly seen that leucite was progressively transformed to analcime in a NaCI solution, and the produced analcime was progressively transformed back to leucite in a K 2 CO 3 solution.

  2. Combined PIXE and X-ray SEM studies on time-resolved deposits of welding shop aerosols

    International Nuclear Information System (INIS)

    Barfoot, K.M.; Mitchell, I.V.; Verheyen, F.; Babeliowsky, T.

    1981-01-01

    Time-resolved deposits of welding shop air particulates have been obtained using a streak sampling system. PIXE analysis of these deposits, using 2 MeV protons, typically revealed the presence of a large number of elements, with many in the range Z = 11-30. Strong variations, up to three orders of magnitude, in the concentrations of several elements such as Al, Si and Fe as well as Zn, Na, K and Ca were found. The 2 h sampling resolution normally used was found to be insufficient to follow the short pollution episodes that regularly occur in a welding shop environment and so sampling with a 20 min resolution was used. The variation of elemental concentrations for different sampling times together with information on the physical nature of these air particulates, determined with a scanning electron microscope (SEM) and Si(Li) X-ray detector attachment, are presented. This type of information together with that obtained from the PIXE analysis is of importance industrial hygiene studies. The need to make corrections for partial filter clogging, based on air-flow rate monitoring, is discussed. (orig.)

  3. Dispersion of sulphur in the northern hemisphere. A study with a 3-dimensional time-resolved model

    Energy Technology Data Exchange (ETDEWEB)

    Tarrason, L.

    1995-12-31

    This thesis on atmospheric dispersion of sulphur presents a calculation of intercontinental transport of oxidized sulphur and allocates different contributions to sulphur background levels over Europe. It is found that a significant fraction of anthropogenic sulphur (AS) is transported out of continental boundaries thus affecting the background levels over major parts of the northern hemisphere. Over Europe, the contribution of AS from North America is similar in amount to that of Asian AS and natural sources from the North Atlantic Ocean. Although the yearly contribution of intercontinental transport to deposition of sulphur over Europe is quite small, it can be much more important over certain areas and seasons and is comparable to the contributions from individual European countries. The calculations are based on a three-dimensional Eulerian time-resolved model that describes sulphur dispersion in the atmosphere in connection with large-scale synoptic flows and agree well with observations. The thesis emphasizes the role of synoptic scale atmospheric motions in determining intercontinental transport of sulphur. It indicates the need to resolve individual cyclones and anticyclones in order to describe the dispersion and distribution of atmospheric sulphur in the northern hemisphere and stresses the value of comparing model calculations with observations, both in atmospheric chemistry studies and in climate applications. 260 refs., 50 figs., 17 tabs.

  4. PLEIADES: A picosecond Compton scattering x-ray source for advanced backlighting and time-resolved material studies

    International Nuclear Information System (INIS)

    Gibson, David J.; Anderson, Scott G.; Barty, Christopher P.J.; Betts, Shawn M.; Booth, Rex; Brown, Winthrop J.; Crane, John K.; Cross, Robert R.; Fittinghoff, David N.; Hartemann, Fred V.; Kuba, Jaroslav; Le Sage, Gregory P.; Slaughter, Dennis R.; Tremaine, Aaron M.; Wootton, Alan J.; Hartouni, Edward P.; Springer, Paul T.; Rosenzweig, James B.

    2004-01-01

    The PLEIADES (Picosecond Laser-Electron Inter-Action for the Dynamical Evaluation of Structures) facility has produced first light at 70 keV. This milestone offers a new opportunity to develop laser-driven, compact, tunable x-ray sources for critical applications such as diagnostics for the National Ignition Facility and time-resolved material studies. The electron beam was focused to 50 μm rms, at 57 MeV, with 260 pC of charge, a relative energy spread of 0.2%, and a normalized emittance of 5 mm mrad horizontally and 13 mm mrad vertically. The scattered 820 nm laser pulse had an energy of 180 mJ and a duration of 54 fs. Initial x rays were captured with a cooled charge-coupled device using a cesium iodide scintillator; the peak photon energy was approximately 78 keV, with a total x-ray flux of 1.3x10 6 photons/shot, and the observed angular distribution found to agree very well with three-dimensional codes. Simple K-edge radiography of a tantalum foil showed good agreement with the theoretical divergence-angle dependence of the x-ray energy. Optimization of the x-ray dose is currently under way, with the goal of reaching 10 8 photons/shot and a peak brightness approaching 10 20 photons/mm 2 /mrad 2 /s/0.1% bandwidth

  5. Time-resolved photoluminescence study of CdSe/CdMnS/CdS core/multi-shell nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J. R. [Department of Electrical Engineering, State University of New York, University at Buffalo, Buffalo, New York 14260 (United States); Department of Physics, State University of New York, University at Buffalo, Buffalo, New York 14260 (United States); Delikanli, S.; Demir, H. V., E-mail: volkan@bilkent.edu.tr [LUMINOUS Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, Nanyang Technological University, Singapore 639798 (Singapore); Department of Electrical and Electronics Engineering, Department of Physics, UNAM−Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Scrace, T.; Zhang, P.; Norden, T.; Petrou, A., E-mail: petrou@buffalo.edu [Department of Physics, State University of New York, University at Buffalo, Buffalo, New York 14260 (United States); Thomay, T.; Cartwright, A. N. [Department of Electrical Engineering, State University of New York, University at Buffalo, Buffalo, New York 14260 (United States)

    2016-06-13

    We used photoluminescence spectroscopy to resolve two emission features in CdSe/CdMnS/CdS and CdSe/CdS core/multi-shell nanoplatelet heterostructures. The photoluminescence from the magnetic sample has a positive circular polarization with a maximum centered at the position of the lower energy feature. The higher energy feature has a corresponding signature in the absorption spectrum; this is not the case for the low-energy feature. We have also studied the temporal evolution of these features using a pulsed-excitation/time-resolved photoluminescence technique to investigate their corresponding recombination channels. A model was used to analyze the temporal dynamics of the photoluminescence which yielded two distinct timescales associated with these recombination channels. The above results indicate that the low-energy feature is associated with recombination of electrons with holes localized at the core/shell interfaces; the high-energy feature, on the other hand, is excitonic in nature with the holes confined within the CdSe cores.

  6. Optical sensor system for time-resolved quantification of methane concentrations: Validation measurements in a rapid compression machine

    Science.gov (United States)

    Bauke, Stephan; Golibrzuch, Kai; Wackerbarth, Hainer; Fendt, Peter; Zigan, Lars; Seefeldt, Stefan; Thiele, Olaf; Berg, Thomas

    2018-05-01

    Lowering greenhouse gas emissions is one of the most challenging demands of today's society. Especially, the automotive industry struggles with the development of more efficient internal combustion (IC) engines. As an alternative to conventional fuels, methane has the potential for a significant emission reduction. In methane fuelled engines, the process of mixture formation, which determines the properties of combustion after ignition, differs significantly from gasoline and diesel engines and needs to be understood and controlled in order to develop engines with high efficiency. This work demonstrates the development of a gas sensing system that can serve as a diagnostic tool for measuring crank-angle resolved relative air-fuel ratios in methane-fuelled near-production IC engines. By application of non-dispersive infrared absorption spectroscopy at two distinct spectral regions in the ν3 absorption band of methane around 3.3 μm, the system is able to determine fuel density and temperature simultaneously. A modified spark plug probe allows for straightforward application at engine test stations. Here, the application of the detection system in a rapid compression machine is presented, which enables validation and characterization of the system on well-defined gas mixtures under engine-like dynamic conditions. In extension to a recent proof-of-principle study, a refined data analysis procedure is introduced that allows the correction of artefacts originating from mechanical distortions of the sensor probe. In addition, the measured temperatures are compared to data obtained with a commercially available system based on the spectrally resolved detection of water absorption in the near infrared.

  7. Time-resolved and steady-state studies of biologically and chemically relevant systems using laser, absorption, and fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Charles Ashley [Iowa State Univ., Ames, IA (United States)

    2014-12-20

    In Chapter 2 several experimental and data analysis methods used in this thesis are described. In Chapter 3 steady-state fluorescence spectroscopy was used to determine the concentration of the efflux pump inhibitors (EPIs), pheophorbide a and pyropheophorbide a, in the feces of animals and it was found that their levels far exceed those reported to be inhibitory to efflux pumps. In Chapter 4 the solvation dynamics of 6-Propionyl-2-(N,Ndimethyl) aminonaphthalene (PRODAN) was studied in reverse micelles. The two fluorescent states of PRODAN solvate on different time scales and as such care must be exercised in solvation dynamic studies involving it and its analogs. In Chapter 5 we studied the experimental and theoretical solvation dynamics of coumarin 153 (C153) in wild-type (WT) and modified myoglobins. Based on the nuclear magnetic resonance (NMR) spectroscopy and time-resolved fluorescence studies, we have concluded that it is important to thoroughly characterize the structure of a protein and probe system before comparing the theoretical and experimental results. In Chapter 6 the photophysical and spectral properties of a derivative of the medically relevant compound curcumin called cyclocurcumin was studied. Based on NMR, fluorescence, and absorption studies, the ground- and excited-states of cyclocurcumin are complicated by the existence of multiple structural isomers. In Chapter 7 the hydrolysis of cellulose by a pure form of cellulase in an ionic liquid, HEMA, and its aqueous mixtures at various temperatures were studied with the goal of increasing the cellulose to glucose conversion for biofuel production. It was found that HEMA imparts an additional stability to cellulase and can allow for faster conversion of cellulose to glucose using a pre-treatment step in comparison to only buffer.

  8. Two-dimensional time-resolved x-ray diffraction study of dual phase rapid solidification in steels

    Science.gov (United States)

    Yonemura, Mitsuharu; Osuki, Takahiro; Terasaki, Hidenori; Komizo, Yuichi; Sato, Masugu; Toyokawa, Hidenori; Nozaki, Akiko

    2010-01-01

    The high intensity heat source used for fusion welding creates steep thermal gradients of 100 °C/s from 1800 °C. Further, the influence of preferred orientation is important for the observation of a directional solidification that follows the dendrite growth along the ⟨100⟩ direction toward the moving heat source. In the present study, we observed the rapid solidification of weld metal at a time resolution of 0.01-0.1 s by a two-dimensional time-resolved x-ray diffraction (2DTRXRD) system for real welding. The diffraction rings were dynamically observed by 2DTRXRD with synchrotron energy of 18 keV while the arc passes over the irradiation area of the x-rays. The arc power output was 10 V-150 A, and the scan speed of the arc was 1.0 mm/s. The temperature rise in instruments was suppressed by a water-cooled copper plate under the specimen. Further, the temperature distribution of the weld metal was measured by a thermocouple and correlated with the diffraction patterns. Consequently, solidification and solid phase transformation of low carbon steels and stainless steels were observed during rapid cooling by 2DTRXRD. In the low carbon steel, the microstructure is formed in a two step process, (i) formation of crystallites and (ii) increase of crystallinity. In stainless steel, the irregular interface layer of δ/γ in the quenched metal after solidification is expected to show the easy movement of dendrites at a lower temperature. In carbide precipitation stainless steel, it is easy for NbC to grow on δ phase with a little undercooling. Further, a mistlike pattern, which differs from the halo pattern, in the fusion zone gave some indication of the possibilities to observe the nucleation and the early solidification by 2DTRXRD.

  9. a Time-Resolved X-Ray Scattering Study of the Ordering Kinetics in COPPER(3)-GOLD

    Science.gov (United States)

    Shannon, Robert Francis, Jr.

    Time-resolved x-ray scattering has been used to study ordering kinetics in single crystal bulk Cu _3Au, as well as in sputtered and molecular beam epitaxy grown films. After annealing at high temperatures the sample is rapidly quenched to fixed temperatures below the order-disorder transition temperature. The development of order is monitored in real time using scattering techniques. The bulk sample clearly showed three regimes: nucleation, ordering, and coarsening. The anisotropic superlattice peaks that reflect the domains structure are investigated in connection with the ordering kinetics. The line shape of the scattering function exhibits a crossover from gaussian to lorentzian-squared as the system goes from the ordering regime to the coarsening regime. Coarsening in Cu_3Au is consistent with curvature driven growth. Domain coarsening in stoichiometric sputtered films is also consistent with curvature driven growth. However, coarsening in copper rich films proceeds much more slowly. The results suggest the extra copper affects the ordering kinetics in the same way diffusive impurities would, resulting in a logarithmic like time dependence. The M.B.E. films show a slowing of the growth at late times. The 4500A film starts out with curvature driven growth but then continuously slows down as the domains grow. The 710A film shows an interesting temperature dependence for the growth, in such a way that at temperatures close to the transition, the domain growth almost freezes at late times. The dominate factor is probably strain, all of the trends for slower growth are consistent with greater strain. The dimensionality in the M.B.E. film systems is considered. The scaling in the 4500A and 710A films is clearly three dimensional. However, the dimension of the scaling in the 260A film is unclear.

  10. Structural changes during contraction in vertebrate skeletal muscle as studied by time-resolved X-ray diffraction technique

    International Nuclear Information System (INIS)

    Sugi, H.; Tanaka, H.; Kobayashi, T.; Iwamoto, H.; Wakabayashi, K.; Hamanaka, T.; Mitsui, T.; Amemiya, Y.

    1986-01-01

    To obtain information about the structural changes in vertebrate skeletal muscle during contraction, time-resolved X-ray diffraction studies were performed on the intensity changes of the 59 A and 51 A actin layer lines from bullfrog sartorius muscle during the isometric force development, and the intensity changes of the 143 A and 215 A myosin meridional reflections and of the 1,0 and 1,1 equatorial reflections when isometrically contracting muscle was subjected to sinusoidal length changes (1%, 5-10Hz) with the following results. The integrated intensities of the 59 A and 51 A actin layer lines increased during the force development by 30-50% for the 59 A reflection, and by about 70% for the 51 A reflection compard to their respective resting values. These intensity changes were greater than those taking place during the transition from rest to rigor state, and observed to precede the intensity changes of the 429 A myosin off-meridional reflection and of equatorial reflections. When sinusoidal length changes were applied to the muscle generating steady isometric force, the resulting periodic intensity changes in the 1,0 and 1,1 equatorial reflections were in phase and in antiphase with the length changes, respectively. On the other hand, the 143 A myosin reflection exhibited a characteristic periodic change; its intensity reached a maximum at each boundary between the stretch and release phases of the length changes. These results are discussed in connection with the behavior of the cross-bridges during contraction. (author)

  11. Nanocrystals of [Cu3(btc)2] (HKUST-1): a combined time-resolved light scattering and scanning electron microscopy study.

    Science.gov (United States)

    Zacher, Denise; Liu, Jianing; Huber, Klaus; Fischer, Roland A

    2009-03-07

    The formation of [Cu(3)(btc)(2)] (HKUST-1; btc = 1,3,5-benzenetricarboxylate) nanocrystals from a super-saturated mother solution at room temperature was monitored by time-resolved light scattering (TLS); the system is characterized by a rapid growth up to a size limit of 200 nm within a few minutes, and the size and shape of the crystallites were also determined by scanning electron microscopy (SEM).

  12. Raman and time resolved photoluminescence studies on the effect of temperature on disorder production in SHI irradiated N-doped 6H-SiC crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sivaji, K., E-mail: sivaji.krishnan@yahoo.com [Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India); Viswanathan, E. [Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India); Selvakumar, S. [Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India); University of Tsukuba Tandem Accelerator Complex, University of Tsukuba, Tennodai 1-1-1, Ibaraki 305-8577 (Japan); Sankar, S. [Department of Physics, MIT Campus, Anna University, Chennai 600044 (India); Kanjilal, D. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, P.O. Box 10502, New Delhi 110067 (India)

    2014-02-25

    Highlights: • N doped SiC were irradiated with 150 MeV Ag{sup 12+} (1 × 10{sup 12} to 5 × 10{sup 13} ions/cm{sup 2}). • Local disorder are analyzed by studying the LO Raman mode of the irradiated sample. • The TRPL studies provided evidence of the formation of radiative centers at 80 K. -- Abstract: In this report, the effect of disorder accumulation in Swift Heavy Ion (SHI) irradiated 6H-SiC is distinguished with respect to the irradiation temperature, viz., 80 K and 300 K. The samples were irradiated with 150 MeV Ag{sup 12+} ions with different fluences ranging from 1 × 10{sup 12} to 5 × 10{sup 13} ions/cm{sup 2}. The structural and optical properties of N-doped 6H-SiC in its pristine condition and after SHI irradiation have been studied. The changes observed by Raman spectroscopy and Time resolved photoluminescence (TRPL) spectroscopy were ascribed to the disorder accumulation in 6H-SiC. The local disorder has been analyzed by studying the LO Raman mode of the irradiated sample in comparison to the pristine sample. The TRPL studies have provided evidence of the formation of radiative centers after irradiation at 80 K.

  13. Kinetics of the reaction F+NO+M->FNO+M studied by pulse radiolysis combined with time-resolved IR and UV spectroscopy

    DEFF Research Database (Denmark)

    Pagsberg, Palle Bjørn; Sillesen, A.; Jodkowski, J.T.

    1996-01-01

    The title reaction was initiated by pulse radiolysis of SF6/NO gas mixtures, and the formation of FNO was studied by time-resolved IR and UV spectroscopy. At SF6 pressures of 10-320 mbar at 298 K, the formation of FNO was studied by infrared diode laser spectroscopy at 1857.324 cm(-1). Comparative...

  14. Time-resolved x-ray line emission studies of thermal transport in multiple beam uv-irradiated targets

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; Henke, B.L.; Delettrez, J.; Richardson, M.C.

    1984-01-01

    Thermal transport in spherical targets irradiated with multiple, nanosecond duration laser beams, has been a topic of much discussion recently. Different inferences on the level of thermal flux inhibition have been drawn from plasma velocity and x-ray spectroscopic diagnostics. We present new measurements of thermal transport on spherical targets made through time-resolved x-ray spectroscopic measurements of the progress of the ablation surface through thin layers of material on the surface of the target. These measurements, made with 6 and 12 uv (351 nm) nanosecond beams from OMEGA, will be compared to previous thermal transport measurements. Transparencies of the conference presentation are given

  15. Photoinduced electron transfer through hydrogen bonds in a rod-like donor-acceptor molecule: A time-resolved EPR study

    International Nuclear Information System (INIS)

    Jakob, Manuela; Berg, Alexander; Stavitski, Eli; Chernick, Erin T.; Weiss, Emily A.; Wasielewski, Michael R.; Levanon, Haim

    2006-01-01

    Light-driven multi-step intramolecular electron transfer in a rod-like triad, in which two of the three redox components are linked by three hydrogen bonds, was studied by time-resolved electron paramagnetic resonance (TREPR) and optical spectroscopies. One part of the molecule consists of a p-methoxyaniline primary electron donor (MeOAn) covalently linked to a 4-aminonaphthalene-1, 8-dicarboximide (6ANI) chromophoric electron acceptor (MeOAn-6ANI). The unsubstituted dicarboximide of 6ANI serves as one half of a hydrogen bonding receptor pair. The other half of the receptor pair consists of a melamine linked to a naphthalene-1,8:4,5-bis(dicarboximide) (NI) secondary electron acceptor (MEL-NI). TREPR spectroscopy is used to probe the electronic interaction between the radicals within the photogenerated, spin-correlated radical ion pair MeOAn ·+ -6ANI/MEL-NI ·- . The results are compared to those obtained in earlier studies in which MeOAn-6ANI is covalently linked to NI through a 2,5-dimethylphenyl group (MeOAn-6ANI-Ph-NI). We show that the electronic coupling between the oxidized donor and reduced acceptor in the hydrogen-bonded radical ion pair MeOAn ·+ -6ANI/MEL-NI ·- is very similar to that of MeOAn ·+ -6ANI-Ph-NI ·-

  16. Investigations on the interactions of aurintricarboxylic acid with bovine serum albumin: Steady state/time resolved spectroscopic and docking studies.

    Science.gov (United States)

    Bardhan, Munmun; Chowdhury, Joydeep; Ganguly, Tapan

    2011-01-10

    In this paper, the nature of the interactions between bovine serum albumin (BSA) and aurintricarboxylic acid (ATA) has been investigated by measuring steady state and time-resolved fluorescence, circular dichroism (CD), FT-IR and fluorescence anisotropy in protein environment under physiological conditions. From the analysis of the steady state and time-resolved fluorescence quenching of BSA in aqueous solution in presence of ATA it has been inferred that the nature of the quenching originates from the combined effect of static and dynamic modes. From the determination of the thermodynamic parameters obtained from temperature-dependent changes in K(b) (binding constant) it was apparent that the combined effect of hydrophobic association and electrostatic attraction is responsible for the interaction of ATA with BSA. The effect of ATA on the conformation of BSA has been examined by analyzing CD spectrum. Though the observed results demonstrate some conformational changes in BSA in presence of ATA but the secondary structure of BSA, predominantly of α-helix, is found to retain its identity. Molecular docking of ATA with BSA also indicates that ATA docks through hydrophobic interaction. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Time-resolved X-ray diffraction study on superconducting YBa{sub 2}Cu{sub 3}O{sub 7} epitaxially grown on SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Luebcke, A.

    2007-07-01

    In this PhD thesis time-resolved X-ray diffraction in optical pump - X-ray probe scheme was applied for the first time to a High-Temperature Superconductor in the superconducting state. The aim was to study the possible lattice response to optical Cooper pair breaking. As sample a thin YBa{sub 2}Cu{sub 3}O{sub 7} film with a superconducting transition temperature of T{sub c}=90 K, epitaxially grown on a SrTiO{sub 3} single crystal was used. (orig.)

  18. Time-resolved X-ray diffraction studies of laser-induced acoustic wave propagation in bilayer metallic thin crystals

    Energy Technology Data Exchange (ETDEWEB)

    Er, Ali Oguz [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, Kentucky 42101 (United States); Tang, Jau, E-mail: jautang@gate.sinica.edu.tw, E-mail: prentzepis@ece.tamu.edu [Research Center for Applied Sciences Academia Sinica, Taipei, Taiwan (China); Chen, Jie [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Rentzepis, Peter M., E-mail: jautang@gate.sinica.edu.tw, E-mail: prentzepis@ece.tamu.edu [Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843 (United States)

    2014-09-07

    Phonon propagation across the interface of a Cu/Ag(111) bilayer and transient lattice disorder, induced by a femtosecond 267 nm pulse, in Ag(111) crystal have been measured by means of time resolved X-ray diffraction. A “blast” force due to thermal stress induced by suddenly heated electrons is formed within two picoseconds after excitation and its “blast wave” propagation through the interface and Ag (111) crystal was monitored by the shift and broadening of the rocking curve, I vs. ω, as a function of time after excitation. Lattice disorder, contraction and expansion as well as thermal strain formation and wave propagation have also been measured. The experimental data and mechanism proposed are supported by theoretical simulations.

  19. Binding and relaxation behavior of Coumarin-153 in lecithin-taurocholate mixed micelles: A time resolved fluorescence spectroscopic study

    Science.gov (United States)

    Chakrabarty, Debdeep; Chakraborty, Anjan; Seth, Debabrata; Hazra, Partha; Sarkar, Nilmoni

    2005-09-01

    The microenvironment of the bile salt-lecithin mixed aggregates has been investigated using steady state and picosecond time resolved fluorescence spectroscopy. The steady state spectra show that the polarity of the bile salt is higher compared to lecithin vesicles or the mixed aggregates. We have observed slow solvent relaxation in bile salt micelles and lecithin vesicles. The solvation time is gradually slowed down due to gradual addition of the bile salt in lecithin vesicles. Addition of bile salt leads to the tighter head group packing in lecithin. Thus, mobility of the water molecules becomes slower and consequently the solvation time is also retarded. We have observed bimodal slow rotational relaxation time in all these systems.

  20. Separation of 248Cm (III) from 252Cf (III) and its use in time resolved fluorescence spectroscopic (TRFS) studies

    International Nuclear Information System (INIS)

    Murali, M.S.; Nair, A.G.C.; Gujar, R.B.; Jain, A.; Tomar, B.S.; Godbole, S.V.; Reddy, A.V.R.; Manchanda, V.K.

    2008-07-01

    The present report gives a description of the methodology for the separation of 248 Cm(III) from decayed 252 Cf (III) waste solution. The waste solution was first assayed for 252 Cf content by neutron counting using a neutron well coincidence counter. The sample was subjected to the chemical separation of 248 Cm (III) from 252 Cf (III) following anion and cation exchange chromatography. The alpha spectrum of the separated curium fraction showed peaks due to 246 Cm and 248 Cm while the corresponding alpha spectrum of californium fraction showed 249,250,251,252 Cf. The gamma ray abundances of 249 Cf were determined with respect to its gamma rays of 387 keV and the data agreed well with that in literature. Separated Cm(III) was further characterized by recording its time resolved fluorescence spectrum (TRFS) in aqueous medium. (author)

  1. Time-resolved spectroscopy and fluorescence resonance energy transfer in the study of excimer laser damage of chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [Department of Molecular Genetics and Radiobiology, Babes National Institute, Bucharest (Romania)], E-mail: lilianajradu@yahoo.fr; Mihailescu, I. [Department of Lasers, Laser, Plasma and Radiation Physics Institute, Bucharest (Romania); Radu, S. [Department of Computer Science, Polytechnics University, Bucharest (Romania); Gazdaru, D. [Department of Biophysics, Bucharest University (Romania)

    2007-09-21

    The analysis of chromatin damage produced by a 248 nm excimer laser radiation, for doses of 0.3-3 MJ/m{sup 2} was carried out by time-resolved spectroscopy and fluorescence resonance energy transfer (FRET). The chromatin was extracted from a normal and a tumoral tissue of Wistar rats. The decrease with laser dose of the relative contribution of the excited state lifetimes of ethidium bromide (EtBr) bounded to chromatin constitutes an evidence of the reduction of chromatin deoxyribonucleic acid (DNA) double-strand structure. FRET was performed from dansyl chloride to acridine orange, both coupled to chromatin. The increase of the average distance between these ligands, under the action of laser radiation, reflects a loosening of the chromatin structure. The radiosensitivity of tumor tissue chromatin is higher than that of a normal tissue. The determination of the chromatin structure modification in an excimer laser field can be of interest in laser therapy.

  2. Time-resolved spectroscopy and fluorescence resonance energy transfer in the study of excimer laser damage of chromatin

    International Nuclear Information System (INIS)

    Radu, L.; Mihailescu, I.; Radu, S.; Gazdaru, D.

    2007-01-01

    The analysis of chromatin damage produced by a 248 nm excimer laser radiation, for doses of 0.3-3 MJ/m 2 was carried out by time-resolved spectroscopy and fluorescence resonance energy transfer (FRET). The chromatin was extracted from a normal and a tumoral tissue of Wistar rats. The decrease with laser dose of the relative contribution of the excited state lifetimes of ethidium bromide (EtBr) bounded to chromatin constitutes an evidence of the reduction of chromatin deoxyribonucleic acid (DNA) double-strand structure. FRET was performed from dansyl chloride to acridine orange, both coupled to chromatin. The increase of the average distance between these ligands, under the action of laser radiation, reflects a loosening of the chromatin structure. The radiosensitivity of tumor tissue chromatin is higher than that of a normal tissue. The determination of the chromatin structure modification in an excimer laser field can be of interest in laser therapy

  3. Time-resolved SFG study of formate on a Ni( 1 1 1 ) surface under irradiation of picosecond laser pulses

    Science.gov (United States)

    Noguchi, H.; Okada, T.; Onda, K.; Kano, S. S.; Wada, A.; Domen, K.

    2003-03-01

    Time-resolved sum-frequency generation spectroscopy was carried out on a deuterated formate (DCOO) adsorbed on Ni(1 1 1) surface to investigate the surface reaction dynamics under instantaneous surface temperature jump induced by the irradiation by picosecond laser pulses. The irradiation of pump pulse (800 nm) caused the rapid intensity decrease of both CD and OCO stretching modes of bridged formate on Ni(1 1 1). Different temporal behaviors of intensity recovery between these two vibrational modes were observed, i.e., CD stretching mode recovered faster than OCO. This is the first result to show that the dynamics of adsorbates on metals strongly depends on the observed vibrational mode. From the results of temperature and pump fluence dependence, we concluded that the observed intensity change was not due to the decomposition or desorption, but was induced by a non-thermal process.

  4. Distortion dependent intersystem crossing: A femtosecond time-resolved photoelectron spectroscopy study of benzene, toluene, and p-xylene

    Directory of Open Access Journals (Sweden)

    Anne B. Stephansen

    2017-07-01

    Full Text Available The competition between ultrafast intersystem crossing and internal conversion in benzene, toluene, and p-xylene is investigated with time-resolved photoelectron spectroscopy and quantum chemical calculations. By exciting to S2 out-of-plane symmetry breaking, distortions are activated at early times whereupon spin-forbidden intersystem crossing becomes (partly allowed. Natural bond orbital analysis suggests that the pinnacle carbon atoms distorting from the aromatic plane change hybridization between the planar Franck-Condon geometry and the deformed (boat-shaped S2 equilibrium geometry. The effect is observed to increase in the presence of methyl-groups on the pinnacle carbon-atoms, where largest extents of σ and π orbital-mixing are observed. This is fully consistent with the time-resolved spectroscopy data: Toluene and p-xylene show evidence for ultrafast triplet formation competing with internal conversion, while benzene appears to only decay via internal conversion within the singlet manifold. For toluene and p-xylene, internal conversion to S1 and intersystem crossing to T3 occur within the time-resolution of our instrument. The receiver triplet state (T3 is found to undergo internal conversion in the triplet manifold within ≈100–150 fs (toluene or ≈180–200 fs (p-xylene as demonstrated by matching rise and decay components of upper and lower triplet states. Overall, the effect of methylation is found to both increase the intersystem crossing probability and direct the molecular axis of the excited state dynamics.

  5. Experimental study of the wake characteristics of a two-blade horizontal axis wind turbine by time-resolved PIV

    Institute of Scientific and Technical Information of China (English)

    ZHANG LiRu; CEN KeFa; XING JiangKuan; WANG JianWen; YUAN RenYu; DONG XueQing; MA JianLong; LUO Kun; QIU KunZan; NI MingJiang

    2017-01-01

    Wind tunnel experiments of the wake characteristics of a two-blade wind turbine,in the downstream region of 0<x/R< 10,have been carried out.With the help of the time resolved particle image velocimetry (TRPIV),flow properties such as the vortex structure,average velocity,fluctuations velocities and Reynolds stresses are obtained at different tip speed ratios (TSR).It is found that the wind turbine wake flow can be divided into velocity deficit region,velocity remained region and velocity increased region,with generally higher velocity deficit compared with a three-blade wind turbine wake.Once a blade rotates to the reference 0° plane,the tip vortices generate,shed and move downstream with the intensity gradually decreased.The leapfrogging phenomenon of tip vortices caused by the force interaction of adjacent vortices is found and more apparent in the far wake region.The axial fluctuation velocity is larger than radial fluctuation velocity at the blade root region,and the turbulent kinetic energy shares the similar trend as the axial fluctuation velocity.The axial normalized Reynolds normal stress is much larger than the radial normalized Reynolds normal stress and Reynolds shear stress at the blade root region.As the TSR increases,the radial location where the peak axial normalized Reynolds normal stress u u / U2 and axial fluctuation velocity appear descends in the radial direction.

  6. Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets

    International Nuclear Information System (INIS)

    Stradling, G.L.

    1982-01-01

    New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 μg/cm 2 ) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolved x-ray diagnostic capability are applied to energy-transport investigations of 1.06-μm laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10 14 W/cm 2 and 1 x 10 15 W/cm 2

  7. Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics

    Science.gov (United States)

    Abedini, Andisheh; Plesner, Annette; Cao, Ping; Ridgway, Zachary; Zhang, Jinghua; Tu, Ling-Hsien; Middleton, Chris T; Chao, Brian; Sartori, Daniel J; Meng, Fanling; Wang, Hui; Wong, Amy G; Zanni, Martin T; Verchere, C Bruce; Raleigh, Daniel P; Schmidt, Ann Marie

    2016-01-01

    Islet amyloidosis by IAPP contributes to pancreatic β-cell death in diabetes, but the nature of toxic IAPP species remains elusive. Using concurrent time-resolved biophysical and biological measurements, we define the toxic species produced during IAPP amyloid formation and link their properties to induction of rat INS-1 β-cell and murine islet toxicity. These globally flexible, low order oligomers upregulate pro-inflammatory markers and induce reactive oxygen species. They do not bind 1-anilnonaphthalene-8-sulphonic acid and lack extensive β-sheet structure. Aromatic interactions modulate, but are not required for toxicity. Not all IAPP oligomers are toxic; toxicity depends on their partially structured conformational states. Some anti-amyloid agents paradoxically prolong cytotoxicity by prolonging the lifetime of the toxic species. The data highlight the distinguishing properties of toxic IAPP oligomers and the common features that they share with toxic species reported for other amyloidogenic polypeptides, providing information for rational drug design to treat IAPP induced β-cell death. DOI: http://dx.doi.org/10.7554/eLife.12977.001 PMID:27213520

  8. Penetration route of functional molecules in stratum corneum studied by time-resolved small- and wide-angle x-ray diffraction

    International Nuclear Information System (INIS)

    Hatta, Ichiro; Ohta, Noboru; Yagi, Naoto; Nakazawa, Hiromitsu; Obata, Yasuko; Inoue, Katsuaki

    2011-01-01

    We studied effects of functional molecules on corneocytes in stratum corneum using time-resolved small- and wide-angle x-ray diffraction after applying a functional molecule. From these results it was revealed that in the stratum corneum a typical hydrophilic molecule, ethanol, penetrates via the transcellular route and on the other hand a typical hydrophobic molecule, d-limonene, penetrates via the intercellular route.

  9. Time-resolved echo-shared parallel MRA of the lung: observer preference study of image quality in comparison with non-echo-shared sequences

    International Nuclear Information System (INIS)

    Fink, C.; Puderbach, M.; Zaporozhan, J.; Plathow, C.; Kauczor, H.-U.; Ley, S.

    2005-01-01

    The aim of this study was to evaluate the image quality of time-resolved echo-shared parallel MRA of the lung. The pulmonary vasculature of nine patients (seven females, two males; median age: 44 years) with pulmonary disease was examined using a time-resolved MRA sequence combining echo sharing with parallel imaging (time-resolved echo-shared angiography technique, or TREAT). The sharpness of the vessel borders, conspicuousness of peripheral lung vessels, artifact level, and overall image quality of TREAT was assessed independently by four readers in a side-by-side comparison with non-echo-shared time-resolved parallel MRA data (pMRA) previously acquired in the same patients. Furthermore, the SNR of pulmonary arteries (PA) and veins (PV) achieved with both pulse sequences was compared. The mean voxel size of TREAT MRA was decreased by 24% compared with the non-echo-shared MRA. Regarding the sharpness of the vessel borders, conspicuousness of peripheral lung vessels, and overall image quality the TREAT sequence was rated superior in 75-76% of all cases. If the TREAT images were preferred over the pMRA images, the advantage was rated as major in 61-71% of all cases. The level of artifacts was not increased with the TREAT sequence. The mean interobserver agreement for all categories ranged between fair (artifact level) and good (overall image quality). The maximum SNR of TREAT did not differ from non-echo-shared parallel MRA (PA: TREAT: 273±45; pMRA: 280±71; PV: TREAT: 273±33; pMRA: 258±62). TREAT achieves a higher spatial resolution than non-echo-shared parallel MRA which is also perceived as an improved image quality. (orig.)

  10. Time resolved study of the emission enhancement mechanisms in orthogonal double-pulse laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sanginés, R., E-mail: roberto.sangines@ccadet.unam.mx; Sobral, H.

    2013-10-01

    The evolution of laser induced ablation plume on aluminum targets has been investigated in orthogonal pre-ablation double pulse scheme at atmospheric pressure from the earliest stages of plasma evolution. Time-resolved emission spectra from neutrals, singly- and doubly-ionized species obtained with the double pulse experiment have been compared with those from the single pulse configuration. Signal-to-noise enhancement reaches values of up to 15 depending on the analyzed species; and the lower the charge state the later its maximum signal-to-noise ratio is reached. Ablation plume dynamics was monitored from 10 ns after the plasma onset via shadowgraphy and fast-photography with narrow interference filters to follow the evolution of individual species. Results show that ionic species from the target are located at the plasma core while nitrogen from the background air is found at the plume peripheral. Initially both configurations exhibit similar ablation plume sizes and their expansions were successfully fitted with the strong explosion model for the first 500 ns. At later times a good agreement was obtained by using the drag model, which predicts that the plume expansion eventually stops due to interaction with the background gas particles. The emission enhancement measured in the double pulse scheme is discussed in terms of the models describing the plume dynamics. - Highlights: • Production of 2 + ions at the earliest stages of plasma evolution • The higher the charge state the inner the location within the ablation plume. • The expansion rate of the second (ablation) plume was measured. • Shock and drag models successfully fit the ablation shock front expansion.

  11. Nanomorphology of polythiophene–fullerene bulk-heterojunction films investigated by structured illumination optical imaging and time-resolved confocal microscopy

    International Nuclear Information System (INIS)

    Hao, X-T; Hirvonen, L M; Smith, T A

    2013-01-01

    Structured illumination microscopy (SIM) and time-resolved confocal fluorescence microscopy are applied to investigate the nanomorphology of thin films comprising typical blends of the conjugated polymer, poly (3-hexylthiophene) (P3HT), and [6, 6]-phenyl C 61 -butyric acid methyl ester (PCBM), used for organic photovoltaic applications. SIM provides evidence for the presence of a thin emissive region around the crystalline regions of PCBM and at the tips of rod-like domains. The time-resolved measurements show that the emission surrounding the PCBM rods is longer lived than the bulk of the film. The two modes of microscopy provide complementary evidence indicating that electron–hole separation is inhibited between the polymer and the large PCBM-rich domains in these regions. We show here that structured illumination microscopy is a viable method of gaining additional information from these photovoltaic materials, despite their weak emission. (paper)

  12. Femtosecond time-resolved optical and Raman spectroscopy of photoinduced spin crossover: temporal resolution of low-to-high spin optical switching.

    Science.gov (United States)

    Smeigh, Amanda L; Creelman, Mark; Mathies, Richard A; McCusker, James K

    2008-10-29

    A combination of femtosecond electronic absorption and stimulated Raman spectroscopies has been employed to determine the kinetics associated with low-spin to high-spin conversion following charge-transfer excitation of a FeII spin-crossover system in solution. A time constant of tau = 190 +/- 50 fs for the formation of the 5T2 ligand-field state was assigned based on the establishment of two isosbestic points in the ultraviolet in conjunction with changes in ligand stretching frequencies and Raman scattering amplitudes; additional dynamics observed in both the electronic and vibrational spectra further indicate that vibrational relaxation in the high-spin state occurs with a time constant of ca. 10 ps. The results set an important precedent for extremely rapid, formally forbidden (DeltaS = 2) nonradiative relaxation as well as defining the time scale for intramolecular optical switching between two electronic states possessing vastly different spectroscopic, geometric, and magnetic properties.

  13. Kinetics of the F+NO2+M->FNO2+M reaction studied by pulse radiolysis combined with time-resolved IR and UV spectroscopy

    DEFF Research Database (Denmark)

    Pagsberg, Palle Bjørn; Sillesen, A.; Jodkowski, J.T.

    1996-01-01

    was studied with SF6 pressures of 5-1000 mbar at 298 K. Comparative studies were carried out by monitoring the decay kinetics of NO2 at 445 nm using pressures of 100-1000 mbar at 295 and 341 K. The observed pressure dependence is represented in terms of a fall-off curve with the following values......The title reaction was initiated by the pulse radiolysis of SF6/NO2 gas mixtures, and the formation of FNO2 was studied by time-resolved infrared spectroscopy employing strong rotational transitions within the nu(1) and nu(4) bands of FNO2. The pressure dependence of the formation kinetics...

  14. Time-resolved study of the electron temperature and number density of argon metastable atoms in argon-based dielectric barrier discharges

    Science.gov (United States)

    Desjardins, E.; Laurent, M.; Durocher-Jean, A.; Laroche, G.; Gherardi, N.; Naudé, N.; Stafford, L.

    2018-01-01

    A combination of optical emission spectroscopy and collisional-radiative modelling is used to determine the time-resolved electron temperature (assuming Maxwellian electron energy distribution function) and number density of Ar 1s states in atmospheric pressure Ar-based dielectric barrier discharges in presence of either NH3 or ethyl lactate. In both cases, T e values were higher early in the discharge cycle (around 0.8 eV), decreased down to about 0.35 eV with the rise of the discharge current, and then remained fairly constant during discharge extinction. The opposite behaviour was observed for Ar 1s states, with cycle-averaged values in the 1017 m-3 range. Based on these findings, a link was established between the discharge ionization kinetics (and thus the electron temperature) and the number density of Ar 1s state.

  15. Time resolved Raman studies of laser induced damage in TiO2 optical coatings

    International Nuclear Information System (INIS)

    Exarhos, G.J.; Morse, P.L.

    1984-10-01

    Molecular information available from Raman scattering measurements of sputter deposited TiO 2 on silica substrates has been used to characterize crystalline phases, thickness, and surface homogeneity. A two laser technique is described for investigating transient molecular changes in both coating and substrate which result from pulsed 532 nm laser irradiation. Single layer and multilayer coatings of both anatase and rutile phases of TiO 2 have been probed by Raman spectroscopy immediately following the damage pulse (nanoseconds) and at longer times. Transient measurements are designed to follow surface transformation/relaxation phenomena; measurements at longer times characterize the equilibrium damage state

  16. Characterization of a time-resolved non-contact scanning diffuse optical imaging system exploiting fast-gated single-photon avalanche diode detection

    Energy Technology Data Exchange (ETDEWEB)

    Di Sieno, Laura, E-mail: laura.disieno@polimi.it; Dalla Mora, Alberto; Contini, Davide [Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Wabnitz, Heidrun; Macdonald, Rainer [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Pifferi, Antonio [Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Mazurenka, Mikhail [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Hannoversches Zentrum für Optische Technologien, Nienburger Str. 17, 30167 Hannover (Germany); Hoshi, Yoko [Department of Biomedical Optics, Medical Photonics Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Boso, Gianluca; Tosi, Alberto [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Becker, Wolfgang [Becker and Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Martelli, Fabrizio [Dipartimento di Fisica e Astronomia dell’Università degli Studi di Firenze, Via G. Sansone 1, Sesto Fiorentino, Firenze 50019 (Italy)

    2016-03-15

    We present a system for non-contact time-resolved diffuse reflectance imaging, based on small source-detector distance and high dynamic range measurements utilizing a fast-gated single-photon avalanche diode. The system is suitable for imaging of diffusive media without any contact with the sample and with a spatial resolution of about 1 cm at 1 cm depth. In order to objectively assess its performances, we adopted two standardized protocols developed for time-domain brain imagers. The related tests included the recording of the instrument response function of the setup and the responsivity of its detection system. Moreover, by using liquid turbid phantoms with absorbing inclusions, depth-dependent contrast and contrast-to-noise ratio as well as lateral spatial resolution were measured. To illustrate the potentialities of the novel approach, the characteristics of the non-contact system are discussed and compared to those of a fiber-based brain imager.

  17. Characterization of a time-resolved non-contact scanning diffuse optical imaging system exploiting fast-gated single-photon avalanche diode detection

    International Nuclear Information System (INIS)

    Di Sieno, Laura; Dalla Mora, Alberto; Contini, Davide; Wabnitz, Heidrun; Macdonald, Rainer; Pifferi, Antonio; Mazurenka, Mikhail; Hoshi, Yoko; Boso, Gianluca; Tosi, Alberto; Becker, Wolfgang; Martelli, Fabrizio

    2016-01-01

    We present a system for non-contact time-resolved diffuse reflectance imaging, based on small source-detector distance and high dynamic range measurements utilizing a fast-gated single-photon avalanche diode. The system is suitable for imaging of diffusive media without any contact with the sample and with a spatial resolution of about 1 cm at 1 cm depth. In order to objectively assess its performances, we adopted two standardized protocols developed for time-domain brain imagers. The related tests included the recording of the instrument response function of the setup and the responsivity of its detection system. Moreover, by using liquid turbid phantoms with absorbing inclusions, depth-dependent contrast and contrast-to-noise ratio as well as lateral spatial resolution were measured. To illustrate the potentialities of the novel approach, the characteristics of the non-contact system are discussed and compared to those of a fiber-based brain imager.

  18. Decomposition of time-resolved tomographic PIV

    NARCIS (Netherlands)

    Schmid, P.J.; Violato, D.; Scarano, F.

    2012-01-01

    An experimental study has been conducted on a transitional water jet at a Reynolds number of Re = 5,000. Flow fields have been obtained by means of time-resolved tomographic particle image velocimetry capturing all relevant spatial and temporal scales. The measured threedimensional flow fields have

  19. SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator

    Science.gov (United States)

    Gardés, E.; Balanzat, E.; Ban-d'Etat, B.; Cassimi, A.; Durantel, F.; Grygiel, C.; Madi, T.; Monnet, I.; Ramillon, J.-M.; Ropars, F.; Lebius, H.

    2013-02-01

    We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/μm. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteriorating is not independent on particles' stopping power, thus illustrating that the radiation hardness of plastic scintillators can be strongly weakened under high excitation density in heavy ion environments.

  20. Study of Short-Pulsed Laser Retinal Injury Mechanisms By Time-Resolved Imaging of Photomechanical Transients in RPE

    National Research Council Canada - National Science Library

    Lin, Charles

    2000-01-01

    We studied RPE cell damage mechanism for laser duration from 100 femtosec to 5 microsec, and we have investigated the dependence of threshold fluence for cell damage on the laser spot size on the RPE...

  1. Influence of Pentacene Interface Layer in ITO/α-NPD/Alq3/Al Organic Light Emitting Diodes by Time-Resolved Electric-Field-Induced Optical Second-Harmonic Generation Measurement.

    Science.gov (United States)

    Oda, Yoshiaki; Sadakata, Atsuo; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2016-04-01

    By using I-V, EL-V, displacement current measurement (DCM) and time-resolved electric-field-induced optical second-harmonic generation (TR-EFISHG) measurement, we studied the influence of interface pentacene layer inserted between ITO and a-NPD layers in ITO/α-NPD/Alq3/Al OLEDs. All experiments were carried out for the OLEDs with and without a pentacene interface layer. The I-V and EL-V measurements showed the decrease of operating voltage of EL, the DCM showed the lowering of inception voltage of carrier injection by inserting a pentacene interface layer. The TR-EFISHG measurement showed the faster accumulation of holes at the interface between the a-NPD and Alq3 layers, which resulted in the relaxation of electric field of a-NPD layer accomplished by the increase of the conductivity and the increase of the electric field in the Alq3 layer. We conclude that TR-EFISHG measurement is helpful for understanding I-V and EL-V characteristics, and can be combined with other methods to give significant information which are impacted by the interface layer.

  2. Stereoselective Binding of Flurbiprofen Enantiomers and their Methyl Esters to Human Serum Albumin Studied by Time-Resolved Phosphorescence

    NARCIS (Netherlands)

    mr. Lammers, I.; Lhiaubet-Vallet, V.; Jimenez, M.C.; Ariese, F.; Miranda, M.A.; Gooijer, C.

    2012-01-01

    The interaction of the nonsteroidal anti-inflammatory drug flurbiprofen (FBP) with human serum albumin (HSA) hardly influences the fluorescence of the protein's single tryptophan (Trp). Therefore, in addition to fluorescence, heavy atom-induced room-temperature phosphorescence is used to study the

  3. Time-resolved study of a pulsed dc discharge using quantum cascade laser absorption spectroscopy : NO and gas temperature kinetics

    NARCIS (Netherlands)

    Welzel, S.; Gatilova, L.; Röpcke, J.; Rousseau, A.

    2007-01-01

    In a pulsed dc discharge of an Ar–N2 mixture containing 0.91% of NO the kinetics of the destruction of NO has been studied under static and flowing conditions, i.e. in a closed and open discharge tube (p = 266 Pa). For this purpose quantum cascade laser absorption spectroscopy (QCLAS) in the

  4. Single molecule manipulation at low temperature and laser scanning tunnelling photo-induced processes analysis through time-resolved studies

    International Nuclear Information System (INIS)

    Riedel, Damien

    2010-01-01

    This paper describes, firstly, the statistical analysis used to determine the processes that occur during the manipulation of a single molecule through electronically induced excitations with a low temperature (5 K) scanning tunnelling microscope (STM). Various molecular operation examples are described and the ability to probe the ensuing molecular manipulation dynamics is discussed within the excitation context. It is, in particular, shown that such studies can reveal reversible manipulation for tuning dynamics through variation of the excitation energy. Secondly, the photo-induced process arising from the irradiation of the STM junction is also studied through feedback loop dynamics analysis, allowing us to distinguish between photo-thermally and photo-electronically induced signals.

  5. A time-resolved study on the photodynamic primary process of ADE. Pt.2: Photochemistry in biomolecular complexes

    International Nuclear Information System (INIS)

    Pan Jingxi; Lin Weizhen; Han Zhenhui; Miao Jinling; Wang Wenfeng; Yao Side; Lin Nianyun; Zhu Dayuan

    2003-01-01

    By use of laser flash photolysis and steady state absorption techniques, a systematic study was carried out on the interaction of ADE, which is a kind of model compound of actinomycin D, with DNA and BSA. Non-covalent binding was found between ADE and ssDNA, dsDNA and BSA, and photoinduced electron transfer reaction was observed. These results indicate that actinomycins might be used as type I photodrugs in the future and will be helpful for structure modification of this kind of compound

  6. Excitation dynamics of dye doped tris(8-hydroxy quinoline) aluminum films studied using time-resolved photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Read, K.; Karlsson, H. S.; Murnane, M. M.; Kapteyn, H. C.; Haight, R.

    2001-01-01

    In this work, we use excite-probe photoelectron spectroscopy to study the decay of electronic excitation in tris(8-hydroxy quinoline) aluminum (Alq) doped with the organic dye 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM). Ultrashort laser pulses are used to photoexcite electrons into unoccupied molecular orbitals, and the ensuing decay rate is directly observed using photoelectron spectroscopy. Decay of the electronic excitation is studied as a function of DCM doping percentage and excitation intensity. The decay rate is seen to increase with both doping percentage and excitation intensity. These data are explained using a model including Foerster transfer, stimulated emission, concentration quenching, and bimolecular singlet - singlet exciton annihilation. In this model, we find that it is necessary to include a very fast (faster than predicted in standard Foerster transfer theory) excitation transfer of a fraction of the excitation from the Alq to the DCM, where that fraction corresponds to the approximate nearest-neighbor population. [copyright] 2001 American Institute of Physics

  7. Microviscosity of supercooled water confined within aminopropyl-modified mesoporous silica as studied by time-resolved fluorescence spectroscopy.

    Science.gov (United States)

    Yamaguchi, Akira; Namekawa, Manato; Itoh, Tetsuji; Teramae, Norio

    2012-01-01

    The fluorescence dynamics of rhodamine B (RhB) immobilized on the pore surface of aminopropyl (AP)-modified mesoporous silica (diameter of the silica framework, 3.1 nm) was examined at temperatures between 293 and 193 K to study the microviscosity of supercooled water confined inside the pores. The mesoporous silica specimen with a dense AP layer (2.1 molecules nm(-2)) was prepared, and RhB isothiocyanate was covalently bound to part of the surface AP groups. The fluorescence lifetime of the surface RhB increased with decreasing temperature from 293 to 223 K, indicating that freezing of the confined water did not occur in this temperature range. The microviscosity of the supercooled confined water was evaluated from an analysis of the lifetime data based on a frequency-dependent friction model.

  8. Effects of aging on working memory performance and prefrontal cortex activity:A time-resolved spectroscopy study

    Institute of Scientific and Technical Information of China (English)

    Jie Shi; Wenjing Zhou; Tongchao Geng; Huancong Zuo; Masahiro Tanida; Kaoru Sakatani

    2016-01-01

    Objective:This study aimed to employ time‐resolved spectroscopy (TRS) to explore age‐related differences in prefrontal cortex (PFC) activity while subjects performed a working memory task. Methods:We employed TRS to measure PFC activity in ten healthy younger and ten healthy older subjects while they performed a working memory (WM) task. All subjects performed the Sternberg test (ST) in which the memory‐set size varied between one and six digits. Using TRS, we recorded changes in cerebral blood oxygenation as a measure of changes in PFC activity during the task. In order to identify left/right asymmetry of PFC activity during the working memory task, we calculated the laterality score, i.e.,Δoxy‐Hb (rightΔoxy‐Hb—leftΔoxy‐Hb);positive values indicate greater activity in the right PFC, while negative values indicate greater activity in the left PFC. Results:During the ST, statistical analyses showed no significant differences between the younger and older groups in accuracy for low memory‐load and high memory‐load. In high memory‐load tasks, however, older subjects were slower than younger subjects (P Conclusions: The present results are consistent with the hemispheric asymmetry reduction in older adults (HAROLD) model;working memory tasks cause asymmetrical PFC activation in younger adults, while older adults tend to show reduced hemispheric lateralization.

  9. Effects of aging on working memory performance and prefrontal cortex activity: A time-resolved spectroscopy study

    Institute of Scientific and Technical Information of China (English)

    Jie Shi; Wenjing Zhou; Tongchao Geng; Huancong Zuo; Masahiro Tanida; Kaoru Sakatani

    2016-01-01

    Objective:This study aimed to employ time‐resolved spectroscopy(TRS)to explore age‐related differences in prefrontal cortex(PFC)activity while subjects performed a working memory task.Methods:We employed TRS to measure PFC activity in ten healthy younger and ten healthy older subjects while they performed a working memory(WM)task.All subjects performed the Sternberg test(ST)in which the memory‐set size varied between one and six digits.Using TRS,we recorded changes in cerebral blood oxygenation as a measure of changes in PFC activity during the task.In order to identify left/right asymmetry of PFC activity during the working memory task,we calculated the laterality score,i.e.,Δoxy‐Hb(rightΔoxy‐Hb—leftΔoxy‐Hb);positive values indicate greater activity in the right PFC,while negative values indicate greater activity in the left PFC.Results:During the ST,statistical analyses showed no significant differences between the younger and older groups in accuracy for low memory‐load and high memory‐load.In high memory‐load tasks,however,older subjects were slower than younger subjects(P<0.05).We found that the younger group showed right lateral responses with a stronger right than left activation in the frontal pole,whereas the older group showed bilateral responses(P<0.05).Conclusions:The present results are consistent with the hemispheric asymmetry reduction in older adults(HAROLD)model;working memory tasks cause asymmetrical PFC activation in younger adults,while older adults tend to show reduced hemispheric lateralization.

  10. On the use of time-resolved laser-induced fluorescence (TRLIF) and electrospray mass spectrometry (ES-MS) for speciation studies

    International Nuclear Information System (INIS)

    Moulin, C.

    2003-01-01

    Time-resolved laser induced fluorescence (TRLIF) and electrospray mass spectrometry (ES-MS) are used for speciation studies. While the former has been used for long time, the latter is rather new in the field of speciation. These two techniques have different advantages such as sensitivity (especially for TRLIF), selectivity and multielement capabilities (in case of ES-MS). Examples obtained from studies carried out within the CEA are presented. Concerning TRLIF, emphasis is put on uranyl ion speciation in nitric acid to phosphoric acid going through hydroxo complexes. Concerning ES-MS, humic substances identification as well as speciation of cesium, zirconium, thorium and uranyl ions in various complexing media are presented. Comparisons of TRLIF and ES-MS results are made in the case of uranyl hydroxo complexes and favourably compared with OECD data. Trends for these two techniques are also discussed. (orig.)

  11. A hybrid breath hold and continued respiration-triggered technique for time-resolved 3D MRI perfusion studies in lung cancer

    International Nuclear Information System (INIS)

    Hintze, C.; Stemmer, A.; Bock, M.

    2010-01-01

    Assessment of lung cancer perfusion is impaired by respiratory motion. Imaging times for contrast agent wash-out studies often exceed breath hold capabilities, and respiration triggering reduces temporal resolution. Temporally resolved volume acquisition of entire tumors is required to assess heterogeneity. Therefore, we developed and evaluated an MR measurement technique that exceeds a single breath hold, and provides a variable temporal resolution during acquisition while suspending breath-dependent motion. 20 patients with suspected lung cancer were subjected to perfusion studies using a spoiled 3D gradient echo sequence after bolus injection of 0.07 mmol/kg body weight of Gd-DTPA. 10 acquisitions in expiratory breath hold were followed by 50 navigator-triggered acquisitions under free breathing. Post-processing allowed for co-registration of the 3D data sets. An ROI-based visualization of the signal-time curves was performed. In all cases motion-suspended, time-resolved volume data sets (40 x 33 x 10 cm 3 , voxel size: 2.1 x 2.1 x 5.0 mm 3 ) were generated with a variable, initially high temporal resolution (2.25 sec) that was synchronized with the breath pattern and covered up to 8(1)/(2) min. In 7 / 20 cases a remaining offset could be reduced by rigid co-registration. The tumors showed fast wash-in, followed by rapid signal decay (8 / 20) or a plateau. The feasibility of a perfusion study with hybrid breath hold and navigator-triggered time-resolved 3D MRI which combines high initial temporal resolution during breath hold with a long wash-out period under free breathing was demonstrated. (orig.)

  12. Driving force behind adsorption-induced protein unfolding: a time-resolved X-ray reflectivity study on lysozyme adsorbed at an air/water interface.

    Science.gov (United States)

    Yano, Yohko F; Uruga, Tomoya; Tanida, Hajime; Toyokawa, Hidenori; Terada, Yasuko; Takagaki, Masafumi; Yamada, Hironari

    2009-01-06

    Time-resolved X-ray reflectivity measurements for lysozyme (LSZ) adsorbed at an air/water interface were performed to study the mechanism of adsorption-induced protein unfolding. The time dependence of the density profile at the air/water interface revealed that the molecular conformation changed significantly during adsorption. Taking into account previous work using Fourier transform infrared (FTIR) spectroscopy, we propose that the LSZ molecules initially adsorbed on the air/water interface have a flat unfolded structure, forming antiparallel beta-sheets as a result of hydrophobic interactions with the gas phase. In contrast, as adsorption continues, a second layer forms in which the molecules have a very loose structure having random coils as a result of hydrophilic interactions with the hydrophilic groups that protrude from the first layer.

  13. Chemical sensitivity of InP/In0.48Ga0.52P surface quantum dots studied by time-resolved photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    De Angelis, Roberta; Casalboni, Mauro; De Matteis, Fabio; Hatami, Fariba; Masselink, William T.; Zhang, Hong; Prosposito, Paolo

    2015-01-01

    InP/InGaP surface quantum dots represent an attractive material for optical chemical sensors since they show a remarkable near infra-red emission at room temperature, whose intensity increases rapidly and reversibly depending on the composition of the environmental atmosphere. We show here their emission properties by time resolved photoluminescence spectroscopy investigation. Photoluminescence transients with and without chemical solvent vapours (methanol, clorophorm, acetone and water) were fitted with a 3-exponential decay law with times of about 0.5 ns, 2 ns and 7 ns. The measurements revealed a weak effect on clorophorm, acetone and water, while the initial decay time of InP surface quantum dots increases (up to 15%) upon methanol vapour exposure, indicating that the organic molecules efficiently saturate QD non-radiative surface states. - Highlights: • InP SQDs emission depends on the presence of solvent vapours in the atmosphere. • TR photoluminescence transients were fitted with a 3-exponential decay law. • The initial decay time increases (up to 15%) upon methanol vapour exposure. • Organic molecules efficiently saturate QD non-radiative surface states.

  14. Kinetics of methane-ethane gas replacement in clathrate-hydrates studied by time-resolved neutron diffraction and Raman spectroscopy.

    Science.gov (United States)

    Murshed, M Mangir; Schmidt, Burkhard C; Kuhs, Werner F

    2010-01-14

    The kinetics of CH(4)-C(2)H(6) replacement in gas hydrates has been studied by in situ neutron diffraction and Raman spectroscopy. Deuterated ethane structure type I (C(2)H(6) sI) hydrates were transformed in a closed volume into methane-ethane mixed structure type II (CH(4)-C(2)H(6) sII) hydrates at 5 MPa and various temperatures in the vicinity of 0 degrees C while followed by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. The role of available surface area of the sI starting material on the formation kinetics of sII hydrates was studied. Ex situ Raman spectroscopic investigations were carried out to crosscheck the gas composition and the distribution of the gas species over the cages as a function of structure type and compared to the in situ neutron results. Raman micromapping on single hydrate grains showed compositional and structural gradients between the surface and core of the transformed hydrates. Moreover, the observed methane-ethane ratio is very far from the one expected for a formation from a constantly equilibrated gas phase. The results also prove that gas replacement in CH(4)-C(2)H(6) hydrates is a regrowth process involving the nucleation of new crystallites commencing at the surface of the parent C(2)H(6) sI hydrate with a progressively shrinking core of unreacted material. The time-resolved neutron diffraction results clearly indicate an increasing diffusion limitation of the exchange process. This diffusion limitation leads to a progressive slowing down of the exchange reaction and is likely to be responsible for the incomplete exchange of the gases.

  15. The location and nature of general anesthetic binding sites on the active conformation of firefly luciferase; a time resolved photolabeling study.

    Directory of Open Access Journals (Sweden)

    Sivananthaperumal Shanmugasundararaj

    Full Text Available Firefly luciferase is one of the few soluble proteins that is acted upon by a wide variety of general anesthetics and alcohols; they inhibit the ATP-driven production of light. We have used time-resolved photolabeling to locate the binding sites of alcohols during the initial light output, some 200 ms after adding ATP. The photolabel 3-azioctanol inhibited the initial light output with an IC50 of 200 µM, close to its general anesthetic potency. Photoincorporation of [(3H]3-azioctanol into luciferase was saturable but weak. It was enhanced 200 ms after adding ATP but was negligible minutes later. Sequencing of tryptic digests by HPLC-MSMS revealed a similar conformation-dependence for photoincorporation of 3-azioctanol into Glu-313, a residue that lines the bottom of a deep cleft (vestibule whose outer end binds luciferin. An aromatic diazirine analog of benzyl alcohol with broader side chain reactivity reported two sites. First, it photolabeled two residues in the vestibule, Ser-286 and Ile-288, both of which are implicated with Glu-313 in the conformation change accompanying activation. Second, it photolabeled two residues that contact luciferin, Ser-316 and Ser-349. Thus, time resolved photolabeling supports two mechanisms of action. First, an allosteric one, in which anesthetics bind in the vestibule displacing water molecules that are thought to be involved in light output. Second, a competitive one, in which anesthetics bind isosterically with luciferin. This work provides structural evidence that supports the competitive and allosteric actions previously characterized by kinetic studies.

  16. Time-resolved measurement of emission profiles in pulsed radiofrequency glow discharge optical emission spectroscopy: Investigation of the pre-peak

    International Nuclear Information System (INIS)

    Alberts, D.; Horvath, P.; Nelis, Th.; Pereiro, R.; Bordel, N.; Michler, J.; Sanz-Medel, A.

    2010-01-01

    Radiofrequency glow discharge coupled to optical emission spectroscopy has been used in pulsed mode in order to perform a detailed study of the measured temporal emission profiles for a wide range of copper transitions. Special attention has been paid to the early emission peak (or so-called pre-peak), observed at the beginning of the emission pulse profile. The effects of the important pulse parameters such as frequency, duty cycle, pulse width and power-off time, have been studied upon the Cu pulse emission profiles. The influence of discharge parameters, such as pressure and power, was studied as well. Results have shown that the intensity observed in the pre-peak can be 10 times as large as the plateau value for resonant lines and up to 5 times in case of transitions to the metastable levels. Increasing pressure or power increased the pre-peak intensity while its appearance in time changed. The pre-peak decreased when the discharge off-time was shorter than 100 μs. According to such results, the presence of the pre-peak could be probably due to the lack of self-absorption during the first 50 μs, and not to the ignition of the plasma. Under the selected operation conditions, the use of the pre-peak emission as analytical signals increases the linearity of calibration curves for resonant lines subjected to self-absorption at high concentrations.

  17. Time-resolved measurement of emission profiles in pulsed radiofrequency glow discharge optical emission spectroscopy: Investigation of the pre-peak

    Energy Technology Data Exchange (ETDEWEB)

    Alberts, D. [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Horvath, P. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Nelis, Th. [LAPLACE, Universite Paul Sabatier, 118 rte de Narbonne, Bat3R2, 31062 Toulouse Cedex (France); CU Jean Francois Champollion, Place de Verdun 81012 Albi Cedex 9 (France); Pereiro, R. [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Bordel, N. [Department of Physics, Faculty of Science, University of Oviedo, Calvo Sotelo, 33007 Oviedo (Spain); Michler, J. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Sanz-Medel, A., E-mail: asm@uniovi.e [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain)

    2010-07-15

    Radiofrequency glow discharge coupled to optical emission spectroscopy has been used in pulsed mode in order to perform a detailed study of the measured temporal emission profiles for a wide range of copper transitions. Special attention has been paid to the early emission peak (or so-called pre-peak), observed at the beginning of the emission pulse profile. The effects of the important pulse parameters such as frequency, duty cycle, pulse width and power-off time, have been studied upon the Cu pulse emission profiles. The influence of discharge parameters, such as pressure and power, was studied as well. Results have shown that the intensity observed in the pre-peak can be 10 times as large as the plateau value for resonant lines and up to 5 times in case of transitions to the metastable levels. Increasing pressure or power increased the pre-peak intensity while its appearance in time changed. The pre-peak decreased when the discharge off-time was shorter than 100 {mu}s. According to such results, the presence of the pre-peak could be probably due to the lack of self-absorption during the first 50 {mu}s, and not to the ignition of the plasma. Under the selected operation conditions, the use of the pre-peak emission as analytical signals increases the linearity of calibration curves for resonant lines subjected to self-absorption at high concentrations.

  18. Deflection evaluation using time-resolved radiography

    International Nuclear Information System (INIS)

    Fry, D.A.; Lucero, J.P.

    1990-01-01

    Time-resolved radiography is the creation of an x-ray image for which both the start-exposure and stop-exposure times are known with respect to the event under study. The combination of image and timing are used to derive information about the event. The authors have applied time-resolved radiography to evaluate motions of explosive-driven events. In the particular application discussed in this paper, the author's intent is to measure maximum deflections of the components involved. Exposures are made during the time just before to just after the event of interest occurs. A smear or blur of motion out to its furthest extent is recorded on the image. Comparison of the dynamic images with static images allows deflection measurements to be made

  19. Time-resolved optical characterization of InAs/InGaAs quantum dots emitting at 1.3 mu m

    DEFF Research Database (Denmark)

    Fiore, A.; Borri, Paola; Langbein, Wolfgang

    2000-01-01

    We present the rime-resolved optical characterization of InAs/InGaAs self-assembled quantum dots emitting at 1.3 mu m at room temperature. The photoluminescence decay time varies from 1.2 (5 K) to 1.8 ns (293 K). Evidence of thermalization among dots is seen in both continuous-wave and time...

  20. Study on the interaction of phthalate esters to human serum albumin by steady-state and time-resolved fluorescence and circular dichroism spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoyun [National Key Laboratory of Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000 (China); Wang, Zhaowei [College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000 (China); Zhou, Ximin; Wang, Xiaoru [National Key Laboratory of Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen, Xingguo, E-mail: chenxg@lzu.edu.cn [National Key Laboratory of Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2011-09-15

    of hydrophobic forces and hydrogen interactions in the PAEs-HSA interactions, which agreed well with the results from molecular modelling. The alterations of protein secondary structure in the presence of PAEs were confirmed by UV-vis and CD spectroscopy. The time-resolved fluorescence study showed that the lifetime of Trp residue of HSA decreased after the addition of PAEs, which implied that the Trp residue of HSA was the main binding site.

  1. Time-resolved resonance Raman spectroscopy of radiation-chemical processes

    International Nuclear Information System (INIS)

    Tripathi, G.N.R.

    1983-01-01

    A tunable pulsed laser Raman spectrometer for time resolved Raman studies of radiation-chemical processes is described. This apparatus utilizes the state of art optical multichannel detection and analysis techniques for data acquisition and electron pulse radiolysis for initiating the reactions. By using this technique the resonance Raman spectra of intermediates with absorption spectra in the 248-900 nm region, and mean lifetimes > 30 ns can be examined. This apparatus can be used to time resolve the vibrational spectral overlap between transients absorbing in the same region, and to follow their decay kinetics by monitoring the well resolved Raman peaks. For kinetic measurements at millisecond time scale, the Raman technique is preferable over optical absorption method where low frequency noise is quite bothersome. A time resolved Raman study of the pulse radiolytic oxidation of aqueous tetrafluorohydroquinone and p-methoxyphenol is briefly discussed. 15 references, 5 figures

  2. Water-induced morphology changes in BaO/?-Al2O3 NOx storage materials: an FTIR, TPD, and time-resolved synchrotron XRD study

    International Nuclear Information System (INIS)

    Szanyi, Janos; Kwak, Ja Hun; Kim, Do Heui; Wang, Xianqin; Chimentao, Ricardo J.; Hanson, Jonathan; Epling, William S.; Peden, Charles HF

    2007-01-01

    The effect of water on the morphology of BaO/Al2O3-based NOx storage materials was investigated using Fourier transform infrared spectroscopy, temperature programmed desorption, and time-resolved synchrotron X-ray diffraction techniques. The results of this multi-spectroscopy study reveal that, in the presence of water, surface Ba-nitrates convert to bulk nitrates, and water facilitates the formation of large Ba(NO3)2 particles. This process is completely reversible, i.e. after the removal of water from the storage material a significant fraction of the bulk nitrates re-convert to surface nitrates. NO2 exposure of a H2O-containing (wet) BaO/Al2O3 sample results in the formation of nitrites and bulk nitrates exclusively, i.e. no surface nitrates form. After further exposure to NO2, the nitrites completely convert to bulk nitrates. The amount of NOx taken up by the storage material is, however, essentially unaffected by the presence of water, regardless of whether the water was dosed prior to or after NO2 exposure. Based on the results of this study we are now able to explain most of the observations reported in the literature on the effect of water on NOx uptake on similar storage materials

  3. Low pressure-induced secondary structure transitions of regenerated silk fibroin in its wet film studied by time-resolved infrared spectroscopy.

    Science.gov (United States)

    He, Zhipeng; Liu, Zhao; Zhou, Xiaofeng; Huang, He

    2018-06-01

    The secondary structure transitions of regenerated silk fibroin (RSF) under different external perturbations have been studied extensively, except for pressure. In this work, time-resolved infrared spectroscopy with the attenuated total reflectance (ATR) accessory was employed to follow the secondary structure transitions of RSF in its wet film under low pressure. It has been found that pressure alone is favorable only to the formation of β-sheet structure. Under constant pressure there is an optimum amount of D 2 O in the wet film (D 2 O : film = 2:1) so as to provide the optimal condition for the reorganization of the secondary structure and to have the largest formation of β-sheet structure. Under constant amount of D 2 O and constant pressure, the secondary structure transitions of RSF in its wet film can be divided into three stages along with time. In the first stage, random coil, α-helix, and β-turn were quickly transformed into β-sheet. In the second stage, random coil and β-turn were relatively slowly transformed into β-sheet and α-helix, and the content of α-helix was recovered to the value prior to the application of pressure. In the third and final stage, no measurable changes can be found for each secondary structure. This study may be helpful to understand the secondary structure changes of silk fibroin in silkworm's glands under hydrostatic pressure. © 2018 Wiley Periodicals, Inc.

  4. ESIPT and photodissociation of 3-hydroxychromone in solution: photoinduced processes studied by static and time-resolved UV/Vis, fluorescence, and IR spectroscopy.

    Science.gov (United States)

    Chevalier, Katharina; Grün, Anneken; Stamm, Anke; Schmitt, Yvonne; Gerhards, Markus; Diller, Rolf

    2013-11-07

    The spectral properties of fluorescence sensors such as 3-hydroxychromone (3-HC) and its derivatives are sensitive to interaction with the surrounding medium as well as to substitution. 3-HC is a prototype system for other derivatives because it is the basic unit of all flavonoides undergoing ESIPT and is not perturbed by a substituent. In this study, the elementary processes and intermediate states in the photocycle of 3-HC as well as its anion were identified and characterized by the use of static and femtosecond time-resolved spectroscopy in different solvents (methylcyclohexane, acetonitrile, ethanol, and water at different pH). Electronic absorption and fluorescence spectra and lifetimes of the intermediate states were obtained for the normal, tautomer and anionic excited state, while mid-IR vibrational spectra yielded structural information on ground and excited states of 3-HC. A high sensitivity on hydrogen-bonding perturbations was observed, leading to photoinduced anion formation in water, while in organic solvents, different processes are suggested, including slow picosecond ESIPT and contribution of the trans-structure excited state or a different stable solvation state with different direction of OH. The formation of the latter could be favored by the lack of a substituent increasing contact points for specific solute-solvent interactions at the hydroxyl group compared to substituted derivatives. The effect of substituents has to be considered for the design of future fluorescence sensors based on 3-HC.

  5. Time-resolved X-ray diffraction studies of frog skeletal muscle isometrically twitched by two successive stimuli using synchrotron radiation

    International Nuclear Information System (INIS)

    Tanaka, Hidehiro; Kobayashi, Takakazu; Wakabayashi, Katsuzo

    1986-01-01

    In order to clarify the delay between muscular structural changes and mechanical responses, the intensity changes of the equatorial and myosin layer-line reflections were studied by a time-resolved X-ray diffraction technique using synchrotron radiation. The muscle was stimulated at 12-13 0 C by two successive stimuli at an interval during which the second twitch started while tension was still being exerted by the muscle. At the first twitch, the intensity changes of the 1,0 and 1,1 equatorial reflections reached 65 and 200% of the resting values, and further changes to 55 and 220% were seen at the second twitch, respectively. Although the second twitch decreased not only the time to peak tension but also that to the maximum intensity changes of the equatorial reflections, the delay between the intensity changes and the development of tension at the first twitch were still observed at the second twitch. On the other hand, the intensities of the 42.9 nm off-meridional and the 21.5 nm meridional myosin reflections decreased at the first twitch to the levels found when a muscle was isometrically tetanized, and no further decrease in their intensities was observed at the second twitch. These results indicate that a certain period of time is necessary for myosin heads to contr0116e to tension development after their arrival in the vicinity of the thin filaments during contraction. (Auth.)

  6. Experimental set-up for time resolved small angle X-ray scattering studies of nanoparticles formation using a free-jet micromixer

    Energy Technology Data Exchange (ETDEWEB)

    Marmiroli, Benedetta [Institute for Biophysics and Nanosystem Research, Austrian Academy of Science, Schmiedlstrasse 6, Graz (Austria); Grenci, Gianluca [TASC INFM/CNR, SS 14 km 163.5, Basovizza, TS (Italy); Cacho-Nerin, Fernando; Sartori, Barbara; Laggner, Peter [Institute for Biophysics and Nanosystem Research, Austrian Academy of Science, Schmiedlstrasse 6, Graz (Austria); Businaro, Luca [TASC INFM/CNR, SS 14 km 163.5, Basovizza, TS (Italy); Amenitsch, Heinz, E-mail: heinz.amenitsch@elettra.trieste.i [Institute for Biophysics and Nanosystem Research, Austrian Academy of Science, Schmiedlstrasse 6, Graz (Austria)

    2010-02-15

    Recently, we have designed, fabricated and tested a free-jet micromixer for time resolved small angle X-ray scattering (SAXS) studies of nanoparticles formation in the <100 mus time range. The microjet has a diameter of 25 mum and a time of first accessible measurement of 75 mus has been obtained. This result can still be improved. In this communication, we present a method to estimate whether a given chemical or biological reaction can be investigated with the micromixer, and to optimize the beam size for the measurement at the chosen SAXS beamline. Moreover, we describe a system based on stereoscopic imaging which allows the alignment of the jet with the X-ray beam with a precision of 20 mum. The proposed experimental procedures have been successfully employed to observe the formation of calcium carbonate (CaCO{sub 3}) nanoparticles from the reaction of sodium carbonate (Na{sub 2}CO{sub 3}) and calcium chloride (CaCl{sub 2}). The induction time has been estimated in the order of 200 mus and the determined radius of the particles is about 14 nm.

  7. Direct comparison of photoluminescence lifetime and defect densities in ZnO epilayers studied by time-resolved photoluminescence and slow positron annihilation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Koida, T. [Institute of Applied Physics and Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573 (Japan); NICP, ERATO, Japan Science and Technology Agency (JST), Chiyoda 102-0071 (Japan); Uedono, A. [Institute of Applied Physics and Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573 (Japan); Tsukazaki, A. [Institute for Materials Research, Tohoku University, Sendai 980-8755 (Japan); Sota, T. [Department of Electrical, Engineering and Bioscience, Waseda University, Shinjuku 169-8555 (Japan); Kawasaki, M. [Institute for Materials Research, Tohoku University, Sendai 980-8755 (Japan); Combinatorial Materials Exploration and Technology (COMET), Tsukuba 305-0044 (Japan); Chichibu, S.F. [NICP, ERATO, Japan Science and Technology Agency (JST), Chiyoda 102-0071 (Japan); Photodynamics Research Center, RIKEN, Sendai 980-0868 (Japan)

    2004-09-01

    The roles of point defects and defect complexes governing nonradiative processes in ZnO epilayers were studied using time-resolved photoluminescence (PL) and slow positron annihilation measurements. The density or size of Zn vacancies (V{sub Zn}) decreased and the nonradiative PL lifetime ({tau}{sub nr}) increased with higher growth temperature for epilayers grown on a ScAlMgO{sub 4} substrate. Accordingly, the steady-state free excitonic PL intensity increased with increase in {tau}{sub nr} at room temperature. The use of a homoepitaxial substrate further decreased the V{sub Zn} concentration. However, no perfect relation between {tau}{sub nr} and the density or size of V{sub Zn} or other positron scattering centers was found. The results indicated that nonradiative recombination processes are governed not solely by single point defects, but by certain defect species introduced by the presence of V{sub Zn} such as vacancy complexes. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Time-resolved Fourier transform infrared spectrometry using a microfabricated continuous flow mixer: application to protein conformation study using the example of ubiquitin.

    Science.gov (United States)

    Kakuta, Masaya; Hinsmann, Peter; Manz, Andreas; Lendl, Bernhard

    2003-05-01

    We report on the use of time-resolved Fourier transform infrared spectroscopy (FT-IR) to study chemically induced conformational changes of proteins using the example of ubiquitin. For this purpose a micromachined mixer is coupled to a conventional IR transmission cell with a pathlength of 25 microm and operated in both the continuous and the stopped-flow mode. This experimental set-up allows the elucidation of reaction pathways in the time frame of about 500 milliseconds to seconds with little reagent consumption and low pressure. For continuous flow measurements employed in the time frame from 0.5 to 1.4 s the reaction time is determined by the flow rate used as the connection between the point of confluence in the micromixer and the flow cell was kept constant in all experiments. For stopped-flow experiments (>1.4 s) the time is determined by data acquisition of the rapid scanning infrared spectrometer. Ubiquitin, a small well-known protein with 76 amino acid residues, changes its conformation from native to A-state with the addition of methanol under low pH conditions. We investigated the conformational change in the time frame from 0.5 to 10 s by mixing ubiquitin (20% methanol-d(4)) with an 80% methanol-d(4) solution at pD 2 by evaluating the time dependent changes in the amide I band of the protein.

  9. Time-resolved imaging and immobilization study of biomaterials on hydrophobic and superhydrophobic surfaces by means of laser-induced forward transfer

    International Nuclear Information System (INIS)

    Boutopoulos, Christos; Chatzipetrou, Marianneza; Zergioti, Ioanna; Papathanasiou, Athanasios G

    2014-01-01

    In this work, we present the generation of high velocity liquid jets of a photosynthetic biomaterial in buffer solution (i.e. thylakoid membranes) and a test solution, using the laser-induced forward transfer (LIFT) technique. The high impact pressure of the collision of the jets on solid substrates, ranging from 0.045 MPa–35 MPa, resulted in strong physical immobilization of the photosynthetic biomaterial on superhydrophobic (SH) poly(methyl methacrylate) (PMMA) surfaces and hydrophobic gold surfaces. The immobilization efficiency was evaluated by fluorescence microscopy, while time-resolved imaging of the LIFT process was carried out to study the corresponding LIFT dynamics. The results show that this simple, direct and chemical-linkers-free immobilization technique is valuable for several biosensors and microfluidic applications since it can be applied to a variety of hydrophobic and SH substrates, leading to the selective immobilization of the biomaterials, due to the high spatial printing resolution of the LIFT technique. (letter)

  10. Development of an optical time-resolved measurement system under high-pressure and low-temperature with a piston-cylinder pressure cell

    Science.gov (United States)

    Tsuchiya, Satoshi; Kino, Yohei; Nakagawa, Koichi; Nakagawa, Daisuke; Yamada, Jun-ichi; Toda, Yasunori

    2016-04-01

    To perform the femtosecond pump-probe spectroscopy under high pressure and low temperature, we constructed a measurement system with a piston cylinder type pressure cell installing an optical fiber bundle. The applied pressure was achieved to 6 kbar and the cell was cooled down to 15 K. Several demonstrations revealed that broadening and change of polarization of pulse (duration of ˜120 fs) owing to the dispersions in the fiber bundle are much small indicating that those have little influence on the measurement of carrier relaxation dynamics. In the measurements of κ-(BEDT-TTF)2Cu(NCS)2 under 1.3 kbar at 43 K, we have successfully detected the polarization anisotropy of the carrier relaxation dynamics and estimated the decay time in the same way as the normal measurement.

  11. Time-resolved particle image velocimetry and laser doppler anemometry study of the turbulent flow field of bileaflet mechanical mitral prostheses.

    Science.gov (United States)

    Akutsu, Toshinosuke; Fukuda, Takamasa

    2005-01-01

    Dynamic particle image velocimetry (PIV) was applied to the study of the flow field associated with prosthetic heart valves. The results were compared with those of laser Doppler anemometry (LDA). Anatomically and antianatomically oriented Jyros (JR) and St. Jude Medical (SJM) valves were compared in the mitral position to study the effects of valve design on the downstream flow field. The experimental program used a dynamic PIV system utilizing high-speed, high-resolution video to map the true time-resolved velocity field inside the simulated ventricle. This system was complemented by a study using the more traditional LDA system for comparison. Based on the experimental data, the following general conclusions can be made. High-resolution dynamic PIV can capture true chronological changes in the velocity and turbulence fields. It also produces very detailed velocity and turbulence information comparable to the LDA results. In the vertical measuring plane that passes both the center of the aortic and mitral valves (A-A section), the two valves (the SJM and the JR) show distinct circulatory flow patterns when the valve is installed in the antianatomical orientation. Small differences in valve design can generate noticeable differences, particularly during the accelerating flow phase. The SJM valve maintains a relatively high velocity through the central orifice; the curved leaflets of the JR valve generate higher velocities with a divergent flow during the accelerating and peak flow phases. In the velocity field directly below the mitral valve and normal to the previous measuring plane (B-B section), where characteristic differences in valve design will be visible, symmetrical twin circulations were observed because of the divergent nature of the flow generated by the two inclined half-disks installed in the antianatomical orientation. The SJM valve, with a central downward flow near the valve, is contrasted with the JR valve, which has a peripheral downward

  12. Exciton dynamics at the heteromolecular interface between N,N′-dioctyl-3,4,9,10-perylenedicarboximide and quaterrylene, studied using time-resolved photoluminescence

    Directory of Open Access Journals (Sweden)

    Nobuya Hiroshiba

    2014-06-01

    Full Text Available To elucidate the exciton dynamics at the heteromolecular interface, the temperature dependence of time-resolved photoluminescence (TRPL spectra of neat-N,N′-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8 and PTCDI-C8/Quaterrylene (QT heteromolecular thin films was investigated. The lifetimes of excitons were evaluated to identify the Frenkel (FE, high energy charge-transfer (CTEhigh, low energy charge-transfer (CTElow, and excimer exciton states. The thermal activation energy (Δact of CTElow in PTCDI-C8 thin film was evaluated as 25 meV, which is 1/5 of that of FE, indicating that CTElow is more thermally sensitive than FE in PTCDI-C8 thin film. We investigated the exciton transport length (l along the vertical direction against the substrate surface in PTCDI-C8/QT thin film at 30 K, and demonstrated that lFE = 9.9 nm, lCTElow = 4.2 nm, lCTEhigh = 4.3 nm, and lexcimer = 11.9 nm. To elucidate the difference in l among these excitons, the activation energies (Ea for quenching at the heteromolecular interface were investigated. Ea values were estimated to be 13.1 meV for CTElow and 18.6 meV for CTEhigh. These values agree with the thermal sensitivity of CTEs as reported in a previous static PL study. This latter situation is different from the case of FE and excimer excitons, which are transported via a resonant process and have no temperature dependence. The small Ea values of CTEs suggest that exciton transport takes place via a thermal hopping process in CTEs. The present experimental study provides information on nano-scaled exciton dynamics in a well-defined PTCDI-C8 (2 ML/QT (2 ML system.

  13. Study of the Bulk Charge Carrier Dynamics in Anatase and Rutile TiO2 Single Crystals by Femtosecond Time Resolved Spectroscopy

    KAUST Repository

    Maity, Partha

    2018-04-02

    Understanding of the fundamentals behind charge carriers of photo-catalytic materials are still illusive hindering progress in our quest for renewable energy. TiO2 anatase and rutile are the most understood phases in photo-catalysis and serve as the best model for fundamental studies. Their ultrafast charge carrier dynamics especially on TiO2 anatase single crystal (the most active phase) are unresolved. Here femtosecond time resolved spectroscopy (TRS) was carried out to explore the dynamics of photo-excited charge carriers’ recombination in anatase single crystal, for the first time using pump fluence effects, and compares it to that of the rutile single crystal. A significant difference in charge carrier recombination rates between both crystals is observed. We found that the time constants for carrier recombination are two orders of magnitude slower for anatase (101) when compared to those of rutile (110). Moreover, bulk defects introduced by reduction of the samples via annealing in ultra-high vacuum resulted in faster recombination rates for both polymorphs. Both states (fresh and reduced) probed by pump fluence dependence measurements revealed that the major recombination channel in fresh and reduced anatase and reduced rutile is the first-order Shockley–Reed mediated. However, for fresh rutile, third-body Auger recombination was observed, attributed to the presence of higher density of intrinsic charge carriers. At all excitation wavelengths and fluence investigated, anatase (101) single crystal show longer charge carrier lifetime when compared to rutile (110) single. This may explain the superiority of the anatase phase for the electron transfer H+ reduction to molecular hydrogen.

  14. Time-resolved studies of particle effects in laser ablation inductively coupled plasma-mass spectrometry. Part 2: Investigation of MO+ ions, effect of sample morphology, transport gas, and binding agents

    International Nuclear Information System (INIS)

    Perdian, D.; Bajic, S.; Baldwin, D.; Houk, R.

    2007-01-01

    Time resolved signals in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are studied to determine the influence of experimental parameters on ICP-induced fractionation effects. Differences in sample composition and morphology, i.e., ablating brass, glass, or dust pellets, have a profound effect on the time resolved signal. Helium transport gas significantly decreases large positive signal spikes arising from large particles in the ICP. A binder for pellets also reduces the abundance and amplitude of spikes in the signal. MO + ions also yield signal spikes, but these MO + spikes generally occur at different times from their atomic ion counterparts.

  15. Assessment of renal artery stenosis of transplanted kidney by time resolved gadolinium-enhanced three-dimensional MR angiography. Preliminary phantom study and clinical evaluation

    International Nuclear Information System (INIS)

    Hayano, Toshio

    2001-01-01

    The purpose of this study was to determine a suitable imaging parameters of time-resolved Gd-enhanced three-dimensional MR angiography (TRE3DMRA) for the evaluation of renal artery stenosis of transplanted kidneys and to investigate the usefulness of TRE3DMRA in 166 clinical cases. Source images were obtained 3dFLASH with zero-filling interpolation (turbo MRA) using Siemens Magneton 1.5T. Acrylate tubes with 6 mm inner diameter filled with diluted Gd-DTPA were used as special phantoms. In the tubes, 25%, 50%, and 75% stenosis were made for simulating arterial stenosis, respectively. According to our clinical experiences, we decided 10 seconds or less acquisition time to obtaining renal artery images without overlapping with renal veins. To determine slice thickness, the degrees of stenosis of the phantom images obtained 8-second acquisition time in variable slice thickness were independently interpreted with visual inspection by two experienced diagnostic radiologists. One hundred sixty-six patients underwent renal transplantation were evaluated clinically. Using a power injector, 0.1 mmol/kg Gd-DTPA was injected after the test scan with 1 ml Gd-DTPA for the determination of acquisition timing. MR images were obtained in the following imaging parameters; 4-mm slice thickness and 8-second acquisition time based on the results of phantom studies. Source images were noted in oblique coronal direction encompassing the entire renal arteries from iliac arteries to renal hili. Based on phantom study, slice thickness must be less than 4-mm to demonstrate the significant stenotic portion (>50%) of the phantom simulating transplanted renal artery. In 150 of 166 patients, excellent images of renal arteries were obtained without overlapping with renal veins. Causes of poor images were mainly inadequate timing of image acquisition. We can decide the imaging parameters of TRE3DMRA for the evaluation of renal artery stenosis of transplanted kidneys. Using these parameters, in 150

  16. The dependence of the ultrafast relaxation kinetics of the S2 and S1 states in β-carotene homologs and lycopene on conjugation length studied by femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies

    Science.gov (United States)

    Kosumi, Daisuke; Fujiwara, Masazumi; Fujii, Ritsuko; Cogdell, Richard J.; Hashimoto, Hideki; Yoshizawa, Masayuki

    2009-06-01

    The ultrafast relaxation kinetics of all-trans-β-carotene homologs with varying numbers of conjugated double bonds n(n =7-15) and lycopene (n =11) has been investigated using femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies, both carried out under identical excitation conditions. The nonradiative relaxation rates of the optically allowed S2(1Bu+1) state were precisely determined by the time-resolved fluorescence. The kinetics of the optically forbidden S1(2Ag-1) state were observed by the time-resolved absorption measurements. The dependence of the S1 relaxation rates upon the conjugation length is adequately described by application of the energy gap law. In contrast to this, the nonradiative relaxation rates of S2 have a minimum at n =9 and show a reverse energy gap law dependence for values of n above 11. This anomalous behavior of the S2 relaxation rates can be explained by the presence of an intermediate state (here called the Sx state) located between the S2 and S1 states at large values of n (such as n =11). The presence of such an intermediate state would then result in the following sequential relaxation pathway S2→Sx→S1→S0. A model based on conical intersections between the potential energy curves of these excited singlet states can readily explain the measured relationships between the decay rates and the energy gaps.

  17. Structural changes and thermal stability of charged LiNixMnyCozO₂ cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy.

    Science.gov (United States)

    Bak, Seong-Min; Hu, Enyuan; Zhou, Yongning; Yu, Xiqian; Senanayake, Sanjaya D; Cho, Sung-Jin; Kim, Kwang-Bum; Chung, Kyung Yoon; Yang, Xiao-Qing; Nam, Kyung-Wan

    2014-12-24

    Thermal stability of charged LiNixMnyCozO2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time-resolved X-ray diffraction and mass spectroscopy (TR-XRD/MS) techniques upon heating up to 600 °C. The TR-XRD/MS results indicate that the content of Ni, Co, and Mn significantly affects both the structural changes and the oxygen release features during heating: the more Ni and less Co and Mn, the lower the onset temperature of the phase transition (i.e., thermal decomposition) and the larger amount of oxygen release. Interestingly, the NMC532 seems to be the optimized composition to maintain a reasonably good thermal stability, comparable to the low-nickel-content materials (e.g., NMC333 and NMC433), while having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The origin of the thermal decomposition of NMC cathode materials was elucidated by the changes in the oxidation states of each transition metal (TM) cations (i.e., Ni, Co, and Mn) and their site preferences during thermal decomposition. It is revealed that Mn ions mainly occupy the 3a octahedral sites of a layered structure (R3̅m) but Co ions prefer to migrate to the 8a tetrahedral sites of a spinel structure (Fd3̅m) during the thermal decomposition. Such element-dependent cation migration plays a very important role in the thermal stability of NMC cathode materials. The reasonably good thermal stability and high capacity characteristics of the NMC532 composition is originated from the well-balanced ratio of nickel content to manganese and cobalt contents. This systematic study provides insight into the rational design of NMC-based cathode materials with a desired balance between thermal stability and high energy density.

  18. Processes of the excitation energy migration and transfer in Ce3+-doped alkali gadolinium phosphates studied with time-resolved photoluminescence spectroscopy technique

    International Nuclear Information System (INIS)

    Stryganyuk, G.; Shalapska, T.; Voloshinovskii, A.; Gektin, A.; Krasnikov, A.; Zazubovich, S.

    2011-01-01

    Spectral-kinetic characteristics of Gd 3+ and Ce 3+ luminescence from a series of Ce 3+ -doped alkali gadolinium phosphates of MGdP 4 O 12 type (M=Li, Na, Cs) have been studied within 4.2-300 K temperature range using time-resolved luminescence spectroscopy techniques. The processes of energy migration along the Gd 3+ sub-lattice and energy transfer between the Gd 3+ and Ce 3+ ions have been investigated. Peculiarities of these processes have been compared for MGdP 4 O 12 phosphate hosts with different alkali metal ions. A contribution of different levels from the 6 P j multiplet of the lowest Gd 3+ excited state into the energy migration and transfer processes has been clarified. The phonon-assisted occupation of high-energy 6 P 5/2,3/2 levels by Gd 3+ in the excited 6 P j state has been revealed as a shift of Gd 3+6 P j → 8 S 7/2 emission into the short-wavelength spectral range upon the temperature increase. The relaxation of excited Gd 3+ via phonon-assisted population of Gd 3+6 P 5/2 level (next higher one to the lowest excited 6 P 7/2 ) is supposed to be responsible for the rise in probability of energy migration within the Gd 3+ sub-lattice initiating the Gd 3+ →Ce 3+ energy transfer at T 3+ →Ce 3+ energy transfer at T>150 K is explained by the increase in probability of Gd 3+ relaxation into the highest 6 P 3/2 level of the 6 P j multiplet. An efficient reversed Ce 3+ →Gd 3+ energy transfer has been revealed for the studied phosphates at 4.2 K. - Highlights: →We investigate the Gd 3+ -Ce 3+ energy transfer in alkali gadolinium phosphates. → Thermal population of Gd 3+6 P 5/2 level improves migration along the Gd sub-lattice. → Increasing overlap of Gd 3+ and Ce 3+ states enhances the Gd 3+ -Ce 3+ energy transfer. → In LiGdP 4 O 12 :Ce and NaGdP 4 O 12 :Ce an efficient Ce 3+ -Gd 3+ transfer occurs at 4-300 K. → An effective reverse Gd 3+ -Ce 3+ energy transfer becomes possible at T>150 K.

  19. Ultrafast photodynamics of pyrazine in the vacuum ultraviolet region studied by time-resolved photoelectron imaging using 7.8-eV pulses

    Energy Technology Data Exchange (ETDEWEB)

    Horio, Takuya; Suzuki, Yoshi-ichi; Suzuki, Toshinori, E-mail: suzuki@kuchem.kyoto-u.ac.jp [Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-Ku, Kyoto 606-8502 (Japan)

    2016-07-28

    The ultrafast electronic dynamics of pyrazine (C{sub 4}N{sub 2}H{sub 4}) were studied by time-resolved photoelectron imaging (TRPEI) using the third (3ω, 4.7 eV) and fifth harmonics (5ω, 7.8 eV) of a femtosecond Ti:sapphire laser (ω). Although the photoionization signals due to the 5ω − 3ω and 3ω − 5ω pulse sequences overlapped near the time origin, we have successfully extracted their individual TRPEI signals using least squares fitting of the observed electron kinetic energy distributions. When the 5ω pulses preceded the 3ω pulses, the 5ω pulses predominantly excited the S{sub 4} (ππ{sup *}, {sup 1}B{sub 1u}+{sup 1}B{sub 2u}) state. The photoionization signal from the S{sub 4} state generated by the time-delayed 3ω pulses was dominated by the D{sub 3}({sup 2}B{sub 2g})←S{sub 4} photoionization process and exhibited a broad electron kinetic energy distribution, which rapidly downshifted in energy within 100 fs. Also observed were the photoionization signals for the 3s, 3p{sub z}, and 3p{sub y} members of the Rydberg series converging to D{sub 0}({sup 2}A{sub g}). The Rydberg signals appeared immediately within our instrumental time resolution of 27 fs, indicating that these states are directly photoexcited from the ground state or populated from S{sub 4} within 27 fs. The 3s, 3p{sub z}, and 3p{sub y} states exhibited single exponential decay with lifetimes of 94 ± 2, 89 ± 2, and 58 ± 1 fs, respectively. With the reverse pulse sequence of 3ω − 5ω, the ultrafast internal conversion (IC) from S{sub 2}(ππ{sup *}) to S{sub 1}(nπ{sup *}) was observed. The decay associated spectrum of S{sub 2} exhibited multiple bands ascribed to D{sub 0}, D{sub 1}, and D{sub 3}, in agreement with the 3ω-pump and 6ω-probe experiment described in our preceding paper [T. Horio et al., J. Chem. Phys. 145, 044306 (2016)]. The electron kinetic energy and angular distributions from S{sub 1} populated by IC from S{sub 2} are also discussed.

  20. [A new measurement method of time-resolved spectrum].

    Science.gov (United States)

    Shi, Zhi-gang; Huang, Shi-hua; Liang, Chun-jun; Lei, Quan-sheng

    2007-02-01

    A new method for measuring time-resolved spectrum (TRS) is brought forward. Programming with assemble language controlled the micro-control-processor (AT89C51), and a kind of peripheral circuit constituted the drive circuit, which drived the stepping motor to run the monochromator. So the light of different kinds of expected wavelength could be obtained. The optical signal was transformed to electrical signal by optical-to-electrical transform with the help of photomultiplier tube (Hamamatsu 1P28). The electrical signal of spectrum data was transmitted to the oscillograph. Connecting the two serial interfaces of RS232 between the oscillograph and computer, the electrical signal of spectrum data could be transmitted to computer for programming to draw the attenuation curve and time-resolved spectrum (TRS) of the swatch. The method for measuring time-resolved spectrum (TRS) features parallel measurement in time scale but serial measurement in wavelength scale. Time-resolved spectrum (TRS) and integrated emission spectrum of Tb3+ in swatch Tb(o-BBA)3 phen were measured using this method. Compared with the real time-resolved spectrum (TRS). It was validated to be feasible, credible and convenient. The 3D spectra of fluorescence intensity-wavelength-time, and the integrated spectrum of the swatch Tb(o-BBA)3 phen are given.

  1. Time-resolved luminescence from feldspars: New insight into fading

    DEFF Research Database (Denmark)

    Tsukamoto, S.; Denby, P.M.; Murray, A.S.

    2006-01-01

    Time-resolved infrared optically stimulated luminescence (IR-OSL) signals of K- and Na-feldspar samples extracted from sediments were measured in UV, blue and red detection windows, using a fast photon counter and pulsed IR stimulation (lambda = 875 nm). We observe that the relative contribution ...

  2. Spectroscopic studies of model photo-receptors: validation of a nanosecond time-resolved micro-spectrophotometer design using photoactive yellow protein and α-phycoerythrocyanin.

    Science.gov (United States)

    Purwar, Namrta; Tenboer, Jason; Tripathi, Shailesh; Schmidt, Marius

    2013-09-13

    Time-resolved spectroscopic experiments have been performed with protein in solution and in crystalline form using a newly designed microspectrophotometer. The time-resolution of these experiments can be as good as two nanoseconds (ns), which is the minimal response time of the image intensifier used. With the current setup, the effective time-resolution is about seven ns, determined mainly by the pulse duration of the nanosecond laser. The amount of protein required is small, on the order of 100 nanograms. Bleaching, which is an undesirable effect common to photoreceptor proteins, is minimized by using a millisecond shutter to avoid extensive exposure to the probing light. We investigate two model photoreceptors, photoactive yellow protein (PYP), and α-phycoerythrocyanin (α-PEC), on different time scales and at different temperatures. Relaxation times obtained from kinetic time-series of difference absorption spectra collected from PYP are consistent with previous results. The comparison with these results validates the capability of this spectrophotometer to deliver high quality time-resolved absorption spectra.

  3. Standing surface acoustic waves in LiNbO3 studied by time resolved X-ray diffraction at Petra III

    Directory of Open Access Journals (Sweden)

    T. Reusch

    2013-07-01

    Full Text Available We have carried out time resolved stroboscopic diffraction experiments on standing surface acoustic waves (SAWs of Rayleigh type on a LiNbO3 substrate. A novel timing system has been developed and commissioned at the storage ring Petra III of Desy, allowing for phase locked stroboscopic diffraction experiments applicable to a broad range of timescales and experimental conditions. The combination of atomic structural resolution with temporal resolution on the picosecond time scale allows for the observation of the atomistic displacements for each time (or phase point within the SAW period. A seamless transition between dynamical and kinematic scattering regimes as a function of the instantaneous surface amplitude induced by the standing SAW is observed. The interpretation and control of the experiment, in particular disentangling the diffraction effects (kinematic to dynamical diffraction regime from possible non-linear surface effects is unambiguously enabled by the precise control of phase between the standing SAW and the synchrotron bunches. The example illustrates the great flexibility and universality of the presented timing system, opening up new opportunities for a broad range of time resolved experiments.

  4. A time-resolved image sensor for tubeless streak cameras

    Science.gov (United States)

    Yasutomi, Keita; Han, SangMan; Seo, Min-Woong; Takasawa, Taishi; Kagawa, Keiichiro; Kawahito, Shoji

    2014-03-01

    This paper presents a time-resolved CMOS image sensor with draining-only modulation (DOM) pixels for tube-less streak cameras. Although the conventional streak camera has high time resolution, the device requires high voltage and bulky system due to the structure with a vacuum tube. The proposed time-resolved imager with a simple optics realize a streak camera without any vacuum tubes. The proposed image sensor has DOM pixels, a delay-based pulse generator, and a readout circuitry. The delay-based pulse generator in combination with an in-pixel logic allows us to create and to provide a short gating clock to the pixel array. A prototype time-resolved CMOS image sensor with the proposed pixel is designed and implemented using 0.11um CMOS image sensor technology. The image array has 30(Vertical) x 128(Memory length) pixels with the pixel pitch of 22.4um. .

  5. Aggregation of bovine serum albumin upon cleavage of its disulfide bonds, studied by the time-resolved small-angle X-ray scattering technique with synchrotron radiation

    International Nuclear Information System (INIS)

    Ueki, Tatzuo; Inoko, Yoji; Izumi, Yoshinobu; Tagawa, Hiroyuki; Muroga, Yoshio

    1985-01-01

    A rapid mixing system of the stopped-flow type, used with small-angle X-ray scattering equipment using synchrotron radiation, is described. The process of aggregation of bovine serum albumin was traced with a time interval of 50 s, initiated upon cleavage of its disulfide bonds by reduction with dithiothreitol. The results indicate that a 218-fold molar excess of dithiothreitol over the number of moles of disulfide bonds in bovine serum albumin is sufficient to initiate the reaction immediately after mixing, which reaches equilibrium in about 15 min. On the other hand, half this amount is not sufficient to initiate the reaction, so that the reaction is delayed by about 150 s. Such a single-shot time-resolved experiment showed that experiments with a time interval of 100 ms are possible with repeated multi-shot runs. (Auth.)

  6. Aggregation of bovine serum albumin upon cleavage of its disulfide bonds, studied by the time-resolved small-angle X-ray scattering technique with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Tatzuo; Inoko, Yoji; Hiragi, Yuzuru; Kataoka, Mikio; Amemiya, Yoshiyuki; Izumi, Yoshinobu; Tagawa, Hiroyuki; Muroga, Yoshio

    1985-11-01

    A rapid mixing system of the stopped-flow type, used with small-angle X-ray scattering equipment using synchrotron radiation, is described. The process of aggregation of bovine serum albumin was traced with a time interval of 50s, initiated upon cleavage of its disulfide bonds by reduction with dithiothreitol. The results indicate that a 218-fold molar excess of dithiothreitol over the number of moles of disulfide bonds in bovine serum albumin is sufficient to initiate the reaction immediately after mixing, which reaches equilibrium in about 15 min. On the other hand, half this amount is not sufficient to initiate the reaction, so that the reaction is delayed by about 150s. Such a single-shot time-resolved experiment showed that experiments with a time interval of 100 ms are possible with repeated multi-shot runs. 26 refs.; 8 figs.

  7. Energy transfer in Anabaena variabilis filaments adapted to nitrogen-depleted and nitrogen-enriched conditions studied by time-resolved fluorescence.

    Science.gov (United States)

    Onishi, Aya; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2017-09-01

    Nitrogen is among the most important nutritious elements for photosynthetic organisms such as plants, algae, and cyanobacteria. Therefore, nitrogen depletion severely compromises the growth, development, and photosynthesis of these organisms. To preserve their integrity under nitrogen-depleted conditions, filamentous nitrogen-fixing cyanobacteria reduce atmospheric nitrogen to ammonia, and self-adapt by regulating their light-harvesting and excitation energy-transfer processes. To investigate the changes in the primary processes of photosynthesis, we measured the steady-state absorption and fluorescence spectra and time-resolved fluorescence spectra (TRFS) of whole filaments of the nitrogen-fixing cyanobacterium Anabaena variabilis at 77 K. The filaments were grown in standard and nitrogen-free media for 6 months. The TRFS were measured with a picosecond time-correlated single photon counting system. Despite the phycobilisome degradation, the energy-transfer paths within phycobilisome and from phycobilisome to both photosystems were maintained. However, the energy transfer from photosystem II to photosystem I was suppressed and a specific red chlorophyll band appeared under the nitrogen-depleted condition.

  8. Quantitative study of energy-transfer mechanism in Eu,O-codoped GaN by time-resolved photoluminescence spectroscopy

    Science.gov (United States)

    Inaba, Tomohiro; Kojima, Takanori; Yamashita, Genki; Matsubara, Eiichi; Mitchell, Brandon; Miyagawa, Reina; Eryu, Osamu; Tatebayashi, Jun; Ashida, Masaaki; Fujiwara, Yasufumi

    2018-04-01

    In order to investigate the excitation processes in Eu,O-codoped GaN (GaN:Eu,O), the time-resolved photoluminescence signal including the rising part is analyzed. A rate equation is developed based upon a model for the excitation processes in GaN:Eu to fit the experimental data. The non-radiative recombination rate of the trap state in the GaN host, the energy transfer rate between the Eu3+ ions and the GaN host, the radiative transition probability of Eu3+ ion, as well as the ratio of the number of luminescent sites (OMVPE 4α and OMVPE 4β), are simultaneously determined. It is revealed and quantified that radiative transition probability of the Eu ion is the bottleneck for the enhancement of light output from GaN:Eu. We also evaluate the effect of the growth conditions on the luminescent efficiency of GaN:Eu quantitatively, and find the correlation between emission intensity of GaN:Eu and the fitting parameters introduced in our model.

  9. Time-resolved measurements of supersonic fuel sprays using synchrotron x-rays

    International Nuclear Information System (INIS)

    Powell, C.F.; Yue, Y.; Poola, R.; Wang, J.

    2000-11-01

    A time-resolved radiographic technique has been developed for probing the fuel distribution close to the nozzle of a high-pressure single-hole diesel injector. The measurement was made using X-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution of better than 1 μs. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date

  10. Time-resolved measurements of supersonic fuel sprays using synchrotron X-rays.

    Science.gov (United States)

    Powell, C F; Yue, Y; Poola, R; Wang, J

    2000-11-01

    A time-resolved radiographic technique has been developed for probing the fuel distribution close to the nozzle of a high-pressure single-hole diesel injector. The measurement was made using X-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution of better than 1 micros. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date.

  11. Time-resolved X-ray scattering program at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Rodricks, B.

    1994-01-01

    The Time-Resolved Scattering Program's goal is the development of instruments and techniques for time-resolved studies. This entails the development of wide bandpass and focusing optics, high-speed detectors, mechanical choppers, and components for the measurement and creation of changes in samples. Techniques being developed are pump-probe experiments, single-bunch scattering experiments, high-speed white and pink beam Laue scattering, and nanosecond to microsecond synchronization of instruments. This program will be carried out primarily from a white-beam, bend-magnet source, experimental station, 1-BM-B, that immediately follows the first optics enclosure (1-BM-A). This paper will describe the experimental station and instruments under development to carry out the program

  12. Time-resolved absorption measurements on OMEGA

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; DaSilva, L.; Delettrez, J.; Gregory, G.G.; Richardson, M.C.

    1986-01-01

    Time-resolved measurements of the incident laser light that is scattered and/or refracted from targets irradiated by the 24 uv-beam OMEGA laser at LLE, have provided some interesting features related to time-resolved absorption. The decrease in laser absorption characteristic of irradiating a target that implodes during the laser pulse has been observed. The increase in absorption expected as the critical density surface moves from a low to a high Z material in the target has also been noted. The detailed interpretation of these results is made through comparisons with simulation using the code LILAC, as well as with streak data from time-resolved x-ray imaging and spectroscopy. In addition, time and space-resolved imaging of the scattered light yields information on laser irradiation uniformity conditions on the target. The report consists of viewgraphs

  13. Time-resolved small-angle x-ray scattering study of the early stage of amyloid formation of an apomyoglobin mutant

    Science.gov (United States)

    Ortore, Maria Grazia; Spinozzi, Francesco; Vilasi, Silvia; Sirangelo, Ivana; Irace, Gaetano; Shukla, Anuj; Narayanan, Theyencheri; Sinibaldi, Raffaele; Mariani, Paolo

    2011-12-01

    The description of the fibrillogenesis pathway and the identification of “on-pathway” or “off-pathway” intermediates are key issues in amyloid research as they are concerned with the mechanism for onset of certain diseases and with therapeutic treatments. Recent results on the fibril formation process revealed an unexpected complexity both in the number and in the types of species involved, but the early aggregation events are still largely unknown, mainly because of their experimental inaccessibility. To provide information on the early stage events of self-assembly of an amyloidogenic protein, during the so-called lag phase, stopped-flow time-resolved small angle x-ray scattering (SAXS) experiments were performed. Using a global fitting analysis, the structural and aggregation properties of the apomyoglobin W7FW14F mutant, which is monomeric and partly folded at acidic pH but forms amyloid fibrils after neutralization, were derived from the first few milliseconds onward. SAXS data indicated that the first aggregates appear in less than 20 ms after the pH jump to neutrality and further revealed the simultaneous presence of diverse species. In particular, worm-like unstructured monomers, very large assemblies, and elongated particles were detected, and their structural features and relative concentrations were derived as a function of time on the basis of our model. The final results show that, during the lag phase, early assembling occurs due to the presence of transient monomeric species very prone to association and through successive competing aggregation and rearrangement processes leading to coexisting on-pathway and off-pathway transient species.

  14. Cation Movements during Dehydration and NO2 Desorption in a Ba-Y,FAU zeolite: an in situ Time-resolved X-ray Diffraction Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianqin; Hanson, Jonathan C.; Kwak, Ja Hun; Szanyi, Janos; Peden, Charles HF

    2013-02-28

    Synchrotron-based in situ time-resolved X-ray diffraction and Rietveld analysis were used to probe the interactions between BaY, FAU zeolite frameworks and H2O or NO2 molecules. These results provided information about the migration of the Ba2+ cations in the zeolite framework during dehydration and during NO2 adsorption/desorption processes in a water free zeolite. In the hydrated structure water molecules form four double rings of hexagonal ice-like clusters [(H2O)6] in the 12-ring openings of the super-cage. These water rings interacted with the cations and the zeolite framework through four cation/water clusters centered over the four 6-membered rings of the super-cage (site II). Interpenetrating tetrahedral water clusters [(H2O)4] and tetrahedral Ba+2 cation clusters were observed in the sodalite cage. Consistent with the reported FT-IR results, three different ionic NOx species (NO+, NO+-NO2, and NO3-) were observed following NO2 adsorption by the dehydrated Ba-Y,FAU zeolite. The structure of the water and the NOx species were correlated with the interactions between the adsorbates, the cations, and the framework. The population of Ba2+ ions at different cationic positions strongly depended on the amount of bound water or NOx species. Both dehydration and NO2 adsorption/desorption resulted in facile migration of Ba2+ ions among the different cationic positions. Data obtained in this work have provided direct evidence for the Ba2+ cation migration to accommodate the binding of gas molecules. This important feature may play a pivotal role in the strong binding of NO2 to Ba-Y,FAU zeolite, a prerequisite for high catalytic activity in lean NOx reduction catalysis.

  15. Effects of quartz particle size and water-to-solid ratio on hydrothermal synthesis of tobermorite studied by in-situ time-resolved X-ray diffraction

    International Nuclear Information System (INIS)

    Kikuma, J.; Tsunashima, M.; Ishikawa, T.; Matsuno, S.; Ogawa, A.; Matsui, K.; Sato, M.

    2011-01-01

    Hydrothermal synthesis process of tobermorite (5CaO.6SiO 2 .5H 2 O) has been investigated by in-situ X-ray diffraction using high-energy X-rays from a synchrotron radiation source in combination with a purpose-build autoclave cell. Dissolution rates of quartz were largely affected by its particle size distribution in the starting mixtures. However, the composition (Ca/Si) of non-crystalline C-S-H at the start of tobermorite formation was identical regardless of the quartz dissolution rate. An effect of water-to-solid ratio (w/s) was investigated for samples using fine particle quartz. Tobermorite did not occur with w/s of 1.7 but occurred with w/s higher than 3.0. Surprisingly, however, the dissolution curves of quartz were nearly identical for all samples with w/s from 1.7 to 9, indicating that the dissolution rate is predominated by surface area. Possible reaction mechanism for tobermorite formation will be discussed in terms of Ca and/or silicate ion concentration in the liquid phase and distribution of Ca/Si in non-crystalline C-S-H. - Graphical abstract: Time-resolved XRD data set was obtained at up to 190 deg. C under a saturated steam pressure. Tobermorite (5CaO.6SiO 2 .5H 2 O) formation reaction was investigated in detail for several different starting materials. Highlights: → Hydrothermal formation of tobermorite was monitored by in-situ XRD. → Ca/Si of C-S-H at the start time of tobermorite formation was determined. → The Ca/Si value was identical regardless of the quartz particle size in the starting mixture.

  16. Time resolved ion beam induced charge collection

    International Nuclear Information System (INIS)

    Sexton W, Frederick; Walsh S, David; Doyle L, Barney; Dodd E, Paul

    2000-01-01

    Under this effort, a new method for studying the single event upset (SEU) in microelectronics has been developed and demonstrated. Called TRIBICC, for Time Resolved Ion Beam Induced Charge Collection, this technique measures the transient charge-collection waveform from a single heavy-ion strike with a -.03db bandwidth of 5 GHz. Bandwidth can be expanded up to 15 GHz (with 5 ps sampling windows) by using an FFT-based off-line waveform renormalization technique developed at Sandia. The theoretical time resolution of the digitized waveform is 24 ps with data re-normalization and 70 ps without re-normalization. To preserve the high bandwidth from IC to the digitizing oscilloscope, individual test structures are assembled in custom high-frequency fixtures. A leading-edge digitized waveform is stored with the corresponding ion beam position at each point in a two-dimensional raster scan. The resulting data cube contains a spatial charge distribution map of up to 4,096 traces of charge (Q) collected as a function of time. These two dimensional traces of Q(t) can cover a period as short as 5 ns with up to 1,024 points per trace. This tool overcomes limitations observed in previous multi-shot techniques due to the displacement damage effects of multiple ion strikes that changed the signal of interest during its measurement. This system is the first demonstration of a single-ion transient measurement capability coupled with spatial mapping of fast transients

  17. Enzyme reactions and their time resolved measurements

    International Nuclear Information System (INIS)

    Hajdu, Janos

    1990-01-01

    This paper discusses experimental strategies in data collection with the Laue method and summarises recent results using synchrotron radiation. Then, an assessment is made of the progress towards time resolved studies with protein crystals and the problems that remain. The paper consists of three parts which respectively describe some aspects of Laue diffraction, recent examples of structural results from Laue diffraction, and kinetic Laue crystallography. In the first part, characteristics of Laue diffraction is discussed first, focusing on the harmonics problems, spatials problem, wavelength normalization, low resolution hole, data completeness, and uneven coverage of reciprocal space. Then, capture of the symmetry unique reflection set is discussed focusing on the effect of wavelength range on the number of reciprocal lattice points occupying diffracting positions, effect of crystal to film distance and the film area and shape on the number of reflections captured, and effect of crystal symmetry on the number of unique reflections within the number of reflections captured. The second part addresses the determination of the structure of turkey egg white lysozyme, and calcium binding in tomato bushy stunt virus. The third part describes the initiation of reactions in enzyme crystals, picosecond Laue diffraction at high energy storage rings, and detectors. (N.K.)

  18. Time resolved ion beam induced charge collection

    Energy Technology Data Exchange (ETDEWEB)

    SEXTON,FREDERICK W.; WALSH,DAVID S.; DOYLE,BARNEY L.; DODD,PAUL E.

    2000-04-01

    Under this effort, a new method for studying the single event upset (SEU) in microelectronics has been developed and demonstrated. Called TRIBICC, for Time Resolved Ion Beam Induced Charge Collection, this technique measures the transient charge-collection waveform from a single heavy-ion strike with a {minus}.03db bandwidth of 5 GHz. Bandwidth can be expanded up to 15 GHz (with 5 ps sampling windows) by using an FFT-based off-line waveform renormalization technique developed at Sandia. The theoretical time resolution of the digitized waveform is 24 ps with data re-normalization and 70 ps without re-normalization. To preserve the high bandwidth from IC to the digitizing oscilloscope, individual test structures are assembled in custom high-frequency fixtures. A leading-edge digitized waveform is stored with the corresponding ion beam position at each point in a two-dimensional raster scan. The resulting data cube contains a spatial charge distribution map of up to 4,096 traces of charge (Q) collected as a function of time. These two dimensional traces of Q(t) can cover a period as short as 5 ns with up to 1,024 points per trace. This tool overcomes limitations observed in previous multi-shot techniques due to the displacement damage effects of multiple ion strikes that changed the signal of interest during its measurement. This system is the first demonstration of a single-ion transient measurement capability coupled with spatial mapping of fast transients.

  19. Time-resolved emission from laser-ablated uranium

    International Nuclear Information System (INIS)

    Stoffels, E.; Mullen, J. van der; Weijer, P. van de

    1991-01-01

    Time-resolved emission spectra from the plasma, induced by laser ablation of uranium samples have been studied. The dependence of the emission intensity on time is strongly affected by the nature and pressure of the buffer gas. Air and argon have been used in the pressure range 0.002 to 5 mbar. The emission intensity as a function of time displays three maxima, indicating that three different processes within the expanding plasma plume are involved. On basis of the time-resolved spectra we propose a model that explains qualitatively the phenomena that are responsible for this time behaviour. (author)

  20. Radial Growth of Self-Catalyzed GaAs Nanowires and the Evolution of the Liquid Ga-Droplet Studied by Time-Resolved in Situ X-ray Diffraction.

    Science.gov (United States)

    Schroth, Philipp; Jakob, Julian; Feigl, Ludwig; Mostafavi Kashani, Seyed Mohammad; Vogel, Jonas; Strempfer, Jörg; Keller, Thomas F; Pietsch, Ullrich; Baumbach, Tilo

    2018-01-10

    We report on a growth study of self-catalyzed GaAs nanowires based on time-resolved in situ X-ray structure characterization during molecular-beam-epitaxy in combination with ex situ scanning-electron-microscopy. We reveal the evolution of nanowire radius and polytypism and distinguish radial growth processes responsible for tapering and side-wall growth. We interpret our results using a model for diameter self-stabilization processes during growth of self-catalyzed GaAs nanowires including the shape of the liquid Ga-droplet and its evolution during growth.

  1. Time-resolved fluorescence analysis of the mobile flavin cofactor

    Indian Academy of Sciences (India)

    Conformational heterogeneity of the FAD cofactor in -hydroxybenzoate hydroxylase (PHBH) was investigated with time-resolved polarized flavin fluorescence. For binary enzyme/substrate (analogue) complexes of wild-type PHBH and Tyr222 mutants, crystallographic studies have revealed two distinct flavin conformations ...

  2. Time-Resolved Small-Angle X-Ray Scattering

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Besselink, R.; Stawski, Tomasz; Castricum, H.L.; Levy, D.; Zayat, M.

    2015-01-01

    This chapter focuses on time-resolved studies of nanostructure development in sol-gel liquids, that is, diluted sols, wet gels, and drying thin fffilms. The most commonly investigated classes of sol-gel materials are silica, organically modified silica, template-directed mesostructured silica,

  3. Time-resolved protein nano-crystallography using an X-ray free-electron laser

    International Nuclear Information System (INIS)

    Aquila, Andrew; Hunter, Mark S.; Fromme, Petra; Fromme, Raimund; Grotjohann, Ingo; Doak, R. Bruce; Kirian, Richard A.; Schmidt, Kevin E.; Wang, Xiaoyu; Weierstall, Uwe; Spence, John C.H.; White, Thomas A.; Caleman, Carl; DePonte, Daniel P.; Fleckenstein, Holger; Gumprecht, Lars; Liang, Mengning; Martin, Andrew V.; Schulz, Joachim; Stellato, Francesco; Stern, Stephan; Barty, Anton; Andreasson, Jakob; Davidsson, Jan; Hajdu, Janos; Maia, Filipe R.N.C.; Seibert, M. Marvin; Timneanu, Nicusor; Arnlund, David; Johansson, Linda; Malmerberg, Erik; Neutze, Richard; Bajt, Sasa; Barthelmess, Miriam; Graafsma, Heinz; Hirsemann, Helmut; Wunderer, Cornelia; Barends, Thomas R.M.; Foucar, Lutz; Krasniqi, Faton; Lomb, Lukas; Rolles, Daniel; Schlichting, Ilme; Schmidt, Carlo; Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond; Starodub, Dmitri; Bostedt, Christoph; Bozek, John D.; Messerschmidt, Marc; Williams, Garth J.; Bottin, Herve

    2012-01-01

    We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photo-activated states of large membrane protein complexes in the form of nano-crystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 μs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems. (authors)

  4. Time-resolved spectral studies of blue-green fluorescence of artichoke (Cynara cardunculus L. Var. Scolymus) leaves: identification of chlorogenic acid as one of the major fluorophores and age-mediated changes.

    Science.gov (United States)

    Morales, Fermín; Cartelat, Aurélie; Alvarez-Fernández, Ana; Moya, Ismael; Cerovic, Zoran G

    2005-12-14

    Synchrotron radiation and the time-correlated single-photon counting technique were used to investigate the spectral and time-resolved characteristics of blue-green fluorescence (BGF) of artichoke leaves. Leaves emitted BGF under ultraviolet (UV) excitation; the abaxial side was much more fluorescent than the adaxial side, and in both cases, the youngest leaves were much more fluorescent than the oldest ones. The BGF of artichoke leaves was dominated by the presence of hydroxycinnamic acids. A decrease in the percentage of BGF attributable to the very short kinetic component (from 42 to 20%), in the shape of the BGF excitation spectra, and chlorogenic acid concentrations indicate that there is a loss of hydroxycinnamic acid with leaf age. Studies on excitation, emission, and synchronized fluorescence spectra of leaves and trichomes and chlorogenic acid contents indicate that chlorogenic acid is one of the main blue-green fluorophores in artichoke leaves. Results of the present study indicate that 20-42% (i.e., the very short kinetic component) of the overall BGF is emitted by chlorogenic acid. Time-resolved BGF measurements could be a means to extract information on chlorogenic acid fluorescence from the overall leaf BGF.

  5. Time-resolved x-ray diagnostics

    International Nuclear Information System (INIS)

    Lyons, P.B.

    1981-01-01

    Techniques for time-resolved x-ray diagnostics will be reviewed with emphasis on systems utilizing x-ray diodes or scintillators. System design concerns for high-bandwidth (> 1 GHz) diagnostics will be emphasized. The limitations of a coaxial cable system and a technique for equalizing to improve bandwidth of such a system will be reviewed. Characteristics of new multi-GHz amplifiers will be presented. An example of a complete operational system on the Los Alamos Helios laser will be presented which has a bandwidth near 3 GHz over 38 m of coax. The system includes the cable, an amplifier, an oscilloscope, and a digital camera readout

  6. Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media.

    Science.gov (United States)

    Nomura, Y; Hazeki, O; Tamura, M

    1997-06-01

    The time-resolved Beer-Lambert law proposed for oxygen monitoring using pulsed light was extended to the non-time-resolved case in a scattered medium such as living tissues with continuous illumination. The time-resolved Beer-Lambert law was valid for the phantom model and living tissues in the visible and near-infrared regions. The absolute concentration and oxygen saturation of haemoglobin in rat brain and thigh muscle could be determined. The temporal profile of rat brain was reproduced by Monte Carlo simulation. When the temporal profiles of rat brain under different oxygenation states were integrated with time, the absorbance difference was linearly related to changes in the absorption coefficient. When the simulated profiles were integrated, there was a linear relationship within the absorption coefficient which was predicted for fractional inspiratory oxygen concentration from 10 to 100% and, in the case beyond the range of the absorption coefficient, the deviation from linearity was slight. We concluded that an optical pathlength which is independent of changes in the absorption coefficient is a good approximation for near-infrared oxygen monitoring.

  7. Time-resolved explosion of intense-laser-heated clusters.

    Science.gov (United States)

    Kim, K Y; Alexeev, I; Parra, E; Milchberg, H M

    2003-01-17

    We investigate the femtosecond explosive dynamics of intense laser-heated argon clusters by measuring the cluster complex transient polarizability. The time evolution of the polarizability is characteristic of competition in the optical response between supercritical and subcritical density regions of the expanding cluster. The results are consistent with time-resolved Rayleigh scattering measurements, and bear out the predictions of a recent laser-cluster interaction model [H. M. Milchberg, S. J. McNaught, and E. Parra, Phys. Rev. E 64, 056402 (2001)

  8. Time-resolved explosion of intense-laser-heated clusters

    International Nuclear Information System (INIS)

    Kim, K.Y.; Alexeev, I.; Parra, E.; Milchberg, H.M.

    2003-01-01

    We investigate the femtosecond explosive dynamics of intense laser-heated argon clusters by measuring the cluster complex transient polarizability. The time evolution of the polarizability is characteristic of competition in the optical response between supercritical and subcritical density regions of the expanding cluster. The results are consistent with time-resolved Rayleigh scattering measurements, and bear out the predictions of a recent laser-cluster interaction model [H. M. Milchberg, S. J. McNaught, and E. Parra, Phys. Rev. E 64, 056402 (2001)

  9. Time-resolved studies of free radicals and laser-initiated chain reactions: Final report, 1 April 1979-31 March 1988

    International Nuclear Information System (INIS)

    Leone, S.R.

    1988-03-01

    Pulsed lasers were used in this work to photofragment molecules or to initiate chain reactions. One of the major advances was the availability of high-powered rare gas halide excimer lasers. In addition, pulsed Nd:YAG lasers and dye lasers were used throughout. Results include: generalized kinetic formulations of the problem of laser-initiated chain reactions. Several studies were carried out to explore the details of chain combustion phenomena, slow chain reactions, chain branching behavior, and vibrational temperatures of combusting mixtures. A method to determine the rotational temperature of nitrogen molecules by laser multiphoton ionization was shown. The chain reaction methodology was applied to complex polyatomic systems, in which complete infrared spectra of the emitting species were obtained. Systems studied included, chlorine + HBr, HI, methane, hydrogen, ethane, propane, butane, cyclopropane, and cyclohexane. Photofragmentation studies involved the production and analysis of radical species, such as methyl, CH 2 I, and CCH. Molecules studied included methylene iodide, methyl iodide, dimethyl mercury, acetone, acetylene, vinyl chloride, dichloroethylene, and fluorochloroethylene. The first infrared characterization of a highly vibrationally excited radical was shown. Reactions of methyl radicals were studied in detail, in which a new method for obtaining absolute values of the methyl radical reaction rates were obtained

  10. Time Resolved Deposition Measurements in NSTX

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Roquemore, A.L.; Hogan, J.; Wampler, W.R.

    2004-01-01

    Time-resolved measurements of deposition in current tokamaks are crucial to gain a predictive understanding of deposition with a view to mitigating tritium retention and deposition on diagnostic mirrors expected in next-step devices. Two quartz crystal microbalances have been installed on NSTX at a location 0.77m outside the last closed flux surface. This configuration mimics a typical diagnostic window or mirror. The deposits were analyzed ex-situ and found to be dominantly carbon, oxygen, and deuterium. A rear facing quartz crystal recorded deposition of lower sticking probability molecules at 10% of the rate of the front facing one. Time resolved measurements over a 4-week period with 497 discharges, recorded 29.2 (micro)g/cm 2 of deposition, however surprisingly, 15.9 (micro)g/cm 2 of material loss occurred at 7 discharges. The net deposited mass of 13.3 (micro)g/cm 2 matched the mass of 13.5 (micro)g/cm 2 measured independently by ion beam analysis. Monte Carlo modeling suggests that transient processes are likely to dominate the deposition

  11. Mechanistic Studies on Chabazite-Type Methanol-to-Olefin Catalysts: Insights from Time-Resolved UV/Vis Microspectroscopy Combined with Theoretical Simulations

    NARCIS (Netherlands)

    Van Speybroeck, V.; Hemelsoet, K.L.J.; De Wispelaere, K.; Qian, Q.|info:eu-repo/dai/nl/34138609X; Van der Mynsbrugge, J.; De Sterck, B.; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397; Waroquier, M.

    2013-01-01

    The formation and nature of active sites for methanol conversion over solid acid catalyst materials are studied by using a unique combined spectroscopic and theoretical approach. A working catalyst for the methanol-to-olefin conversion has a hybrid organic–inorganic nature in which a cocatalytic

  12. Time-resolved High Spectral Resolution Observation of 2MASSW J0746425+200032AB

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ji; Mawet, Dimitri [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 E. California Boulevard, Pasadena, CA 91106 (United States); Prato, Lisa, E-mail: ji.wang@caltech.edu [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2017-03-20

    Many brown dwarfs (BDs) exhibit photometric variability at levels from tenths to tens of percents. The photometric variability is related to magnetic activity or patchy cloud coverage, characteristic of BDs near the L–T transition. Time-resolved spectral monitoring of BDs provides diagnostics of cloud distribution and condensate properties. However, current time-resolved spectral studies of BDs are limited to low spectral resolution ( R ∼ 100) with the exception of the study of Luhman 16 AB at a resolution of 100,000 using the VLT+CRIRES. This work yielded the first map of BD surface inhomogeneity, highlighting the importance and unique contribution of high spectral resolution observations. Here, we report on the time-resolved high spectral resolution observations of a nearby BD binary, 2MASSW J0746425+200032AB. We find no coherent spectral variability that is modulated with rotation. Based on simulations, we conclude that the coverage of a single spot on 2MASSW J0746425+200032AB is smaller than 1% or 6.25% if spot contrast is 50% or 80% of its surrounding flux, respectively. Future high spectral resolution observations aided by adaptive optics systems can put tighter constraints on the spectral variability of 2MASSW J0746425+200032AB and other nearby BDs.

  13. Reconciling Differences between Lipid Transfer in Free-Standing and Solid Supported Membranes: A Time-Resolved Small-Angle Neutron Scattering Study.

    Science.gov (United States)

    Wah, Benny; Breidigan, Jeffrey M; Adams, Joseph; Horbal, Piotr; Garg, Sumit; Porcar, Lionel; Perez-Salas, Ursula

    2017-04-11

    Maintaining compositional lipid gradients across membranes in animal cells is essential to biological function, but what is the energetic cost to maintain these differences? It has long been recognized that studying the passive movement of lipids in membranes can provide insight into this toll. Confusingly the reported values of inter- and, particularly, intra-lipid transport rates of lipids in membranes show significant differences. To overcome this difficulty, biases introduced by experimental approaches have to be identified. The present study addresses the difference in the reported intramembrane transport rates of dimyristoylphosphatidylcholine (DMPC) on flat solid supports (fast flipping) and in curved free-standing membranes (slow flipping). Two possible scenarios are potentially at play: one is the difference in curvature of the membranes studied and the other the presence (or not) of the support. Using DMPC vesicles and DMPC supported membranes on silica nanoparticles of different radii, we found that an increase in curvature (from a diameter of 30 nm to a diameter of 100 nm) does not change the rates significantly, differing only by factors of order ∼1. Additionally, we found that the exchange rates of DMPC in supported membranes are similar to the ones in vesicles. And as previously reported, we found that the activation energies for exchange on free-standing and supported membranes are similar (84 and 78 kJ/mol, respectively). However, DMPC's flip-flop rates increase significantly when in a supported membrane, surpassing the exchange rates and no longer limiting the exchange process. Although the presence of holes or cracks in supported membranes explains the occurrence of fast lipid flip-flop in many studies, in defect-free supported membranes we find that fast flip-flop is driven by the surface's induced disorder of the bilayer's acyl chain packing as evidenced from their broad melting temperature behavior.

  14. Direct observation of ultrafast atomic motion using time-resolved X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shymanovich, U.

    2007-11-13

    This thesis is dedicated to the study of the atomic motion in laser irradiated solids on a picosecond to subpicosecond time-scale using the time-resolved X-ray diffraction technique. In the second chapter, the laser system, the laser-plasma based X-ray source and the experimental setup for optical pump / X-ray probe measurements were presented. Chapter 3 is devoted to the characterization and comparison of different types of X-ray optics. Chapter 4 presented the time-resolved X-ray diffraction experiments performed for this thesis. The first two sections of this chapter discuss the measurements of initially unexpected strain-induced transient changes of the integrated reflectivity of the X-ray probe beam. The elimination of the strain-induced transient changes of the integrated reflectivity represented an important prerequisite to perform the study of lattice heating in Germanium after femtosecond optical excitation by measuring the transient Debye-Waller effect. The third section describes the investigations of acoustic waves upon ultrafast optical excitation and discusses the two different pressure contributions driving them: the thermal and the electronic ones. (orig.)

  15. Direct observation of ultrafast atomic motion using time-resolved X-ray diffraction

    International Nuclear Information System (INIS)

    Shymanovich, U.

    2007-01-01

    This thesis is dedicated to the study of the atomic motion in laser irradiated solids on a picosecond to subpicosecond time-scale using the time-resolved X-ray diffraction technique. In the second chapter, the laser system, the laser-plasma based X-ray source and the experimental setup for optical pump / X-ray probe measurements were presented. Chapter 3 is devoted to the characterization and comparison of different types of X-ray optics. Chapter 4 presented the time-resolved X-ray diffraction experiments performed for this thesis. The first two sections of this chapter discuss the measurements of initially unexpected strain-induced transient changes of the integrated reflectivity of the X-ray probe beam. The elimination of the strain-induced transient changes of the integrated reflectivity represented an important prerequisite to perform the study of lattice heating in Germanium after femtosecond optical excitation by measuring the transient Debye-Waller effect. The third section describes the investigations of acoustic waves upon ultrafast optical excitation and discusses the two different pressure contributions driving them: the thermal and the electronic ones. (orig.)

  16. Kinetics and mechanism of the pressure-induced lamellar order/disorder transition in phosphatidylethanolamine: a time-resolved X-ray diffraction study.

    Science.gov (United States)

    Mencke, A P; Caffrey, M

    1991-03-05

    By using synchrotron radiation, a movie was made of the X-ray scattering pattern from a biological liquid crystal undergoing a phase transition induced by a pressure jump. The system studied includes the fully hydrated phospholipid dihexadecylphosphatidylethanolamine in the lamellar gel (L beta') phase at a temperature of 68 degrees C and a pressure of 9.7 MPa (1400 psig). Following the rapid release of pressure to atmospheric the L beta' phase transforms slowly into the lamellar liquid crystal (L alpha) phase. The pressure perturbation is applied with the intention of producing a sudden phase disequilibrium followed by monitoring the system as it relaxes to its new equilibrium condition. Remarkably, the proportion of sample in the L alpha phase grows linearly with time, taking 37 s to totally consume the L beta' phase. The time dependencies of radius, peak intensity, and width of the powder diffraction ring of the low-angle (001) lamellar reflections were obtained from the movie by image processing. The concept of an "effective pressure" is introduced to account for the temperature variations that accompany the phase transition and to establish that the observed large transit time is indeed intrinsic to the sample and not due to heat exchange with the environment. The reverse transformation, L alpha to L beta', induced by a sudden jump from atmospheric pressure to 9.7 MPa, is complete in less than 13 s. These measurements represent a new approach for studying the kinetics of lipid phase transitions and for gaining insights into the mechanism of the lamellar order/disorder transition.

  17. Baltimore PM2.5 Supersite: highly time-resolved organic compounds--sampling duration and phase distribution--implications for health effects studies.

    Science.gov (United States)

    Rogge, Wolfgang F; Ondov, John M; Bernardo-Bricker, Anna; Sevimoglu, Orhan

    2011-12-01

    As part of the Baltimore PM2.5 Supersite study, intensive three-hourly continuous PM2.5 sampling was conducted for nearly 4 weeks in summer of 2002 and as well in winter of 2002/2003. Close to 120 individual organic compounds have been quantified separately in filter and polyurethane foam (PUF) plug pairs for 17 days for each sampling period. Here, the focus is on (1) describing briefly the new sampling system, (2) discussing filter/PUF plugs breakthrough experiments for semi-volatile compounds, (3) providing insight into phase distribution of semi-volatile organic species, and (4) discussing the impact of air pollution sampling time on human exposure with information on maximum 3- and 24-h averaged ambient concentrations of potentially adverse health effects causing organic pollutants. The newly developed sampling system consisted of five electronically controlled parallel sampling channels that are operated in a sequential mode. Semi-volatile breakthrough experiments were conducted in three separate experiments over 3, 4, and 5 h each using one filter and three PUF plugs. Valuable insight was obtained about the transfer of semi-volatile organic compounds through the sequence of PUF plugs and a cut-off could be defined for complete sampling of semi-volatile compounds on only one filter/PUF plug pair, i.e., the setup finally used during the seasonal PM2.5 sampling campaign. Accordingly, n-nonadecane (C19) with a vapor pressure (vp) of 3.25 × 10(-4) Torr is collected with > 95% on the filter/PUF pair. Applied to phenanthrene, the most abundant the PAH sampled, phenanthrene (vp, 6.2 × 10(-5) Torr) was collected completely in wintertime and correlates very well with three-hourly PM2.5 ambient concentrations. Valuable data on the fractional partitioning for semi-volatile organics as a function of season is provided here and can be used to differentiate the human uptake of an organic pollutant of interest via gas- and particle-phase exposure. Health effects studies

  18. Electro-oxidation of methanol on gold in alkaline media: Adsorption characteristics of reaction intermediates studied using time resolved electro-chemical impedance and surface plasmon resonance techniques

    Science.gov (United States)

    Assiongbon, K. A.; Roy, D.

    2005-12-01

    Electro-catalytic oxidation of methanol is the anode reaction in direct methanol fuel cells. We have studied the adsorption characteristics of the intermediate reactants of this multistep reaction on a gold film electrode in alkaline solutions by combining surface plasmon resonance (SPR) measurements with Fourier transform electro-chemical impedance spectroscopy (FT-EIS). Methanol oxidation in this system shows no significant effects of "site poisoning" by chemisorbed CO. Our results suggest that OH - chemisorbed onto Au acts as a stabilizing agent for the surface species of electro-active methanol. Double layer charging/discharging and adsorption/desorption of OH - show more pronounced effects than adsorption/oxidation of methanol in controlling the surface charge density of the Au substrate. These effects are manifested in both the EIS and the SPR data, and serve as key indicators of the surface reaction kinetics. The data presented here describe the important role of adsorbed OH - in electro-catalysis of methanol on Au, and demonstrate how SPR and FT-EIS can be combined for quantitative probing of catalytically active metal-solution interfaces.

  19. Time-resolved terahertz spectroscopy of semiconductor nanostructures

    DEFF Research Database (Denmark)

    Porte, Henrik

    This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse and by me......This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse...... and by measuring the transmission of a terahertz probe pulse, the photoconductivity of the excited sample can be obtained. By changing the relative arrival time at the sample between the pump and the probe pulse, the photoconductivity dynamics can be studied on a picosecond timescale. The rst studied semiconductor...

  20. Time resolved spectroscopic studies on some nanophosphors

    Indian Academy of Sciences (India)

    Wintec

    ZnS nanophosphors typically exhibit a purple/blue emission peak termed as self activated (SA) luminescence and emission at ... intense research for their colour tunability and better lu- ... rare earth ion, Eu and the difference in photolumines-.

  1. Time-resolved brightness measurements by streaking

    Science.gov (United States)

    Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.

    2018-03-01

    Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.

  2. Time-resolved measurements of luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Collier, Bradley B. [Department of Biomedical Engineering, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States); McShane, Michael J., E-mail: mcshane@tamu.edu [Department of Biomedical Engineering, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States); Materials Science and Engineering Program, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States)

    2013-12-15

    Luminescence sensing and imaging has become more widespread in recent years in a variety of industries including the biomedical and environmental fields. Measurements of luminescence lifetime hold inherent advantages over intensity-based response measurements, and advances in both technology and methods have enabled their use in a broader spectrum of applications including real-time medical diagnostics. This review will focus on recent advances in analytical methods, particularly calculation techniques, including time- and frequency-domain lifetime approaches as well as other time-resolved measurements of luminescence. -- Highlights: • Developments in technology have led to widespread use of luminescence lifetime. • Growing interest for sensing and imaging applications. • Recent advances in approaches to lifetime calculations are reviewed. • Advantages and disadvantages of various methods are weighed. • Other methods for measurement of luminescence lifetime also described.

  3. Time-resolved measurements of luminescence

    International Nuclear Information System (INIS)

    Collier, Bradley B.; McShane, Michael J.

    2013-01-01

    Luminescence sensing and imaging has become more widespread in recent years in a variety of industries including the biomedical and environmental fields. Measurements of luminescence lifetime hold inherent advantages over intensity-based response measurements, and advances in both technology and methods have enabled their use in a broader spectrum of applications including real-time medical diagnostics. This review will focus on recent advances in analytical methods, particularly calculation techniques, including time- and frequency-domain lifetime approaches as well as other time-resolved measurements of luminescence. -- Highlights: • Developments in technology have led to widespread use of luminescence lifetime. • Growing interest for sensing and imaging applications. • Recent advances in approaches to lifetime calculations are reviewed. • Advantages and disadvantages of various methods are weighed. • Other methods for measurement of luminescence lifetime also described

  4. Time - resolved thermography at Tokamak T-10

    International Nuclear Information System (INIS)

    Grunow, C.; Guenther, K.; Lingertat, J.; Chicherov, V.M.; Evstigneev, S.A.; Zvonkov, S.N.

    1987-01-01

    Thermographic experiments were performed at T-10 tokamak to investigate the thermic coupling of plasma and the limiter. The limiter is an internal equipment of the vacuum vessel of tokamak-type fusion devices and the interaction of plasma with limiter results a high thermal load of limiter for short time. In according to improve the limiter design the temperature distribution on the limiter surface was measured by a time-resolved thermographic method. Typical isotherms and temperature increment curves are presented. This measurement can be used as a systematic plasma diagnostic method because the limiter is installed in the tokamak whereas special additional probes often disturb the plasma discharge. (D.Gy.) 3 refs.; 7 figs

  5. The electronically excited states of LH2 complexes from Rhodopseudomonas acidophila strain 10050 studied by time-resolved spectroscopy and dynamic Monte Carlo simulations. I. Isolated, non-interacting LH2 complexes.

    Science.gov (United States)

    Pflock, Tobias J; Oellerich, Silke; Southall, June; Cogdell, Richard J; Ullmann, G Matthias; Köhler, Jürgen

    2011-07-21

    We have employed time-resolved spectroscopy on the picosecond time scale in combination with dynamic Monte Carlo simulations to investigate the photophysical properties of light-harvesting 2 (LH2) complexes from the purple photosynthetic bacterium Rhodopseudomonas acidophila. The variations of the fluorescence transients were studied as a function of the excitation fluence, the repetition rate of the excitation and the sample preparation conditions. Here we present the results obtained on detergent solubilized LH2 complexes, i.e., avoiding intercomplex interactions, and show that a simple four-state model is sufficient to grasp the experimental observations quantitatively without the need for any free parameters. This approach allows us to obtain a quantitative measure for the singlet-triplet annihilation rate in isolated, noninteracting LH2 complexes.

  6. Two-dimensional time-resolved X-ray diffraction study of liquid/solid fraction and solid particle size in Fe-C binary system with an electrostatic levitator furnace

    International Nuclear Information System (INIS)

    Yonemura, M; Okada, J; Ishikawa, T; Nanao, S; Watanabe, Y; Shobu, T; Toyokawa, H

    2013-01-01

    Liquid state provides functions such as matter transport or a reaction field and plays an important role in manufacturing processes such as refining, forging or welding. However, experimental procedures are significantly difficult for an observation of solidification process of iron and iron-based alloys in order to identify rapid transformations subjected to fast temperature evolution. Therefore, in order to study the solidification in iron and iron-based alloys, we considered a combination of high energy X-ray diffraction measurements and an electrostatic levitation method (ESL). In order to analyze the liquid/solid fraction, the solidification of melted spherical specimens was measured at a time resolution of 0.1 seconds during rapid cooling using the two-dimensional time-resolved X-ray diffraction. Furthermore, the observation of particle sizes and phase identification was performed on a trial basis using X-ray small angle scattering with X-ray diffraction.

  7. Time-resolved x-ray diffraction studies on the intensity changes of the 5.9 and 5.1 nm actin layer lines from frog skeletal muscle during an isometric tetanus using synchrotron radiation

    International Nuclear Information System (INIS)

    Wakabayashi, K.; Tanaka, H.; Amemiya, Y.; Fujishima, A.; Kobayashi, T.; Hamanaka, T.; Sugi, H.; Mitsui, T.

    1985-01-01

    Time-resolved x-ray diffraction studies have been made on the 5.9- and 5.1-nm actin layer lines from frog skeletal muscles during an isometric tetanus at 6 degrees C, using synchrotron radiation. The integrated intensities of these actin layer lines were found to increase during a tetanus by 30-50% for the 5.9-nm reflection and approximately 70% for the 5.1-nm reflection of the resting values. The intensity increase of both reflections was greater than that taking place in the transition from rest to rigor state. The intensity change of the 5.9-nm reflection preceded those of the myosin 42.9-nm off-meridional reflection and of the equatorial reflections, as well as the isometric tension development. The intensity profile of the 5.9-nm layer line during contraction was found to be different from that observed in the rigor state

  8. Time-resolved luminescence from quartz: An overview of contemporary developments and applications

    Energy Technology Data Exchange (ETDEWEB)

    Chithambo, M.L., E-mail: m.chithambo@ru.ac.za [Department of Physics and Electronics, Rhodes University, PO BOX 94, Grahamstown 6140 (South Africa); Ankjærgaard, C. [Soil Geography and Landscape Group, Wageningen University Netherlands Centre for Luminescence Dating, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands (Netherlands); Pagonis, V. [McDaniel College, Physics Department, Westminster, MD 21157 (United States)

    2016-01-15

    Time-resolved optical stimulation of luminescence has become established as a key method for measurement of optically stimulated luminescence from quartz, feldspar and α-Al{sub 2}O{sub 3}:C, all materials of interest in dosimetry. The aim of time-resolved optical stimulation is to separate in time the stimulation and emission of luminescence. The luminescence is stimulated from a sample using a brief light pulse and the emission monitored during stimulation in the presence of scattered stimulating light or after pulsing, over photomultiplier noise only. Although the use of the method in retrospective dosimetry has been somewhat limited, the technique has been successfully applied to study mechanisms in the processes leading up to luminescence emission. The main means for this has been the temperature dependence of the luminescence intensity as well as the luminescence lifetimes determined from time-resolved luminescence spectra. In this paper we review some key developments in theory and applications to quartz including methods of evaluating lifetimes, techniques of evaluating kinetic parameters using both the dependence of luminescence intensity and lifetime on measurement temperature, and of lifetimes on annealing temperature. We then provide an overview of some notable applications such as separation of quartz signals from a quartz–feldspar admixture and the utility of the dynamic throughput, a measure of luminescence measured as a function of the pulse width. The paper concludes with some suggestions of areas where further exploration would advance understanding of dynamics of luminescence in quartz and help address some outstanding problems in its application.

  9. Time-resolved CT angiography in aortic dissection

    International Nuclear Information System (INIS)

    Meinel, Felix G.; Nikolaou, Konstantin; Weidenhagen, Rolf; Hellbach, Katharina; Helck, Andreas; Bamberg, Fabian; Reiser, Maximilian F.; Sommer, Wieland H.

    2012-01-01

    Objectives: We performed this study to assess feasibility and additional diagnostic value of time-resolved CT angiography of the entire aorta in patients with aortic dissection. Materials and methods: 14 consecutive patients with known or suspected aortic dissection (aged 60 ± 9 years) referred for aortic CT angiography were scanned on a dual-source CT scanner (Somatom Definition Flash; Siemens, Forchheim, Germany) using a shuttle mode for multiphasic image acquisition (range 48 cm, time resolution 6 s, 6 phases, 100 kV, 110 mAs/rot). Effective radiation doses were calculated from recorded dose length products. For all phases, CT densities were measured in the aortic lumen and renal parenchyma. From the multiphasic data, 3 phases corresponding to a triphasic standard CT protocol, served as a reference and were compared against findings from the time-resolved datasets. Results: Mean effective radiation dose was 27.7 ± 3.5 mSv. CT density of the true lumen peaked at 355 ± 53 HU. Compared to the simulated triphasic protocol, time-resolved CT angiography added diagnostic information regarding a number of important findings: the enhancement delay between true and false lumen (n = 14); the degree of membrane oscillation (n = 14); the perfusion delay in arteries originating from the false lumen (n = 9). Other additional information included true lumen collapse (n = 4), quantitative assessment of renal perfusion asymmetry (n = 2), and dynamic occlusion of aortic branches (n = 2). In 3/14 patients (21%), these additional findings of the multiphasic protocol altered patient management. Conclusions: Multiphasic, time-resolved CT angiography covering the entire aorta is feasible at a reasonable effective radiation dose and adds significant diagnostic information with therapeutic consequences in patients with aortic dissection.

  10. A time resolved microfocus XEOL facility at the Diamond Light Source

    International Nuclear Information System (INIS)

    Mosselmans, J F W; Taylor, R P; Quinn, P D; Cibin, G; Gianolio, D; Finch, A A; Sapelkin, A V

    2013-01-01

    We have constructed a Time-Resolved X-ray Excited Optical Luminescence (TR-XEOL) detection system at the Microfocus Spectroscopy beamline I18 at the Diamond Light Source. Using the synchrotron in h ybrid bunch mode , the data collection is triggered by the RF clock, and we are able to record XEOL photons with a time resolution of 6.1 ps during the 230 ns gap between the hybrid bunch and the main train of electron bunches. We can detect photons over the range 180-850 nm using a bespoke optical fibre, with X-ray excitation energies between 2 and 20 keV. We have used the system to study a range of feldspars. The detector is portable and has also been used on beamline B18 to collect Optically Determined X-ray Absorption Spectroscopy (OD-XAS) in QEXAFS mode.

  11. A time resolved microfocus XEOL facility at the Diamond Light Source

    Science.gov (United States)

    Mosselmans, J. F. W.; Taylor, R. P.; Quinn, P. D.; Finch, A. A.; Cibin, G.; Gianolio, D.; Sapelkin, A. V.

    2013-03-01

    We have constructed a Time-Resolved X-ray Excited Optical Luminescence (TR-XEOL) detection system at the Microfocus Spectroscopy beamline I18 at the Diamond Light Source. Using the synchrotron in "hybrid bunch mode", the data collection is triggered by the RF clock, and we are able to record XEOL photons with a time resolution of 6.1 ps during the 230 ns gap between the hybrid bunch and the main train of electron bunches. We can detect photons over the range 180-850 nm using a bespoke optical fibre, with X-ray excitation energies between 2 and 20 keV. We have used the system to study a range of feldspars. The detector is portable and has also been used on beamline B18 to collect Optically Determined X-ray Absorption Spectroscopy (OD-XAS) in QEXAFS mode.

  12. Polarized time-resolved photoluminescence measurements of m-plane AlGaN/GaN MQWs

    Science.gov (United States)

    Rosales, Daniel; Gil, B.; Bretagnon, T.; Zhang, F.; Okur, S.; Monavarian, M.; Izioumskaia, N.; Avrutin, V.; Özgür, Ü.; Morkoç, H.; Leach, J. H.

    2014-03-01

    The optical properties of GaN/Al0.15Ga0.85N multiple quantum wells grown on m-plane oriented substrate are studied in 8K-300K temperature range. The optical spectra reveal strong in-plane optical anisotropies as predicted by group theory. Polarized time resolved temperature-dependent photoluminescence experiments are performed providing access to the relative contributions of the non-radiative and radiative recombination processes. We deduce the variation of the radiative decay time with temperature in the two polarizations.

  13. Time-resolved Laue diffraction from protein crystals: Instrumental considerations

    International Nuclear Information System (INIS)

    Bilderback, D.H.; Cornell Univ., Ithaca, NY; Moffat, K.; Szebenyi, D.M.E.

    1984-01-01

    A serious limitation of macromolecular crystallography has been its inability to determine changes in structure on a biochemical time scale of milliseconds or less. Recently, we have shown that X-ray exposures on single crystals of macromolecules may be obtained in the millisecond time range through the use of intense, polychromatic radiation with Δlambda/lambda approx.= 0.2 derived from the Cornell High Energy Synchrotron Source, CHESS. Such radiation falling on a stationary crystal yields a Laue diffraction pattern, in which almost all Laue reflections arise from a unique set of Miller indices and where their intensities are automatically integrated over wavelength. This Laue technique requires wide band pass optics, which may be obtained by a combination of reflection and transmission mirrors, filters or layered synthetic microstructures. Time-resolved macromolecular crystallography may be achieved by several data collection schemes: 'one-shot' recording coupled to a simple streak camera, repetitive sample perturbation coupled to a detector with temporal resolution and repetitive perturbation which uses the synchrotron pulses for stroboscopic triggering and detection. These schemes are appropriate for different time scales, roughly the milli-, micro- and nanosecond regimes. It appears that time-resolved crystallography is entirely feasible, with an ultimate time resolution limited only by the length of a synchrotron light pulse, some 150 ps at CHESS. (orig.)

  14. Ultrafast time-resolved spectroscopy of xanthophylls at low temperature.

    Science.gov (United States)

    Cong, Hong; Niedzwiedzki, Dariusz M; Gibson, George N; Frank, Harry A

    2008-03-20

    Many of the spectroscopic features and photophysical properties of xanthophylls and their role in energy transfer to chlorophyll can be accounted for on the basis of a three-state model. The characteristically strong visible absorption of xanthophylls is associated with a transition from the ground state S0 (1(1)Ag-) to the S2 (1(1)Bu+) excited state. The lowest lying singlet state denoted S1 (2(1)Ag-), is a state into which absorption from the ground state is symmetry forbidden. Ultrafast optical spectroscopic studies and quantum computations have suggested the presence of additional excited singlet states in the vicinity of S1 (2(1)Ag-) and S2 (1(1)Bu+). One of these is denoted S* and has been suggested in previous work to be associated with a twisted molecular conformation of the molecule in the S1 (2(1)Ag-) state. In this work, we present the results of a spectroscopic investigation of three major xanthophylls from higher plants: violaxanthin, lutein, and zeaxanthin. These molecules have systematically increasing extents of pi-electron conjugation from nine to eleven conjugated carbon-carbon double bonds. All-trans isomers of the molecules were purified by high-performance liquid chromatography (HPLC) and studied by steady-state and ultrafast time-resolved optical spectroscopy at 77 K. Analysis of the data using global fitting techniques has revealed the inherent spectral properties and ultrafast dynamics of the excited singlet states of each of the molecules. Five different global fitting models were tested, and it was found that the data are best explained using a kinetic model whereby photoexcitation results in the promotion of the molecule into the S2 (1(1)Bu+) state that subsequently undergoes decay to a vibrationally hot S1 (1(1)Ag-) state and with the exception of violaxanthin also to the S* state. The vibrationally hot S1 (1(1)Ag-) state then cools to a vibrationally relaxed S1 (2(1)Ag-) state in less than a picosecond. It was also found that a portion

  15. Generation of pulsed far-infrared radiation and its application for far-infrared time-resolved spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Yasuhiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1996-07-01

    So-called time-resolved spectroscopy technique has been used from old time as the means for studying the dynamic optical property, light-induced reaction and so on of matters. As an example, there is the method called pump and probe, and here, the wavelength of this probe light is the problem. If the object energy region is limited to about 0.1 eV, fast time-resolved spectroscopy is feasible relatively easily. However, energy region is extended to low energy region, the light source which is available as the pulsed probe light having sufficient intensity is limited. In this paper, the attempt of time-resolved spectroscopy utilizing coherent radiation, which has ended in failure, and the laser pulse-induced far-infrared radiation which can be utilized as new far-infrared probe light are reported. The reason why far-infrared radiation is used is explained. The attempt of time-resolved spectroscopy using NaCl crystals is reported on the equipment, the method of measuring absorption spectra and the results. Laser pulse-induced far-infrared radiation and the method of generating it are described. The multi-channel detector for far-infrared radiation which was made for trial is shown. (K.I.)

  16. Determination of quenching coefficients by time resolved emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gans, T.; Schulz-von der Gathen, V.; Doebele, H.F. [Essen Univ. (Gesamthochschule) (Germany). Inst. fuer Laser- und Plasmaphysik

    2001-07-01

    Capacitively coupled RF discharges (CCRF discharges) at 13.56 MHz in hydrogen exhibit a field reversal phase of about 10 ns during which an intense electron current provides collisional excitation, within the sheath region. After this strongly dominant short pulsed electron impact excitation, it is possible to determine quenching coefficients from the lifetime of the fluorescence at various pressures by time resolved OES even for high energy levels and without any restrictions of optical selection rules. This novel technique allows the measurement of quenching coefficients for atomic and molecular emission lines of hydrogen itself, as well as for emission lines of small admixtures (e.g. noble gases) to the hydrogen discharge, since with a fast gate-able ICCD camera operating at 13.56 MHz it is possible to measure even faint emission lines temporally resolved.

  17. Determination of quenching coefficients by time resolved emission spectroscopy

    International Nuclear Information System (INIS)

    Gans, T.; Schulz-von der Gathen, V.; Doebele, H.F.

    2001-01-01

    Capacitively coupled RF discharges (CCRF discharges) at 13.56 MHz in hydrogen exhibit a field reversal phase of about 10 ns during which an intense electron current provides collisional excitation, within the sheath region. After this strongly dominant short pulsed electron impact excitation, it is possible to determine quenching coefficients from the lifetime of the fluorescence at various pressures by time resolved OES even for high energy levels and without any restrictions of optical selection rules. This novel technique allows the measurement of quenching coefficients for atomic and molecular emission lines of hydrogen itself, as well as for emission lines of small admixtures (e.g. noble gases) to the hydrogen discharge, since with a fast gate-able ICCD camera operating at 13.56 MHz it is possible to measure even faint emission lines temporally resolved

  18. Time-resolved tomographic images of a relativistic electron beam

    International Nuclear Information System (INIS)

    Koehler, H.A.; Jacoby, B.A.; Nelson, M.

    1984-07-01

    We obtained a sequential series of time-resolved tomographic two-dimensional images of a 4.5-MeV, 6-kA, 30-ns electron beam. Three linear fiber-optic arrays of 30 or 60 fibers each were positioned around the beam axis at 0 0 , 61 0 , and 117 0 . The beam interacting with nitrogen at 20 Torr emitted light that was focused onto the fiber arrays and transmitted to a streak camera where the data were recorded on film. The film was digitized, and two-dimensional images were reconstructed using the maximum-entropy tomographic technique. These images were then combined to produce an ultra-high-speed movie of the electron-beam pulse

  19. Photon-Counting Arrays for Time-Resolved Imaging

    Directory of Open Access Journals (Sweden)

    I. Michel Antolovic

    2016-06-01

    Full Text Available The paper presents a camera comprising 512 × 128 pixels capable of single-photon detection and gating with a maximum frame rate of 156 kfps. The photon capture is performed through a gated single-photon avalanche diode that generates a digital pulse upon photon detection and through a digital one-bit counter. Gray levels are obtained through multiple counting and accumulation, while time-resolved imaging is achieved through a 4-ns gating window controlled with subnanosecond accuracy by a field-programmable gate array. The sensor, which is equipped with microlenses to enhance its effective fill factor, was electro-optically characterized in terms of sensitivity and uniformity. Several examples of capture of fast events are shown to demonstrate the suitability of the approach.

  20. Preliminary study of in vivo hemodynamic analysis of intracranial aneurysms using time-resolved three-dimensional phase-contrast MRI and in-house software [Presidential award proceedings

    International Nuclear Information System (INIS)

    Isoda, Haruo; Ohkura, Yasuhide; Seo, Taro

    2007-01-01

    We calculated in vivo wall shear stress (WSS) and streamlines of intracranial aneurysms and analyzed the relationships between the hemodynamics and WSS of the aneurysms using time-resolved three-dimensional (3D) phase-contrast magnetic resonance (MR) imaging (4D-Flow) and in-house software. We studied 10 subjects with 11 aneurysms. 4D-flow was performed using a 1.5T GE MR scanner with head coil. 3D time-of-flight (TOF) MR angiography was performed for geometric information. The software calculated the WSS based on interpolated shearing velocity using the data set obtained by 4D-flow near the wall and provided us with 3D streamlines. We acquired 3D streamlines and WSS distribution maps in arbitrary directions during the cardiac phase for all intracranial aneurysms, and each intracranial aneurysm in this study had at least one spiral flow. We noted lower WSS with lower flow velocities at the apex of the spiral flow. (author)

  1. Uptake Of Trivalent Actinides (Cm(III)) And Lanthanides (Eu(III)) By Cement-Type Minerals: A Wet Chemistry And Time-Resolved Laser Fluorescence Spectroscopy (TRLFS) Study

    Energy Technology Data Exchange (ETDEWEB)

    Tits, J.; Stumpf, T; Wieland, E.; Fanghaenel, T

    2003-03-01

    The interaction of the two chemical homologues Cm (III) and Eu(III) with calcium silicate hydrates at pH 13.3 has been investigated in batch-type sorption studies using Eu(III), and complemented with time-resolved laser fluorescence spectroscopy using Cm(III). The sorption data for Eu(III) reveal fast sorption kinetics, and a strong uptake by CSH phases, with distribution ratios of 6({+-}3)*105 L kg-1. Three different types of sorbed Cm(III) species have been identified: a non-fluorescing species, which was identified as Cm cluster present either as surface precipitate or as Cm(III) colloid in solution, and two sorbed fluorescing species. The sorbed fluorescing species have characteristic emission spectra (main peak maxima at 618.9 nm and 620.9 nm) and fluorescence emission lifetimes (289 {+-} 11 ms and 1482{+-} 200 ms). From the fluorescence lifetimes, it appears that the two fluorescing Cm(III) species have, respectively, one to two or no water molecules left in their first coordination sphere, suggesting that these species are incorporated into the CSH structure. A structural model for Cm(III) and Eu(III) incorporation into CSH phases is proposed based on the substitution of Ca at two different types of sites in the CSH structure. (author)

  2. Time resolved studies of dual emission and photoinduced energy transfer in a Tris methoxy coumarin derivative of a cryptand and its complex with Tb(NO{sub 3}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Subhodip [Department of Chemistry, Presidency College, Kolkata 700 073 (India); Roy, Maitrayee Basu [Department of Chemistry, Presidency College, Kolkata 700 073 (India); Ghosh, Sanjib [Department of Chemistry, Presidency College, Kolkata 700 073 (India)], E-mail: sanjibg@cal2.vsnl.net.in

    2006-09-29

    The paper reports time resolved emission studies in different solvents of the dual emission observed in the macrotricyclic cryptand (L) where the three secondary amino nitrogen have been derivatized with methoxy coumarin at room temperature and at 77K. The emission from the 'locally excited monomer state' has a lifetime less than 1ns while the other emitting state is an exciplex state with a lifetime of 4-5ns depending on the solvent. The lifetime is found to increase significantly in the presence of protons and at 77K exhibiting photoinduced electron transfer (PET) in the system L. The system exhibits photoinduced energy transfer (ET) in its Tb(III) complex using NO{sub 3}{sup -} ion as counteranion at room temperature as well as at 77K. The rate constants for energy transfer from coumarin moiety to Tb(III) have been evaluated at room temperature and at 77K following the decay of {sup 5}D{sub 4}->{sup 7}F{sub 5} emission of Tb(III). The results indicate that energy transfer takes place from the lowest triplet state of coumarin moiety to Tb(III) by exchange mechanism. The energy transfer (ET) rate constants at room temperature and at 77K have been evaluated and interpreted using the geometry of L obtained by theoretical calculation.

  3. Time-resolved photoelectron spectroscopy of nitrobenzene and its aldehydes

    Science.gov (United States)

    Schalk, Oliver; Townsend, Dave; Wolf, Thomas J. A.; Holland, David M. P.; Boguslavskiy, Andrey E.; Szöri, Milan; Stolow, Albert

    2018-01-01

    We report the first femtosecond time-resolved photoelectron spectroscopy study of 2-, 3- and 4-nitrobenzaldehyde (NBA) and nitrobenzene (NBE) in the gas phase upon excitation at 200 nm. In 3- and 4-NBA, the dynamics follow fast intersystem crossing within 1-2 picoseconds. In 2-NBA and NBE, the dynamics are faster (∼ 0.5 ps). 2-NBA undergoes hydrogen transfer similar to solution phase dynamics. NBE either releases NO2 in the excited state or converts internally back to the ground state. We discuss why these channels are suppressed in the other nitrobenzaldehydes.

  4. Time Resolved X-Ray Scattering of molecules in Solution

    DEFF Research Database (Denmark)

    Brandt van Driel, Tim

    The dissertation describes the use of Time-Resolved X-ray Diffuse Scattering (TR-XDS) to study photo-induced structural changes in molecules in solution. The application of the technique is exemplified with experiments on two bimetallic molecules. The main focus is on the data-flow and process......)42+ obtained at European Synchrotron Radiation Facility (ESRF) are presented to exemplify TR-XDS at synchrotrons. Similarly, measurements on Ir2(dimen)42+ are used to show the XFEL data-flow and how it deviates from the prior. A method to identify and account for systematic fluctuations...

  5. Time-resolved photoluminescence of SiOx encapsulated Si

    Science.gov (United States)

    Kalem, Seref; Hannas, Amal; Österman, Tomas; Sundström, Villy

    Silicon and its oxide SiOx offer a number of exciting electrical and optical properties originating from defects and size reduction enabling engineering new electronic devices including resistive switching memories. Here we present the results of photoluminescence dynamics relevant to defects and quantum confinement effects. Time-resolved luminescence at room temperature exhibits an ultrafast decay component of less than 10 ps at around 480 nm and a slower component of around 60 ps as measured by streak camera. Red shift at the initial stages of the blue luminescence decay confirms the presence of a charge transfer to long lived states. Time-correlated single photon counting measurements revealed a life-time of about 5 ns for these states. The same quantum structures emit in near infrared close to optical communication wavelengths. Nature of the emission is described and modeling is provided for the luminescence dynamics. The electrical characteristics of metal-oxide-semiconductor devices were correlated with the optical and vibrational measurement results in order to have better insight into the switching mechanisms in such resistive devices as possible next generation RAM memory elements. ``This work was supported by ENIAC Joint Undertaking and Laser-Lab Europe''.

  6. 340 nm pulsed UV LED system for europium-based time-resolved fluorescence detection of immunoassays

    DEFF Research Database (Denmark)

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter

    2016-01-01

    We report on the design, development and investigation of an optical system based on UV light emitting diode (LED) excitation at 340 nm for time-resolved fluorescence detection of immunoassays. The system was tested to measure cardiac marker Troponin I with a concentration of 200 ng....../L in immunoassay. The signal-to-noise ratio was comparable to state-of-the-art Xenon flash lamp based unit with equal excitation energy and without overdriving the LED. We performed a comparative study of the flash lamp and the LED based system and discussed temporal, spatial, and spectral features of the LED...... excitation for time-resolved fluorimetry. Optimization of the suggested key parameters of the LED promises significant increase of the signal-to-noise ratio and hence of the sensitivity of immunoassay systems....

  7. 340 nm pulsed UV LED system for europium-based time-resolved fluorescence detection of immunoassays.

    Science.gov (United States)

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter; Petersen, Paul Michael; Pedersen, Christian

    2016-09-19

    We report on the design, development and investigation of an optical system based on UV light emitting diode (LED) excitation at 340 nm for time-resolved fluorescence detection of immunoassays. The system was tested to measure cardiac marker Troponin I with a concentration of 200 ng/L in immunoassay. The signal-to-noise ratio was comparable to state-of-the-art Xenon flash lamp based unit with equal excitation energy and without overdriving the LED. We performed a comparative study of the flash lamp and the LED based system and discussed temporal, spatial, and spectral features of the LED excitation for time-resolved fluorimetry. Optimization of the suggested key parameters of the LED promises significant increase of the signal-to-noise ratio and hence of the sensitivity of immunoassay systems.

  8. Time resolved fluorescence of cow and goat milk powder

    Science.gov (United States)

    Brandao, Mariana P.; de Carvalho dos Anjos, Virgílio; Bell., Maria José V.

    2017-01-01

    Milk powder is an international dairy commodity. Goat and cow milk powders are significant sources of nutrients and the investigation of the authenticity and classification of milk powder is particularly important. The use of time-resolved fluorescence techniques to distinguish chemical composition and structure modifications could assist develop a portable and non-destructive methodology to perform milk powder classification and determine composition. This study goal is to differentiate milk powder samples from cows and goats using fluorescence lifetimes. The samples were excited at 315 nm and the fluorescence intensity decay registered at 468 nm. We observed fluorescence lifetimes of 1.5 ± 0.3, 6.4 ± 0.4 and 18.7 ± 2.5 ns for goat milk powder; and 1.7 ± 0.3, 6.9 ± 0.2 and 29.9 ± 1.6 ns for cow's milk powder. We discriminate goat and cow powder milk by analysis of variance using Fisher's method. In addition, we employed quadratic discriminant analysis to differentiate the milk samples with accuracy of 100%. Our results suggest that time-resolved fluorescence can provide a new method to the analysis of powder milk and its composition.

  9. Femtosecond time-resolved transient absorption spectroscopy of xanthophylls.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Sullivan, James O; Polívka, Tomás; Birge, Robert R; Frank, Harry A

    2006-11-16

    Xanthophylls are a major class of photosynthetic pigments that participate in an adaptation mechanism by which higher plants protect themselves from high light stress. In the present work, an ultrafast time-resolved spectroscopic investigation of all the major xanthophyll pigments from spinach has been performed. The molecules are zeaxanthin, lutein, violaxanthin, and neoxanthin. beta-Carotene was also studied. The experimental data reveal the inherent spectral properties and ultrafast dynamics including the S(1) state lifetimes of each of the pigments. In conjunction with quantum mechanical computations the results address the molecular features of xanthophylls that control the formation and decay of the S* state in solution. The findings provide compelling evidence that S* is an excited state with a conformational geometry twisted relative to the ground state. The data indicate that S* is formed via a branched pathway from higher excited singlet states and that its yield depends critically on the presence of beta-ionylidene rings in the polyene system of pi-electron conjugated double bonds. The data are expected to be beneficial to researchers employing ultrafast time-resolved spectroscopic methods to investigate the mechanisms of both energy transfer and nonphotochemical quenching in higher plant preparations.

  10. Photo-stability and time-resolved photoluminescence study of colloidal CdSe/ZnS quantum dots passivated in Al{sub 2}O{sub 3} using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chih-Yi [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Mao, Ming-Hua, E-mail: mhmao@ntu.edu.tw [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2016-08-28

    We report photo-stability enhancement of colloidal CdSe/ZnS quantum dots (QDs) passivated in Al{sub 2}O{sub 3} thin film using the atomic layer deposition (ALD) technique. 62% of the original peak photoluminescence (PL) intensity remained after ALD. The photo-oxidation and photo-induced fluorescence enhancement effects of both the unpassivated and passivated QDs were studied under various conditions, including different excitation sources, power densities, and environment. The unpassivated QDs showed rapid PL degradation under high excitation due to strong photo-oxidation in air while the PL intensity of Al{sub 2}O{sub 3} passivated QDs was found to remain stable. Furthermore, recombination dynamics of the unpassivated and passivated QDs were investigated by time-resolved measurements. The average lifetime of the unpassivated QDs decreases with laser irradiation time due to photo-oxidation. Photo-oxidation creates surface defects which reduces the QD emission intensity and enhances the non-radiative recombination rate. From the comparison of PL decay profiles of the unpassivated and passivated QDs, photo-oxidation-induced surface defects unexpectedly also reduce the radiative recombination rate. The ALD passivation of Al{sub 2}O{sub 3} protects QDs from photo-oxidation and therefore avoids the reduction of radiative recombination rate. Our experimental results demonstrated that passivation of colloidal QDs by ALD is a promising method to well encapsulate QDs to prevent gas permeation and to enhance photo-stability, including the PL intensity and carrier lifetime in air. This is essential for the applications of colloidal QDs in light-emitting devices.

  11. Invited article: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis

    International Nuclear Information System (INIS)

    Labiche, Jean-Claude; Mathon, Olivier; Pascarelli, Sakura; Newton, Mark A.; Ferre, Gemma Guilera; Curfs, Caroline; Vaughan, Gavin; Homs, Alejandro; Carreiras, David Fernandez

    2007-01-01

    Originally conceived and developed at the European Synchrotron Radiation Facility (ESRF) as an 'area' detector for rapid x-ray imaging studies, the fast readout low noise (FReLoN) detector of the ESRF [J.-C. Labiche, ESRF Newsletter 25, 41 (1996)] has been demonstrated to be a highly versatile and unique detector. Charge coupled device (CCD) cameras at present available on the public market offer either a high dynamic range or a high readout speed. A compromise between signal dynamic range and readout speed is always sought. The parameters of the commercial cameras can sometimes be tuned, in order to better fulfill the needs of specific experiments, but in general these cameras have a poor duty cycle (i.e., the signal integration time is much smaller than the readout time). In order to address scientific problems such as time resolved experiments at the ESRF, a FReLoN camera has been developed by the Instrument Support Group at ESRF. This camera is a low noise CCD camera that combines high dynamic range, high readout speed, accuracy, and improved duty cycle in a single image. In this paper, we show its application in a quasi-one-dimensional sense to dynamic problems in materials science, catalysis, and chemistry that require data acquisition on a time scale of milliseconds or a few tens of milliseconds. It is demonstrated that in this mode the FReLoN can be applied equally to the investigation of rapid changes in long range order (via diffraction) and local order (via energy dispersive extended x-ray absorption fine structure) and in situations of x-ray hardness and flux beyond the capacity of other detectors

  12. In-pile Thermal Conductivity Characterization with Time Resolved Raman

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinwei [Iowa State Univ., Ames, IA (United States). Dept. of Mechanical Engineering; Hurley, David H. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2018-03-19

    The project is designed to achieve three objectives: (1) Develop a novel time resolved Raman technology for direct measurement of fuel and cladding thermal conductivity. (2) Validate and improve the technology development by measuring ceramic materials germane to the nuclear industry. (3) Conduct instrumentation development to integrate optical fiber into our sensing system for eventual in-pile measurement. We have developed three new techniques: time-domain differential Raman (TD-Raman), frequency-resolved Raman (FR-Raman), and energy transport state-resolved Raman (ET-Raman). The TD-Raman varies the laser heating time and does simultaneous Raman thermal probing, the FR-Raman probes the material’s thermal response under periodical laser heating of different frequencies, and the ET-Raman probes the thermal response under steady and pulsed laser heating. The measurement capacity of these techniques have been fully assessed and verified by measuring micro/nanoscale materials. All these techniques do not need the data of laser absorption and absolute material temperature rise, yet still be able to measure the thermal conductivity and thermal diffusivity with unprecedented accuracy. It is expected they will have broad applications for in-pile thermal characterization of nuclear materials based on pure optical heating and sensing.

  13. Time-resolved pump-probe experiments at the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Glownia, James; /SLAC /Stanford U., Appl. Phys. Dept.; Cryan, J.; /SLAC /Stanford U., Phys. Dept.; Andreasson, J.; /Uppsala U.; Belkacem, A.; /LBNL, Berkeley; Berrah, N.; /Western Michigan U.; Blaga, C.L.; /Ohio State U.; Bostedt, C.; Bozek, J.; /SLAC; DiMauro, L.F.; /Ohio State U.; Fang, L.; /Western Michigan U.; Frisch, J.; /SLAC; Gessner, O.; /LBNL; Guhr, M.; /SLAC; Hajdu, J.; /Uppsala U.; Hertlein, M.P.; /LBNL; Hoener, M.; /Western Michigan U. /LBNL; Huang, G.; Kornilov, O.; /LBNL; Marangos, J.P.; /Imperial Coll., London; March, A.M.; /Argonne; McFarland, B.K.; /SLAC /Stanford U., Phys. Dept. /SLAC /IRAMIS, Saclay /Stanford U., Phys. Dept. /Georgia Tech /Argonne /Kansas State U. /SLAC /Stanford U., Phys. Dept. /SLAC /Stanford U., Appl. Phys. Dept. /Stanford U., Appl. Phys. Dept. /SLAC /LBNL /Argonne /SLAC /SLAC /Stanford U., Appl. Phys. Dept. /Stanford U., Phys. Dept.

    2011-08-12

    The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. The largest contribution to the jitter noise spectrum was the locking of the laser oscillator to the reference RF of the accelerator, which suggests that simple technical improvements could reduce the jitter to better than 50 fs.

  14. Time-resolved Femtosecond Photon Echo Probes Bimodal Solvent Dynamics

    NARCIS (Netherlands)

    Pshenichnikov, M.S; Duppen, K.; Wiersma, D. A.

    1995-01-01

    We report on time-resolved femtosecond photon echo experiments of a dye molecule in a polar solution. The photon echo is time resolved by mixing the echo with a femtosecond gate pulse in a nonlinear crystal. It is shown that the temporal profile of the photon echo allows separation of the

  15. New method for measuring time-resolved spectra of lanthanide emission using square-wave excitation

    International Nuclear Information System (INIS)

    Qin, Feng; Zhao, Hua; Cai, Wei; Duan, Qianqian; Zhang, Zhiguo; Cao, Wenwu

    2013-01-01

    A method using modulated continuous wave (CW) visible laser to measure time-resolved fluorescence spectra of trivalent rare-earth ions has been developed. Electro-optic modulator was used to modulate the CW pumping laser with a rise time of 2 μs. CW Nd 3+ lasers were used as examples to present the method. Upconversion dynamic process of Ho 3+ was studied utilizing a 532 nm CW laser. Quantum cutting dynamic process from Tb 3+ to Yb 3+ was analyzed by a 473 nm CW laser. This method can be applied to any CW laser such as He-Ne laser, Ar + laser, Kr + laser, Ti:sapphire laser, etc

  16. Fast time-resolved aerosol collector: proof of concept

    Science.gov (United States)

    Yu, X.-Y.; Cowin, J. P.; Iedema, M. J.; Ali, H.

    2010-10-01

    Atmospheric particles can be collected in the field on substrates for subsequent laboratory analysis via chemically sensitive single particle methods such as scanning electron microscopy with energy dispersive x-ray analysis. With moving substrates time resolution of seconds to minutes can be achieved. In this paper, we demonstrate how to increase the time resolution when collecting particles on a substrate to a few milliseconds to provide real-time information. Our fast time-resolved aerosol collector ("Fast-TRAC") microscopically observes the particle collection on a substrate and records an on-line video. Particle arrivals are resolved to within a single frame (4-17 ms in this setup), and the spatial locations are matched to the subsequent single particle analysis. This approach also provides in-situ information on particle size and number concentration. Applications are expected in airborne studies of cloud microstructure, pollution plumes, and surface long-term monitoring.

  17. Time-resolved laser-induced fluorescence system

    Science.gov (United States)

    Bautista, F. J.; De la Rosa, J.; Gallegos, F. J.

    2006-02-01

    Fluorescence methods are being used increasingly in the measurement of species concentrations in gases, liquids and solids. Laser induced fluorescence is spontaneous emission from atoms or molecules that have been excited by laser radiation. Here we present a time resolved fluorescence instrument that consists of a 5 μJ Nitrogen laser (337.1 nm), a sample holder, a quartz optical fiber, a spectrometer, a PMT and a PC that allows the measurement of visible fluorescence spectra (350-750 nm). Time response of the system is approximately 5 ns. The instrument has been used in the measurement of colored bond paper, antifreeze, diesel, cochineal pigment and malignant tissues. The data acquisition was achieved through computer control of a digital oscilloscope (using General Purpose Interface Bus GPIB) and the spectrometer via serial (RS232). The instrument software provides a graphic interface that lets make some data acquisition tasks like finding fluorescence spectra, and fluorescence lifetimes. The software was developed using the Lab-View 6i graphic programming package and can be easily managed in order to add more functions to it.

  18. Time-resolved PHERMEX image restorations constrained with an additional multiply-exposed image

    International Nuclear Information System (INIS)

    Kruger, R.P.; Breedlove, J.R. Jr.; Trussell, H.J.

    1978-06-01

    There are a number of possible industrial and scientific applications of nanosecond cineradiographs. Although the technology exists to produce closely spaced pulses of x rays for this application, the quality of the time-resolved radiographs is severely limited. The limitations arise from the necessity of using a fluorescent screen to convert the transmitted x rays to light and then using electro-optical imaging systems to gate and to record the images with conventional high-speed cameras. It has been proposed that, in addition to the time-resolved images, a conventional multiply exposed radiograph be obtained. This report uses both PHERMEX and conventional photographic simulations to demonstrate that the additional information supplied by the multiply exposed radiograph can be used to improve the quality of digital image restorations of the time-resolved pictures over what could be achieved with the degraded images alone

  19. Femtosecond Time-Resolved Resonance-Enhanced CARS of Gaseous Iodine at Room Temperature

    International Nuclear Information System (INIS)

    He Ping; Fan Rong-Wei; Xia Yuan-Qin; Yu Xin; Chen De-Ying; Yao Yong

    2011-01-01

    Time-resolved resonance-enhanced coherent anti-Stokes Raman scattering (CARS) is applied to investigate molecular dynamics in gaseous iodine. 40 fs laser pulses are applied to create and monitor the high vibrational states of iodine at room temperature (corresponding to a vapor pressure as low as about 35 Pa) by femtosecond time-resolved CARS. Depending on the time delay between the probe pulse and the pump/Stokes pulse pairs, the high vibrational states both on the electronically ground states and the excited states can be detected as oscillations in the CARS transient signal. It is proved that the femtosecond time-resolved CARS technique is a promising candidate for investigating the molecular dynamics of a low concentration system and can be applied to environmental and atmospheric monitoring measurements. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Time-resolved scanning tunnelling microscopy

    NARCIS (Netherlands)

    van Houselt, Arie; Zandvliet, Henricus J.W.

    2010-01-01

    Scanning tunneling microscopy has revolutionized our ability to image, study, and manipulate solid surfaces on the size scale of atoms. One important limitation of the scanning tunneling microscope (STM) is, however, its poor time resolution. Recording a standard image with a STM typically takes

  1. Time-resolved Neutron Powder Diffraction

    International Nuclear Information System (INIS)

    Pannetier, J.

    1986-01-01

    The use of a high-flux neutron source together with a large position sensitive detector (PSD) allows a powder diffraction pattern to be recorded at a time-scale of a few minutes so that crystalline systems under non-equilibrium conditions may now conveniently be investigated. This introduces a new dimension into powder diffraction (the time and transient phenomena like heterogeneous chemical reactions can now be easily studied. The instrumental parameters relevant for the design of such time-dependent experiments are briefly surveyed and the current limits of the method are discussed. The applications are illustrated by two kinds of experiment in the field of inorganic solid state chemistry: true kinetic studies of heterogeneous chemical reactions and thermodiffractometry experiments

  2. Reaction-time-resolved measurements of laser-induced fluorescence in a shock tube with a single laser pulse

    Science.gov (United States)

    Zabeti, S.; Fikri, M.; Schulz, C.

    2017-11-01

    Shock tubes allow for the study of ultra-fast gas-phase reactions on the microsecond time scale. Because the repetition rate of the experiments is low, it is crucial to gain as much information as possible from each individual measurement. While reaction-time-resolved species concentration and temperature measurements with fast absorption methods are established, conventional laser-induced fluorescence (LIF) measurements with pulsed lasers provide data only at a single reaction time. Therefore, fluorescence methods have rarely been used in shock-tube diagnostics. In this paper, a novel experimental concept is presented that allows reaction-time-resolved LIF measurements with one single laser pulse using a test section that is equipped with several optical ports. After the passage of the shock wave, the reactive mixture is excited along the center of the tube with a 266-nm laser beam directed through a window in the end wall of the shock tube. The emitted LIF signal is collected through elongated sidewall windows and focused onto the entrance slit of an imaging spectrometer coupled to an intensified CCD camera. The one-dimensional spatial resolution of the measurement translates into a reaction-time-resolved measurement while the species information can be gained from the spectral axis of the detected two-dimensional image. Anisole pyrolysis was selected as the benchmark reaction to demonstrate the new apparatus.

  3. Multiwavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult's brain

    Science.gov (United States)

    Gerega, Anna; Milej, Daniel; Weigl, Wojciech; Botwicz, Marcin; Zolek, Norbert; Kacprzak, Michal; Wierzejski, Wojciech; Toczylowska, Beata; Mayzner-Zawadzka, Ewa; Maniewski, Roman; Liebert, Adam

    2012-08-01

    Optical technique based on diffuse reflectance measurement combined with indocyanine green (ICG) bolus tracking is extensively tested as a method for clinical assessment of brain perfusion in adults at the bedside. Methodology of multiwavelength and time-resolved detection of fluorescence light excited in the ICG is presented and advantages of measurements at multiple wavelengths are discussed. Measurements were carried out: 1. on a physical homogeneous phantom to study the concentration dependence of the fluorescence signal, 2. on the phantom to simulate the dynamic inflow of ICG at different depths, and 3. in vivo on surface of the human head. Pattern of inflow and washout of ICG in the head of healthy volunteers after intravenous injection of the dye was observed for the first time with time-resolved instrumentation at multiple emission wavelengths. The multiwavelength detection of fluorescence signal confirms that at longer emission wavelengths, probability of reabsorption of the fluorescence light by the dye itself is reduced. Considering different light penetration depths at different wavelengths, and the pronounced reabsorption at longer wavelengths, the time-resolved multiwavelength technique may be useful in signal decomposition, leading to evaluation of extra- and intracerebral components of the measured signals.

  4. The electronically excited states of LH2 complexes from Rhodopseudomonas acidophila strain 10050 studied by time-resolved spectroscopy and dynamic Monte Carlo simulations. II. Homo-arrays of LH2 complexes reconstituted into phospholipid model membranes.

    Science.gov (United States)

    Pflock, Tobias J; Oellerich, Silke; Krapf, Lisa; Southall, June; Cogdell, Richard J; Ullmann, G Matthias; Köhler, Jürgen

    2011-07-21

    We performed time-resolved spectroscopy on homoarrays of LH2 complexes from the photosynthetic purple bacterium Rhodopseudomonas acidophila. Variations of the fluorescence transients were monitored as a function of the excitation fluence and the repetition rate of the excitation. These parameters are directly related to the excitation density within the array and to the number of LH2 complexes that still carry a triplet state prior to the next excitation. Comparison of the experimental observations with results from dynamic Monte Carlo simulations for a model cluster of LH2 complexes yields qualitative agreement without the need for any free parameter and reveals the mutual relationship between energy transfer and annihilation processes.

  5. Developments in time-resolved x-ray research at APS beamline 7ID

    Energy Technology Data Exchange (ETDEWEB)

    Walko, D. A., E-mail: d-walko@anl.gov; Adams, B. W.; Doumy, G.; Dufresne, E. M.; Li, Yuelin; March, A. M.; Sandy, A. R.; Wang, Jin; Wen, Haidan; Zhu, Yi [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2016-07-27

    The 7ID beamline of the Advanced Photon Source (APS) is dedicated to time-resolved research using x-ray imaging, scattering, and spectroscopy techniques. Time resolution is achieved via gated detectors and/or mechanical choppers in conjunction with the time structure of the x-ray beam. Three experimental hutches allow for a wide variety of experimental setups. Major areas of research include atomic, molecular, and optical physics; chemistry; condensed matter physics in the bulk, thin film, and surface regimes; and fluid-spray dynamics. Recent developments in facilities at 7ID include a high-power, high-repetition-rate picosecond laser to complement the 1 kHz ultrafast laser. For the ultrafast laser, a newly commissioned optical parametric amplifier provides pump wavelength from 0.2 to 15 µm with energy per pulse up to 200 µJ. A nanodiffraction station has also been commissioned, using Fresnel zone-plate optics to achieve a focused x-ray spot of 300 nm. This nanoprobe is not only used to spatially resolve the evolution of small features in samples after optical excitation, but also has been combined with an intense THz source to study material response under ultrafast electric fields.

  6. Time-resolved pump-probe X-ray absorption fine structure spectroscopy of Gaq3

    International Nuclear Information System (INIS)

    Dicke, Benjamin

    2013-01-01

    Gallium(tris-8-hydroxyquinoline) (Gaq 3 ) belongs to a class of metal organic compounds, used as electron transport layer and emissive layer in organic light emitting diodes. Many research activities have concentrated on the optical and electronic properties, especially of the homologue molecule aluminum(tris-8-hydroxyquinoline) (Alq 3 ). Knowledge of the first excited state S 1 structure of these molecules could provide deeper insight into the processes involved into the operation of electronic devices, such as OLEDs and, hence, it could further improve their efficiency and optical properties. Until now the excited state structure could not be determined experimentally. Most of the information about this structure mainly arises from theoretical calculations. X-ray absorption fine structure (XAFS) spectroscopy is a well developed technique to determine both, the electronic and the geometric properties of a sample. The connection of ultrashort pulsed X-ray sources with a pulsed laser system offers the possibility to use XAFS as a tool for studying the transient changes of a sample induced by a laser pulse. In the framework of this thesis a new setup for time-resolved pump-probe X-ray absorption spectroscopy at PETRA III beamline P11 was developed for measuring samples in liquid form. In this setup the sample is pumped into its photo-excited state by a femtosecond laser pump pulse with 343 nm wavelength and after a certain time delay probed by an X-ray probe pulse. In this way the first excited singlet state S 1 of Gaq 3 dissolved in benzyl alcohol was analyzed. A structural model for the excited state structure of the Gaq 3 molecule based on the several times reproduced results of the XAFS experiments is proposed. According to this model it was found that the Ga-N A bond length is elongated, while the Ga-O A bond length is shortened upon photoexcitation. The dynamics of the structural changes were not the focus of this thesis. Nevertheless the excited state lifetime

  7. Time-resolved studies of energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)- porphyrin to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide along deoxyribonucleic acid Chain.

    Science.gov (United States)

    Kakiuchi, Toshifumi; Ito, Fuyuki; Nagamura, Toshihiko

    2008-04-03

    The excitation energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide (DTTCI) along the deoxyribonucleic acid (DNA) double strand was investigated by the steady-state absorption and fluorescence measurements and time-resolved fluorescence measurements. The steady-state fluorescence spectra showed that the near-infrared fluorescence of DTTCI was strongly enhanced up to 86 times due to the energy transfer from the excited TMPyP molecule in DNA buffer solution. Furthermore, we elucidated the mechanism of fluorescence quenching and enhancement by the direct observation of energy transfer using the time-resolved measurements. The fluorescence quenching of TMPyP chiefly consists of a static component due to the formation of complex and dynamic components due to the excitation energy transfer. In a heterogeneous one-dimensional system such as a DNA chain, it was proved that the energy transfer process only carries out within the critical distance based on the Förster theory and within a threshold value estimated from the modified Stern-Volmer equation. The present results showed that DNA chain is one of the most powerful tools for nanoassemblies and will give a novel concepts of material design.

  8. Seventh international conference on time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, R.B.; Martinez, M.A.D.; Shreve, A.; Woodruff, W.H. [comps.

    1997-04-01

    The International Conference on Time-Resolved Vibrational Spectroscopy (TRVS) is widely recognized as the major international forum for the discussion of advances in this rapidly growing field. The 1995 conference was the seventh in a series that began at Lake Placid, New York, 1982. Santa Fe, New Mexico, was the site of the Seventh International Conference on Time-Resolved Vibrational Spectroscopy, held from June 11 to 16, 1995. TRVS-7 was attended by 157 participants from 16 countries and 85 institutions, and research ranging across the full breadth of the field of time-resolved vibrational spectroscopy was presented. Advances in both experimental capabilities for time-resolved vibrational measurements and in theoretical descriptions of time-resolved vibrational methods continue to occur, and several sessions of the conference were devoted to discussion of these advances and the associated new directions in TRVS. Continuing the interdisciplinary tradition of the TRVS meetings, applications of time-resolved vibrational methods to problems in physics, biology, materials science, and chemistry comprised a large portion of the papers presented at the conference.

  9. 340 nm pulsed UV LED system for europium-based time-resolved fluorescence detection of immunoassays

    OpenAIRE

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter; Petersen, Paul Michael; Pedersen, Christian

    2016-01-01

    We report on the design, development and investigation of an optical system based on UV light emitting diode (LED) excitation at 340 nm for time-resolved fluorescence detection of immunoassays. The system was tested to measure cardiac marker Troponin I with a concentration of 200 ng/L in immunoassay. The signal-to-noise ratio was comparable to state-of-the-art Xenon flash lamp based unit with equal excitation energy and without overdriving the LED. We performed a comparative study of the flas...

  10. Time-Resolved Soft X-ray Diffraction Reveals Transient Structural Distortions of Ternary Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Klaus Mann

    2009-11-01

    Full Text Available Home-based soft X-ray time-resolved scattering experiments with nanosecond time resolution (10 ns and nanometer spatial resolution were carried out at a table top soft X-ray plasma source (2.2–5.2 nm. The investigated system was the lyotropic liquid crystal C16E7/paraffin/glycerol/formamide/IR 5. Usually, major changes in physical, chemical, and/or optical properties of the sample occur as a result of structural changes and shrinking morphology. Here, these effects occur as a consequence of the energy absorption in the sample upon optical laser excitation in the IR regime. The liquid crystal shows changes in the structural response within few hundred nanoseconds showing a time decay of 182 ns. A decrease of the Bragg peak diffracted intensity of 30% and a coherent macroscopic movement of the Bragg reflection are found as a response to the optical pump. The Bragg reflection movement is established to be isotropic and diffusion controlled (1 μs. Structural processes are analyzed in the Patterson analysis framework of the time-varying diffraction peaks revealing that the inter-lamellar distance increases by 2.7 Å resulting in an elongation of the coherently expanding lamella crystallite. The present studies emphasize the possibility of applying TR-SXRD techniques for studying the mechanical dynamics of nanosystems.

  11. Detection of anatomical changes in lung cancer patients with 2D time-integrated, 2D time-resolved and 3D time-integrated portal dosimetry: a simulation study

    Science.gov (United States)

    Wolfs, Cecile J. A.; Brás, Mariana G.; Schyns, Lotte E. J. R.; Nijsten, Sebastiaan M. J. J. G.; van Elmpt, Wouter; Scheib, Stefan G.; Baltes, Christof; Podesta, Mark; Verhaegen, Frank

    2017-08-01

    The aim of this work is to assess the performance of 2D time-integrated (2D-TI), 2D time-resolved (2D-TR) and 3D time-integrated (3D-TI) portal dosimetry in detecting dose discrepancies between the planned and (simulated) delivered dose caused by simulated changes in the anatomy of lung cancer patients. For six lung cancer patients, tumor shift, tumor regression and pleural effusion are simulated by modifying their CT images. Based on the modified CT images, time-integrated (TI) and time-resolved (TR) portal dose images (PDIs) are simulated and 3D-TI doses are calculated. The modified and original PDIs and 3D doses are compared by a gamma analysis with various gamma criteria. Furthermore, the difference in the D 95% (ΔD 95%) of the GTV is calculated and used as a gold standard. The correlation between the gamma fail rate and the ΔD 95% is investigated, as well the sensitivity and specificity of all combinations of portal dosimetry method, gamma criteria and gamma fail rate threshold. On the individual patient level, there is a correlation between the gamma fail rate and the ΔD 95%, which cannot be found at the group level. The sensitivity and specificity analysis showed that there is not one combination of portal dosimetry method, gamma criteria and gamma fail rate threshold that can detect all simulated anatomical changes. This work shows that it will be more beneficial to relate portal dosimetry and DVH analysis on the patient level, rather than trying to quantify a relationship for a group of patients. With regards to optimizing sensitivity and specificity, different combinations of portal dosimetry method, gamma criteria and gamma fail rate should be used to optimally detect certain types of anatomical changes.

  12. Detection of anatomical changes in lung cancer patients with 2D time-integrated, 2D time-resolved and 3D time-integrated portal dosimetry: a simulation study.

    Science.gov (United States)

    Wolfs, Cecile J A; Brás, Mariana G; Schyns, Lotte E J R; Nijsten, Sebastiaan M J J G; van Elmpt, Wouter; Scheib, Stefan G; Baltes, Christof; Podesta, Mark; Verhaegen, Frank

    2017-07-12

    The aim of this work is to assess the performance of 2D time-integrated (2D-TI), 2D time-resolved (2D-TR) and 3D time-integrated (3D-TI) portal dosimetry in detecting dose discrepancies between the planned and (simulated) delivered dose caused by simulated changes in the anatomy of lung cancer patients. For six lung cancer patients, tumor shift, tumor regression and pleural effusion are simulated by modifying their CT images. Based on the modified CT images, time-integrated (TI) and time-resolved (TR) portal dose images (PDIs) are simulated and 3D-TI doses are calculated. The modified and original PDIs and 3D doses are compared by a gamma analysis with various gamma criteria. Furthermore, the difference in the D 95% (ΔD 95% ) of the GTV is calculated and used as a gold standard. The correlation between the gamma fail rate and the ΔD 95% is investigated, as well the sensitivity and specificity of all combinations of portal dosimetry method, gamma criteria and gamma fail rate threshold. On the individual patient level, there is a correlation between the gamma fail rate and the ΔD 95% , which cannot be found at the group level. The sensitivity and specificity analysis showed that there is not one combination of portal dosimetry method, gamma criteria and gamma fail rate threshold that can detect all simulated anatomical changes. This work shows that it will be more beneficial to relate portal dosimetry and DVH analysis on the patient level, rather than trying to quantify a relationship for a group of patients. With regards to optimizing sensitivity and specificity, different combinations of portal dosimetry method, gamma criteria and gamma fail rate should be used to optimally detect certain types of anatomical changes.

  13. Time-Resolved Hard X-Ray Spectrometer

    International Nuclear Information System (INIS)

    Kenneth Moya; Ian McKennaa; Thomas Keenana; Michael Cuneob

    2007-01-01

    Wired array studies are being conducted at the SNL Z accelerator to maximize the x-ray generation for inertial confinement fusion targets and high energy density physics experiments. An integral component of these studies is the characterization of the time-resolved spectral content of the x-rays. Due to potential spatial anisotropy in the emitted radiation, it is also critical to diagnose the time-evolved spectral content in a space-resolved manner. To accomplish these two measurement goals, we developed an x-ray spectrometer using a set of high-speed detectors (silicon PIN diodes) with a collimated field-of-view that converged on a 1-cm-diameter spot at the pinch axis. Spectral discrimination is achieved by placing high Z absorbers in front of these detectors. We built two spectrometers to permit simultaneous different angular views of the emitted radiation. Spectral data have been acquired from recent Z shots for the radial and polar views. UNSPEC1 has been adapted to analyze and unfold the measured data to reconstruct the x-ray spectrum. The unfold operator code, UFO2, is being adapted for a more comprehensive spectral unfolding treatment

  14. Emerging biomedical applications of time-resolved fluorescence spectroscopy

    Science.gov (United States)

    Lakowicz, Joseph R.; Szmacinski, Henryk; Koen, Peter A.

    1994-07-01

    Time-resolved fluorescence spectroscopy is presently regarded as a research tool in biochemistry, biophysics, and chemical physics. Advances in laser technology, the development of long-wavelength probes, and the use of lifetime-based methods are resulting in the rapid migration of time-resolved fluorescence to the clinical chemistry lab, to the patient's bedside, to flow cytometers, to the doctor's office, and even to home health care. Additionally, time-resolved imaging is now a reality in fluorescence microscopy, and will provide chemical imaging of a variety of intracellular analytes and/or cellular phenomena. In this overview paper we attempt to describe some of the opportunities available using chemical sensing based on fluorescence lifetimes, and to predict those applications of lifetime-based sensing which are most likely in the near future.

  15. Kinetics and branching ratios of the reactions NH2+NO2->N2O+H2O and NH2+NO2->H2NO+NO studied by pulse radiolysis combined with time-resolved infrared diode laser spectroscopy

    DEFF Research Database (Denmark)

    Meunier, H.; Pagsberg, Palle Bjørn; Sillesen, A.

    1996-01-01

    studied by monitoring the decay of NH2 and the simultaneous formation of N2O and NO by time-resolved infrared diode laser spectroscopy. The decay rate of NH2 was studied as a function of NO2 concentration to obtain an overall rate constant k(NH2 + NO2) = (1.35 +/- 0.15) X 10(-11) molecule(-1) cm(3) s(-1...

  16. Experimental test of depth dependence of solutions for time-resolved diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Laidevant, A.; Da Silva, A.; Moy, J.P.; Berger, M.; Dinten, J.M

    2004-07-01

    The determination of optical properties of a semi-infinite medium such as biological tissue has been widely investigated by many authors. Reflectance formulas can be derived from the diffusion equation for different boundary conditions at the medium-air interface. This quantity can be measured at the medium surface. For realistic objects, such as a mouse, tissue optical properties can realistically only be determined at the object surface. However, near the surface diffusion approximation is weak and boundary models have to be considered. In order to investigate the validity of the time resolved reflectance approach at the object boundary, we have estimated optical properties of a liquid semi-infinite medium by this method for different boundary conditions and different fiber's position beneath the surface. The time-correlated single photon counting (TCSPC) technique is used to measure the reflectance curve. Our liquid phantoms are made of water, Intra-lipid and Ink. Laser light is delivered by a pulsed laser diode. Measurements are then fitted to theoretical solutions expressed as a function of source and detector's depth and distance. By taking as reference the optical properties obtained from the infinite model for fibers deeply immersed, influence of the different boundary conditions and bias induced are established for different fibers' depth and a variety of solutions. This influence is analysed by comparing evolution of the reflectance models, as well as estimations of absorption and scattering coefficients. According to this study we propose a strategy for determining optical properties of a solid phantom where measurements can only be realized at the surface. (authors)

  17. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    International Nuclear Information System (INIS)

    Walsh, D. A.; Snedden, E. W.; Jamison, S. P.

    2015-01-01

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators

  18. The elementary steps of the photodissociation and recombination reactions of iodine molecules enclosed in cages and channels of zeolite crystals: A femtosecond time-resolved study of the geometry effect

    International Nuclear Information System (INIS)

    Flachenecker, G.; Materny, A.

    2004-01-01

    We present femtosecond time-resolved pump-probe experiments on iodine molecules enclosed into well-defined cages and channels of different crystalline SiO 2 modifications of zeolites. The new experimental results obtained from iodine in TON (Silica-ZSM-22), FER (Silica-Ferrierit), and MFI (Silicalit-1) porosils are compared with data published earlier on the iodine/DDR (Decadodecasil 3R) porosil system [Flachenecker et al., Phys. Chem. Chem. Phys. 5, 865 (2003)]. A summary of all findings is given. The processes analyzed by means of the ultrafast spectroscopy are the vibrational relaxation as well as the dissociation and recombination reactions, which are caused by the interaction of the photo-excited iodine molecules with the cavity walls of the porosils. A clear dependence of the observed dynamics on the geometry of the surrounding lattice structure can be seen. These measurements are supported by temperature-dependent experiments. Making use of a theoretical model which is based on the classical Langevin equation, an analysis of the geometry-reaction relation is performed. The Brownian dynamics simulations show that in contrast to the vibrational relaxation the predissociation dynamics are independent of the frequency of collisions with the surroundings. From the results obtained in the different surroundings, we conclude that mainly local fields are responsible for the crossing from the bound B state to the repulsive a/a ' states of the iodine molecules

  19. Complexation of Cm(III) and Eu(III) with 2,6-bis(5-(2,2-dimethylpropyl)-1H-pyrazol-3-yl)pyridine and 2-bromohexanoic acid studied by time-resolved laser fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Bremer, A.; Panak, P.J.; Heidelberg Univ.; Geist, A.

    2013-01-01

    The complexation of Cm(III) and Eu(III) with 2,6-bis(5-(2,2-dimethylpropyl)-1H-pyrazol-3-yl)pyridine (C5-BPP) and 2-bromohexanoic acid as lipophilic anion has been investigated by time-resolved laser fluorescence spectroscopy. Upon increasing ligand concentration three different Cm(III)-C5-BPP species with emission bands at 604.1 nm, 607.9 nm and 611.4 nm, respectively, are found and attributed to complexes with one, two and three C5-BPP molecules in the inner coordination sphere. Comparison with results of TRLFS experiments without 2-bromohexanoic acid shows that the C5-BPP ligand is able to completely displace the lipophilic anion from the inner coordination sphere, forming [Cm(C5-BPP) 3 ] 3+ complexes. This complex is also found in the organic phase of an extraction experiment performed with Cm(III), demonstrating that the lipophilic anion required for the extraction is not directly coordinated to the metal ion in the species formed during extraction. In case of Eu(III) the number of different species formed cannot be determined accurately. Nevertheless, the formation of the complex [EU(C5-BPP) 3 ] 3+ in the presence of 2-bromohexanoic acid is confirmed. (orig.)

  20. Direct observation of an isopolyhalomethane O-H insertion reaction with water: Picosecond time-resolved resonance Raman (ps-TR3) study of the isobromoform reaction with water to produce a CHBr2OH product

    International Nuclear Information System (INIS)

    Kwok, W.M.; Zhao Cunyuan; Li Yunliang; Guan Xiangguo; Phillips, David Lee

    2004-01-01

    Picosecond time-resolved resonance Raman (ps-TR 3 ) spectroscopy was used to obtain the first definitive spectroscopic observation of an isopolyhalomethane O-H insertion reaction with water. The ps-TR 3 spectra show that isobromoform is produced within several picoseconds after photolysis of CHBr 3 and then reacts on the hundreds of picosecond time scale with water to produce a CHBr 2 OH reaction product. Photolysis of low concentrations of bromoform in aqueous solution resulted in noticeable formation of HBr strong acid. Ab initio calculations show that isobromoform can react with water to produce a CHBr 2 (OH) O-H insertion reaction product and a HBr leaving group. This is consistent with both the ps-TR 3 experiments that observe the reaction of isobromoform with water to form a CHBr 2 (OH) product and photolysis experiments that show HBr acid formation. We briefly discuss the implications of these results for the phase dependent behavior of polyhalomethane photochemistry in the gas phase versus water solvated environments

  1. Time resolved spectroscopy of GRB 030501 using INTEGRAL

    DEFF Research Database (Denmark)

    Beckmann, V.; Borkowski, J.; Courvoisier, T.J.L.

    2003-01-01

    The gamma-ray instruments on-board INTEGRAL offer an unique opportunity to perform time resolved analysis on GRBs. The imager IBIS allows accurate positioning of GRBs and broad band spectral analysis, while SPI provides high resolution spectroscopy. GRB 030501 was discovered by the INTEGRAL Burst...... the Ulysses and RHESSI experiments....

  2. Multi-frame pyramid correlation for time-resolved PIV

    NARCIS (Netherlands)

    Sciacchitano, A.; Scarano, F.; Wieneke, B.

    2012-01-01

    A novel technique is introduced to increase the precision and robustness of time-resolved particle image velocimetry (TR-PIV) measurements. The innovative element of the technique is the linear combination of the correlation signal computed at different separation time intervals. The domain of the

  3. Time Resolved Broadband Terahertz Relaxation Dynamics of Electron in Water

    DEFF Research Database (Denmark)

    Wang, Tianwu; Iwaszczuk, Krzysztof; Cooke, David G.

    We investigated the transient response of the solvated electron in water ejected by photodetachment from potassium ferrocyanide using time resolved terahertz spectroscopy (TSTS). Ultrabroadband THz transients are generated and detected by a two-color femtosecond-induced air plasma and air biased...

  4. Time-resolved electron transport in quantum-dot systems; Zeitaufgeloester Elektronentransport in Quantendotsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Croy, Alexander

    2010-06-30

    In this thesis the time-resolved electron transport in quantum dot systems was studied. For this two different formalisms were presented: The nonequilibrium Green functions and the generalized quantum master equations. For both formalisms a propagation method for the numerical calculation of time-resolved expectation values, like the occupation and the electron current, was developed. For the demonstration of the propagation method two different question formulations were considered. On the one hand the stochastically driven resonant-level model was studied. On the other hand the pulse-induced transport through a double quantum dot was considered.

  5. Spin and time-resolved magnetic resonance in radiation chemistry. Recent developments and perspectives

    International Nuclear Information System (INIS)

    Shkrob, I.A.; Trifunac, A.D.

    1997-01-01

    Time-resolved pulsed EPR and ODMR in studies on early events in radiation chemistry are examined. It is concluded that these techniques yield valuable and diverse information about chemical reactions in spurs, despite the fact that the spur reactions occur on a time scale that is much shorter than the time resolution of these methods. Several recent examples include EPR of H/D atoms in vitreous silica and cryogenic liquids and ODMR of doped alkane solids and amorphous semiconductors. It is argued that a wider use of time-resolved magnetic resonance methods would benefit the studies on radiation chemistry of disordered solids, simple liquids, and polymers. (author)

  6. The time resolved SBS and SRS research in heavy water and its application in CARS

    Science.gov (United States)

    Liu, Jinbo; Gai, Baodong; Yuan, Hong; Sun, Jianfeng; Zhou, Xin; Liu, Di; Xia, Xusheng; Wang, Pengyuan; Hu, Shu; Chen, Ying; Guo, Jingwei; Jin, Yuqi; Sang, Fengting

    2018-05-01

    We present the time-resolved character of stimulated Brillouin scattering (SBS) and backward stimulated Raman scattering (BSRS) in heavy water and its application in Coherent Anti-Stokes Raman Scattering (CARS) technique. A nanosecond laser from a frequency-doubled Nd: YAG laser is introduced into a heavy water cell, to generate SBS and BSRS beams. The SBS and BSRS beams are collinear, and their time resolved characters are studied by a streak camera, experiment show that they are ideal source for an alignment-free CARS system, and the time resolved property of SBS and BSRS beams could affect the CARS efficiency significantly. By inserting a Dye cuvette to the collinear beams, the time-overlapping of SBS and BSRS could be improved, and finally the CARS efficiency is increased, even though the SBS energy is decreased. Possible methods to improve the efficiency of this CARS system are discussed too.

  7. Time Resolved Optical Studies on The Plasmonic Field Enhancement of Bacteriorhodopsin Proton Photo-current: Final Technical Report Covering Aug 31, 2015–Aug 31, 2016

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, Mostafa A. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Chemistry and Biochemistry

    2016-09-15

    Our research continues to focus on the effects of plasmonic nanoparticles on organic and inorganic light-harvesting materials. Recent work has focused on the synthesis of stabilized gold nanoparticles to enhance the efficiency of dye-sensitized solar cells (DSSCs). Two major concerns in dye sensitized solar cells (DSSCs) are efficient light absorption and charge collection. Charge collection typically suffers because transport of electrons through the mesoporous TiO2 substrate is slow. Thus, one obvious way to improve charge collection is to reduce the thickness of the TiO2. Alternatively, a form of TiO2 with fewer grain boundaries, such as nanotubes, could be used in place of sintered nanospheres. Unfortunately, both of these solutions end up reducing the amount of surface area available to adsorb dye molecules. This directly reduces the percentage of photons absorbed. This problem could be avoided if dye molecules with larger absorption were designed; although synthetic chemists seem to be pushing the limits of what is achievable. Plasmonic nanoparticles offer an alternative way to boost light absorption. It is well known that plasmonic nanoparticles can enhance the local electric field of resonant frequencies of light. If this were in the same spectral region as the dye’s absorption band it would increase the percentage of absorbed photons. One concern is that if the nanoparticles are too close to the dye molecules they can quench the excited state. To avoid this problem, we prepared gold nanoparticles with a silica shell. This limited the amount of quenching while still permitting some enhancement of absorption. Unfortunately, we ran into some serious issues. The iodide based electrolyte etched the gold nanoparticles, completely dissolving them within a few hours. The silica shell should have provided protection but there were pinholes through which iodide could diffuse. Increasing the thickness of the silica to over 10 nm prevented etching but also limited any photon absorption enhancement.

  8. Time-resolved transient optical absorption study of bis(terpyridyl)oligothiophenes and their metallo-supramolecular polymers with Zn(II) ion couplers

    Czech Academy of Sciences Publication Activity Database

    Rais, David; Menšík, Miroslav; Štenclová-Bláhová, P.; Svoboda, J.; Vohlídal, J.; Pfleger, Jiří

    2015-01-01

    Roč. 119, č. 24 (2015), s. 6203-6214 ISSN 1089-5639 R&D Projects: GA ČR GAP108/12/1143 Institutional support: RVO:61389013 Keywords : conjugated polymers * supramolecular structures * structure-property relations Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.883, year: 2015

  9. Numerical simulations of time-resolved quantum electronics

    International Nuclear Information System (INIS)

    Gaury, Benoit; Weston, Joseph; Santin, Matthieu; Houzet, Manuel; Groth, Christoph; Waintal, Xavier

    2014-01-01

    Numerical simulation has become a major tool in quantum electronics both for fundamental and applied purposes. While for a long time those simulations focused on stationary properties (e.g. DC currents), the recent experimental trend toward GHz frequencies and beyond has triggered a new interest for handling time-dependent perturbations. As the experimental frequencies get higher, it becomes possible to conceive experiments which are both time-resolved and fast enough to probe the internal quantum dynamics of the system. This paper discusses the technical aspects–mathematical and numerical–associated with the numerical simulations of such a setup in the time domain (i.e. beyond the single-frequency AC limit). After a short review of the state of the art, we develop a theoretical framework for the calculation of time-resolved observables in a general multiterminal system subject to an arbitrary time-dependent perturbation (oscillating electrostatic gates, voltage pulses, time-varying magnetic fields, etc.) The approach is mathematically equivalent to (i) the time-dependent scattering formalism, (ii) the time-resolved non-equilibrium Green’s function (NEGF) formalism and (iii) the partition-free approach. The central object of our theory is a wave function that obeys a simple Schrödinger equation with an additional source term that accounts for the electrons injected from the electrodes. The time-resolved observables (current, density, etc.) and the (inelastic) scattering matrix are simply expressed in terms of this wave function. We use our approach to develop a numerical technique for simulating time-resolved quantum transport. We find that the use of this wave function is advantageous for numerical simulations resulting in a speed up of many orders of magnitude with respect to the direct integration of NEGF equations. Our technique allows one to simulate realistic situations beyond simple models, a subject that was until now beyond the simulation

  10. Space and time resolved spectroscopy of laser-produced plasmas: A study of density-sensitive x-ray transitions in helium-like and neon-like ions

    International Nuclear Information System (INIS)

    Young, Bruce Kai Fong.

    1988-09-01

    The determination of level populations and detailed population mechanisms in dense plasmas has become an increasingly important problem in atomic physics. In this work, the density variation of line intensities and level populations in aluminum K-shell and molybdenum and silver L-shell emission spectra have been measured from high-powered, laser-produced plasmas. For each case, the density dependence of the observed line emission is due to the effect of high frequency electron-ion collisions on metastable levels. The density dependent line intensities vary greatly in laser-produced plasmas and can be used to extract detailed information concerning the population kinetics and level populations of the ions. The laser-plasmas had to be fully characterized in order to clearly compare the observed density dependence with atomic theory predictions. This has been achieved through the combined use of new diagnostic instruments and microdot targets which provided simultaneously space, time, and spectrally resolved data. The plasma temperatures were determined from the slope of the hydrogen-like recombination continuum. The time resolved electron density profiles were measured using multiple frame holographic interferometry. Thus, the density dependence of K-shell spectral lines could be clearly examined, independent of assumptions concerning the dynamics of the plasma. In aluminum, the electron density dependence of various helium-like line intensity ratios were measured. Standard collisional radiative equilibrium models fail to account for the observed density dependence measured for the ''He/sub α//IC'' ratio. Instead, a quasi-steady state atomic model based on a purely recombining plasma is shown to accurately predict the measured density dependence. This same recombining plasma calculation successfully models the density dependence of the high-n ''He/sub γ//He/sub β/'' and ''He/sub δ//He/sub β/'' helium-like resonance line intensity ratios

  11. Space and time resolved spectroscopy of laser-produced plasmas: A study of density-sensitive x-ray transitions in helium-like and neon-like ions

    Energy Technology Data Exchange (ETDEWEB)

    Young, Bruce Kai Fong

    1988-09-01

    The determination of level populations and detailed population mechanisms in dense plasmas has become an increasingly important problem in atomic physics. In this work, the density variation of line intensities and level populations in aluminum K-shell and molybdenum and silver L-shell emission spectra have been measured from high-powered, laser-produced plasmas. For each case, the density dependence of the observed line emission is due to the effect of high frequency electron-ion collisions on metastable levels. The density dependent line intensities vary greatly in laser-produced plasmas and can be used to extract detailed information concerning the population kinetics and level populations of the ions. The laser-plasmas had to be fully characterized in order to clearly compare the observed density dependence with atomic theory predictions. This has been achieved through the combined use of new diagnostic instruments and microdot targets which provided simultaneously space, time, and spectrally resolved data. The plasma temperatures were determined from the slope of the hydrogen-like recombination continuum. The time resolved electron density profiles were measured using multiple frame holographic interferometry. Thus, the density dependence of K-shell spectral lines could be clearly examined, independent of assumptions concerning the dynamics of the plasma. In aluminum, the electron density dependence of various helium-like line intensity ratios were measured. Standard collisional radiative equilibrium models fail to account for the observed density dependence measured for the ''He/sub ..cap alpha..//IC'' ratio. Instead, a quasi-steady state atomic model based on a purely recombining plasma is shown to accurately predict the measured density dependence. This same recombining plasma calculation successfully models the density dependence of the high-n ''He/sub ..gamma..//He/sub ..beta../'' and ''He/sub delta

  12. Introduction to Time-Resolved Spectroscopy: Nanosecond Transient Absorption and Time-Resolved Fluorescence of Eosin B

    Science.gov (United States)

    Farr, Erik P.; Quintana, Jason C.; Reynoso, Vanessa; Ruberry, Josiah D.; Shin, Wook R.; Swartz, Kevin R.

    2018-01-01

    Here we present a new undergraduate laboratory that will introduce the concepts of time-resolved spectroscopy and provide insight into the natural time scales on which chemical dynamics occur through direct measurement. A quantitative treatment of the acquired data will provide a deeper understanding of the role of quantum mechanics and various…

  13. Time-resolved pulse propagation in a strongly scattering material

    NARCIS (Netherlands)

    Johnson, Patrick M.; Imhof, Arnout; Bret, B.P.J.; Gomez Rivas, J.; Gomez Rivas, Jaime; Lagendijk, Aart

    2003-01-01

    Light transport in macroporous gallium phosphide, perhaps the strongest nonabsorbing scatterer of visible light, is studied using phase-sensitive femtosecond pulse interferometry. Phase statistics are measured at optical wavelengths in both reflection and transmission and compared with theory. The

  14. Application of microfluidic devices for time resolved FTIR spectroscopy

    International Nuclear Information System (INIS)

    Wagner, C.

    2012-01-01

    Within this thesis, micro fluidic mixers, operated in continuous flow mode, were used for time resolved FTIR studies of chemical reactions in aqueous solution. Any chemical reaction, that can be started upon mixing two reagents, can be examined with this technique. The mixing channel also serves as the observation window for the IR measurements. The actual measurements take place at well defined spots along this channel, corresponding to specific reaction times: moving the measurement spot (100 × 100 μm 2 ) towards the entry yields shorter reaction times, moving it towards the channel's end gives longer reaction times. The temporal resolution of the experiment depends on the flow rate inside the mixing channel and the spacing between subsequent measurement points. Fast flow rates, limited by the back pressure of the mixer leading to leakages, allow time resolutions in the sub-millisecond time range using a standard FTIR microscope, whereas slow flow rates allow the measurement of reaction times up to 1000 ms. Evaluating the mixer using a fast chemical reaction resulted in mixing times of approximately 5 ms and a homogeneous distribution of the liquids across the width of the mixing channel. The mixer was then used for the measurement of the H/D exchange on carbohydrates, the complex formaldehyde sulfite clock reaction, and the folding of the protein ubiquitin from its native to the ''A'' state, induced by mixing it with an acidified methanol solution. For cleaning the mixer a software tool, called ATLAS, was developed in LabVIEW, which was used to automatize the necessary cleaning steps performed by a dedicated flow system. Additionally, the micro mixer technology was combined with the step scan measurement technique using a beam condenser focusing the IR beam of an FTIR spectrometer down to a spot size of 1 mm diameter and through the mixer. The laser light, initiating the chemical reaction inside the mixing channel, was coupled into the focusing unit using a

  15. MCNP simulations of a new time-resolved Compton scattering imaging technique

    International Nuclear Information System (INIS)

    Ilan, Y.

    2004-01-01

    Medical images of human tissue can be produced using Computed Tomography (CT), Positron Emission Tomography (PET), Ultrasound or Magnetic Resonance Imaging (MRI). In all of the above techniques, in order to get a three-dimensional (3D) image, one has to rotate or move the source, the detectors or the scanned target. This procedure is complicated, time consuming and increases the cost and weight of the scanning equipment. Time resolved optical tomography has been suggested as an alternative to the above conventional methods. This technique implies near infrared light (NIR) and fast time-resolved detectors to obtain a 3D image of the scanned target. However, due to the limited penetration of the NIR light in the tissue, the application of this technique is limited to soft tissue like a female breast or a premature infant brain

  16. Programming for time resolved spectrum in pulse radiolysis experiments

    International Nuclear Information System (INIS)

    Betty, C.A.; Panajkar, M.S.; Shirke, N.D.

    1993-01-01

    A user friendly program in Pascal has been developed for data acquisition and subsequent processing of time resolved spectra of transient species produced in pulse radiolysis experiments. The salient features of the program are (i) thiocyanate dosimetry and (ii) spectrum acquisition. The thiocyanate dosimetry is carried out to normalize experimental conditions to a standard value as determined by computing absorbance of the transient signal CNS -2 that is produced from thiocyanate solution by a 7 MeV electron pulse. Spectrum acquisition allows the acquisition of the time resolved data at 20 different times points and subsequent display of the plots of absorbance vs. wavelength for the desired time points during the experiment. It is also possible to plot single time point spectrum as well as superimposed spectra for different time points. Printing, editing and merging facilities are also provided. (author). 2 refs., 7 figs

  17. Time-resolved X-ray spectroscopies of chemical systems: New perspectives

    Directory of Open Access Journals (Sweden)

    Majed Chergui

    2016-05-01

    Full Text Available The past 3–5 years have witnessed a dramatic increase in the number of time-resolved X-ray spectroscopic studies, mainly driven by novel technical and methodological developments. The latter include (i the high repetition rate optical pump/X-ray probe studies, which have greatly boosted the signal-to-noise ratio for picosecond (ps X-ray absorption spectroscopy studies, while enabling ps X-ray emission spectroscopy (XES at synchrotrons; (ii the X-ray free electron lasers (XFELs are a game changer and have allowed the first femtosecond (fs XES and resonant inelastic X-ray scattering experiments to be carried out; (iii XFELs are also opening the road to the development of non-linear X-ray methods. In this perspective, I will mainly focus on the most recent technical developments and briefly address some examples of scientific questions that have been addressed thanks to them. I will look at the novel opportunities in the horizon.

  18. Time-resolved crystallography using the Hadamard Transform

    Science.gov (United States)

    Yorke, Briony A.; Beddard, Godfrey S.; Owen, Robin L.; Pearson, Arwen R.

    2014-01-01

    A new method for performing time-resolved X-ray crystallographic experiments based on the Hadamard Transform is proposed and demonstrated. The time-resolution is defined by the underlying periodicity of the probe pulse sequence and the signal to noise is greatly improved compared to the fastest experiments depending on a single pulse. This approach is general and equally applicable to any spectroscopic or imaging measurement where the probe can be encoded. PMID:25282611

  19. Time-resolved spectral measurements above 80 A

    International Nuclear Information System (INIS)

    Kauffman, R.L.; Ceglio, N.; Medecki, H.

    1983-01-01

    We have made time-resolved spectral measurements above 80 A from laser-produced plasmas. These are made using a transmission grating spectrograph whose primary components are a cylindrically-curved x-ray mirror for light collection, a transmission grating for spectral dispersions, and an x-ray streak camera for temporal resolution. A description of the instrument and an example of the data are given

  20. The RATIO method for time-resolved Laue crystallography

    International Nuclear Information System (INIS)

    Coppens, P.; Pitak, M.; Gembicky, M.; Messerschmidt, M.; Scheins, S.; Benedict, J.; Adachi, S.-I.; Sato, T.; Nozawa, S.; Ichiyanagi, K.; Chollet, M.; Koshihara, S.-Y.

    2009-01-01

    A RATIO method for analysis of intensity changes in time-resolved pump-probe Laue diffraction experiments is described. The method eliminates the need for scaling the data with a wavelength curve representing the spectral distribution of the source and removes the effect of possible anisotropic absorption. It does not require relative scaling of series of frames and removes errors due to all but very short term fluctuations in the synchrotron beam.

  1. Theory of time-resolved inelastic x-ray diffraction

    DEFF Research Database (Denmark)

    Lorenz, Ulf; Møller, Klaus Braagaard; Henriksen, Niels Engholm

    2010-01-01

    Starting from a general theory of time-resolved x-ray scattering, we derive a convenient expression for the diffraction signal based on a careful analysis of the relevant inelastic scattering processes. We demonstrate that the resulting inelastic limit applies to a wider variety of experimental...... conditions than similar, previously derived formulas, and it directly allows the application of selection rules when interpreting diffraction signals. Furthermore, we present a simple extension to systems simultaneously illuminated by x rays and a laser beam....

  2. Ultrafast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Fuciman, Marcel; Kobayashi, Masayuki; Frank, Harry A; Blankenship, Robert E

    2011-10-01

    The light-harvesting complex 2 from the thermophilic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption and fluorescence, sub-nanosecond-time-resolved fluorescence and femtosecond time-resolved transient absorption spectroscopy. The measurements were performed at room temperature and at 10 K. The combination of both ultrafast and steady-state optical spectroscopy methods at ambient and cryogenic temperatures allowed the detailed study of carotenoid (Car)-to-bacteriochlorophyll (BChl) as well BChl-to-BChl excitation energy transfer in the complex. The studies show that the dominant Cars rhodopin (N=11) and spirilloxanthin (N=13) do not play a significant role as supportive energy donors for BChl a. This is related with their photophysical properties regulated by long π-electron conjugation. On the other hand, such properties favor some of the Cars, particularly spirilloxanthin (N=13) to play the role of the direct quencher of the excited singlet state of BChl. © Springer Science+Business Media B.V. 2011

  3. Speciation of actinides in aqueous solution by time-resolved laser-induced fluorescence spectroscopy (TRLFS)

    International Nuclear Information System (INIS)

    Kimura, Takaumi; Kato, Yoshiharu; Meinrath, G.; Yoshida, Zenko; Choppin, G.R.

    1995-01-01

    Time-resolved laser-induced fluorescence spectroscopy (TRLFS) as a sensitive and selective method has been applied to the speciation of actinides in aqueous solution. Studies on hydrolysis and carbonate complexation of U(VI) and on determination of hydration number of Cm(III) are reported. (author)

  4. Plasma polarization spectroscopy. Time resolved spectroscopy in soft x-ray region on recombining plasma

    International Nuclear Information System (INIS)

    Iwamae, Atsushi; Hasuo, Masahiro; Atake, Makoto; Hasegawa, Noboru; Kawachi, Tetsuya

    2007-01-01

    We present an experimental study of polarization of emission radiations from recombining plasmas generated by the interaction of 60 fs ultra-short laser pulses with a gas jet. Time-resolved spectroscopy with a temporal resolution of 5 ps with repetitive accumulation is used to follow the recombination time histories. (author)

  5. Time-resolved magnetic field effects in exciplex systems under X-irradiation

    International Nuclear Information System (INIS)

    Anishchik, S.V.; Lavrik, N.L.

    1988-01-01

    The presence of exciplex systems after X-irradiation of pyrene and N,N-diethylaniline in methanol as well as the influence of the applied magnetic field on exciplex fluorescence was registered using a time-resolving method. The experimental results confirmed the hypothesis on exciplex emergence in the system under study. (author)

  6. Time-resolved investigation of an asymmetric bipolar pulsed magnetron deposition discharge: Influence of pressure

    NARCIS (Netherlands)

    Dunger, Th.; Welzel, Th.; Welzel, S.; Richter, F.

    2005-01-01

    A bipolar pulsed magnetron deposition discharge has been studied with pulse frequencies of 100 and 150 kHz, respectively. The discharge was operated in an argon/oxygen mixture at different total pressures with a circular magnesium target as cathode. Time-resolved Langmuir double probe measurements

  7. Hot electron-induced time-resolved electrogenerated chemiluminescence of a europium(III) label in fully aqueous solutions

    International Nuclear Information System (INIS)

    Jiang, Q.; Hakansson, M.; Spehar, A.-M.; Ahonen, J.; Ala-Kleme, T.; Kulmala, S.

    2006-01-01

    Time-resolved electrogenerated chemiluminescence of multidentate phenolic Eu(III) chelates were studied in aqueous solution. 2,6-bis[N,N-bis(carboxymethyl)-aminomethyl]-4-benzoylphenol forms a photoluminescent and electrochemiluminescent Eu(III) chelate, whereas 2,6-bis[N,N-bis(carboxymethyl)-aminomethyl]-4-methyl phenol-chelated Eu(III) turned out to be not luminescent at all. The importance of the redox properties of both the ground and the excited states of the ligands and the central ion is shown. The former chelate shows relatively weak ECL at an oxide-covered aluminum electrode but the ECL intensity can be strongly enhanced by the addition of peroxodisulfate ions. In the presence of 1 mM peroxodisulfate ions the ECL lifetime of this chelate is 0.94 ms, thus easily allowing time-resolved detection of the chelate. This chelate can be conjugated to antibodies by thioureido linkage and used as an electrochemiluminescent label in immunoassays as a marker which displays long-lived luminescence in the red end of the optical spectrum. The present ECL is mainly based on the ligand sensitized redox excitation of the chelate by analogous pathways to those known from the studies of aromatic Tb(III) chelates but the energy transfer from the emission centers of the aluminum oxide film can also have minor contribution to the excitation of the label

  8. Alignment of time-resolved data from high throughput experiments.

    Science.gov (United States)

    Abidi, Nada; Franke, Raimo; Findeisen, Peter; Klawonn, Frank

    2016-12-01

    To better understand the dynamics of the underlying processes in cells, it is necessary to take measurements over a time course. Modern high-throughput technologies are often used for this purpose to measure the behavior of cell products like metabolites, peptides, proteins, [Formula: see text]RNA or mRNA at different points in time. Compared to classical time series, the number of time points is usually very limited and the measurements are taken at irregular time intervals. The main reasons for this are the costs of the experiments and the fact that the dynamic behavior usually shows a strong reaction and fast changes shortly after a stimulus and then slowly converges to a certain stable state. Another reason might simply be missing values. It is common to repeat the experiments and to have replicates in order to carry out a more reliable analysis. The ideal assumptions that the initial stimulus really started exactly at the same time for all replicates and that the replicates are perfectly synchronized are seldom satisfied. Therefore, there is a need to first adjust or align the time-resolved data before further analysis is carried out. Dynamic time warping (DTW) is considered as one of the common alignment techniques for time series data with equidistant time points. In this paper, we modified the DTW algorithm so that it can align sequences with measurements at different, non-equidistant time points with large gaps in between. This type of data is usually known as time-resolved data characterized by irregular time intervals between measurements as well as non-identical time points for different replicates. This new algorithm can be easily used to align time-resolved data from high-throughput experiments and to come across existing problems such as time scarcity and existing noise in the measurements. We propose a modified method of DTW to adapt requirements imposed by time-resolved data by use of monotone cubic interpolation splines. Our presented approach

  9. Frame-Transfer Gating Raman Spectroscopy for Time-Resolved Multiscalar Combustion Diagnostics

    Science.gov (United States)

    Nguyen, Quang-Viet; Fischer, David G.; Kojima, Jun

    2011-01-01

    Accurate experimental measurement of spatially and temporally resolved variations in chemical composition (species concentrations) and temperature in turbulent flames is vital for characterizing the complex phenomena occurring in most practical combustion systems. These diagnostic measurements are called multiscalar because they are capable of acquiring multiple scalar quantities simultaneously. Multiscalar diagnostics also play a critical role in the area of computational code validation. In order to improve the design of combustion devices, computational codes for modeling turbulent combustion are often used to speed up and optimize the development process. The experimental validation of these codes is a critical step in accepting their predictions for engine performance in the absence of cost-prohibitive testing. One of the most critical aspects of setting up a time-resolved stimulated Raman scattering (SRS) diagnostic system is the temporal optical gating scheme. A short optical gate is necessary in order for weak SRS signals to be detected with a good signal- to-noise ratio (SNR) in the presence of strong background optical emissions. This time-synchronized optical gating is a classical problem even to other spectroscopic techniques such as laser-induced fluorescence (LIF) or laser-induced breakdown spectroscopy (LIBS). Traditionally, experimenters have had basically two options for gating: (1) an electronic means of gating using an image intensifier before the charge-coupled-device (CCD), or (2) a mechanical optical shutter (a rotary chopper/mechanical shutter combination). A new diagnostic technology has been developed at the NASA Glenn Research Center that utilizes a frame-transfer CCD sensor, in conjunction with a pulsed laser and multiplex optical fiber collection, to realize time-resolved Raman spectroscopy of turbulent flames that is free from optical background noise (interference). The technology permits not only shorter temporal optical gating (down

  10. Time-Resolved Luminescence Nanothermometry with Nitrogen-Vacancy Centers in Nanodiamonds

    Science.gov (United States)

    Tsai, Pei-Chang; Chen, Oliver Y.; Tzeng, Yan-Kai; Liu, Hsiou-Yuan; Hsu, Hsiang; Huang, Shaio-Chih; Chen, Jeson; Yee, Fu-Ghoul; Chang, Huan-Cheng; Chang, Ming-Shien

    2016-05-01

    Measuring thermal properties with nanoscale spatial resolution either at or far from equilibrium is gaining importance in many scientific and engineering applications. Although negatively charged nitrogen-vacancy (NV-) centers in diamond have recently emerged as promising nanometric temperature sensors, most previous measurements were performed under steady state conditions. Here we employ a three-point sampling method which not only enables real-time detection of temperature changes over +/-100 K with a sensitivity of 2 K/(Hz)1/2, but also allows the study of nanometer scale heat transfer with a temporal resolution of better than 1 μs with the use of a pump-probe-type experiment. In addition to temperature sensing, we further show that nanodiamonds conjugated with gold nanorods, as optically-activated dual-functional nanoheaters and nanothermometers, are useful for highly localized hyperthermia treatment. We experimentally demonstrated time-resolved fluorescence nanothermometry, and the validity of the measurements was verified with finite-element numerical simulations. The approaches provided here will be useful for probing dynamical thermal properties on nanodevices in operation.

  11. Time Resolved Tomographic PIV Measurements of Rough-Wall Turbulent Channel Flow

    Science.gov (United States)

    Miorini, Rinaldo; Zhang, Cao; Katz, Joseph

    2013-11-01

    Time resolved tomographic PIV is used to study flow structures in the outer region of a rough-wall turbulent boundary layer, focusing on imprints of the roughness on the outer layer. Measurements are performed in a transparent channel installed in the JHU optically index matched facility. The roughness consists of pyramids with height, k = 0.46 mm, and wavelength, λ = 3.2 mm, satisfying h/k = 55 (h = 25.4 mm is the channel half-height), k + = 64 and Re = 40000. The TPIV setup consists of four high-speed cameras operating at 3 kHz, which view the sample volume through acrylic prisms. The flow field is illuminated by an Nd:YLF laser. Following enhancement, calibration, and reconstruction, 643 voxels interrogation volumes with 0.75 overlap provide 3D velocity fields with spacing of 0.5883 mm3. Formation and transport of near-wall 3D U-shaped vortex structures, with base in front of the pyramids, and quasi-streamwise legs extending between pyramid crest lines are evident from the data. Extended streamwise regions of high wall-normal vorticity appear ``latched'' to the roughness elements close to the wall, but are transported downstream at higher elevations. Also evident are traveling streamwise low velocity streaks, which cover many roughness elements. Sponsored by NSF CBET and ONR.

  12. Structure analysis of bubble driven flow by time-resolved PIV and POD techniques

    International Nuclear Information System (INIS)

    Kim, Hyun Dong; Yi, Seung Jae; Kim, Jong Wook; Kim, Kyung Chun

    2010-01-01

    In this paper, the recirculation flow motion and turbulence characteristics of liquid flow driven by air bubble stream in a rectangular water tank are studied. The time-resolved Particle Image Velocimetry (PIV) technique is adopted for the quantitative visualization and analysis. 532nm Diode CW laser is used for illumination and orange fluorescent (λex = 540nm, λem = 584nm) particle images are acquired by a 1280X1024 high-speed camera. To obtain clean particle images, 545nm long pass optical filter and an image intensifier are employed and the flow rate of compressed air is 3/min at 0.5MPa. The recirculation and mixing flow field is further investigated by timeresolved Proper Orthogonal Decomposition (POD) analysis technique. It is observed that the large scale recirculation resulting from the interaction between rising bubble stream and side wall is the most dominant flow structure and there are small scale vortical structures moving along with the large scale recirculation flow. It is also verified that the sum of 20 modes of velocity field has about 67.4% of total turbulent energy

  13. Continuous wave and time resolved spectroscopy of InAsN/GaAsN based quantum dots

    International Nuclear Information System (INIS)

    Taliercio, T.; Valvin, P.; Intartaglia, R.; Guillet, T.; Lefebvre, P.; Bretagnon, T.; Gil, B.; Sallet, V.; Harmand, J.C.

    2005-01-01

    We present a study of the optical properties of quantum dots based on a new family of semiconductors: III-V dilute nitrides such as (In,Ga)(N,As). Continuous wave and time resolved photoluminescence (PL) experiments allowed us to evaluate the impact of N incorporation during the growth of InAs/GaAs quantum dots. Previous work [V. Sallet et al., to be submitted to J. Cryst. Growth (2005); O. Schumann et al., J. Appl. Phys. 96, 2832 (2004)] showed that increasing the flux of N atoms into the growth chamber modifies drastically the size of the dots which leads to a bimodal growth. Two populations of dots with different sizes appear. The quantum dot PL line broadens and a second PL line appears at higher energy. Time resolved PL allows us to identify the nature of this second PL line: second population of quantum dots. A second decay time is observed which we interpret as being the consequence of the perturbation of the electronic states of the quantum dots. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Time-resolved spectroscopy using a chopper wheel as a fast shutter

    International Nuclear Information System (INIS)

    Wang, Shicong; Wendt, Amy E.; Boffard, John B.; Lin, Chun C.

    2015-01-01

    Widely available, small form-factor, fiber-coupled spectrometers typically have a minimum exposure time measured in milliseconds, and thus cannot be used directly for time-resolved measurements at the microsecond level. Spectroscopy at these faster time scales is typically done with an intensified charge coupled device (CCD) system where the image intensifier acts as a “fast” electronic shutter for the slower CCD array. In this paper, we describe simple modifications to a commercially available chopper wheel system to allow it to be used as a “fast” mechanical shutter for gating a fiber-coupled spectrometer to achieve microsecond-scale time-resolved optical measurements of a periodically pulsed light source. With the chopper wheel synchronized to the pulsing of the light source, the time resolution can be set to a small fraction of the pulse period by using a chopper wheel with narrow slots separated by wide spokes. Different methods of synchronizing the chopper wheel and pulsing of the light sources are explored. The capability of the chopper wheel system is illustrated with time-resolved measurements of pulsed plasmas

  15. Noninvasive detection of inhomogeneities in turbid media with time-resolved log-slope analysis

    International Nuclear Information System (INIS)

    Wan, S.K.; Guo Zhixiong; Kumar, Sunil; Aber, Janice; Garetz, B.A.

    2004-01-01

    Detecting foreign objects embedded in turbid media using noninvasive optical tomography techniques is of great importance in many practical applications, such as in biomedical imaging and diagnosis, safety inspection on aircrafts and submarines, and LIDAR techniques. In this paper we develop a novel optical tomography approach based on slope analysis of time-resolved back-scattered signals collected at the medium boundaries where the light source is an ultrafast, short-pulse laser. As the optical field induced by the laser-pulse propagates, the detected temporal signals are influenced by the optical properties of the medium traversed. The detected temporal signatures therefore contain information that can indicate the presence of an inhomogeneity as well as its size and location relative to the laser source and detection systems. The log-slope analysis of the time-resolved back-scattered intensity is shown to be an effective method for extracting the information contained in the signal. The technique is validated by experimental results and by Monte Carlo simulations

  16. Design considerations for a time-resolved tomographic diagnostic at DARHT

    International Nuclear Information System (INIS)

    Morris I. Kaufman, Daniel Frayer, Wendi Dreesen, Douglas Johnson, Alfred Meidinger

    2006-01-01

    An instrument has been developed to acquire time-resolved tomographic data from the electron beam at the DARHT [Dual-Axis Radiographic Hydrodynamic Test] facility at Los Alamos National Laboratory. The instrument contains four optical lines of sight that view a single tilted object. The lens design optically integrates along one optical axis for each line of sight. These images are relayed via fiber optic arrays to streak cameras, and the recorded streaks are used to reconstruct the original two-dimensional data. Installation of this instrument into the facility requires automation of both the optomechanical adjustments and calibration of the instrument in a constrained space. Additional design considerations include compound tilts on the object and image planes

  17. Usefulness of time-resolved projection MRA on evaluation of hemodynamics in cerebral occlusive diseases

    International Nuclear Information System (INIS)

    Oka, Yoshihisa; Kusunoki, Katsusuke; Nochide, Ichiro; Igase, Keiji; Harada, Hironobu; Sadamoto, Kazuhiko; Nagasawa, Kiyoshi

    2001-01-01

    The usefulness for evaluation of cerebral hemodynamics using time-resolved projection MRA was studied in normal volunteers and patients of cerebrovascular diseases. Six normal volunteers and ten patients with cerebrovascular occlusive diseases including 6 of IC occlusion and 4 of post EC/IC bypass surgery underwent time-resolved projection MRA on a 1.5 T clinical MRI system. Projection angiograms are acquired with 2D-fast SPGR sequence with a time resolution of approximately one image per second, 40 images being acquired consecutively before and after bolus injection Gd-DTPA. And all images were calculated by complex subtraction from the background mask in a work station. In normal volunteers, the quality of images of time-resolved projection MRA was satisfactory. The arteries from internal carotid artery through M2 segment of middle cerebral artery and all major venous systems were well portrayed. In 4 cases of IC occlusion who were assessed the collateral flow through the anterior communicating artery and posterior communicating artery, there were delayed to demonstrate the ipsilateral MCA. However, in 2 cases of IC occlusion that were assessed the collateral flow through leptomeningeal anastomosis, ipsilateral MCA and collateral circulation were not demonstrated. In all patients of post EC/IC bypass surgery, the patency of EC/IC bypass could be evaluated as properly with time-resolved projection MRA as 3D-TOF MRA. Although the temporal and spatial resolutions are insufficient, time-resolved projection MRA was power-full non-invasive method to evaluate the cerebral hemodynamics vis the basal communicating arteries in IC occlusion and identify the patency of EC/IC bypass. (author)

  18. Lucas–Kanade fluid trajectories for time-resolved PIV

    International Nuclear Information System (INIS)

    Yegavian, Robin; Leclaire, Benjamin; Illoul, Cédric; Losfeld, Gilles; Champagnat, Frédéric

    2016-01-01

    We introduce a new method for estimating fluid trajectories in time-resolved PIV. It relies on a Lucas–Kanade paradigm and consists in a simple and direct extension of a two-frame estimation with FOLKI-PIV (Champagnat et al 2011 Exp. Fluids 50 1169–82). The so-called Lucas–Kanade Fluid Trajectories (LKFT) are assumed to be polynomial in time, and are found as the minimizer of a global functional, in which displacements are sought so as to match the intensities of a series of images pairs in the sequence, in the least-squares sense. All pairs involve the central image, similar to other recent time-resolved approaches (FTC (Lynch and Scarano 2013 Meas. Sci. Technol . 24 035305) and FTEE (Jeon et al 2014 Exp. Fluids 55 1–16)). As switching from a two-frame to a time-resolved objective simply amounts to adding terms in a functional, no significant additional algorithmic element is required. Similar to FOLKI-PIV the method is very well suited for GPU acceleration, which is an important feature as computational complexity increases with the image sequence size. Tests on synthetic data exhibiting peak-locking show that increasing the image sequence size strongly reduces both associated bias and random error, and that LKFT has a remaining total error comparable to that of FTEE on this case. Results on case B of the third PIV challenge (Stanislas et al 2008 Exp. Fluids 45 27–71) also show its ability to drastically reduce the error in situations with low signal-to-noise ratio. These results are finally confirmed on experimental images acquired in the near-field of a low Reynolds number jet. Strong reductions in peak-locking, spatial and temporal noise compared to two-frame estimation are also observed, on the displacement components themselves, as well as on spatial or temporal derivatives, such as vorticity and material acceleration. (paper)

  19. Ultrafast time-resolved spectroscopy of lead halide perovskite films

    Science.gov (United States)

    Idowu, Mopelola A.; Yau, Sung H.; Varnavski, Oleg; Goodson, Theodore

    2015-09-01

    Recently, lead halide perovskites which are organic-inorganic hybrid structures, have been discovered to be highly efficient as light absorbers. Herein, we show the investigation of the excited state dynamics and emission properties of non-stoichiometric precursor formed lead halide perovskites grown by interdiffusion method using steady-state and time-resolved spectroscopic measurements. The influence of the different ratios of the non-stoichiometric precursor solution was examined. The observed photoluminescence properties were correlated with the femtosecond transient absorption measurements.

  20. Time-resolved spectroscopy defines perturbation in molecules

    International Nuclear Information System (INIS)

    Ahmed, K.

    1998-01-01

    Time-resolved LIF spectroscopy is employed in order to investigate perturbations in different excited electronic state of alkali molecules. Dunham Coefficients are used to search the selected excited ro-vibrational level, which is overlap with the other nearby excited states. Lifetime measurement has been performed of more than 50 ro-vibrational levels. Out of these 25 levels were observed drastically different lifetimes from the other unperturbed levels. In this report, influence of different perturbations on this anomalous behavior is investigated and discussed. (author)

  1. Time-resolved spectroscopy of plasma resonances in highly excited silicon and germanium

    International Nuclear Information System (INIS)

    Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.; Kurz, H.

    1985-01-01

    The dynamics of the electron-hole plasma in silicon and germanium samples irradiated by 20 ps. 532 nm laser pulses has been investigated in the near infrared by the time-resolved picosecond optical spectroscopy. The experimental reflectivities and transmission are compared with the predictions of the thermal model for degenerate carrier distributions through the Drude formalism. Above a certain fluence, a significant deviation between measured and calculated values indicates a strong increase of the recombination rate as soon as the plasma resonances become comparable with the band gaps. These new plasmon-aided recombination channels are particularly pronounced in germanium. 15 refs., 8 figs

  2. Timely resolved measurements on CdSe nanoparticles

    International Nuclear Information System (INIS)

    Holt, B.E. von

    2006-01-01

    By means of infrared spectroscopy the influence of the organic cover on structure and dynamics of CdSe nanoparticles was studied. First a procedure was developed, which allows to get from the static infrared spectrum informations on the quality of the organic cover and the binding behaviour of the ligands. On qualitatively high-grade and well characterized samples thereafter the dynamics of the lowest-energy electron level 1S e was time-resolvedly meausred in thew visible range. As reference served CdSe TOPO, which was supplemented by samples with the ligands octanthiole, octanic acid, octylamine, naphthoquinone, benzoquinone, and pyridine. The studied nanoparticles had a diameter of 4.86 nm. By means of the excitation-scanning or pump=probe procedure first measurements in the picosecond range were performed. The excitation wavelengths were thereby spectrally confined and so chosen that selectively the transitions 1S 3/2 -1S-e and 1P 3/2 -1P e but not the intermediately lyingt transition 2S 3/2 -1S e were excited. The excitation energies were kept so low that the excitation of several excitons in one crystal could be avoided. The scanning wavelength in the infrared corresponded to the energy difference between the electron levels 1S e and 1P e . The transients in the picosecond range are marked by a steep increasement of the signal, on which a multi-exponential decay follows. The increasement, which reproduces the popiulation of the excited state, isa inependent on the choice of the ligands. The influence of the organic cover is first visible in the different decay times of the excited electron levels. the decay of the measurement signal of CdSe TOPO can be approximatively described by three time constants: a decay constant in the early picosecond region, a time constant around hundert picoseconds, and a time constant of some nanoseconds. At increasing scanning wavelength the decay constants become longer. By directed excitation of the 1S 3/2 -1S e and the 1P 3

  3. Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics.

    Science.gov (United States)

    Montcel, Bruno; Chabrier, Renée; Poulet, Patrick

    2006-12-01

    Time-resolved diffuse optical methods have been applied to detect hemodynamic changes induced by cerebral activity. We describe a near infrared spectroscopic (NIRS) reconstruction free method which allows retrieving depth-related information on absorption variations. Variations in the absorption coefficient of tissues have been computed over the duration of the whole experiment, but also over each temporal step of the time-resolved optical signal, using the microscopic Beer-Lambert law.Finite element simulations show that time-resolved computation of the absorption difference as a function of the propagation time of detected photons is sensitive to the depth profile of optical absorption variations. Differences in deoxyhemoglobin and oxyhemoglobin concentrations can also be calculated from multi-wavelength measurements. Experimental validations of the simulated results have been obtained for resin phantoms. They confirm that time-resolved computation of the absorption differences exhibited completely different behaviours, depending on whether these variations occurred deeply or superficially. The hemodynamic response to a short finger tapping stimulus was measured over the motor cortex and compared to experiments involving Valsalva manoeuvres. Functional maps were also calculated for the hemodynamic response induced by finger tapping movements.

  4. Observation of a Slater-type metal-to-insulator transition in Sr$_2$IrO$_4$ from time-resolved photo-carrier dynamics

    OpenAIRE

    Hsieh, D.; Mahmood, F.; Torchinsky, D. H.; Cao, G.; Gedik, N.

    2012-01-01

    We perform a time-resolved optical study of Sr$_2$IrO$_4$ to understand the influence of magnetic ordering on the low energy electronic structure of a strongly spin-orbit coupled $J_{eff}$=1/2 Mott insulator. By studying the recovery dynamics of photo-carriers excited across the Mott gap, we find that upon cooling through the N\\'{e}el temperature $T_N$ the system evolves continuously from a metal-like phase with fast ($\\sim$50 fs) and excitation density independent relaxation dynamics to a ga...

  5. Ionic classification of Xe laser lines: A new approach through time resolved spectroscopy

    International Nuclear Information System (INIS)

    Schinca, D.; Duchowicz, R.; Gallardo, M.

    1992-01-01

    Visible and UV laser emission from a highly ionized pulsed Xe plasma was studied in relation to the ionic assignment of the laser lines. Time-resolved spectroscopy was used to determine the ionic origin of the studied lines. The results are in agreement with an intensity versus pressure analysis performed over the same wavelength range. From the temporal behaviour of the spontaneous emission, a probable classification can be obtained. (author). 7 refs, 7 figs, 1 tab

  6. Quantum-dot-based homogeneous time-resolved fluoroimmunoassay of alpha-fetoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Chen Meijun; Wu Yingsong; Lin Guanfeng; Hou Jingyuan; Li Ming [Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515 (China); Liu Tiancai, E-mail: liutc@smu.edu.cn [Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515 (China)

    2012-09-05

    .4 ng mL{sup -1}. By assaying test samples against the standard curve, the coefficient of variations was <5%, indicating that QDs were suitable for this homogenous time-resolved fluoroimmunoassay. This work extended the potential applications of QDs in future homogeneous analytical bioassays. In the coming research, hepatitis B surface antigen, another primary marker for hepatocellular carcinoma, will be studied for practical detection using a QD-based homogenous multiplex fluoroimmunoassay.

  7. Time-resolving electron temperature diagnostic for ALCATOR C

    International Nuclear Information System (INIS)

    Fairfax, S.A.

    1984-05-01

    A diagnostic that provides time-resolved central electron temperatures has been designed, built, and tested on the ALCATOR C Tokamak. The diagnostic uses an array of fixed-wavelength x-ray crystal monochromators to sample the x-ray continuum and determine the absolute electron temperature. The resolution and central energy of each channel were chosen to exclude any contributions from impurity line radiation. This document describes the need for such a diagnostic, the design methodology, and the results with typical ALCATOR C plasmas. Sawtooth (m = 1) temperature oscillations were observed after pellet fueling of the plasma. This is the first time that such oscillations have been observed with an x-ray temperature diagnostic

  8. Examining Electron-Boson Coupling Using Time-Resolved Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sentef, Michael; Kemper, Alexander F.; Moritz, Brian; Freericks, James K.; Shen, Zhi-Xun; Devereaux, Thomas P.

    2013-12-26

    Nonequilibrium pump-probe time-domain spectroscopies can become an important tool to disentangle degrees of freedom whose coupling leads to broad structures in the frequency domain. Here, using the time-resolved solution of a model photoexcited electron-phonon system, we show that the relaxational dynamics are directly governed by the equilibrium self-energy so that the phonon frequency sets a window for “slow” versus “fast” recovery. The overall temporal structure of this relaxation spectroscopy allows for a reliable and quantitative extraction of the electron-phonon coupling strength without requiring an effective temperature model or making strong assumptions about the underlying bare electronic band dispersion.

  9. Time-resolved near-infrared technique for bedside monitoring of absolute cerebral blood flow

    Science.gov (United States)

    Diop, Mamadou; Tichauer, Kenneth M.; Elliott, Jonathan T.; Migueis, Mark; Lee, Ting-Yim; St. Lawrence, Keith

    2010-02-01

    A primary focus of neurointensive care is monitoring the injured brain to detect harmful events that can impair cerebral blood flow (CBF). Since current non-invasive bedside methods can only indirectly assess blood flow, the goal of this research was to develop an optical technique for measuring absolute CBF. A time-resolved near-infrared (NIR) apparatus was built and its ability to accurately measure changes in optical properties was demonstrated in tissue-mimicking phantoms. The time-resolved system was combined with a bolus-tracking method for measuring CBF using the dye indocyanine green (ICG) as an intravascular flow tracer. Cerebral blood flow was measured in newborn piglets and for comparison, CBF was concurrently measured using a previously developed continuous-wave NIR method. Measurements were acquired with both techniques under three conditions: normocapnia, hypercapnia and following occlusion of the carotid arteries. Mean CBF values (N = 3) acquired with the TR-NIR system were 31.9 +/- 11.7 ml/100g/min during occlusion, 39.7 +/- 1.6 ml/100g/min at normocapnia, and 58.8 +/- 9.9 ml/100g/min at hypercapnia. Results demonstrate that the developed TR-NIR technique has the sensitivity to measure changes in CBF; however, the CBF measurements were approximately 25% lower than the values obtained with the CW-NIRS technique.

  10. Time-resolved far-infrared experiments at the National Synchrotron Light Source. Final report

    International Nuclear Information System (INIS)

    Tanner, D.B.; Reitze, D.H.; Carr, G.L.

    1999-01-01

    A facility for time-resolved infrared and far-infrared spectroscopy has been built and commissioned at the National Synchrotron Light Source. This facility permits the study of time dependent phenomena over a frequency range from 2-8000cm -1 (0.25 meV-1 eV). Temporal resolution is approximately 200 psec and time dependent phenomena in the time range out to 100 nsec can be investigated

  11. Ultrafast Structural Dynamics in InSb Probed by Time-Resolved X-Ray Diffraction

    International Nuclear Information System (INIS)

    Chin, A.H.; Shank, C.V.; Chin, A.H.; Schoenlein, R.W.; Shank, C.V.; Glover, T.E.; Leemans, W.P.; Balling, P.

    1999-01-01

    Ultrafast structural dynamics in laser-perturbed InSb are studied using time-resolved x-ray diffraction with a novel femtosecond x-ray source. We report the first observation of a delay in the onset of lattice expansion, which we attribute to energy relaxation processes and lattice strain propagation. In addition, we observe direct indications of ultrafast disordering on a subpicosecond time scale. copyright 1999 The American Physical Society

  12. Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography.

    Science.gov (United States)

    Poulikakos, L D; Sedighi Gilani, M; Derome, D; Jerjen, I; Vontobel, P

    2013-07-01

    Porous asphalt as a road surface layer controls aquaplaning as rain water can drain through its highly porous structure. The process of water drainage through this permeable layer is studied using neutron radiography. Time-resolved water configuration and distribution within the porous structure are reported. It is shown that radiography depicts the process of liquid water transport within the complex geometry of porous asphalt, capturing water films, filled dead end pores and water islands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Time-resolved luminescence of Eu2+-aggregate centers in CsBr crystals

    International Nuclear Information System (INIS)

    Zorenko, Yu.V.; Turchak, R.M.; Voznjak, T.I.; Stryganjuk, G.B.

    2005-01-01

    The luminescence of Eu 2+ -V Cs dipole centers and CsEuBr 3 aggregate centers, as well as the features of the energy transfer to these centers by excitons have been studied in CsBr:Eu crystals by means of investigation of the time-resolved emission spectra and luminescence decay kinetics under excitation by synchrotron radiation at RT. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Time-resolved UV-excited microarray reader for fluorescence energy transfer (FRET) measurements

    Science.gov (United States)

    Orellana, Adelina; Hokkanen, Ari P.; Pastinen, Tomi; Takkinen, Kristina; Soderlund, Hans

    2001-05-01

    Analytical systems based on immunochemistry are largely used in medical diagnostics and in biotechnology. There is a significant pressure to develop the present assay formats to become easier to use, faster, and less reagent consuming. Further developments towards high density array--like multianalyte measurement systems would be valuable. To this aim we have studied the applicability of fluorescence resonance energy transfer and time-resolved fluorescence resonance energy transfer in immunoassays on microspots and in microwells. We have used engineered recombinant antibodies detecting the pentameric protein CRP as a model analyte system, and tested different assay formats. We describe also the construction of a time-resolved scanning epifluorometer with which we could measure the FRET interaction between the slow fluorescence decay from europium chelates and its energy transfer to the rapidly decaying fluorophore Cy5.

  15. A system for time-resolved x-ray diffraction and its application to muscle contraction

    International Nuclear Information System (INIS)

    Amemiya, Yoshiyuki; Hashizume, Hiroo.

    1979-01-01

    A data-collection system has been built which permits time-resolved studies of X-ray diffraction diagrams obtained from contracting muscle on millisecond time scale. The system consists of a linear delay-line position sensitive proportional counter (PSPC), a special data transfer unit and an on-line computer. The PSPC used with a mirror-monochromator camera can detect equatorial reflections from stimulated muscle in a total exposure time of a few seconds. Time-resolved data-collection is achieved by stimulating muscle at a regular time interval, dividing a complete cycle of muscle contraction into many successive time slices and accumulating in computer memory X-ray data for each time slice from many repeated cycles of stimulation. The performances of the system have been demonstrated by recording equatorial reflections from frog skeletal muscle during isometric and isotonic twitch with a time resolution of 25 ms. (author)

  16. Time-resolved x-ray laser induced photoelectron spectroscopy of isochoric heated copper

    International Nuclear Information System (INIS)

    Nelson, A.J.; Dunn, J.; Hunter, J.; Widmann, K.

    2005-01-01

    Time-resolved x-ray photoelectron spectroscopy is used to probe the nonsteady-state evolution of the valence band electronic structure of laser heated ultrathin (50 nm) copper. A metastable phase is studied using a 527 nm wavelength 400 fs laser pulse containing 0.1-2.5 mJ laser energy focused in a large 500x700 μm 2 spot to create heated conditions of 0.07-1.8x10 12 W cm -2 intensity. Valence band photoemission spectra are presented showing the changing occupancy of the Cu 3d level with heating are presented. These picosecond x-ray laser induced time-resolved photoemission spectra of laser-heated ultrathin Cu foil show dynamic changes in the electronic structure. The ultrafast nature of this technique lends itself to true single-state measurements of shocked and heated materials

  17. Broad-band time-resolved near infrared spectroscopy in the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M.C.; Pastor, I.; Cal, E. de la; McCarthy, K.J. [Laboratorio Nacional de Fusion, CIEMAT, Madrid (Spain); Diaz, D. [Universidad Autonoma de Madrid, Dept Quimica Fisica Aplicada, Madrid (Spain)

    2014-11-15

    First experimental results on broad-band, time-resolved Near Infrared (NIR;here loosely defined as covering from 750 to 1650 nm) passive spectroscopy using a high sensitivity InGaAs detector are reported for the TJ-II Stellarator. Experimental set-up is described together with its main characteristics, the most remarkable ones being its enhanced NIR response, broadband spectrum acquisition in a single shot, and time-resolved measurements with up to 1.8 kHz spectral rate. Prospects for future work and more extended physics studies in this newly open spectral region in TJ-II are discussed. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Capacity Fading Mechanism of the Commercial 18650 LiFePO4-Based Lithium-Ion Batteries: An in Situ Time-Resolved High-Energy Synchrotron XRD Study.

    Science.gov (United States)

    Liu, Qi; Liu, Yadong; Yang, Fan; He, Hao; Xiao, Xianghui; Ren, Yang; Lu, Wenquan; Stach, Eric; Xie, Jian

    2018-02-07

    In situ high-energy synchrotron XRD studies were carried out on commercial 18650 LiFePO 4 cells at different cycles to track and investigate the dynamic, chemical, and structural changes in the course of long-term cycling to elucidate the capacity fading mechanism. The results indicate that the crystalline structural deterioration of the LiFePO 4 cathode and the graphite anode is unlikely to happen before capacity fades below 80% of the initial capacity. Rather, the loss of the active lithium source is the primary cause for the capacity fade, which leads to the appearance of inactive FePO 4 that is proportional to the absence of the lithium source. Our in situ HESXRD studies further show that the lithium-ion insertion and deinsertion behavior of LiFePO 4 continuously changed with cycling. For a fresh cell, the LiFePO 4 experienced a dual-phase solid-solution behavior, whereas with increasing cycle numbers, the dynamic change, which is characteristic of the continuous decay of solid solution behavior, is obvious. The unpredicted dynamic change may result from the morphology evolution of LiFePO 4 particles and the loss of the lithium source, which may be the cause of the decreased rate capability of LiFePO 4 cells after long-term cycling.

  19. Aqueous complexes of lanthanides(III) and actinides(III) with the carbonate and sulphate ions. Thermodynamic study by time-resolved laser-induced fluorescence spectroscopy and electro-spray-ionisation mass spectrometry

    International Nuclear Information System (INIS)

    Vercouter, Th.

    2005-03-01

    The prediction of the environmental impact of a possible geological disposal of radioactive wastes is supported by the thermodynamic modelling of the radionuclides behaviour in the groundwater. In this framework, the analogy between lanthanides and actinides(III) is confirmed by a critical analysis of the literature and the comparison with experimental results obtained here. The limiting complex, Eu(CO 3 ) 3 3- , is identified by solubility measurements in Na 2 CO 3 solutions. Then the formation constants of the complexes Eu(CO 3 ) i 3-2i (i=1-3) and Eu(SO 4 ) i 3-2i (i=1-2) are measured by TRLFS. The formation of aqueous LaSO 4 + is studied by ESI-MS and is in good agreement with the expected speciation. The enthalpy and entropy of the reaction Cm(CO 3 ) 2 - + CO 3 2- ↔ Cm(CO 3 ) 3 3- are deduced from TRLFS measurements of the equilibrium constant between 10 and 70 C. The ionic strength effect is calculated using the SIT formula. (author)

  20. Conditions for reliable time-resolved dosimetry of electronic portal imaging devices for fixed-gantry IMRT and VMAT

    International Nuclear Information System (INIS)

    Yeo, Inhwan Jason; Patyal, Baldev; Mandapaka, Anant; Jung, Jae Won; Yi, Byong Yong; Kim, Jong Oh

    2013-01-01

    Purpose: The continuous scanning mode of electronic portal imaging devices (EPID) that offers time-resolved information has been newly explored for verifying dynamic radiation deliveries. This study seeks to determine operating conditions (dose rate stability and time resolution) under which that mode can be used accurately for the time-resolved dosimetry of intensity-modulated radiation therapy (IMRT) beams.Methods: The authors have designed the following test beams with variable beam holdoffs and dose rate regulations: a 10 × 10 cm open beam to serve as a reference beam; a sliding window (SW) beam utilizing the motion of a pair of multileaf collimator (MLC) leaves outside the 10 × 10 cm jaw; a step and shoot (SS) beam to move the pair in step; a volumetric modulated arc therapy (VMAT) beam. The beams were designed in such a way that they all produce the same open beam output of 10 × 10 cm. Time-resolved ion chamber measurements at isocenter and time-resolved and integrating EPID measurements were performed for all beams. The time-resolved EPID measurements were evaluated through comparison with the ion chamber and integrating EPID measurements, as the latter are accepted procedures. For two-dimensional, time-resolved evaluation, a VMAT beam with an infield MLC travel was designed. Time-resolved EPID measurements and Monte Carlo calculations of such EPID dose images for this beam were performed and intercompared.Results: For IMRT beams (SW and SS), the authors found disagreement greater than 2%, caused by frame missing of the time-resolved mode. However, frame missing disappeared, yielding agreement better than 2%, when the dose rate of irradiation (and thus the frame acquisition rates) reached a stable and planned rate as the dose of irradiation was raised past certain thresholds (a minimum 12 s of irradiation per shoot used for SS IMRT). For VMAT, the authors found that dose rate does not affect the frame acquisition rate, thereby causing no frame missing

  1. Prospective time-resolved LCA of fully electric supercap vehicles in Germany.

    Science.gov (United States)

    Zimmermann, Benedikt M; Dura, Hanna; Baumann, Manuel J; Weil, Marcel R

    2015-07-01

    The ongoing transition of the German electricity supply toward a higher share of renewable and sustainable energy sources, called Energiewende in German, has led to dynamic changes in the environmental impact of electricity over the last few years. Prominent scenario studies predict that comparable dynamics will continue in the coming decades, which will further improve the environmental performance of Germany's electricity supply. Life cycle assessment (LCA) is the methodology commonly used to evaluate environmental performance. Previous LCA studies on electric vehicles have shown that the electricity supply for the vehicles' operation is responsible for the major part of their environmental impact. The core question of this study is how the prospective dynamic development of the German electricity mix will affect the impact of electric vehicles operated in Germany and how LCA can be adapted to analyze this impact in a more robust manner. The previously suggested approach of time-resolved LCA, which is located between static and dynamic LCA, is used in this study and compared with several static approaches. Furthermore, the uncertainty issue associated with scenario studies is addressed in general and in relation to time-resolved LCA. Two scenario studies relevant to policy making have been selected, but a moderate number of modifications have been necessary to adapt the data to the requirements of a life cycle inventory. A potential, fully electric vehicle powered by a supercapacitor energy storage system is used as a generic example. The results show that substantial improvements in the environmental repercussions of the electricity supply and, consequentially, of electric vehicles will be achieved between 2020 and 2031 on the basis of the energy mixes predicted in both studies. This study concludes that although scenarios might not be able to predict the future, they should nonetheless be used as data sources in prospective LCA studies, because in many cases

  2. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    Science.gov (United States)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  3. The TimBel synchronization board for time resolved experiments at synchrotron SOLEIL

    International Nuclear Information System (INIS)

    Ricaud, J.P.; Betinelli-Deck, P.; Bisou, J.; Elattaoui, X.; Laulhe, C.; Monteiro, P.; Nadolski, L.S.; Renaud, G.; Ravy, S.; Silly, M.; Sirotti, F.

    2012-01-01

    Time resolved experiments are one of the major services that synchrotrons can provide to scientists. The short, high frequency and regular flashes of synchrotron light are a fantastic tool to study the evolution of phenomena over time. To carry out time resolved experiments, beamlines need to synchronize their devices with these flashes of light with a jitter shorter than the pulse duration. For that purpose, Synchrotron SOLEIL has developed the TimBeL (Timing Beamlines) board fully interfaced to TANGO framework. The TimBeL system is a compact PCI board. It is made of a mother with one daughter board. All functions are performed inside a FPGA (Field Programmable Gate Array) implemented on the mother board. A PLX Technology chip is used to communicate with the compact PCI crate. To enable experiments to remain always synchronous with the same bunch of electrons, the storage ring clock (CLK-SR) and the radio frequency clock (CLK-RF) are provided by the machine to beamlines. These clocks are used inside the FPGA as main clocks for state machines. Because the jitter is too large on the FPGA outputs, a daughter board with a jitter cleaner has been added to the system. This board also provides delay lines for compensating time offsets by 10 ps steps. This paper presents the main features required by time resolved experiments and how we achieved our goals with the TimBeL board

  4. Particle tracking during Ostwald ripening using time-resolved laboratory X-ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Werz, T., E-mail: thomas.werz@uni-ulm.de [Ulm University, Institute of Micro and Nanomaterials, Albert-Einstein-Allee 47, 89081 (Germany); Baumann, M. [Ulm University, Institute of Micro and Nanomaterials, Albert-Einstein-Allee 47, 89081 (Germany); Wolfram, U. [Ulm University, Institute of Orthopaedic Research and Biomechanics, Helmholtzstrasse 14, 89081 (Germany); Krill, C.E. [Ulm University, Institute of Micro and Nanomaterials, Albert-Einstein-Allee 47, 89081 (Germany)

    2014-04-01

    Laboratory X-ray microtomography is investigated as a method for obtaining time-resolved images of microstructural coarsening of the semisolid state of Al–5 wt.% Cu samples during Ostwald ripening. Owing to the 3D imaging capability of tomography, this technique uniquely provides access to the growth rates of individual particles, thereby not only allowing a statistical characterization of coarsening—as has long been possible by conventional metallography—but also enabling quantification of the influence of local environment on particle boundary migration. The latter information is crucial to understanding growth kinetics during Ostwald ripening at high volume fractions of the coarsening phase. Automated image processing and segmentation routines were developed to close gaps in the network of particle boundaries and to track individual particles from one annealing step to the next. The particle tracking success rate places an upper bound of only a few percent on the likelihood of segmentation errors for any given particle. The accuracy of particle size trajectories extracted from the time-resolved tomographic reconstructions is correspondingly high. Statistically averaged coarsening data and individual particle growth rates are in excellent agreement with the results of prior experimental studies and with computer simulations of Ostwald ripening. - Highlights: • Ostwald ripening in Al–5 wt.% Cu measured by laboratory X-ray microtomography • Time-resolved measurement of individual particle growth • Automated segmentation routines developed to close gaps in particle boundary network • Particle growth/shrinkage rates deviate from LSW model prediction.

  5. Quantitative analysis of pulmonary perfusion using time-resolved parallel 3D MRI - initial results

    International Nuclear Information System (INIS)

    Fink, C.; Buhmann, R.; Plathow, C.; Puderbach, M.; Kauczor, H.U.; Risse, F.; Ley, S.; Meyer, F.J.

    2004-01-01

    Purpose: to assess the use of time-resolved parallel 3D MRI for a quantitative analysis of pulmonary perfusion in patients with cardiopulmonary disease. Materials and methods: eight patients with pulmonary embolism or pulmonary hypertension were examined with a time-resolved 3D gradient echo pulse sequence with parallel imaging techniques (FLASH 3D, TE/TR: 0.8/1.9 ms; flip angle: 40 ; GRAPPA). A quantitative perfusion analysis based on indicator dilution theory was performed using a dedicated software. Results: patients with pulmonary embolism or chronic thromboembolic pulmonary hypertension revealed characteristic wedge-shaped perfusion defects at perfusion MRI. They were characterized by a decreased pulmonary blood flow (PBF) and pulmonary blood volume (PBV) and increased mean transit time (MTT). Patients with primary pulmonary hypertension or eisenmenger syndrome showed a more homogeneous perfusion pattern. The mean MTT of all patients was 3.3 - 4.7 s. The mean PBF and PBV showed a broader interindividual variation (PBF: 104-322 ml/100 ml/min; PBV: 8 - 21 ml/100 ml). Conclusion: time-resolved parallel 3D MRI allows at least a semi-quantitative assessment of lung perfusion. Future studies will have to assess the clinical value of this quantitative information for the diagnosis and management of cardiopulmonary disease. (orig.) [de

  6. Time resolved EUV spectra from Zpinching capillary discharge plasma

    Science.gov (United States)

    Jancarek, Alexandr; Nevrkla, Michal; Nawaz, Fahad

    2015-09-01

    We developed symmetrically charged driver to obtain high voltage, high current Z-pinching capillary discharge. Plasma is created by up to 70 kA, 29 ns risetime current pulse passing through a 5 mm inner diameter, 224 mm long capillary filled with gas to initial pressure in the range of 1 kPa. Due to the low inductance design of the driver, the pinch is observable directly from the measured current curve. Time-integrated and time-resolved spectra of discharge plasma radiation are recorded together with the capillary current and analyzed. The most encouraging spectra were captured in the wavelength range 8.3 ÷ 14 nm. This spectral region contains nitrogen Balmer series lines including potentially lasing NVII 2 - 3 transition. Spectral lines are identified in the NIST database using the FLY kinetic code. The line of 13.38 nm wavelength, transition NVII 2 - 3, was observed in gated, and also in time-integrated spectra for currents >60 kA. This work has been supported by the Ministry of Education, Youth and Sports of the Czech Republic grants LG13029.

  7. Time-Resolved Synchronous Fluorescence for Biomedical Diagnosis

    Science.gov (United States)

    Zhang, Xiaofeng; Fales, Andrew; Vo-Dinh, Tuan

    2015-01-01

    This article presents our most recent advances in synchronous fluorescence (SF) methodology for biomedical diagnostics. The SF method is characterized by simultaneously scanning both the excitation and emission wavelengths while keeping a constant wavelength interval between them. Compared to conventional fluorescence spectroscopy, the SF method simplifies the emission spectrum while enabling greater selectivity, and has been successfully used to detect subtle differences in the fluorescence emission signatures of biochemical species in cells and tissues. The SF method can be used in imaging to analyze dysplastic cells in vitro and tissue in vivo. Based on the SF method, here we demonstrate the feasibility of a time-resolved synchronous fluorescence (TRSF) method, which incorporates the intrinsic fluorescent decay characteristics of the fluorophores. Our prototype TRSF system has clearly shown its advantage in spectro-temporal separation of the fluorophores that were otherwise difficult to spectrally separate in SF spectroscopy. We envision that our previously-tested SF imaging and the newly-developed TRSF methods will combine their proven diagnostic potentials in cancer diagnosis to further improve the efficacy of SF-based biomedical diagnostics. PMID:26404289

  8. Deflection gating for time-resolved x-ray magnetic circular dichroism-photoemission electron microscopy using synchrotron radiation

    Science.gov (United States)

    Wiemann, C.; Kaiser, A. M.; Cramm, S.; Schneider, C. M.

    2012-06-01

    In this paper, we present a newly developed gating technique for a time-resolving photoemission microscope. The technique makes use of an electrostatic deflector within the microscope's electron optical system for fast switching between two electron-optical paths, one of which is used for imaging, while the other is blocked by an aperture stop. The system can be operated with a switching time of 20 ns and shows superior dark current rejection. We report on the application of this new gating technique to exploit the time structure in the injection bunch pattern of the synchrotron radiation source BESSY II at Helmholtz-Zentrum Berlin for time-resolved measurements in the picosecond regime.

  9. Ultrasensitive time-resolved immunofluorometric assay of pepsinogen I

    International Nuclear Information System (INIS)

    Huang Biao; Xiao Hualong; Zhang Xiangrui; Zhu Lan; Jiang Menjun

    2004-01-01

    Purpose: To construct a two-site sandwich-type assay for pepsinogen I with time-resolved fluoroimmunoassay (TRFIA) as a detection technique. Methods: On the noncompetitive assay, one monoclonal antibody (McAb) coating on wells directed against a specific antigenic site on the pepsinogen I, the europium-labelled McAb which was prepared by with helpful of the europium-chelate of N-(p-isothiocyanatobenzyl)- diethylenetriamine-N, N, N, N-tetraacetic acid directed against a different antigenic site on the pepsinogen I molecule we called labelling McAb. The luminescent enhancement system was enhancement solution which contained mainly 2-naphthoyltrifluoroacetone. 25μl of Calibrators or samples and 200 μl of the assay buffer were pipetted into coated microtiter wells. The plates were incubated with mechanical shaking for 1 h at 25 degree C, washed two times, then added 100 μl Eu3+- McAb solution diluted 50-fold in assay buffer. The plates were incubated again with mechanical shaking for 1 h at 25 degree C,After six washings, 200 μl of enhancement solution were dispense into each well. The plates were shaken for 5 min and fluorescence readings. All the proceeding were done by auto DELFIA1235, software was designed by our lab. The calibration curve and calculation of the concentrations in the unknown samples were performed automatically by using Multicalc software program, where a spline algorithm on logarithmically transformed data was employed. Results: The average labelling yield is 8.6 Eu3+/McAb giving high sensitivity with low background(<1000 cps). The measurement range was 3.5-328 μ g /L with ED25, ED50, ED80 of 11.34 ±0.2 μ g/L, 38.73±0.8 μ g /L and 132,3±2.9 μ g/L. The detection limit, defined as the concentration of PGI corresponding to the fluorescence of the zero calibrators plus two SDs, is 0..05μg/L. Within-run and between-run precision was l.9% and 4.7% which assessed at various PGI concentrations between 5 and 300 μg/L. We checked for cross

  10. Time-resolved spectrophotometry of HZ Herculis and DQ Herculis

    Energy Technology Data Exchange (ETDEWEB)

    Chanan, G.A.

    1978-01-01

    The image-tube scanner at the 3 m telescope at Lick Observatory was employed to study the spectral changes which occur during the pulse period in the optical pulsars HZ Herculis (1.2 s period) and DQ Herculis (71 s period). The data acquisition is described and the tools needed for the data analysis developed. Then the results of the observations are presented. In the case of HZ Herculis (Hercules X-1), observations cover the binary phase interval 0.18 to 0.26 and are concerned only with those pulsations that have been shown (Middleditch and Nelson, 1976) to originate at the x-ray heated surface of the Roche lobe filling companion of the neutron star. It is found that these pulsations are distributed throughout the optical continuum. Observations appear to agree at least qualitatively with the numerical results of other investigators. The observations of DQ Herculis cover one full binary cycle, excluding eclipse. Again pulsations are found distributed throughout the continuum with generally weak wavelength dependence. However, in this case the emission line lambda 4686 (He II) is more strongly modulated than the underlying continuum and exhibits an unexpected effect: The pulse phase increases rapidly with increasing wavelength across the line. This effect can be understood in terms of a simple model in which the pulsations arise at the inner edge of the accretion disk, excited by radiation which originates at hot spots on the white dwarf and which sweeps around the disk as the degenerate star rotates. A similar model in which the pulsations arise predominantly from the back half of the surface of the disk appears in several respects to be more promising. The evident relation between the phase shift across the emission line and the so-called 360/sup 0/ phase shift through eclipse, discovered by Warner et al. (1972) is also discussed.

  11. Time-resolved spectrophotometry of HZ Herculis and DQ Herculis

    International Nuclear Information System (INIS)

    Chanan, G.A.

    1978-01-01

    The image-tube scanner at the 3 m telescope at Lick Observatory was employed to study the spectral changes which occur during the pulse period in the optical pulsars HZ Herculis (1.2 s period) and DQ Herculis (71 s period). The data acquisition is described and the tools needed for the data analysis developed. Then the results of the observations are presented. In the case of HZ Herculis (Hercules X-1), observations cover the binary phase interval 0.18 to 0.26 and are concerned only with those pulsations that have been shown (Middleditch and Nelson, 1976) to originate at the x-ray heated surface of the Roche lobe filling companion of the neutron star. It is found that these pulsations are distributed throughout the optical continuum. Observations appear to agree at least qualitatively with the numerical results of other investigators. The observations of DQ Herculis cover one full binary cycle, excluding eclipse. Again pulsations are found distributed throughout the continuum with generally weak wavelength dependence. However, in this case the emission line lambda 4686 (He II) is more strongly modulated than the underlying continuum and exhibits an unexpected effect: The pulse phase increases rapidly with increasing wavelength across the line. This effect can be understood in terms of a simple model in which the pulsations arise at the inner edge of the accretion disk, excited by radiation which originates at hot spots on the white dwarf and which sweeps around the disk as the degenerate star rotates. A similar model in which the pulsations arise predominantly from the back half of the surface of the disk appears in several respects to be more promising. The evident relation between the phase shift across the emission line and the so-called 360 0 phase shift through eclipse, discovered by Warner et al. (1972) is also discussed

  12. Time-resolved biophysical approaches to nucleocytoplasmic transport

    Directory of Open Access Journals (Sweden)

    Francesco Cardarelli

    Full Text Available Molecules are continuously shuttling across the nuclear envelope barrier that separates the nucleus from the cytoplasm. Instead of being just a barrier to diffusion, the nuclear envelope is rather a complex filter that provides eukaryotes with an elaborate spatiotemporal regulation of fundamental molecular processes, such as gene expression and protein translation. Given the highly dynamic nature of nucleocytoplasmic transport, during the past few decades large efforts were devoted to the development and application of time resolved, fluorescence-based, biophysical methods to capture the details of molecular motion across the nuclear envelope. These methods are here divided into three major classes, according to the differences in the way they report on the molecular process of nucleocytoplasmic transport. In detail, the first class encompasses those methods based on the perturbation of the fluorescence signal, also known as ensemble-averaging methods, which average the behavior of many molecules (across many pores. The second class comprises those methods based on the localization of single fluorescently-labelled molecules and tracking of their position in space and time, potentially across single pores. Finally, the third class encompasses methods based on the statistical analysis of spontaneous fluorescence fluctuations out of the equilibrium or stationary state of the system. In this case, the behavior of single molecules is probed in presence of many similarly-labelled molecules, without dwelling on any of them. Here these three classes, with their respective pros and cons as well as their main applications to nucleocytoplasmic shuttling will be briefly reviewed and discussed. Keywords: Fluorescence recovery after photobleaching, Single particle tracking, Fluorescence correlation spectroscopy, Diffusion, Transport, GFP, Nuclear pore complex, Live cell, Confocal microscopy

  13. Time-resolved photoluminescence of Ga(NAsP) multiple quantum wells grown on Si substrate: Effects of rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Woscholski, R., E-mail: ronja.woscholski@physik.uni-marburg.de; Shakfa, M.K.; Gies, S.; Wiemer, M.; Rahimi-Iman, A.; Zimprich, M.; Reinhard, S.; Jandieri, K.; Baranovskii, S.D.; Heimbrodt, W.; Volz, K.; Stolz, W.; Koch, M.

    2016-08-31

    Time-resolved photoluminescence (TR-PL) spectroscopy has been used to study the impact of rapid thermal annealing (RTA) on the optical properties and carrier dynamics in Ga(NAsP) multiple quantum well heterostructures (MQWHs) grown on silicon substrates. TR-PL measurements reveal an enhancement in the PL efficiency when the RTA temperature is increased up to 925 °C. Then, the PL intensity dramatically decreases with the annealing temperature. This behavior is explained by the variation of the disorder degree in the studied structures. The analysis of the low-temperature emission-energy-dependent PL decay time enables us to characterize the disorder in the Ga(NAsP) MQWHs. The theoretically extracted energy-scales of disorder confirm the experimental observations. - Highlights: • Ga(NAsP) multiple quantum well heterostructures (MQWHs) grown on silicon substrates • Impact of rapid thermal annealing on the optical properties and carrier dynamics • Time resolved photoluminescence spectroscopy was applied. • PL transients became continuously faster with increasing annealing temperature. • Enhancement in the PL efficiency with increasing annealing temperature up to 925 °C.

  14. Time-resolved photoluminescence of Ga(NAsP) multiple quantum wells grown on Si substrate: Effects of rapid thermal annealing

    International Nuclear Information System (INIS)

    Woscholski, R.; Shakfa, M.K.; Gies, S.; Wiemer, M.; Rahimi-Iman, A.; Zimprich, M.; Reinhard, S.; Jandieri, K.; Baranovskii, S.D.; Heimbrodt, W.; Volz, K.; Stolz, W.; Koch, M.

    2016-01-01

    Time-resolved photoluminescence (TR-PL) spectroscopy has been used to study the impact of rapid thermal annealing (RTA) on the optical properties and carrier dynamics in Ga(NAsP) multiple quantum well heterostructures (MQWHs) grown on silicon substrates. TR-PL measurements reveal an enhancement in the PL efficiency when the RTA temperature is increased up to 925 °C. Then, the PL intensity dramatically decreases with the annealing temperature. This behavior is explained by the variation of the disorder degree in the studied structures. The analysis of the low-temperature emission-energy-dependent PL decay time enables us to characterize the disorder in the Ga(NAsP) MQWHs. The theoretically extracted energy-scales of disorder confirm the experimental observations. - Highlights: • Ga(NAsP) multiple quantum well heterostructures (MQWHs) grown on silicon substrates • Impact of rapid thermal annealing on the optical properties and carrier dynamics • Time resolved photoluminescence spectroscopy was applied. • PL transients became continuously faster with increasing annealing temperature. • Enhancement in the PL efficiency with increasing annealing temperature up to 925 °C

  15. The application of time-resolved luminescence spectroscopy to a remote uranyl sensor

    International Nuclear Information System (INIS)

    Varineau, P.T.; Duesing, R.; Wangen, L.E.

    1991-01-01

    Time resolved luminescence spectroscopy is an effective method for the determination of a wide range of uranyl concentrations in aqueous samples. We have applied this technique to the development of a remote sensing device using fiber optic cables coupled with a micro flow cell in order to probe for uranyl in aqueous samples. This sensor incorporates a Nafion membrane through which UO 2 2+ can diffuse in to a reaction/analysis chamber which holds phosphoric acid, a reagent which enhances the uranyl luminescence intensity and lifetime. With this device, anionic and fluorescing organic interferences could be eliminated, allowing for the determination of uranyl over a concentration range of 10 4 to 10 -9 M. 17 refs., 5 figs

  16. Energy- and time-resolved microscopy using PEEM: recent developments and state-of-the-art

    Energy Technology Data Exchange (ETDEWEB)

    Weber, N B; Escher, M; Merkel, M [FOCUS GmbH, Neukirchner Strasse 2, 65510 Huenstetten (Germany); Oelsner, A [Surface Concept GmbH, Staudingerweg 7, 55099 Mainz (Germany); Schoenhense, G [Johannes Gutenberg Universitaet, Institut fuer Physik, 55099 Mainz (Germany)], E-mail: n.weber@focus-gmbh.com

    2008-03-15

    Two novel methods of spectroscopic surface imaging are discussed, both based on photoemission electron microscopy PEEM. They are characterised by a simple electron-optical set up retaining a linear column. An imaging high-pass energy filter has been developed on the basis of lithographically-fabricated microgrids. Owing to a mesh size of only 7{mu}m, no image distortions occur. The present energy resolution is 70 meV. The second approach employs time-of-flight energy dispersion and time-resolved detection using a Delayline Detector. In this case, the drift energy and the time resolution of the detector determine the energy resolution. The present time resolution is 180 ps, giving rise to an energy resolution in the 100 meV range.

  17. Femtosecond time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses: Apparatus and applications

    Energy Technology Data Exchange (ETDEWEB)

    Kuramochi, Hikaru [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Takeuchi, Satoshi; Tahara, Tahei, E-mail: tahei@riken.jp [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198 (Japan)

    2016-04-15

    We describe details of the setup for time-resolved impulsive stimulated Raman spectroscopy (TR-ISRS). In this method, snapshot molecular vibrational spectra of the photoreaction transients are captured via time-domain Raman probing using ultrashort pulses. Our instrument features transform-limited sub-7-fs pulses to impulsively excite and probe coherent nuclear wavepacket motions, allowing us to observe vibrational fingerprints of transient species from the terahertz to 3000-cm{sup −1} region with high sensitivity. Key optical components for the best spectroscopic performance are discussed. The TR-ISRS measurements for the excited states of diphenylacetylene in cyclohexane are demonstrated, highlighting the capability of our setup to track femtosecond dynamics of all the Raman-active fundamental molecular vibrations.

  18. Time-resolved Chemical Imaging of Molecules by High-order Harmonics and Ultrashort Rescattering Electrons

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chii Dong [Kansas State Univ., Manhattan, KS (United States)

    2016-03-21

    Directly monitoring atomic motion during a molecular transformation with atomic-scale spatio-temporal resolution is a frontier of ultrafast optical science and physical chemistry. Here we provide the foundation for a new imaging method, fixed-angle broadband laser-induced electron scattering, based on structural retrieval by direct one-dimensional Fourier transform of a photoelectron energy distribution observed along the polarization direction of an intense ultrafast light pulse. The approach exploits the scattering of a broadband wave packet created by strong-field tunnel ionization to self-interrogate the molecular structure with picometre spatial resolution and bond specificity. With its inherent femtosecond resolution, combining our technique with molecular alignment can, in principle, provide the basis for time-resolved tomography for multi-dimensional transient structural determination.

  19. Field transients of coherent terahertz synchrotron radiation accessed via time-resolving and correlation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, A.; Hübers, H.-W. [Humboldt-Universität zu Berlin, Institute of Physics, Newtonstraße 15, 12489 Berlin (Germany); Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstrasse 29, 12489 Berlin (Germany); Semenov, A. [Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstrasse 29, 12489 Berlin (Germany); Hoehl, A.; Ulm, G. [Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin (Germany); Ries, M.; Wüstefeld, G. [Helmholz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Ilin, K.; Thoma, P.; Siegel, M. [Institute of Micro- and Nanoelectronic Systems, Karlsruhe Institute of Technology (KIT), Hertzstrasse 16, 76187 Karlsruhe (Germany)

    2016-03-21

    Decaying oscillations of the electric field in repetitive pulses of coherent synchrotron radiation in the terahertz frequency range was evaluated by means of time-resolving and correlation techniques. Comparative analysis of real-time voltage transients of the electrical response and interferograms, which were obtained with an ultrafast zero-bias Schottky diode detector and a Martin-Puplett interferometer, delivers close values of the pulse duration. Consistent results were obtained via the correlation technique with a pair of Golay Cell detectors and a pair of resonant polarisation-sensitive superconducting detectors integrated on one chip. The duration of terahertz synchrotron pulses does not closely correlate with the duration of single-cycle electric field expected for the varying size of electron bunches. We largely attribute the difference to the charge density oscillations in electron bunches and to the low-frequency spectral cut-off imposed by both the synchrotron beamline and the coupling optics of our detectors.

  20. Near shot-noise limited time-resolved circular dichroism pump-probe spectrometer

    Science.gov (United States)

    Stadnytskyi, Valentyn; Orf, Gregory S.; Blankenship, Robert E.; Savikhin, Sergei

    2018-03-01

    We describe an optical near shot-noise limited time-resolved circular dichroism (TRCD) pump-probe spectrometer capable of reliably measuring circular dichroism signals in the order of μdeg with nanosecond time resolution. Such sensitivity is achieved through a modification of existing TRCD designs and introduction of a new data processing protocol that eliminates approximations that have caused substantial nonlinearities in past measurements and allows the measurement of absorption and circular dichroism transients simultaneously with a single pump pulse. The exceptional signal-to-noise ratio of the described setup makes the TRCD technique applicable to a large range of non-biological and biological systems. The spectrometer was used to record, for the first time, weak TRCD kinetics associated with the triplet state energy transfer in the photosynthetic Fenna-Matthews-Olson antenna pigment-protein complex.

  1. Time-Resolved Spectroscopy and Near Infrared Imaging for Prostate Cancer Detection: Receptor-targeted and Native Biomarker

    Science.gov (United States)

    Pu, Yang

    Optical spectroscopy and imaging using near-infrared (NIR) light provides powerful tools for non-invasive detection of cancer in tissue. Optical techniques are capable of quantitative reconstructions maps of tissue absorption and scattering properties, thus can map in vivo the differences in the content of certain marker chromophores and/or fluorophores in normal and cancerous tissues (for example: water, tryptophan, collagen and NADH contents). Potential clinical applications of optical spectroscopy and imaging include functional tumor detection and photothermal therapeutics. Optical spectroscopy and imaging apply contrasts from intrinsic tissue chromophores such as water, collagen and NADH, and extrinsic optical contrast agents such as Indocyanine Green (ICG) to distinguish disease tissue from the normal one. Fluorescence spectroscopy and imaging also gives high sensitivity and specificity for biomedical diagnosis. Recent developments on specific-targeting fluorophores such as small receptor-targeted dye-peptide conjugate contrast agent offer high contrast between normal and cancerous tissues hence provide promising future for early tumour detection. This thesis focus on a study to distinguish the cancerous prostate tissue from the normal prostate tissues with enhancement of specific receptor-targeted prostate cancer contrast agents using optical spectroscopy and imaging techniques. The scattering and absorption coefficients, and anisotropy factor of cancerous and normal prostate tissues were investigated first as the basis for the biomedical diagnostic and optical imaging. Understanding the receptors over-expressed prostate cancer cells and molecular target mechanism of ligand, two small ICG-derivative dye-peptides, namely Cypate-Bombesin Peptide Analogue Conjugate (Cybesin) and Cypate-Octreotate Peptide Conjugate (Cytate), were applied to study their clinical potential for human prostate cancer detection. In this work, the steady-state and time-resolved

  2. Transient photoconductivity in InGaN/GaN multiple quantum wells, measured by time-resolved terahertz spectroscopy

    DEFF Research Database (Denmark)

    Porte, Henrik; Turchinovich, Dmitry; Cooke, David

    2009-01-01

    Terahertz conductivity of InGaN/GaN MQWs was studied by time-resolved terahertz spectroscopy. Restoration of the built-in piezoelectric field leads to a nonexponential carrier density decay. Terahertz conductivity spectrum is described by the Drude-Smith......Terahertz conductivity of InGaN/GaN MQWs was studied by time-resolved terahertz spectroscopy. Restoration of the built-in piezoelectric field leads to a nonexponential carrier density decay. Terahertz conductivity spectrum is described by the Drude-Smith...

  3. Time-resolved magnetization dynamics of cross-tie domain walls in permalloy microstructures

    International Nuclear Information System (INIS)

    Miguel, J; Kurde, J; Piantek, M; Kuch, W; Sanchez-Barriga, J; Heitkamp, B; Kronast, F; Duerr, H A; Bayer, D; Aeschlimann, M

    2009-01-01

    We report on a picosecond time-resolved x-ray magnetic circular dichroic-photoelectron emission microscopy study of the evolution of the magnetization components of a microstructured permalloy platelet comprising three cross-tie domain walls. A laser-excited photoswitch has been used to apply a triangular 80 Oe, 160 ps magnetic pulse. Micromagnetic calculations agree well with the experimental results, both in time and frequency, illustrating the large angle precession in the magnetic domains with magnetization perpendicular to the applied pulse, and showing how the magnetic vortices revert their core magnetization while the antivortices remain unaffected.

  4. Time-resolved magnetization dynamics of cross-tie domain walls in permalloy microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, J; Kurde, J; Piantek, M; Kuch, W [Institut fuer Experimentalphysik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin (Germany); Sanchez-Barriga, J; Heitkamp, B; Kronast, F; Duerr, H A [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Elektronenspeicherring BESSY II, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Bayer, D; Aeschlimann, M, E-mail: jorge.miguel@fu-berlin.d [Fachbereich Physik, Universitaet Kaiserslautern, Erwin-Schroedinger Strasse 46, D-67663 Kaiserslautern (Germany)

    2009-12-02

    We report on a picosecond time-resolved x-ray magnetic circular dichroic-photoelectron emission microscopy study of the evolution of the magnetization components of a microstructured permalloy platelet comprising three cross-tie domain walls. A laser-excited photoswitch has been used to apply a triangular 80 Oe, 160 ps magnetic pulse. Micromagnetic calculations agree well with the experimental results, both in time and frequency, illustrating the large angle precession in the magnetic domains with magnetization perpendicular to the applied pulse, and showing how the magnetic vortices revert their core magnetization while the antivortices remain unaffected.

  5. Time-resolved terahertz spectroscopy of conjugated polymer/CdSe nanorod composites

    DEFF Research Database (Denmark)

    Cooke, David; Lek, Jun Y.; Krebs, Frederik C

    2010-01-01

    report ultrafast carrier dynamics in hybrid CdSe nanorod / poly(3-hexythiophene) (P3HT) bulk heterojunction films measured by time-resolved terahertz spectroscopy, and compare to the well studied P3HT/phenyl-C61-butyric acid methyl ester (PCBM) blend. Both films show an improved peak...... photoconductivity compared to P3HT alone, consistent with efficient charge transfer. The photoconductivity dynamics show fast, picosecond trapping or recombination in the hybrid blend while the all-organic film shows no such loss of mobile charge over ns time scales. The ac conductivity for all samples is well...

  6. Time-resolved luminescent spectroscopy of YAG:Ce single crystal and single crystalline films

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Gorbenko, V.; Savchyn, V.; Vozniak, T.; Puzikov, V.; Danko, A.; Nizhankovski, S.

    2010-01-01

    The peculiarities of the luminescence and energy transfer from YAG host to the emission centers formed by the Y Al antisite defects and Ce 3+ ions have been studied in YAG:Ce single crystals, grown from the melt by modified Bridgman method in Ar and CO 2 + H 2 atmospheres, and YAG:Ce single crystalline film, grown by liquid phase epitaxy method, using the comparative time-resolved luminescent spectroscopy under excitation by synchrotron radiation in the range of fundamental adsorption of this garnet.

  7. Time resolved reflectivity measurements of the amorphous-to-gamma and gamma-to-alpha phase transitions in ion-implanted Al2O3

    International Nuclear Information System (INIS)

    McCallum, J.C.; Simpson, T.W.; Mitchell, I.V.

    1994-01-01

    Time resolved optical reflectivity (TRR) has been used to measure the growth kinetics associated with the amorphous-to-gamma and gamma-to-alpha phase transitions in ion-beam amorphised c-axis oriented α-Al 2 O 3 . The optical reflectivity technique allows the recrystallisation behaviour to be monitored dynamically during regrowth so that the growth kinetics associated with the two phase transitions can be measured simply and accurately from a relatively small number of samples. The amorphous-to-gamma and gamma-to-alpha phase transitions were studied over the temperature ranges of 670-770 C and 900-1070 C, respectively. The growth kinetics obtained for the two transitions are compared to previous work. ((orig.))

  8. Watching proteins function with time-resolved x-ray crystallography

    International Nuclear Information System (INIS)

    Šrajer, Vukica; Schmidt, Marius

    2017-01-01

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol . 305 115–54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201–41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol . 22 651–9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237–51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5–20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242–6, Barends et al 2015 Science 350 445–50, Pande et al 2016 Science 352 725–9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs

  9. Watching proteins function with time-resolved x-ray crystallography

    Science.gov (United States)

    Šrajer, Vukica; Schmidt, Marius

    2017-09-01

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115-54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201-41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651-9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237-51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5-20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242-6, Barends et al 2015 Science 350 445-50, Pande et al 2016 Science 352 725-9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We also outline

  10. Watching proteins function with time-resolved x-ray crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Šrajer, Vukica; Schmidt, Marius

    2017-08-22

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115–54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201–41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651–9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237–51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5–20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242–6, Barends et al 2015 Science 350 445–50, Pande et al 2016 Science 352 725–9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We

  11. Nonperturbative quantum simulation of time-resolved nonlinear spectra: Methodology and application to electron transfer reactions in the condensed phase

    International Nuclear Information System (INIS)

    Wang Haobin; Thoss, Michael

    2008-01-01

    A quantum dynamical method is presented to accurately simulate time-resolved nonlinear spectra for complex molecular systems. The method combines the nonpertubative approach to describe nonlinear optical signals with the multilayer multiconfiguration time-dependent Hartree theory to calculate the laser-induced polarization for the overall field-matter system. A specific nonlinear optical signal is obtained by Fourier decomposition of the overall polarization. The performance of the method is demonstrated by applications to photoinduced ultrafast electron transfer reactions in mixed-valence compounds and at dye-semiconductor interfaces

  12. Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV

    NARCIS (Netherlands)

    Schröder, A.; Geisler, R.; Elsinga, G.E.; Scarano, F.; Dierksheide, U.

    2007-01-01

    In this feasibility study the tomographic PIV technique has been applied to time resolved PIV recordings for the study of the growth of a turbulent spot in a laminar flat plate boundary layer and to visualize the topology of coherent flow structures within a tripped turbulent flat plate boundary

  13. Time-resolved photoelectron spectrometry of a dephasing process in pyrazine

    International Nuclear Information System (INIS)

    Pavlov, R.L.; Pavlov, L.I.; Delchev, Ya.I.; Pavlova, S.I.

    2001-01-01

    The first femtosecond time-resolved photoelectron imaging (PEI) is presented. The method is characterized by photoionization of NO and further applied to ultrafast dephasing in pyrazine. Intermediate case behaviour in radiationless transition is clearly observed in time-resolved photoelectron kinetic energy distribution. Femtosecond PEI is with much improved efficiency than conventional photoelectron spectroscopies. It is anticipated that the unifield approach of time-resolved photoelectron and photoion imaging opens the possibility of observing photon-induced dynamics in real time

  14. Time resolved high frequency spectrum of Br2 molecules using pulsed photoacoustic technique.

    Science.gov (United States)

    Yehya, Fahem; Chaudhary, A K

    2013-11-01

    The paper reports the time resolved spectral distribution of higher order acoustic modes generated in Br2 molecules using pulsed Photoacoustic (PA) technique. New time resolved vibrational spectrum of Br2 molecules are recorded using a single 532nm, pulses of 7ns duration at 10Hz repetition rate obtained from Q-switched Nd:YAG laser. Frank-Condon principle based assignments confirms the presence of 12 numbers of (ν″-ν') vibrational transitions covered by a single 532+2nm pulse profile. Inclusions of higher order zeroth modes in Bassel's function expansion series shows the probability of overlapping of different types of acoustic modes in the designed PA cells. These modes appear in the form of clusters which occupies higher frequency range. The study of decay behavior of PA signal with respect to time confirms the photolysis of Br2 at 532nm wavelength. In addition, the shifting and clustering effect of cavity eigen modes in Br2 molecules have been studied between 1 and 10ms time scale. The estimated Q-factor of PA cell (l=16cm, R=1.4cm) is 145±4 at 27kHz frequency. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Aeroacoustic analysis of a NACA 0015 airfoil with Gurney flap based on time-resolved PIV measurements

    NARCIS (Netherlands)

    Zhang, Xueqing; Sciacchitano, A.; Pröbsting, S.; von Estorff, O.; Kropp, W.; Schulte-Fortkamp, B.

    2016-01-01

    The present study investigates the feasibility of high-lift devices noise prediction based on measurements of time-resolved particle image velocimetry (TR-PIV). The model under investigation is a NACA 0015 airfoil with Gurney flap with height of 6% chord length. The velocity fields around and

  16. Time-resolved spectral investigations of laser light induced microplasma

    Science.gov (United States)

    Nánai, L.; Hevesi, I.

    1992-01-01

    The dynamical and spectral properties of an optical breakdown microplasma created by pulses of different lasers on surfaces of insulators (KCI), metals (Cu) and semiconductors (V 2O 5), have been investigated. Experiments were carried out in air and vacuum using different wavelengths (λ = 0.694μm, type OGM-20,λ = 1.06μm with a home-made laser based on neodymium glass crystal, and λ = 10.6μm, similarly home-made) and pulse durations (Q-switched and free-running regimes). To follow the integral, dynamical and spectral characteristics of the luminous spot of microplasma we have used fast cameras (SFR-2M, IMACON-HADLAND), a high speed spectral camera (AGAT-2) and a spectrograph (STE-1). It has been shown that the microplasma consists of two parts: fast front (peak) with τ≈100 ns and slow front (tail) with τ≈1μs durations. The detonation front speed is of the order of ≈10 5 cm s -1 and follows the temporal dependence of to t0.4. It depends on the composition of the surrounding gas and its pressure and could be connected with quick evaporation of the material investigated (peak) and optical breakdown of the ambient gaseous atmosphere (tail). From the delay in appearance of different characteristic spectral lines of the target material and its gaseous surrounding we have shown that the evolution of the microplasma involves evaporation and ionization of the atoms of the parent material followed by optical breakdown due to the incident and absorbed laser light, together with microplasma expansion.

  17. Time-resolved MR angiography of the renal artery: morphology and perfusion

    International Nuclear Information System (INIS)

    Krause, U.J.; Pabst, T.; Koestler, H.; Helbig, C.; Kenn, W.; Hahn, D.

    2002-01-01

    Purpose: To prove the hypothesis that renal artery stenosis and changes in renal perfusion can be detected with contrast-enhanced time-resolved MR angiography in a single examination. Material and Methods: In 71 patients, 137 renal arteries and 14 accessory renal arteries were studied. The examinations were performed on a 1.5 T system. A T 1 -weighted gradient echo sequence with a temporal resolution of 7 s was used. Single dose of contrast material (0.1 mmol/kg Gd-DTPA) was injected with a power injector with a flow rate of 2 ml/s. Criterion for the assessment of renal perfusion was the slope ratio of the signal intensity time curve in both kidneys. Results: Forty renal artery stenoses and one occlusion of a renal artery were detected. In 48 kidneys (35%) segmental arteries were evaluated. The accuracy of the slope ratio (limit value 0.75) concerning the detection of unilateral renal artery stenosis was 92.6% (sensitivity 75%, specificity 95.7%). Conclusion: Time-resolved MR angiography can detect changes in renal perfusion in patients with unilateral renal artery stenosis. (orig.) [de

  18. Time-resolved energy spectrum of a pseudospark-produced high-brightness electron beam

    International Nuclear Information System (INIS)

    Myers, T.J.; Ding, B.N.; Rhee, M.J.

    1992-01-01

    The pseudospark, a fast low-pressure gas discharge between a hollow cathode and a planar anode, is found to be an interesting high-brightness electron beam source. Typically, all electron beam produced in the pseudospark has the peak current of ∼1 kA, pulse duration of ∼50 ns, and effective emittance of ∼100 mm-mrad. The energy information of this electron beam, however, is least understood due to the difficulty of measuring a high-current-density beam that is partially space-charge neutralized by the background ions produced in the gas. In this paper, an experimental study of the time-resolved energy spectrum is presented. The pseudospark produced electron beam is injected into a vacuum through a small pinhole so that the electrons without background ions follow single particle motion; the beam is sent through a negative biased electrode and the only portion of beam whose energy is greater than the bias voltage can pass through the electrode and the current is measured by a Faraday cup. The Faraday cup signals with various bias voltage are recorded in a digital oscilloscope. The recorded waveforms are then numerically analyzed to construct a time-resolved energy spectrum. Preliminary results are presented

  19. Denoising time-resolved microscopy image sequences with singular value thresholding

    Energy Technology Data Exchange (ETDEWEB)

    Furnival, Tom, E-mail: tjof2@cam.ac.uk; Leary, Rowan K., E-mail: rkl26@cam.ac.uk; Midgley, Paul A., E-mail: pam33@cam.ac.uk

    2017-07-15

    Time-resolved imaging in microscopy is important for the direct observation of a range of dynamic processes in both the physical and life sciences. However, the image sequences are often corrupted by noise, either as a result of high frame rates or a need to limit the radiation dose received by the sample. Here we exploit both spatial and temporal correlations using low-rank matrix recovery methods to denoise microscopy image sequences. We also make use of an unbiased risk estimator to address the issue of how much thresholding to apply in a robust and automated manner. The performance of the technique is demonstrated using simulated image sequences, as well as experimental scanning transmission electron microscopy data, where surface adatom motion and nanoparticle structural dynamics are recovered at rates of up to 32 frames per second. - Highlights: • Correlations in space and time are harnessed to denoise microscopy image sequences. • A robust estimator provides automated selection of the denoising parameter. • Motion tracking and automated noise estimation provides a versatile algorithm. • Application to time-resolved STEM enables study of atomic and nanoparticle dynamics.

  20. Femtosecond time-resolved vibrational SFG spectroscopy of CO/Ru( 0 0 1 )

    Science.gov (United States)

    Hess, Ch.; Wolf, M.; Roke, S.; Bonn, M.

    2002-04-01

    Vibrational sum-frequency generation (SFG) employing femtosecond infrared (IR) laser pulses is used to study the dynamics of the C-O stretch vibration on Ru(0 0 1). Time-resolved measurements of the free induction decay (FID) of the IR-polarization for 0.33 ML CO/Ru(0 0 1) exhibit single exponential decays over three decades corresponding to dephasing times of T2=1.94 ps at 95 K and T2=1.16 ps at 340 K. This is consistent with pure homogeneous broadening due to anharmonic coupling with the thermally activated low-frequency dephasing mode together with a contribution from saturation of the IR transition. In pump-probe SFG experiments using a strong visible (VIS) pump pulse the perturbation of the FID leads to transient line shifts even at negative delay times, i.e. when the IR-VIS SFG probe pair precedes the pump pulse. Based on an analysis of the time-dependent polarization we discuss the influence of the perturbed FID on time-resolved SFG spectra. We investigate how coherent effects affect the SFG spectra and we examine the time resolution in these experiments, in particular in dependence of the dephasing time.

  1. Microcontroller based resonance tracking unit for time resolved continuous wave cavity-ringdown spectroscopy measurements.

    Science.gov (United States)

    Votava, Ondrej; Mašát, Milan; Parker, Alexander E; Jain, Chaithania; Fittschen, Christa

    2012-04-01

    We present in this work a new tracking servoloop electronics for continuous wave cavity-ringdown absorption spectroscopy (cw-CRDS) and its application to time resolved cw-CRDS measurements by coupling the system with a pulsed laser photolysis set-up. The tracking unit significantly increases the repetition rate of the CRDS events and thus improves effective time resolution (and/or the signal-to-noise ratio) in kinetics studies with cw-CRDS in given data acquisition time. The tracking servoloop uses novel strategy to track the cavity resonances that result in a fast relocking (few ms) after the loss of tracking due to an external disturbance. The microcontroller based design is highly flexible and thus advanced tracking strategies are easy to implement by the firmware modification without the need to modify the hardware. We believe that the performance of many existing cw-CRDS experiments, not only time-resolved, can be improved with such tracking unit without any additional modification to the experiment. © 2012 American Institute of Physics

  2. Time resolved flow-field measurements of a turbulent mixing layer over a rectangular cavity

    Science.gov (United States)

    Bian, Shiyao; Driscoll, James F.; Elbing, Brian R.; Ceccio, Steven L.

    2011-07-01

    High Reynolds number, low Mach number, turbulent shear flow past a rectangular, shallow cavity has been experimentally investigated with the use of dual-camera cinematographic particle image velocimetry (CPIV). The CPIV had a 3 kHz sampling rate, which was sufficient to monitor the time evolution of large-scale vortices as they formed, evolved downstream and impinged on the downstream cavity wall. The time-averaged flow properties (velocity and vorticity fields, streamwise velocity profiles and momentum and vorticity thickness) were in agreement with previous cavity flow studies under similar operating conditions. The time-resolved results show that the separated shear layer quickly rolled-up and formed eddies immediately downstream of the separation point. The vortices convect downstream at approximately half the free-stream speed. Vorticity strength intermittency as the structures approach the downstream edge suggests an increase in the three-dimensionality of the flow. Time-resolved correlations reveal that the in-plane coherence of the vortices decays within 2-3 structure diameters, and quasi-periodic flow features are present with a vortex passage frequency of ~1 kHz. The power spectra of the vertical velocity fluctuations within the shear layer revealed a peak at a non-dimensional frequency corresponding to that predicted using linear, inviscid instability theory.

  3. Time-resolved photoemission micro-spectrometer using higher-order harmonics of Ti:sapphire laser

    International Nuclear Information System (INIS)

    Azuma, J.; Kamada, M.; Kondo, Y.

    2004-01-01

    Full text: A new photoemission spectrometer is under construction for the photoemission microscopy and the time-resolved pump- probe experiment. The higher order harmonics of the Ti:sapphire laser is used as the light source of the VUV region in this system. Because the fundamental laser is focused tightly into the rare gas jet to generate the higher order harmonics, the spot size of the laser, in other words, the spot size of the VUV light source is smaller than a few tens of micrometer. This smallness of the spot size has advantage for the microscopy. In order to compensate the low flux of the laser harmonics, a multilayer-coated schwaltzshild optics was designed. The multilayers play also as the monochromatic filter. The spatial resolution of this schwaltzshild system is found to be less than 1 micrometer by the ray-tracing calculations. A main chamber of the system is equipped with a time-of-flight energy analyzer to improve the efficiency of the electron detection. The main chamber and the gas chamber are separated by a differential pumping chamber and a thin Al foil. The system is designed for the study of the clean surface. It will be capable to perform the sub-micron photoemission microscopy and the femto-second pump-probe photoemission study for the various photo-excited dynamics on clean surfaces

  4. Considerations and Optimization of Time-Resolved PIV Measurements near Complex Wind-Generated Air-Water Wave Interface

    Science.gov (United States)

    Stegmeir, Matthew; Markfort, Corey

    2017-11-01

    Time Resolved PIV measurements are applied on both sides of air-water interface in order to study the coupling between air and fluid motion. The multi-scale and 3-dimensional nature of the wave structure poses several unique considerations to generate optimal-quality data very near the fluid interface. High resolution and dynamic range in space and time are required to resolve relevant flow scales along a complex and ever-changing interface. Characterizing the two-way coupling across the air-water interface provide unique challenges for optical measurement techniques. Approaches to obtain near-boundary measurement on both sides of interface are discussed, including optimal flow seeding procedures, illumination, data analysis, and interface tracking. Techniques are applied to the IIHR Boundary-Layer Wind-Wave Tunnel and example results presented for both sides of the interface. The facility combines a 30m long recirculating water channel with an open-return boundary layer wind tunnel, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field.

  5. Probing Photoinduced Structural Phase Transitions by Fast or Ultra-Fast Time-Resolved X-Ray Diffraction

    Science.gov (United States)

    Cailleau, Hervé Collet, Eric; Buron-Le Cointe, Marylise; Lemée-Cailleau, Marie-Hélène Koshihara, Shin-Ya

    A new frontier in the field of structural science is the emergence of the fast and ultra-fast X-ray science. Recent developments in time-resolved X-ray diffraction promise direct access to the dynamics of electronic, atomic and molecular motions in condensed matter triggered by a pulsed laser irradiation, i.e. to record "molecular movies" during the transformation of matter initiated by light pulse. These laser pump and X-ray probe techniques now provide an outstanding opportunity for the direct observation of a photoinduced structural phase transition as it takes place. The use of X-ray short-pulse of about 100ps around third-generation synchrotron sources allows structural investigations of fast photoinduced processes. Other new X-ray sources, such as laser-produced plasma ones, generate ultra-short pulses down to 100 fs. This opens the way to femtosecond X-ray crystallography, but with rather low X-ray intensities and more limited experimental possibilities at present. However this new ultra-fast science rapidly progresses around these sources and new large-scale projects exist. It is the aim of this contribution to overview the state of art and the perspectives of fast and ultra-fast X-ray scattering techniques to study photoinduced phase transitions (here, the word ultra-fast is used for sub-picosecond time resolution). In particular we would like to largely present the contribution of crystallographic methods in comparison with optical methods, such as pump-probe reflectivity measurements, the reader being not necessary familiar with X-ray scattering. Thus we want to present which type of physical information can be obtained from the positions of the Bragg peaks, their intensity and their shape, as well as from the diffuse scattering beyond Bragg peaks. An important physical feature is to take into consideration the difference in nature between a photoinduced phase transition and conventional homogeneous photoinduced chemical or biochemical processes where

  6. Hemodynamic measurements in deep brain tissues of humans by near-infrared time-resolved spectroscopy

    Science.gov (United States)

    Suzuki, Hiroaki; Oda, Motoki; Yamaki, Etsuko; Suzuki, Toshihiko; Yamashita, Daisuke; Yoshimoto, Kenji; Homma, Shu; Yamashita, Yutaka

    2014-03-01

    Using near-infrared time-resolved spectroscopy (TRS), we measured the human head in transmittance mode to obtain the optical properties, tissue oxygenation, and hemodynamics of deep brain tissues in 50 healthy adult volunteers. The right ear canal was irradiated with 3-wavelengths of pulsed light (760, 795, and 835nm), and the photons passing through the human head were collected at the left ear canal. Optical signals with sufficient intensity could be obtained from 46 of the 50 volunteers. By analyzing the temporal profiles based on the photon diffusion theory, we successfully obtained absorption coefficients for each wavelength. The levels of oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (Hb), total hemoglobin (tHb), and tissue oxygen saturation (SO2) were then determined by referring to the hemoglobin spectroscopic data. Compared with the SO2 values for the forehead measurements in reflectance mode, the SO2 values of the transmittance measurements of the human head were approximately 10% lower, and tHb values of the transmittance measurements were always lower than those of the forehead reflectance measurements. Moreover, the level of hemoglobin and the SO2 were strongly correlated between the human head measurements in transmittance mode and the forehead measurements in the reflectance mode, respectively. These results demonstrated a potential application of this TRS system in examining deep brain tissues of humans.

  7. Early tumour detection: a transillumination, time-resolved technique

    International Nuclear Information System (INIS)

    Behin-Ain, S.; Van Doorn, T.; Patterson, J.

    2000-01-01

    Full text: Research into transillumination techniques for the detection of tumours in soft tissue has been ongoing for over 70 years. The resolution and contrast, however, remain severely limited by scatter. Single photon detection techniques, with ideally infinite extinction coefficients, have been proposed to accumulate sub-hertz photon transmitted frequencies in the early part of a transmitted pulse. Computer based simulations have been undertaken to examine the theoretical performance requirements of the detector and the resultant image qualities that may be expected with this imaging technique. This paper reports on the computational techniques required for implementing these simulations in an efficient manner. Controlled Monte Carlo (CMC) and Convolution of Layers (CL) techniques were employed to constrain the photon to those having more chance of detection and hence enhance the detection statistics. Extrapolation techniques are proposed to reconstruct the early part of the temporal profile. Computational methods were implemented to evaluate Path Integrals, which are otherwise overly complex to evaluate. CMC and CL reduce the computational time by more than 10 orders of magnitude by only tracking those photons more likely to reach the detector. In the case of an optically thick medium with high scattering coefficient, extrapolation techniques are used to reconstruct the early part of temporal profile. Analytical solutions were found to be too involved for the simplest geometries. However the CL and implementation of computational techniques make Path integrals a useful analytical tool to compliment full Monte Carlo techniques. Results have shown that these methods collectively enable detection of small inhomogeneites within soft tissues. Reduced computation times and full reconstruction of the temporal profile of transmitted photons through optically thick medium enable fast simulations of single photon detectors to be achieved with the above described

  8. Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy

    Science.gov (United States)

    Zhu, Yi; Cai, Zhonghou; Chen, Pice; Zhang, Qingteng; Highland, Matthew J.; Jung, Il Woong; Walko, Donald A.; Dufresne, Eric M.; Jeong, Jaewoo; Samant, Mahesh G.; Parkin, Stuart S. P.; Freeland, John W.; Evans, Paul G.; Wen, Haidan

    2016-02-01

    Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase separated regions. The ability to simultaneously track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of-the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, and is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. The direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.

  9. Time-Resolved Fluorescent Immunochromatography of Aflatoxin B1 in Soybean Sauce: A Rapid and Sensitive Quantitative Analysis.

    Science.gov (United States)

    Wang, Du; Zhang, Zhaowei; Li, Peiwu; Zhang, Qi; Zhang, Wen

    2016-07-14

    Rapid and quantitative sensing of aflatoxin B1 with high sensitivity and specificity has drawn increased attention of studies investigating soybean sauce. A sensitive and rapid quantitative immunochromatographic sensing method was developed for the detection of aflatoxin B1 based on time-resolved fluorescence. It combines the advantages of time-resolved fluorescent sensing and immunochromatography. The dynamic range of a competitive and portable immunoassay was 0.3-10.0 µg·kg(-1), with a limit of detection (LOD) of 0.1 µg·kg(-1) and recoveries of 87.2%-114.3%, within 10 min. The results showed good correlation (R² > 0.99) between time-resolved fluorescent immunochromatographic strip test and high performance liquid chromatography (HPLC). Soybean sauce samples analyzed using time-resolved fluorescent immunochromatographic strip test revealed that 64.2% of samples contained aflatoxin B1 at levels ranging from 0.31 to 12.5 µg·kg(-1). The strip test is a rapid, sensitive, quantitative, and cost-effective on-site screening technique in food safety analysis.

  10. Rapid on-site sensing aflatoxin B1 in food and feed via a chromatographic time-resolved fluoroimmunoassay.

    Directory of Open Access Journals (Sweden)

    Zhaowei Zhang

    Full Text Available Aflatoxin B1 poses grave threats to food and feed safety due to its strong carcinogenesis and toxicity, thus requiring ultrasensitive rapid on-site determination. Herein, a portable immunosensor based on chromatographic time-resolved fluoroimmunoassay was developed for sensitive and on-site determination of aflatoxin B1 in food and feed samples. Chromatographic time-resolved fluoroimmunoassay offered a magnified positive signal and low signal-to-noise ratio in time-resolved mode due to the absence of noise interference caused by excitation light sources. Compared with the immunosensing performance in previous studies, this platform demonstrated a wider dynamic range of 0.2-60 μg/kg, lower limit of detection from 0.06 to 0.12 µg/kg, and considerable recovery from 80.5% to 116.7% for different food and feed sample matrices. It was found to be little cross-reactivity with other aflatoxins (B2, G1, G2, and M1. In the case of determination of aflatoxin B1 in peanuts, corn, soy sauce, vegetable oil, and mouse feed, excellent agreement was found when compared with aflatoxin B1 determination via the conversational high-performance liquid chromatography method. The chromatographic time-resolved fluoroimmunoassay affords a powerful alternative for rapid on-site determination of aflatoxin B1 and holds a promise for food safety in consideration of practical food safety and environmental monitoring.

  11. Rapid on-site sensing aflatoxin B1 in food and feed via a chromatographic time-resolved fluoroimmunoassay.

    Science.gov (United States)

    Zhang, Zhaowei; Tang, Xiaoqian; Wang, Du; Zhang, Qi; Li, Peiwu; Ding, Xiaoxia

    2015-01-01

    Aflatoxin B1 poses grave threats to food and feed safety due to its strong carcinogenesis and toxicity, thus requiring ultrasensitive rapid on-site determination. Herein, a portable immunosensor based on chromatographic time-resolved fluoroimmunoassay was developed for sensitive and on-site determination of aflatoxin B1 in food and feed samples. Chromatographic time-resolved fluoroimmunoassay offered a magnified positive signal and low signal-to-noise ratio in time-resolved mode due to the absence of noise interference caused by excitation light sources. Compared with the immunosensing performance in previous studies, this platform demonstrated a wider dynamic range of 0.2-60 μg/kg, lower limit of detection from 0.06 to 0.12 µg/kg, and considerable recovery from 80.5% to 116.7% for different food and feed sample matrices. It was found to be little cross-reactivity with other aflatoxins (B2, G1, G2, and M1). In the case of determination of aflatoxin B1 in peanuts, corn, soy sauce, vegetable oil, and mouse feed, excellent agreement was found when compared with aflatoxin B1 determination via the conversational high-performance liquid chromatography method. The chromatographic time-resolved fluoroimmunoassay affords a powerful alternative for rapid on-site determination of aflatoxin B1 and holds a promise for food safety in consideration of practical food safety and environmental monitoring.

  12. Time-resolved investigation of dual high power impulse magnetron sputtering with closed magnetic field during deposition of Ti-Cu thin films

    International Nuclear Information System (INIS)

    Stranak, Vitezslav; Hippler, Rainer; Cada, Martin; Hubicka, Zdenek; Tichy, Milan

    2010-01-01

    Time-resolved comparative study of dual magnetron sputtering (dual-MS) and dual high power impulse magnetron sputtering (dual-HiPIMS) systems arranged with closed magnetic field is presented. The dual-MS system was operated with a repetition frequency 4.65 kHz (duty cycle ≅50%). The frequency during dual-HiPIMS is lower as well as its duty cycle (f=100 Hz, duty 1%). Different metallic targets (Ti, Cu) and different cathode voltages were applied to get required stoichiometry of Ti-Cu thin films. The plasma parameters of the interspace between magnetrons in the substrate position were investigated by time-resolved optical emission spectroscopy, Langmuir probe technique, and measurement of ion fluxes to the substrate. It is shown that plasma density as well as ion flux is higher about two orders of magnitude in dual-HiPIMS system. This fact is partially caused by low diffusion of ionized sputtered particles (Ti + ,Cu + ) which creates a preionized medium.

  13. Observation of Structure of Surfaces and Interfaces by Synchrotron X-ray Diffraction: Atomic-Scale Imaging and Time-Resolved Measurements

    Science.gov (United States)

    Wakabayashi, Yusuke; Shirasawa, Tetsuroh; Voegeli, Wolfgang; Takahashi, Toshio

    2018-06-01

    The recent developments in synchrotron optics, X-ray detectors, and data analysis algorithms have enhanced the capability of the surface X-ray diffraction technique. This technique has been used to clarify the atomic arrangement around surfaces in a non-contact and nondestructive manner. An overview of surface X-ray diffraction, from the historical development to recent topics, is presented. In the early stage of this technique, surface reconstructions of simple semiconductors or metals were studied. Currently, the surface or interface structures of complicated functional materials are examined with sub-Å resolution. As examples, the surface structure determination of organic semiconductors and of a one-dimensional structure on silicon are presented. A new frontier is time-resolved interfacial structure analysis. A recent observation of the structure and dynamics of the electric double layer of ionic liquids, and an investigation of the structural evolution in the wettability transition on a TiO2 surface that utilizes a newly designed time-resolved surface diffractometer, are presented.

  14. Assembly and application of an instrument for attosecond-time-resolved ionization chronoscopy

    International Nuclear Information System (INIS)

    Uphues, T.

    2006-11-01

    In the framework of this thesis a new setup for attosecond time-resolved measurements has been built and observations of ionization dynamics in rare gas atoms have been made. This new technique is entitled Ionization Chronoscopy and gives further evidence that time-resolved experiments in the attosecond regime will become a powerful tool for investigations in atomic physics. (orig.)

  15. GHz Yb:KYW oscillators in time-resolved spectroscopy

    Science.gov (United States)

    Li, Changxiu; Krauß, Nico; Schäfer, Gerhard; Ebner, Lukas; Kliebisch, Oliver; Schmidt, Johannes; Winnerl, Stephan; Hettich, Mike; Dekorsy, Thomas

    2018-02-01

    A high-speed asynchronous optical sampling system (ASOPS) based on Yb:KYW oscillators with 1-GHz repetition rate is reported. Two frequency-offset-stabilized diode-pumped Yb:KYW oscillators are employed as pump and probe source, respectively. The temporal resolution of this system within 1-ns time window is limited to 500 fs and the noise floor around 10-6 (ΔR/R) close to the shot-noise level is obtained within an acquisition time of a few seconds. Coherent acoustic phonons are investigated by measuring multilayer semiconductor structures with multiple quantum wells and aluminum/silicon membranes in this ASOPS system. A wavepacket-like phonon sequence at 360 GHz range is detected in the semiconductor structures and a decaying sequence of acoustic oscillations up to 200 GHz is obtained in the aluminum/silicon membranes. Coherent acoustic phonons generated from semiconductor structures are further manipulated by a double pump scheme through pump time delay control.

  16. Time-resolved four-wave mixing in InAs/InGaAs quantum-dot amplifiers under electrical injection

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    2000-01-01

    Time-resolved four-wave mixing in an InAs/InGaAs/GaAs electrically pumped quantum-dot amplifier is measured at room temperature for different applied bias currents going from optical absorption to gain of the device. The four-wave mixing signal from 140 fs pulses shows a transition from a delayed...

  17. Time-resolved characterization of InAs/InGaAs quantum dot gain material for 1.3 µm lasers on gallium arsenide

    DEFF Research Database (Denmark)

    Fiore, Andrea; Borri, Paola; Langbein, Wolfgang

    2000-01-01

    The time-resolved optical characterization of InAs/InGaAs quantum dots emitting at 1.3 ìm is presented. A photoluminescence decay time of 1.8 ns and a fast rise time of 10ps are measured close to room temperature....

  18. Velocity Field Measurements of Human Coughing Using Time Resolved Particle Image Velocimetry

    Science.gov (United States)

    Khan, T.; Marr, D. R.; Higuchi, H.; Glauser, M. N.

    2003-11-01

    Quantitative fluid mechanics analysis of human coughing has been carried out using new Time Resolved Particle Image Velocimetry (TRPIV). The study involves measurement of velocity vector time-histories and velocity profiles. It is focused on the average normal human coughing. Some work in the past on cough mechanics has involved measurement of flow rates, tidal volumes and sub-glottis pressure. However, data of unsteady velocity vector field of the exiting highly time-dependent jets is not available. In this study, human cough waveform data are first acquired in vivo using conventional respiratory instrumentation for various volunteers of different gender/age groups. The representative waveform is then reproduced with a coughing/breathing simulator (with or without a manikin) for TRPIV measurements and analysis. The results of this study would be useful not only for designing of indoor air quality and heating, ventilation and air conditioning systems, but also for devising means of protection against infectious diseases.

  19. Turbulent Statistics From Time-Resolved PIV Measurements of a Jet Using Empirical Mode Decomposition

    Science.gov (United States)

    Dahl, Milo D.

    2013-01-01

    Empirical mode decomposition is an adaptive signal processing method that when applied to a broadband signal, such as that generated by turbulence, acts as a set of band-pass filters. This process was applied to data from time-resolved, particle image velocimetry measurements of subsonic jets prior to computing the second-order, two-point, space-time correlations from which turbulent phase velocities and length and time scales could be determined. The application of this method to large sets of simultaneous time histories is new. In this initial study, the results are relevant to acoustic analogy source models for jet noise prediction. The high frequency portion of the results could provide the turbulent values for subgrid scale models for noise that is missed in large-eddy simulations. The results are also used to infer that the cross-correlations between different components of the decomposed signals at two points in space, neglected in this initial study, are important.

  20. Structure-activity relationships of heterogeneous catalysts from time-resolved X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Ressler, T.; Jentoft, R.E.; Wienold, J.; Girgsdies, F.; Neisius, T.; Timpe, O.

    2003-01-01

    Knowing the composition and the evolution of the bulk structure of a heterogeneous catalyst under working conditions (in situ) is a pre-requisite for understanding structure-activity relationships. X-ray absorption spectroscopy can be employed to study a catalytically active material in situ. In addition to steady-state investigations, the technique permits experiments with a time-resolution in the sub-second range to elucidate the solid-state kinetics of the reactions involved. Combined with mass spectrometry, the evolution of the short-range order structure of a heterogeneous catalyst, the average valence of the constituent metals, and the phase composition can be obtained. Here we present results obtained from time-resolved studies on the reduction of MoO 3 in propene and in propene and oxygen

  1. Nanosecond retinal structure changes in K-590 during the room-temperature bacteriorhodopsin photocycle: picosecond time-resolved coherent anti-stokes Raman spectroscopy

    OpenAIRE

    Weidlich, O.; Ujj, L.; Jäger, F.; Atkinson, G.H.

    1997-01-01

    Time-resolved vibrational spectra are used to elucidate the structural changes in the retinal chromophore within the K-590 intermediate that precedes the formation of the L-550 intermediate in the room-temperature (RT) bacteriorhodopsin (BR) photocycle. Measured by picosecond time-resolved coherent anti-Stokes Raman scattering (PTR/CARS), these vibrational data are recorded within the 750 cm-1 to 1720 cm-1 spectral region and with time delays of 50-260 ns after the RT/BR photocycle is optical...

  2. Development of a Rapid Insulin Assay by Homogenous Time-Resolved Fluorescence.

    Directory of Open Access Journals (Sweden)

    Zachary J Farino

    Full Text Available Direct measurement of insulin is critical for basic and clinical studies of insulin secretion. However, current methods are expensive and time-consuming. We developed an insulin assay based on homogenous time-resolved fluorescence that is significantly more rapid and cost-effective than current commonly used approaches. This assay was applied effectively to an insulin secreting cell line, INS-1E cells, as well as pancreatic islets, allowing us to validate the assay by elucidating mechanisms by which dopamine regulates insulin release. We found that dopamine functioned as a significant negative modulator of glucose-stimulated insulin secretion. Further, we showed that bromocriptine, a known dopamine D2/D3 receptor agonist and newly approved drug used for treatment of type II diabetes mellitus, also decreased glucose-stimulated insulin secretion in islets to levels comparable to those caused by dopamine treatment.

  3. Time-resolved soft x-ray spectra from laser-produced Cu plasma

    International Nuclear Information System (INIS)

    Cone, K.V.; Dunn, J.; Baldis, H.A.; May, M.J.; Purvis, M.A.; Scott, H.A.; Schneider, M.B.

    2012-01-01

    The volumetric heating of a thin copper target has been studied with time resolved x-ray spectroscopy. The copper target was heated from a plasma produced using the Lawrence Livermore National Laboratory's Compact Multipulse Terrawatt (COMET) laser. A variable spaced grating spectrometer coupled to an x-ray streak camera measured soft x-ray emission (800-1550 eV) from the back of the copper target to characterize the bulk heating of the target. Radiation hydrodynamic simulations were modeled in 2-dimensions using the HYDRA code. The target conditions calculated by HYDRA were post-processed with the atomic kinetics code CRETIN to generate synthetic emission spectra. A comparison between the experimental and simulated spectra indicates the presence of specific ionization states of copper and the corresponding electron temperatures and ion densities throughout the laser-heated copper target.

  4. Direct Observation of Insulin Association Dynamics with Time-Resolved X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Rimmerman, Dolev [Department; Leshchev, Denis [Department; Hsu, Darren J. [Department; Hong, Jiyun [Department; Kosheleva, Irina [Center; Chen, Lin X. [Department; Chemical

    2017-09-05

    Biological functions frequently require protein-protein interactions that involve secondary and tertiary structural perturbation. Here we study protein-protein dissociation and reassociation dynamics in insulin, a model system for protein oligomerization. Insulin dimer dissociation into monomers was induced by a nanosecond temperature-jump (T-jump) of ~8 °C in aqueous solution, and the resulting protein and solvent dynamics were tracked by time-resolved X-ray solution scattering (TRXSS) on time scales of 10 ns to 100 ms. The protein scattering signals revealed the formation of five distinguishable transient species during the association process that deviate from simple two state kinetics. Our results show that the combination of T-jump pump coupled to TRXSS probe allows for direct tracking of structural dynamics in nonphotoactive proteins.

  5. Time-resolved photoluminescence measurements of InP/ZnS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Pham Thi Thuy; Ung Thi Dieu Thuy; Tran Thi Kim Chi; Le Quang Phuong; Nguyen Quang Liem [Institute of Materials Science, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam); Li Liang; Reiss, Peter [CEA Grenoble, DSM/INAC/SPrAM (UMR 5819 CEA-CNRS-Universite Joseph Fourier)/LEMOH, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)], E-mail: liemnq@ims.vast.ac.vn

    2009-09-01

    This paper reports the results on the time-resolved photoluminescence study of InP/ZnS core/shell quantum dots. The ZnS shell played a decisive role to passivate imperfections on the surface of InP quantum dots, consequently giving rise to a strong enhancement of the photoluminescence from the InP core. Under appropriate excitation conditions, not only the emission from the InP core but also that from the ZnS shell was observed. The emission peak in InP core quantum dots varied as a function of quantum dots size, ranging in the 600 - 700 nm region; while the ZnS shell showed emission in the blue region around 470 nm, which is interpreted as resulting from defects in ZnS.

  6. Time-resolved and doppler-reduced laser spectroscopy on atoms

    International Nuclear Information System (INIS)

    Bergstroem, H.

    1991-10-01

    Radiative lifetimes have been studied in neutral boron, carbon, silicon and strontium, in singly ionized gadolinium and tantalum and in molecular carbon monoxide and C 2 . The time-resolved techniques were based either on pulsed lasers or pulse-modulated CW lasers. Several techniques have been utilized for the production of free atoms and ions such as evaporation into an atomic beam, sputtering in hollow cathodes and laser-produced plasmas. Hyperfine interactions in boron, copper and strontium have been examined using quantum beat spectroscopy, saturation spectroscopy and collimated atomic beam spectroscopy. Measurement techniques based on effusive hollow cathodes as well as laser produced plasmas in atomic physics have been developed. Investigations on laser produced plasmas using two colour beam deflection tomography for determination of electron densities have been performed. Finally, new possibilities for view-time-expansion in light-in-flight holography using mode-locked CW lasers have been demonstrated. (au)

  7. Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence.

    Science.gov (United States)

    Li, Dong; Zheng, Wei; Qu, Jianan Y

    2008-10-15

    A time-resolved spectroscopic imaging system is built to study the fluorescence characteristics of nicotinamide adenine dinucleotide (NADH), an important metabolic coenzyme and endogenous fluorophore in cells. The system provides a unique approach to measure fluorescence signals in different cellular organelles and cytoplasm. The ratios of free over protein-bound NADH signals in cytosol and nucleus are slightly higher than those in mitochondria. The mitochondrial fluorescence contributes about 70% of overall cellular fluorescence and is not a completely dominant signal. Furthermore, NADH signals in mitochondria, cytosol, and the nucleus respond to the changes of cellular activity differently, suggesting that cytosolic and nuclear fluorescence may complicate the well-known relationship between mitochondrial fluorescence and cellular metabolism.

  8. Time-resolved small-angle neutron scattering of a micelle-to-vesicle transition

    Energy Technology Data Exchange (ETDEWEB)

    Egelhaaf, S U [Institut Max von Laue - Paul Langevin (ILL), 38 -Grenoble (France); Schurtenberger, P [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-04-01

    Amphiphilic molecules spontaneously self-assemble in solution to form a variety of aggregates. Only limited information is available on the kinetics of the structural transitions as well as on the existence of non-equilibrium or metastable states. Aqueous mixtures of lecithin and bile salt are very interesting biological model-systems which exhibit a spontaneous transition from polymer-like mixed micelles to vesicles upon dilution. The small-angle neutron scattering (SANS) instrument D22, with its very high neutron flux and the broad range of scattering vectors covered in a single instrumental setting, allowed us for the first time to perform time-resolved scattering experiments in order to study the micelle-to-vesicle transition. The temporal evolution of the aggregate structures were followed and detailed information was obtained even on molecular length-scales. (author). 5 refs.

  9. Time resolved x-ray photography of a dense plasma focus

    International Nuclear Information System (INIS)

    Burnett, J.C.; Meyer, J.; Rankin, G.

    1977-01-01

    The temporal development of the hot plasma in a dense plasma focus is studied by x-ray streak photography of approximately 2 ns resolution time. It is shown that initially a uniform x-ray emitting pinch plasma is formed which subsequently cools down until x-ray emission stops after approximately 50 ns. At a time of around 100 ns after initial x-ray emission coinciding with the break-up time of the pinch a second burst of x-rays is observed coming from small localized regions. The observations are compared with results obtained from time-resolved shadow and schlieren photography of a similar dense focus discharge. (author)

  10. Time resolved bovine host reponse to virulence factors mapped in milk by selected reaction monitoring

    DEFF Research Database (Denmark)

    Bislev, Stine Lønnerup; Kusebauch, Ulrike; Codrea, Marius Cosmin

    . In this study, we present a sensitive selected reaction monitoring (SRM) proteomics approach, targeting proteins suggested to play key roles in the bovine host response to mastitis. 17 biomarker candidates related to inflammatory response and mastitis were selected. The 17 candidate proteins were quantified......TIME RESOLVED BOVINE HOST RESPONSE TO VIRULENCE FACTORS, MAPPED IN MILK BY SELECTED REACTION MONITORING S.L. Bislev1, U. Kusebauch2, M.C. Codrea1, R. Moritz2, C.M. Røntved1, E. Bendixen1 1 Department of Animal Science, Faculty of Science and Technology, Aarhus University, Tjele, Denmark; 2...... Institute for Systems Biology, Seattle, Washington, USA Mastitis is beyond doubt the largest health problem in modern milk production. Many different pathogens can cause infections in the mammary gland, and give rise to severe toll on animal welfare, economic gain as well as on excessive use of antibiotics...

  11. Time-resolved scanning Kerr microscopy of flux beam formation in hard disk write heads

    International Nuclear Information System (INIS)

    Valkass, Robert A. J.; Spicer, Timothy M.; Burgos Parra, Erick; Hicken, Robert J.; Bashir, Muhammad A.; Gubbins, Mark A.; Czoschke, Peter J.; Lopusnik, Radek

    2016-01-01

    To meet growing data storage needs, the density of data stored on hard disk drives must increase. In pursuit of this aim, the magnetodynamics of the hard disk write head must be characterized and understood, particularly the process of “flux beaming.” In this study, seven different configurations of perpendicular magnetic recording (PMR) write heads were imaged using time-resolved scanning Kerr microscopy, revealing their detailed dynamic magnetic state during the write process. It was found that the precise position and number of driving coils can significantly alter the formation of flux beams during the write process. These results are applicable to the design and understanding of current PMR and next-generation heat-assisted magnetic recording devices, as well as being relevant to other magnetic devices.

  12. Femtosecond time-resolved transient absorption spectroscopy of xanthophylls

    Czech Academy of Sciences Publication Activity Database

    Niedzwiedzki, D.; Sullivan, J.O.; Polívka, Tomáš; Birge, R.R.; Frank, H.A.

    2006-01-01

    Roč. 110, č. 45 (2006), s. 22872-22885 ISSN 1520-6106 Institutional research plan: CEZ:AV0Z50510513 Keywords : xanthophyll * spectroscopy study Subject RIV: BO - Biophysics Impact factor: 4.115, year: 2006

  13. Time-resolved beam energy measurements at LAMPF

    International Nuclear Information System (INIS)

    Hudgings, D.W.; Clark, D.A.; Bryant, H.C.

    1979-01-01

    A narrow atomic photodetachment resonance is used to measure the LAMPF beam energy. Energy and time resolution are adequate to permit the use of this method in studying transient changes in accelerated beam energy

  14. Comments on advanced, time-resolved imaging techniques for free-electron laser (FEL) experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1992-01-01

    An extensive set of time-resolved imaging experiments has been performed on rf-linac driven free-electron lasers (FELs) over the past few years. These experiments have addressed both micropulse and macropulse timescales on both the charged-particle beam and the wiggler/undulator outputs (spontaneous emission and lasing). A brief review of first measurements on photoinjecter micropulse elongation, submacropulse phase slew in drive lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by discussions of new measurements of 35-MeV electron beam micropulse bunch length (<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation beam profile measurements at gamma <80, and comments on the low-jitter synchroscan streak camera tuner. These techniques will be further developed on the 200-650 MeV linac test stand at the Advanced Photon Source (APS) in the next few years. Such techniques should be adaptable to many of the present FEL designs and to some aspects of the next generation of light sources.

  15. Comments on advanced, time-resolved imaging techniques for free-electron laser (FEL) experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1992-11-01

    An extensive set of time-resolved imaging experiments has been performed on rf-linac driven free-electron lasers (FELs) over the past few years. These experiments have addressed both micropulse and macropulse timescales on both the charged-particle beam and the wiggler/undulator outputs (spontaneous emission and lasing). A brief review of first measurements on photoinjecter micropulse elongation, submacropulse phase slew in drive lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by discussions of new measurements of 35-MeV electron beam micropulse bunch length (<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation beam profile measurements at gamma <80, and comments on the low-jitter synchroscan streak camera tuner. These techniques will be further developed on the 200-650 MeV linac test stand at the Advanced Photon Source (APS) in the next few years. Such techniques should be adaptable to many of the present FEL designs and to some aspects of the next generation of light sources.

  16. Analysis of detection limit to time-resolved coherent anti-Stokes Raman scattering nanoscopy

    International Nuclear Information System (INIS)

    Liu Wei; Liu Shuang-Long; Chen Dan-Ni; Niu Han-Ben

    2014-01-01

    In the implementation of CARS nanoscopy, signal strength decreases with focal volume size decreasing. A crucial problem that remains to be solved is whether the reduced signal generated in the suppressed focal volume can be detected. Here reported is a theoretical analysis of detection limit (DL) to time-resolved CARS (T-CARS) nanoscopy based on our proposed additional probe-beam-induced phonon depletion (APIPD) method for the low concentration samples. In order to acquire a detailed shot-noise limited signal-to-noise (SNR) and the involved parameters to evaluate DL, the T-CARS process is described with full quantum theory to estimate the extreme power density levels of the pump and Stokes beams determined by saturation behavior of coherent phonons, which are both actually on the order of ∼ 10 9 W/cm 2 . When the pump and Stokes intensities reach such values and the total intensity of the excitation beams arrives at a maximum tolerable by most biological samples in a certain suppressed focal volume (40-nm suppressed focal scale in APIPD method), the DL correspondingly varies with exposure time, for example, DL values are 10 3 and 10 2 when exposure times are 20 ms and 200 ms respectively. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Time-resolved processes in a pulsed electrical discharge in argon bubbles in water

    Science.gov (United States)

    Gershman, S.; Belkind, A.

    2010-12-01

    A phenomenological picture of a pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging characterization methods. The discharge is generated by applying 1 μ s pulses of 5 to 20 kV between a needle and a disk electrode submerged in water. An Ar gas bubble surrounds the tip of the needle electrode. Imaging, electrical characteristics, and time-resolved optical emission spectroscopic data suggest a fast streamer propagation mechanism and the formation of a plasma channel in the bubble. Comparing the electrical and imaging data for consecutive pulses applied to the bubble at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from the presence of long-lived chemical species, such as ozone and oxygen. Imaging and electrical data show the presence of two discharge events during each applied voltage pulse, a forward discharge near the beginning of the applied pulse depositing charge on the surface of the bubble and a reverse discharge removing the accumulated charge from the water/gas interface when the applied voltage is turned off. The pd value of ~ 300-500 torr cm, the 1 μs long pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique compared to the traditional corona or dielectric barrier discharges.

  18. Multiplexed measurements by time resolved spectroscopy using colloidal CdSe/ZnS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, U.; Jimenez de Aberasturi, D.; Malinowski, R.; Amin, F.; Parak, W. J.; Heimbrodt, W., E-mail: Wolfram.Heimbrodt@physik.uni-marburg.de [Department of Physics and Materials Sciences Center, Philipps-University of Marburg, Renthof 5, D-35032 Marburg (Germany)

    2014-01-27

    Multiplexed measurements of analytes in parallel is a topical demand in bioanalysis and bioimaging. An interesting alternative to commonly performed spectral multiplexing is lifetime multiplexing. In this Letter, we present a proof of principle of single-color lifetime multiplexing by coupling the same fluorophore to different nanoparticles. The effective lifetime of the fluorophores can be tuned by more than one order of magnitude due to resonance energy transfer from donor states. Measurements have been done on a model systems consisting of ATTO-590 dye molecules linked to either gold particles or to CdSe/ZnS core shell quantum dots. Both systems show the same luminescence spectrum of ATTO-590 dye emission in continuous wave excitation, but can be distinguished by means of time resolved measurements. The dye molecules bound to gold particles exhibit a mono-exponential decay with a lifetime of 4.5 ns, whereas the dye molecules bound to CdSe/ZnS dots show a nonexponential decay with a slow component of about 135 ns due to the energy transfer from the quantum dots. We demonstrate the fundamental possibility to determine the mixing ratio for dyes with equal luminescence spectra but very different transients. This opens up a pathway independent of the standard optical multiplexing with many different fluorophores emitting from the near ultraviolet to the near infrared spectral region.

  19. Initial time-resolved particle beam profile measurements at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Yang, B.X.; Lumpkin, A.H.

    1995-01-01

    The commissioning of the 7-GeV Advanced Photon Source (APS) storage ring began in early 1995. Characterization of the stored particle beam properties involved time-resolved transverse and longitudinal profile measurements using optical synchrotron radiation (OSR) monitors. Early results include the observation of the beam on a single turn, measurements of the transverse beam sizes after damping using a 100 μs integration time (σ x ∼ 150 ± 25 μm, σ γ ∼ 65 ± 25 μm, depending on vertical coupling), and measurement of the bunch length (σ τ ∼ 25 to 55 ps, depending on the charge per bunch). The results are consistent with specifications and predictions based on the 8.2 nm-rad natural emittance, the calculated lattice parameters, and vertical coupling less than 10%. The novel, single-element focusing mirror for the photon transport line and the dual-sweep streak camera techniques which allow turn-by-turn measurements will also be presented. The latter measurements are believed to be the first of their kind on a storage ring in the USA

  20. Characterization of time resolved photodetector systems for Positron Emission Tomography

    CERN Document Server

    Powolny, François

    The main topic of this work is the study of detector systems composed of a scintillator, a photodetector and readout electronics, for Positron Emission Tomography (PET). In particular, the timing properties of such detector systems are studied. The first idea is to take advantage of the good timing properties of the NINO chip, which is a fast preamplifier-discriminator developed for the ALICE Time of flight detector at CERN. This chip uses a time over threshold technique that is to be applied for the first time in medical imaging applications. A unique feature of this technique is that it delivers both timing and energy information with a single digital pulse, the time stamp with the rising edge and the energy from the pulse width. This entails substantial simplification of the entire readout architecture of a tomograph. The scintillator chosen in the detector system is LSO. Crystals of 2x2x10mm3 were used. For the photodetector, APDs were first used, and were then replaced by SiPMs to make use of their highe...